x86: SB600: skip IRQ0 override if it is not routed to INT2 of IOAPIC
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / kernel / align.c
blob5af4e9b2dbe2c6dcdde0213809f0d74673e19252
1 /* align.c - handle alignment exceptions for the Power PC.
3 * Copyright (c) 1996 Paul Mackerras <paulus@cs.anu.edu.au>
4 * Copyright (c) 1998-1999 TiVo, Inc.
5 * PowerPC 403GCX modifications.
6 * Copyright (c) 1999 Grant Erickson <grant@lcse.umn.edu>
7 * PowerPC 403GCX/405GP modifications.
8 * Copyright (c) 2001-2002 PPC64 team, IBM Corp
9 * 64-bit and Power4 support
10 * Copyright (c) 2005 Benjamin Herrenschmidt, IBM Corp
11 * <benh@kernel.crashing.org>
12 * Merge ppc32 and ppc64 implementations
14 * This program is free software; you can redistribute it and/or
15 * modify it under the terms of the GNU General Public License
16 * as published by the Free Software Foundation; either version
17 * 2 of the License, or (at your option) any later version.
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <asm/processor.h>
23 #include <asm/uaccess.h>
24 #include <asm/system.h>
25 #include <asm/cache.h>
26 #include <asm/cputable.h>
28 struct aligninfo {
29 unsigned char len;
30 unsigned char flags;
33 #define IS_XFORM(inst) (((inst) >> 26) == 31)
34 #define IS_DSFORM(inst) (((inst) >> 26) >= 56)
36 #define INVALID { 0, 0 }
38 /* Bits in the flags field */
39 #define LD 0 /* load */
40 #define ST 1 /* store */
41 #define SE 2 /* sign-extend value, or FP ld/st as word */
42 #define F 4 /* to/from fp regs */
43 #define U 8 /* update index register */
44 #define M 0x10 /* multiple load/store */
45 #define SW 0x20 /* byte swap */
46 #define S 0x40 /* single-precision fp or... */
47 #define SX 0x40 /* ... byte count in XER */
48 #define HARD 0x80 /* string, stwcx. */
49 #define E4 0x40 /* SPE endianness is word */
50 #define E8 0x80 /* SPE endianness is double word */
51 #define SPLT 0x80 /* VSX SPLAT load */
53 /* DSISR bits reported for a DCBZ instruction: */
54 #define DCBZ 0x5f /* 8xx/82xx dcbz faults when cache not enabled */
56 #define SWAP(a, b) (t = (a), (a) = (b), (b) = t)
59 * The PowerPC stores certain bits of the instruction that caused the
60 * alignment exception in the DSISR register. This array maps those
61 * bits to information about the operand length and what the
62 * instruction would do.
64 static struct aligninfo aligninfo[128] = {
65 { 4, LD }, /* 00 0 0000: lwz / lwarx */
66 INVALID, /* 00 0 0001 */
67 { 4, ST }, /* 00 0 0010: stw */
68 INVALID, /* 00 0 0011 */
69 { 2, LD }, /* 00 0 0100: lhz */
70 { 2, LD+SE }, /* 00 0 0101: lha */
71 { 2, ST }, /* 00 0 0110: sth */
72 { 4, LD+M }, /* 00 0 0111: lmw */
73 { 4, LD+F+S }, /* 00 0 1000: lfs */
74 { 8, LD+F }, /* 00 0 1001: lfd */
75 { 4, ST+F+S }, /* 00 0 1010: stfs */
76 { 8, ST+F }, /* 00 0 1011: stfd */
77 INVALID, /* 00 0 1100 */
78 { 8, LD }, /* 00 0 1101: ld/ldu/lwa */
79 INVALID, /* 00 0 1110 */
80 { 8, ST }, /* 00 0 1111: std/stdu */
81 { 4, LD+U }, /* 00 1 0000: lwzu */
82 INVALID, /* 00 1 0001 */
83 { 4, ST+U }, /* 00 1 0010: stwu */
84 INVALID, /* 00 1 0011 */
85 { 2, LD+U }, /* 00 1 0100: lhzu */
86 { 2, LD+SE+U }, /* 00 1 0101: lhau */
87 { 2, ST+U }, /* 00 1 0110: sthu */
88 { 4, ST+M }, /* 00 1 0111: stmw */
89 { 4, LD+F+S+U }, /* 00 1 1000: lfsu */
90 { 8, LD+F+U }, /* 00 1 1001: lfdu */
91 { 4, ST+F+S+U }, /* 00 1 1010: stfsu */
92 { 8, ST+F+U }, /* 00 1 1011: stfdu */
93 { 16, LD+F }, /* 00 1 1100: lfdp */
94 INVALID, /* 00 1 1101 */
95 { 16, ST+F }, /* 00 1 1110: stfdp */
96 INVALID, /* 00 1 1111 */
97 { 8, LD }, /* 01 0 0000: ldx */
98 INVALID, /* 01 0 0001 */
99 { 8, ST }, /* 01 0 0010: stdx */
100 INVALID, /* 01 0 0011 */
101 INVALID, /* 01 0 0100 */
102 { 4, LD+SE }, /* 01 0 0101: lwax */
103 INVALID, /* 01 0 0110 */
104 INVALID, /* 01 0 0111 */
105 { 4, LD+M+HARD+SX }, /* 01 0 1000: lswx */
106 { 4, LD+M+HARD }, /* 01 0 1001: lswi */
107 { 4, ST+M+HARD+SX }, /* 01 0 1010: stswx */
108 { 4, ST+M+HARD }, /* 01 0 1011: stswi */
109 INVALID, /* 01 0 1100 */
110 { 8, LD+U }, /* 01 0 1101: ldu */
111 INVALID, /* 01 0 1110 */
112 { 8, ST+U }, /* 01 0 1111: stdu */
113 { 8, LD+U }, /* 01 1 0000: ldux */
114 INVALID, /* 01 1 0001 */
115 { 8, ST+U }, /* 01 1 0010: stdux */
116 INVALID, /* 01 1 0011 */
117 INVALID, /* 01 1 0100 */
118 { 4, LD+SE+U }, /* 01 1 0101: lwaux */
119 INVALID, /* 01 1 0110 */
120 INVALID, /* 01 1 0111 */
121 INVALID, /* 01 1 1000 */
122 INVALID, /* 01 1 1001 */
123 INVALID, /* 01 1 1010 */
124 INVALID, /* 01 1 1011 */
125 INVALID, /* 01 1 1100 */
126 INVALID, /* 01 1 1101 */
127 INVALID, /* 01 1 1110 */
128 INVALID, /* 01 1 1111 */
129 INVALID, /* 10 0 0000 */
130 INVALID, /* 10 0 0001 */
131 INVALID, /* 10 0 0010: stwcx. */
132 INVALID, /* 10 0 0011 */
133 INVALID, /* 10 0 0100 */
134 INVALID, /* 10 0 0101 */
135 INVALID, /* 10 0 0110 */
136 INVALID, /* 10 0 0111 */
137 { 4, LD+SW }, /* 10 0 1000: lwbrx */
138 INVALID, /* 10 0 1001 */
139 { 4, ST+SW }, /* 10 0 1010: stwbrx */
140 INVALID, /* 10 0 1011 */
141 { 2, LD+SW }, /* 10 0 1100: lhbrx */
142 { 4, LD+SE }, /* 10 0 1101 lwa */
143 { 2, ST+SW }, /* 10 0 1110: sthbrx */
144 INVALID, /* 10 0 1111 */
145 INVALID, /* 10 1 0000 */
146 INVALID, /* 10 1 0001 */
147 INVALID, /* 10 1 0010 */
148 INVALID, /* 10 1 0011 */
149 INVALID, /* 10 1 0100 */
150 INVALID, /* 10 1 0101 */
151 INVALID, /* 10 1 0110 */
152 INVALID, /* 10 1 0111 */
153 INVALID, /* 10 1 1000 */
154 INVALID, /* 10 1 1001 */
155 INVALID, /* 10 1 1010 */
156 INVALID, /* 10 1 1011 */
157 INVALID, /* 10 1 1100 */
158 INVALID, /* 10 1 1101 */
159 INVALID, /* 10 1 1110 */
160 { 0, ST+HARD }, /* 10 1 1111: dcbz */
161 { 4, LD }, /* 11 0 0000: lwzx */
162 INVALID, /* 11 0 0001 */
163 { 4, ST }, /* 11 0 0010: stwx */
164 INVALID, /* 11 0 0011 */
165 { 2, LD }, /* 11 0 0100: lhzx */
166 { 2, LD+SE }, /* 11 0 0101: lhax */
167 { 2, ST }, /* 11 0 0110: sthx */
168 INVALID, /* 11 0 0111 */
169 { 4, LD+F+S }, /* 11 0 1000: lfsx */
170 { 8, LD+F }, /* 11 0 1001: lfdx */
171 { 4, ST+F+S }, /* 11 0 1010: stfsx */
172 { 8, ST+F }, /* 11 0 1011: stfdx */
173 { 16, LD+F }, /* 11 0 1100: lfdpx */
174 { 4, LD+F+SE }, /* 11 0 1101: lfiwax */
175 { 16, ST+F }, /* 11 0 1110: stfdpx */
176 { 4, ST+F }, /* 11 0 1111: stfiwx */
177 { 4, LD+U }, /* 11 1 0000: lwzux */
178 INVALID, /* 11 1 0001 */
179 { 4, ST+U }, /* 11 1 0010: stwux */
180 INVALID, /* 11 1 0011 */
181 { 2, LD+U }, /* 11 1 0100: lhzux */
182 { 2, LD+SE+U }, /* 11 1 0101: lhaux */
183 { 2, ST+U }, /* 11 1 0110: sthux */
184 INVALID, /* 11 1 0111 */
185 { 4, LD+F+S+U }, /* 11 1 1000: lfsux */
186 { 8, LD+F+U }, /* 11 1 1001: lfdux */
187 { 4, ST+F+S+U }, /* 11 1 1010: stfsux */
188 { 8, ST+F+U }, /* 11 1 1011: stfdux */
189 INVALID, /* 11 1 1100 */
190 INVALID, /* 11 1 1101 */
191 INVALID, /* 11 1 1110 */
192 INVALID, /* 11 1 1111 */
196 * Create a DSISR value from the instruction
198 static inline unsigned make_dsisr(unsigned instr)
200 unsigned dsisr;
203 /* bits 6:15 --> 22:31 */
204 dsisr = (instr & 0x03ff0000) >> 16;
206 if (IS_XFORM(instr)) {
207 /* bits 29:30 --> 15:16 */
208 dsisr |= (instr & 0x00000006) << 14;
209 /* bit 25 --> 17 */
210 dsisr |= (instr & 0x00000040) << 8;
211 /* bits 21:24 --> 18:21 */
212 dsisr |= (instr & 0x00000780) << 3;
213 } else {
214 /* bit 5 --> 17 */
215 dsisr |= (instr & 0x04000000) >> 12;
216 /* bits 1: 4 --> 18:21 */
217 dsisr |= (instr & 0x78000000) >> 17;
218 /* bits 30:31 --> 12:13 */
219 if (IS_DSFORM(instr))
220 dsisr |= (instr & 0x00000003) << 18;
223 return dsisr;
227 * The dcbz (data cache block zero) instruction
228 * gives an alignment fault if used on non-cacheable
229 * memory. We handle the fault mainly for the
230 * case when we are running with the cache disabled
231 * for debugging.
233 static int emulate_dcbz(struct pt_regs *regs, unsigned char __user *addr)
235 long __user *p;
236 int i, size;
238 #ifdef __powerpc64__
239 size = ppc64_caches.dline_size;
240 #else
241 size = L1_CACHE_BYTES;
242 #endif
243 p = (long __user *) (regs->dar & -size);
244 if (user_mode(regs) && !access_ok(VERIFY_WRITE, p, size))
245 return -EFAULT;
246 for (i = 0; i < size / sizeof(long); ++i)
247 if (__put_user_inatomic(0, p+i))
248 return -EFAULT;
249 return 1;
253 * Emulate load & store multiple instructions
254 * On 64-bit machines, these instructions only affect/use the
255 * bottom 4 bytes of each register, and the loads clear the
256 * top 4 bytes of the affected register.
258 #ifdef CONFIG_PPC64
259 #define REG_BYTE(rp, i) *((u8 *)((rp) + ((i) >> 2)) + ((i) & 3) + 4)
260 #else
261 #define REG_BYTE(rp, i) *((u8 *)(rp) + (i))
262 #endif
264 #define SWIZ_PTR(p) ((unsigned char __user *)((p) ^ swiz))
266 static int emulate_multiple(struct pt_regs *regs, unsigned char __user *addr,
267 unsigned int reg, unsigned int nb,
268 unsigned int flags, unsigned int instr,
269 unsigned long swiz)
271 unsigned long *rptr;
272 unsigned int nb0, i, bswiz;
273 unsigned long p;
276 * We do not try to emulate 8 bytes multiple as they aren't really
277 * available in our operating environments and we don't try to
278 * emulate multiples operations in kernel land as they should never
279 * be used/generated there at least not on unaligned boundaries
281 if (unlikely((nb > 4) || !user_mode(regs)))
282 return 0;
284 /* lmw, stmw, lswi/x, stswi/x */
285 nb0 = 0;
286 if (flags & HARD) {
287 if (flags & SX) {
288 nb = regs->xer & 127;
289 if (nb == 0)
290 return 1;
291 } else {
292 unsigned long pc = regs->nip ^ (swiz & 4);
294 if (__get_user_inatomic(instr,
295 (unsigned int __user *)pc))
296 return -EFAULT;
297 if (swiz == 0 && (flags & SW))
298 instr = cpu_to_le32(instr);
299 nb = (instr >> 11) & 0x1f;
300 if (nb == 0)
301 nb = 32;
303 if (nb + reg * 4 > 128) {
304 nb0 = nb + reg * 4 - 128;
305 nb = 128 - reg * 4;
307 } else {
308 /* lwm, stmw */
309 nb = (32 - reg) * 4;
312 if (!access_ok((flags & ST ? VERIFY_WRITE: VERIFY_READ), addr, nb+nb0))
313 return -EFAULT; /* bad address */
315 rptr = &regs->gpr[reg];
316 p = (unsigned long) addr;
317 bswiz = (flags & SW)? 3: 0;
319 if (!(flags & ST)) {
321 * This zeroes the top 4 bytes of the affected registers
322 * in 64-bit mode, and also zeroes out any remaining
323 * bytes of the last register for lsw*.
325 memset(rptr, 0, ((nb + 3) / 4) * sizeof(unsigned long));
326 if (nb0 > 0)
327 memset(&regs->gpr[0], 0,
328 ((nb0 + 3) / 4) * sizeof(unsigned long));
330 for (i = 0; i < nb; ++i, ++p)
331 if (__get_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
332 SWIZ_PTR(p)))
333 return -EFAULT;
334 if (nb0 > 0) {
335 rptr = &regs->gpr[0];
336 addr += nb;
337 for (i = 0; i < nb0; ++i, ++p)
338 if (__get_user_inatomic(REG_BYTE(rptr,
339 i ^ bswiz),
340 SWIZ_PTR(p)))
341 return -EFAULT;
344 } else {
345 for (i = 0; i < nb; ++i, ++p)
346 if (__put_user_inatomic(REG_BYTE(rptr, i ^ bswiz),
347 SWIZ_PTR(p)))
348 return -EFAULT;
349 if (nb0 > 0) {
350 rptr = &regs->gpr[0];
351 addr += nb;
352 for (i = 0; i < nb0; ++i, ++p)
353 if (__put_user_inatomic(REG_BYTE(rptr,
354 i ^ bswiz),
355 SWIZ_PTR(p)))
356 return -EFAULT;
359 return 1;
363 * Emulate floating-point pair loads and stores.
364 * Only POWER6 has these instructions, and it does true little-endian,
365 * so we don't need the address swizzling.
367 static int emulate_fp_pair(unsigned char __user *addr, unsigned int reg,
368 unsigned int flags)
370 char *ptr = (char *) &current->thread.TS_FPR(reg);
371 int i, ret;
373 if (!(flags & F))
374 return 0;
375 if (reg & 1)
376 return 0; /* invalid form: FRS/FRT must be even */
377 if (!(flags & SW)) {
378 /* not byte-swapped - easy */
379 if (!(flags & ST))
380 ret = __copy_from_user(ptr, addr, 16);
381 else
382 ret = __copy_to_user(addr, ptr, 16);
383 } else {
384 /* each FPR value is byte-swapped separately */
385 ret = 0;
386 for (i = 0; i < 16; ++i) {
387 if (!(flags & ST))
388 ret |= __get_user(ptr[i^7], addr + i);
389 else
390 ret |= __put_user(ptr[i^7], addr + i);
393 if (ret)
394 return -EFAULT;
395 return 1; /* exception handled and fixed up */
398 #ifdef CONFIG_SPE
400 static struct aligninfo spe_aligninfo[32] = {
401 { 8, LD+E8 }, /* 0 00 00: evldd[x] */
402 { 8, LD+E4 }, /* 0 00 01: evldw[x] */
403 { 8, LD }, /* 0 00 10: evldh[x] */
404 INVALID, /* 0 00 11 */
405 { 2, LD }, /* 0 01 00: evlhhesplat[x] */
406 INVALID, /* 0 01 01 */
407 { 2, LD }, /* 0 01 10: evlhhousplat[x] */
408 { 2, LD+SE }, /* 0 01 11: evlhhossplat[x] */
409 { 4, LD }, /* 0 10 00: evlwhe[x] */
410 INVALID, /* 0 10 01 */
411 { 4, LD }, /* 0 10 10: evlwhou[x] */
412 { 4, LD+SE }, /* 0 10 11: evlwhos[x] */
413 { 4, LD+E4 }, /* 0 11 00: evlwwsplat[x] */
414 INVALID, /* 0 11 01 */
415 { 4, LD }, /* 0 11 10: evlwhsplat[x] */
416 INVALID, /* 0 11 11 */
418 { 8, ST+E8 }, /* 1 00 00: evstdd[x] */
419 { 8, ST+E4 }, /* 1 00 01: evstdw[x] */
420 { 8, ST }, /* 1 00 10: evstdh[x] */
421 INVALID, /* 1 00 11 */
422 INVALID, /* 1 01 00 */
423 INVALID, /* 1 01 01 */
424 INVALID, /* 1 01 10 */
425 INVALID, /* 1 01 11 */
426 { 4, ST }, /* 1 10 00: evstwhe[x] */
427 INVALID, /* 1 10 01 */
428 { 4, ST }, /* 1 10 10: evstwho[x] */
429 INVALID, /* 1 10 11 */
430 { 4, ST+E4 }, /* 1 11 00: evstwwe[x] */
431 INVALID, /* 1 11 01 */
432 { 4, ST+E4 }, /* 1 11 10: evstwwo[x] */
433 INVALID, /* 1 11 11 */
436 #define EVLDD 0x00
437 #define EVLDW 0x01
438 #define EVLDH 0x02
439 #define EVLHHESPLAT 0x04
440 #define EVLHHOUSPLAT 0x06
441 #define EVLHHOSSPLAT 0x07
442 #define EVLWHE 0x08
443 #define EVLWHOU 0x0A
444 #define EVLWHOS 0x0B
445 #define EVLWWSPLAT 0x0C
446 #define EVLWHSPLAT 0x0E
447 #define EVSTDD 0x10
448 #define EVSTDW 0x11
449 #define EVSTDH 0x12
450 #define EVSTWHE 0x18
451 #define EVSTWHO 0x1A
452 #define EVSTWWE 0x1C
453 #define EVSTWWO 0x1E
456 * Emulate SPE loads and stores.
457 * Only Book-E has these instructions, and it does true little-endian,
458 * so we don't need the address swizzling.
460 static int emulate_spe(struct pt_regs *regs, unsigned int reg,
461 unsigned int instr)
463 int t, ret;
464 union {
465 u64 ll;
466 u32 w[2];
467 u16 h[4];
468 u8 v[8];
469 } data, temp;
470 unsigned char __user *p, *addr;
471 unsigned long *evr = &current->thread.evr[reg];
472 unsigned int nb, flags;
474 instr = (instr >> 1) & 0x1f;
476 /* DAR has the operand effective address */
477 addr = (unsigned char __user *)regs->dar;
479 nb = spe_aligninfo[instr].len;
480 flags = spe_aligninfo[instr].flags;
482 /* Verify the address of the operand */
483 if (unlikely(user_mode(regs) &&
484 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
485 addr, nb)))
486 return -EFAULT;
488 /* userland only */
489 if (unlikely(!user_mode(regs)))
490 return 0;
492 flush_spe_to_thread(current);
494 /* If we are loading, get the data from user space, else
495 * get it from register values
497 if (flags & ST) {
498 data.ll = 0;
499 switch (instr) {
500 case EVSTDD:
501 case EVSTDW:
502 case EVSTDH:
503 data.w[0] = *evr;
504 data.w[1] = regs->gpr[reg];
505 break;
506 case EVSTWHE:
507 data.h[2] = *evr >> 16;
508 data.h[3] = regs->gpr[reg] >> 16;
509 break;
510 case EVSTWHO:
511 data.h[2] = *evr & 0xffff;
512 data.h[3] = regs->gpr[reg] & 0xffff;
513 break;
514 case EVSTWWE:
515 data.w[1] = *evr;
516 break;
517 case EVSTWWO:
518 data.w[1] = regs->gpr[reg];
519 break;
520 default:
521 return -EINVAL;
523 } else {
524 temp.ll = data.ll = 0;
525 ret = 0;
526 p = addr;
528 switch (nb) {
529 case 8:
530 ret |= __get_user_inatomic(temp.v[0], p++);
531 ret |= __get_user_inatomic(temp.v[1], p++);
532 ret |= __get_user_inatomic(temp.v[2], p++);
533 ret |= __get_user_inatomic(temp.v[3], p++);
534 case 4:
535 ret |= __get_user_inatomic(temp.v[4], p++);
536 ret |= __get_user_inatomic(temp.v[5], p++);
537 case 2:
538 ret |= __get_user_inatomic(temp.v[6], p++);
539 ret |= __get_user_inatomic(temp.v[7], p++);
540 if (unlikely(ret))
541 return -EFAULT;
544 switch (instr) {
545 case EVLDD:
546 case EVLDW:
547 case EVLDH:
548 data.ll = temp.ll;
549 break;
550 case EVLHHESPLAT:
551 data.h[0] = temp.h[3];
552 data.h[2] = temp.h[3];
553 break;
554 case EVLHHOUSPLAT:
555 case EVLHHOSSPLAT:
556 data.h[1] = temp.h[3];
557 data.h[3] = temp.h[3];
558 break;
559 case EVLWHE:
560 data.h[0] = temp.h[2];
561 data.h[2] = temp.h[3];
562 break;
563 case EVLWHOU:
564 case EVLWHOS:
565 data.h[1] = temp.h[2];
566 data.h[3] = temp.h[3];
567 break;
568 case EVLWWSPLAT:
569 data.w[0] = temp.w[1];
570 data.w[1] = temp.w[1];
571 break;
572 case EVLWHSPLAT:
573 data.h[0] = temp.h[2];
574 data.h[1] = temp.h[2];
575 data.h[2] = temp.h[3];
576 data.h[3] = temp.h[3];
577 break;
578 default:
579 return -EINVAL;
583 if (flags & SW) {
584 switch (flags & 0xf0) {
585 case E8:
586 SWAP(data.v[0], data.v[7]);
587 SWAP(data.v[1], data.v[6]);
588 SWAP(data.v[2], data.v[5]);
589 SWAP(data.v[3], data.v[4]);
590 break;
591 case E4:
593 SWAP(data.v[0], data.v[3]);
594 SWAP(data.v[1], data.v[2]);
595 SWAP(data.v[4], data.v[7]);
596 SWAP(data.v[5], data.v[6]);
597 break;
598 /* Its half word endian */
599 default:
600 SWAP(data.v[0], data.v[1]);
601 SWAP(data.v[2], data.v[3]);
602 SWAP(data.v[4], data.v[5]);
603 SWAP(data.v[6], data.v[7]);
604 break;
608 if (flags & SE) {
609 data.w[0] = (s16)data.h[1];
610 data.w[1] = (s16)data.h[3];
613 /* Store result to memory or update registers */
614 if (flags & ST) {
615 ret = 0;
616 p = addr;
617 switch (nb) {
618 case 8:
619 ret |= __put_user_inatomic(data.v[0], p++);
620 ret |= __put_user_inatomic(data.v[1], p++);
621 ret |= __put_user_inatomic(data.v[2], p++);
622 ret |= __put_user_inatomic(data.v[3], p++);
623 case 4:
624 ret |= __put_user_inatomic(data.v[4], p++);
625 ret |= __put_user_inatomic(data.v[5], p++);
626 case 2:
627 ret |= __put_user_inatomic(data.v[6], p++);
628 ret |= __put_user_inatomic(data.v[7], p++);
630 if (unlikely(ret))
631 return -EFAULT;
632 } else {
633 *evr = data.w[0];
634 regs->gpr[reg] = data.w[1];
637 return 1;
639 #endif /* CONFIG_SPE */
641 #ifdef CONFIG_VSX
643 * Emulate VSX instructions...
645 static int emulate_vsx(unsigned char __user *addr, unsigned int reg,
646 unsigned int areg, struct pt_regs *regs,
647 unsigned int flags, unsigned int length)
649 char *ptr = (char *) &current->thread.TS_FPR(reg);
650 int ret = 0;
652 flush_vsx_to_thread(current);
654 if (flags & ST)
655 ret = __copy_to_user(addr, ptr, length);
656 else {
657 if (flags & SPLT){
658 ret = __copy_from_user(ptr, addr, length);
659 ptr += length;
661 ret |= __copy_from_user(ptr, addr, length);
663 if (flags & U)
664 regs->gpr[areg] = regs->dar;
665 if (ret)
666 return -EFAULT;
667 return 1;
669 #endif
672 * Called on alignment exception. Attempts to fixup
674 * Return 1 on success
675 * Return 0 if unable to handle the interrupt
676 * Return -EFAULT if data address is bad
679 int fix_alignment(struct pt_regs *regs)
681 unsigned int instr, nb, flags, instruction = 0;
682 unsigned int reg, areg;
683 unsigned int dsisr;
684 unsigned char __user *addr;
685 unsigned long p, swiz;
686 int ret, t;
687 union {
688 u64 ll;
689 double dd;
690 unsigned char v[8];
691 struct {
692 unsigned hi32;
693 int low32;
694 } x32;
695 struct {
696 unsigned char hi48[6];
697 short low16;
698 } x16;
699 } data;
702 * We require a complete register set, if not, then our assembly
703 * is broken
705 CHECK_FULL_REGS(regs);
707 dsisr = regs->dsisr;
709 /* Some processors don't provide us with a DSISR we can use here,
710 * let's make one up from the instruction
712 if (cpu_has_feature(CPU_FTR_NODSISRALIGN)) {
713 unsigned long pc = regs->nip;
715 if (cpu_has_feature(CPU_FTR_PPC_LE) && (regs->msr & MSR_LE))
716 pc ^= 4;
717 if (unlikely(__get_user_inatomic(instr,
718 (unsigned int __user *)pc)))
719 return -EFAULT;
720 if (cpu_has_feature(CPU_FTR_REAL_LE) && (regs->msr & MSR_LE))
721 instr = cpu_to_le32(instr);
722 dsisr = make_dsisr(instr);
723 instruction = instr;
726 /* extract the operation and registers from the dsisr */
727 reg = (dsisr >> 5) & 0x1f; /* source/dest register */
728 areg = dsisr & 0x1f; /* register to update */
730 #ifdef CONFIG_SPE
731 if ((instr >> 26) == 0x4)
732 return emulate_spe(regs, reg, instr);
733 #endif
735 instr = (dsisr >> 10) & 0x7f;
736 instr |= (dsisr >> 13) & 0x60;
738 /* Lookup the operation in our table */
739 nb = aligninfo[instr].len;
740 flags = aligninfo[instr].flags;
742 /* Byteswap little endian loads and stores */
743 swiz = 0;
744 if (regs->msr & MSR_LE) {
745 flags ^= SW;
747 * So-called "PowerPC little endian" mode works by
748 * swizzling addresses rather than by actually doing
749 * any byte-swapping. To emulate this, we XOR each
750 * byte address with 7. We also byte-swap, because
751 * the processor's address swizzling depends on the
752 * operand size (it xors the address with 7 for bytes,
753 * 6 for halfwords, 4 for words, 0 for doublewords) but
754 * we will xor with 7 and load/store each byte separately.
756 if (cpu_has_feature(CPU_FTR_PPC_LE))
757 swiz = 7;
760 /* DAR has the operand effective address */
761 addr = (unsigned char __user *)regs->dar;
763 #ifdef CONFIG_VSX
764 if ((instruction & 0xfc00003e) == 0x7c000018) {
765 /* Additional register addressing bit (64 VSX vs 32 FPR/GPR */
766 reg |= (instruction & 0x1) << 5;
767 /* Simple inline decoder instead of a table */
768 if (instruction & 0x200)
769 nb = 16;
770 else if (instruction & 0x080)
771 nb = 8;
772 else
773 nb = 4;
774 flags = 0;
775 if (instruction & 0x100)
776 flags |= ST;
777 if (instruction & 0x040)
778 flags |= U;
779 /* splat load needs a special decoder */
780 if ((instruction & 0x400) == 0){
781 flags |= SPLT;
782 nb = 8;
784 return emulate_vsx(addr, reg, areg, regs, flags, nb);
786 #endif
787 /* A size of 0 indicates an instruction we don't support, with
788 * the exception of DCBZ which is handled as a special case here
790 if (instr == DCBZ)
791 return emulate_dcbz(regs, addr);
792 if (unlikely(nb == 0))
793 return 0;
795 /* Load/Store Multiple instructions are handled in their own
796 * function
798 if (flags & M)
799 return emulate_multiple(regs, addr, reg, nb,
800 flags, instr, swiz);
802 /* Verify the address of the operand */
803 if (unlikely(user_mode(regs) &&
804 !access_ok((flags & ST ? VERIFY_WRITE : VERIFY_READ),
805 addr, nb)))
806 return -EFAULT;
808 /* Force the fprs into the save area so we can reference them */
809 if (flags & F) {
810 /* userland only */
811 if (unlikely(!user_mode(regs)))
812 return 0;
813 flush_fp_to_thread(current);
816 /* Special case for 16-byte FP loads and stores */
817 if (nb == 16)
818 return emulate_fp_pair(addr, reg, flags);
820 /* If we are loading, get the data from user space, else
821 * get it from register values
823 if (!(flags & ST)) {
824 data.ll = 0;
825 ret = 0;
826 p = (unsigned long) addr;
827 switch (nb) {
828 case 8:
829 ret |= __get_user_inatomic(data.v[0], SWIZ_PTR(p++));
830 ret |= __get_user_inatomic(data.v[1], SWIZ_PTR(p++));
831 ret |= __get_user_inatomic(data.v[2], SWIZ_PTR(p++));
832 ret |= __get_user_inatomic(data.v[3], SWIZ_PTR(p++));
833 case 4:
834 ret |= __get_user_inatomic(data.v[4], SWIZ_PTR(p++));
835 ret |= __get_user_inatomic(data.v[5], SWIZ_PTR(p++));
836 case 2:
837 ret |= __get_user_inatomic(data.v[6], SWIZ_PTR(p++));
838 ret |= __get_user_inatomic(data.v[7], SWIZ_PTR(p++));
839 if (unlikely(ret))
840 return -EFAULT;
842 } else if (flags & F) {
843 data.dd = current->thread.TS_FPR(reg);
844 if (flags & S) {
845 /* Single-precision FP store requires conversion... */
846 #ifdef CONFIG_PPC_FPU
847 preempt_disable();
848 enable_kernel_fp();
849 cvt_df(&data.dd, (float *)&data.v[4], &current->thread);
850 preempt_enable();
851 #else
852 return 0;
853 #endif
855 } else
856 data.ll = regs->gpr[reg];
858 if (flags & SW) {
859 switch (nb) {
860 case 8:
861 SWAP(data.v[0], data.v[7]);
862 SWAP(data.v[1], data.v[6]);
863 SWAP(data.v[2], data.v[5]);
864 SWAP(data.v[3], data.v[4]);
865 break;
866 case 4:
867 SWAP(data.v[4], data.v[7]);
868 SWAP(data.v[5], data.v[6]);
869 break;
870 case 2:
871 SWAP(data.v[6], data.v[7]);
872 break;
876 /* Perform other misc operations like sign extension
877 * or floating point single precision conversion
879 switch (flags & ~(U|SW)) {
880 case LD+SE: /* sign extending integer loads */
881 case LD+F+SE: /* sign extend for lfiwax */
882 if ( nb == 2 )
883 data.ll = data.x16.low16;
884 else /* nb must be 4 */
885 data.ll = data.x32.low32;
886 break;
888 /* Single-precision FP load requires conversion... */
889 case LD+F+S:
890 #ifdef CONFIG_PPC_FPU
891 preempt_disable();
892 enable_kernel_fp();
893 cvt_fd((float *)&data.v[4], &data.dd, &current->thread);
894 preempt_enable();
895 #else
896 return 0;
897 #endif
898 break;
901 /* Store result to memory or update registers */
902 if (flags & ST) {
903 ret = 0;
904 p = (unsigned long) addr;
905 switch (nb) {
906 case 8:
907 ret |= __put_user_inatomic(data.v[0], SWIZ_PTR(p++));
908 ret |= __put_user_inatomic(data.v[1], SWIZ_PTR(p++));
909 ret |= __put_user_inatomic(data.v[2], SWIZ_PTR(p++));
910 ret |= __put_user_inatomic(data.v[3], SWIZ_PTR(p++));
911 case 4:
912 ret |= __put_user_inatomic(data.v[4], SWIZ_PTR(p++));
913 ret |= __put_user_inatomic(data.v[5], SWIZ_PTR(p++));
914 case 2:
915 ret |= __put_user_inatomic(data.v[6], SWIZ_PTR(p++));
916 ret |= __put_user_inatomic(data.v[7], SWIZ_PTR(p++));
918 if (unlikely(ret))
919 return -EFAULT;
920 } else if (flags & F)
921 current->thread.TS_FPR(reg) = data.dd;
922 else
923 regs->gpr[reg] = data.ll;
925 /* Update RA as needed */
926 if (flags & U)
927 regs->gpr[areg] = regs->dar;
929 return 1;