4 * @remark Copyright 2002-2009 OProfile authors
5 * @remark Read the file COPYING
7 * @author John Levon <levon@movementarian.org>
8 * @author Barry Kasindorf
9 * @author Robert Richter <robert.richter@amd.com>
11 * This is the core of the buffer management. Each
12 * CPU buffer is processed and entered into the
13 * global event buffer. Such processing is necessary
14 * in several circumstances, mentioned below.
16 * The processing does the job of converting the
17 * transitory EIP value into a persistent dentry/offset
18 * value that the profiler can record at its leisure.
20 * See fs/dcookies.c for a description of the dentry/offset
25 #include <linux/workqueue.h>
26 #include <linux/notifier.h>
27 #include <linux/dcookies.h>
28 #include <linux/profile.h>
29 #include <linux/module.h>
31 #include <linux/oprofile.h>
32 #include <linux/sched.h>
33 #include <linux/gfp.h>
35 #include "oprofile_stats.h"
36 #include "event_buffer.h"
37 #include "cpu_buffer.h"
38 #include "buffer_sync.h"
40 static LIST_HEAD(dying_tasks
);
41 static LIST_HEAD(dead_tasks
);
42 static cpumask_var_t marked_cpus
;
43 static DEFINE_SPINLOCK(task_mortuary
);
44 static void process_task_mortuary(void);
46 /* Take ownership of the task struct and place it on the
47 * list for processing. Only after two full buffer syncs
48 * does the task eventually get freed, because by then
49 * we are sure we will not reference it again.
50 * Can be invoked from softirq via RCU callback due to
51 * call_rcu() of the task struct, hence the _irqsave.
54 task_free_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
57 struct task_struct
*task
= data
;
58 spin_lock_irqsave(&task_mortuary
, flags
);
59 list_add(&task
->tasks
, &dying_tasks
);
60 spin_unlock_irqrestore(&task_mortuary
, flags
);
65 /* The task is on its way out. A sync of the buffer means we can catch
66 * any remaining samples for this task.
69 task_exit_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
71 /* To avoid latency problems, we only process the current CPU,
72 * hoping that most samples for the task are on this CPU
74 sync_buffer(raw_smp_processor_id());
79 /* The task is about to try a do_munmap(). We peek at what it's going to
80 * do, and if it's an executable region, process the samples first, so
81 * we don't lose any. This does not have to be exact, it's a QoI issue
85 munmap_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
87 unsigned long addr
= (unsigned long)data
;
88 struct mm_struct
*mm
= current
->mm
;
89 struct vm_area_struct
*mpnt
;
91 down_read(&mm
->mmap_sem
);
93 mpnt
= find_vma(mm
, addr
);
94 if (mpnt
&& mpnt
->vm_file
&& (mpnt
->vm_flags
& VM_EXEC
)) {
95 up_read(&mm
->mmap_sem
);
96 /* To avoid latency problems, we only process the current CPU,
97 * hoping that most samples for the task are on this CPU
99 sync_buffer(raw_smp_processor_id());
103 up_read(&mm
->mmap_sem
);
108 /* We need to be told about new modules so we don't attribute to a previously
109 * loaded module, or drop the samples on the floor.
112 module_load_notify(struct notifier_block
*self
, unsigned long val
, void *data
)
114 #ifdef CONFIG_MODULES
115 if (val
!= MODULE_STATE_COMING
)
118 /* FIXME: should we process all CPU buffers ? */
119 mutex_lock(&buffer_mutex
);
120 add_event_entry(ESCAPE_CODE
);
121 add_event_entry(MODULE_LOADED_CODE
);
122 mutex_unlock(&buffer_mutex
);
128 static struct notifier_block task_free_nb
= {
129 .notifier_call
= task_free_notify
,
132 static struct notifier_block task_exit_nb
= {
133 .notifier_call
= task_exit_notify
,
136 static struct notifier_block munmap_nb
= {
137 .notifier_call
= munmap_notify
,
140 static struct notifier_block module_load_nb
= {
141 .notifier_call
= module_load_notify
,
144 static void free_all_tasks(void)
146 /* make sure we don't leak task structs */
147 process_task_mortuary();
148 process_task_mortuary();
155 if (!zalloc_cpumask_var(&marked_cpus
, GFP_KERNEL
))
158 err
= task_handoff_register(&task_free_nb
);
161 err
= profile_event_register(PROFILE_TASK_EXIT
, &task_exit_nb
);
164 err
= profile_event_register(PROFILE_MUNMAP
, &munmap_nb
);
167 err
= register_module_notifier(&module_load_nb
);
176 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
178 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
180 task_handoff_unregister(&task_free_nb
);
183 free_cpumask_var(marked_cpus
);
191 unregister_module_notifier(&module_load_nb
);
192 profile_event_unregister(PROFILE_MUNMAP
, &munmap_nb
);
193 profile_event_unregister(PROFILE_TASK_EXIT
, &task_exit_nb
);
194 task_handoff_unregister(&task_free_nb
);
195 barrier(); /* do all of the above first */
200 free_cpumask_var(marked_cpus
);
204 /* Optimisation. We can manage without taking the dcookie sem
205 * because we cannot reach this code without at least one
206 * dcookie user still being registered (namely, the reader
207 * of the event buffer). */
208 static inline unsigned long fast_get_dcookie(struct path
*path
)
210 unsigned long cookie
;
212 if (path
->dentry
->d_flags
& DCACHE_COOKIE
)
213 return (unsigned long)path
->dentry
;
214 get_dcookie(path
, &cookie
);
219 /* Look up the dcookie for the task's first VM_EXECUTABLE mapping,
220 * which corresponds loosely to "application name". This is
221 * not strictly necessary but allows oprofile to associate
222 * shared-library samples with particular applications
224 static unsigned long get_exec_dcookie(struct mm_struct
*mm
)
226 unsigned long cookie
= NO_COOKIE
;
227 struct vm_area_struct
*vma
;
232 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
235 if (!(vma
->vm_flags
& VM_EXECUTABLE
))
237 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
246 /* Convert the EIP value of a sample into a persistent dentry/offset
247 * pair that can then be added to the global event buffer. We make
248 * sure to do this lookup before a mm->mmap modification happens so
249 * we don't lose track.
252 lookup_dcookie(struct mm_struct
*mm
, unsigned long addr
, off_t
*offset
)
254 unsigned long cookie
= NO_COOKIE
;
255 struct vm_area_struct
*vma
;
257 for (vma
= find_vma(mm
, addr
); vma
; vma
= vma
->vm_next
) {
259 if (addr
< vma
->vm_start
|| addr
>= vma
->vm_end
)
263 cookie
= fast_get_dcookie(&vma
->vm_file
->f_path
);
264 *offset
= (vma
->vm_pgoff
<< PAGE_SHIFT
) + addr
-
267 /* must be an anonymous map */
275 cookie
= INVALID_COOKIE
;
280 static unsigned long last_cookie
= INVALID_COOKIE
;
282 static void add_cpu_switch(int i
)
284 add_event_entry(ESCAPE_CODE
);
285 add_event_entry(CPU_SWITCH_CODE
);
287 last_cookie
= INVALID_COOKIE
;
290 static void add_kernel_ctx_switch(unsigned int in_kernel
)
292 add_event_entry(ESCAPE_CODE
);
294 add_event_entry(KERNEL_ENTER_SWITCH_CODE
);
296 add_event_entry(KERNEL_EXIT_SWITCH_CODE
);
300 add_user_ctx_switch(struct task_struct
const *task
, unsigned long cookie
)
302 add_event_entry(ESCAPE_CODE
);
303 add_event_entry(CTX_SWITCH_CODE
);
304 add_event_entry(task
->pid
);
305 add_event_entry(cookie
);
306 /* Another code for daemon back-compat */
307 add_event_entry(ESCAPE_CODE
);
308 add_event_entry(CTX_TGID_CODE
);
309 add_event_entry(task
->tgid
);
313 static void add_cookie_switch(unsigned long cookie
)
315 add_event_entry(ESCAPE_CODE
);
316 add_event_entry(COOKIE_SWITCH_CODE
);
317 add_event_entry(cookie
);
321 static void add_trace_begin(void)
323 add_event_entry(ESCAPE_CODE
);
324 add_event_entry(TRACE_BEGIN_CODE
);
327 static void add_data(struct op_entry
*entry
, struct mm_struct
*mm
)
329 unsigned long code
, pc
, val
;
330 unsigned long cookie
;
333 if (!op_cpu_buffer_get_data(entry
, &code
))
335 if (!op_cpu_buffer_get_data(entry
, &pc
))
337 if (!op_cpu_buffer_get_size(entry
))
341 cookie
= lookup_dcookie(mm
, pc
, &offset
);
343 if (cookie
== NO_COOKIE
)
345 if (cookie
== INVALID_COOKIE
) {
346 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
349 if (cookie
!= last_cookie
) {
350 add_cookie_switch(cookie
);
351 last_cookie
= cookie
;
356 add_event_entry(ESCAPE_CODE
);
357 add_event_entry(code
);
358 add_event_entry(offset
); /* Offset from Dcookie */
360 while (op_cpu_buffer_get_data(entry
, &val
))
361 add_event_entry(val
);
364 static inline void add_sample_entry(unsigned long offset
, unsigned long event
)
366 add_event_entry(offset
);
367 add_event_entry(event
);
372 * Add a sample to the global event buffer. If possible the
373 * sample is converted into a persistent dentry/offset pair
374 * for later lookup from userspace. Return 0 on failure.
377 add_sample(struct mm_struct
*mm
, struct op_sample
*s
, int in_kernel
)
379 unsigned long cookie
;
383 add_sample_entry(s
->eip
, s
->event
);
387 /* add userspace sample */
390 atomic_inc(&oprofile_stats
.sample_lost_no_mm
);
394 cookie
= lookup_dcookie(mm
, s
->eip
, &offset
);
396 if (cookie
== INVALID_COOKIE
) {
397 atomic_inc(&oprofile_stats
.sample_lost_no_mapping
);
401 if (cookie
!= last_cookie
) {
402 add_cookie_switch(cookie
);
403 last_cookie
= cookie
;
406 add_sample_entry(offset
, s
->event
);
412 static void release_mm(struct mm_struct
*mm
)
416 up_read(&mm
->mmap_sem
);
421 static struct mm_struct
*take_tasks_mm(struct task_struct
*task
)
423 struct mm_struct
*mm
= get_task_mm(task
);
425 down_read(&mm
->mmap_sem
);
430 static inline int is_code(unsigned long val
)
432 return val
== ESCAPE_CODE
;
436 /* Move tasks along towards death. Any tasks on dead_tasks
437 * will definitely have no remaining references in any
438 * CPU buffers at this point, because we use two lists,
439 * and to have reached the list, it must have gone through
440 * one full sync already.
442 static void process_task_mortuary(void)
445 LIST_HEAD(local_dead_tasks
);
446 struct task_struct
*task
;
447 struct task_struct
*ttask
;
449 spin_lock_irqsave(&task_mortuary
, flags
);
451 list_splice_init(&dead_tasks
, &local_dead_tasks
);
452 list_splice_init(&dying_tasks
, &dead_tasks
);
454 spin_unlock_irqrestore(&task_mortuary
, flags
);
456 list_for_each_entry_safe(task
, ttask
, &local_dead_tasks
, tasks
) {
457 list_del(&task
->tasks
);
463 static void mark_done(int cpu
)
467 cpumask_set_cpu(cpu
, marked_cpus
);
469 for_each_online_cpu(i
) {
470 if (!cpumask_test_cpu(i
, marked_cpus
))
474 /* All CPUs have been processed at least once,
475 * we can process the mortuary once
477 process_task_mortuary();
479 cpumask_clear(marked_cpus
);
483 /* FIXME: this is not sufficient if we implement syscall barrier backtrace
484 * traversal, the code switch to sb_sample_start at first kernel enter/exit
485 * switch so we need a fifth state and some special handling in sync_buffer()
494 /* Sync one of the CPU's buffers into the global event buffer.
495 * Here we need to go through each batch of samples punctuated
496 * by context switch notes, taking the task's mmap_sem and doing
497 * lookup in task->mm->mmap to convert EIP into dcookie/offset
500 void sync_buffer(int cpu
)
502 struct mm_struct
*mm
= NULL
;
503 struct mm_struct
*oldmm
;
505 struct task_struct
*new;
506 unsigned long cookie
= 0;
508 sync_buffer_state state
= sb_buffer_start
;
510 unsigned long available
;
512 struct op_entry entry
;
513 struct op_sample
*sample
;
515 mutex_lock(&buffer_mutex
);
519 op_cpu_buffer_reset(cpu
);
520 available
= op_cpu_buffer_entries(cpu
);
522 for (i
= 0; i
< available
; ++i
) {
523 sample
= op_cpu_buffer_read_entry(&entry
, cpu
);
527 if (is_code(sample
->eip
)) {
528 flags
= sample
->event
;
529 if (flags
& TRACE_BEGIN
) {
533 if (flags
& KERNEL_CTX_SWITCH
) {
534 /* kernel/userspace switch */
535 in_kernel
= flags
& IS_KERNEL
;
536 if (state
== sb_buffer_start
)
537 state
= sb_sample_start
;
538 add_kernel_ctx_switch(flags
& IS_KERNEL
);
540 if (flags
& USER_CTX_SWITCH
541 && op_cpu_buffer_get_data(&entry
, &val
)) {
542 /* userspace context switch */
543 new = (struct task_struct
*)val
;
546 mm
= take_tasks_mm(new);
548 cookie
= get_exec_dcookie(mm
);
549 add_user_ctx_switch(new, cookie
);
551 if (op_cpu_buffer_get_size(&entry
))
552 add_data(&entry
, mm
);
556 if (state
< sb_bt_start
)
560 if (add_sample(mm
, sample
, in_kernel
))
563 /* ignore backtraces if failed to add a sample */
564 if (state
== sb_bt_start
) {
565 state
= sb_bt_ignore
;
566 atomic_inc(&oprofile_stats
.bt_lost_no_mapping
);
573 mutex_unlock(&buffer_mutex
);
576 /* The function can be used to add a buffer worth of data directly to
577 * the kernel buffer. The buffer is assumed to be a circular buffer.
578 * Take the entries from index start and end at index end, wrapping
581 void oprofile_put_buff(unsigned long *buf
, unsigned int start
,
582 unsigned int stop
, unsigned int max
)
588 mutex_lock(&buffer_mutex
);
590 add_event_entry(buf
[i
++]);
596 mutex_unlock(&buffer_mutex
);