thinkpad-acpi: module autoloading for newer Lenovo ThinkPads.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / linux / mm.h
blob11e5be6e72ce4525c2a8156e882a865e924d41da
1 #ifndef _LINUX_MM_H
2 #define _LINUX_MM_H
4 #include <linux/errno.h>
6 #ifdef __KERNEL__
8 #include <linux/gfp.h>
9 #include <linux/list.h>
10 #include <linux/mmzone.h>
11 #include <linux/rbtree.h>
12 #include <linux/prio_tree.h>
13 #include <linux/debug_locks.h>
14 #include <linux/mm_types.h>
16 struct mempolicy;
17 struct anon_vma;
18 struct file_ra_state;
19 struct user_struct;
20 struct writeback_control;
21 struct rlimit;
23 #ifndef CONFIG_DISCONTIGMEM /* Don't use mapnrs, do it properly */
24 extern unsigned long max_mapnr;
25 #endif
27 extern unsigned long num_physpages;
28 extern unsigned long totalram_pages;
29 extern void * high_memory;
30 extern int page_cluster;
32 #ifdef CONFIG_SYSCTL
33 extern int sysctl_legacy_va_layout;
34 #else
35 #define sysctl_legacy_va_layout 0
36 #endif
38 #include <asm/page.h>
39 #include <asm/pgtable.h>
40 #include <asm/processor.h>
42 #define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
44 /* to align the pointer to the (next) page boundary */
45 #define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
48 * Linux kernel virtual memory manager primitives.
49 * The idea being to have a "virtual" mm in the same way
50 * we have a virtual fs - giving a cleaner interface to the
51 * mm details, and allowing different kinds of memory mappings
52 * (from shared memory to executable loading to arbitrary
53 * mmap() functions).
56 extern struct kmem_cache *vm_area_cachep;
58 #ifndef CONFIG_MMU
59 extern struct rb_root nommu_region_tree;
60 extern struct rw_semaphore nommu_region_sem;
62 extern unsigned int kobjsize(const void *objp);
63 #endif
66 * vm_flags in vm_area_struct, see mm_types.h.
68 #define VM_READ 0x00000001 /* currently active flags */
69 #define VM_WRITE 0x00000002
70 #define VM_EXEC 0x00000004
71 #define VM_SHARED 0x00000008
73 /* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
74 #define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
75 #define VM_MAYWRITE 0x00000020
76 #define VM_MAYEXEC 0x00000040
77 #define VM_MAYSHARE 0x00000080
79 #define VM_GROWSDOWN 0x00000100 /* general info on the segment */
80 #if defined(CONFIG_STACK_GROWSUP) || defined(CONFIG_IA64)
81 #define VM_GROWSUP 0x00000200
82 #else
83 #define VM_GROWSUP 0x00000000
84 #endif
85 #define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
86 #define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
88 #define VM_EXECUTABLE 0x00001000
89 #define VM_LOCKED 0x00002000
90 #define VM_IO 0x00004000 /* Memory mapped I/O or similar */
92 /* Used by sys_madvise() */
93 #define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
94 #define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
96 #define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
97 #define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
98 #define VM_RESERVED 0x00080000 /* Count as reserved_vm like IO */
99 #define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
100 #define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
101 #define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
102 #define VM_NONLINEAR 0x00800000 /* Is non-linear (remap_file_pages) */
103 #define VM_MAPPED_COPY 0x01000000 /* T if mapped copy of data (nommu mmap) */
104 #define VM_INSERTPAGE 0x02000000 /* The vma has had "vm_insert_page()" done on it */
105 #define VM_ALWAYSDUMP 0x04000000 /* Always include in core dumps */
107 #define VM_CAN_NONLINEAR 0x08000000 /* Has ->fault & does nonlinear pages */
108 #define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
109 #define VM_SAO 0x20000000 /* Strong Access Ordering (powerpc) */
110 #define VM_PFN_AT_MMAP 0x40000000 /* PFNMAP vma that is fully mapped at mmap time */
111 #define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
113 #ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
114 #define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
115 #endif
117 #ifdef CONFIG_STACK_GROWSUP
118 #define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
119 #else
120 #define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
121 #endif
123 #define VM_READHINTMASK (VM_SEQ_READ | VM_RAND_READ)
124 #define VM_ClearReadHint(v) (v)->vm_flags &= ~VM_READHINTMASK
125 #define VM_NormalReadHint(v) (!((v)->vm_flags & VM_READHINTMASK))
126 #define VM_SequentialReadHint(v) ((v)->vm_flags & VM_SEQ_READ)
127 #define VM_RandomReadHint(v) ((v)->vm_flags & VM_RAND_READ)
130 * special vmas that are non-mergable, non-mlock()able
132 #define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_RESERVED | VM_PFNMAP)
135 * mapping from the currently active vm_flags protection bits (the
136 * low four bits) to a page protection mask..
138 extern pgprot_t protection_map[16];
140 #define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
141 #define FAULT_FLAG_NONLINEAR 0x02 /* Fault was via a nonlinear mapping */
142 #define FAULT_FLAG_MKWRITE 0x04 /* Fault was mkwrite of existing pte */
145 * This interface is used by x86 PAT code to identify a pfn mapping that is
146 * linear over entire vma. This is to optimize PAT code that deals with
147 * marking the physical region with a particular prot. This is not for generic
148 * mm use. Note also that this check will not work if the pfn mapping is
149 * linear for a vma starting at physical address 0. In which case PAT code
150 * falls back to slow path of reserving physical range page by page.
152 static inline int is_linear_pfn_mapping(struct vm_area_struct *vma)
154 return (vma->vm_flags & VM_PFN_AT_MMAP);
157 static inline int is_pfn_mapping(struct vm_area_struct *vma)
159 return (vma->vm_flags & VM_PFNMAP);
163 * vm_fault is filled by the the pagefault handler and passed to the vma's
164 * ->fault function. The vma's ->fault is responsible for returning a bitmask
165 * of VM_FAULT_xxx flags that give details about how the fault was handled.
167 * pgoff should be used in favour of virtual_address, if possible. If pgoff
168 * is used, one may set VM_CAN_NONLINEAR in the vma->vm_flags to get nonlinear
169 * mapping support.
171 struct vm_fault {
172 unsigned int flags; /* FAULT_FLAG_xxx flags */
173 pgoff_t pgoff; /* Logical page offset based on vma */
174 void __user *virtual_address; /* Faulting virtual address */
176 struct page *page; /* ->fault handlers should return a
177 * page here, unless VM_FAULT_NOPAGE
178 * is set (which is also implied by
179 * VM_FAULT_ERROR).
184 * These are the virtual MM functions - opening of an area, closing and
185 * unmapping it (needed to keep files on disk up-to-date etc), pointer
186 * to the functions called when a no-page or a wp-page exception occurs.
188 struct vm_operations_struct {
189 void (*open)(struct vm_area_struct * area);
190 void (*close)(struct vm_area_struct * area);
191 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
193 /* notification that a previously read-only page is about to become
194 * writable, if an error is returned it will cause a SIGBUS */
195 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
197 /* called by access_process_vm when get_user_pages() fails, typically
198 * for use by special VMAs that can switch between memory and hardware
200 int (*access)(struct vm_area_struct *vma, unsigned long addr,
201 void *buf, int len, int write);
202 #ifdef CONFIG_NUMA
204 * set_policy() op must add a reference to any non-NULL @new mempolicy
205 * to hold the policy upon return. Caller should pass NULL @new to
206 * remove a policy and fall back to surrounding context--i.e. do not
207 * install a MPOL_DEFAULT policy, nor the task or system default
208 * mempolicy.
210 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
213 * get_policy() op must add reference [mpol_get()] to any policy at
214 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
215 * in mm/mempolicy.c will do this automatically.
216 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
217 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
218 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
219 * must return NULL--i.e., do not "fallback" to task or system default
220 * policy.
222 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
223 unsigned long addr);
224 int (*migrate)(struct vm_area_struct *vma, const nodemask_t *from,
225 const nodemask_t *to, unsigned long flags);
226 #endif
229 struct mmu_gather;
230 struct inode;
232 #define page_private(page) ((page)->private)
233 #define set_page_private(page, v) ((page)->private = (v))
236 * FIXME: take this include out, include page-flags.h in
237 * files which need it (119 of them)
239 #include <linux/page-flags.h>
242 * Methods to modify the page usage count.
244 * What counts for a page usage:
245 * - cache mapping (page->mapping)
246 * - private data (page->private)
247 * - page mapped in a task's page tables, each mapping
248 * is counted separately
250 * Also, many kernel routines increase the page count before a critical
251 * routine so they can be sure the page doesn't go away from under them.
255 * Drop a ref, return true if the refcount fell to zero (the page has no users)
257 static inline int put_page_testzero(struct page *page)
259 VM_BUG_ON(atomic_read(&page->_count) == 0);
260 return atomic_dec_and_test(&page->_count);
264 * Try to grab a ref unless the page has a refcount of zero, return false if
265 * that is the case.
267 static inline int get_page_unless_zero(struct page *page)
269 return atomic_inc_not_zero(&page->_count);
272 /* Support for virtually mapped pages */
273 struct page *vmalloc_to_page(const void *addr);
274 unsigned long vmalloc_to_pfn(const void *addr);
277 * Determine if an address is within the vmalloc range
279 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
280 * is no special casing required.
282 static inline int is_vmalloc_addr(const void *x)
284 #ifdef CONFIG_MMU
285 unsigned long addr = (unsigned long)x;
287 return addr >= VMALLOC_START && addr < VMALLOC_END;
288 #else
289 return 0;
290 #endif
292 #ifdef CONFIG_MMU
293 extern int is_vmalloc_or_module_addr(const void *x);
294 #else
295 static inline int is_vmalloc_or_module_addr(const void *x)
297 return 0;
299 #endif
301 static inline struct page *compound_head(struct page *page)
303 if (unlikely(PageTail(page)))
304 return page->first_page;
305 return page;
308 static inline int page_count(struct page *page)
310 return atomic_read(&compound_head(page)->_count);
313 static inline void get_page(struct page *page)
315 page = compound_head(page);
316 VM_BUG_ON(atomic_read(&page->_count) == 0);
317 atomic_inc(&page->_count);
320 static inline struct page *virt_to_head_page(const void *x)
322 struct page *page = virt_to_page(x);
323 return compound_head(page);
327 * Setup the page count before being freed into the page allocator for
328 * the first time (boot or memory hotplug)
330 static inline void init_page_count(struct page *page)
332 atomic_set(&page->_count, 1);
335 void put_page(struct page *page);
336 void put_pages_list(struct list_head *pages);
338 void split_page(struct page *page, unsigned int order);
341 * Compound pages have a destructor function. Provide a
342 * prototype for that function and accessor functions.
343 * These are _only_ valid on the head of a PG_compound page.
345 typedef void compound_page_dtor(struct page *);
347 static inline void set_compound_page_dtor(struct page *page,
348 compound_page_dtor *dtor)
350 page[1].lru.next = (void *)dtor;
353 static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
355 return (compound_page_dtor *)page[1].lru.next;
358 static inline int compound_order(struct page *page)
360 if (!PageHead(page))
361 return 0;
362 return (unsigned long)page[1].lru.prev;
365 static inline void set_compound_order(struct page *page, unsigned long order)
367 page[1].lru.prev = (void *)order;
371 * Multiple processes may "see" the same page. E.g. for untouched
372 * mappings of /dev/null, all processes see the same page full of
373 * zeroes, and text pages of executables and shared libraries have
374 * only one copy in memory, at most, normally.
376 * For the non-reserved pages, page_count(page) denotes a reference count.
377 * page_count() == 0 means the page is free. page->lru is then used for
378 * freelist management in the buddy allocator.
379 * page_count() > 0 means the page has been allocated.
381 * Pages are allocated by the slab allocator in order to provide memory
382 * to kmalloc and kmem_cache_alloc. In this case, the management of the
383 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
384 * unless a particular usage is carefully commented. (the responsibility of
385 * freeing the kmalloc memory is the caller's, of course).
387 * A page may be used by anyone else who does a __get_free_page().
388 * In this case, page_count still tracks the references, and should only
389 * be used through the normal accessor functions. The top bits of page->flags
390 * and page->virtual store page management information, but all other fields
391 * are unused and could be used privately, carefully. The management of this
392 * page is the responsibility of the one who allocated it, and those who have
393 * subsequently been given references to it.
395 * The other pages (we may call them "pagecache pages") are completely
396 * managed by the Linux memory manager: I/O, buffers, swapping etc.
397 * The following discussion applies only to them.
399 * A pagecache page contains an opaque `private' member, which belongs to the
400 * page's address_space. Usually, this is the address of a circular list of
401 * the page's disk buffers. PG_private must be set to tell the VM to call
402 * into the filesystem to release these pages.
404 * A page may belong to an inode's memory mapping. In this case, page->mapping
405 * is the pointer to the inode, and page->index is the file offset of the page,
406 * in units of PAGE_CACHE_SIZE.
408 * If pagecache pages are not associated with an inode, they are said to be
409 * anonymous pages. These may become associated with the swapcache, and in that
410 * case PG_swapcache is set, and page->private is an offset into the swapcache.
412 * In either case (swapcache or inode backed), the pagecache itself holds one
413 * reference to the page. Setting PG_private should also increment the
414 * refcount. The each user mapping also has a reference to the page.
416 * The pagecache pages are stored in a per-mapping radix tree, which is
417 * rooted at mapping->page_tree, and indexed by offset.
418 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
419 * lists, we instead now tag pages as dirty/writeback in the radix tree.
421 * All pagecache pages may be subject to I/O:
422 * - inode pages may need to be read from disk,
423 * - inode pages which have been modified and are MAP_SHARED may need
424 * to be written back to the inode on disk,
425 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
426 * modified may need to be swapped out to swap space and (later) to be read
427 * back into memory.
431 * The zone field is never updated after free_area_init_core()
432 * sets it, so none of the operations on it need to be atomic.
437 * page->flags layout:
439 * There are three possibilities for how page->flags get
440 * laid out. The first is for the normal case, without
441 * sparsemem. The second is for sparsemem when there is
442 * plenty of space for node and section. The last is when
443 * we have run out of space and have to fall back to an
444 * alternate (slower) way of determining the node.
446 * No sparsemem or sparsemem vmemmap: | NODE | ZONE | ... | FLAGS |
447 * classic sparse with space for node:| SECTION | NODE | ZONE | ... | FLAGS |
448 * classic sparse no space for node: | SECTION | ZONE | ... | FLAGS |
450 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
451 #define SECTIONS_WIDTH SECTIONS_SHIFT
452 #else
453 #define SECTIONS_WIDTH 0
454 #endif
456 #define ZONES_WIDTH ZONES_SHIFT
458 #if SECTIONS_WIDTH+ZONES_WIDTH+NODES_SHIFT <= BITS_PER_LONG - NR_PAGEFLAGS
459 #define NODES_WIDTH NODES_SHIFT
460 #else
461 #ifdef CONFIG_SPARSEMEM_VMEMMAP
462 #error "Vmemmap: No space for nodes field in page flags"
463 #endif
464 #define NODES_WIDTH 0
465 #endif
467 /* Page flags: | [SECTION] | [NODE] | ZONE | ... | FLAGS | */
468 #define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
469 #define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
470 #define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
473 * We are going to use the flags for the page to node mapping if its in
474 * there. This includes the case where there is no node, so it is implicit.
476 #if !(NODES_WIDTH > 0 || NODES_SHIFT == 0)
477 #define NODE_NOT_IN_PAGE_FLAGS
478 #endif
480 #ifndef PFN_SECTION_SHIFT
481 #define PFN_SECTION_SHIFT 0
482 #endif
485 * Define the bit shifts to access each section. For non-existant
486 * sections we define the shift as 0; that plus a 0 mask ensures
487 * the compiler will optimise away reference to them.
489 #define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
490 #define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
491 #define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
493 /* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allcator */
494 #ifdef NODE_NOT_IN_PAGEFLAGS
495 #define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
496 #define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
497 SECTIONS_PGOFF : ZONES_PGOFF)
498 #else
499 #define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
500 #define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
501 NODES_PGOFF : ZONES_PGOFF)
502 #endif
504 #define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
506 #if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
507 #error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
508 #endif
510 #define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
511 #define NODES_MASK ((1UL << NODES_WIDTH) - 1)
512 #define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
513 #define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
515 static inline enum zone_type page_zonenum(struct page *page)
517 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
521 * The identification function is only used by the buddy allocator for
522 * determining if two pages could be buddies. We are not really
523 * identifying a zone since we could be using a the section number
524 * id if we have not node id available in page flags.
525 * We guarantee only that it will return the same value for two
526 * combinable pages in a zone.
528 static inline int page_zone_id(struct page *page)
530 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
533 static inline int zone_to_nid(struct zone *zone)
535 #ifdef CONFIG_NUMA
536 return zone->node;
537 #else
538 return 0;
539 #endif
542 #ifdef NODE_NOT_IN_PAGE_FLAGS
543 extern int page_to_nid(struct page *page);
544 #else
545 static inline int page_to_nid(struct page *page)
547 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
549 #endif
551 static inline struct zone *page_zone(struct page *page)
553 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
556 #if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
557 static inline unsigned long page_to_section(struct page *page)
559 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
561 #endif
563 static inline void set_page_zone(struct page *page, enum zone_type zone)
565 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
566 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
569 static inline void set_page_node(struct page *page, unsigned long node)
571 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
572 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
575 static inline void set_page_section(struct page *page, unsigned long section)
577 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
578 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
581 static inline void set_page_links(struct page *page, enum zone_type zone,
582 unsigned long node, unsigned long pfn)
584 set_page_zone(page, zone);
585 set_page_node(page, node);
586 set_page_section(page, pfn_to_section_nr(pfn));
590 * Some inline functions in vmstat.h depend on page_zone()
592 #include <linux/vmstat.h>
594 static __always_inline void *lowmem_page_address(struct page *page)
596 return __va(page_to_pfn(page) << PAGE_SHIFT);
599 #if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
600 #define HASHED_PAGE_VIRTUAL
601 #endif
603 #if defined(WANT_PAGE_VIRTUAL)
604 #define page_address(page) ((page)->virtual)
605 #define set_page_address(page, address) \
606 do { \
607 (page)->virtual = (address); \
608 } while(0)
609 #define page_address_init() do { } while(0)
610 #endif
612 #if defined(HASHED_PAGE_VIRTUAL)
613 void *page_address(struct page *page);
614 void set_page_address(struct page *page, void *virtual);
615 void page_address_init(void);
616 #endif
618 #if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
619 #define page_address(page) lowmem_page_address(page)
620 #define set_page_address(page, address) do { } while(0)
621 #define page_address_init() do { } while(0)
622 #endif
625 * On an anonymous page mapped into a user virtual memory area,
626 * page->mapping points to its anon_vma, not to a struct address_space;
627 * with the PAGE_MAPPING_ANON bit set to distinguish it.
629 * Please note that, confusingly, "page_mapping" refers to the inode
630 * address_space which maps the page from disk; whereas "page_mapped"
631 * refers to user virtual address space into which the page is mapped.
633 #define PAGE_MAPPING_ANON 1
635 extern struct address_space swapper_space;
636 static inline struct address_space *page_mapping(struct page *page)
638 struct address_space *mapping = page->mapping;
640 VM_BUG_ON(PageSlab(page));
641 #ifdef CONFIG_SWAP
642 if (unlikely(PageSwapCache(page)))
643 mapping = &swapper_space;
644 else
645 #endif
646 if (unlikely((unsigned long)mapping & PAGE_MAPPING_ANON))
647 mapping = NULL;
648 return mapping;
651 static inline int PageAnon(struct page *page)
653 return ((unsigned long)page->mapping & PAGE_MAPPING_ANON) != 0;
657 * Return the pagecache index of the passed page. Regular pagecache pages
658 * use ->index whereas swapcache pages use ->private
660 static inline pgoff_t page_index(struct page *page)
662 if (unlikely(PageSwapCache(page)))
663 return page_private(page);
664 return page->index;
668 * The atomic page->_mapcount, like _count, starts from -1:
669 * so that transitions both from it and to it can be tracked,
670 * using atomic_inc_and_test and atomic_add_negative(-1).
672 static inline void reset_page_mapcount(struct page *page)
674 atomic_set(&(page)->_mapcount, -1);
677 static inline int page_mapcount(struct page *page)
679 return atomic_read(&(page)->_mapcount) + 1;
683 * Return true if this page is mapped into pagetables.
685 static inline int page_mapped(struct page *page)
687 return atomic_read(&(page)->_mapcount) >= 0;
691 * Different kinds of faults, as returned by handle_mm_fault().
692 * Used to decide whether a process gets delivered SIGBUS or
693 * just gets major/minor fault counters bumped up.
696 #define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
698 #define VM_FAULT_OOM 0x0001
699 #define VM_FAULT_SIGBUS 0x0002
700 #define VM_FAULT_MAJOR 0x0004
701 #define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
702 #define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned page */
704 #define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
705 #define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
707 #define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_HWPOISON)
710 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
712 extern void pagefault_out_of_memory(void);
714 #define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
716 extern void show_free_areas(void);
718 int shmem_lock(struct file *file, int lock, struct user_struct *user);
719 struct file *shmem_file_setup(const char *name, loff_t size, unsigned long flags);
720 int shmem_zero_setup(struct vm_area_struct *);
722 #ifndef CONFIG_MMU
723 extern unsigned long shmem_get_unmapped_area(struct file *file,
724 unsigned long addr,
725 unsigned long len,
726 unsigned long pgoff,
727 unsigned long flags);
728 #endif
730 extern int can_do_mlock(void);
731 extern int user_shm_lock(size_t, struct user_struct *);
732 extern void user_shm_unlock(size_t, struct user_struct *);
735 * Parameter block passed down to zap_pte_range in exceptional cases.
737 struct zap_details {
738 struct vm_area_struct *nonlinear_vma; /* Check page->index if set */
739 struct address_space *check_mapping; /* Check page->mapping if set */
740 pgoff_t first_index; /* Lowest page->index to unmap */
741 pgoff_t last_index; /* Highest page->index to unmap */
742 spinlock_t *i_mmap_lock; /* For unmap_mapping_range: */
743 unsigned long truncate_count; /* Compare vm_truncate_count */
746 struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
747 pte_t pte);
749 int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
750 unsigned long size);
751 unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
752 unsigned long size, struct zap_details *);
753 unsigned long unmap_vmas(struct mmu_gather **tlb,
754 struct vm_area_struct *start_vma, unsigned long start_addr,
755 unsigned long end_addr, unsigned long *nr_accounted,
756 struct zap_details *);
759 * mm_walk - callbacks for walk_page_range
760 * @pgd_entry: if set, called for each non-empty PGD (top-level) entry
761 * @pud_entry: if set, called for each non-empty PUD (2nd-level) entry
762 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
763 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
764 * @pte_hole: if set, called for each hole at all levels
766 * (see walk_page_range for more details)
768 struct mm_walk {
769 int (*pgd_entry)(pgd_t *, unsigned long, unsigned long, struct mm_walk *);
770 int (*pud_entry)(pud_t *, unsigned long, unsigned long, struct mm_walk *);
771 int (*pmd_entry)(pmd_t *, unsigned long, unsigned long, struct mm_walk *);
772 int (*pte_entry)(pte_t *, unsigned long, unsigned long, struct mm_walk *);
773 int (*pte_hole)(unsigned long, unsigned long, struct mm_walk *);
774 struct mm_struct *mm;
775 void *private;
778 int walk_page_range(unsigned long addr, unsigned long end,
779 struct mm_walk *walk);
780 void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
781 unsigned long end, unsigned long floor, unsigned long ceiling);
782 int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
783 struct vm_area_struct *vma);
784 void unmap_mapping_range(struct address_space *mapping,
785 loff_t const holebegin, loff_t const holelen, int even_cows);
786 int follow_pfn(struct vm_area_struct *vma, unsigned long address,
787 unsigned long *pfn);
788 int follow_phys(struct vm_area_struct *vma, unsigned long address,
789 unsigned int flags, unsigned long *prot, resource_size_t *phys);
790 int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
791 void *buf, int len, int write);
793 static inline void unmap_shared_mapping_range(struct address_space *mapping,
794 loff_t const holebegin, loff_t const holelen)
796 unmap_mapping_range(mapping, holebegin, holelen, 0);
799 extern void truncate_pagecache(struct inode *inode, loff_t old, loff_t new);
800 extern int vmtruncate(struct inode *inode, loff_t offset);
801 extern int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end);
803 int truncate_inode_page(struct address_space *mapping, struct page *page);
804 int generic_error_remove_page(struct address_space *mapping, struct page *page);
806 int invalidate_inode_page(struct page *page);
808 #ifdef CONFIG_MMU
809 extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
810 unsigned long address, unsigned int flags);
811 #else
812 static inline int handle_mm_fault(struct mm_struct *mm,
813 struct vm_area_struct *vma, unsigned long address,
814 unsigned int flags)
816 /* should never happen if there's no MMU */
817 BUG();
818 return VM_FAULT_SIGBUS;
820 #endif
822 extern int make_pages_present(unsigned long addr, unsigned long end);
823 extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
825 int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
826 unsigned long start, int nr_pages, int write, int force,
827 struct page **pages, struct vm_area_struct **vmas);
828 int get_user_pages_fast(unsigned long start, int nr_pages, int write,
829 struct page **pages);
830 struct page *get_dump_page(unsigned long addr);
832 extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
833 extern void do_invalidatepage(struct page *page, unsigned long offset);
835 int __set_page_dirty_nobuffers(struct page *page);
836 int __set_page_dirty_no_writeback(struct page *page);
837 int redirty_page_for_writepage(struct writeback_control *wbc,
838 struct page *page);
839 void account_page_dirtied(struct page *page, struct address_space *mapping);
840 int set_page_dirty(struct page *page);
841 int set_page_dirty_lock(struct page *page);
842 int clear_page_dirty_for_io(struct page *page);
844 /* Is the vma a continuation of the stack vma above it? */
845 static inline int vma_stack_continue(struct vm_area_struct *vma, unsigned long addr)
847 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
850 extern unsigned long move_page_tables(struct vm_area_struct *vma,
851 unsigned long old_addr, struct vm_area_struct *new_vma,
852 unsigned long new_addr, unsigned long len);
853 extern unsigned long do_mremap(unsigned long addr,
854 unsigned long old_len, unsigned long new_len,
855 unsigned long flags, unsigned long new_addr);
856 extern int mprotect_fixup(struct vm_area_struct *vma,
857 struct vm_area_struct **pprev, unsigned long start,
858 unsigned long end, unsigned long newflags);
861 * doesn't attempt to fault and will return short.
863 int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
864 struct page **pages);
867 * A callback you can register to apply pressure to ageable caches.
869 * 'shrink' is passed a count 'nr_to_scan' and a 'gfpmask'. It should
870 * look through the least-recently-used 'nr_to_scan' entries and
871 * attempt to free them up. It should return the number of objects
872 * which remain in the cache. If it returns -1, it means it cannot do
873 * any scanning at this time (eg. there is a risk of deadlock).
875 * The 'gfpmask' refers to the allocation we are currently trying to
876 * fulfil.
878 * Note that 'shrink' will be passed nr_to_scan == 0 when the VM is
879 * querying the cache size, so a fastpath for that case is appropriate.
881 struct shrinker {
882 int (*shrink)(int nr_to_scan, gfp_t gfp_mask);
883 int seeks; /* seeks to recreate an obj */
885 /* These are for internal use */
886 struct list_head list;
887 long nr; /* objs pending delete */
889 #define DEFAULT_SEEKS 2 /* A good number if you don't know better. */
890 extern void register_shrinker(struct shrinker *);
891 extern void unregister_shrinker(struct shrinker *);
893 int vma_wants_writenotify(struct vm_area_struct *vma);
895 extern pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr, spinlock_t **ptl);
897 #ifdef __PAGETABLE_PUD_FOLDED
898 static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
899 unsigned long address)
901 return 0;
903 #else
904 int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
905 #endif
907 #ifdef __PAGETABLE_PMD_FOLDED
908 static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
909 unsigned long address)
911 return 0;
913 #else
914 int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
915 #endif
917 int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
918 int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
921 * The following ifdef needed to get the 4level-fixup.h header to work.
922 * Remove it when 4level-fixup.h has been removed.
924 #if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
925 static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
927 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
928 NULL: pud_offset(pgd, address);
931 static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
933 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
934 NULL: pmd_offset(pud, address);
936 #endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
938 #if USE_SPLIT_PTLOCKS
940 * We tuck a spinlock to guard each pagetable page into its struct page,
941 * at page->private, with BUILD_BUG_ON to make sure that this will not
942 * overflow into the next struct page (as it might with DEBUG_SPINLOCK).
943 * When freeing, reset page->mapping so free_pages_check won't complain.
945 #define __pte_lockptr(page) &((page)->ptl)
946 #define pte_lock_init(_page) do { \
947 spin_lock_init(__pte_lockptr(_page)); \
948 } while (0)
949 #define pte_lock_deinit(page) ((page)->mapping = NULL)
950 #define pte_lockptr(mm, pmd) ({(void)(mm); __pte_lockptr(pmd_page(*(pmd)));})
951 #else /* !USE_SPLIT_PTLOCKS */
953 * We use mm->page_table_lock to guard all pagetable pages of the mm.
955 #define pte_lock_init(page) do {} while (0)
956 #define pte_lock_deinit(page) do {} while (0)
957 #define pte_lockptr(mm, pmd) ({(void)(pmd); &(mm)->page_table_lock;})
958 #endif /* USE_SPLIT_PTLOCKS */
960 static inline void pgtable_page_ctor(struct page *page)
962 pte_lock_init(page);
963 inc_zone_page_state(page, NR_PAGETABLE);
966 static inline void pgtable_page_dtor(struct page *page)
968 pte_lock_deinit(page);
969 dec_zone_page_state(page, NR_PAGETABLE);
972 #define pte_offset_map_lock(mm, pmd, address, ptlp) \
973 ({ \
974 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
975 pte_t *__pte = pte_offset_map(pmd, address); \
976 *(ptlp) = __ptl; \
977 spin_lock(__ptl); \
978 __pte; \
981 #define pte_unmap_unlock(pte, ptl) do { \
982 spin_unlock(ptl); \
983 pte_unmap(pte); \
984 } while (0)
986 #define pte_alloc_map(mm, pmd, address) \
987 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
988 NULL: pte_offset_map(pmd, address))
990 #define pte_alloc_map_lock(mm, pmd, address, ptlp) \
991 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc(mm, pmd, address))? \
992 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
994 #define pte_alloc_kernel(pmd, address) \
995 ((unlikely(!pmd_present(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
996 NULL: pte_offset_kernel(pmd, address))
998 extern void free_area_init(unsigned long * zones_size);
999 extern void free_area_init_node(int nid, unsigned long * zones_size,
1000 unsigned long zone_start_pfn, unsigned long *zholes_size);
1001 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
1003 * With CONFIG_ARCH_POPULATES_NODE_MAP set, an architecture may initialise its
1004 * zones, allocate the backing mem_map and account for memory holes in a more
1005 * architecture independent manner. This is a substitute for creating the
1006 * zone_sizes[] and zholes_size[] arrays and passing them to
1007 * free_area_init_node()
1009 * An architecture is expected to register range of page frames backed by
1010 * physical memory with add_active_range() before calling
1011 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1012 * usage, an architecture is expected to do something like
1014 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1015 * max_highmem_pfn};
1016 * for_each_valid_physical_page_range()
1017 * add_active_range(node_id, start_pfn, end_pfn)
1018 * free_area_init_nodes(max_zone_pfns);
1020 * If the architecture guarantees that there are no holes in the ranges
1021 * registered with add_active_range(), free_bootmem_active_regions()
1022 * will call free_bootmem_node() for each registered physical page range.
1023 * Similarly sparse_memory_present_with_active_regions() calls
1024 * memory_present() for each range when SPARSEMEM is enabled.
1026 * See mm/page_alloc.c for more information on each function exposed by
1027 * CONFIG_ARCH_POPULATES_NODE_MAP
1029 extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1030 extern void add_active_range(unsigned int nid, unsigned long start_pfn,
1031 unsigned long end_pfn);
1032 extern void remove_active_range(unsigned int nid, unsigned long start_pfn,
1033 unsigned long end_pfn);
1034 extern void remove_all_active_ranges(void);
1035 extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1036 unsigned long end_pfn);
1037 extern void get_pfn_range_for_nid(unsigned int nid,
1038 unsigned long *start_pfn, unsigned long *end_pfn);
1039 extern unsigned long find_min_pfn_with_active_regions(void);
1040 extern void free_bootmem_with_active_regions(int nid,
1041 unsigned long max_low_pfn);
1042 typedef int (*work_fn_t)(unsigned long, unsigned long, void *);
1043 extern void work_with_active_regions(int nid, work_fn_t work_fn, void *data);
1044 extern void sparse_memory_present_with_active_regions(int nid);
1045 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
1047 #if !defined(CONFIG_ARCH_POPULATES_NODE_MAP) && \
1048 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
1049 static inline int __early_pfn_to_nid(unsigned long pfn)
1051 return 0;
1053 #else
1054 /* please see mm/page_alloc.c */
1055 extern int __meminit early_pfn_to_nid(unsigned long pfn);
1056 #ifdef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1057 /* there is a per-arch backend function. */
1058 extern int __meminit __early_pfn_to_nid(unsigned long pfn);
1059 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1060 #endif
1062 extern void set_dma_reserve(unsigned long new_dma_reserve);
1063 extern void memmap_init_zone(unsigned long, int, unsigned long,
1064 unsigned long, enum memmap_context);
1065 extern void setup_per_zone_wmarks(void);
1066 extern void calculate_zone_inactive_ratio(struct zone *zone);
1067 extern void mem_init(void);
1068 extern void __init mmap_init(void);
1069 extern void show_mem(void);
1070 extern void si_meminfo(struct sysinfo * val);
1071 extern void si_meminfo_node(struct sysinfo *val, int nid);
1072 extern int after_bootmem;
1074 #ifdef CONFIG_NUMA
1075 extern void setup_per_cpu_pageset(void);
1076 #else
1077 static inline void setup_per_cpu_pageset(void) {}
1078 #endif
1080 extern void zone_pcp_update(struct zone *zone);
1082 /* nommu.c */
1083 extern atomic_long_t mmap_pages_allocated;
1085 /* prio_tree.c */
1086 void vma_prio_tree_add(struct vm_area_struct *, struct vm_area_struct *old);
1087 void vma_prio_tree_insert(struct vm_area_struct *, struct prio_tree_root *);
1088 void vma_prio_tree_remove(struct vm_area_struct *, struct prio_tree_root *);
1089 struct vm_area_struct *vma_prio_tree_next(struct vm_area_struct *vma,
1090 struct prio_tree_iter *iter);
1092 #define vma_prio_tree_foreach(vma, iter, root, begin, end) \
1093 for (prio_tree_iter_init(iter, root, begin, end), vma = NULL; \
1094 (vma = vma_prio_tree_next(vma, iter)); )
1096 static inline void vma_nonlinear_insert(struct vm_area_struct *vma,
1097 struct list_head *list)
1099 vma->shared.vm_set.parent = NULL;
1100 list_add_tail(&vma->shared.vm_set.list, list);
1103 /* mmap.c */
1104 extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
1105 extern void vma_adjust(struct vm_area_struct *vma, unsigned long start,
1106 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1107 extern struct vm_area_struct *vma_merge(struct mm_struct *,
1108 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1109 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
1110 struct mempolicy *);
1111 extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1112 extern int split_vma(struct mm_struct *,
1113 struct vm_area_struct *, unsigned long addr, int new_below);
1114 extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1115 extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1116 struct rb_node **, struct rb_node *);
1117 extern void unlink_file_vma(struct vm_area_struct *);
1118 extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
1119 unsigned long addr, unsigned long len, pgoff_t pgoff);
1120 extern void exit_mmap(struct mm_struct *);
1122 extern int mm_take_all_locks(struct mm_struct *mm);
1123 extern void mm_drop_all_locks(struct mm_struct *mm);
1125 #ifdef CONFIG_PROC_FS
1126 /* From fs/proc/base.c. callers must _not_ hold the mm's exe_file_lock */
1127 extern void added_exe_file_vma(struct mm_struct *mm);
1128 extern void removed_exe_file_vma(struct mm_struct *mm);
1129 #else
1130 static inline void added_exe_file_vma(struct mm_struct *mm)
1133 static inline void removed_exe_file_vma(struct mm_struct *mm)
1135 #endif /* CONFIG_PROC_FS */
1137 extern int may_expand_vm(struct mm_struct *mm, unsigned long npages);
1138 extern int install_special_mapping(struct mm_struct *mm,
1139 unsigned long addr, unsigned long len,
1140 unsigned long flags, struct page **pages);
1142 extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1144 extern unsigned long do_mmap_pgoff(struct file *file, unsigned long addr,
1145 unsigned long len, unsigned long prot,
1146 unsigned long flag, unsigned long pgoff);
1147 extern unsigned long mmap_region(struct file *file, unsigned long addr,
1148 unsigned long len, unsigned long flags,
1149 unsigned int vm_flags, unsigned long pgoff);
1151 static inline unsigned long do_mmap(struct file *file, unsigned long addr,
1152 unsigned long len, unsigned long prot,
1153 unsigned long flag, unsigned long offset)
1155 unsigned long ret = -EINVAL;
1156 if ((offset + PAGE_ALIGN(len)) < offset)
1157 goto out;
1158 if (!(offset & ~PAGE_MASK))
1159 ret = do_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
1160 out:
1161 return ret;
1164 extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1166 extern unsigned long do_brk(unsigned long, unsigned long);
1168 /* filemap.c */
1169 extern unsigned long page_unuse(struct page *);
1170 extern void truncate_inode_pages(struct address_space *, loff_t);
1171 extern void truncate_inode_pages_range(struct address_space *,
1172 loff_t lstart, loff_t lend);
1174 /* generic vm_area_ops exported for stackable file systems */
1175 extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
1177 /* mm/page-writeback.c */
1178 int write_one_page(struct page *page, int wait);
1179 void task_dirty_inc(struct task_struct *tsk);
1181 /* readahead.c */
1182 #define VM_MAX_READAHEAD 128 /* kbytes */
1183 #define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1185 int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
1186 pgoff_t offset, unsigned long nr_to_read);
1188 void page_cache_sync_readahead(struct address_space *mapping,
1189 struct file_ra_state *ra,
1190 struct file *filp,
1191 pgoff_t offset,
1192 unsigned long size);
1194 void page_cache_async_readahead(struct address_space *mapping,
1195 struct file_ra_state *ra,
1196 struct file *filp,
1197 struct page *pg,
1198 pgoff_t offset,
1199 unsigned long size);
1201 unsigned long max_sane_readahead(unsigned long nr);
1202 unsigned long ra_submit(struct file_ra_state *ra,
1203 struct address_space *mapping,
1204 struct file *filp);
1206 /* Do stack extension */
1207 extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
1208 #if VM_GROWSUP
1209 extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
1210 #else
1211 #define expand_upwards(vma, address) do { } while (0)
1212 #endif
1213 extern int expand_stack_downwards(struct vm_area_struct *vma,
1214 unsigned long address);
1216 /* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
1217 extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
1218 extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
1219 struct vm_area_struct **pprev);
1221 /* Look up the first VMA which intersects the interval start_addr..end_addr-1,
1222 NULL if none. Assume start_addr < end_addr. */
1223 static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
1225 struct vm_area_struct * vma = find_vma(mm,start_addr);
1227 if (vma && end_addr <= vma->vm_start)
1228 vma = NULL;
1229 return vma;
1232 static inline unsigned long vma_pages(struct vm_area_struct *vma)
1234 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
1237 pgprot_t vm_get_page_prot(unsigned long vm_flags);
1238 struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
1239 int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
1240 unsigned long pfn, unsigned long size, pgprot_t);
1241 int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
1242 int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1243 unsigned long pfn);
1244 int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1245 unsigned long pfn);
1247 struct page *follow_page(struct vm_area_struct *, unsigned long address,
1248 unsigned int foll_flags);
1249 #define FOLL_WRITE 0x01 /* check pte is writable */
1250 #define FOLL_TOUCH 0x02 /* mark page accessed */
1251 #define FOLL_GET 0x04 /* do get_page on page */
1252 #define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
1253 #define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
1255 typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
1256 void *data);
1257 extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
1258 unsigned long size, pte_fn_t fn, void *data);
1260 #ifdef CONFIG_PROC_FS
1261 void vm_stat_account(struct mm_struct *, unsigned long, struct file *, long);
1262 #else
1263 static inline void vm_stat_account(struct mm_struct *mm,
1264 unsigned long flags, struct file *file, long pages)
1267 #endif /* CONFIG_PROC_FS */
1269 #ifdef CONFIG_DEBUG_PAGEALLOC
1270 extern int debug_pagealloc_enabled;
1272 extern void kernel_map_pages(struct page *page, int numpages, int enable);
1274 static inline void enable_debug_pagealloc(void)
1276 debug_pagealloc_enabled = 1;
1278 #ifdef CONFIG_HIBERNATION
1279 extern bool kernel_page_present(struct page *page);
1280 #endif /* CONFIG_HIBERNATION */
1281 #else
1282 static inline void
1283 kernel_map_pages(struct page *page, int numpages, int enable) {}
1284 static inline void enable_debug_pagealloc(void)
1287 #ifdef CONFIG_HIBERNATION
1288 static inline bool kernel_page_present(struct page *page) { return true; }
1289 #endif /* CONFIG_HIBERNATION */
1290 #endif
1292 extern struct vm_area_struct *get_gate_vma(struct task_struct *tsk);
1293 #ifdef __HAVE_ARCH_GATE_AREA
1294 int in_gate_area_no_task(unsigned long addr);
1295 int in_gate_area(struct task_struct *task, unsigned long addr);
1296 #else
1297 int in_gate_area_no_task(unsigned long addr);
1298 #define in_gate_area(task, addr) ({(void)task; in_gate_area_no_task(addr);})
1299 #endif /* __HAVE_ARCH_GATE_AREA */
1301 int drop_caches_sysctl_handler(struct ctl_table *, int,
1302 void __user *, size_t *, loff_t *);
1303 unsigned long shrink_slab(unsigned long scanned, gfp_t gfp_mask,
1304 unsigned long lru_pages);
1306 #ifndef CONFIG_MMU
1307 #define randomize_va_space 0
1308 #else
1309 extern int randomize_va_space;
1310 #endif
1312 const char * arch_vma_name(struct vm_area_struct *vma);
1313 void print_vma_addr(char *prefix, unsigned long rip);
1315 struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
1316 pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
1317 pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
1318 pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
1319 pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
1320 void *vmemmap_alloc_block(unsigned long size, int node);
1321 void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
1322 int vmemmap_populate_basepages(struct page *start_page,
1323 unsigned long pages, int node);
1324 int vmemmap_populate(struct page *start_page, unsigned long pages, int node);
1325 void vmemmap_populate_print_last(void);
1327 extern int account_locked_memory(struct mm_struct *mm, struct rlimit *rlim,
1328 size_t size);
1329 extern void refund_locked_memory(struct mm_struct *mm, size_t size);
1331 extern void memory_failure(unsigned long pfn, int trapno);
1332 extern int __memory_failure(unsigned long pfn, int trapno, int ref);
1333 extern int sysctl_memory_failure_early_kill;
1334 extern int sysctl_memory_failure_recovery;
1335 extern atomic_long_t mce_bad_pages;
1337 #endif /* __KERNEL__ */
1338 #endif /* _LINUX_MM_H */