1 /* bnx2x_init_ops.h: Broadcom Everest network driver.
2 * Static functions needed during the initialization.
3 * This file is "included" in bnx2x_main.c.
5 * Copyright (c) 2007-2011 Broadcom Corporation
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License as published by
9 * the Free Software Foundation.
11 * Maintained by: Eilon Greenstein <eilong@broadcom.com>
12 * Written by: Vladislav Zolotarov <vladz@broadcom.com>
15 #ifndef BNX2X_INIT_OPS_H
16 #define BNX2X_INIT_OPS_H
20 #define BP_ILT(bp) NULL
31 #ifndef BNX2X_ILT_FREE
32 #define BNX2X_ILT_FREE(x, y, sz)
35 #ifndef BNX2X_ILT_ZALLOC
36 #define BNX2X_ILT_ZALLOC(x, y, sz)
43 static int bnx2x_gunzip(struct bnx2x
*bp
, const u8
*zbuf
, int len
);
44 static void bnx2x_reg_wr_ind(struct bnx2x
*bp
, u32 addr
, u32 val
);
45 static void bnx2x_write_dmae_phys_len(struct bnx2x
*bp
,
46 dma_addr_t phys_addr
, u32 addr
,
49 static void bnx2x_init_str_wr(struct bnx2x
*bp
, u32 addr
,
50 const u32
*data
, u32 len
)
54 for (i
= 0; i
< len
; i
++)
55 REG_WR(bp
, addr
+ i
*4, data
[i
]);
58 static void bnx2x_init_ind_wr(struct bnx2x
*bp
, u32 addr
,
59 const u32
*data
, u32 len
)
63 for (i
= 0; i
< len
; i
++)
64 bnx2x_reg_wr_ind(bp
, addr
+ i
*4, data
[i
]);
67 static void bnx2x_write_big_buf(struct bnx2x
*bp
, u32 addr
, u32 len
,
71 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
74 * Wide bus registers with no dmae need to be written
75 * using indirect write.
77 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
79 bnx2x_init_str_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
82 static void bnx2x_init_fill(struct bnx2x
*bp
, u32 addr
, int fill
,
85 u32 buf_len
= (((len
*4) > FW_BUF_SIZE
) ? FW_BUF_SIZE
: (len
*4));
86 u32 buf_len32
= buf_len
/4;
89 memset(GUNZIP_BUF(bp
), (u8
)fill
, buf_len
);
91 for (i
= 0; i
< len
; i
+= buf_len32
) {
92 u32 cur_len
= min(buf_len32
, len
- i
);
94 bnx2x_write_big_buf(bp
, addr
+ i
*4, cur_len
, wb
);
98 static void bnx2x_write_big_buf_wb(struct bnx2x
*bp
, u32 addr
, u32 len
)
101 bnx2x_write_dmae_phys_len(bp
, GUNZIP_PHYS(bp
), addr
, len
);
103 bnx2x_init_ind_wr(bp
, addr
, GUNZIP_BUF(bp
), len
);
106 static void bnx2x_init_wr_64(struct bnx2x
*bp
, u32 addr
,
107 const u32
*data
, u32 len64
)
109 u32 buf_len32
= FW_BUF_SIZE
/4;
114 /* 64 bit value is in a blob: first low DWORD, then high DWORD */
115 data64
= HILO_U64((*(data
+ 1)), (*data
));
117 len64
= min((u32
)(FW_BUF_SIZE
/8), len64
);
118 for (i
= 0; i
< len64
; i
++) {
119 u64
*pdata
= ((u64
*)(GUNZIP_BUF(bp
))) + i
;
124 for (i
= 0; i
< len
; i
+= buf_len32
) {
125 u32 cur_len
= min(buf_len32
, len
- i
);
127 bnx2x_write_big_buf_wb(bp
, addr
+ i
*4, cur_len
);
131 /*********************************************************
132 There are different blobs for each PRAM section.
133 In addition, each blob write operation is divided into a few operations
134 in order to decrease the amount of phys. contiguous buffer needed.
135 Thus, when we select a blob the address may be with some offset
136 from the beginning of PRAM section.
137 The same holds for the INT_TABLE sections.
138 **********************************************************/
139 #define IF_IS_INT_TABLE_ADDR(base, addr) \
140 if (((base) <= (addr)) && ((base) + 0x400 >= (addr)))
142 #define IF_IS_PRAM_ADDR(base, addr) \
143 if (((base) <= (addr)) && ((base) + 0x40000 >= (addr)))
145 static const u8
*bnx2x_sel_blob(struct bnx2x
*bp
, u32 addr
,
148 IF_IS_INT_TABLE_ADDR(TSEM_REG_INT_TABLE
, addr
)
149 data
= INIT_TSEM_INT_TABLE_DATA(bp
);
151 IF_IS_INT_TABLE_ADDR(CSEM_REG_INT_TABLE
, addr
)
152 data
= INIT_CSEM_INT_TABLE_DATA(bp
);
154 IF_IS_INT_TABLE_ADDR(USEM_REG_INT_TABLE
, addr
)
155 data
= INIT_USEM_INT_TABLE_DATA(bp
);
157 IF_IS_INT_TABLE_ADDR(XSEM_REG_INT_TABLE
, addr
)
158 data
= INIT_XSEM_INT_TABLE_DATA(bp
);
160 IF_IS_PRAM_ADDR(TSEM_REG_PRAM
, addr
)
161 data
= INIT_TSEM_PRAM_DATA(bp
);
163 IF_IS_PRAM_ADDR(CSEM_REG_PRAM
, addr
)
164 data
= INIT_CSEM_PRAM_DATA(bp
);
166 IF_IS_PRAM_ADDR(USEM_REG_PRAM
, addr
)
167 data
= INIT_USEM_PRAM_DATA(bp
);
169 IF_IS_PRAM_ADDR(XSEM_REG_PRAM
, addr
)
170 data
= INIT_XSEM_PRAM_DATA(bp
);
175 static void bnx2x_init_wr_wb(struct bnx2x
*bp
, u32 addr
,
176 const u32
*data
, u32 len
)
179 VIRT_WR_DMAE_LEN(bp
, data
, addr
, len
, 0);
181 bnx2x_init_ind_wr(bp
, addr
, data
, len
);
184 static void bnx2x_wr_64(struct bnx2x
*bp
, u32 reg
, u32 val_lo
,
189 wb_write
[0] = val_lo
;
190 wb_write
[1] = val_hi
;
191 REG_WR_DMAE_LEN(bp
, reg
, wb_write
, 2);
193 static void bnx2x_init_wr_zp(struct bnx2x
*bp
, u32 addr
, u32 len
,
196 const u8
*data
= NULL
;
200 data
= bnx2x_sel_blob(bp
, addr
, data
) + blob_off
*4;
202 rc
= bnx2x_gunzip(bp
, data
, len
);
206 /* gunzip_outlen is in dwords */
207 len
= GUNZIP_OUTLEN(bp
);
208 for (i
= 0; i
< len
; i
++)
209 ((u32
*)GUNZIP_BUF(bp
))[i
] =
210 cpu_to_le32(((u32
*)GUNZIP_BUF(bp
))[i
]);
212 bnx2x_write_big_buf_wb(bp
, addr
, len
);
215 static void bnx2x_init_block(struct bnx2x
*bp
, u32 block
, u32 stage
)
218 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
221 INIT_OPS_OFFSETS(bp
)[BLOCK_OPS_IDX(block
, stage
,
224 u32 op_idx
, op_type
, addr
, len
;
225 const u32
*data
, *data_base
;
228 if (op_start
== op_end
)
231 data_base
= INIT_DATA(bp
);
233 for (op_idx
= op_start
; op_idx
< op_end
; op_idx
++) {
235 op
= (union init_op
*)&(INIT_OPS(bp
)[op_idx
]);
236 /* Get generic data */
237 op_type
= op
->raw
.op
;
238 addr
= op
->raw
.offset
;
239 /* Get data that's used for OP_SW, OP_WB, OP_FW, OP_ZP and
240 * OP_WR64 (we assume that op_arr_write and op_write have the
243 len
= op
->arr_wr
.data_len
;
244 data
= data_base
+ op
->arr_wr
.data_off
;
251 REG_WR(bp
, addr
, op
->write
.val
);
254 bnx2x_init_str_wr(bp
, addr
, data
, len
);
257 bnx2x_init_wr_wb(bp
, addr
, data
, len
);
260 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 0);
263 bnx2x_init_fill(bp
, addr
, 0, op
->zero
.len
, 1);
266 bnx2x_init_wr_zp(bp
, addr
, len
,
267 op
->arr_wr
.data_off
);
270 bnx2x_init_wr_64(bp
, addr
, data
, len
);
273 /* if any of the flags doesn't match, skip the
276 if ((INIT_MODE_FLAGS(bp
) &
277 op
->if_mode
.mode_bit_map
) !=
278 op
->if_mode
.mode_bit_map
)
279 op_idx
+= op
->if_mode
.cmd_offset
;
282 /* if all the flags don't match, skip the conditional
285 if ((INIT_MODE_FLAGS(bp
) &
286 op
->if_mode
.mode_bit_map
) == 0)
287 op_idx
+= op
->if_mode
.cmd_offset
;
290 /* Should never get here! */
298 /****************************************************************************
300 ****************************************************************************/
302 * This code configures the PCI read/write arbiter
303 * which implements a weighted round robin
304 * between the virtual queues in the chip.
306 * The values were derived for each PCI max payload and max request size.
307 * since max payload and max request size are only known at run time,
308 * this is done as a separate init stage.
316 /* configuration for one arbiter queue */
323 /* derived configuration for each read queue for each max request size */
324 static const struct arb_line read_arb_data
[NUM_RD_Q
][MAX_RD_ORD
+ 1] = {
325 /* 1 */ { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
326 { {4, 8, 4}, {4, 8, 4}, {4, 8, 4}, {4, 8, 4} },
327 { {4, 3, 3}, {4, 3, 3}, {4, 3, 3}, {4, 3, 3} },
328 { {8, 3, 6}, {16, 3, 11}, {16, 3, 11}, {16, 3, 11} },
329 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25}, {64, 64, 41} },
330 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
331 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
332 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
333 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {64, 3, 41} },
334 /* 10 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
335 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
336 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
337 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
338 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
339 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
340 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
341 { {8, 64, 6}, {16, 64, 11}, {32, 64, 21}, {32, 64, 21} },
342 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
343 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
344 /* 20 */{ {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
345 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
346 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
347 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
348 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
349 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
350 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
351 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
352 { {8, 3, 6}, {16, 3, 11}, {32, 3, 21}, {32, 3, 21} },
353 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81}, {64, 64, 120} }
356 /* derived configuration for each write queue for each max request size */
357 static const struct arb_line write_arb_data
[NUM_WR_Q
][MAX_WR_ORD
+ 1] = {
358 /* 1 */ { {4, 6, 3}, {4, 6, 3}, {4, 6, 3} },
359 { {4, 2, 3}, {4, 2, 3}, {4, 2, 3} },
360 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
361 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
362 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
363 { {8, 2, 6}, {16, 2, 11}, {32, 2, 21} },
364 { {8, 64, 25}, {16, 64, 25}, {32, 64, 25} },
365 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
366 { {8, 2, 6}, {16, 2, 11}, {16, 2, 11} },
367 /* 10 */{ {8, 9, 6}, {16, 9, 11}, {32, 9, 21} },
368 { {8, 47, 19}, {16, 47, 19}, {32, 47, 21} },
369 { {8, 9, 6}, {16, 9, 11}, {16, 9, 11} },
370 { {8, 64, 25}, {16, 64, 41}, {32, 64, 81} }
373 /* register addresses for read queues */
374 static const struct arb_line read_arb_addr
[NUM_RD_Q
-1] = {
375 /* 1 */ {PXP2_REG_RQ_BW_RD_L0
, PXP2_REG_RQ_BW_RD_ADD0
,
376 PXP2_REG_RQ_BW_RD_UBOUND0
},
377 {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
378 PXP2_REG_PSWRQ_BW_UB1
},
379 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
380 PXP2_REG_PSWRQ_BW_UB2
},
381 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
382 PXP2_REG_PSWRQ_BW_UB3
},
383 {PXP2_REG_RQ_BW_RD_L4
, PXP2_REG_RQ_BW_RD_ADD4
,
384 PXP2_REG_RQ_BW_RD_UBOUND4
},
385 {PXP2_REG_RQ_BW_RD_L5
, PXP2_REG_RQ_BW_RD_ADD5
,
386 PXP2_REG_RQ_BW_RD_UBOUND5
},
387 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
388 PXP2_REG_PSWRQ_BW_UB6
},
389 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
390 PXP2_REG_PSWRQ_BW_UB7
},
391 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
392 PXP2_REG_PSWRQ_BW_UB8
},
393 /* 10 */{PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
394 PXP2_REG_PSWRQ_BW_UB9
},
395 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
396 PXP2_REG_PSWRQ_BW_UB10
},
397 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
398 PXP2_REG_PSWRQ_BW_UB11
},
399 {PXP2_REG_RQ_BW_RD_L12
, PXP2_REG_RQ_BW_RD_ADD12
,
400 PXP2_REG_RQ_BW_RD_UBOUND12
},
401 {PXP2_REG_RQ_BW_RD_L13
, PXP2_REG_RQ_BW_RD_ADD13
,
402 PXP2_REG_RQ_BW_RD_UBOUND13
},
403 {PXP2_REG_RQ_BW_RD_L14
, PXP2_REG_RQ_BW_RD_ADD14
,
404 PXP2_REG_RQ_BW_RD_UBOUND14
},
405 {PXP2_REG_RQ_BW_RD_L15
, PXP2_REG_RQ_BW_RD_ADD15
,
406 PXP2_REG_RQ_BW_RD_UBOUND15
},
407 {PXP2_REG_RQ_BW_RD_L16
, PXP2_REG_RQ_BW_RD_ADD16
,
408 PXP2_REG_RQ_BW_RD_UBOUND16
},
409 {PXP2_REG_RQ_BW_RD_L17
, PXP2_REG_RQ_BW_RD_ADD17
,
410 PXP2_REG_RQ_BW_RD_UBOUND17
},
411 {PXP2_REG_RQ_BW_RD_L18
, PXP2_REG_RQ_BW_RD_ADD18
,
412 PXP2_REG_RQ_BW_RD_UBOUND18
},
413 /* 20 */{PXP2_REG_RQ_BW_RD_L19
, PXP2_REG_RQ_BW_RD_ADD19
,
414 PXP2_REG_RQ_BW_RD_UBOUND19
},
415 {PXP2_REG_RQ_BW_RD_L20
, PXP2_REG_RQ_BW_RD_ADD20
,
416 PXP2_REG_RQ_BW_RD_UBOUND20
},
417 {PXP2_REG_RQ_BW_RD_L22
, PXP2_REG_RQ_BW_RD_ADD22
,
418 PXP2_REG_RQ_BW_RD_UBOUND22
},
419 {PXP2_REG_RQ_BW_RD_L23
, PXP2_REG_RQ_BW_RD_ADD23
,
420 PXP2_REG_RQ_BW_RD_UBOUND23
},
421 {PXP2_REG_RQ_BW_RD_L24
, PXP2_REG_RQ_BW_RD_ADD24
,
422 PXP2_REG_RQ_BW_RD_UBOUND24
},
423 {PXP2_REG_RQ_BW_RD_L25
, PXP2_REG_RQ_BW_RD_ADD25
,
424 PXP2_REG_RQ_BW_RD_UBOUND25
},
425 {PXP2_REG_RQ_BW_RD_L26
, PXP2_REG_RQ_BW_RD_ADD26
,
426 PXP2_REG_RQ_BW_RD_UBOUND26
},
427 {PXP2_REG_RQ_BW_RD_L27
, PXP2_REG_RQ_BW_RD_ADD27
,
428 PXP2_REG_RQ_BW_RD_UBOUND27
},
429 {PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
430 PXP2_REG_PSWRQ_BW_UB28
}
433 /* register addresses for write queues */
434 static const struct arb_line write_arb_addr
[NUM_WR_Q
-1] = {
435 /* 1 */ {PXP2_REG_PSWRQ_BW_L1
, PXP2_REG_PSWRQ_BW_ADD1
,
436 PXP2_REG_PSWRQ_BW_UB1
},
437 {PXP2_REG_PSWRQ_BW_L2
, PXP2_REG_PSWRQ_BW_ADD2
,
438 PXP2_REG_PSWRQ_BW_UB2
},
439 {PXP2_REG_PSWRQ_BW_L3
, PXP2_REG_PSWRQ_BW_ADD3
,
440 PXP2_REG_PSWRQ_BW_UB3
},
441 {PXP2_REG_PSWRQ_BW_L6
, PXP2_REG_PSWRQ_BW_ADD6
,
442 PXP2_REG_PSWRQ_BW_UB6
},
443 {PXP2_REG_PSWRQ_BW_L7
, PXP2_REG_PSWRQ_BW_ADD7
,
444 PXP2_REG_PSWRQ_BW_UB7
},
445 {PXP2_REG_PSWRQ_BW_L8
, PXP2_REG_PSWRQ_BW_ADD8
,
446 PXP2_REG_PSWRQ_BW_UB8
},
447 {PXP2_REG_PSWRQ_BW_L9
, PXP2_REG_PSWRQ_BW_ADD9
,
448 PXP2_REG_PSWRQ_BW_UB9
},
449 {PXP2_REG_PSWRQ_BW_L10
, PXP2_REG_PSWRQ_BW_ADD10
,
450 PXP2_REG_PSWRQ_BW_UB10
},
451 {PXP2_REG_PSWRQ_BW_L11
, PXP2_REG_PSWRQ_BW_ADD11
,
452 PXP2_REG_PSWRQ_BW_UB11
},
453 /* 10 */{PXP2_REG_PSWRQ_BW_L28
, PXP2_REG_PSWRQ_BW_ADD28
,
454 PXP2_REG_PSWRQ_BW_UB28
},
455 {PXP2_REG_RQ_BW_WR_L29
, PXP2_REG_RQ_BW_WR_ADD29
,
456 PXP2_REG_RQ_BW_WR_UBOUND29
},
457 {PXP2_REG_RQ_BW_WR_L30
, PXP2_REG_RQ_BW_WR_ADD30
,
458 PXP2_REG_RQ_BW_WR_UBOUND30
}
461 static void bnx2x_init_pxp_arb(struct bnx2x
*bp
, int r_order
,
466 if (r_order
> MAX_RD_ORD
) {
467 DP(NETIF_MSG_HW
, "read order of %d order adjusted to %d\n",
468 r_order
, MAX_RD_ORD
);
469 r_order
= MAX_RD_ORD
;
471 if (w_order
> MAX_WR_ORD
) {
472 DP(NETIF_MSG_HW
, "write order of %d order adjusted to %d\n",
473 w_order
, MAX_WR_ORD
);
474 w_order
= MAX_WR_ORD
;
476 if (CHIP_REV_IS_FPGA(bp
)) {
477 DP(NETIF_MSG_HW
, "write order adjusted to 1 for FPGA\n");
480 DP(NETIF_MSG_HW
, "read order %d write order %d\n", r_order
, w_order
);
482 for (i
= 0; i
< NUM_RD_Q
-1; i
++) {
483 REG_WR(bp
, read_arb_addr
[i
].l
, read_arb_data
[i
][r_order
].l
);
484 REG_WR(bp
, read_arb_addr
[i
].add
,
485 read_arb_data
[i
][r_order
].add
);
486 REG_WR(bp
, read_arb_addr
[i
].ubound
,
487 read_arb_data
[i
][r_order
].ubound
);
490 for (i
= 0; i
< NUM_WR_Q
-1; i
++) {
491 if ((write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L29
) ||
492 (write_arb_addr
[i
].l
== PXP2_REG_RQ_BW_WR_L30
)) {
494 REG_WR(bp
, write_arb_addr
[i
].l
,
495 write_arb_data
[i
][w_order
].l
);
497 REG_WR(bp
, write_arb_addr
[i
].add
,
498 write_arb_data
[i
][w_order
].add
);
500 REG_WR(bp
, write_arb_addr
[i
].ubound
,
501 write_arb_data
[i
][w_order
].ubound
);
504 val
= REG_RD(bp
, write_arb_addr
[i
].l
);
505 REG_WR(bp
, write_arb_addr
[i
].l
,
506 val
| (write_arb_data
[i
][w_order
].l
<< 10));
508 val
= REG_RD(bp
, write_arb_addr
[i
].add
);
509 REG_WR(bp
, write_arb_addr
[i
].add
,
510 val
| (write_arb_data
[i
][w_order
].add
<< 10));
512 val
= REG_RD(bp
, write_arb_addr
[i
].ubound
);
513 REG_WR(bp
, write_arb_addr
[i
].ubound
,
514 val
| (write_arb_data
[i
][w_order
].ubound
<< 7));
518 val
= write_arb_data
[NUM_WR_Q
-1][w_order
].add
;
519 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].ubound
<< 10;
520 val
+= write_arb_data
[NUM_WR_Q
-1][w_order
].l
<< 17;
521 REG_WR(bp
, PXP2_REG_PSWRQ_BW_RD
, val
);
523 val
= read_arb_data
[NUM_RD_Q
-1][r_order
].add
;
524 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].ubound
<< 10;
525 val
+= read_arb_data
[NUM_RD_Q
-1][r_order
].l
<< 17;
526 REG_WR(bp
, PXP2_REG_PSWRQ_BW_WR
, val
);
528 REG_WR(bp
, PXP2_REG_RQ_WR_MBS0
, w_order
);
529 REG_WR(bp
, PXP2_REG_RQ_WR_MBS1
, w_order
);
530 REG_WR(bp
, PXP2_REG_RQ_RD_MBS0
, r_order
);
531 REG_WR(bp
, PXP2_REG_RQ_RD_MBS1
, r_order
);
533 if ((CHIP_IS_E1(bp
) || CHIP_IS_E1H(bp
)) && (r_order
== MAX_RD_ORD
))
534 REG_WR(bp
, PXP2_REG_RQ_PDR_LIMIT
, 0xe00);
537 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x4 << w_order
));
538 else if (CHIP_IS_E2(bp
))
539 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x8 << w_order
));
541 REG_WR(bp
, PXP2_REG_WR_USDMDP_TH
, (0x18 << w_order
));
543 if (!CHIP_IS_E1(bp
)) {
544 /* MPS w_order optimal TH presently TH
549 /* DMAE is special */
550 if (!CHIP_IS_E1H(bp
)) {
551 /* E2 can use optimal TH */
553 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, val
);
555 val
= ((w_order
== 0) ? 2 : 3);
556 REG_WR(bp
, PXP2_REG_WR_DMAE_MPS
, 2);
559 REG_WR(bp
, PXP2_REG_WR_HC_MPS
, val
);
560 REG_WR(bp
, PXP2_REG_WR_USDM_MPS
, val
);
561 REG_WR(bp
, PXP2_REG_WR_CSDM_MPS
, val
);
562 REG_WR(bp
, PXP2_REG_WR_TSDM_MPS
, val
);
563 REG_WR(bp
, PXP2_REG_WR_XSDM_MPS
, val
);
564 REG_WR(bp
, PXP2_REG_WR_QM_MPS
, val
);
565 REG_WR(bp
, PXP2_REG_WR_TM_MPS
, val
);
566 REG_WR(bp
, PXP2_REG_WR_SRC_MPS
, val
);
567 REG_WR(bp
, PXP2_REG_WR_DBG_MPS
, val
);
568 REG_WR(bp
, PXP2_REG_WR_CDU_MPS
, val
);
571 /* Validate number of tags suppoted by device */
572 #define PCIE_REG_PCIER_TL_HDR_FC_ST 0x2980
573 val
= REG_RD(bp
, PCIE_REG_PCIER_TL_HDR_FC_ST
);
576 REG_WR(bp
, PXP2_REG_PGL_TAGS_LIMIT
, 0x20);
579 /****************************************************************************
581 ****************************************************************************/
583 * This codes hides the low level HW interaction for ILT management and
584 * configuration. The API consists of a shadow ILT table which is set by the
585 * driver and a set of routines to use it to configure the HW.
589 /* ILT HW init operations */
591 /* ILT memory management operations */
592 #define ILT_MEMOP_ALLOC 0
593 #define ILT_MEMOP_FREE 1
595 /* the phys address is shifted right 12 bits and has an added
596 * 1=valid bit added to the 53rd bit
597 * then since this is a wide register(TM)
598 * we split it into two 32 bit writes
600 #define ILT_ADDR1(x) ((u32)(((u64)x >> 12) & 0xFFFFFFFF))
601 #define ILT_ADDR2(x) ((u32)((1 << 20) | ((u64)x >> 44)))
602 #define ILT_RANGE(f, l) (((l) << 10) | f)
604 static int bnx2x_ilt_line_mem_op(struct bnx2x
*bp
,
605 struct ilt_line
*line
, u32 size
, u8 memop
)
607 if (memop
== ILT_MEMOP_FREE
) {
608 BNX2X_ILT_FREE(line
->page
, line
->page_mapping
, line
->size
);
611 BNX2X_ILT_ZALLOC(line
->page
, &line
->page_mapping
, size
);
619 static int bnx2x_ilt_client_mem_op(struct bnx2x
*bp
, int cli_num
,
623 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
624 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
626 if (!ilt
|| !ilt
->lines
)
629 if (ilt_cli
->flags
& (ILT_CLIENT_SKIP_INIT
| ILT_CLIENT_SKIP_MEM
))
632 for (rc
= 0, i
= ilt_cli
->start
; i
<= ilt_cli
->end
&& !rc
; i
++) {
633 rc
= bnx2x_ilt_line_mem_op(bp
, &ilt
->lines
[i
],
634 ilt_cli
->page_size
, memop
);
639 static int bnx2x_ilt_mem_op(struct bnx2x
*bp
, u8 memop
)
641 int rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_CDU
, memop
);
643 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_QM
, memop
);
645 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_SRC
, memop
);
647 rc
= bnx2x_ilt_client_mem_op(bp
, ILT_CLIENT_TM
, memop
);
652 static void bnx2x_ilt_line_wr(struct bnx2x
*bp
, int abs_idx
,
653 dma_addr_t page_mapping
)
658 reg
= PXP2_REG_RQ_ONCHIP_AT
+ abs_idx
*8;
660 reg
= PXP2_REG_RQ_ONCHIP_AT_B0
+ abs_idx
*8;
662 bnx2x_wr_64(bp
, reg
, ILT_ADDR1(page_mapping
), ILT_ADDR2(page_mapping
));
665 static void bnx2x_ilt_line_init_op(struct bnx2x
*bp
,
666 struct bnx2x_ilt
*ilt
, int idx
, u8 initop
)
668 dma_addr_t null_mapping
;
669 int abs_idx
= ilt
->start_line
+ idx
;
674 /* set in the init-value array */
676 bnx2x_ilt_line_wr(bp
, abs_idx
, ilt
->lines
[idx
].page_mapping
);
680 bnx2x_ilt_line_wr(bp
, abs_idx
, null_mapping
);
685 static void bnx2x_ilt_boundry_init_op(struct bnx2x
*bp
,
686 struct ilt_client_info
*ilt_cli
,
687 u32 ilt_start
, u8 initop
)
692 /* The boundary is either SET or INIT,
693 CLEAR => SET and for now SET ~~ INIT */
695 /* find the appropriate regs */
696 if (CHIP_IS_E1(bp
)) {
697 switch (ilt_cli
->client_num
) {
699 start_reg
= PXP2_REG_PSWRQ_CDU0_L2P
;
702 start_reg
= PXP2_REG_PSWRQ_QM0_L2P
;
705 start_reg
= PXP2_REG_PSWRQ_SRC0_L2P
;
708 start_reg
= PXP2_REG_PSWRQ_TM0_L2P
;
711 REG_WR(bp
, start_reg
+ BP_FUNC(bp
)*4,
712 ILT_RANGE((ilt_start
+ ilt_cli
->start
),
713 (ilt_start
+ ilt_cli
->end
)));
715 switch (ilt_cli
->client_num
) {
717 start_reg
= PXP2_REG_RQ_CDU_FIRST_ILT
;
718 end_reg
= PXP2_REG_RQ_CDU_LAST_ILT
;
721 start_reg
= PXP2_REG_RQ_QM_FIRST_ILT
;
722 end_reg
= PXP2_REG_RQ_QM_LAST_ILT
;
725 start_reg
= PXP2_REG_RQ_SRC_FIRST_ILT
;
726 end_reg
= PXP2_REG_RQ_SRC_LAST_ILT
;
729 start_reg
= PXP2_REG_RQ_TM_FIRST_ILT
;
730 end_reg
= PXP2_REG_RQ_TM_LAST_ILT
;
733 REG_WR(bp
, start_reg
, (ilt_start
+ ilt_cli
->start
));
734 REG_WR(bp
, end_reg
, (ilt_start
+ ilt_cli
->end
));
738 static void bnx2x_ilt_client_init_op_ilt(struct bnx2x
*bp
,
739 struct bnx2x_ilt
*ilt
,
740 struct ilt_client_info
*ilt_cli
,
745 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
748 for (i
= ilt_cli
->start
; i
<= ilt_cli
->end
; i
++)
749 bnx2x_ilt_line_init_op(bp
, ilt
, i
, initop
);
751 /* init/clear the ILT boundries */
752 bnx2x_ilt_boundry_init_op(bp
, ilt_cli
, ilt
->start_line
, initop
);
755 static void bnx2x_ilt_client_init_op(struct bnx2x
*bp
,
756 struct ilt_client_info
*ilt_cli
, u8 initop
)
758 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
760 bnx2x_ilt_client_init_op_ilt(bp
, ilt
, ilt_cli
, initop
);
763 static void bnx2x_ilt_client_id_init_op(struct bnx2x
*bp
,
764 int cli_num
, u8 initop
)
766 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
767 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
769 bnx2x_ilt_client_init_op(bp
, ilt_cli
, initop
);
772 static void bnx2x_ilt_init_op(struct bnx2x
*bp
, u8 initop
)
774 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_CDU
, initop
);
775 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_QM
, initop
);
776 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_SRC
, initop
);
777 bnx2x_ilt_client_id_init_op(bp
, ILT_CLIENT_TM
, initop
);
780 static void bnx2x_ilt_init_client_psz(struct bnx2x
*bp
, int cli_num
,
781 u32 psz_reg
, u8 initop
)
783 struct bnx2x_ilt
*ilt
= BP_ILT(bp
);
784 struct ilt_client_info
*ilt_cli
= &ilt
->clients
[cli_num
];
786 if (ilt_cli
->flags
& ILT_CLIENT_SKIP_INIT
)
791 /* set in the init-value array */
793 REG_WR(bp
, psz_reg
, ILOG2(ilt_cli
->page_size
>> 12));
801 * called during init common stage, ilt clients should be initialized
802 * prioir to calling this function
804 static void bnx2x_ilt_init_page_size(struct bnx2x
*bp
, u8 initop
)
806 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_CDU
,
807 PXP2_REG_RQ_CDU_P_SIZE
, initop
);
808 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_QM
,
809 PXP2_REG_RQ_QM_P_SIZE
, initop
);
810 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_SRC
,
811 PXP2_REG_RQ_SRC_P_SIZE
, initop
);
812 bnx2x_ilt_init_client_psz(bp
, ILT_CLIENT_TM
,
813 PXP2_REG_RQ_TM_P_SIZE
, initop
);
816 /****************************************************************************
818 ****************************************************************************/
819 #define QM_QUEUES_PER_FUNC 16 /* E1 has 32, but only 16 are used */
820 #define QM_INIT_MIN_CID_COUNT 31
821 #define QM_INIT(cid_cnt) (cid_cnt > QM_INIT_MIN_CID_COUNT)
823 /* called during init port stage */
824 static void bnx2x_qm_init_cid_count(struct bnx2x
*bp
, int qm_cid_count
,
827 int port
= BP_PORT(bp
);
829 if (QM_INIT(qm_cid_count
)) {
832 /* set in the init-value array */
834 REG_WR(bp
, QM_REG_CONNNUM_0
+ port
*4,
835 qm_cid_count
/16 - 1);
843 static void bnx2x_qm_set_ptr_table(struct bnx2x
*bp
, int qm_cid_count
)
848 wb_data
[0] = wb_data
[1] = 0;
850 for (i
= 0; i
< 4 * QM_QUEUES_PER_FUNC
; i
++) {
851 REG_WR(bp
, QM_REG_BASEADDR
+ i
*4,
852 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
853 bnx2x_init_ind_wr(bp
, QM_REG_PTRTBL
+ i
*8,
856 if (CHIP_IS_E1H(bp
)) {
857 REG_WR(bp
, QM_REG_BASEADDR_EXT_A
+ i
*4,
858 qm_cid_count
* 4 * (i
% QM_QUEUES_PER_FUNC
));
859 bnx2x_init_ind_wr(bp
, QM_REG_PTRTBL_EXT_A
+ i
*8,
865 /* called during init common stage */
866 static void bnx2x_qm_init_ptr_table(struct bnx2x
*bp
, int qm_cid_count
,
869 if (!QM_INIT(qm_cid_count
))
874 /* set in the init-value array */
876 bnx2x_qm_set_ptr_table(bp
, qm_cid_count
);
883 /****************************************************************************
884 * SRC initializations
885 ****************************************************************************/
887 /* called during init func stage */
888 static void bnx2x_src_init_t2(struct bnx2x
*bp
, struct src_ent
*t2
,
889 dma_addr_t t2_mapping
, int src_cid_count
)
892 int port
= BP_PORT(bp
);
895 for (i
= 0; i
< src_cid_count
-1; i
++)
896 t2
[i
].next
= (u64
)(t2_mapping
+
897 (i
+1)*sizeof(struct src_ent
));
899 /* tell the searcher where the T2 table is */
900 REG_WR(bp
, SRC_REG_COUNTFREE0
+ port
*4, src_cid_count
);
902 bnx2x_wr_64(bp
, SRC_REG_FIRSTFREE0
+ port
*16,
903 U64_LO(t2_mapping
), U64_HI(t2_mapping
));
905 bnx2x_wr_64(bp
, SRC_REG_LASTFREE0
+ port
*16,
906 U64_LO((u64
)t2_mapping
+
907 (src_cid_count
-1) * sizeof(struct src_ent
)),
908 U64_HI((u64
)t2_mapping
+
909 (src_cid_count
-1) * sizeof(struct src_ent
)));
912 #endif /* BNX2X_INIT_OPS_H */