2 #include <linux/mmzone.h>
3 #include <linux/bootmem.h>
4 #include <linux/bit_spinlock.h>
5 #include <linux/page_cgroup.h>
6 #include <linux/hash.h>
7 #include <linux/slab.h>
8 #include <linux/memory.h>
9 #include <linux/vmalloc.h>
10 #include <linux/cgroup.h>
11 #include <linux/swapops.h>
12 #include <linux/kmemleak.h>
14 static unsigned long total_usage
;
16 #if !defined(CONFIG_SPARSEMEM)
19 void __meminit
pgdat_page_cgroup_init(struct pglist_data
*pgdat
)
21 pgdat
->node_page_cgroup
= NULL
;
24 struct page_cgroup
*lookup_page_cgroup(struct page
*page
)
26 unsigned long pfn
= page_to_pfn(page
);
28 struct page_cgroup
*base
;
30 base
= NODE_DATA(page_to_nid(page
))->node_page_cgroup
;
31 #ifdef CONFIG_DEBUG_VM
33 * The sanity checks the page allocator does upon freeing a
34 * page can reach here before the page_cgroup arrays are
35 * allocated when feeding a range of pages to the allocator
36 * for the first time during bootup or memory hotplug.
41 offset
= pfn
- NODE_DATA(page_to_nid(page
))->node_start_pfn
;
45 static int __init
alloc_node_page_cgroup(int nid
)
47 struct page_cgroup
*base
;
48 unsigned long table_size
;
49 unsigned long nr_pages
;
51 nr_pages
= NODE_DATA(nid
)->node_spanned_pages
;
55 table_size
= sizeof(struct page_cgroup
) * nr_pages
;
57 base
= __alloc_bootmem_node_nopanic(NODE_DATA(nid
),
58 table_size
, PAGE_SIZE
, __pa(MAX_DMA_ADDRESS
));
61 NODE_DATA(nid
)->node_page_cgroup
= base
;
62 total_usage
+= table_size
;
66 void __init
page_cgroup_init_flatmem(void)
71 if (mem_cgroup_disabled())
74 for_each_online_node(nid
) {
75 fail
= alloc_node_page_cgroup(nid
);
79 printk(KERN_INFO
"allocated %ld bytes of page_cgroup\n", total_usage
);
80 printk(KERN_INFO
"please try 'cgroup_disable=memory' option if you"
81 " don't want memory cgroups\n");
84 printk(KERN_CRIT
"allocation of page_cgroup failed.\n");
85 printk(KERN_CRIT
"please try 'cgroup_disable=memory' boot option\n");
86 panic("Out of memory");
89 #else /* CONFIG_FLAT_NODE_MEM_MAP */
91 struct page_cgroup
*lookup_page_cgroup(struct page
*page
)
93 unsigned long pfn
= page_to_pfn(page
);
94 struct mem_section
*section
= __pfn_to_section(pfn
);
95 #ifdef CONFIG_DEBUG_VM
97 * The sanity checks the page allocator does upon freeing a
98 * page can reach here before the page_cgroup arrays are
99 * allocated when feeding a range of pages to the allocator
100 * for the first time during bootup or memory hotplug.
102 if (!section
->page_cgroup
)
105 return section
->page_cgroup
+ pfn
;
108 static void *__meminit
alloc_page_cgroup(size_t size
, int nid
)
110 gfp_t flags
= GFP_KERNEL
| __GFP_ZERO
| __GFP_NOWARN
;
113 addr
= alloc_pages_exact_nid(nid
, size
, flags
);
115 kmemleak_alloc(addr
, size
, 1, flags
);
119 if (node_state(nid
, N_HIGH_MEMORY
))
120 addr
= vzalloc_node(size
, nid
);
122 addr
= vzalloc(size
);
127 static int __meminit
init_section_page_cgroup(unsigned long pfn
, int nid
)
129 struct mem_section
*section
;
130 struct page_cgroup
*base
;
131 unsigned long table_size
;
133 section
= __pfn_to_section(pfn
);
135 if (section
->page_cgroup
)
138 table_size
= sizeof(struct page_cgroup
) * PAGES_PER_SECTION
;
139 base
= alloc_page_cgroup(table_size
, nid
);
142 * The value stored in section->page_cgroup is (base - pfn)
143 * and it does not point to the memory block allocated above,
144 * causing kmemleak false positives.
146 kmemleak_not_leak(base
);
149 printk(KERN_ERR
"page cgroup allocation failure\n");
154 * The passed "pfn" may not be aligned to SECTION. For the calculation
155 * we need to apply a mask.
157 pfn
&= PAGE_SECTION_MASK
;
158 section
->page_cgroup
= base
- pfn
;
159 total_usage
+= table_size
;
162 #ifdef CONFIG_MEMORY_HOTPLUG
163 static void free_page_cgroup(void *addr
)
165 if (is_vmalloc_addr(addr
)) {
168 struct page
*page
= virt_to_page(addr
);
170 sizeof(struct page_cgroup
) * PAGES_PER_SECTION
;
172 BUG_ON(PageReserved(page
));
173 free_pages_exact(addr
, table_size
);
177 void __free_page_cgroup(unsigned long pfn
)
179 struct mem_section
*ms
;
180 struct page_cgroup
*base
;
182 ms
= __pfn_to_section(pfn
);
183 if (!ms
|| !ms
->page_cgroup
)
185 base
= ms
->page_cgroup
+ pfn
;
186 free_page_cgroup(base
);
187 ms
->page_cgroup
= NULL
;
190 int __meminit
online_page_cgroup(unsigned long start_pfn
,
191 unsigned long nr_pages
,
194 unsigned long start
, end
, pfn
;
197 start
= SECTION_ALIGN_DOWN(start_pfn
);
198 end
= SECTION_ALIGN_UP(start_pfn
+ nr_pages
);
202 * In this case, "nid" already exists and contains valid memory.
203 * "start_pfn" passed to us is a pfn which is an arg for
204 * online__pages(), and start_pfn should exist.
206 nid
= pfn_to_nid(start_pfn
);
207 VM_BUG_ON(!node_state(nid
, N_ONLINE
));
210 for (pfn
= start
; !fail
&& pfn
< end
; pfn
+= PAGES_PER_SECTION
) {
211 if (!pfn_present(pfn
))
213 fail
= init_section_page_cgroup(pfn
, nid
);
219 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
)
220 __free_page_cgroup(pfn
);
225 int __meminit
offline_page_cgroup(unsigned long start_pfn
,
226 unsigned long nr_pages
, int nid
)
228 unsigned long start
, end
, pfn
;
230 start
= SECTION_ALIGN_DOWN(start_pfn
);
231 end
= SECTION_ALIGN_UP(start_pfn
+ nr_pages
);
233 for (pfn
= start
; pfn
< end
; pfn
+= PAGES_PER_SECTION
)
234 __free_page_cgroup(pfn
);
239 static int __meminit
page_cgroup_callback(struct notifier_block
*self
,
240 unsigned long action
, void *arg
)
242 struct memory_notify
*mn
= arg
;
245 case MEM_GOING_ONLINE
:
246 ret
= online_page_cgroup(mn
->start_pfn
,
247 mn
->nr_pages
, mn
->status_change_nid
);
250 offline_page_cgroup(mn
->start_pfn
,
251 mn
->nr_pages
, mn
->status_change_nid
);
253 case MEM_CANCEL_ONLINE
:
254 case MEM_GOING_OFFLINE
:
257 case MEM_CANCEL_OFFLINE
:
261 return notifier_from_errno(ret
);
266 void __init
page_cgroup_init(void)
271 if (mem_cgroup_disabled())
274 for_each_node_state(nid
, N_HIGH_MEMORY
) {
275 unsigned long start_pfn
, end_pfn
;
277 start_pfn
= node_start_pfn(nid
);
278 end_pfn
= node_end_pfn(nid
);
280 * start_pfn and end_pfn may not be aligned to SECTION and the
281 * page->flags of out of node pages are not initialized. So we
282 * scan [start_pfn, the biggest section's pfn < end_pfn) here.
284 for (pfn
= start_pfn
;
286 pfn
= ALIGN(pfn
+ 1, PAGES_PER_SECTION
)) {
291 * Nodes's pfns can be overlapping.
292 * We know some arch can have a nodes layout such as
293 * -------------pfn-------------->
294 * N0 | N1 | N2 | N0 | N1 | N2|....
296 if (pfn_to_nid(pfn
) != nid
)
298 if (init_section_page_cgroup(pfn
, nid
))
302 hotplug_memory_notifier(page_cgroup_callback
, 0);
303 printk(KERN_INFO
"allocated %ld bytes of page_cgroup\n", total_usage
);
304 printk(KERN_INFO
"please try 'cgroup_disable=memory' option if you "
305 "don't want memory cgroups\n");
308 printk(KERN_CRIT
"try 'cgroup_disable=memory' boot option\n");
309 panic("Out of memory");
312 void __meminit
pgdat_page_cgroup_init(struct pglist_data
*pgdat
)
320 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
322 static DEFINE_MUTEX(swap_cgroup_mutex
);
323 struct swap_cgroup_ctrl
{
325 unsigned long length
;
329 static struct swap_cgroup_ctrl swap_cgroup_ctrl
[MAX_SWAPFILES
];
334 #define SC_PER_PAGE (PAGE_SIZE/sizeof(struct swap_cgroup))
337 * SwapCgroup implements "lookup" and "exchange" operations.
338 * In typical usage, this swap_cgroup is accessed via memcg's charge/uncharge
339 * against SwapCache. At swap_free(), this is accessed directly from swap.
342 * - we have no race in "exchange" when we're accessed via SwapCache because
343 * SwapCache(and its swp_entry) is under lock.
344 * - When called via swap_free(), there is no user of this entry and no race.
345 * Then, we don't need lock around "exchange".
347 * TODO: we can push these buffers out to HIGHMEM.
351 * allocate buffer for swap_cgroup.
353 static int swap_cgroup_prepare(int type
)
356 struct swap_cgroup_ctrl
*ctrl
;
357 unsigned long idx
, max
;
359 ctrl
= &swap_cgroup_ctrl
[type
];
361 for (idx
= 0; idx
< ctrl
->length
; idx
++) {
362 page
= alloc_page(GFP_KERNEL
| __GFP_ZERO
);
364 goto not_enough_page
;
365 ctrl
->map
[idx
] = page
;
370 for (idx
= 0; idx
< max
; idx
++)
371 __free_page(ctrl
->map
[idx
]);
376 static struct swap_cgroup
*lookup_swap_cgroup(swp_entry_t ent
,
377 struct swap_cgroup_ctrl
**ctrlp
)
379 pgoff_t offset
= swp_offset(ent
);
380 struct swap_cgroup_ctrl
*ctrl
;
381 struct page
*mappage
;
383 ctrl
= &swap_cgroup_ctrl
[swp_type(ent
)];
387 mappage
= ctrl
->map
[offset
/ SC_PER_PAGE
];
388 return page_address(mappage
) + offset
% SC_PER_PAGE
;
392 * swap_cgroup_cmpxchg - cmpxchg mem_cgroup's id for this swp_entry.
393 * @end: swap entry to be cmpxchged
397 * Returns old id at success, 0 at failure.
398 * (There is no mem_cgroup using 0 as its id)
400 unsigned short swap_cgroup_cmpxchg(swp_entry_t ent
,
401 unsigned short old
, unsigned short new)
403 struct swap_cgroup_ctrl
*ctrl
;
404 struct swap_cgroup
*sc
;
406 unsigned short retval
;
408 sc
= lookup_swap_cgroup(ent
, &ctrl
);
410 spin_lock_irqsave(&ctrl
->lock
, flags
);
416 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
421 * swap_cgroup_record - record mem_cgroup for this swp_entry.
422 * @ent: swap entry to be recorded into
423 * @mem: mem_cgroup to be recorded
425 * Returns old value at success, 0 at failure.
426 * (Of course, old value can be 0.)
428 unsigned short swap_cgroup_record(swp_entry_t ent
, unsigned short id
)
430 struct swap_cgroup_ctrl
*ctrl
;
431 struct swap_cgroup
*sc
;
435 sc
= lookup_swap_cgroup(ent
, &ctrl
);
437 spin_lock_irqsave(&ctrl
->lock
, flags
);
440 spin_unlock_irqrestore(&ctrl
->lock
, flags
);
446 * lookup_swap_cgroup_id - lookup mem_cgroup id tied to swap entry
447 * @ent: swap entry to be looked up.
449 * Returns CSS ID of mem_cgroup at success. 0 at failure. (0 is invalid ID)
451 unsigned short lookup_swap_cgroup_id(swp_entry_t ent
)
453 return lookup_swap_cgroup(ent
, NULL
)->id
;
456 int swap_cgroup_swapon(int type
, unsigned long max_pages
)
459 unsigned long array_size
;
460 unsigned long length
;
461 struct swap_cgroup_ctrl
*ctrl
;
463 if (!do_swap_account
)
466 length
= DIV_ROUND_UP(max_pages
, SC_PER_PAGE
);
467 array_size
= length
* sizeof(void *);
469 array
= vzalloc(array_size
);
473 ctrl
= &swap_cgroup_ctrl
[type
];
474 mutex_lock(&swap_cgroup_mutex
);
475 ctrl
->length
= length
;
477 spin_lock_init(&ctrl
->lock
);
478 if (swap_cgroup_prepare(type
)) {
479 /* memory shortage */
482 mutex_unlock(&swap_cgroup_mutex
);
486 mutex_unlock(&swap_cgroup_mutex
);
490 printk(KERN_INFO
"couldn't allocate enough memory for swap_cgroup.\n");
492 "swap_cgroup can be disabled by swapaccount=0 boot option\n");
496 void swap_cgroup_swapoff(int type
)
499 unsigned long i
, length
;
500 struct swap_cgroup_ctrl
*ctrl
;
502 if (!do_swap_account
)
505 mutex_lock(&swap_cgroup_mutex
);
506 ctrl
= &swap_cgroup_ctrl
[type
];
508 length
= ctrl
->length
;
511 mutex_unlock(&swap_cgroup_mutex
);
514 for (i
= 0; i
< length
; i
++) {
515 struct page
*page
= map
[i
];