platform: x86: asus_acpi: world-writable procfs files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / include / net / sock.h
blob1cb5e0710faf1901f0767dffdb2c4d41743c65d0
1 /*
2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Definitions for the AF_INET socket handler.
8 * Version: @(#)sock.h 1.0.4 05/13/93
10 * Authors: Ross Biro
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Corey Minyard <wf-rch!minyard@relay.EU.net>
13 * Florian La Roche <flla@stud.uni-sb.de>
15 * Fixes:
16 * Alan Cox : Volatiles in skbuff pointers. See
17 * skbuff comments. May be overdone,
18 * better to prove they can be removed
19 * than the reverse.
20 * Alan Cox : Added a zapped field for tcp to note
21 * a socket is reset and must stay shut up
22 * Alan Cox : New fields for options
23 * Pauline Middelink : identd support
24 * Alan Cox : Eliminate low level recv/recvfrom
25 * David S. Miller : New socket lookup architecture.
26 * Steve Whitehouse: Default routines for sock_ops
27 * Arnaldo C. Melo : removed net_pinfo, tp_pinfo and made
28 * protinfo be just a void pointer, as the
29 * protocol specific parts were moved to
30 * respective headers and ipv4/v6, etc now
31 * use private slabcaches for its socks
32 * Pedro Hortas : New flags field for socket options
35 * This program is free software; you can redistribute it and/or
36 * modify it under the terms of the GNU General Public License
37 * as published by the Free Software Foundation; either version
38 * 2 of the License, or (at your option) any later version.
40 #ifndef _SOCK_H
41 #define _SOCK_H
43 #include <linux/kernel.h>
44 #include <linux/list.h>
45 #include <linux/list_nulls.h>
46 #include <linux/timer.h>
47 #include <linux/cache.h>
48 #include <linux/module.h>
49 #include <linux/lockdep.h>
50 #include <linux/netdevice.h>
51 #include <linux/skbuff.h> /* struct sk_buff */
52 #include <linux/mm.h>
53 #include <linux/security.h>
55 #include <linux/filter.h>
56 #include <linux/rculist_nulls.h>
57 #include <linux/poll.h>
59 #include <asm/atomic.h>
60 #include <net/dst.h>
61 #include <net/checksum.h>
64 * This structure really needs to be cleaned up.
65 * Most of it is for TCP, and not used by any of
66 * the other protocols.
69 /* Define this to get the SOCK_DBG debugging facility. */
70 #define SOCK_DEBUGGING
71 #ifdef SOCK_DEBUGGING
72 #define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
73 printk(KERN_DEBUG msg); } while (0)
74 #else
75 /* Validate arguments and do nothing */
76 static void inline int __attribute__ ((format (printf, 2, 3)))
77 SOCK_DEBUG(struct sock *sk, const char *msg, ...)
80 #endif
82 /* This is the per-socket lock. The spinlock provides a synchronization
83 * between user contexts and software interrupt processing, whereas the
84 * mini-semaphore synchronizes multiple users amongst themselves.
86 typedef struct {
87 spinlock_t slock;
88 int owned;
89 wait_queue_head_t wq;
91 * We express the mutex-alike socket_lock semantics
92 * to the lock validator by explicitly managing
93 * the slock as a lock variant (in addition to
94 * the slock itself):
96 #ifdef CONFIG_DEBUG_LOCK_ALLOC
97 struct lockdep_map dep_map;
98 #endif
99 } socket_lock_t;
101 struct sock;
102 struct proto;
103 struct net;
106 * struct sock_common - minimal network layer representation of sockets
107 * @skc_node: main hash linkage for various protocol lookup tables
108 * @skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
109 * @skc_refcnt: reference count
110 * @skc_tx_queue_mapping: tx queue number for this connection
111 * @skc_hash: hash value used with various protocol lookup tables
112 * @skc_u16hashes: two u16 hash values used by UDP lookup tables
113 * @skc_family: network address family
114 * @skc_state: Connection state
115 * @skc_reuse: %SO_REUSEADDR setting
116 * @skc_bound_dev_if: bound device index if != 0
117 * @skc_bind_node: bind hash linkage for various protocol lookup tables
118 * @skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
119 * @skc_prot: protocol handlers inside a network family
120 * @skc_net: reference to the network namespace of this socket
122 * This is the minimal network layer representation of sockets, the header
123 * for struct sock and struct inet_timewait_sock.
125 struct sock_common {
127 * first fields are not copied in sock_copy()
129 union {
130 struct hlist_node skc_node;
131 struct hlist_nulls_node skc_nulls_node;
133 atomic_t skc_refcnt;
134 int skc_tx_queue_mapping;
136 union {
137 unsigned int skc_hash;
138 __u16 skc_u16hashes[2];
140 unsigned short skc_family;
141 volatile unsigned char skc_state;
142 unsigned char skc_reuse;
143 int skc_bound_dev_if;
144 union {
145 struct hlist_node skc_bind_node;
146 struct hlist_nulls_node skc_portaddr_node;
148 struct proto *skc_prot;
149 #ifdef CONFIG_NET_NS
150 struct net *skc_net;
151 #endif
155 * struct sock - network layer representation of sockets
156 * @__sk_common: shared layout with inet_timewait_sock
157 * @sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
158 * @sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
159 * @sk_lock: synchronizer
160 * @sk_rcvbuf: size of receive buffer in bytes
161 * @sk_sleep: sock wait queue
162 * @sk_dst_cache: destination cache
163 * @sk_dst_lock: destination cache lock
164 * @sk_policy: flow policy
165 * @sk_rmem_alloc: receive queue bytes committed
166 * @sk_receive_queue: incoming packets
167 * @sk_wmem_alloc: transmit queue bytes committed
168 * @sk_write_queue: Packet sending queue
169 * @sk_async_wait_queue: DMA copied packets
170 * @sk_omem_alloc: "o" is "option" or "other"
171 * @sk_wmem_queued: persistent queue size
172 * @sk_forward_alloc: space allocated forward
173 * @sk_allocation: allocation mode
174 * @sk_sndbuf: size of send buffer in bytes
175 * @sk_flags: %SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
176 * %SO_OOBINLINE settings, %SO_TIMESTAMPING settings
177 * @sk_no_check: %SO_NO_CHECK setting, wether or not checkup packets
178 * @sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
179 * @sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
180 * @sk_gso_max_size: Maximum GSO segment size to build
181 * @sk_lingertime: %SO_LINGER l_linger setting
182 * @sk_backlog: always used with the per-socket spinlock held
183 * @sk_callback_lock: used with the callbacks in the end of this struct
184 * @sk_error_queue: rarely used
185 * @sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
186 * IPV6_ADDRFORM for instance)
187 * @sk_err: last error
188 * @sk_err_soft: errors that don't cause failure but are the cause of a
189 * persistent failure not just 'timed out'
190 * @sk_drops: raw/udp drops counter
191 * @sk_ack_backlog: current listen backlog
192 * @sk_max_ack_backlog: listen backlog set in listen()
193 * @sk_priority: %SO_PRIORITY setting
194 * @sk_type: socket type (%SOCK_STREAM, etc)
195 * @sk_protocol: which protocol this socket belongs in this network family
196 * @sk_peercred: %SO_PEERCRED setting
197 * @sk_rcvlowat: %SO_RCVLOWAT setting
198 * @sk_rcvtimeo: %SO_RCVTIMEO setting
199 * @sk_sndtimeo: %SO_SNDTIMEO setting
200 * @sk_filter: socket filtering instructions
201 * @sk_protinfo: private area, net family specific, when not using slab
202 * @sk_timer: sock cleanup timer
203 * @sk_stamp: time stamp of last packet received
204 * @sk_socket: Identd and reporting IO signals
205 * @sk_user_data: RPC layer private data
206 * @sk_sndmsg_page: cached page for sendmsg
207 * @sk_sndmsg_off: cached offset for sendmsg
208 * @sk_send_head: front of stuff to transmit
209 * @sk_security: used by security modules
210 * @sk_mark: generic packet mark
211 * @sk_write_pending: a write to stream socket waits to start
212 * @sk_state_change: callback to indicate change in the state of the sock
213 * @sk_data_ready: callback to indicate there is data to be processed
214 * @sk_write_space: callback to indicate there is bf sending space available
215 * @sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
216 * @sk_backlog_rcv: callback to process the backlog
217 * @sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
219 struct sock {
221 * Now struct inet_timewait_sock also uses sock_common, so please just
222 * don't add nothing before this first member (__sk_common) --acme
224 struct sock_common __sk_common;
225 #define sk_node __sk_common.skc_node
226 #define sk_nulls_node __sk_common.skc_nulls_node
227 #define sk_refcnt __sk_common.skc_refcnt
228 #define sk_tx_queue_mapping __sk_common.skc_tx_queue_mapping
230 #define sk_copy_start __sk_common.skc_hash
231 #define sk_hash __sk_common.skc_hash
232 #define sk_family __sk_common.skc_family
233 #define sk_state __sk_common.skc_state
234 #define sk_reuse __sk_common.skc_reuse
235 #define sk_bound_dev_if __sk_common.skc_bound_dev_if
236 #define sk_bind_node __sk_common.skc_bind_node
237 #define sk_prot __sk_common.skc_prot
238 #define sk_net __sk_common.skc_net
239 kmemcheck_bitfield_begin(flags);
240 unsigned int sk_shutdown : 2,
241 sk_no_check : 2,
242 sk_userlocks : 4,
243 sk_protocol : 8,
244 sk_type : 16;
245 kmemcheck_bitfield_end(flags);
246 int sk_rcvbuf;
247 socket_lock_t sk_lock;
249 * The backlog queue is special, it is always used with
250 * the per-socket spinlock held and requires low latency
251 * access. Therefore we special case it's implementation.
253 struct {
254 struct sk_buff *head;
255 struct sk_buff *tail;
256 int len;
257 int limit;
258 } sk_backlog;
259 wait_queue_head_t *sk_sleep;
260 struct dst_entry *sk_dst_cache;
261 #ifdef CONFIG_XFRM
262 struct xfrm_policy *sk_policy[2];
263 #endif
264 rwlock_t sk_dst_lock;
265 atomic_t sk_rmem_alloc;
266 atomic_t sk_wmem_alloc;
267 atomic_t sk_omem_alloc;
268 int sk_sndbuf;
269 struct sk_buff_head sk_receive_queue;
270 struct sk_buff_head sk_write_queue;
271 #ifdef CONFIG_NET_DMA
272 struct sk_buff_head sk_async_wait_queue;
273 #endif
274 int sk_wmem_queued;
275 int sk_forward_alloc;
276 gfp_t sk_allocation;
277 int sk_route_caps;
278 int sk_gso_type;
279 unsigned int sk_gso_max_size;
280 int sk_rcvlowat;
281 unsigned long sk_flags;
282 unsigned long sk_lingertime;
283 struct sk_buff_head sk_error_queue;
284 struct proto *sk_prot_creator;
285 rwlock_t sk_callback_lock;
286 int sk_err,
287 sk_err_soft;
288 atomic_t sk_drops;
289 unsigned short sk_ack_backlog;
290 unsigned short sk_max_ack_backlog;
291 __u32 sk_priority;
292 struct ucred sk_peercred;
293 long sk_rcvtimeo;
294 long sk_sndtimeo;
295 struct sk_filter *sk_filter;
296 void *sk_protinfo;
297 struct timer_list sk_timer;
298 ktime_t sk_stamp;
299 struct socket *sk_socket;
300 void *sk_user_data;
301 struct page *sk_sndmsg_page;
302 struct sk_buff *sk_send_head;
303 __u32 sk_sndmsg_off;
304 int sk_write_pending;
305 #ifdef CONFIG_SECURITY
306 void *sk_security;
307 #endif
308 __u32 sk_mark;
309 /* XXX 4 bytes hole on 64 bit */
310 void (*sk_state_change)(struct sock *sk);
311 void (*sk_data_ready)(struct sock *sk, int bytes);
312 void (*sk_write_space)(struct sock *sk);
313 void (*sk_error_report)(struct sock *sk);
314 int (*sk_backlog_rcv)(struct sock *sk,
315 struct sk_buff *skb);
316 void (*sk_destruct)(struct sock *sk);
320 * Hashed lists helper routines
322 static inline struct sock *__sk_head(const struct hlist_head *head)
324 return hlist_entry(head->first, struct sock, sk_node);
327 static inline struct sock *sk_head(const struct hlist_head *head)
329 return hlist_empty(head) ? NULL : __sk_head(head);
332 static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
334 return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
337 static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
339 return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
342 static inline struct sock *sk_next(const struct sock *sk)
344 return sk->sk_node.next ?
345 hlist_entry(sk->sk_node.next, struct sock, sk_node) : NULL;
348 static inline struct sock *sk_nulls_next(const struct sock *sk)
350 return (!is_a_nulls(sk->sk_nulls_node.next)) ?
351 hlist_nulls_entry(sk->sk_nulls_node.next,
352 struct sock, sk_nulls_node) :
353 NULL;
356 static inline int sk_unhashed(const struct sock *sk)
358 return hlist_unhashed(&sk->sk_node);
361 static inline int sk_hashed(const struct sock *sk)
363 return !sk_unhashed(sk);
366 static __inline__ void sk_node_init(struct hlist_node *node)
368 node->pprev = NULL;
371 static __inline__ void sk_nulls_node_init(struct hlist_nulls_node *node)
373 node->pprev = NULL;
376 static __inline__ void __sk_del_node(struct sock *sk)
378 __hlist_del(&sk->sk_node);
381 static __inline__ int __sk_del_node_init(struct sock *sk)
383 if (sk_hashed(sk)) {
384 __sk_del_node(sk);
385 sk_node_init(&sk->sk_node);
386 return 1;
388 return 0;
391 /* Grab socket reference count. This operation is valid only
392 when sk is ALREADY grabbed f.e. it is found in hash table
393 or a list and the lookup is made under lock preventing hash table
394 modifications.
397 static inline void sock_hold(struct sock *sk)
399 atomic_inc(&sk->sk_refcnt);
402 /* Ungrab socket in the context, which assumes that socket refcnt
403 cannot hit zero, f.e. it is true in context of any socketcall.
405 static inline void __sock_put(struct sock *sk)
407 atomic_dec(&sk->sk_refcnt);
410 static __inline__ int sk_del_node_init(struct sock *sk)
412 int rc = __sk_del_node_init(sk);
414 if (rc) {
415 /* paranoid for a while -acme */
416 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
417 __sock_put(sk);
419 return rc;
422 static __inline__ int __sk_nulls_del_node_init_rcu(struct sock *sk)
424 if (sk_hashed(sk)) {
425 hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
426 return 1;
428 return 0;
431 static __inline__ int sk_nulls_del_node_init_rcu(struct sock *sk)
433 int rc = __sk_nulls_del_node_init_rcu(sk);
435 if (rc) {
436 /* paranoid for a while -acme */
437 WARN_ON(atomic_read(&sk->sk_refcnt) == 1);
438 __sock_put(sk);
440 return rc;
443 static __inline__ void __sk_add_node(struct sock *sk, struct hlist_head *list)
445 hlist_add_head(&sk->sk_node, list);
448 static __inline__ void sk_add_node(struct sock *sk, struct hlist_head *list)
450 sock_hold(sk);
451 __sk_add_node(sk, list);
454 static __inline__ void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
456 hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
459 static __inline__ void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
461 sock_hold(sk);
462 __sk_nulls_add_node_rcu(sk, list);
465 static __inline__ void __sk_del_bind_node(struct sock *sk)
467 __hlist_del(&sk->sk_bind_node);
470 static __inline__ void sk_add_bind_node(struct sock *sk,
471 struct hlist_head *list)
473 hlist_add_head(&sk->sk_bind_node, list);
476 #define sk_for_each(__sk, node, list) \
477 hlist_for_each_entry(__sk, node, list, sk_node)
478 #define sk_nulls_for_each(__sk, node, list) \
479 hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
480 #define sk_nulls_for_each_rcu(__sk, node, list) \
481 hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
482 #define sk_for_each_from(__sk, node) \
483 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
484 hlist_for_each_entry_from(__sk, node, sk_node)
485 #define sk_nulls_for_each_from(__sk, node) \
486 if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
487 hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
488 #define sk_for_each_continue(__sk, node) \
489 if (__sk && ({ node = &(__sk)->sk_node; 1; })) \
490 hlist_for_each_entry_continue(__sk, node, sk_node)
491 #define sk_for_each_safe(__sk, node, tmp, list) \
492 hlist_for_each_entry_safe(__sk, node, tmp, list, sk_node)
493 #define sk_for_each_bound(__sk, node, list) \
494 hlist_for_each_entry(__sk, node, list, sk_bind_node)
496 /* Sock flags */
497 enum sock_flags {
498 SOCK_DEAD,
499 SOCK_DONE,
500 SOCK_URGINLINE,
501 SOCK_KEEPOPEN,
502 SOCK_LINGER,
503 SOCK_DESTROY,
504 SOCK_BROADCAST,
505 SOCK_TIMESTAMP,
506 SOCK_ZAPPED,
507 SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
508 SOCK_DBG, /* %SO_DEBUG setting */
509 SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
510 SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
511 SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
512 SOCK_QUEUE_SHRUNK, /* write queue has been shrunk recently */
513 SOCK_TIMESTAMPING_TX_HARDWARE, /* %SOF_TIMESTAMPING_TX_HARDWARE */
514 SOCK_TIMESTAMPING_TX_SOFTWARE, /* %SOF_TIMESTAMPING_TX_SOFTWARE */
515 SOCK_TIMESTAMPING_RX_HARDWARE, /* %SOF_TIMESTAMPING_RX_HARDWARE */
516 SOCK_TIMESTAMPING_RX_SOFTWARE, /* %SOF_TIMESTAMPING_RX_SOFTWARE */
517 SOCK_TIMESTAMPING_SOFTWARE, /* %SOF_TIMESTAMPING_SOFTWARE */
518 SOCK_TIMESTAMPING_RAW_HARDWARE, /* %SOF_TIMESTAMPING_RAW_HARDWARE */
519 SOCK_TIMESTAMPING_SYS_HARDWARE, /* %SOF_TIMESTAMPING_SYS_HARDWARE */
520 SOCK_FASYNC, /* fasync() active */
521 SOCK_RXQ_OVFL,
524 static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
526 nsk->sk_flags = osk->sk_flags;
529 static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
531 __set_bit(flag, &sk->sk_flags);
534 static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
536 __clear_bit(flag, &sk->sk_flags);
539 static inline int sock_flag(struct sock *sk, enum sock_flags flag)
541 return test_bit(flag, &sk->sk_flags);
544 static inline void sk_acceptq_removed(struct sock *sk)
546 sk->sk_ack_backlog--;
549 static inline void sk_acceptq_added(struct sock *sk)
551 sk->sk_ack_backlog++;
554 static inline int sk_acceptq_is_full(struct sock *sk)
556 return sk->sk_ack_backlog > sk->sk_max_ack_backlog;
560 * Compute minimal free write space needed to queue new packets.
562 static inline int sk_stream_min_wspace(struct sock *sk)
564 return sk->sk_wmem_queued >> 1;
567 static inline int sk_stream_wspace(struct sock *sk)
569 return sk->sk_sndbuf - sk->sk_wmem_queued;
572 extern void sk_stream_write_space(struct sock *sk);
574 static inline int sk_stream_memory_free(struct sock *sk)
576 return sk->sk_wmem_queued < sk->sk_sndbuf;
579 /* OOB backlog add */
580 static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
582 if (!sk->sk_backlog.tail) {
583 sk->sk_backlog.head = sk->sk_backlog.tail = skb;
584 } else {
585 sk->sk_backlog.tail->next = skb;
586 sk->sk_backlog.tail = skb;
588 skb->next = NULL;
591 /* The per-socket spinlock must be held here. */
592 static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb)
594 if (sk->sk_backlog.len >= max(sk->sk_backlog.limit, sk->sk_rcvbuf << 1))
595 return -ENOBUFS;
597 __sk_add_backlog(sk, skb);
598 sk->sk_backlog.len += skb->truesize;
599 return 0;
602 static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
604 return sk->sk_backlog_rcv(sk, skb);
607 #define sk_wait_event(__sk, __timeo, __condition) \
608 ({ int __rc; \
609 release_sock(__sk); \
610 __rc = __condition; \
611 if (!__rc) { \
612 *(__timeo) = schedule_timeout(*(__timeo)); \
614 lock_sock(__sk); \
615 __rc = __condition; \
616 __rc; \
619 extern int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
620 extern int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
621 extern void sk_stream_wait_close(struct sock *sk, long timeo_p);
622 extern int sk_stream_error(struct sock *sk, int flags, int err);
623 extern void sk_stream_kill_queues(struct sock *sk);
625 extern int sk_wait_data(struct sock *sk, long *timeo);
627 struct request_sock_ops;
628 struct timewait_sock_ops;
629 struct inet_hashinfo;
630 struct raw_hashinfo;
632 /* Networking protocol blocks we attach to sockets.
633 * socket layer -> transport layer interface
634 * transport -> network interface is defined by struct inet_proto
636 struct proto {
637 void (*close)(struct sock *sk,
638 long timeout);
639 int (*connect)(struct sock *sk,
640 struct sockaddr *uaddr,
641 int addr_len);
642 int (*disconnect)(struct sock *sk, int flags);
644 struct sock * (*accept) (struct sock *sk, int flags, int *err);
646 int (*ioctl)(struct sock *sk, int cmd,
647 unsigned long arg);
648 int (*init)(struct sock *sk);
649 void (*destroy)(struct sock *sk);
650 void (*shutdown)(struct sock *sk, int how);
651 int (*setsockopt)(struct sock *sk, int level,
652 int optname, char __user *optval,
653 unsigned int optlen);
654 int (*getsockopt)(struct sock *sk, int level,
655 int optname, char __user *optval,
656 int __user *option);
657 #ifdef CONFIG_COMPAT
658 int (*compat_setsockopt)(struct sock *sk,
659 int level,
660 int optname, char __user *optval,
661 unsigned int optlen);
662 int (*compat_getsockopt)(struct sock *sk,
663 int level,
664 int optname, char __user *optval,
665 int __user *option);
666 #endif
667 int (*sendmsg)(struct kiocb *iocb, struct sock *sk,
668 struct msghdr *msg, size_t len);
669 int (*recvmsg)(struct kiocb *iocb, struct sock *sk,
670 struct msghdr *msg,
671 size_t len, int noblock, int flags,
672 int *addr_len);
673 int (*sendpage)(struct sock *sk, struct page *page,
674 int offset, size_t size, int flags);
675 int (*bind)(struct sock *sk,
676 struct sockaddr *uaddr, int addr_len);
678 int (*backlog_rcv) (struct sock *sk,
679 struct sk_buff *skb);
681 /* Keeping track of sk's, looking them up, and port selection methods. */
682 void (*hash)(struct sock *sk);
683 void (*unhash)(struct sock *sk);
684 void (*rehash)(struct sock *sk);
685 int (*get_port)(struct sock *sk, unsigned short snum);
687 /* Keeping track of sockets in use */
688 #ifdef CONFIG_PROC_FS
689 unsigned int inuse_idx;
690 #endif
692 /* Memory pressure */
693 void (*enter_memory_pressure)(struct sock *sk);
694 atomic_t *memory_allocated; /* Current allocated memory. */
695 struct percpu_counter *sockets_allocated; /* Current number of sockets. */
697 * Pressure flag: try to collapse.
698 * Technical note: it is used by multiple contexts non atomically.
699 * All the __sk_mem_schedule() is of this nature: accounting
700 * is strict, actions are advisory and have some latency.
702 int *memory_pressure;
703 int *sysctl_mem;
704 int *sysctl_wmem;
705 int *sysctl_rmem;
706 int max_header;
708 struct kmem_cache *slab;
709 unsigned int obj_size;
710 int slab_flags;
712 struct percpu_counter *orphan_count;
714 struct request_sock_ops *rsk_prot;
715 struct timewait_sock_ops *twsk_prot;
717 union {
718 struct inet_hashinfo *hashinfo;
719 struct udp_table *udp_table;
720 struct raw_hashinfo *raw_hash;
721 } h;
723 struct module *owner;
725 char name[32];
727 struct list_head node;
728 #ifdef SOCK_REFCNT_DEBUG
729 atomic_t socks;
730 #endif
733 extern int proto_register(struct proto *prot, int alloc_slab);
734 extern void proto_unregister(struct proto *prot);
736 #ifdef SOCK_REFCNT_DEBUG
737 static inline void sk_refcnt_debug_inc(struct sock *sk)
739 atomic_inc(&sk->sk_prot->socks);
742 static inline void sk_refcnt_debug_dec(struct sock *sk)
744 atomic_dec(&sk->sk_prot->socks);
745 printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
746 sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
749 static inline void sk_refcnt_debug_release(const struct sock *sk)
751 if (atomic_read(&sk->sk_refcnt) != 1)
752 printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
753 sk->sk_prot->name, sk, atomic_read(&sk->sk_refcnt));
755 #else /* SOCK_REFCNT_DEBUG */
756 #define sk_refcnt_debug_inc(sk) do { } while (0)
757 #define sk_refcnt_debug_dec(sk) do { } while (0)
758 #define sk_refcnt_debug_release(sk) do { } while (0)
759 #endif /* SOCK_REFCNT_DEBUG */
762 #ifdef CONFIG_PROC_FS
763 /* Called with local bh disabled */
764 extern void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
765 extern int sock_prot_inuse_get(struct net *net, struct proto *proto);
766 #else
767 static void inline sock_prot_inuse_add(struct net *net, struct proto *prot,
768 int inc)
771 #endif
774 /* With per-bucket locks this operation is not-atomic, so that
775 * this version is not worse.
777 static inline void __sk_prot_rehash(struct sock *sk)
779 sk->sk_prot->unhash(sk);
780 sk->sk_prot->hash(sk);
783 /* About 10 seconds */
784 #define SOCK_DESTROY_TIME (10*HZ)
786 /* Sockets 0-1023 can't be bound to unless you are superuser */
787 #define PROT_SOCK 1024
789 #define SHUTDOWN_MASK 3
790 #define RCV_SHUTDOWN 1
791 #define SEND_SHUTDOWN 2
793 #define SOCK_SNDBUF_LOCK 1
794 #define SOCK_RCVBUF_LOCK 2
795 #define SOCK_BINDADDR_LOCK 4
796 #define SOCK_BINDPORT_LOCK 8
798 /* sock_iocb: used to kick off async processing of socket ios */
799 struct sock_iocb {
800 struct list_head list;
802 int flags;
803 int size;
804 struct socket *sock;
805 struct sock *sk;
806 struct scm_cookie *scm;
807 struct msghdr *msg, async_msg;
808 struct kiocb *kiocb;
811 static inline struct sock_iocb *kiocb_to_siocb(struct kiocb *iocb)
813 return (struct sock_iocb *)iocb->private;
816 static inline struct kiocb *siocb_to_kiocb(struct sock_iocb *si)
818 return si->kiocb;
821 struct socket_alloc {
822 struct socket socket;
823 struct inode vfs_inode;
826 static inline struct socket *SOCKET_I(struct inode *inode)
828 return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
831 static inline struct inode *SOCK_INODE(struct socket *socket)
833 return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
837 * Functions for memory accounting
839 extern int __sk_mem_schedule(struct sock *sk, int size, int kind);
840 extern void __sk_mem_reclaim(struct sock *sk);
842 #define SK_MEM_QUANTUM ((int)PAGE_SIZE)
843 #define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
844 #define SK_MEM_SEND 0
845 #define SK_MEM_RECV 1
847 static inline int sk_mem_pages(int amt)
849 return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
852 static inline int sk_has_account(struct sock *sk)
854 /* return true if protocol supports memory accounting */
855 return !!sk->sk_prot->memory_allocated;
858 static inline int sk_wmem_schedule(struct sock *sk, int size)
860 if (!sk_has_account(sk))
861 return 1;
862 return size <= sk->sk_forward_alloc ||
863 __sk_mem_schedule(sk, size, SK_MEM_SEND);
866 static inline int sk_rmem_schedule(struct sock *sk, int size)
868 if (!sk_has_account(sk))
869 return 1;
870 return size <= sk->sk_forward_alloc ||
871 __sk_mem_schedule(sk, size, SK_MEM_RECV);
874 static inline void sk_mem_reclaim(struct sock *sk)
876 if (!sk_has_account(sk))
877 return;
878 if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
879 __sk_mem_reclaim(sk);
882 static inline void sk_mem_reclaim_partial(struct sock *sk)
884 if (!sk_has_account(sk))
885 return;
886 if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
887 __sk_mem_reclaim(sk);
890 static inline void sk_mem_charge(struct sock *sk, int size)
892 if (!sk_has_account(sk))
893 return;
894 sk->sk_forward_alloc -= size;
897 static inline void sk_mem_uncharge(struct sock *sk, int size)
899 if (!sk_has_account(sk))
900 return;
901 sk->sk_forward_alloc += size;
904 static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
906 sock_set_flag(sk, SOCK_QUEUE_SHRUNK);
907 sk->sk_wmem_queued -= skb->truesize;
908 sk_mem_uncharge(sk, skb->truesize);
909 __kfree_skb(skb);
912 /* Used by processes to "lock" a socket state, so that
913 * interrupts and bottom half handlers won't change it
914 * from under us. It essentially blocks any incoming
915 * packets, so that we won't get any new data or any
916 * packets that change the state of the socket.
918 * While locked, BH processing will add new packets to
919 * the backlog queue. This queue is processed by the
920 * owner of the socket lock right before it is released.
922 * Since ~2.3.5 it is also exclusive sleep lock serializing
923 * accesses from user process context.
925 #define sock_owned_by_user(sk) ((sk)->sk_lock.owned)
928 * Macro so as to not evaluate some arguments when
929 * lockdep is not enabled.
931 * Mark both the sk_lock and the sk_lock.slock as a
932 * per-address-family lock class.
934 #define sock_lock_init_class_and_name(sk, sname, skey, name, key) \
935 do { \
936 sk->sk_lock.owned = 0; \
937 init_waitqueue_head(&sk->sk_lock.wq); \
938 spin_lock_init(&(sk)->sk_lock.slock); \
939 debug_check_no_locks_freed((void *)&(sk)->sk_lock, \
940 sizeof((sk)->sk_lock)); \
941 lockdep_set_class_and_name(&(sk)->sk_lock.slock, \
942 (skey), (sname)); \
943 lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0); \
944 } while (0)
946 extern void lock_sock_nested(struct sock *sk, int subclass);
948 static inline void lock_sock(struct sock *sk)
950 lock_sock_nested(sk, 0);
953 extern void release_sock(struct sock *sk);
955 /* BH context may only use the following locking interface. */
956 #define bh_lock_sock(__sk) spin_lock(&((__sk)->sk_lock.slock))
957 #define bh_lock_sock_nested(__sk) \
958 spin_lock_nested(&((__sk)->sk_lock.slock), \
959 SINGLE_DEPTH_NESTING)
960 #define bh_unlock_sock(__sk) spin_unlock(&((__sk)->sk_lock.slock))
962 extern struct sock *sk_alloc(struct net *net, int family,
963 gfp_t priority,
964 struct proto *prot);
965 extern void sk_free(struct sock *sk);
966 extern void sk_release_kernel(struct sock *sk);
967 extern struct sock *sk_clone(const struct sock *sk,
968 const gfp_t priority);
970 extern struct sk_buff *sock_wmalloc(struct sock *sk,
971 unsigned long size, int force,
972 gfp_t priority);
973 extern struct sk_buff *sock_rmalloc(struct sock *sk,
974 unsigned long size, int force,
975 gfp_t priority);
976 extern void sock_wfree(struct sk_buff *skb);
977 extern void sock_rfree(struct sk_buff *skb);
979 extern int sock_setsockopt(struct socket *sock, int level,
980 int op, char __user *optval,
981 unsigned int optlen);
983 extern int sock_getsockopt(struct socket *sock, int level,
984 int op, char __user *optval,
985 int __user *optlen);
986 extern struct sk_buff *sock_alloc_send_skb(struct sock *sk,
987 unsigned long size,
988 int noblock,
989 int *errcode);
990 extern struct sk_buff *sock_alloc_send_pskb(struct sock *sk,
991 unsigned long header_len,
992 unsigned long data_len,
993 int noblock,
994 int *errcode);
995 extern void *sock_kmalloc(struct sock *sk, int size,
996 gfp_t priority);
997 extern void sock_kfree_s(struct sock *sk, void *mem, int size);
998 extern void sk_send_sigurg(struct sock *sk);
1001 * Functions to fill in entries in struct proto_ops when a protocol
1002 * does not implement a particular function.
1004 extern int sock_no_bind(struct socket *,
1005 struct sockaddr *, int);
1006 extern int sock_no_connect(struct socket *,
1007 struct sockaddr *, int, int);
1008 extern int sock_no_socketpair(struct socket *,
1009 struct socket *);
1010 extern int sock_no_accept(struct socket *,
1011 struct socket *, int);
1012 extern int sock_no_getname(struct socket *,
1013 struct sockaddr *, int *, int);
1014 extern unsigned int sock_no_poll(struct file *, struct socket *,
1015 struct poll_table_struct *);
1016 extern int sock_no_ioctl(struct socket *, unsigned int,
1017 unsigned long);
1018 extern int sock_no_listen(struct socket *, int);
1019 extern int sock_no_shutdown(struct socket *, int);
1020 extern int sock_no_getsockopt(struct socket *, int , int,
1021 char __user *, int __user *);
1022 extern int sock_no_setsockopt(struct socket *, int, int,
1023 char __user *, unsigned int);
1024 extern int sock_no_sendmsg(struct kiocb *, struct socket *,
1025 struct msghdr *, size_t);
1026 extern int sock_no_recvmsg(struct kiocb *, struct socket *,
1027 struct msghdr *, size_t, int);
1028 extern int sock_no_mmap(struct file *file,
1029 struct socket *sock,
1030 struct vm_area_struct *vma);
1031 extern ssize_t sock_no_sendpage(struct socket *sock,
1032 struct page *page,
1033 int offset, size_t size,
1034 int flags);
1037 * Functions to fill in entries in struct proto_ops when a protocol
1038 * uses the inet style.
1040 extern int sock_common_getsockopt(struct socket *sock, int level, int optname,
1041 char __user *optval, int __user *optlen);
1042 extern int sock_common_recvmsg(struct kiocb *iocb, struct socket *sock,
1043 struct msghdr *msg, size_t size, int flags);
1044 extern int sock_common_setsockopt(struct socket *sock, int level, int optname,
1045 char __user *optval, unsigned int optlen);
1046 extern int compat_sock_common_getsockopt(struct socket *sock, int level,
1047 int optname, char __user *optval, int __user *optlen);
1048 extern int compat_sock_common_setsockopt(struct socket *sock, int level,
1049 int optname, char __user *optval, unsigned int optlen);
1051 extern void sk_common_release(struct sock *sk);
1054 * Default socket callbacks and setup code
1057 /* Initialise core socket variables */
1058 extern void sock_init_data(struct socket *sock, struct sock *sk);
1061 * sk_filter_release: Release a socket filter
1062 * @fp: filter to remove
1064 * Remove a filter from a socket and release its resources.
1067 static inline void sk_filter_release(struct sk_filter *fp)
1069 if (atomic_dec_and_test(&fp->refcnt))
1070 kfree(fp);
1073 static inline void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp)
1075 unsigned int size = sk_filter_len(fp);
1077 atomic_sub(size, &sk->sk_omem_alloc);
1078 sk_filter_release(fp);
1081 static inline void sk_filter_charge(struct sock *sk, struct sk_filter *fp)
1083 atomic_inc(&fp->refcnt);
1084 atomic_add(sk_filter_len(fp), &sk->sk_omem_alloc);
1088 * Socket reference counting postulates.
1090 * * Each user of socket SHOULD hold a reference count.
1091 * * Each access point to socket (an hash table bucket, reference from a list,
1092 * running timer, skb in flight MUST hold a reference count.
1093 * * When reference count hits 0, it means it will never increase back.
1094 * * When reference count hits 0, it means that no references from
1095 * outside exist to this socket and current process on current CPU
1096 * is last user and may/should destroy this socket.
1097 * * sk_free is called from any context: process, BH, IRQ. When
1098 * it is called, socket has no references from outside -> sk_free
1099 * may release descendant resources allocated by the socket, but
1100 * to the time when it is called, socket is NOT referenced by any
1101 * hash tables, lists etc.
1102 * * Packets, delivered from outside (from network or from another process)
1103 * and enqueued on receive/error queues SHOULD NOT grab reference count,
1104 * when they sit in queue. Otherwise, packets will leak to hole, when
1105 * socket is looked up by one cpu and unhasing is made by another CPU.
1106 * It is true for udp/raw, netlink (leak to receive and error queues), tcp
1107 * (leak to backlog). Packet socket does all the processing inside
1108 * BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1109 * use separate SMP lock, so that they are prone too.
1112 /* Ungrab socket and destroy it, if it was the last reference. */
1113 static inline void sock_put(struct sock *sk)
1115 if (atomic_dec_and_test(&sk->sk_refcnt))
1116 sk_free(sk);
1119 extern int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1120 const int nested);
1122 static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1124 sk->sk_tx_queue_mapping = tx_queue;
1127 static inline void sk_tx_queue_clear(struct sock *sk)
1129 sk->sk_tx_queue_mapping = -1;
1132 static inline int sk_tx_queue_get(const struct sock *sk)
1134 return sk ? sk->sk_tx_queue_mapping : -1;
1137 static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1139 sk_tx_queue_clear(sk);
1140 sk->sk_socket = sock;
1143 /* Detach socket from process context.
1144 * Announce socket dead, detach it from wait queue and inode.
1145 * Note that parent inode held reference count on this struct sock,
1146 * we do not release it in this function, because protocol
1147 * probably wants some additional cleanups or even continuing
1148 * to work with this socket (TCP).
1150 static inline void sock_orphan(struct sock *sk)
1152 write_lock_bh(&sk->sk_callback_lock);
1153 sock_set_flag(sk, SOCK_DEAD);
1154 sk_set_socket(sk, NULL);
1155 sk->sk_sleep = NULL;
1156 write_unlock_bh(&sk->sk_callback_lock);
1159 static inline void sock_graft(struct sock *sk, struct socket *parent)
1161 write_lock_bh(&sk->sk_callback_lock);
1162 sk->sk_sleep = &parent->wait;
1163 parent->sk = sk;
1164 sk_set_socket(sk, parent);
1165 security_sock_graft(sk, parent);
1166 write_unlock_bh(&sk->sk_callback_lock);
1169 extern int sock_i_uid(struct sock *sk);
1170 extern unsigned long sock_i_ino(struct sock *sk);
1172 static inline struct dst_entry *
1173 __sk_dst_get(struct sock *sk)
1175 return sk->sk_dst_cache;
1178 static inline struct dst_entry *
1179 sk_dst_get(struct sock *sk)
1181 struct dst_entry *dst;
1183 read_lock(&sk->sk_dst_lock);
1184 dst = sk->sk_dst_cache;
1185 if (dst)
1186 dst_hold(dst);
1187 read_unlock(&sk->sk_dst_lock);
1188 return dst;
1191 static inline void
1192 __sk_dst_set(struct sock *sk, struct dst_entry *dst)
1194 struct dst_entry *old_dst;
1196 sk_tx_queue_clear(sk);
1197 old_dst = sk->sk_dst_cache;
1198 sk->sk_dst_cache = dst;
1199 dst_release(old_dst);
1202 static inline void
1203 sk_dst_set(struct sock *sk, struct dst_entry *dst)
1205 write_lock(&sk->sk_dst_lock);
1206 __sk_dst_set(sk, dst);
1207 write_unlock(&sk->sk_dst_lock);
1210 static inline void
1211 __sk_dst_reset(struct sock *sk)
1213 struct dst_entry *old_dst;
1215 sk_tx_queue_clear(sk);
1216 old_dst = sk->sk_dst_cache;
1217 sk->sk_dst_cache = NULL;
1218 dst_release(old_dst);
1221 static inline void
1222 sk_dst_reset(struct sock *sk)
1224 write_lock(&sk->sk_dst_lock);
1225 __sk_dst_reset(sk);
1226 write_unlock(&sk->sk_dst_lock);
1229 extern struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
1231 extern struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
1233 static inline int sk_can_gso(const struct sock *sk)
1235 return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
1238 extern void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
1240 static inline int skb_copy_to_page(struct sock *sk, char __user *from,
1241 struct sk_buff *skb, struct page *page,
1242 int off, int copy)
1244 if (skb->ip_summed == CHECKSUM_NONE) {
1245 int err = 0;
1246 __wsum csum = csum_and_copy_from_user(from,
1247 page_address(page) + off,
1248 copy, 0, &err);
1249 if (err)
1250 return err;
1251 skb->csum = csum_block_add(skb->csum, csum, skb->len);
1252 } else if (copy_from_user(page_address(page) + off, from, copy))
1253 return -EFAULT;
1255 skb->len += copy;
1256 skb->data_len += copy;
1257 skb->truesize += copy;
1258 sk->sk_wmem_queued += copy;
1259 sk_mem_charge(sk, copy);
1260 return 0;
1264 * sk_wmem_alloc_get - returns write allocations
1265 * @sk: socket
1267 * Returns sk_wmem_alloc minus initial offset of one
1269 static inline int sk_wmem_alloc_get(const struct sock *sk)
1271 return atomic_read(&sk->sk_wmem_alloc) - 1;
1275 * sk_rmem_alloc_get - returns read allocations
1276 * @sk: socket
1278 * Returns sk_rmem_alloc
1280 static inline int sk_rmem_alloc_get(const struct sock *sk)
1282 return atomic_read(&sk->sk_rmem_alloc);
1286 * sk_has_allocations - check if allocations are outstanding
1287 * @sk: socket
1289 * Returns true if socket has write or read allocations
1291 static inline int sk_has_allocations(const struct sock *sk)
1293 return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
1297 * sk_has_sleeper - check if there are any waiting processes
1298 * @sk: socket
1300 * Returns true if socket has waiting processes
1302 * The purpose of the sk_has_sleeper and sock_poll_wait is to wrap the memory
1303 * barrier call. They were added due to the race found within the tcp code.
1305 * Consider following tcp code paths:
1307 * CPU1 CPU2
1309 * sys_select receive packet
1310 * ... ...
1311 * __add_wait_queue update tp->rcv_nxt
1312 * ... ...
1313 * tp->rcv_nxt check sock_def_readable
1314 * ... {
1315 * schedule ...
1316 * if (sk->sk_sleep && waitqueue_active(sk->sk_sleep))
1317 * wake_up_interruptible(sk->sk_sleep)
1318 * ...
1321 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
1322 * in its cache, and so does the tp->rcv_nxt update on CPU2 side. The CPU1
1323 * could then endup calling schedule and sleep forever if there are no more
1324 * data on the socket.
1326 * The sk_has_sleeper is always called right after a call to read_lock, so we
1327 * can use smp_mb__after_lock barrier.
1329 static inline int sk_has_sleeper(struct sock *sk)
1332 * We need to be sure we are in sync with the
1333 * add_wait_queue modifications to the wait queue.
1335 * This memory barrier is paired in the sock_poll_wait.
1337 smp_mb__after_lock();
1338 return sk->sk_sleep && waitqueue_active(sk->sk_sleep);
1342 * sock_poll_wait - place memory barrier behind the poll_wait call.
1343 * @filp: file
1344 * @wait_address: socket wait queue
1345 * @p: poll_table
1347 * See the comments in the sk_has_sleeper function.
1349 static inline void sock_poll_wait(struct file *filp,
1350 wait_queue_head_t *wait_address, poll_table *p)
1352 if (p && wait_address) {
1353 poll_wait(filp, wait_address, p);
1355 * We need to be sure we are in sync with the
1356 * socket flags modification.
1358 * This memory barrier is paired in the sk_has_sleeper.
1360 smp_mb();
1365 * Queue a received datagram if it will fit. Stream and sequenced
1366 * protocols can't normally use this as they need to fit buffers in
1367 * and play with them.
1369 * Inlined as it's very short and called for pretty much every
1370 * packet ever received.
1373 static inline void skb_set_owner_w(struct sk_buff *skb, struct sock *sk)
1375 skb_orphan(skb);
1376 skb->sk = sk;
1377 skb->destructor = sock_wfree;
1379 * We used to take a refcount on sk, but following operation
1380 * is enough to guarantee sk_free() wont free this sock until
1381 * all in-flight packets are completed
1383 atomic_add(skb->truesize, &sk->sk_wmem_alloc);
1386 static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
1388 skb_orphan(skb);
1389 skb->sk = sk;
1390 skb->destructor = sock_rfree;
1391 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
1392 sk_mem_charge(sk, skb->truesize);
1395 extern void sk_reset_timer(struct sock *sk, struct timer_list* timer,
1396 unsigned long expires);
1398 extern void sk_stop_timer(struct sock *sk, struct timer_list* timer);
1400 extern int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
1402 static inline int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
1404 /* Cast skb->rcvbuf to unsigned... It's pointless, but reduces
1405 number of warnings when compiling with -W --ANK
1407 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
1408 (unsigned)sk->sk_rcvbuf)
1409 return -ENOMEM;
1410 skb_set_owner_r(skb, sk);
1411 skb_queue_tail(&sk->sk_error_queue, skb);
1412 if (!sock_flag(sk, SOCK_DEAD))
1413 sk->sk_data_ready(sk, skb->len);
1414 return 0;
1418 * Recover an error report and clear atomically
1421 static inline int sock_error(struct sock *sk)
1423 int err;
1424 if (likely(!sk->sk_err))
1425 return 0;
1426 err = xchg(&sk->sk_err, 0);
1427 return -err;
1430 static inline unsigned long sock_wspace(struct sock *sk)
1432 int amt = 0;
1434 if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
1435 amt = sk->sk_sndbuf - atomic_read(&sk->sk_wmem_alloc);
1436 if (amt < 0)
1437 amt = 0;
1439 return amt;
1442 static inline void sk_wake_async(struct sock *sk, int how, int band)
1444 if (sock_flag(sk, SOCK_FASYNC))
1445 sock_wake_async(sk->sk_socket, how, band);
1448 #define SOCK_MIN_SNDBUF 2048
1449 #define SOCK_MIN_RCVBUF 256
1451 static inline void sk_stream_moderate_sndbuf(struct sock *sk)
1453 if (!(sk->sk_userlocks & SOCK_SNDBUF_LOCK)) {
1454 sk->sk_sndbuf = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
1455 sk->sk_sndbuf = max(sk->sk_sndbuf, SOCK_MIN_SNDBUF);
1459 struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp);
1461 static inline struct page *sk_stream_alloc_page(struct sock *sk)
1463 struct page *page = NULL;
1465 page = alloc_pages(sk->sk_allocation, 0);
1466 if (!page) {
1467 sk->sk_prot->enter_memory_pressure(sk);
1468 sk_stream_moderate_sndbuf(sk);
1470 return page;
1474 * Default write policy as shown to user space via poll/select/SIGIO
1476 static inline int sock_writeable(const struct sock *sk)
1478 return atomic_read(&sk->sk_wmem_alloc) < (sk->sk_sndbuf >> 1);
1481 static inline gfp_t gfp_any(void)
1483 return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
1486 static inline long sock_rcvtimeo(const struct sock *sk, int noblock)
1488 return noblock ? 0 : sk->sk_rcvtimeo;
1491 static inline long sock_sndtimeo(const struct sock *sk, int noblock)
1493 return noblock ? 0 : sk->sk_sndtimeo;
1496 static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
1498 return (waitall ? len : min_t(int, sk->sk_rcvlowat, len)) ? : 1;
1501 /* Alas, with timeout socket operations are not restartable.
1502 * Compare this to poll().
1504 static inline int sock_intr_errno(long timeo)
1506 return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
1509 extern void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
1510 struct sk_buff *skb);
1512 static __inline__ void
1513 sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
1515 ktime_t kt = skb->tstamp;
1516 struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
1519 * generate control messages if
1520 * - receive time stamping in software requested (SOCK_RCVTSTAMP
1521 * or SOCK_TIMESTAMPING_RX_SOFTWARE)
1522 * - software time stamp available and wanted
1523 * (SOCK_TIMESTAMPING_SOFTWARE)
1524 * - hardware time stamps available and wanted
1525 * (SOCK_TIMESTAMPING_SYS_HARDWARE or
1526 * SOCK_TIMESTAMPING_RAW_HARDWARE)
1528 if (sock_flag(sk, SOCK_RCVTSTAMP) ||
1529 sock_flag(sk, SOCK_TIMESTAMPING_RX_SOFTWARE) ||
1530 (kt.tv64 && sock_flag(sk, SOCK_TIMESTAMPING_SOFTWARE)) ||
1531 (hwtstamps->hwtstamp.tv64 &&
1532 sock_flag(sk, SOCK_TIMESTAMPING_RAW_HARDWARE)) ||
1533 (hwtstamps->syststamp.tv64 &&
1534 sock_flag(sk, SOCK_TIMESTAMPING_SYS_HARDWARE)))
1535 __sock_recv_timestamp(msg, sk, skb);
1536 else
1537 sk->sk_stamp = kt;
1540 extern void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk, struct sk_buff *skb);
1543 * sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
1544 * @msg: outgoing packet
1545 * @sk: socket sending this packet
1546 * @shtx: filled with instructions for time stamping
1548 * Currently only depends on SOCK_TIMESTAMPING* flags. Returns error code if
1549 * parameters are invalid.
1551 extern int sock_tx_timestamp(struct msghdr *msg,
1552 struct sock *sk,
1553 union skb_shared_tx *shtx);
1557 * sk_eat_skb - Release a skb if it is no longer needed
1558 * @sk: socket to eat this skb from
1559 * @skb: socket buffer to eat
1560 * @copied_early: flag indicating whether DMA operations copied this data early
1562 * This routine must be called with interrupts disabled or with the socket
1563 * locked so that the sk_buff queue operation is ok.
1565 #ifdef CONFIG_NET_DMA
1566 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1568 __skb_unlink(skb, &sk->sk_receive_queue);
1569 if (!copied_early)
1570 __kfree_skb(skb);
1571 else
1572 __skb_queue_tail(&sk->sk_async_wait_queue, skb);
1574 #else
1575 static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb, int copied_early)
1577 __skb_unlink(skb, &sk->sk_receive_queue);
1578 __kfree_skb(skb);
1580 #endif
1582 static inline
1583 struct net *sock_net(const struct sock *sk)
1585 #ifdef CONFIG_NET_NS
1586 return sk->sk_net;
1587 #else
1588 return &init_net;
1589 #endif
1592 static inline
1593 void sock_net_set(struct sock *sk, struct net *net)
1595 #ifdef CONFIG_NET_NS
1596 sk->sk_net = net;
1597 #endif
1601 * Kernel sockets, f.e. rtnl or icmp_socket, are a part of a namespace.
1602 * They should not hold a referrence to a namespace in order to allow
1603 * to stop it.
1604 * Sockets after sk_change_net should be released using sk_release_kernel
1606 static inline void sk_change_net(struct sock *sk, struct net *net)
1608 put_net(sock_net(sk));
1609 sock_net_set(sk, hold_net(net));
1612 static inline struct sock *skb_steal_sock(struct sk_buff *skb)
1614 if (unlikely(skb->sk)) {
1615 struct sock *sk = skb->sk;
1617 skb->destructor = NULL;
1618 skb->sk = NULL;
1619 return sk;
1621 return NULL;
1624 extern void sock_enable_timestamp(struct sock *sk, int flag);
1625 extern int sock_get_timestamp(struct sock *, struct timeval __user *);
1626 extern int sock_get_timestampns(struct sock *, struct timespec __user *);
1629 * Enable debug/info messages
1631 extern int net_msg_warn;
1632 #define NETDEBUG(fmt, args...) \
1633 do { if (net_msg_warn) printk(fmt,##args); } while (0)
1635 #define LIMIT_NETDEBUG(fmt, args...) \
1636 do { if (net_msg_warn && net_ratelimit()) printk(fmt,##args); } while(0)
1638 extern __u32 sysctl_wmem_max;
1639 extern __u32 sysctl_rmem_max;
1641 extern void sk_init(void);
1643 extern int sysctl_optmem_max;
1645 extern __u32 sysctl_wmem_default;
1646 extern __u32 sysctl_rmem_default;
1648 #endif /* _SOCK_H */