platform: x86: asus_acpi: world-writable procfs files
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob105a3dcf29b10b6123007b140b5efad7774fd174
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->bm_write is the number of the last batch successfully written.
31 * conf->bm_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is bm_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include "md.h"
54 #include "raid5.h"
55 #include "bitmap.h"
58 * Stripe cache
61 #define NR_STRIPES 256
62 #define STRIPE_SIZE PAGE_SIZE
63 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
64 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
65 #define IO_THRESHOLD 1
66 #define BYPASS_THRESHOLD 1
67 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
68 #define HASH_MASK (NR_HASH - 1)
70 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
72 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
73 * order without overlap. There may be several bio's per stripe+device, and
74 * a bio could span several devices.
75 * When walking this list for a particular stripe+device, we must never proceed
76 * beyond a bio that extends past this device, as the next bio might no longer
77 * be valid.
78 * This macro is used to determine the 'next' bio in the list, given the sector
79 * of the current stripe+device
81 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
83 * The following can be used to debug the driver
85 #define RAID5_PARANOIA 1
86 #if RAID5_PARANOIA && defined(CONFIG_SMP)
87 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
88 #else
89 # define CHECK_DEVLOCK()
90 #endif
92 #ifdef DEBUG
93 #define inline
94 #define __inline__
95 #endif
97 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
100 * We maintain a biased count of active stripes in the bottom 16 bits of
101 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
103 static inline int raid5_bi_phys_segments(struct bio *bio)
105 return bio->bi_phys_segments & 0xffff;
108 static inline int raid5_bi_hw_segments(struct bio *bio)
110 return (bio->bi_phys_segments >> 16) & 0xffff;
113 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
115 --bio->bi_phys_segments;
116 return raid5_bi_phys_segments(bio);
119 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
121 unsigned short val = raid5_bi_hw_segments(bio);
123 --val;
124 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
125 return val;
128 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
130 bio->bi_phys_segments = raid5_bi_phys_segments(bio) || (cnt << 16);
133 /* Find first data disk in a raid6 stripe */
134 static inline int raid6_d0(struct stripe_head *sh)
136 if (sh->ddf_layout)
137 /* ddf always start from first device */
138 return 0;
139 /* md starts just after Q block */
140 if (sh->qd_idx == sh->disks - 1)
141 return 0;
142 else
143 return sh->qd_idx + 1;
145 static inline int raid6_next_disk(int disk, int raid_disks)
147 disk++;
148 return (disk < raid_disks) ? disk : 0;
151 /* When walking through the disks in a raid5, starting at raid6_d0,
152 * We need to map each disk to a 'slot', where the data disks are slot
153 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
154 * is raid_disks-1. This help does that mapping.
156 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
157 int *count, int syndrome_disks)
159 int slot = *count;
161 if (sh->ddf_layout)
162 (*count)++;
163 if (idx == sh->pd_idx)
164 return syndrome_disks;
165 if (idx == sh->qd_idx)
166 return syndrome_disks + 1;
167 if (!sh->ddf_layout)
168 (*count)++;
169 return slot;
172 static void return_io(struct bio *return_bi)
174 struct bio *bi = return_bi;
175 while (bi) {
177 return_bi = bi->bi_next;
178 bi->bi_next = NULL;
179 bi->bi_size = 0;
180 bio_endio(bi, 0);
181 bi = return_bi;
185 static void print_raid5_conf (raid5_conf_t *conf);
187 static int stripe_operations_active(struct stripe_head *sh)
189 return sh->check_state || sh->reconstruct_state ||
190 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
191 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
194 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
196 if (atomic_dec_and_test(&sh->count)) {
197 BUG_ON(!list_empty(&sh->lru));
198 BUG_ON(atomic_read(&conf->active_stripes)==0);
199 if (test_bit(STRIPE_HANDLE, &sh->state)) {
200 if (test_bit(STRIPE_DELAYED, &sh->state)) {
201 list_add_tail(&sh->lru, &conf->delayed_list);
202 blk_plug_device(conf->mddev->queue);
203 } else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
204 sh->bm_seq - conf->seq_write > 0) {
205 list_add_tail(&sh->lru, &conf->bitmap_list);
206 blk_plug_device(conf->mddev->queue);
207 } else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
230 static void release_stripe(struct stripe_head *sh)
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
240 static inline void remove_hash(struct stripe_head *sh)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
245 hlist_del_init(&sh->hash);
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
278 static void shrink_buffers(struct stripe_head *sh, int num)
280 struct page *p;
281 int i;
283 for (i=0; i<num ; i++) {
284 p = sh->dev[i].page;
285 if (!p)
286 continue;
287 sh->dev[i].page = NULL;
288 put_page(p);
292 static int grow_buffers(struct stripe_head *sh, int num)
294 int i;
296 for (i=0; i<num; i++) {
297 struct page *page;
299 if (!(page = alloc_page(GFP_KERNEL))) {
300 return 1;
302 sh->dev[i].page = page;
304 return 0;
307 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
308 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
309 struct stripe_head *sh);
311 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
313 raid5_conf_t *conf = sh->raid_conf;
314 int i;
316 BUG_ON(atomic_read(&sh->count) != 0);
317 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
318 BUG_ON(stripe_operations_active(sh));
320 CHECK_DEVLOCK();
321 pr_debug("init_stripe called, stripe %llu\n",
322 (unsigned long long)sh->sector);
324 remove_hash(sh);
326 sh->generation = conf->generation - previous;
327 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
328 sh->sector = sector;
329 stripe_set_idx(sector, conf, previous, sh);
330 sh->state = 0;
333 for (i = sh->disks; i--; ) {
334 struct r5dev *dev = &sh->dev[i];
336 if (dev->toread || dev->read || dev->towrite || dev->written ||
337 test_bit(R5_LOCKED, &dev->flags)) {
338 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
339 (unsigned long long)sh->sector, i, dev->toread,
340 dev->read, dev->towrite, dev->written,
341 test_bit(R5_LOCKED, &dev->flags));
342 BUG();
344 dev->flags = 0;
345 raid5_build_block(sh, i, previous);
347 insert_hash(conf, sh);
350 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
351 short generation)
353 struct stripe_head *sh;
354 struct hlist_node *hn;
356 CHECK_DEVLOCK();
357 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
358 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
359 if (sh->sector == sector && sh->generation == generation)
360 return sh;
361 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
362 return NULL;
365 static void unplug_slaves(mddev_t *mddev);
366 static void raid5_unplug_device(struct request_queue *q);
368 static struct stripe_head *
369 get_active_stripe(raid5_conf_t *conf, sector_t sector,
370 int previous, int noblock, int noquiesce)
372 struct stripe_head *sh;
374 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
376 spin_lock_irq(&conf->device_lock);
378 do {
379 wait_event_lock_irq(conf->wait_for_stripe,
380 conf->quiesce == 0 || noquiesce,
381 conf->device_lock, /* nothing */);
382 sh = __find_stripe(conf, sector, conf->generation - previous);
383 if (!sh) {
384 if (!conf->inactive_blocked)
385 sh = get_free_stripe(conf);
386 if (noblock && sh == NULL)
387 break;
388 if (!sh) {
389 conf->inactive_blocked = 1;
390 wait_event_lock_irq(conf->wait_for_stripe,
391 !list_empty(&conf->inactive_list) &&
392 (atomic_read(&conf->active_stripes)
393 < (conf->max_nr_stripes *3/4)
394 || !conf->inactive_blocked),
395 conf->device_lock,
396 raid5_unplug_device(conf->mddev->queue)
398 conf->inactive_blocked = 0;
399 } else
400 init_stripe(sh, sector, previous);
401 } else {
402 if (atomic_read(&sh->count)) {
403 BUG_ON(!list_empty(&sh->lru)
404 && !test_bit(STRIPE_EXPANDING, &sh->state));
405 } else {
406 if (!test_bit(STRIPE_HANDLE, &sh->state))
407 atomic_inc(&conf->active_stripes);
408 if (list_empty(&sh->lru) &&
409 !test_bit(STRIPE_EXPANDING, &sh->state))
410 BUG();
411 list_del_init(&sh->lru);
414 } while (sh == NULL);
416 if (sh)
417 atomic_inc(&sh->count);
419 spin_unlock_irq(&conf->device_lock);
420 return sh;
423 static void
424 raid5_end_read_request(struct bio *bi, int error);
425 static void
426 raid5_end_write_request(struct bio *bi, int error);
428 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
430 raid5_conf_t *conf = sh->raid_conf;
431 int i, disks = sh->disks;
433 might_sleep();
435 for (i = disks; i--; ) {
436 int rw;
437 struct bio *bi;
438 mdk_rdev_t *rdev;
439 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags))
440 rw = WRITE;
441 else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
442 rw = READ;
443 else
444 continue;
446 bi = &sh->dev[i].req;
448 bi->bi_rw = rw;
449 if (rw == WRITE)
450 bi->bi_end_io = raid5_end_write_request;
451 else
452 bi->bi_end_io = raid5_end_read_request;
454 rcu_read_lock();
455 rdev = rcu_dereference(conf->disks[i].rdev);
456 if (rdev && test_bit(Faulty, &rdev->flags))
457 rdev = NULL;
458 if (rdev)
459 atomic_inc(&rdev->nr_pending);
460 rcu_read_unlock();
462 if (rdev) {
463 if (s->syncing || s->expanding || s->expanded)
464 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
466 set_bit(STRIPE_IO_STARTED, &sh->state);
468 bi->bi_bdev = rdev->bdev;
469 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
470 __func__, (unsigned long long)sh->sector,
471 bi->bi_rw, i);
472 atomic_inc(&sh->count);
473 bi->bi_sector = sh->sector + rdev->data_offset;
474 bi->bi_flags = 1 << BIO_UPTODATE;
475 bi->bi_vcnt = 1;
476 bi->bi_max_vecs = 1;
477 bi->bi_idx = 0;
478 bi->bi_io_vec = &sh->dev[i].vec;
479 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
480 bi->bi_io_vec[0].bv_offset = 0;
481 bi->bi_size = STRIPE_SIZE;
482 bi->bi_next = NULL;
483 if (rw == WRITE &&
484 test_bit(R5_ReWrite, &sh->dev[i].flags))
485 atomic_add(STRIPE_SECTORS,
486 &rdev->corrected_errors);
487 generic_make_request(bi);
488 } else {
489 if (rw == WRITE)
490 set_bit(STRIPE_DEGRADED, &sh->state);
491 pr_debug("skip op %ld on disc %d for sector %llu\n",
492 bi->bi_rw, i, (unsigned long long)sh->sector);
493 clear_bit(R5_LOCKED, &sh->dev[i].flags);
494 set_bit(STRIPE_HANDLE, &sh->state);
499 static struct dma_async_tx_descriptor *
500 async_copy_data(int frombio, struct bio *bio, struct page *page,
501 sector_t sector, struct dma_async_tx_descriptor *tx)
503 struct bio_vec *bvl;
504 struct page *bio_page;
505 int i;
506 int page_offset;
507 struct async_submit_ctl submit;
508 enum async_tx_flags flags = 0;
510 if (bio->bi_sector >= sector)
511 page_offset = (signed)(bio->bi_sector - sector) * 512;
512 else
513 page_offset = (signed)(sector - bio->bi_sector) * -512;
515 if (frombio)
516 flags |= ASYNC_TX_FENCE;
517 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
519 bio_for_each_segment(bvl, bio, i) {
520 int len = bio_iovec_idx(bio, i)->bv_len;
521 int clen;
522 int b_offset = 0;
524 if (page_offset < 0) {
525 b_offset = -page_offset;
526 page_offset += b_offset;
527 len -= b_offset;
530 if (len > 0 && page_offset + len > STRIPE_SIZE)
531 clen = STRIPE_SIZE - page_offset;
532 else
533 clen = len;
535 if (clen > 0) {
536 b_offset += bio_iovec_idx(bio, i)->bv_offset;
537 bio_page = bio_iovec_idx(bio, i)->bv_page;
538 if (frombio)
539 tx = async_memcpy(page, bio_page, page_offset,
540 b_offset, clen, &submit);
541 else
542 tx = async_memcpy(bio_page, page, b_offset,
543 page_offset, clen, &submit);
545 /* chain the operations */
546 submit.depend_tx = tx;
548 if (clen < len) /* hit end of page */
549 break;
550 page_offset += len;
553 return tx;
556 static void ops_complete_biofill(void *stripe_head_ref)
558 struct stripe_head *sh = stripe_head_ref;
559 struct bio *return_bi = NULL;
560 raid5_conf_t *conf = sh->raid_conf;
561 int i;
563 pr_debug("%s: stripe %llu\n", __func__,
564 (unsigned long long)sh->sector);
566 /* clear completed biofills */
567 spin_lock_irq(&conf->device_lock);
568 for (i = sh->disks; i--; ) {
569 struct r5dev *dev = &sh->dev[i];
571 /* acknowledge completion of a biofill operation */
572 /* and check if we need to reply to a read request,
573 * new R5_Wantfill requests are held off until
574 * !STRIPE_BIOFILL_RUN
576 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
577 struct bio *rbi, *rbi2;
579 BUG_ON(!dev->read);
580 rbi = dev->read;
581 dev->read = NULL;
582 while (rbi && rbi->bi_sector <
583 dev->sector + STRIPE_SECTORS) {
584 rbi2 = r5_next_bio(rbi, dev->sector);
585 if (!raid5_dec_bi_phys_segments(rbi)) {
586 rbi->bi_next = return_bi;
587 return_bi = rbi;
589 rbi = rbi2;
593 spin_unlock_irq(&conf->device_lock);
594 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
596 return_io(return_bi);
598 set_bit(STRIPE_HANDLE, &sh->state);
599 release_stripe(sh);
602 static void ops_run_biofill(struct stripe_head *sh)
604 struct dma_async_tx_descriptor *tx = NULL;
605 raid5_conf_t *conf = sh->raid_conf;
606 struct async_submit_ctl submit;
607 int i;
609 pr_debug("%s: stripe %llu\n", __func__,
610 (unsigned long long)sh->sector);
612 for (i = sh->disks; i--; ) {
613 struct r5dev *dev = &sh->dev[i];
614 if (test_bit(R5_Wantfill, &dev->flags)) {
615 struct bio *rbi;
616 spin_lock_irq(&conf->device_lock);
617 dev->read = rbi = dev->toread;
618 dev->toread = NULL;
619 spin_unlock_irq(&conf->device_lock);
620 while (rbi && rbi->bi_sector <
621 dev->sector + STRIPE_SECTORS) {
622 tx = async_copy_data(0, rbi, dev->page,
623 dev->sector, tx);
624 rbi = r5_next_bio(rbi, dev->sector);
629 atomic_inc(&sh->count);
630 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
631 async_trigger_callback(&submit);
634 static void mark_target_uptodate(struct stripe_head *sh, int target)
636 struct r5dev *tgt;
638 if (target < 0)
639 return;
641 tgt = &sh->dev[target];
642 set_bit(R5_UPTODATE, &tgt->flags);
643 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
644 clear_bit(R5_Wantcompute, &tgt->flags);
647 static void ops_complete_compute(void *stripe_head_ref)
649 struct stripe_head *sh = stripe_head_ref;
651 pr_debug("%s: stripe %llu\n", __func__,
652 (unsigned long long)sh->sector);
654 /* mark the computed target(s) as uptodate */
655 mark_target_uptodate(sh, sh->ops.target);
656 mark_target_uptodate(sh, sh->ops.target2);
658 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
659 if (sh->check_state == check_state_compute_run)
660 sh->check_state = check_state_compute_result;
661 set_bit(STRIPE_HANDLE, &sh->state);
662 release_stripe(sh);
665 /* return a pointer to the address conversion region of the scribble buffer */
666 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
667 struct raid5_percpu *percpu)
669 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
672 static struct dma_async_tx_descriptor *
673 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
675 int disks = sh->disks;
676 struct page **xor_srcs = percpu->scribble;
677 int target = sh->ops.target;
678 struct r5dev *tgt = &sh->dev[target];
679 struct page *xor_dest = tgt->page;
680 int count = 0;
681 struct dma_async_tx_descriptor *tx;
682 struct async_submit_ctl submit;
683 int i;
685 pr_debug("%s: stripe %llu block: %d\n",
686 __func__, (unsigned long long)sh->sector, target);
687 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
689 for (i = disks; i--; )
690 if (i != target)
691 xor_srcs[count++] = sh->dev[i].page;
693 atomic_inc(&sh->count);
695 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
696 ops_complete_compute, sh, to_addr_conv(sh, percpu));
697 if (unlikely(count == 1))
698 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
699 else
700 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
702 return tx;
705 /* set_syndrome_sources - populate source buffers for gen_syndrome
706 * @srcs - (struct page *) array of size sh->disks
707 * @sh - stripe_head to parse
709 * Populates srcs in proper layout order for the stripe and returns the
710 * 'count' of sources to be used in a call to async_gen_syndrome. The P
711 * destination buffer is recorded in srcs[count] and the Q destination
712 * is recorded in srcs[count+1]].
714 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
716 int disks = sh->disks;
717 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
718 int d0_idx = raid6_d0(sh);
719 int count;
720 int i;
722 for (i = 0; i < disks; i++)
723 srcs[i] = NULL;
725 count = 0;
726 i = d0_idx;
727 do {
728 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
730 srcs[slot] = sh->dev[i].page;
731 i = raid6_next_disk(i, disks);
732 } while (i != d0_idx);
734 return syndrome_disks;
737 static struct dma_async_tx_descriptor *
738 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
740 int disks = sh->disks;
741 struct page **blocks = percpu->scribble;
742 int target;
743 int qd_idx = sh->qd_idx;
744 struct dma_async_tx_descriptor *tx;
745 struct async_submit_ctl submit;
746 struct r5dev *tgt;
747 struct page *dest;
748 int i;
749 int count;
751 if (sh->ops.target < 0)
752 target = sh->ops.target2;
753 else if (sh->ops.target2 < 0)
754 target = sh->ops.target;
755 else
756 /* we should only have one valid target */
757 BUG();
758 BUG_ON(target < 0);
759 pr_debug("%s: stripe %llu block: %d\n",
760 __func__, (unsigned long long)sh->sector, target);
762 tgt = &sh->dev[target];
763 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
764 dest = tgt->page;
766 atomic_inc(&sh->count);
768 if (target == qd_idx) {
769 count = set_syndrome_sources(blocks, sh);
770 blocks[count] = NULL; /* regenerating p is not necessary */
771 BUG_ON(blocks[count+1] != dest); /* q should already be set */
772 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
773 ops_complete_compute, sh,
774 to_addr_conv(sh, percpu));
775 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
776 } else {
777 /* Compute any data- or p-drive using XOR */
778 count = 0;
779 for (i = disks; i-- ; ) {
780 if (i == target || i == qd_idx)
781 continue;
782 blocks[count++] = sh->dev[i].page;
785 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
786 NULL, ops_complete_compute, sh,
787 to_addr_conv(sh, percpu));
788 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
791 return tx;
794 static struct dma_async_tx_descriptor *
795 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
797 int i, count, disks = sh->disks;
798 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
799 int d0_idx = raid6_d0(sh);
800 int faila = -1, failb = -1;
801 int target = sh->ops.target;
802 int target2 = sh->ops.target2;
803 struct r5dev *tgt = &sh->dev[target];
804 struct r5dev *tgt2 = &sh->dev[target2];
805 struct dma_async_tx_descriptor *tx;
806 struct page **blocks = percpu->scribble;
807 struct async_submit_ctl submit;
809 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
810 __func__, (unsigned long long)sh->sector, target, target2);
811 BUG_ON(target < 0 || target2 < 0);
812 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
813 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
815 /* we need to open-code set_syndrome_sources to handle the
816 * slot number conversion for 'faila' and 'failb'
818 for (i = 0; i < disks ; i++)
819 blocks[i] = NULL;
820 count = 0;
821 i = d0_idx;
822 do {
823 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
825 blocks[slot] = sh->dev[i].page;
827 if (i == target)
828 faila = slot;
829 if (i == target2)
830 failb = slot;
831 i = raid6_next_disk(i, disks);
832 } while (i != d0_idx);
834 BUG_ON(faila == failb);
835 if (failb < faila)
836 swap(faila, failb);
837 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
838 __func__, (unsigned long long)sh->sector, faila, failb);
840 atomic_inc(&sh->count);
842 if (failb == syndrome_disks+1) {
843 /* Q disk is one of the missing disks */
844 if (faila == syndrome_disks) {
845 /* Missing P+Q, just recompute */
846 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
847 ops_complete_compute, sh,
848 to_addr_conv(sh, percpu));
849 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
850 STRIPE_SIZE, &submit);
851 } else {
852 struct page *dest;
853 int data_target;
854 int qd_idx = sh->qd_idx;
856 /* Missing D+Q: recompute D from P, then recompute Q */
857 if (target == qd_idx)
858 data_target = target2;
859 else
860 data_target = target;
862 count = 0;
863 for (i = disks; i-- ; ) {
864 if (i == data_target || i == qd_idx)
865 continue;
866 blocks[count++] = sh->dev[i].page;
868 dest = sh->dev[data_target].page;
869 init_async_submit(&submit,
870 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
871 NULL, NULL, NULL,
872 to_addr_conv(sh, percpu));
873 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
874 &submit);
876 count = set_syndrome_sources(blocks, sh);
877 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
878 ops_complete_compute, sh,
879 to_addr_conv(sh, percpu));
880 return async_gen_syndrome(blocks, 0, count+2,
881 STRIPE_SIZE, &submit);
883 } else {
884 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
885 ops_complete_compute, sh,
886 to_addr_conv(sh, percpu));
887 if (failb == syndrome_disks) {
888 /* We're missing D+P. */
889 return async_raid6_datap_recov(syndrome_disks+2,
890 STRIPE_SIZE, faila,
891 blocks, &submit);
892 } else {
893 /* We're missing D+D. */
894 return async_raid6_2data_recov(syndrome_disks+2,
895 STRIPE_SIZE, faila, failb,
896 blocks, &submit);
902 static void ops_complete_prexor(void *stripe_head_ref)
904 struct stripe_head *sh = stripe_head_ref;
906 pr_debug("%s: stripe %llu\n", __func__,
907 (unsigned long long)sh->sector);
910 static struct dma_async_tx_descriptor *
911 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
912 struct dma_async_tx_descriptor *tx)
914 int disks = sh->disks;
915 struct page **xor_srcs = percpu->scribble;
916 int count = 0, pd_idx = sh->pd_idx, i;
917 struct async_submit_ctl submit;
919 /* existing parity data subtracted */
920 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
922 pr_debug("%s: stripe %llu\n", __func__,
923 (unsigned long long)sh->sector);
925 for (i = disks; i--; ) {
926 struct r5dev *dev = &sh->dev[i];
927 /* Only process blocks that are known to be uptodate */
928 if (test_bit(R5_Wantdrain, &dev->flags))
929 xor_srcs[count++] = dev->page;
932 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
933 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
934 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
936 return tx;
939 static struct dma_async_tx_descriptor *
940 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
942 int disks = sh->disks;
943 int i;
945 pr_debug("%s: stripe %llu\n", __func__,
946 (unsigned long long)sh->sector);
948 for (i = disks; i--; ) {
949 struct r5dev *dev = &sh->dev[i];
950 struct bio *chosen;
952 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
953 struct bio *wbi;
955 spin_lock(&sh->lock);
956 chosen = dev->towrite;
957 dev->towrite = NULL;
958 BUG_ON(dev->written);
959 wbi = dev->written = chosen;
960 spin_unlock(&sh->lock);
962 while (wbi && wbi->bi_sector <
963 dev->sector + STRIPE_SECTORS) {
964 tx = async_copy_data(1, wbi, dev->page,
965 dev->sector, tx);
966 wbi = r5_next_bio(wbi, dev->sector);
971 return tx;
974 static void ops_complete_reconstruct(void *stripe_head_ref)
976 struct stripe_head *sh = stripe_head_ref;
977 int disks = sh->disks;
978 int pd_idx = sh->pd_idx;
979 int qd_idx = sh->qd_idx;
980 int i;
982 pr_debug("%s: stripe %llu\n", __func__,
983 (unsigned long long)sh->sector);
985 for (i = disks; i--; ) {
986 struct r5dev *dev = &sh->dev[i];
988 if (dev->written || i == pd_idx || i == qd_idx)
989 set_bit(R5_UPTODATE, &dev->flags);
992 if (sh->reconstruct_state == reconstruct_state_drain_run)
993 sh->reconstruct_state = reconstruct_state_drain_result;
994 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
995 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
996 else {
997 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
998 sh->reconstruct_state = reconstruct_state_result;
1001 set_bit(STRIPE_HANDLE, &sh->state);
1002 release_stripe(sh);
1005 static void
1006 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1007 struct dma_async_tx_descriptor *tx)
1009 int disks = sh->disks;
1010 struct page **xor_srcs = percpu->scribble;
1011 struct async_submit_ctl submit;
1012 int count = 0, pd_idx = sh->pd_idx, i;
1013 struct page *xor_dest;
1014 int prexor = 0;
1015 unsigned long flags;
1017 pr_debug("%s: stripe %llu\n", __func__,
1018 (unsigned long long)sh->sector);
1020 /* check if prexor is active which means only process blocks
1021 * that are part of a read-modify-write (written)
1023 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1024 prexor = 1;
1025 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1026 for (i = disks; i--; ) {
1027 struct r5dev *dev = &sh->dev[i];
1028 if (dev->written)
1029 xor_srcs[count++] = dev->page;
1031 } else {
1032 xor_dest = sh->dev[pd_idx].page;
1033 for (i = disks; i--; ) {
1034 struct r5dev *dev = &sh->dev[i];
1035 if (i != pd_idx)
1036 xor_srcs[count++] = dev->page;
1040 /* 1/ if we prexor'd then the dest is reused as a source
1041 * 2/ if we did not prexor then we are redoing the parity
1042 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1043 * for the synchronous xor case
1045 flags = ASYNC_TX_ACK |
1046 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1048 atomic_inc(&sh->count);
1050 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1051 to_addr_conv(sh, percpu));
1052 if (unlikely(count == 1))
1053 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1054 else
1055 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1058 static void
1059 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1060 struct dma_async_tx_descriptor *tx)
1062 struct async_submit_ctl submit;
1063 struct page **blocks = percpu->scribble;
1064 int count;
1066 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1068 count = set_syndrome_sources(blocks, sh);
1070 atomic_inc(&sh->count);
1072 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1073 sh, to_addr_conv(sh, percpu));
1074 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1077 static void ops_complete_check(void *stripe_head_ref)
1079 struct stripe_head *sh = stripe_head_ref;
1081 pr_debug("%s: stripe %llu\n", __func__,
1082 (unsigned long long)sh->sector);
1084 sh->check_state = check_state_check_result;
1085 set_bit(STRIPE_HANDLE, &sh->state);
1086 release_stripe(sh);
1089 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1091 int disks = sh->disks;
1092 int pd_idx = sh->pd_idx;
1093 int qd_idx = sh->qd_idx;
1094 struct page *xor_dest;
1095 struct page **xor_srcs = percpu->scribble;
1096 struct dma_async_tx_descriptor *tx;
1097 struct async_submit_ctl submit;
1098 int count;
1099 int i;
1101 pr_debug("%s: stripe %llu\n", __func__,
1102 (unsigned long long)sh->sector);
1104 count = 0;
1105 xor_dest = sh->dev[pd_idx].page;
1106 xor_srcs[count++] = xor_dest;
1107 for (i = disks; i--; ) {
1108 if (i == pd_idx || i == qd_idx)
1109 continue;
1110 xor_srcs[count++] = sh->dev[i].page;
1113 init_async_submit(&submit, 0, NULL, NULL, NULL,
1114 to_addr_conv(sh, percpu));
1115 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1116 &sh->ops.zero_sum_result, &submit);
1118 atomic_inc(&sh->count);
1119 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1120 tx = async_trigger_callback(&submit);
1123 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1125 struct page **srcs = percpu->scribble;
1126 struct async_submit_ctl submit;
1127 int count;
1129 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1130 (unsigned long long)sh->sector, checkp);
1132 count = set_syndrome_sources(srcs, sh);
1133 if (!checkp)
1134 srcs[count] = NULL;
1136 atomic_inc(&sh->count);
1137 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1138 sh, to_addr_conv(sh, percpu));
1139 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1140 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1143 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1145 int overlap_clear = 0, i, disks = sh->disks;
1146 struct dma_async_tx_descriptor *tx = NULL;
1147 raid5_conf_t *conf = sh->raid_conf;
1148 int level = conf->level;
1149 struct raid5_percpu *percpu;
1150 unsigned long cpu;
1152 cpu = get_cpu();
1153 percpu = per_cpu_ptr(conf->percpu, cpu);
1154 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1155 ops_run_biofill(sh);
1156 overlap_clear++;
1159 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1160 if (level < 6)
1161 tx = ops_run_compute5(sh, percpu);
1162 else {
1163 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1164 tx = ops_run_compute6_1(sh, percpu);
1165 else
1166 tx = ops_run_compute6_2(sh, percpu);
1168 /* terminate the chain if reconstruct is not set to be run */
1169 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1170 async_tx_ack(tx);
1173 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1174 tx = ops_run_prexor(sh, percpu, tx);
1176 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1177 tx = ops_run_biodrain(sh, tx);
1178 overlap_clear++;
1181 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1182 if (level < 6)
1183 ops_run_reconstruct5(sh, percpu, tx);
1184 else
1185 ops_run_reconstruct6(sh, percpu, tx);
1188 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1189 if (sh->check_state == check_state_run)
1190 ops_run_check_p(sh, percpu);
1191 else if (sh->check_state == check_state_run_q)
1192 ops_run_check_pq(sh, percpu, 0);
1193 else if (sh->check_state == check_state_run_pq)
1194 ops_run_check_pq(sh, percpu, 1);
1195 else
1196 BUG();
1199 if (overlap_clear)
1200 for (i = disks; i--; ) {
1201 struct r5dev *dev = &sh->dev[i];
1202 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1203 wake_up(&sh->raid_conf->wait_for_overlap);
1205 put_cpu();
1208 #ifdef CONFIG_MULTICORE_RAID456
1209 static void async_run_ops(void *param, async_cookie_t cookie)
1211 struct stripe_head *sh = param;
1212 unsigned long ops_request = sh->ops.request;
1214 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1215 wake_up(&sh->ops.wait_for_ops);
1217 __raid_run_ops(sh, ops_request);
1218 release_stripe(sh);
1221 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1223 /* since handle_stripe can be called outside of raid5d context
1224 * we need to ensure sh->ops.request is de-staged before another
1225 * request arrives
1227 wait_event(sh->ops.wait_for_ops,
1228 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1229 sh->ops.request = ops_request;
1231 atomic_inc(&sh->count);
1232 async_schedule(async_run_ops, sh);
1234 #else
1235 #define raid_run_ops __raid_run_ops
1236 #endif
1238 static int grow_one_stripe(raid5_conf_t *conf)
1240 struct stripe_head *sh;
1241 int disks = max(conf->raid_disks, conf->previous_raid_disks);
1242 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1243 if (!sh)
1244 return 0;
1245 memset(sh, 0, sizeof(*sh) + (disks-1)*sizeof(struct r5dev));
1246 sh->raid_conf = conf;
1247 spin_lock_init(&sh->lock);
1248 #ifdef CONFIG_MULTICORE_RAID456
1249 init_waitqueue_head(&sh->ops.wait_for_ops);
1250 #endif
1252 if (grow_buffers(sh, disks)) {
1253 shrink_buffers(sh, disks);
1254 kmem_cache_free(conf->slab_cache, sh);
1255 return 0;
1257 /* we just created an active stripe so... */
1258 atomic_set(&sh->count, 1);
1259 atomic_inc(&conf->active_stripes);
1260 INIT_LIST_HEAD(&sh->lru);
1261 release_stripe(sh);
1262 return 1;
1265 static int grow_stripes(raid5_conf_t *conf, int num)
1267 struct kmem_cache *sc;
1268 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1270 sprintf(conf->cache_name[0],
1271 "raid%d-%s", conf->level, mdname(conf->mddev));
1272 sprintf(conf->cache_name[1],
1273 "raid%d-%s-alt", conf->level, mdname(conf->mddev));
1274 conf->active_name = 0;
1275 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1276 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1277 0, 0, NULL);
1278 if (!sc)
1279 return 1;
1280 conf->slab_cache = sc;
1281 conf->pool_size = devs;
1282 while (num--)
1283 if (!grow_one_stripe(conf))
1284 return 1;
1285 return 0;
1289 * scribble_len - return the required size of the scribble region
1290 * @num - total number of disks in the array
1292 * The size must be enough to contain:
1293 * 1/ a struct page pointer for each device in the array +2
1294 * 2/ room to convert each entry in (1) to its corresponding dma
1295 * (dma_map_page()) or page (page_address()) address.
1297 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1298 * calculate over all devices (not just the data blocks), using zeros in place
1299 * of the P and Q blocks.
1301 static size_t scribble_len(int num)
1303 size_t len;
1305 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1307 return len;
1310 static int resize_stripes(raid5_conf_t *conf, int newsize)
1312 /* Make all the stripes able to hold 'newsize' devices.
1313 * New slots in each stripe get 'page' set to a new page.
1315 * This happens in stages:
1316 * 1/ create a new kmem_cache and allocate the required number of
1317 * stripe_heads.
1318 * 2/ gather all the old stripe_heads and tranfer the pages across
1319 * to the new stripe_heads. This will have the side effect of
1320 * freezing the array as once all stripe_heads have been collected,
1321 * no IO will be possible. Old stripe heads are freed once their
1322 * pages have been transferred over, and the old kmem_cache is
1323 * freed when all stripes are done.
1324 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1325 * we simple return a failre status - no need to clean anything up.
1326 * 4/ allocate new pages for the new slots in the new stripe_heads.
1327 * If this fails, we don't bother trying the shrink the
1328 * stripe_heads down again, we just leave them as they are.
1329 * As each stripe_head is processed the new one is released into
1330 * active service.
1332 * Once step2 is started, we cannot afford to wait for a write,
1333 * so we use GFP_NOIO allocations.
1335 struct stripe_head *osh, *nsh;
1336 LIST_HEAD(newstripes);
1337 struct disk_info *ndisks;
1338 unsigned long cpu;
1339 int err;
1340 struct kmem_cache *sc;
1341 int i;
1343 if (newsize <= conf->pool_size)
1344 return 0; /* never bother to shrink */
1346 err = md_allow_write(conf->mddev);
1347 if (err)
1348 return err;
1350 /* Step 1 */
1351 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1352 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1353 0, 0, NULL);
1354 if (!sc)
1355 return -ENOMEM;
1357 for (i = conf->max_nr_stripes; i; i--) {
1358 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1359 if (!nsh)
1360 break;
1362 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1364 nsh->raid_conf = conf;
1365 spin_lock_init(&nsh->lock);
1366 #ifdef CONFIG_MULTICORE_RAID456
1367 init_waitqueue_head(&nsh->ops.wait_for_ops);
1368 #endif
1370 list_add(&nsh->lru, &newstripes);
1372 if (i) {
1373 /* didn't get enough, give up */
1374 while (!list_empty(&newstripes)) {
1375 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1376 list_del(&nsh->lru);
1377 kmem_cache_free(sc, nsh);
1379 kmem_cache_destroy(sc);
1380 return -ENOMEM;
1382 /* Step 2 - Must use GFP_NOIO now.
1383 * OK, we have enough stripes, start collecting inactive
1384 * stripes and copying them over
1386 list_for_each_entry(nsh, &newstripes, lru) {
1387 spin_lock_irq(&conf->device_lock);
1388 wait_event_lock_irq(conf->wait_for_stripe,
1389 !list_empty(&conf->inactive_list),
1390 conf->device_lock,
1391 unplug_slaves(conf->mddev)
1393 osh = get_free_stripe(conf);
1394 spin_unlock_irq(&conf->device_lock);
1395 atomic_set(&nsh->count, 1);
1396 for(i=0; i<conf->pool_size; i++)
1397 nsh->dev[i].page = osh->dev[i].page;
1398 for( ; i<newsize; i++)
1399 nsh->dev[i].page = NULL;
1400 kmem_cache_free(conf->slab_cache, osh);
1402 kmem_cache_destroy(conf->slab_cache);
1404 /* Step 3.
1405 * At this point, we are holding all the stripes so the array
1406 * is completely stalled, so now is a good time to resize
1407 * conf->disks and the scribble region
1409 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1410 if (ndisks) {
1411 for (i=0; i<conf->raid_disks; i++)
1412 ndisks[i] = conf->disks[i];
1413 kfree(conf->disks);
1414 conf->disks = ndisks;
1415 } else
1416 err = -ENOMEM;
1418 get_online_cpus();
1419 conf->scribble_len = scribble_len(newsize);
1420 for_each_present_cpu(cpu) {
1421 struct raid5_percpu *percpu;
1422 void *scribble;
1424 percpu = per_cpu_ptr(conf->percpu, cpu);
1425 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1427 if (scribble) {
1428 kfree(percpu->scribble);
1429 percpu->scribble = scribble;
1430 } else {
1431 err = -ENOMEM;
1432 break;
1435 put_online_cpus();
1437 /* Step 4, return new stripes to service */
1438 while(!list_empty(&newstripes)) {
1439 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1440 list_del_init(&nsh->lru);
1442 for (i=conf->raid_disks; i < newsize; i++)
1443 if (nsh->dev[i].page == NULL) {
1444 struct page *p = alloc_page(GFP_NOIO);
1445 nsh->dev[i].page = p;
1446 if (!p)
1447 err = -ENOMEM;
1449 release_stripe(nsh);
1451 /* critical section pass, GFP_NOIO no longer needed */
1453 conf->slab_cache = sc;
1454 conf->active_name = 1-conf->active_name;
1455 conf->pool_size = newsize;
1456 return err;
1459 static int drop_one_stripe(raid5_conf_t *conf)
1461 struct stripe_head *sh;
1463 spin_lock_irq(&conf->device_lock);
1464 sh = get_free_stripe(conf);
1465 spin_unlock_irq(&conf->device_lock);
1466 if (!sh)
1467 return 0;
1468 BUG_ON(atomic_read(&sh->count));
1469 shrink_buffers(sh, conf->pool_size);
1470 kmem_cache_free(conf->slab_cache, sh);
1471 atomic_dec(&conf->active_stripes);
1472 return 1;
1475 static void shrink_stripes(raid5_conf_t *conf)
1477 while (drop_one_stripe(conf))
1480 if (conf->slab_cache)
1481 kmem_cache_destroy(conf->slab_cache);
1482 conf->slab_cache = NULL;
1485 static void raid5_end_read_request(struct bio * bi, int error)
1487 struct stripe_head *sh = bi->bi_private;
1488 raid5_conf_t *conf = sh->raid_conf;
1489 int disks = sh->disks, i;
1490 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1491 char b[BDEVNAME_SIZE];
1492 mdk_rdev_t *rdev;
1495 for (i=0 ; i<disks; i++)
1496 if (bi == &sh->dev[i].req)
1497 break;
1499 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1500 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1501 uptodate);
1502 if (i == disks) {
1503 BUG();
1504 return;
1507 if (uptodate) {
1508 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1509 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1510 rdev = conf->disks[i].rdev;
1511 printk_rl(KERN_INFO "raid5:%s: read error corrected"
1512 " (%lu sectors at %llu on %s)\n",
1513 mdname(conf->mddev), STRIPE_SECTORS,
1514 (unsigned long long)(sh->sector
1515 + rdev->data_offset),
1516 bdevname(rdev->bdev, b));
1517 clear_bit(R5_ReadError, &sh->dev[i].flags);
1518 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1520 if (atomic_read(&conf->disks[i].rdev->read_errors))
1521 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1522 } else {
1523 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1524 int retry = 0;
1525 rdev = conf->disks[i].rdev;
1527 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1528 atomic_inc(&rdev->read_errors);
1529 if (conf->mddev->degraded >= conf->max_degraded)
1530 printk_rl(KERN_WARNING
1531 "raid5:%s: read error not correctable "
1532 "(sector %llu on %s).\n",
1533 mdname(conf->mddev),
1534 (unsigned long long)(sh->sector
1535 + rdev->data_offset),
1536 bdn);
1537 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1538 /* Oh, no!!! */
1539 printk_rl(KERN_WARNING
1540 "raid5:%s: read error NOT corrected!! "
1541 "(sector %llu on %s).\n",
1542 mdname(conf->mddev),
1543 (unsigned long long)(sh->sector
1544 + rdev->data_offset),
1545 bdn);
1546 else if (atomic_read(&rdev->read_errors)
1547 > conf->max_nr_stripes)
1548 printk(KERN_WARNING
1549 "raid5:%s: Too many read errors, failing device %s.\n",
1550 mdname(conf->mddev), bdn);
1551 else
1552 retry = 1;
1553 if (retry)
1554 set_bit(R5_ReadError, &sh->dev[i].flags);
1555 else {
1556 clear_bit(R5_ReadError, &sh->dev[i].flags);
1557 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1558 md_error(conf->mddev, rdev);
1561 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1562 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1563 set_bit(STRIPE_HANDLE, &sh->state);
1564 release_stripe(sh);
1567 static void raid5_end_write_request(struct bio *bi, int error)
1569 struct stripe_head *sh = bi->bi_private;
1570 raid5_conf_t *conf = sh->raid_conf;
1571 int disks = sh->disks, i;
1572 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1578 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
1583 return;
1586 if (!uptodate)
1587 md_error(conf->mddev, conf->disks[i].rdev);
1589 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1591 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1592 set_bit(STRIPE_HANDLE, &sh->state);
1593 release_stripe(sh);
1597 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1599 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1601 struct r5dev *dev = &sh->dev[i];
1603 bio_init(&dev->req);
1604 dev->req.bi_io_vec = &dev->vec;
1605 dev->req.bi_vcnt++;
1606 dev->req.bi_max_vecs++;
1607 dev->vec.bv_page = dev->page;
1608 dev->vec.bv_len = STRIPE_SIZE;
1609 dev->vec.bv_offset = 0;
1611 dev->req.bi_sector = sh->sector;
1612 dev->req.bi_private = sh;
1614 dev->flags = 0;
1615 dev->sector = compute_blocknr(sh, i, previous);
1618 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1620 char b[BDEVNAME_SIZE];
1621 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
1622 pr_debug("raid5: error called\n");
1624 if (!test_bit(Faulty, &rdev->flags)) {
1625 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1626 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1627 unsigned long flags;
1628 spin_lock_irqsave(&conf->device_lock, flags);
1629 mddev->degraded++;
1630 spin_unlock_irqrestore(&conf->device_lock, flags);
1632 * if recovery was running, make sure it aborts.
1634 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1636 set_bit(Faulty, &rdev->flags);
1637 printk(KERN_ALERT
1638 "raid5: Disk failure on %s, disabling device.\n"
1639 "raid5: Operation continuing on %d devices.\n",
1640 bdevname(rdev->bdev,b), conf->raid_disks - mddev->degraded);
1645 * Input: a 'big' sector number,
1646 * Output: index of the data and parity disk, and the sector # in them.
1648 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1649 int previous, int *dd_idx,
1650 struct stripe_head *sh)
1652 sector_t stripe, stripe2;
1653 sector_t chunk_number;
1654 unsigned int chunk_offset;
1655 int pd_idx, qd_idx;
1656 int ddf_layout = 0;
1657 sector_t new_sector;
1658 int algorithm = previous ? conf->prev_algo
1659 : conf->algorithm;
1660 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1661 : conf->chunk_sectors;
1662 int raid_disks = previous ? conf->previous_raid_disks
1663 : conf->raid_disks;
1664 int data_disks = raid_disks - conf->max_degraded;
1666 /* First compute the information on this sector */
1669 * Compute the chunk number and the sector offset inside the chunk
1671 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1672 chunk_number = r_sector;
1675 * Compute the stripe number
1677 stripe = chunk_number;
1678 *dd_idx = sector_div(stripe, data_disks);
1679 stripe2 = stripe;
1681 * Select the parity disk based on the user selected algorithm.
1683 pd_idx = qd_idx = ~0;
1684 switch(conf->level) {
1685 case 4:
1686 pd_idx = data_disks;
1687 break;
1688 case 5:
1689 switch (algorithm) {
1690 case ALGORITHM_LEFT_ASYMMETRIC:
1691 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1692 if (*dd_idx >= pd_idx)
1693 (*dd_idx)++;
1694 break;
1695 case ALGORITHM_RIGHT_ASYMMETRIC:
1696 pd_idx = sector_div(stripe2, raid_disks);
1697 if (*dd_idx >= pd_idx)
1698 (*dd_idx)++;
1699 break;
1700 case ALGORITHM_LEFT_SYMMETRIC:
1701 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1702 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1703 break;
1704 case ALGORITHM_RIGHT_SYMMETRIC:
1705 pd_idx = sector_div(stripe2, raid_disks);
1706 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1707 break;
1708 case ALGORITHM_PARITY_0:
1709 pd_idx = 0;
1710 (*dd_idx)++;
1711 break;
1712 case ALGORITHM_PARITY_N:
1713 pd_idx = data_disks;
1714 break;
1715 default:
1716 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1717 algorithm);
1718 BUG();
1720 break;
1721 case 6:
1723 switch (algorithm) {
1724 case ALGORITHM_LEFT_ASYMMETRIC:
1725 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1726 qd_idx = pd_idx + 1;
1727 if (pd_idx == raid_disks-1) {
1728 (*dd_idx)++; /* Q D D D P */
1729 qd_idx = 0;
1730 } else if (*dd_idx >= pd_idx)
1731 (*dd_idx) += 2; /* D D P Q D */
1732 break;
1733 case ALGORITHM_RIGHT_ASYMMETRIC:
1734 pd_idx = sector_div(stripe2, raid_disks);
1735 qd_idx = pd_idx + 1;
1736 if (pd_idx == raid_disks-1) {
1737 (*dd_idx)++; /* Q D D D P */
1738 qd_idx = 0;
1739 } else if (*dd_idx >= pd_idx)
1740 (*dd_idx) += 2; /* D D P Q D */
1741 break;
1742 case ALGORITHM_LEFT_SYMMETRIC:
1743 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1744 qd_idx = (pd_idx + 1) % raid_disks;
1745 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1746 break;
1747 case ALGORITHM_RIGHT_SYMMETRIC:
1748 pd_idx = sector_div(stripe2, raid_disks);
1749 qd_idx = (pd_idx + 1) % raid_disks;
1750 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1751 break;
1753 case ALGORITHM_PARITY_0:
1754 pd_idx = 0;
1755 qd_idx = 1;
1756 (*dd_idx) += 2;
1757 break;
1758 case ALGORITHM_PARITY_N:
1759 pd_idx = data_disks;
1760 qd_idx = data_disks + 1;
1761 break;
1763 case ALGORITHM_ROTATING_ZERO_RESTART:
1764 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1765 * of blocks for computing Q is different.
1767 pd_idx = sector_div(stripe2, raid_disks);
1768 qd_idx = pd_idx + 1;
1769 if (pd_idx == raid_disks-1) {
1770 (*dd_idx)++; /* Q D D D P */
1771 qd_idx = 0;
1772 } else if (*dd_idx >= pd_idx)
1773 (*dd_idx) += 2; /* D D P Q D */
1774 ddf_layout = 1;
1775 break;
1777 case ALGORITHM_ROTATING_N_RESTART:
1778 /* Same a left_asymmetric, by first stripe is
1779 * D D D P Q rather than
1780 * Q D D D P
1782 stripe2 += 1;
1783 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1784 qd_idx = pd_idx + 1;
1785 if (pd_idx == raid_disks-1) {
1786 (*dd_idx)++; /* Q D D D P */
1787 qd_idx = 0;
1788 } else if (*dd_idx >= pd_idx)
1789 (*dd_idx) += 2; /* D D P Q D */
1790 ddf_layout = 1;
1791 break;
1793 case ALGORITHM_ROTATING_N_CONTINUE:
1794 /* Same as left_symmetric but Q is before P */
1795 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1796 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1797 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1798 ddf_layout = 1;
1799 break;
1801 case ALGORITHM_LEFT_ASYMMETRIC_6:
1802 /* RAID5 left_asymmetric, with Q on last device */
1803 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1804 if (*dd_idx >= pd_idx)
1805 (*dd_idx)++;
1806 qd_idx = raid_disks - 1;
1807 break;
1809 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1810 pd_idx = sector_div(stripe2, raid_disks-1);
1811 if (*dd_idx >= pd_idx)
1812 (*dd_idx)++;
1813 qd_idx = raid_disks - 1;
1814 break;
1816 case ALGORITHM_LEFT_SYMMETRIC_6:
1817 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1818 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1819 qd_idx = raid_disks - 1;
1820 break;
1822 case ALGORITHM_RIGHT_SYMMETRIC_6:
1823 pd_idx = sector_div(stripe2, raid_disks-1);
1824 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1825 qd_idx = raid_disks - 1;
1826 break;
1828 case ALGORITHM_PARITY_0_6:
1829 pd_idx = 0;
1830 (*dd_idx)++;
1831 qd_idx = raid_disks - 1;
1832 break;
1835 default:
1836 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1837 algorithm);
1838 BUG();
1840 break;
1843 if (sh) {
1844 sh->pd_idx = pd_idx;
1845 sh->qd_idx = qd_idx;
1846 sh->ddf_layout = ddf_layout;
1849 * Finally, compute the new sector number
1851 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1852 return new_sector;
1856 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1858 raid5_conf_t *conf = sh->raid_conf;
1859 int raid_disks = sh->disks;
1860 int data_disks = raid_disks - conf->max_degraded;
1861 sector_t new_sector = sh->sector, check;
1862 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1863 : conf->chunk_sectors;
1864 int algorithm = previous ? conf->prev_algo
1865 : conf->algorithm;
1866 sector_t stripe;
1867 int chunk_offset;
1868 sector_t chunk_number;
1869 int dummy1, dd_idx = i;
1870 sector_t r_sector;
1871 struct stripe_head sh2;
1874 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1875 stripe = new_sector;
1877 if (i == sh->pd_idx)
1878 return 0;
1879 switch(conf->level) {
1880 case 4: break;
1881 case 5:
1882 switch (algorithm) {
1883 case ALGORITHM_LEFT_ASYMMETRIC:
1884 case ALGORITHM_RIGHT_ASYMMETRIC:
1885 if (i > sh->pd_idx)
1886 i--;
1887 break;
1888 case ALGORITHM_LEFT_SYMMETRIC:
1889 case ALGORITHM_RIGHT_SYMMETRIC:
1890 if (i < sh->pd_idx)
1891 i += raid_disks;
1892 i -= (sh->pd_idx + 1);
1893 break;
1894 case ALGORITHM_PARITY_0:
1895 i -= 1;
1896 break;
1897 case ALGORITHM_PARITY_N:
1898 break;
1899 default:
1900 printk(KERN_ERR "raid5: unsupported algorithm %d\n",
1901 algorithm);
1902 BUG();
1904 break;
1905 case 6:
1906 if (i == sh->qd_idx)
1907 return 0; /* It is the Q disk */
1908 switch (algorithm) {
1909 case ALGORITHM_LEFT_ASYMMETRIC:
1910 case ALGORITHM_RIGHT_ASYMMETRIC:
1911 case ALGORITHM_ROTATING_ZERO_RESTART:
1912 case ALGORITHM_ROTATING_N_RESTART:
1913 if (sh->pd_idx == raid_disks-1)
1914 i--; /* Q D D D P */
1915 else if (i > sh->pd_idx)
1916 i -= 2; /* D D P Q D */
1917 break;
1918 case ALGORITHM_LEFT_SYMMETRIC:
1919 case ALGORITHM_RIGHT_SYMMETRIC:
1920 if (sh->pd_idx == raid_disks-1)
1921 i--; /* Q D D D P */
1922 else {
1923 /* D D P Q D */
1924 if (i < sh->pd_idx)
1925 i += raid_disks;
1926 i -= (sh->pd_idx + 2);
1928 break;
1929 case ALGORITHM_PARITY_0:
1930 i -= 2;
1931 break;
1932 case ALGORITHM_PARITY_N:
1933 break;
1934 case ALGORITHM_ROTATING_N_CONTINUE:
1935 /* Like left_symmetric, but P is before Q */
1936 if (sh->pd_idx == 0)
1937 i--; /* P D D D Q */
1938 else {
1939 /* D D Q P D */
1940 if (i < sh->pd_idx)
1941 i += raid_disks;
1942 i -= (sh->pd_idx + 1);
1944 break;
1945 case ALGORITHM_LEFT_ASYMMETRIC_6:
1946 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1947 if (i > sh->pd_idx)
1948 i--;
1949 break;
1950 case ALGORITHM_LEFT_SYMMETRIC_6:
1951 case ALGORITHM_RIGHT_SYMMETRIC_6:
1952 if (i < sh->pd_idx)
1953 i += data_disks + 1;
1954 i -= (sh->pd_idx + 1);
1955 break;
1956 case ALGORITHM_PARITY_0_6:
1957 i -= 1;
1958 break;
1959 default:
1960 printk(KERN_CRIT "raid6: unsupported algorithm %d\n",
1961 algorithm);
1962 BUG();
1964 break;
1967 chunk_number = stripe * data_disks + i;
1968 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
1970 check = raid5_compute_sector(conf, r_sector,
1971 previous, &dummy1, &sh2);
1972 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
1973 || sh2.qd_idx != sh->qd_idx) {
1974 printk(KERN_ERR "compute_blocknr: map not correct\n");
1975 return 0;
1977 return r_sector;
1981 static void
1982 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
1983 int rcw, int expand)
1985 int i, pd_idx = sh->pd_idx, disks = sh->disks;
1986 raid5_conf_t *conf = sh->raid_conf;
1987 int level = conf->level;
1989 if (rcw) {
1990 /* if we are not expanding this is a proper write request, and
1991 * there will be bios with new data to be drained into the
1992 * stripe cache
1994 if (!expand) {
1995 sh->reconstruct_state = reconstruct_state_drain_run;
1996 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
1997 } else
1998 sh->reconstruct_state = reconstruct_state_run;
2000 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2002 for (i = disks; i--; ) {
2003 struct r5dev *dev = &sh->dev[i];
2005 if (dev->towrite) {
2006 set_bit(R5_LOCKED, &dev->flags);
2007 set_bit(R5_Wantdrain, &dev->flags);
2008 if (!expand)
2009 clear_bit(R5_UPTODATE, &dev->flags);
2010 s->locked++;
2013 if (s->locked + conf->max_degraded == disks)
2014 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2015 atomic_inc(&conf->pending_full_writes);
2016 } else {
2017 BUG_ON(level == 6);
2018 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2019 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2021 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2022 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2023 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2024 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2026 for (i = disks; i--; ) {
2027 struct r5dev *dev = &sh->dev[i];
2028 if (i == pd_idx)
2029 continue;
2031 if (dev->towrite &&
2032 (test_bit(R5_UPTODATE, &dev->flags) ||
2033 test_bit(R5_Wantcompute, &dev->flags))) {
2034 set_bit(R5_Wantdrain, &dev->flags);
2035 set_bit(R5_LOCKED, &dev->flags);
2036 clear_bit(R5_UPTODATE, &dev->flags);
2037 s->locked++;
2042 /* keep the parity disk(s) locked while asynchronous operations
2043 * are in flight
2045 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2046 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2047 s->locked++;
2049 if (level == 6) {
2050 int qd_idx = sh->qd_idx;
2051 struct r5dev *dev = &sh->dev[qd_idx];
2053 set_bit(R5_LOCKED, &dev->flags);
2054 clear_bit(R5_UPTODATE, &dev->flags);
2055 s->locked++;
2058 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2059 __func__, (unsigned long long)sh->sector,
2060 s->locked, s->ops_request);
2064 * Each stripe/dev can have one or more bion attached.
2065 * toread/towrite point to the first in a chain.
2066 * The bi_next chain must be in order.
2068 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2070 struct bio **bip;
2071 raid5_conf_t *conf = sh->raid_conf;
2072 int firstwrite=0;
2074 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2075 (unsigned long long)bi->bi_sector,
2076 (unsigned long long)sh->sector);
2079 spin_lock(&sh->lock);
2080 spin_lock_irq(&conf->device_lock);
2081 if (forwrite) {
2082 bip = &sh->dev[dd_idx].towrite;
2083 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2084 firstwrite = 1;
2085 } else
2086 bip = &sh->dev[dd_idx].toread;
2087 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2088 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2089 goto overlap;
2090 bip = & (*bip)->bi_next;
2092 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2093 goto overlap;
2095 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2096 if (*bip)
2097 bi->bi_next = *bip;
2098 *bip = bi;
2099 bi->bi_phys_segments++;
2100 spin_unlock_irq(&conf->device_lock);
2101 spin_unlock(&sh->lock);
2103 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2104 (unsigned long long)bi->bi_sector,
2105 (unsigned long long)sh->sector, dd_idx);
2107 if (conf->mddev->bitmap && firstwrite) {
2108 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2109 STRIPE_SECTORS, 0);
2110 sh->bm_seq = conf->seq_flush+1;
2111 set_bit(STRIPE_BIT_DELAY, &sh->state);
2114 if (forwrite) {
2115 /* check if page is covered */
2116 sector_t sector = sh->dev[dd_idx].sector;
2117 for (bi=sh->dev[dd_idx].towrite;
2118 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2119 bi && bi->bi_sector <= sector;
2120 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2121 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2122 sector = bi->bi_sector + (bi->bi_size>>9);
2124 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2125 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2127 return 1;
2129 overlap:
2130 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2131 spin_unlock_irq(&conf->device_lock);
2132 spin_unlock(&sh->lock);
2133 return 0;
2136 static void end_reshape(raid5_conf_t *conf);
2138 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2139 struct stripe_head *sh)
2141 int sectors_per_chunk =
2142 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2143 int dd_idx;
2144 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2145 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2147 raid5_compute_sector(conf,
2148 stripe * (disks - conf->max_degraded)
2149 *sectors_per_chunk + chunk_offset,
2150 previous,
2151 &dd_idx, sh);
2154 static void
2155 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2156 struct stripe_head_state *s, int disks,
2157 struct bio **return_bi)
2159 int i;
2160 for (i = disks; i--; ) {
2161 struct bio *bi;
2162 int bitmap_end = 0;
2164 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2165 mdk_rdev_t *rdev;
2166 rcu_read_lock();
2167 rdev = rcu_dereference(conf->disks[i].rdev);
2168 if (rdev && test_bit(In_sync, &rdev->flags))
2169 /* multiple read failures in one stripe */
2170 md_error(conf->mddev, rdev);
2171 rcu_read_unlock();
2173 spin_lock_irq(&conf->device_lock);
2174 /* fail all writes first */
2175 bi = sh->dev[i].towrite;
2176 sh->dev[i].towrite = NULL;
2177 if (bi) {
2178 s->to_write--;
2179 bitmap_end = 1;
2182 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2183 wake_up(&conf->wait_for_overlap);
2185 while (bi && bi->bi_sector <
2186 sh->dev[i].sector + STRIPE_SECTORS) {
2187 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2188 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2189 if (!raid5_dec_bi_phys_segments(bi)) {
2190 md_write_end(conf->mddev);
2191 bi->bi_next = *return_bi;
2192 *return_bi = bi;
2194 bi = nextbi;
2196 /* and fail all 'written' */
2197 bi = sh->dev[i].written;
2198 sh->dev[i].written = NULL;
2199 if (bi) bitmap_end = 1;
2200 while (bi && bi->bi_sector <
2201 sh->dev[i].sector + STRIPE_SECTORS) {
2202 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2203 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2204 if (!raid5_dec_bi_phys_segments(bi)) {
2205 md_write_end(conf->mddev);
2206 bi->bi_next = *return_bi;
2207 *return_bi = bi;
2209 bi = bi2;
2212 /* fail any reads if this device is non-operational and
2213 * the data has not reached the cache yet.
2215 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2216 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2217 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2218 bi = sh->dev[i].toread;
2219 sh->dev[i].toread = NULL;
2220 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2221 wake_up(&conf->wait_for_overlap);
2222 if (bi) s->to_read--;
2223 while (bi && bi->bi_sector <
2224 sh->dev[i].sector + STRIPE_SECTORS) {
2225 struct bio *nextbi =
2226 r5_next_bio(bi, sh->dev[i].sector);
2227 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2228 if (!raid5_dec_bi_phys_segments(bi)) {
2229 bi->bi_next = *return_bi;
2230 *return_bi = bi;
2232 bi = nextbi;
2235 spin_unlock_irq(&conf->device_lock);
2236 if (bitmap_end)
2237 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2238 STRIPE_SECTORS, 0, 0);
2241 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2242 if (atomic_dec_and_test(&conf->pending_full_writes))
2243 md_wakeup_thread(conf->mddev->thread);
2246 /* fetch_block5 - checks the given member device to see if its data needs
2247 * to be read or computed to satisfy a request.
2249 * Returns 1 when no more member devices need to be checked, otherwise returns
2250 * 0 to tell the loop in handle_stripe_fill5 to continue
2252 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2253 int disk_idx, int disks)
2255 struct r5dev *dev = &sh->dev[disk_idx];
2256 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2258 /* is the data in this block needed, and can we get it? */
2259 if (!test_bit(R5_LOCKED, &dev->flags) &&
2260 !test_bit(R5_UPTODATE, &dev->flags) &&
2261 (dev->toread ||
2262 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2263 s->syncing || s->expanding ||
2264 (s->failed &&
2265 (failed_dev->toread ||
2266 (failed_dev->towrite &&
2267 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2268 /* We would like to get this block, possibly by computing it,
2269 * otherwise read it if the backing disk is insync
2271 if ((s->uptodate == disks - 1) &&
2272 (s->failed && disk_idx == s->failed_num)) {
2273 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2274 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2275 set_bit(R5_Wantcompute, &dev->flags);
2276 sh->ops.target = disk_idx;
2277 sh->ops.target2 = -1;
2278 s->req_compute = 1;
2279 /* Careful: from this point on 'uptodate' is in the eye
2280 * of raid_run_ops which services 'compute' operations
2281 * before writes. R5_Wantcompute flags a block that will
2282 * be R5_UPTODATE by the time it is needed for a
2283 * subsequent operation.
2285 s->uptodate++;
2286 return 1; /* uptodate + compute == disks */
2287 } else if (test_bit(R5_Insync, &dev->flags)) {
2288 set_bit(R5_LOCKED, &dev->flags);
2289 set_bit(R5_Wantread, &dev->flags);
2290 s->locked++;
2291 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2292 s->syncing);
2296 return 0;
2300 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2302 static void handle_stripe_fill5(struct stripe_head *sh,
2303 struct stripe_head_state *s, int disks)
2305 int i;
2307 /* look for blocks to read/compute, skip this if a compute
2308 * is already in flight, or if the stripe contents are in the
2309 * midst of changing due to a write
2311 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2312 !sh->reconstruct_state)
2313 for (i = disks; i--; )
2314 if (fetch_block5(sh, s, i, disks))
2315 break;
2316 set_bit(STRIPE_HANDLE, &sh->state);
2319 /* fetch_block6 - checks the given member device to see if its data needs
2320 * to be read or computed to satisfy a request.
2322 * Returns 1 when no more member devices need to be checked, otherwise returns
2323 * 0 to tell the loop in handle_stripe_fill6 to continue
2325 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2326 struct r6_state *r6s, int disk_idx, int disks)
2328 struct r5dev *dev = &sh->dev[disk_idx];
2329 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2330 &sh->dev[r6s->failed_num[1]] };
2332 if (!test_bit(R5_LOCKED, &dev->flags) &&
2333 !test_bit(R5_UPTODATE, &dev->flags) &&
2334 (dev->toread ||
2335 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2336 s->syncing || s->expanding ||
2337 (s->failed >= 1 &&
2338 (fdev[0]->toread || s->to_write)) ||
2339 (s->failed >= 2 &&
2340 (fdev[1]->toread || s->to_write)))) {
2341 /* we would like to get this block, possibly by computing it,
2342 * otherwise read it if the backing disk is insync
2344 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2345 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2346 if ((s->uptodate == disks - 1) &&
2347 (s->failed && (disk_idx == r6s->failed_num[0] ||
2348 disk_idx == r6s->failed_num[1]))) {
2349 /* have disk failed, and we're requested to fetch it;
2350 * do compute it
2352 pr_debug("Computing stripe %llu block %d\n",
2353 (unsigned long long)sh->sector, disk_idx);
2354 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2355 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2356 set_bit(R5_Wantcompute, &dev->flags);
2357 sh->ops.target = disk_idx;
2358 sh->ops.target2 = -1; /* no 2nd target */
2359 s->req_compute = 1;
2360 s->uptodate++;
2361 return 1;
2362 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2363 /* Computing 2-failure is *very* expensive; only
2364 * do it if failed >= 2
2366 int other;
2367 for (other = disks; other--; ) {
2368 if (other == disk_idx)
2369 continue;
2370 if (!test_bit(R5_UPTODATE,
2371 &sh->dev[other].flags))
2372 break;
2374 BUG_ON(other < 0);
2375 pr_debug("Computing stripe %llu blocks %d,%d\n",
2376 (unsigned long long)sh->sector,
2377 disk_idx, other);
2378 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2379 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2380 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2381 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2382 sh->ops.target = disk_idx;
2383 sh->ops.target2 = other;
2384 s->uptodate += 2;
2385 s->req_compute = 1;
2386 return 1;
2387 } else if (test_bit(R5_Insync, &dev->flags)) {
2388 set_bit(R5_LOCKED, &dev->flags);
2389 set_bit(R5_Wantread, &dev->flags);
2390 s->locked++;
2391 pr_debug("Reading block %d (sync=%d)\n",
2392 disk_idx, s->syncing);
2396 return 0;
2400 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2402 static void handle_stripe_fill6(struct stripe_head *sh,
2403 struct stripe_head_state *s, struct r6_state *r6s,
2404 int disks)
2406 int i;
2408 /* look for blocks to read/compute, skip this if a compute
2409 * is already in flight, or if the stripe contents are in the
2410 * midst of changing due to a write
2412 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2413 !sh->reconstruct_state)
2414 for (i = disks; i--; )
2415 if (fetch_block6(sh, s, r6s, i, disks))
2416 break;
2417 set_bit(STRIPE_HANDLE, &sh->state);
2421 /* handle_stripe_clean_event
2422 * any written block on an uptodate or failed drive can be returned.
2423 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2424 * never LOCKED, so we don't need to test 'failed' directly.
2426 static void handle_stripe_clean_event(raid5_conf_t *conf,
2427 struct stripe_head *sh, int disks, struct bio **return_bi)
2429 int i;
2430 struct r5dev *dev;
2432 for (i = disks; i--; )
2433 if (sh->dev[i].written) {
2434 dev = &sh->dev[i];
2435 if (!test_bit(R5_LOCKED, &dev->flags) &&
2436 test_bit(R5_UPTODATE, &dev->flags)) {
2437 /* We can return any write requests */
2438 struct bio *wbi, *wbi2;
2439 int bitmap_end = 0;
2440 pr_debug("Return write for disc %d\n", i);
2441 spin_lock_irq(&conf->device_lock);
2442 wbi = dev->written;
2443 dev->written = NULL;
2444 while (wbi && wbi->bi_sector <
2445 dev->sector + STRIPE_SECTORS) {
2446 wbi2 = r5_next_bio(wbi, dev->sector);
2447 if (!raid5_dec_bi_phys_segments(wbi)) {
2448 md_write_end(conf->mddev);
2449 wbi->bi_next = *return_bi;
2450 *return_bi = wbi;
2452 wbi = wbi2;
2454 if (dev->towrite == NULL)
2455 bitmap_end = 1;
2456 spin_unlock_irq(&conf->device_lock);
2457 if (bitmap_end)
2458 bitmap_endwrite(conf->mddev->bitmap,
2459 sh->sector,
2460 STRIPE_SECTORS,
2461 !test_bit(STRIPE_DEGRADED, &sh->state),
2466 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2467 if (atomic_dec_and_test(&conf->pending_full_writes))
2468 md_wakeup_thread(conf->mddev->thread);
2471 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2472 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2474 int rmw = 0, rcw = 0, i;
2475 for (i = disks; i--; ) {
2476 /* would I have to read this buffer for read_modify_write */
2477 struct r5dev *dev = &sh->dev[i];
2478 if ((dev->towrite || i == sh->pd_idx) &&
2479 !test_bit(R5_LOCKED, &dev->flags) &&
2480 !(test_bit(R5_UPTODATE, &dev->flags) ||
2481 test_bit(R5_Wantcompute, &dev->flags))) {
2482 if (test_bit(R5_Insync, &dev->flags))
2483 rmw++;
2484 else
2485 rmw += 2*disks; /* cannot read it */
2487 /* Would I have to read this buffer for reconstruct_write */
2488 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2489 !test_bit(R5_LOCKED, &dev->flags) &&
2490 !(test_bit(R5_UPTODATE, &dev->flags) ||
2491 test_bit(R5_Wantcompute, &dev->flags))) {
2492 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2493 else
2494 rcw += 2*disks;
2497 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2498 (unsigned long long)sh->sector, rmw, rcw);
2499 set_bit(STRIPE_HANDLE, &sh->state);
2500 if (rmw < rcw && rmw > 0)
2501 /* prefer read-modify-write, but need to get some data */
2502 for (i = disks; i--; ) {
2503 struct r5dev *dev = &sh->dev[i];
2504 if ((dev->towrite || i == sh->pd_idx) &&
2505 !test_bit(R5_LOCKED, &dev->flags) &&
2506 !(test_bit(R5_UPTODATE, &dev->flags) ||
2507 test_bit(R5_Wantcompute, &dev->flags)) &&
2508 test_bit(R5_Insync, &dev->flags)) {
2509 if (
2510 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2511 pr_debug("Read_old block "
2512 "%d for r-m-w\n", i);
2513 set_bit(R5_LOCKED, &dev->flags);
2514 set_bit(R5_Wantread, &dev->flags);
2515 s->locked++;
2516 } else {
2517 set_bit(STRIPE_DELAYED, &sh->state);
2518 set_bit(STRIPE_HANDLE, &sh->state);
2522 if (rcw <= rmw && rcw > 0)
2523 /* want reconstruct write, but need to get some data */
2524 for (i = disks; i--; ) {
2525 struct r5dev *dev = &sh->dev[i];
2526 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2527 i != sh->pd_idx &&
2528 !test_bit(R5_LOCKED, &dev->flags) &&
2529 !(test_bit(R5_UPTODATE, &dev->flags) ||
2530 test_bit(R5_Wantcompute, &dev->flags)) &&
2531 test_bit(R5_Insync, &dev->flags)) {
2532 if (
2533 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2534 pr_debug("Read_old block "
2535 "%d for Reconstruct\n", i);
2536 set_bit(R5_LOCKED, &dev->flags);
2537 set_bit(R5_Wantread, &dev->flags);
2538 s->locked++;
2539 } else {
2540 set_bit(STRIPE_DELAYED, &sh->state);
2541 set_bit(STRIPE_HANDLE, &sh->state);
2545 /* now if nothing is locked, and if we have enough data,
2546 * we can start a write request
2548 /* since handle_stripe can be called at any time we need to handle the
2549 * case where a compute block operation has been submitted and then a
2550 * subsequent call wants to start a write request. raid_run_ops only
2551 * handles the case where compute block and reconstruct are requested
2552 * simultaneously. If this is not the case then new writes need to be
2553 * held off until the compute completes.
2555 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2556 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2557 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2558 schedule_reconstruction(sh, s, rcw == 0, 0);
2561 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2562 struct stripe_head *sh, struct stripe_head_state *s,
2563 struct r6_state *r6s, int disks)
2565 int rcw = 0, pd_idx = sh->pd_idx, i;
2566 int qd_idx = sh->qd_idx;
2568 set_bit(STRIPE_HANDLE, &sh->state);
2569 for (i = disks; i--; ) {
2570 struct r5dev *dev = &sh->dev[i];
2571 /* check if we haven't enough data */
2572 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2573 i != pd_idx && i != qd_idx &&
2574 !test_bit(R5_LOCKED, &dev->flags) &&
2575 !(test_bit(R5_UPTODATE, &dev->flags) ||
2576 test_bit(R5_Wantcompute, &dev->flags))) {
2577 rcw++;
2578 if (!test_bit(R5_Insync, &dev->flags))
2579 continue; /* it's a failed drive */
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 pr_debug("Read_old stripe %llu "
2584 "block %d for Reconstruct\n",
2585 (unsigned long long)sh->sector, i);
2586 set_bit(R5_LOCKED, &dev->flags);
2587 set_bit(R5_Wantread, &dev->flags);
2588 s->locked++;
2589 } else {
2590 pr_debug("Request delayed stripe %llu "
2591 "block %d for Reconstruct\n",
2592 (unsigned long long)sh->sector, i);
2593 set_bit(STRIPE_DELAYED, &sh->state);
2594 set_bit(STRIPE_HANDLE, &sh->state);
2598 /* now if nothing is locked, and if we have enough data, we can start a
2599 * write request
2601 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2602 s->locked == 0 && rcw == 0 &&
2603 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2604 schedule_reconstruction(sh, s, 1, 0);
2608 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2609 struct stripe_head_state *s, int disks)
2611 struct r5dev *dev = NULL;
2613 set_bit(STRIPE_HANDLE, &sh->state);
2615 switch (sh->check_state) {
2616 case check_state_idle:
2617 /* start a new check operation if there are no failures */
2618 if (s->failed == 0) {
2619 BUG_ON(s->uptodate != disks);
2620 sh->check_state = check_state_run;
2621 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2622 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2623 s->uptodate--;
2624 break;
2626 dev = &sh->dev[s->failed_num];
2627 /* fall through */
2628 case check_state_compute_result:
2629 sh->check_state = check_state_idle;
2630 if (!dev)
2631 dev = &sh->dev[sh->pd_idx];
2633 /* check that a write has not made the stripe insync */
2634 if (test_bit(STRIPE_INSYNC, &sh->state))
2635 break;
2637 /* either failed parity check, or recovery is happening */
2638 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2639 BUG_ON(s->uptodate != disks);
2641 set_bit(R5_LOCKED, &dev->flags);
2642 s->locked++;
2643 set_bit(R5_Wantwrite, &dev->flags);
2645 clear_bit(STRIPE_DEGRADED, &sh->state);
2646 set_bit(STRIPE_INSYNC, &sh->state);
2647 break;
2648 case check_state_run:
2649 break; /* we will be called again upon completion */
2650 case check_state_check_result:
2651 sh->check_state = check_state_idle;
2653 /* if a failure occurred during the check operation, leave
2654 * STRIPE_INSYNC not set and let the stripe be handled again
2656 if (s->failed)
2657 break;
2659 /* handle a successful check operation, if parity is correct
2660 * we are done. Otherwise update the mismatch count and repair
2661 * parity if !MD_RECOVERY_CHECK
2663 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2664 /* parity is correct (on disc,
2665 * not in buffer any more)
2667 set_bit(STRIPE_INSYNC, &sh->state);
2668 else {
2669 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2670 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2671 /* don't try to repair!! */
2672 set_bit(STRIPE_INSYNC, &sh->state);
2673 else {
2674 sh->check_state = check_state_compute_run;
2675 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2676 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2677 set_bit(R5_Wantcompute,
2678 &sh->dev[sh->pd_idx].flags);
2679 sh->ops.target = sh->pd_idx;
2680 sh->ops.target2 = -1;
2681 s->uptodate++;
2684 break;
2685 case check_state_compute_run:
2686 break;
2687 default:
2688 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2689 __func__, sh->check_state,
2690 (unsigned long long) sh->sector);
2691 BUG();
2696 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2697 struct stripe_head_state *s,
2698 struct r6_state *r6s, int disks)
2700 int pd_idx = sh->pd_idx;
2701 int qd_idx = sh->qd_idx;
2702 struct r5dev *dev;
2704 set_bit(STRIPE_HANDLE, &sh->state);
2706 BUG_ON(s->failed > 2);
2708 /* Want to check and possibly repair P and Q.
2709 * However there could be one 'failed' device, in which
2710 * case we can only check one of them, possibly using the
2711 * other to generate missing data
2714 switch (sh->check_state) {
2715 case check_state_idle:
2716 /* start a new check operation if there are < 2 failures */
2717 if (s->failed == r6s->q_failed) {
2718 /* The only possible failed device holds Q, so it
2719 * makes sense to check P (If anything else were failed,
2720 * we would have used P to recreate it).
2722 sh->check_state = check_state_run;
2724 if (!r6s->q_failed && s->failed < 2) {
2725 /* Q is not failed, and we didn't use it to generate
2726 * anything, so it makes sense to check it
2728 if (sh->check_state == check_state_run)
2729 sh->check_state = check_state_run_pq;
2730 else
2731 sh->check_state = check_state_run_q;
2734 /* discard potentially stale zero_sum_result */
2735 sh->ops.zero_sum_result = 0;
2737 if (sh->check_state == check_state_run) {
2738 /* async_xor_zero_sum destroys the contents of P */
2739 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2740 s->uptodate--;
2742 if (sh->check_state >= check_state_run &&
2743 sh->check_state <= check_state_run_pq) {
2744 /* async_syndrome_zero_sum preserves P and Q, so
2745 * no need to mark them !uptodate here
2747 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2748 break;
2751 /* we have 2-disk failure */
2752 BUG_ON(s->failed != 2);
2753 /* fall through */
2754 case check_state_compute_result:
2755 sh->check_state = check_state_idle;
2757 /* check that a write has not made the stripe insync */
2758 if (test_bit(STRIPE_INSYNC, &sh->state))
2759 break;
2761 /* now write out any block on a failed drive,
2762 * or P or Q if they were recomputed
2764 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2765 if (s->failed == 2) {
2766 dev = &sh->dev[r6s->failed_num[1]];
2767 s->locked++;
2768 set_bit(R5_LOCKED, &dev->flags);
2769 set_bit(R5_Wantwrite, &dev->flags);
2771 if (s->failed >= 1) {
2772 dev = &sh->dev[r6s->failed_num[0]];
2773 s->locked++;
2774 set_bit(R5_LOCKED, &dev->flags);
2775 set_bit(R5_Wantwrite, &dev->flags);
2777 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2778 dev = &sh->dev[pd_idx];
2779 s->locked++;
2780 set_bit(R5_LOCKED, &dev->flags);
2781 set_bit(R5_Wantwrite, &dev->flags);
2783 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2784 dev = &sh->dev[qd_idx];
2785 s->locked++;
2786 set_bit(R5_LOCKED, &dev->flags);
2787 set_bit(R5_Wantwrite, &dev->flags);
2789 clear_bit(STRIPE_DEGRADED, &sh->state);
2791 set_bit(STRIPE_INSYNC, &sh->state);
2792 break;
2793 case check_state_run:
2794 case check_state_run_q:
2795 case check_state_run_pq:
2796 break; /* we will be called again upon completion */
2797 case check_state_check_result:
2798 sh->check_state = check_state_idle;
2800 /* handle a successful check operation, if parity is correct
2801 * we are done. Otherwise update the mismatch count and repair
2802 * parity if !MD_RECOVERY_CHECK
2804 if (sh->ops.zero_sum_result == 0) {
2805 /* both parities are correct */
2806 if (!s->failed)
2807 set_bit(STRIPE_INSYNC, &sh->state);
2808 else {
2809 /* in contrast to the raid5 case we can validate
2810 * parity, but still have a failure to write
2811 * back
2813 sh->check_state = check_state_compute_result;
2814 /* Returning at this point means that we may go
2815 * off and bring p and/or q uptodate again so
2816 * we make sure to check zero_sum_result again
2817 * to verify if p or q need writeback
2820 } else {
2821 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2822 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2823 /* don't try to repair!! */
2824 set_bit(STRIPE_INSYNC, &sh->state);
2825 else {
2826 int *target = &sh->ops.target;
2828 sh->ops.target = -1;
2829 sh->ops.target2 = -1;
2830 sh->check_state = check_state_compute_run;
2831 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2832 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2833 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2834 set_bit(R5_Wantcompute,
2835 &sh->dev[pd_idx].flags);
2836 *target = pd_idx;
2837 target = &sh->ops.target2;
2838 s->uptodate++;
2840 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2841 set_bit(R5_Wantcompute,
2842 &sh->dev[qd_idx].flags);
2843 *target = qd_idx;
2844 s->uptodate++;
2848 break;
2849 case check_state_compute_run:
2850 break;
2851 default:
2852 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2853 __func__, sh->check_state,
2854 (unsigned long long) sh->sector);
2855 BUG();
2859 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2860 struct r6_state *r6s)
2862 int i;
2864 /* We have read all the blocks in this stripe and now we need to
2865 * copy some of them into a target stripe for expand.
2867 struct dma_async_tx_descriptor *tx = NULL;
2868 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2869 for (i = 0; i < sh->disks; i++)
2870 if (i != sh->pd_idx && i != sh->qd_idx) {
2871 int dd_idx, j;
2872 struct stripe_head *sh2;
2873 struct async_submit_ctl submit;
2875 sector_t bn = compute_blocknr(sh, i, 1);
2876 sector_t s = raid5_compute_sector(conf, bn, 0,
2877 &dd_idx, NULL);
2878 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2879 if (sh2 == NULL)
2880 /* so far only the early blocks of this stripe
2881 * have been requested. When later blocks
2882 * get requested, we will try again
2884 continue;
2885 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2886 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2887 /* must have already done this block */
2888 release_stripe(sh2);
2889 continue;
2892 /* place all the copies on one channel */
2893 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2894 tx = async_memcpy(sh2->dev[dd_idx].page,
2895 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2896 &submit);
2898 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2899 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2900 for (j = 0; j < conf->raid_disks; j++)
2901 if (j != sh2->pd_idx &&
2902 (!r6s || j != sh2->qd_idx) &&
2903 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2904 break;
2905 if (j == conf->raid_disks) {
2906 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2907 set_bit(STRIPE_HANDLE, &sh2->state);
2909 release_stripe(sh2);
2912 /* done submitting copies, wait for them to complete */
2913 if (tx) {
2914 async_tx_ack(tx);
2915 dma_wait_for_async_tx(tx);
2921 * handle_stripe - do things to a stripe.
2923 * We lock the stripe and then examine the state of various bits
2924 * to see what needs to be done.
2925 * Possible results:
2926 * return some read request which now have data
2927 * return some write requests which are safely on disc
2928 * schedule a read on some buffers
2929 * schedule a write of some buffers
2930 * return confirmation of parity correctness
2932 * buffers are taken off read_list or write_list, and bh_cache buffers
2933 * get BH_Lock set before the stripe lock is released.
2937 static void handle_stripe5(struct stripe_head *sh)
2939 raid5_conf_t *conf = sh->raid_conf;
2940 int disks = sh->disks, i;
2941 struct bio *return_bi = NULL;
2942 struct stripe_head_state s;
2943 struct r5dev *dev;
2944 mdk_rdev_t *blocked_rdev = NULL;
2945 int prexor;
2946 int dec_preread_active = 0;
2948 memset(&s, 0, sizeof(s));
2949 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
2950 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
2951 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
2952 sh->reconstruct_state);
2954 spin_lock(&sh->lock);
2955 clear_bit(STRIPE_HANDLE, &sh->state);
2956 clear_bit(STRIPE_DELAYED, &sh->state);
2958 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
2959 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2960 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
2962 /* Now to look around and see what can be done */
2963 rcu_read_lock();
2964 for (i=disks; i--; ) {
2965 mdk_rdev_t *rdev;
2967 dev = &sh->dev[i];
2968 clear_bit(R5_Insync, &dev->flags);
2970 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
2971 "written %p\n", i, dev->flags, dev->toread, dev->read,
2972 dev->towrite, dev->written);
2974 /* maybe we can request a biofill operation
2976 * new wantfill requests are only permitted while
2977 * ops_complete_biofill is guaranteed to be inactive
2979 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
2980 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
2981 set_bit(R5_Wantfill, &dev->flags);
2983 /* now count some things */
2984 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
2985 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
2986 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
2988 if (test_bit(R5_Wantfill, &dev->flags))
2989 s.to_fill++;
2990 else if (dev->toread)
2991 s.to_read++;
2992 if (dev->towrite) {
2993 s.to_write++;
2994 if (!test_bit(R5_OVERWRITE, &dev->flags))
2995 s.non_overwrite++;
2997 if (dev->written)
2998 s.written++;
2999 rdev = rcu_dereference(conf->disks[i].rdev);
3000 if (blocked_rdev == NULL &&
3001 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3002 blocked_rdev = rdev;
3003 atomic_inc(&rdev->nr_pending);
3005 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3006 /* The ReadError flag will just be confusing now */
3007 clear_bit(R5_ReadError, &dev->flags);
3008 clear_bit(R5_ReWrite, &dev->flags);
3010 if (!rdev || !test_bit(In_sync, &rdev->flags)
3011 || test_bit(R5_ReadError, &dev->flags)) {
3012 s.failed++;
3013 s.failed_num = i;
3014 } else
3015 set_bit(R5_Insync, &dev->flags);
3017 rcu_read_unlock();
3019 if (unlikely(blocked_rdev)) {
3020 if (s.syncing || s.expanding || s.expanded ||
3021 s.to_write || s.written) {
3022 set_bit(STRIPE_HANDLE, &sh->state);
3023 goto unlock;
3025 /* There is nothing for the blocked_rdev to block */
3026 rdev_dec_pending(blocked_rdev, conf->mddev);
3027 blocked_rdev = NULL;
3030 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3031 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3032 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3035 pr_debug("locked=%d uptodate=%d to_read=%d"
3036 " to_write=%d failed=%d failed_num=%d\n",
3037 s.locked, s.uptodate, s.to_read, s.to_write,
3038 s.failed, s.failed_num);
3039 /* check if the array has lost two devices and, if so, some requests might
3040 * need to be failed
3042 if (s.failed > 1 && s.to_read+s.to_write+s.written)
3043 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3044 if (s.failed > 1 && s.syncing) {
3045 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3046 clear_bit(STRIPE_SYNCING, &sh->state);
3047 s.syncing = 0;
3050 /* might be able to return some write requests if the parity block
3051 * is safe, or on a failed drive
3053 dev = &sh->dev[sh->pd_idx];
3054 if ( s.written &&
3055 ((test_bit(R5_Insync, &dev->flags) &&
3056 !test_bit(R5_LOCKED, &dev->flags) &&
3057 test_bit(R5_UPTODATE, &dev->flags)) ||
3058 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3059 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3061 /* Now we might consider reading some blocks, either to check/generate
3062 * parity, or to satisfy requests
3063 * or to load a block that is being partially written.
3065 if (s.to_read || s.non_overwrite ||
3066 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3067 handle_stripe_fill5(sh, &s, disks);
3069 /* Now we check to see if any write operations have recently
3070 * completed
3072 prexor = 0;
3073 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3074 prexor = 1;
3075 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3076 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3077 sh->reconstruct_state = reconstruct_state_idle;
3079 /* All the 'written' buffers and the parity block are ready to
3080 * be written back to disk
3082 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3083 for (i = disks; i--; ) {
3084 dev = &sh->dev[i];
3085 if (test_bit(R5_LOCKED, &dev->flags) &&
3086 (i == sh->pd_idx || dev->written)) {
3087 pr_debug("Writing block %d\n", i);
3088 set_bit(R5_Wantwrite, &dev->flags);
3089 if (prexor)
3090 continue;
3091 if (!test_bit(R5_Insync, &dev->flags) ||
3092 (i == sh->pd_idx && s.failed == 0))
3093 set_bit(STRIPE_INSYNC, &sh->state);
3096 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3097 dec_preread_active = 1;
3100 /* Now to consider new write requests and what else, if anything
3101 * should be read. We do not handle new writes when:
3102 * 1/ A 'write' operation (copy+xor) is already in flight.
3103 * 2/ A 'check' operation is in flight, as it may clobber the parity
3104 * block.
3106 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3107 handle_stripe_dirtying5(conf, sh, &s, disks);
3109 /* maybe we need to check and possibly fix the parity for this stripe
3110 * Any reads will already have been scheduled, so we just see if enough
3111 * data is available. The parity check is held off while parity
3112 * dependent operations are in flight.
3114 if (sh->check_state ||
3115 (s.syncing && s.locked == 0 &&
3116 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3117 !test_bit(STRIPE_INSYNC, &sh->state)))
3118 handle_parity_checks5(conf, sh, &s, disks);
3120 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3121 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3122 clear_bit(STRIPE_SYNCING, &sh->state);
3125 /* If the failed drive is just a ReadError, then we might need to progress
3126 * the repair/check process
3128 if (s.failed == 1 && !conf->mddev->ro &&
3129 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3130 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3131 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3133 dev = &sh->dev[s.failed_num];
3134 if (!test_bit(R5_ReWrite, &dev->flags)) {
3135 set_bit(R5_Wantwrite, &dev->flags);
3136 set_bit(R5_ReWrite, &dev->flags);
3137 set_bit(R5_LOCKED, &dev->flags);
3138 s.locked++;
3139 } else {
3140 /* let's read it back */
3141 set_bit(R5_Wantread, &dev->flags);
3142 set_bit(R5_LOCKED, &dev->flags);
3143 s.locked++;
3147 /* Finish reconstruct operations initiated by the expansion process */
3148 if (sh->reconstruct_state == reconstruct_state_result) {
3149 struct stripe_head *sh2
3150 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3151 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3152 /* sh cannot be written until sh2 has been read.
3153 * so arrange for sh to be delayed a little
3155 set_bit(STRIPE_DELAYED, &sh->state);
3156 set_bit(STRIPE_HANDLE, &sh->state);
3157 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3158 &sh2->state))
3159 atomic_inc(&conf->preread_active_stripes);
3160 release_stripe(sh2);
3161 goto unlock;
3163 if (sh2)
3164 release_stripe(sh2);
3166 sh->reconstruct_state = reconstruct_state_idle;
3167 clear_bit(STRIPE_EXPANDING, &sh->state);
3168 for (i = conf->raid_disks; i--; ) {
3169 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3170 set_bit(R5_LOCKED, &sh->dev[i].flags);
3171 s.locked++;
3175 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3176 !sh->reconstruct_state) {
3177 /* Need to write out all blocks after computing parity */
3178 sh->disks = conf->raid_disks;
3179 stripe_set_idx(sh->sector, conf, 0, sh);
3180 schedule_reconstruction(sh, &s, 1, 1);
3181 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3182 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3183 atomic_dec(&conf->reshape_stripes);
3184 wake_up(&conf->wait_for_overlap);
3185 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3188 if (s.expanding && s.locked == 0 &&
3189 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3190 handle_stripe_expansion(conf, sh, NULL);
3192 unlock:
3193 spin_unlock(&sh->lock);
3195 /* wait for this device to become unblocked */
3196 if (unlikely(blocked_rdev))
3197 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3199 if (s.ops_request)
3200 raid_run_ops(sh, s.ops_request);
3202 ops_run_io(sh, &s);
3204 if (dec_preread_active) {
3205 /* We delay this until after ops_run_io so that if make_request
3206 * is waiting on a barrier, it won't continue until the writes
3207 * have actually been submitted.
3209 atomic_dec(&conf->preread_active_stripes);
3210 if (atomic_read(&conf->preread_active_stripes) <
3211 IO_THRESHOLD)
3212 md_wakeup_thread(conf->mddev->thread);
3214 return_io(return_bi);
3217 static void handle_stripe6(struct stripe_head *sh)
3219 raid5_conf_t *conf = sh->raid_conf;
3220 int disks = sh->disks;
3221 struct bio *return_bi = NULL;
3222 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3223 struct stripe_head_state s;
3224 struct r6_state r6s;
3225 struct r5dev *dev, *pdev, *qdev;
3226 mdk_rdev_t *blocked_rdev = NULL;
3227 int dec_preread_active = 0;
3229 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3230 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3231 (unsigned long long)sh->sector, sh->state,
3232 atomic_read(&sh->count), pd_idx, qd_idx,
3233 sh->check_state, sh->reconstruct_state);
3234 memset(&s, 0, sizeof(s));
3236 spin_lock(&sh->lock);
3237 clear_bit(STRIPE_HANDLE, &sh->state);
3238 clear_bit(STRIPE_DELAYED, &sh->state);
3240 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3241 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3242 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3243 /* Now to look around and see what can be done */
3245 rcu_read_lock();
3246 for (i=disks; i--; ) {
3247 mdk_rdev_t *rdev;
3248 dev = &sh->dev[i];
3249 clear_bit(R5_Insync, &dev->flags);
3251 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3252 i, dev->flags, dev->toread, dev->towrite, dev->written);
3253 /* maybe we can reply to a read
3255 * new wantfill requests are only permitted while
3256 * ops_complete_biofill is guaranteed to be inactive
3258 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3259 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3260 set_bit(R5_Wantfill, &dev->flags);
3262 /* now count some things */
3263 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3264 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3265 if (test_bit(R5_Wantcompute, &dev->flags)) {
3266 s.compute++;
3267 BUG_ON(s.compute > 2);
3270 if (test_bit(R5_Wantfill, &dev->flags)) {
3271 s.to_fill++;
3272 } else if (dev->toread)
3273 s.to_read++;
3274 if (dev->towrite) {
3275 s.to_write++;
3276 if (!test_bit(R5_OVERWRITE, &dev->flags))
3277 s.non_overwrite++;
3279 if (dev->written)
3280 s.written++;
3281 rdev = rcu_dereference(conf->disks[i].rdev);
3282 if (blocked_rdev == NULL &&
3283 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3284 blocked_rdev = rdev;
3285 atomic_inc(&rdev->nr_pending);
3287 if (!rdev || !test_bit(In_sync, &rdev->flags)) {
3288 /* The ReadError flag will just be confusing now */
3289 clear_bit(R5_ReadError, &dev->flags);
3290 clear_bit(R5_ReWrite, &dev->flags);
3292 if (!rdev || !test_bit(In_sync, &rdev->flags)
3293 || test_bit(R5_ReadError, &dev->flags)) {
3294 if (s.failed < 2)
3295 r6s.failed_num[s.failed] = i;
3296 s.failed++;
3297 } else
3298 set_bit(R5_Insync, &dev->flags);
3300 rcu_read_unlock();
3302 if (unlikely(blocked_rdev)) {
3303 if (s.syncing || s.expanding || s.expanded ||
3304 s.to_write || s.written) {
3305 set_bit(STRIPE_HANDLE, &sh->state);
3306 goto unlock;
3308 /* There is nothing for the blocked_rdev to block */
3309 rdev_dec_pending(blocked_rdev, conf->mddev);
3310 blocked_rdev = NULL;
3313 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3314 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3315 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3318 pr_debug("locked=%d uptodate=%d to_read=%d"
3319 " to_write=%d failed=%d failed_num=%d,%d\n",
3320 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3321 r6s.failed_num[0], r6s.failed_num[1]);
3322 /* check if the array has lost >2 devices and, if so, some requests
3323 * might need to be failed
3325 if (s.failed > 2 && s.to_read+s.to_write+s.written)
3326 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3327 if (s.failed > 2 && s.syncing) {
3328 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3329 clear_bit(STRIPE_SYNCING, &sh->state);
3330 s.syncing = 0;
3334 * might be able to return some write requests if the parity blocks
3335 * are safe, or on a failed drive
3337 pdev = &sh->dev[pd_idx];
3338 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3339 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3340 qdev = &sh->dev[qd_idx];
3341 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3342 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3344 if ( s.written &&
3345 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3346 && !test_bit(R5_LOCKED, &pdev->flags)
3347 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3348 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3349 && !test_bit(R5_LOCKED, &qdev->flags)
3350 && test_bit(R5_UPTODATE, &qdev->flags)))))
3351 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3353 /* Now we might consider reading some blocks, either to check/generate
3354 * parity, or to satisfy requests
3355 * or to load a block that is being partially written.
3357 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3358 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3359 handle_stripe_fill6(sh, &s, &r6s, disks);
3361 /* Now we check to see if any write operations have recently
3362 * completed
3364 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3366 sh->reconstruct_state = reconstruct_state_idle;
3367 /* All the 'written' buffers and the parity blocks are ready to
3368 * be written back to disk
3370 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3371 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3372 for (i = disks; i--; ) {
3373 dev = &sh->dev[i];
3374 if (test_bit(R5_LOCKED, &dev->flags) &&
3375 (i == sh->pd_idx || i == qd_idx ||
3376 dev->written)) {
3377 pr_debug("Writing block %d\n", i);
3378 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3379 set_bit(R5_Wantwrite, &dev->flags);
3380 if (!test_bit(R5_Insync, &dev->flags) ||
3381 ((i == sh->pd_idx || i == qd_idx) &&
3382 s.failed == 0))
3383 set_bit(STRIPE_INSYNC, &sh->state);
3386 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3387 dec_preread_active = 1;
3390 /* Now to consider new write requests and what else, if anything
3391 * should be read. We do not handle new writes when:
3392 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3393 * 2/ A 'check' operation is in flight, as it may clobber the parity
3394 * block.
3396 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3397 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3399 /* maybe we need to check and possibly fix the parity for this stripe
3400 * Any reads will already have been scheduled, so we just see if enough
3401 * data is available. The parity check is held off while parity
3402 * dependent operations are in flight.
3404 if (sh->check_state ||
3405 (s.syncing && s.locked == 0 &&
3406 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3407 !test_bit(STRIPE_INSYNC, &sh->state)))
3408 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3410 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3411 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3412 clear_bit(STRIPE_SYNCING, &sh->state);
3415 /* If the failed drives are just a ReadError, then we might need
3416 * to progress the repair/check process
3418 if (s.failed <= 2 && !conf->mddev->ro)
3419 for (i = 0; i < s.failed; i++) {
3420 dev = &sh->dev[r6s.failed_num[i]];
3421 if (test_bit(R5_ReadError, &dev->flags)
3422 && !test_bit(R5_LOCKED, &dev->flags)
3423 && test_bit(R5_UPTODATE, &dev->flags)
3425 if (!test_bit(R5_ReWrite, &dev->flags)) {
3426 set_bit(R5_Wantwrite, &dev->flags);
3427 set_bit(R5_ReWrite, &dev->flags);
3428 set_bit(R5_LOCKED, &dev->flags);
3429 s.locked++;
3430 } else {
3431 /* let's read it back */
3432 set_bit(R5_Wantread, &dev->flags);
3433 set_bit(R5_LOCKED, &dev->flags);
3434 s.locked++;
3439 /* Finish reconstruct operations initiated by the expansion process */
3440 if (sh->reconstruct_state == reconstruct_state_result) {
3441 sh->reconstruct_state = reconstruct_state_idle;
3442 clear_bit(STRIPE_EXPANDING, &sh->state);
3443 for (i = conf->raid_disks; i--; ) {
3444 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3445 set_bit(R5_LOCKED, &sh->dev[i].flags);
3446 s.locked++;
3450 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3451 !sh->reconstruct_state) {
3452 struct stripe_head *sh2
3453 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3454 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3455 /* sh cannot be written until sh2 has been read.
3456 * so arrange for sh to be delayed a little
3458 set_bit(STRIPE_DELAYED, &sh->state);
3459 set_bit(STRIPE_HANDLE, &sh->state);
3460 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3461 &sh2->state))
3462 atomic_inc(&conf->preread_active_stripes);
3463 release_stripe(sh2);
3464 goto unlock;
3466 if (sh2)
3467 release_stripe(sh2);
3469 /* Need to write out all blocks after computing P&Q */
3470 sh->disks = conf->raid_disks;
3471 stripe_set_idx(sh->sector, conf, 0, sh);
3472 schedule_reconstruction(sh, &s, 1, 1);
3473 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3474 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3475 atomic_dec(&conf->reshape_stripes);
3476 wake_up(&conf->wait_for_overlap);
3477 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3480 if (s.expanding && s.locked == 0 &&
3481 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3482 handle_stripe_expansion(conf, sh, &r6s);
3484 unlock:
3485 spin_unlock(&sh->lock);
3487 /* wait for this device to become unblocked */
3488 if (unlikely(blocked_rdev))
3489 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3491 if (s.ops_request)
3492 raid_run_ops(sh, s.ops_request);
3494 ops_run_io(sh, &s);
3497 if (dec_preread_active) {
3498 /* We delay this until after ops_run_io so that if make_request
3499 * is waiting on a barrier, it won't continue until the writes
3500 * have actually been submitted.
3502 atomic_dec(&conf->preread_active_stripes);
3503 if (atomic_read(&conf->preread_active_stripes) <
3504 IO_THRESHOLD)
3505 md_wakeup_thread(conf->mddev->thread);
3508 return_io(return_bi);
3511 static void handle_stripe(struct stripe_head *sh)
3513 if (sh->raid_conf->level == 6)
3514 handle_stripe6(sh);
3515 else
3516 handle_stripe5(sh);
3519 static void raid5_activate_delayed(raid5_conf_t *conf)
3521 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3522 while (!list_empty(&conf->delayed_list)) {
3523 struct list_head *l = conf->delayed_list.next;
3524 struct stripe_head *sh;
3525 sh = list_entry(l, struct stripe_head, lru);
3526 list_del_init(l);
3527 clear_bit(STRIPE_DELAYED, &sh->state);
3528 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3529 atomic_inc(&conf->preread_active_stripes);
3530 list_add_tail(&sh->lru, &conf->hold_list);
3532 } else
3533 blk_plug_device(conf->mddev->queue);
3536 static void activate_bit_delay(raid5_conf_t *conf)
3538 /* device_lock is held */
3539 struct list_head head;
3540 list_add(&head, &conf->bitmap_list);
3541 list_del_init(&conf->bitmap_list);
3542 while (!list_empty(&head)) {
3543 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3544 list_del_init(&sh->lru);
3545 atomic_inc(&sh->count);
3546 __release_stripe(conf, sh);
3550 static void unplug_slaves(mddev_t *mddev)
3552 raid5_conf_t *conf = mddev->private;
3553 int i;
3554 int devs = max(conf->raid_disks, conf->previous_raid_disks);
3556 rcu_read_lock();
3557 for (i = 0; i < devs; i++) {
3558 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
3559 if (rdev && !test_bit(Faulty, &rdev->flags) && atomic_read(&rdev->nr_pending)) {
3560 struct request_queue *r_queue = bdev_get_queue(rdev->bdev);
3562 atomic_inc(&rdev->nr_pending);
3563 rcu_read_unlock();
3565 blk_unplug(r_queue);
3567 rdev_dec_pending(rdev, mddev);
3568 rcu_read_lock();
3571 rcu_read_unlock();
3574 static void raid5_unplug_device(struct request_queue *q)
3576 mddev_t *mddev = q->queuedata;
3577 raid5_conf_t *conf = mddev->private;
3578 unsigned long flags;
3580 spin_lock_irqsave(&conf->device_lock, flags);
3582 if (blk_remove_plug(q)) {
3583 conf->seq_flush++;
3584 raid5_activate_delayed(conf);
3586 md_wakeup_thread(mddev->thread);
3588 spin_unlock_irqrestore(&conf->device_lock, flags);
3590 unplug_slaves(mddev);
3593 static int raid5_congested(void *data, int bits)
3595 mddev_t *mddev = data;
3596 raid5_conf_t *conf = mddev->private;
3598 /* No difference between reads and writes. Just check
3599 * how busy the stripe_cache is
3602 if (mddev_congested(mddev, bits))
3603 return 1;
3604 if (conf->inactive_blocked)
3605 return 1;
3606 if (conf->quiesce)
3607 return 1;
3608 if (list_empty_careful(&conf->inactive_list))
3609 return 1;
3611 return 0;
3614 /* We want read requests to align with chunks where possible,
3615 * but write requests don't need to.
3617 static int raid5_mergeable_bvec(struct request_queue *q,
3618 struct bvec_merge_data *bvm,
3619 struct bio_vec *biovec)
3621 mddev_t *mddev = q->queuedata;
3622 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3623 int max;
3624 unsigned int chunk_sectors = mddev->chunk_sectors;
3625 unsigned int bio_sectors = bvm->bi_size >> 9;
3627 if ((bvm->bi_rw & 1) == WRITE)
3628 return biovec->bv_len; /* always allow writes to be mergeable */
3630 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3631 chunk_sectors = mddev->new_chunk_sectors;
3632 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3633 if (max < 0) max = 0;
3634 if (max <= biovec->bv_len && bio_sectors == 0)
3635 return biovec->bv_len;
3636 else
3637 return max;
3641 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3643 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3644 unsigned int chunk_sectors = mddev->chunk_sectors;
3645 unsigned int bio_sectors = bio->bi_size >> 9;
3647 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3648 chunk_sectors = mddev->new_chunk_sectors;
3649 return chunk_sectors >=
3650 ((sector & (chunk_sectors - 1)) + bio_sectors);
3654 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3655 * later sampled by raid5d.
3657 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3659 unsigned long flags;
3661 spin_lock_irqsave(&conf->device_lock, flags);
3663 bi->bi_next = conf->retry_read_aligned_list;
3664 conf->retry_read_aligned_list = bi;
3666 spin_unlock_irqrestore(&conf->device_lock, flags);
3667 md_wakeup_thread(conf->mddev->thread);
3671 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3673 struct bio *bi;
3675 bi = conf->retry_read_aligned;
3676 if (bi) {
3677 conf->retry_read_aligned = NULL;
3678 return bi;
3680 bi = conf->retry_read_aligned_list;
3681 if(bi) {
3682 conf->retry_read_aligned_list = bi->bi_next;
3683 bi->bi_next = NULL;
3685 * this sets the active strip count to 1 and the processed
3686 * strip count to zero (upper 8 bits)
3688 bi->bi_phys_segments = 1; /* biased count of active stripes */
3691 return bi;
3696 * The "raid5_align_endio" should check if the read succeeded and if it
3697 * did, call bio_endio on the original bio (having bio_put the new bio
3698 * first).
3699 * If the read failed..
3701 static void raid5_align_endio(struct bio *bi, int error)
3703 struct bio* raid_bi = bi->bi_private;
3704 mddev_t *mddev;
3705 raid5_conf_t *conf;
3706 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3707 mdk_rdev_t *rdev;
3709 bio_put(bi);
3711 mddev = raid_bi->bi_bdev->bd_disk->queue->queuedata;
3712 conf = mddev->private;
3713 rdev = (void*)raid_bi->bi_next;
3714 raid_bi->bi_next = NULL;
3716 rdev_dec_pending(rdev, conf->mddev);
3718 if (!error && uptodate) {
3719 bio_endio(raid_bi, 0);
3720 if (atomic_dec_and_test(&conf->active_aligned_reads))
3721 wake_up(&conf->wait_for_stripe);
3722 return;
3726 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3728 add_bio_to_retry(raid_bi, conf);
3731 static int bio_fits_rdev(struct bio *bi)
3733 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3735 if ((bi->bi_size>>9) > queue_max_sectors(q))
3736 return 0;
3737 blk_recount_segments(q, bi);
3738 if (bi->bi_phys_segments > queue_max_phys_segments(q))
3739 return 0;
3741 if (q->merge_bvec_fn)
3742 /* it's too hard to apply the merge_bvec_fn at this stage,
3743 * just just give up
3745 return 0;
3747 return 1;
3751 static int chunk_aligned_read(struct request_queue *q, struct bio * raid_bio)
3753 mddev_t *mddev = q->queuedata;
3754 raid5_conf_t *conf = mddev->private;
3755 int dd_idx;
3756 struct bio* align_bi;
3757 mdk_rdev_t *rdev;
3759 if (!in_chunk_boundary(mddev, raid_bio)) {
3760 pr_debug("chunk_aligned_read : non aligned\n");
3761 return 0;
3764 * use bio_clone to make a copy of the bio
3766 align_bi = bio_clone(raid_bio, GFP_NOIO);
3767 if (!align_bi)
3768 return 0;
3770 * set bi_end_io to a new function, and set bi_private to the
3771 * original bio.
3773 align_bi->bi_end_io = raid5_align_endio;
3774 align_bi->bi_private = raid_bio;
3776 * compute position
3778 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3780 &dd_idx, NULL);
3782 rcu_read_lock();
3783 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3784 if (rdev && test_bit(In_sync, &rdev->flags)) {
3785 atomic_inc(&rdev->nr_pending);
3786 rcu_read_unlock();
3787 raid_bio->bi_next = (void*)rdev;
3788 align_bi->bi_bdev = rdev->bdev;
3789 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3790 align_bi->bi_sector += rdev->data_offset;
3792 if (!bio_fits_rdev(align_bi)) {
3793 /* too big in some way */
3794 bio_put(align_bi);
3795 rdev_dec_pending(rdev, mddev);
3796 return 0;
3799 spin_lock_irq(&conf->device_lock);
3800 wait_event_lock_irq(conf->wait_for_stripe,
3801 conf->quiesce == 0,
3802 conf->device_lock, /* nothing */);
3803 atomic_inc(&conf->active_aligned_reads);
3804 spin_unlock_irq(&conf->device_lock);
3806 generic_make_request(align_bi);
3807 return 1;
3808 } else {
3809 rcu_read_unlock();
3810 bio_put(align_bi);
3811 return 0;
3815 /* __get_priority_stripe - get the next stripe to process
3817 * Full stripe writes are allowed to pass preread active stripes up until
3818 * the bypass_threshold is exceeded. In general the bypass_count
3819 * increments when the handle_list is handled before the hold_list; however, it
3820 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3821 * stripe with in flight i/o. The bypass_count will be reset when the
3822 * head of the hold_list has changed, i.e. the head was promoted to the
3823 * handle_list.
3825 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3827 struct stripe_head *sh;
3829 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3830 __func__,
3831 list_empty(&conf->handle_list) ? "empty" : "busy",
3832 list_empty(&conf->hold_list) ? "empty" : "busy",
3833 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3835 if (!list_empty(&conf->handle_list)) {
3836 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3838 if (list_empty(&conf->hold_list))
3839 conf->bypass_count = 0;
3840 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3841 if (conf->hold_list.next == conf->last_hold)
3842 conf->bypass_count++;
3843 else {
3844 conf->last_hold = conf->hold_list.next;
3845 conf->bypass_count -= conf->bypass_threshold;
3846 if (conf->bypass_count < 0)
3847 conf->bypass_count = 0;
3850 } else if (!list_empty(&conf->hold_list) &&
3851 ((conf->bypass_threshold &&
3852 conf->bypass_count > conf->bypass_threshold) ||
3853 atomic_read(&conf->pending_full_writes) == 0)) {
3854 sh = list_entry(conf->hold_list.next,
3855 typeof(*sh), lru);
3856 conf->bypass_count -= conf->bypass_threshold;
3857 if (conf->bypass_count < 0)
3858 conf->bypass_count = 0;
3859 } else
3860 return NULL;
3862 list_del_init(&sh->lru);
3863 atomic_inc(&sh->count);
3864 BUG_ON(atomic_read(&sh->count) != 1);
3865 return sh;
3868 static int make_request(struct request_queue *q, struct bio * bi)
3870 mddev_t *mddev = q->queuedata;
3871 raid5_conf_t *conf = mddev->private;
3872 int dd_idx;
3873 sector_t new_sector;
3874 sector_t logical_sector, last_sector;
3875 struct stripe_head *sh;
3876 const int rw = bio_data_dir(bi);
3877 int cpu, remaining;
3879 if (unlikely(bio_rw_flagged(bi, BIO_RW_BARRIER))) {
3880 /* Drain all pending writes. We only really need
3881 * to ensure they have been submitted, but this is
3882 * easier.
3884 mddev->pers->quiesce(mddev, 1);
3885 mddev->pers->quiesce(mddev, 0);
3886 md_barrier_request(mddev, bi);
3887 return 0;
3890 md_write_start(mddev, bi);
3892 cpu = part_stat_lock();
3893 part_stat_inc(cpu, &mddev->gendisk->part0, ios[rw]);
3894 part_stat_add(cpu, &mddev->gendisk->part0, sectors[rw],
3895 bio_sectors(bi));
3896 part_stat_unlock();
3898 if (rw == READ &&
3899 mddev->reshape_position == MaxSector &&
3900 chunk_aligned_read(q,bi))
3901 return 0;
3903 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3904 last_sector = bi->bi_sector + (bi->bi_size>>9);
3905 bi->bi_next = NULL;
3906 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3908 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3909 DEFINE_WAIT(w);
3910 int disks, data_disks;
3911 int previous;
3913 retry:
3914 previous = 0;
3915 disks = conf->raid_disks;
3916 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3917 if (unlikely(conf->reshape_progress != MaxSector)) {
3918 /* spinlock is needed as reshape_progress may be
3919 * 64bit on a 32bit platform, and so it might be
3920 * possible to see a half-updated value
3921 * Ofcourse reshape_progress could change after
3922 * the lock is dropped, so once we get a reference
3923 * to the stripe that we think it is, we will have
3924 * to check again.
3926 spin_lock_irq(&conf->device_lock);
3927 if (mddev->delta_disks < 0
3928 ? logical_sector < conf->reshape_progress
3929 : logical_sector >= conf->reshape_progress) {
3930 disks = conf->previous_raid_disks;
3931 previous = 1;
3932 } else {
3933 if (mddev->delta_disks < 0
3934 ? logical_sector < conf->reshape_safe
3935 : logical_sector >= conf->reshape_safe) {
3936 spin_unlock_irq(&conf->device_lock);
3937 schedule();
3938 goto retry;
3941 spin_unlock_irq(&conf->device_lock);
3943 data_disks = disks - conf->max_degraded;
3945 new_sector = raid5_compute_sector(conf, logical_sector,
3946 previous,
3947 &dd_idx, NULL);
3948 pr_debug("raid5: make_request, sector %llu logical %llu\n",
3949 (unsigned long long)new_sector,
3950 (unsigned long long)logical_sector);
3952 sh = get_active_stripe(conf, new_sector, previous,
3953 (bi->bi_rw&RWA_MASK), 0);
3954 if (sh) {
3955 if (unlikely(previous)) {
3956 /* expansion might have moved on while waiting for a
3957 * stripe, so we must do the range check again.
3958 * Expansion could still move past after this
3959 * test, but as we are holding a reference to
3960 * 'sh', we know that if that happens,
3961 * STRIPE_EXPANDING will get set and the expansion
3962 * won't proceed until we finish with the stripe.
3964 int must_retry = 0;
3965 spin_lock_irq(&conf->device_lock);
3966 if (mddev->delta_disks < 0
3967 ? logical_sector >= conf->reshape_progress
3968 : logical_sector < conf->reshape_progress)
3969 /* mismatch, need to try again */
3970 must_retry = 1;
3971 spin_unlock_irq(&conf->device_lock);
3972 if (must_retry) {
3973 release_stripe(sh);
3974 schedule();
3975 goto retry;
3979 if (bio_data_dir(bi) == WRITE &&
3980 logical_sector >= mddev->suspend_lo &&
3981 logical_sector < mddev->suspend_hi) {
3982 release_stripe(sh);
3983 /* As the suspend_* range is controlled by
3984 * userspace, we want an interruptible
3985 * wait.
3987 flush_signals(current);
3988 prepare_to_wait(&conf->wait_for_overlap,
3989 &w, TASK_INTERRUPTIBLE);
3990 if (logical_sector >= mddev->suspend_lo &&
3991 logical_sector < mddev->suspend_hi)
3992 schedule();
3993 goto retry;
3996 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
3997 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
3998 /* Stripe is busy expanding or
3999 * add failed due to overlap. Flush everything
4000 * and wait a while
4002 raid5_unplug_device(mddev->queue);
4003 release_stripe(sh);
4004 schedule();
4005 goto retry;
4007 finish_wait(&conf->wait_for_overlap, &w);
4008 set_bit(STRIPE_HANDLE, &sh->state);
4009 clear_bit(STRIPE_DELAYED, &sh->state);
4010 if (mddev->barrier &&
4011 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4012 atomic_inc(&conf->preread_active_stripes);
4013 release_stripe(sh);
4014 } else {
4015 /* cannot get stripe for read-ahead, just give-up */
4016 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4017 finish_wait(&conf->wait_for_overlap, &w);
4018 break;
4022 spin_lock_irq(&conf->device_lock);
4023 remaining = raid5_dec_bi_phys_segments(bi);
4024 spin_unlock_irq(&conf->device_lock);
4025 if (remaining == 0) {
4027 if ( rw == WRITE )
4028 md_write_end(mddev);
4030 bio_endio(bi, 0);
4033 if (mddev->barrier) {
4034 /* We need to wait for the stripes to all be handled.
4035 * So: wait for preread_active_stripes to drop to 0.
4037 wait_event(mddev->thread->wqueue,
4038 atomic_read(&conf->preread_active_stripes) == 0);
4040 return 0;
4043 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4045 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4047 /* reshaping is quite different to recovery/resync so it is
4048 * handled quite separately ... here.
4050 * On each call to sync_request, we gather one chunk worth of
4051 * destination stripes and flag them as expanding.
4052 * Then we find all the source stripes and request reads.
4053 * As the reads complete, handle_stripe will copy the data
4054 * into the destination stripe and release that stripe.
4056 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4057 struct stripe_head *sh;
4058 sector_t first_sector, last_sector;
4059 int raid_disks = conf->previous_raid_disks;
4060 int data_disks = raid_disks - conf->max_degraded;
4061 int new_data_disks = conf->raid_disks - conf->max_degraded;
4062 int i;
4063 int dd_idx;
4064 sector_t writepos, readpos, safepos;
4065 sector_t stripe_addr;
4066 int reshape_sectors;
4067 struct list_head stripes;
4069 if (sector_nr == 0) {
4070 /* If restarting in the middle, skip the initial sectors */
4071 if (mddev->delta_disks < 0 &&
4072 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4073 sector_nr = raid5_size(mddev, 0, 0)
4074 - conf->reshape_progress;
4075 } else if (mddev->delta_disks >= 0 &&
4076 conf->reshape_progress > 0)
4077 sector_nr = conf->reshape_progress;
4078 sector_div(sector_nr, new_data_disks);
4079 if (sector_nr) {
4080 mddev->curr_resync_completed = sector_nr;
4081 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4082 *skipped = 1;
4083 return sector_nr;
4087 /* We need to process a full chunk at a time.
4088 * If old and new chunk sizes differ, we need to process the
4089 * largest of these
4091 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4092 reshape_sectors = mddev->new_chunk_sectors;
4093 else
4094 reshape_sectors = mddev->chunk_sectors;
4096 /* we update the metadata when there is more than 3Meg
4097 * in the block range (that is rather arbitrary, should
4098 * probably be time based) or when the data about to be
4099 * copied would over-write the source of the data at
4100 * the front of the range.
4101 * i.e. one new_stripe along from reshape_progress new_maps
4102 * to after where reshape_safe old_maps to
4104 writepos = conf->reshape_progress;
4105 sector_div(writepos, new_data_disks);
4106 readpos = conf->reshape_progress;
4107 sector_div(readpos, data_disks);
4108 safepos = conf->reshape_safe;
4109 sector_div(safepos, data_disks);
4110 if (mddev->delta_disks < 0) {
4111 writepos -= min_t(sector_t, reshape_sectors, writepos);
4112 readpos += reshape_sectors;
4113 safepos += reshape_sectors;
4114 } else {
4115 writepos += reshape_sectors;
4116 readpos -= min_t(sector_t, reshape_sectors, readpos);
4117 safepos -= min_t(sector_t, reshape_sectors, safepos);
4120 /* 'writepos' is the most advanced device address we might write.
4121 * 'readpos' is the least advanced device address we might read.
4122 * 'safepos' is the least address recorded in the metadata as having
4123 * been reshaped.
4124 * If 'readpos' is behind 'writepos', then there is no way that we can
4125 * ensure safety in the face of a crash - that must be done by userspace
4126 * making a backup of the data. So in that case there is no particular
4127 * rush to update metadata.
4128 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4129 * update the metadata to advance 'safepos' to match 'readpos' so that
4130 * we can be safe in the event of a crash.
4131 * So we insist on updating metadata if safepos is behind writepos and
4132 * readpos is beyond writepos.
4133 * In any case, update the metadata every 10 seconds.
4134 * Maybe that number should be configurable, but I'm not sure it is
4135 * worth it.... maybe it could be a multiple of safemode_delay???
4137 if ((mddev->delta_disks < 0
4138 ? (safepos > writepos && readpos < writepos)
4139 : (safepos < writepos && readpos > writepos)) ||
4140 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4141 /* Cannot proceed until we've updated the superblock... */
4142 wait_event(conf->wait_for_overlap,
4143 atomic_read(&conf->reshape_stripes)==0);
4144 mddev->reshape_position = conf->reshape_progress;
4145 mddev->curr_resync_completed = mddev->curr_resync;
4146 conf->reshape_checkpoint = jiffies;
4147 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4148 md_wakeup_thread(mddev->thread);
4149 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4150 kthread_should_stop());
4151 spin_lock_irq(&conf->device_lock);
4152 conf->reshape_safe = mddev->reshape_position;
4153 spin_unlock_irq(&conf->device_lock);
4154 wake_up(&conf->wait_for_overlap);
4155 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4158 if (mddev->delta_disks < 0) {
4159 BUG_ON(conf->reshape_progress == 0);
4160 stripe_addr = writepos;
4161 BUG_ON((mddev->dev_sectors &
4162 ~((sector_t)reshape_sectors - 1))
4163 - reshape_sectors - stripe_addr
4164 != sector_nr);
4165 } else {
4166 BUG_ON(writepos != sector_nr + reshape_sectors);
4167 stripe_addr = sector_nr;
4169 INIT_LIST_HEAD(&stripes);
4170 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4171 int j;
4172 int skipped_disk = 0;
4173 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4174 set_bit(STRIPE_EXPANDING, &sh->state);
4175 atomic_inc(&conf->reshape_stripes);
4176 /* If any of this stripe is beyond the end of the old
4177 * array, then we need to zero those blocks
4179 for (j=sh->disks; j--;) {
4180 sector_t s;
4181 if (j == sh->pd_idx)
4182 continue;
4183 if (conf->level == 6 &&
4184 j == sh->qd_idx)
4185 continue;
4186 s = compute_blocknr(sh, j, 0);
4187 if (s < raid5_size(mddev, 0, 0)) {
4188 skipped_disk = 1;
4189 continue;
4191 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4192 set_bit(R5_Expanded, &sh->dev[j].flags);
4193 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4195 if (!skipped_disk) {
4196 set_bit(STRIPE_EXPAND_READY, &sh->state);
4197 set_bit(STRIPE_HANDLE, &sh->state);
4199 list_add(&sh->lru, &stripes);
4201 spin_lock_irq(&conf->device_lock);
4202 if (mddev->delta_disks < 0)
4203 conf->reshape_progress -= reshape_sectors * new_data_disks;
4204 else
4205 conf->reshape_progress += reshape_sectors * new_data_disks;
4206 spin_unlock_irq(&conf->device_lock);
4207 /* Ok, those stripe are ready. We can start scheduling
4208 * reads on the source stripes.
4209 * The source stripes are determined by mapping the first and last
4210 * block on the destination stripes.
4212 first_sector =
4213 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4214 1, &dd_idx, NULL);
4215 last_sector =
4216 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4217 * new_data_disks - 1),
4218 1, &dd_idx, NULL);
4219 if (last_sector >= mddev->dev_sectors)
4220 last_sector = mddev->dev_sectors - 1;
4221 while (first_sector <= last_sector) {
4222 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4223 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4224 set_bit(STRIPE_HANDLE, &sh->state);
4225 release_stripe(sh);
4226 first_sector += STRIPE_SECTORS;
4228 /* Now that the sources are clearly marked, we can release
4229 * the destination stripes
4231 while (!list_empty(&stripes)) {
4232 sh = list_entry(stripes.next, struct stripe_head, lru);
4233 list_del_init(&sh->lru);
4234 release_stripe(sh);
4236 /* If this takes us to the resync_max point where we have to pause,
4237 * then we need to write out the superblock.
4239 sector_nr += reshape_sectors;
4240 if ((sector_nr - mddev->curr_resync_completed) * 2
4241 >= mddev->resync_max - mddev->curr_resync_completed) {
4242 /* Cannot proceed until we've updated the superblock... */
4243 wait_event(conf->wait_for_overlap,
4244 atomic_read(&conf->reshape_stripes) == 0);
4245 mddev->reshape_position = conf->reshape_progress;
4246 mddev->curr_resync_completed = mddev->curr_resync + reshape_sectors;
4247 conf->reshape_checkpoint = jiffies;
4248 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4249 md_wakeup_thread(mddev->thread);
4250 wait_event(mddev->sb_wait,
4251 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4252 || kthread_should_stop());
4253 spin_lock_irq(&conf->device_lock);
4254 conf->reshape_safe = mddev->reshape_position;
4255 spin_unlock_irq(&conf->device_lock);
4256 wake_up(&conf->wait_for_overlap);
4257 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4259 return reshape_sectors;
4262 /* FIXME go_faster isn't used */
4263 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4265 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
4266 struct stripe_head *sh;
4267 sector_t max_sector = mddev->dev_sectors;
4268 int sync_blocks;
4269 int still_degraded = 0;
4270 int i;
4272 if (sector_nr >= max_sector) {
4273 /* just being told to finish up .. nothing much to do */
4274 unplug_slaves(mddev);
4276 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4277 end_reshape(conf);
4278 return 0;
4281 if (mddev->curr_resync < max_sector) /* aborted */
4282 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4283 &sync_blocks, 1);
4284 else /* completed sync */
4285 conf->fullsync = 0;
4286 bitmap_close_sync(mddev->bitmap);
4288 return 0;
4291 /* Allow raid5_quiesce to complete */
4292 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4294 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4295 return reshape_request(mddev, sector_nr, skipped);
4297 /* No need to check resync_max as we never do more than one
4298 * stripe, and as resync_max will always be on a chunk boundary,
4299 * if the check in md_do_sync didn't fire, there is no chance
4300 * of overstepping resync_max here
4303 /* if there is too many failed drives and we are trying
4304 * to resync, then assert that we are finished, because there is
4305 * nothing we can do.
4307 if (mddev->degraded >= conf->max_degraded &&
4308 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4309 sector_t rv = mddev->dev_sectors - sector_nr;
4310 *skipped = 1;
4311 return rv;
4313 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4314 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4315 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4316 /* we can skip this block, and probably more */
4317 sync_blocks /= STRIPE_SECTORS;
4318 *skipped = 1;
4319 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4323 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4325 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4326 if (sh == NULL) {
4327 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4328 /* make sure we don't swamp the stripe cache if someone else
4329 * is trying to get access
4331 schedule_timeout_uninterruptible(1);
4333 /* Need to check if array will still be degraded after recovery/resync
4334 * We don't need to check the 'failed' flag as when that gets set,
4335 * recovery aborts.
4337 for (i = 0; i < conf->raid_disks; i++)
4338 if (conf->disks[i].rdev == NULL)
4339 still_degraded = 1;
4341 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4343 spin_lock(&sh->lock);
4344 set_bit(STRIPE_SYNCING, &sh->state);
4345 clear_bit(STRIPE_INSYNC, &sh->state);
4346 spin_unlock(&sh->lock);
4348 handle_stripe(sh);
4349 release_stripe(sh);
4351 return STRIPE_SECTORS;
4354 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4356 /* We may not be able to submit a whole bio at once as there
4357 * may not be enough stripe_heads available.
4358 * We cannot pre-allocate enough stripe_heads as we may need
4359 * more than exist in the cache (if we allow ever large chunks).
4360 * So we do one stripe head at a time and record in
4361 * ->bi_hw_segments how many have been done.
4363 * We *know* that this entire raid_bio is in one chunk, so
4364 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4366 struct stripe_head *sh;
4367 int dd_idx;
4368 sector_t sector, logical_sector, last_sector;
4369 int scnt = 0;
4370 int remaining;
4371 int handled = 0;
4373 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4374 sector = raid5_compute_sector(conf, logical_sector,
4375 0, &dd_idx, NULL);
4376 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4378 for (; logical_sector < last_sector;
4379 logical_sector += STRIPE_SECTORS,
4380 sector += STRIPE_SECTORS,
4381 scnt++) {
4383 if (scnt < raid5_bi_hw_segments(raid_bio))
4384 /* already done this stripe */
4385 continue;
4387 sh = get_active_stripe(conf, sector, 0, 1, 0);
4389 if (!sh) {
4390 /* failed to get a stripe - must wait */
4391 raid5_set_bi_hw_segments(raid_bio, scnt);
4392 conf->retry_read_aligned = raid_bio;
4393 return handled;
4396 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4397 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4398 release_stripe(sh);
4399 raid5_set_bi_hw_segments(raid_bio, scnt);
4400 conf->retry_read_aligned = raid_bio;
4401 return handled;
4404 handle_stripe(sh);
4405 release_stripe(sh);
4406 handled++;
4408 spin_lock_irq(&conf->device_lock);
4409 remaining = raid5_dec_bi_phys_segments(raid_bio);
4410 spin_unlock_irq(&conf->device_lock);
4411 if (remaining == 0)
4412 bio_endio(raid_bio, 0);
4413 if (atomic_dec_and_test(&conf->active_aligned_reads))
4414 wake_up(&conf->wait_for_stripe);
4415 return handled;
4420 * This is our raid5 kernel thread.
4422 * We scan the hash table for stripes which can be handled now.
4423 * During the scan, completed stripes are saved for us by the interrupt
4424 * handler, so that they will not have to wait for our next wakeup.
4426 static void raid5d(mddev_t *mddev)
4428 struct stripe_head *sh;
4429 raid5_conf_t *conf = mddev->private;
4430 int handled;
4432 pr_debug("+++ raid5d active\n");
4434 md_check_recovery(mddev);
4436 handled = 0;
4437 spin_lock_irq(&conf->device_lock);
4438 while (1) {
4439 struct bio *bio;
4441 if (conf->seq_flush != conf->seq_write) {
4442 int seq = conf->seq_flush;
4443 spin_unlock_irq(&conf->device_lock);
4444 bitmap_unplug(mddev->bitmap);
4445 spin_lock_irq(&conf->device_lock);
4446 conf->seq_write = seq;
4447 activate_bit_delay(conf);
4450 while ((bio = remove_bio_from_retry(conf))) {
4451 int ok;
4452 spin_unlock_irq(&conf->device_lock);
4453 ok = retry_aligned_read(conf, bio);
4454 spin_lock_irq(&conf->device_lock);
4455 if (!ok)
4456 break;
4457 handled++;
4460 sh = __get_priority_stripe(conf);
4462 if (!sh)
4463 break;
4464 spin_unlock_irq(&conf->device_lock);
4466 handled++;
4467 handle_stripe(sh);
4468 release_stripe(sh);
4469 cond_resched();
4471 spin_lock_irq(&conf->device_lock);
4473 pr_debug("%d stripes handled\n", handled);
4475 spin_unlock_irq(&conf->device_lock);
4477 async_tx_issue_pending_all();
4478 unplug_slaves(mddev);
4480 pr_debug("--- raid5d inactive\n");
4483 static ssize_t
4484 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4486 raid5_conf_t *conf = mddev->private;
4487 if (conf)
4488 return sprintf(page, "%d\n", conf->max_nr_stripes);
4489 else
4490 return 0;
4493 static ssize_t
4494 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4496 raid5_conf_t *conf = mddev->private;
4497 unsigned long new;
4498 int err;
4500 if (len >= PAGE_SIZE)
4501 return -EINVAL;
4502 if (!conf)
4503 return -ENODEV;
4505 if (strict_strtoul(page, 10, &new))
4506 return -EINVAL;
4507 if (new <= 16 || new > 32768)
4508 return -EINVAL;
4509 while (new < conf->max_nr_stripes) {
4510 if (drop_one_stripe(conf))
4511 conf->max_nr_stripes--;
4512 else
4513 break;
4515 err = md_allow_write(mddev);
4516 if (err)
4517 return err;
4518 while (new > conf->max_nr_stripes) {
4519 if (grow_one_stripe(conf))
4520 conf->max_nr_stripes++;
4521 else break;
4523 return len;
4526 static struct md_sysfs_entry
4527 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4528 raid5_show_stripe_cache_size,
4529 raid5_store_stripe_cache_size);
4531 static ssize_t
4532 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4534 raid5_conf_t *conf = mddev->private;
4535 if (conf)
4536 return sprintf(page, "%d\n", conf->bypass_threshold);
4537 else
4538 return 0;
4541 static ssize_t
4542 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4544 raid5_conf_t *conf = mddev->private;
4545 unsigned long new;
4546 if (len >= PAGE_SIZE)
4547 return -EINVAL;
4548 if (!conf)
4549 return -ENODEV;
4551 if (strict_strtoul(page, 10, &new))
4552 return -EINVAL;
4553 if (new > conf->max_nr_stripes)
4554 return -EINVAL;
4555 conf->bypass_threshold = new;
4556 return len;
4559 static struct md_sysfs_entry
4560 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4561 S_IRUGO | S_IWUSR,
4562 raid5_show_preread_threshold,
4563 raid5_store_preread_threshold);
4565 static ssize_t
4566 stripe_cache_active_show(mddev_t *mddev, char *page)
4568 raid5_conf_t *conf = mddev->private;
4569 if (conf)
4570 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4571 else
4572 return 0;
4575 static struct md_sysfs_entry
4576 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4578 static struct attribute *raid5_attrs[] = {
4579 &raid5_stripecache_size.attr,
4580 &raid5_stripecache_active.attr,
4581 &raid5_preread_bypass_threshold.attr,
4582 NULL,
4584 static struct attribute_group raid5_attrs_group = {
4585 .name = NULL,
4586 .attrs = raid5_attrs,
4589 static sector_t
4590 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4592 raid5_conf_t *conf = mddev->private;
4594 if (!sectors)
4595 sectors = mddev->dev_sectors;
4596 if (!raid_disks)
4597 /* size is defined by the smallest of previous and new size */
4598 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4600 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4601 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4602 return sectors * (raid_disks - conf->max_degraded);
4605 static void raid5_free_percpu(raid5_conf_t *conf)
4607 struct raid5_percpu *percpu;
4608 unsigned long cpu;
4610 if (!conf->percpu)
4611 return;
4613 get_online_cpus();
4614 for_each_possible_cpu(cpu) {
4615 percpu = per_cpu_ptr(conf->percpu, cpu);
4616 safe_put_page(percpu->spare_page);
4617 kfree(percpu->scribble);
4619 #ifdef CONFIG_HOTPLUG_CPU
4620 unregister_cpu_notifier(&conf->cpu_notify);
4621 #endif
4622 put_online_cpus();
4624 free_percpu(conf->percpu);
4627 static void free_conf(raid5_conf_t *conf)
4629 shrink_stripes(conf);
4630 raid5_free_percpu(conf);
4631 kfree(conf->disks);
4632 kfree(conf->stripe_hashtbl);
4633 kfree(conf);
4636 #ifdef CONFIG_HOTPLUG_CPU
4637 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4638 void *hcpu)
4640 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4641 long cpu = (long)hcpu;
4642 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4644 switch (action) {
4645 case CPU_UP_PREPARE:
4646 case CPU_UP_PREPARE_FROZEN:
4647 if (conf->level == 6 && !percpu->spare_page)
4648 percpu->spare_page = alloc_page(GFP_KERNEL);
4649 if (!percpu->scribble)
4650 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4652 if (!percpu->scribble ||
4653 (conf->level == 6 && !percpu->spare_page)) {
4654 safe_put_page(percpu->spare_page);
4655 kfree(percpu->scribble);
4656 pr_err("%s: failed memory allocation for cpu%ld\n",
4657 __func__, cpu);
4658 return NOTIFY_BAD;
4660 break;
4661 case CPU_DEAD:
4662 case CPU_DEAD_FROZEN:
4663 safe_put_page(percpu->spare_page);
4664 kfree(percpu->scribble);
4665 percpu->spare_page = NULL;
4666 percpu->scribble = NULL;
4667 break;
4668 default:
4669 break;
4671 return NOTIFY_OK;
4673 #endif
4675 static int raid5_alloc_percpu(raid5_conf_t *conf)
4677 unsigned long cpu;
4678 struct page *spare_page;
4679 struct raid5_percpu *allcpus;
4680 void *scribble;
4681 int err;
4683 allcpus = alloc_percpu(struct raid5_percpu);
4684 if (!allcpus)
4685 return -ENOMEM;
4686 conf->percpu = allcpus;
4688 get_online_cpus();
4689 err = 0;
4690 for_each_present_cpu(cpu) {
4691 if (conf->level == 6) {
4692 spare_page = alloc_page(GFP_KERNEL);
4693 if (!spare_page) {
4694 err = -ENOMEM;
4695 break;
4697 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4699 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4700 if (!scribble) {
4701 err = -ENOMEM;
4702 break;
4704 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4706 #ifdef CONFIG_HOTPLUG_CPU
4707 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4708 conf->cpu_notify.priority = 0;
4709 if (err == 0)
4710 err = register_cpu_notifier(&conf->cpu_notify);
4711 #endif
4712 put_online_cpus();
4714 return err;
4717 static raid5_conf_t *setup_conf(mddev_t *mddev)
4719 raid5_conf_t *conf;
4720 int raid_disk, memory, max_disks;
4721 mdk_rdev_t *rdev;
4722 struct disk_info *disk;
4724 if (mddev->new_level != 5
4725 && mddev->new_level != 4
4726 && mddev->new_level != 6) {
4727 printk(KERN_ERR "raid5: %s: raid level not set to 4/5/6 (%d)\n",
4728 mdname(mddev), mddev->new_level);
4729 return ERR_PTR(-EIO);
4731 if ((mddev->new_level == 5
4732 && !algorithm_valid_raid5(mddev->new_layout)) ||
4733 (mddev->new_level == 6
4734 && !algorithm_valid_raid6(mddev->new_layout))) {
4735 printk(KERN_ERR "raid5: %s: layout %d not supported\n",
4736 mdname(mddev), mddev->new_layout);
4737 return ERR_PTR(-EIO);
4739 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4740 printk(KERN_ERR "raid6: not enough configured devices for %s (%d, minimum 4)\n",
4741 mdname(mddev), mddev->raid_disks);
4742 return ERR_PTR(-EINVAL);
4745 if (!mddev->new_chunk_sectors ||
4746 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4747 !is_power_of_2(mddev->new_chunk_sectors)) {
4748 printk(KERN_ERR "raid5: invalid chunk size %d for %s\n",
4749 mddev->new_chunk_sectors << 9, mdname(mddev));
4750 return ERR_PTR(-EINVAL);
4753 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4754 if (conf == NULL)
4755 goto abort;
4756 spin_lock_init(&conf->device_lock);
4757 init_waitqueue_head(&conf->wait_for_stripe);
4758 init_waitqueue_head(&conf->wait_for_overlap);
4759 INIT_LIST_HEAD(&conf->handle_list);
4760 INIT_LIST_HEAD(&conf->hold_list);
4761 INIT_LIST_HEAD(&conf->delayed_list);
4762 INIT_LIST_HEAD(&conf->bitmap_list);
4763 INIT_LIST_HEAD(&conf->inactive_list);
4764 atomic_set(&conf->active_stripes, 0);
4765 atomic_set(&conf->preread_active_stripes, 0);
4766 atomic_set(&conf->active_aligned_reads, 0);
4767 conf->bypass_threshold = BYPASS_THRESHOLD;
4769 conf->raid_disks = mddev->raid_disks;
4770 if (mddev->reshape_position == MaxSector)
4771 conf->previous_raid_disks = mddev->raid_disks;
4772 else
4773 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4774 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4775 conf->scribble_len = scribble_len(max_disks);
4777 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4778 GFP_KERNEL);
4779 if (!conf->disks)
4780 goto abort;
4782 conf->mddev = mddev;
4784 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4785 goto abort;
4787 conf->level = mddev->new_level;
4788 if (raid5_alloc_percpu(conf) != 0)
4789 goto abort;
4791 pr_debug("raid5: run(%s) called.\n", mdname(mddev));
4793 list_for_each_entry(rdev, &mddev->disks, same_set) {
4794 raid_disk = rdev->raid_disk;
4795 if (raid_disk >= max_disks
4796 || raid_disk < 0)
4797 continue;
4798 disk = conf->disks + raid_disk;
4800 disk->rdev = rdev;
4802 if (test_bit(In_sync, &rdev->flags)) {
4803 char b[BDEVNAME_SIZE];
4804 printk(KERN_INFO "raid5: device %s operational as raid"
4805 " disk %d\n", bdevname(rdev->bdev,b),
4806 raid_disk);
4807 } else
4808 /* Cannot rely on bitmap to complete recovery */
4809 conf->fullsync = 1;
4812 conf->chunk_sectors = mddev->new_chunk_sectors;
4813 conf->level = mddev->new_level;
4814 if (conf->level == 6)
4815 conf->max_degraded = 2;
4816 else
4817 conf->max_degraded = 1;
4818 conf->algorithm = mddev->new_layout;
4819 conf->max_nr_stripes = NR_STRIPES;
4820 conf->reshape_progress = mddev->reshape_position;
4821 if (conf->reshape_progress != MaxSector) {
4822 conf->prev_chunk_sectors = mddev->chunk_sectors;
4823 conf->prev_algo = mddev->layout;
4826 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4827 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4828 if (grow_stripes(conf, conf->max_nr_stripes)) {
4829 printk(KERN_ERR
4830 "raid5: couldn't allocate %dkB for buffers\n", memory);
4831 goto abort;
4832 } else
4833 printk(KERN_INFO "raid5: allocated %dkB for %s\n",
4834 memory, mdname(mddev));
4836 conf->thread = md_register_thread(raid5d, mddev, NULL);
4837 if (!conf->thread) {
4838 printk(KERN_ERR
4839 "raid5: couldn't allocate thread for %s\n",
4840 mdname(mddev));
4841 goto abort;
4844 return conf;
4846 abort:
4847 if (conf) {
4848 free_conf(conf);
4849 return ERR_PTR(-EIO);
4850 } else
4851 return ERR_PTR(-ENOMEM);
4855 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4857 switch (algo) {
4858 case ALGORITHM_PARITY_0:
4859 if (raid_disk < max_degraded)
4860 return 1;
4861 break;
4862 case ALGORITHM_PARITY_N:
4863 if (raid_disk >= raid_disks - max_degraded)
4864 return 1;
4865 break;
4866 case ALGORITHM_PARITY_0_6:
4867 if (raid_disk == 0 ||
4868 raid_disk == raid_disks - 1)
4869 return 1;
4870 break;
4871 case ALGORITHM_LEFT_ASYMMETRIC_6:
4872 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4873 case ALGORITHM_LEFT_SYMMETRIC_6:
4874 case ALGORITHM_RIGHT_SYMMETRIC_6:
4875 if (raid_disk == raid_disks - 1)
4876 return 1;
4878 return 0;
4881 static int run(mddev_t *mddev)
4883 raid5_conf_t *conf;
4884 int working_disks = 0, chunk_size;
4885 int dirty_parity_disks = 0;
4886 mdk_rdev_t *rdev;
4887 sector_t reshape_offset = 0;
4889 if (mddev->recovery_cp != MaxSector)
4890 printk(KERN_NOTICE "raid5: %s is not clean"
4891 " -- starting background reconstruction\n",
4892 mdname(mddev));
4893 if (mddev->reshape_position != MaxSector) {
4894 /* Check that we can continue the reshape.
4895 * Currently only disks can change, it must
4896 * increase, and we must be past the point where
4897 * a stripe over-writes itself
4899 sector_t here_new, here_old;
4900 int old_disks;
4901 int max_degraded = (mddev->level == 6 ? 2 : 1);
4903 if (mddev->new_level != mddev->level) {
4904 printk(KERN_ERR "raid5: %s: unsupported reshape "
4905 "required - aborting.\n",
4906 mdname(mddev));
4907 return -EINVAL;
4909 old_disks = mddev->raid_disks - mddev->delta_disks;
4910 /* reshape_position must be on a new-stripe boundary, and one
4911 * further up in new geometry must map after here in old
4912 * geometry.
4914 here_new = mddev->reshape_position;
4915 if (sector_div(here_new, mddev->new_chunk_sectors *
4916 (mddev->raid_disks - max_degraded))) {
4917 printk(KERN_ERR "raid5: reshape_position not "
4918 "on a stripe boundary\n");
4919 return -EINVAL;
4921 reshape_offset = here_new * mddev->new_chunk_sectors;
4922 /* here_new is the stripe we will write to */
4923 here_old = mddev->reshape_position;
4924 sector_div(here_old, mddev->chunk_sectors *
4925 (old_disks-max_degraded));
4926 /* here_old is the first stripe that we might need to read
4927 * from */
4928 if (mddev->delta_disks == 0) {
4929 /* We cannot be sure it is safe to start an in-place
4930 * reshape. It is only safe if user-space if monitoring
4931 * and taking constant backups.
4932 * mdadm always starts a situation like this in
4933 * readonly mode so it can take control before
4934 * allowing any writes. So just check for that.
4936 if ((here_new * mddev->new_chunk_sectors !=
4937 here_old * mddev->chunk_sectors) ||
4938 mddev->ro == 0) {
4939 printk(KERN_ERR "raid5: in-place reshape must be started"
4940 " in read-only mode - aborting\n");
4941 return -EINVAL;
4943 } else if (mddev->delta_disks < 0
4944 ? (here_new * mddev->new_chunk_sectors <=
4945 here_old * mddev->chunk_sectors)
4946 : (here_new * mddev->new_chunk_sectors >=
4947 here_old * mddev->chunk_sectors)) {
4948 /* Reading from the same stripe as writing to - bad */
4949 printk(KERN_ERR "raid5: reshape_position too early for "
4950 "auto-recovery - aborting.\n");
4951 return -EINVAL;
4953 printk(KERN_INFO "raid5: reshape will continue\n");
4954 /* OK, we should be able to continue; */
4955 } else {
4956 BUG_ON(mddev->level != mddev->new_level);
4957 BUG_ON(mddev->layout != mddev->new_layout);
4958 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
4959 BUG_ON(mddev->delta_disks != 0);
4962 if (mddev->private == NULL)
4963 conf = setup_conf(mddev);
4964 else
4965 conf = mddev->private;
4967 if (IS_ERR(conf))
4968 return PTR_ERR(conf);
4970 mddev->thread = conf->thread;
4971 conf->thread = NULL;
4972 mddev->private = conf;
4975 * 0 for a fully functional array, 1 or 2 for a degraded array.
4977 list_for_each_entry(rdev, &mddev->disks, same_set) {
4978 if (rdev->raid_disk < 0)
4979 continue;
4980 if (test_bit(In_sync, &rdev->flags))
4981 working_disks++;
4982 /* This disc is not fully in-sync. However if it
4983 * just stored parity (beyond the recovery_offset),
4984 * when we don't need to be concerned about the
4985 * array being dirty.
4986 * When reshape goes 'backwards', we never have
4987 * partially completed devices, so we only need
4988 * to worry about reshape going forwards.
4990 /* Hack because v0.91 doesn't store recovery_offset properly. */
4991 if (mddev->major_version == 0 &&
4992 mddev->minor_version > 90)
4993 rdev->recovery_offset = reshape_offset;
4995 printk("%d: w=%d pa=%d pr=%d m=%d a=%d r=%d op1=%d op2=%d\n",
4996 rdev->raid_disk, working_disks, conf->prev_algo,
4997 conf->previous_raid_disks, conf->max_degraded,
4998 conf->algorithm, conf->raid_disks,
4999 only_parity(rdev->raid_disk,
5000 conf->prev_algo,
5001 conf->previous_raid_disks,
5002 conf->max_degraded),
5003 only_parity(rdev->raid_disk,
5004 conf->algorithm,
5005 conf->raid_disks,
5006 conf->max_degraded));
5007 if (rdev->recovery_offset < reshape_offset) {
5008 /* We need to check old and new layout */
5009 if (!only_parity(rdev->raid_disk,
5010 conf->algorithm,
5011 conf->raid_disks,
5012 conf->max_degraded))
5013 continue;
5015 if (!only_parity(rdev->raid_disk,
5016 conf->prev_algo,
5017 conf->previous_raid_disks,
5018 conf->max_degraded))
5019 continue;
5020 dirty_parity_disks++;
5023 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5024 - working_disks);
5026 if (mddev->degraded > conf->max_degraded) {
5027 printk(KERN_ERR "raid5: not enough operational devices for %s"
5028 " (%d/%d failed)\n",
5029 mdname(mddev), mddev->degraded, conf->raid_disks);
5030 goto abort;
5033 /* device size must be a multiple of chunk size */
5034 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5035 mddev->resync_max_sectors = mddev->dev_sectors;
5037 if (mddev->degraded > dirty_parity_disks &&
5038 mddev->recovery_cp != MaxSector) {
5039 if (mddev->ok_start_degraded)
5040 printk(KERN_WARNING
5041 "raid5: starting dirty degraded array: %s"
5042 "- data corruption possible.\n",
5043 mdname(mddev));
5044 else {
5045 printk(KERN_ERR
5046 "raid5: cannot start dirty degraded array for %s\n",
5047 mdname(mddev));
5048 goto abort;
5052 if (mddev->degraded == 0)
5053 printk("raid5: raid level %d set %s active with %d out of %d"
5054 " devices, algorithm %d\n", conf->level, mdname(mddev),
5055 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5056 mddev->new_layout);
5057 else
5058 printk(KERN_ALERT "raid5: raid level %d set %s active with %d"
5059 " out of %d devices, algorithm %d\n", conf->level,
5060 mdname(mddev), mddev->raid_disks - mddev->degraded,
5061 mddev->raid_disks, mddev->new_layout);
5063 print_raid5_conf(conf);
5065 if (conf->reshape_progress != MaxSector) {
5066 printk("...ok start reshape thread\n");
5067 conf->reshape_safe = conf->reshape_progress;
5068 atomic_set(&conf->reshape_stripes, 0);
5069 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5070 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5071 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5072 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5073 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5074 "reshape");
5077 /* read-ahead size must cover two whole stripes, which is
5078 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5081 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5082 int stripe = data_disks *
5083 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5084 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5085 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5088 /* Ok, everything is just fine now */
5089 if (mddev->to_remove == &raid5_attrs_group)
5090 mddev->to_remove = NULL;
5091 else if (sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5092 printk(KERN_WARNING
5093 "raid5: failed to create sysfs attributes for %s\n",
5094 mdname(mddev));
5096 mddev->queue->queue_lock = &conf->device_lock;
5098 mddev->queue->unplug_fn = raid5_unplug_device;
5099 mddev->queue->backing_dev_info.congested_data = mddev;
5100 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5102 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5104 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5105 chunk_size = mddev->chunk_sectors << 9;
5106 blk_queue_io_min(mddev->queue, chunk_size);
5107 blk_queue_io_opt(mddev->queue, chunk_size *
5108 (conf->raid_disks - conf->max_degraded));
5110 list_for_each_entry(rdev, &mddev->disks, same_set)
5111 disk_stack_limits(mddev->gendisk, rdev->bdev,
5112 rdev->data_offset << 9);
5114 return 0;
5115 abort:
5116 md_unregister_thread(mddev->thread);
5117 mddev->thread = NULL;
5118 if (conf) {
5119 print_raid5_conf(conf);
5120 free_conf(conf);
5122 mddev->private = NULL;
5123 printk(KERN_ALERT "raid5: failed to run raid set %s\n", mdname(mddev));
5124 return -EIO;
5129 static int stop(mddev_t *mddev)
5131 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5133 md_unregister_thread(mddev->thread);
5134 mddev->thread = NULL;
5135 mddev->queue->backing_dev_info.congested_fn = NULL;
5136 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
5137 free_conf(conf);
5138 mddev->private = NULL;
5139 mddev->to_remove = &raid5_attrs_group;
5140 return 0;
5143 #ifdef DEBUG
5144 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5146 int i;
5148 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5149 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5150 seq_printf(seq, "sh %llu, count %d.\n",
5151 (unsigned long long)sh->sector, atomic_read(&sh->count));
5152 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5153 for (i = 0; i < sh->disks; i++) {
5154 seq_printf(seq, "(cache%d: %p %ld) ",
5155 i, sh->dev[i].page, sh->dev[i].flags);
5157 seq_printf(seq, "\n");
5160 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5162 struct stripe_head *sh;
5163 struct hlist_node *hn;
5164 int i;
5166 spin_lock_irq(&conf->device_lock);
5167 for (i = 0; i < NR_HASH; i++) {
5168 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5169 if (sh->raid_conf != conf)
5170 continue;
5171 print_sh(seq, sh);
5174 spin_unlock_irq(&conf->device_lock);
5176 #endif
5178 static void status(struct seq_file *seq, mddev_t *mddev)
5180 raid5_conf_t *conf = (raid5_conf_t *) mddev->private;
5181 int i;
5183 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5184 mddev->chunk_sectors / 2, mddev->layout);
5185 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5186 for (i = 0; i < conf->raid_disks; i++)
5187 seq_printf (seq, "%s",
5188 conf->disks[i].rdev &&
5189 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5190 seq_printf (seq, "]");
5191 #ifdef DEBUG
5192 seq_printf (seq, "\n");
5193 printall(seq, conf);
5194 #endif
5197 static void print_raid5_conf (raid5_conf_t *conf)
5199 int i;
5200 struct disk_info *tmp;
5202 printk("RAID5 conf printout:\n");
5203 if (!conf) {
5204 printk("(conf==NULL)\n");
5205 return;
5207 printk(" --- rd:%d wd:%d\n", conf->raid_disks,
5208 conf->raid_disks - conf->mddev->degraded);
5210 for (i = 0; i < conf->raid_disks; i++) {
5211 char b[BDEVNAME_SIZE];
5212 tmp = conf->disks + i;
5213 if (tmp->rdev)
5214 printk(" disk %d, o:%d, dev:%s\n",
5215 i, !test_bit(Faulty, &tmp->rdev->flags),
5216 bdevname(tmp->rdev->bdev,b));
5220 static int raid5_spare_active(mddev_t *mddev)
5222 int i;
5223 raid5_conf_t *conf = mddev->private;
5224 struct disk_info *tmp;
5226 for (i = 0; i < conf->raid_disks; i++) {
5227 tmp = conf->disks + i;
5228 if (tmp->rdev
5229 && !test_bit(Faulty, &tmp->rdev->flags)
5230 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5231 unsigned long flags;
5232 spin_lock_irqsave(&conf->device_lock, flags);
5233 mddev->degraded--;
5234 spin_unlock_irqrestore(&conf->device_lock, flags);
5237 print_raid5_conf(conf);
5238 return 0;
5241 static int raid5_remove_disk(mddev_t *mddev, int number)
5243 raid5_conf_t *conf = mddev->private;
5244 int err = 0;
5245 mdk_rdev_t *rdev;
5246 struct disk_info *p = conf->disks + number;
5248 print_raid5_conf(conf);
5249 rdev = p->rdev;
5250 if (rdev) {
5251 if (number >= conf->raid_disks &&
5252 conf->reshape_progress == MaxSector)
5253 clear_bit(In_sync, &rdev->flags);
5255 if (test_bit(In_sync, &rdev->flags) ||
5256 atomic_read(&rdev->nr_pending)) {
5257 err = -EBUSY;
5258 goto abort;
5260 /* Only remove non-faulty devices if recovery
5261 * isn't possible.
5263 if (!test_bit(Faulty, &rdev->flags) &&
5264 mddev->degraded <= conf->max_degraded &&
5265 number < conf->raid_disks) {
5266 err = -EBUSY;
5267 goto abort;
5269 p->rdev = NULL;
5270 synchronize_rcu();
5271 if (atomic_read(&rdev->nr_pending)) {
5272 /* lost the race, try later */
5273 err = -EBUSY;
5274 p->rdev = rdev;
5277 abort:
5279 print_raid5_conf(conf);
5280 return err;
5283 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5285 raid5_conf_t *conf = mddev->private;
5286 int err = -EEXIST;
5287 int disk;
5288 struct disk_info *p;
5289 int first = 0;
5290 int last = conf->raid_disks - 1;
5292 if (mddev->degraded > conf->max_degraded)
5293 /* no point adding a device */
5294 return -EINVAL;
5296 if (rdev->raid_disk >= 0)
5297 first = last = rdev->raid_disk;
5300 * find the disk ... but prefer rdev->saved_raid_disk
5301 * if possible.
5303 if (rdev->saved_raid_disk >= 0 &&
5304 rdev->saved_raid_disk >= first &&
5305 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5306 disk = rdev->saved_raid_disk;
5307 else
5308 disk = first;
5309 for ( ; disk <= last ; disk++)
5310 if ((p=conf->disks + disk)->rdev == NULL) {
5311 clear_bit(In_sync, &rdev->flags);
5312 rdev->raid_disk = disk;
5313 err = 0;
5314 if (rdev->saved_raid_disk != disk)
5315 conf->fullsync = 1;
5316 rcu_assign_pointer(p->rdev, rdev);
5317 break;
5319 print_raid5_conf(conf);
5320 return err;
5323 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5325 /* no resync is happening, and there is enough space
5326 * on all devices, so we can resize.
5327 * We need to make sure resync covers any new space.
5328 * If the array is shrinking we should possibly wait until
5329 * any io in the removed space completes, but it hardly seems
5330 * worth it.
5332 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5333 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5334 mddev->raid_disks));
5335 if (mddev->array_sectors >
5336 raid5_size(mddev, sectors, mddev->raid_disks))
5337 return -EINVAL;
5338 set_capacity(mddev->gendisk, mddev->array_sectors);
5339 mddev->changed = 1;
5340 revalidate_disk(mddev->gendisk);
5341 if (sectors > mddev->dev_sectors && mddev->recovery_cp == MaxSector) {
5342 mddev->recovery_cp = mddev->dev_sectors;
5343 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5345 mddev->dev_sectors = sectors;
5346 mddev->resync_max_sectors = sectors;
5347 return 0;
5350 static int check_stripe_cache(mddev_t *mddev)
5352 /* Can only proceed if there are plenty of stripe_heads.
5353 * We need a minimum of one full stripe,, and for sensible progress
5354 * it is best to have about 4 times that.
5355 * If we require 4 times, then the default 256 4K stripe_heads will
5356 * allow for chunk sizes up to 256K, which is probably OK.
5357 * If the chunk size is greater, user-space should request more
5358 * stripe_heads first.
5360 raid5_conf_t *conf = mddev->private;
5361 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5362 > conf->max_nr_stripes ||
5363 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5364 > conf->max_nr_stripes) {
5365 printk(KERN_WARNING "raid5: reshape: not enough stripes. Needed %lu\n",
5366 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5367 / STRIPE_SIZE)*4);
5368 return 0;
5370 return 1;
5373 static int check_reshape(mddev_t *mddev)
5375 raid5_conf_t *conf = mddev->private;
5377 if (mddev->delta_disks == 0 &&
5378 mddev->new_layout == mddev->layout &&
5379 mddev->new_chunk_sectors == mddev->chunk_sectors)
5380 return 0; /* nothing to do */
5381 if (mddev->bitmap)
5382 /* Cannot grow a bitmap yet */
5383 return -EBUSY;
5384 if (mddev->degraded > conf->max_degraded)
5385 return -EINVAL;
5386 if (mddev->delta_disks < 0) {
5387 /* We might be able to shrink, but the devices must
5388 * be made bigger first.
5389 * For raid6, 4 is the minimum size.
5390 * Otherwise 2 is the minimum
5392 int min = 2;
5393 if (mddev->level == 6)
5394 min = 4;
5395 if (mddev->raid_disks + mddev->delta_disks < min)
5396 return -EINVAL;
5399 if (!check_stripe_cache(mddev))
5400 return -ENOSPC;
5402 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5405 static int raid5_start_reshape(mddev_t *mddev)
5407 raid5_conf_t *conf = mddev->private;
5408 mdk_rdev_t *rdev;
5409 int spares = 0;
5410 int added_devices = 0;
5411 unsigned long flags;
5413 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5414 return -EBUSY;
5416 if (!check_stripe_cache(mddev))
5417 return -ENOSPC;
5419 list_for_each_entry(rdev, &mddev->disks, same_set)
5420 if (rdev->raid_disk < 0 &&
5421 !test_bit(Faulty, &rdev->flags))
5422 spares++;
5424 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5425 /* Not enough devices even to make a degraded array
5426 * of that size
5428 return -EINVAL;
5430 /* Refuse to reduce size of the array. Any reductions in
5431 * array size must be through explicit setting of array_size
5432 * attribute.
5434 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5435 < mddev->array_sectors) {
5436 printk(KERN_ERR "md: %s: array size must be reduced "
5437 "before number of disks\n", mdname(mddev));
5438 return -EINVAL;
5441 atomic_set(&conf->reshape_stripes, 0);
5442 spin_lock_irq(&conf->device_lock);
5443 conf->previous_raid_disks = conf->raid_disks;
5444 conf->raid_disks += mddev->delta_disks;
5445 conf->prev_chunk_sectors = conf->chunk_sectors;
5446 conf->chunk_sectors = mddev->new_chunk_sectors;
5447 conf->prev_algo = conf->algorithm;
5448 conf->algorithm = mddev->new_layout;
5449 if (mddev->delta_disks < 0)
5450 conf->reshape_progress = raid5_size(mddev, 0, 0);
5451 else
5452 conf->reshape_progress = 0;
5453 conf->reshape_safe = conf->reshape_progress;
5454 conf->generation++;
5455 spin_unlock_irq(&conf->device_lock);
5457 /* Add some new drives, as many as will fit.
5458 * We know there are enough to make the newly sized array work.
5460 list_for_each_entry(rdev, &mddev->disks, same_set)
5461 if (rdev->raid_disk < 0 &&
5462 !test_bit(Faulty, &rdev->flags)) {
5463 if (raid5_add_disk(mddev, rdev) == 0) {
5464 char nm[20];
5465 if (rdev->raid_disk >= conf->previous_raid_disks) {
5466 set_bit(In_sync, &rdev->flags);
5467 added_devices++;
5468 } else
5469 rdev->recovery_offset = 0;
5470 sprintf(nm, "rd%d", rdev->raid_disk);
5471 if (sysfs_create_link(&mddev->kobj,
5472 &rdev->kobj, nm))
5473 printk(KERN_WARNING
5474 "raid5: failed to create "
5475 " link %s for %s\n",
5476 nm, mdname(mddev));
5477 } else
5478 break;
5481 /* When a reshape changes the number of devices, ->degraded
5482 * is measured against the large of the pre and post number of
5483 * devices.*/
5484 if (mddev->delta_disks > 0) {
5485 spin_lock_irqsave(&conf->device_lock, flags);
5486 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5487 - added_devices;
5488 spin_unlock_irqrestore(&conf->device_lock, flags);
5490 mddev->raid_disks = conf->raid_disks;
5491 mddev->reshape_position = conf->reshape_progress;
5492 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5494 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5495 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5496 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5497 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5498 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5499 "reshape");
5500 if (!mddev->sync_thread) {
5501 mddev->recovery = 0;
5502 spin_lock_irq(&conf->device_lock);
5503 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5504 conf->reshape_progress = MaxSector;
5505 spin_unlock_irq(&conf->device_lock);
5506 return -EAGAIN;
5508 conf->reshape_checkpoint = jiffies;
5509 md_wakeup_thread(mddev->sync_thread);
5510 md_new_event(mddev);
5511 return 0;
5514 /* This is called from the reshape thread and should make any
5515 * changes needed in 'conf'
5517 static void end_reshape(raid5_conf_t *conf)
5520 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5522 spin_lock_irq(&conf->device_lock);
5523 conf->previous_raid_disks = conf->raid_disks;
5524 conf->reshape_progress = MaxSector;
5525 spin_unlock_irq(&conf->device_lock);
5526 wake_up(&conf->wait_for_overlap);
5528 /* read-ahead size must cover two whole stripes, which is
5529 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5532 int data_disks = conf->raid_disks - conf->max_degraded;
5533 int stripe = data_disks * ((conf->chunk_sectors << 9)
5534 / PAGE_SIZE);
5535 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5536 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5541 /* This is called from the raid5d thread with mddev_lock held.
5542 * It makes config changes to the device.
5544 static void raid5_finish_reshape(mddev_t *mddev)
5546 raid5_conf_t *conf = mddev->private;
5548 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5550 if (mddev->delta_disks > 0) {
5551 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5552 set_capacity(mddev->gendisk, mddev->array_sectors);
5553 mddev->changed = 1;
5554 revalidate_disk(mddev->gendisk);
5555 } else {
5556 int d;
5557 mddev->degraded = conf->raid_disks;
5558 for (d = 0; d < conf->raid_disks ; d++)
5559 if (conf->disks[d].rdev &&
5560 test_bit(In_sync,
5561 &conf->disks[d].rdev->flags))
5562 mddev->degraded--;
5563 for (d = conf->raid_disks ;
5564 d < conf->raid_disks - mddev->delta_disks;
5565 d++) {
5566 mdk_rdev_t *rdev = conf->disks[d].rdev;
5567 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5568 char nm[20];
5569 sprintf(nm, "rd%d", rdev->raid_disk);
5570 sysfs_remove_link(&mddev->kobj, nm);
5571 rdev->raid_disk = -1;
5575 mddev->layout = conf->algorithm;
5576 mddev->chunk_sectors = conf->chunk_sectors;
5577 mddev->reshape_position = MaxSector;
5578 mddev->delta_disks = 0;
5582 static void raid5_quiesce(mddev_t *mddev, int state)
5584 raid5_conf_t *conf = mddev->private;
5586 switch(state) {
5587 case 2: /* resume for a suspend */
5588 wake_up(&conf->wait_for_overlap);
5589 break;
5591 case 1: /* stop all writes */
5592 spin_lock_irq(&conf->device_lock);
5593 /* '2' tells resync/reshape to pause so that all
5594 * active stripes can drain
5596 conf->quiesce = 2;
5597 wait_event_lock_irq(conf->wait_for_stripe,
5598 atomic_read(&conf->active_stripes) == 0 &&
5599 atomic_read(&conf->active_aligned_reads) == 0,
5600 conf->device_lock, /* nothing */);
5601 conf->quiesce = 1;
5602 spin_unlock_irq(&conf->device_lock);
5603 /* allow reshape to continue */
5604 wake_up(&conf->wait_for_overlap);
5605 break;
5607 case 0: /* re-enable writes */
5608 spin_lock_irq(&conf->device_lock);
5609 conf->quiesce = 0;
5610 wake_up(&conf->wait_for_stripe);
5611 wake_up(&conf->wait_for_overlap);
5612 spin_unlock_irq(&conf->device_lock);
5613 break;
5618 static void *raid5_takeover_raid1(mddev_t *mddev)
5620 int chunksect;
5622 if (mddev->raid_disks != 2 ||
5623 mddev->degraded > 1)
5624 return ERR_PTR(-EINVAL);
5626 /* Should check if there are write-behind devices? */
5628 chunksect = 64*2; /* 64K by default */
5630 /* The array must be an exact multiple of chunksize */
5631 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5632 chunksect >>= 1;
5634 if ((chunksect<<9) < STRIPE_SIZE)
5635 /* array size does not allow a suitable chunk size */
5636 return ERR_PTR(-EINVAL);
5638 mddev->new_level = 5;
5639 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5640 mddev->new_chunk_sectors = chunksect;
5642 return setup_conf(mddev);
5645 static void *raid5_takeover_raid6(mddev_t *mddev)
5647 int new_layout;
5649 switch (mddev->layout) {
5650 case ALGORITHM_LEFT_ASYMMETRIC_6:
5651 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5652 break;
5653 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5654 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5655 break;
5656 case ALGORITHM_LEFT_SYMMETRIC_6:
5657 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5658 break;
5659 case ALGORITHM_RIGHT_SYMMETRIC_6:
5660 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5661 break;
5662 case ALGORITHM_PARITY_0_6:
5663 new_layout = ALGORITHM_PARITY_0;
5664 break;
5665 case ALGORITHM_PARITY_N:
5666 new_layout = ALGORITHM_PARITY_N;
5667 break;
5668 default:
5669 return ERR_PTR(-EINVAL);
5671 mddev->new_level = 5;
5672 mddev->new_layout = new_layout;
5673 mddev->delta_disks = -1;
5674 mddev->raid_disks -= 1;
5675 return setup_conf(mddev);
5679 static int raid5_check_reshape(mddev_t *mddev)
5681 /* For a 2-drive array, the layout and chunk size can be changed
5682 * immediately as not restriping is needed.
5683 * For larger arrays we record the new value - after validation
5684 * to be used by a reshape pass.
5686 raid5_conf_t *conf = mddev->private;
5687 int new_chunk = mddev->new_chunk_sectors;
5689 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5690 return -EINVAL;
5691 if (new_chunk > 0) {
5692 if (!is_power_of_2(new_chunk))
5693 return -EINVAL;
5694 if (new_chunk < (PAGE_SIZE>>9))
5695 return -EINVAL;
5696 if (mddev->array_sectors & (new_chunk-1))
5697 /* not factor of array size */
5698 return -EINVAL;
5701 /* They look valid */
5703 if (mddev->raid_disks == 2) {
5704 /* can make the change immediately */
5705 if (mddev->new_layout >= 0) {
5706 conf->algorithm = mddev->new_layout;
5707 mddev->layout = mddev->new_layout;
5709 if (new_chunk > 0) {
5710 conf->chunk_sectors = new_chunk ;
5711 mddev->chunk_sectors = new_chunk;
5713 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5714 md_wakeup_thread(mddev->thread);
5716 return check_reshape(mddev);
5719 static int raid6_check_reshape(mddev_t *mddev)
5721 int new_chunk = mddev->new_chunk_sectors;
5723 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5724 return -EINVAL;
5725 if (new_chunk > 0) {
5726 if (!is_power_of_2(new_chunk))
5727 return -EINVAL;
5728 if (new_chunk < (PAGE_SIZE >> 9))
5729 return -EINVAL;
5730 if (mddev->array_sectors & (new_chunk-1))
5731 /* not factor of array size */
5732 return -EINVAL;
5735 /* They look valid */
5736 return check_reshape(mddev);
5739 static void *raid5_takeover(mddev_t *mddev)
5741 /* raid5 can take over:
5742 * raid0 - if all devices are the same - make it a raid4 layout
5743 * raid1 - if there are two drives. We need to know the chunk size
5744 * raid4 - trivial - just use a raid4 layout.
5745 * raid6 - Providing it is a *_6 layout
5748 if (mddev->level == 1)
5749 return raid5_takeover_raid1(mddev);
5750 if (mddev->level == 4) {
5751 mddev->new_layout = ALGORITHM_PARITY_N;
5752 mddev->new_level = 5;
5753 return setup_conf(mddev);
5755 if (mddev->level == 6)
5756 return raid5_takeover_raid6(mddev);
5758 return ERR_PTR(-EINVAL);
5762 static struct mdk_personality raid5_personality;
5764 static void *raid6_takeover(mddev_t *mddev)
5766 /* Currently can only take over a raid5. We map the
5767 * personality to an equivalent raid6 personality
5768 * with the Q block at the end.
5770 int new_layout;
5772 if (mddev->pers != &raid5_personality)
5773 return ERR_PTR(-EINVAL);
5774 if (mddev->degraded > 1)
5775 return ERR_PTR(-EINVAL);
5776 if (mddev->raid_disks > 253)
5777 return ERR_PTR(-EINVAL);
5778 if (mddev->raid_disks < 3)
5779 return ERR_PTR(-EINVAL);
5781 switch (mddev->layout) {
5782 case ALGORITHM_LEFT_ASYMMETRIC:
5783 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5784 break;
5785 case ALGORITHM_RIGHT_ASYMMETRIC:
5786 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5787 break;
5788 case ALGORITHM_LEFT_SYMMETRIC:
5789 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5790 break;
5791 case ALGORITHM_RIGHT_SYMMETRIC:
5792 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5793 break;
5794 case ALGORITHM_PARITY_0:
5795 new_layout = ALGORITHM_PARITY_0_6;
5796 break;
5797 case ALGORITHM_PARITY_N:
5798 new_layout = ALGORITHM_PARITY_N;
5799 break;
5800 default:
5801 return ERR_PTR(-EINVAL);
5803 mddev->new_level = 6;
5804 mddev->new_layout = new_layout;
5805 mddev->delta_disks = 1;
5806 mddev->raid_disks += 1;
5807 return setup_conf(mddev);
5811 static struct mdk_personality raid6_personality =
5813 .name = "raid6",
5814 .level = 6,
5815 .owner = THIS_MODULE,
5816 .make_request = make_request,
5817 .run = run,
5818 .stop = stop,
5819 .status = status,
5820 .error_handler = error,
5821 .hot_add_disk = raid5_add_disk,
5822 .hot_remove_disk= raid5_remove_disk,
5823 .spare_active = raid5_spare_active,
5824 .sync_request = sync_request,
5825 .resize = raid5_resize,
5826 .size = raid5_size,
5827 .check_reshape = raid6_check_reshape,
5828 .start_reshape = raid5_start_reshape,
5829 .finish_reshape = raid5_finish_reshape,
5830 .quiesce = raid5_quiesce,
5831 .takeover = raid6_takeover,
5833 static struct mdk_personality raid5_personality =
5835 .name = "raid5",
5836 .level = 5,
5837 .owner = THIS_MODULE,
5838 .make_request = make_request,
5839 .run = run,
5840 .stop = stop,
5841 .status = status,
5842 .error_handler = error,
5843 .hot_add_disk = raid5_add_disk,
5844 .hot_remove_disk= raid5_remove_disk,
5845 .spare_active = raid5_spare_active,
5846 .sync_request = sync_request,
5847 .resize = raid5_resize,
5848 .size = raid5_size,
5849 .check_reshape = raid5_check_reshape,
5850 .start_reshape = raid5_start_reshape,
5851 .finish_reshape = raid5_finish_reshape,
5852 .quiesce = raid5_quiesce,
5853 .takeover = raid5_takeover,
5856 static struct mdk_personality raid4_personality =
5858 .name = "raid4",
5859 .level = 4,
5860 .owner = THIS_MODULE,
5861 .make_request = make_request,
5862 .run = run,
5863 .stop = stop,
5864 .status = status,
5865 .error_handler = error,
5866 .hot_add_disk = raid5_add_disk,
5867 .hot_remove_disk= raid5_remove_disk,
5868 .spare_active = raid5_spare_active,
5869 .sync_request = sync_request,
5870 .resize = raid5_resize,
5871 .size = raid5_size,
5872 .check_reshape = raid5_check_reshape,
5873 .start_reshape = raid5_start_reshape,
5874 .finish_reshape = raid5_finish_reshape,
5875 .quiesce = raid5_quiesce,
5878 static int __init raid5_init(void)
5880 register_md_personality(&raid6_personality);
5881 register_md_personality(&raid5_personality);
5882 register_md_personality(&raid4_personality);
5883 return 0;
5886 static void raid5_exit(void)
5888 unregister_md_personality(&raid6_personality);
5889 unregister_md_personality(&raid5_personality);
5890 unregister_md_personality(&raid4_personality);
5893 module_init(raid5_init);
5894 module_exit(raid5_exit);
5895 MODULE_LICENSE("GPL");
5896 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
5897 MODULE_ALIAS("md-personality-4"); /* RAID5 */
5898 MODULE_ALIAS("md-raid5");
5899 MODULE_ALIAS("md-raid4");
5900 MODULE_ALIAS("md-level-5");
5901 MODULE_ALIAS("md-level-4");
5902 MODULE_ALIAS("md-personality-8"); /* RAID6 */
5903 MODULE_ALIAS("md-raid6");
5904 MODULE_ALIAS("md-level-6");
5906 /* This used to be two separate modules, they were: */
5907 MODULE_ALIAS("raid5");
5908 MODULE_ALIAS("raid6");