hwmon: (w83795) Delay reading limit registers
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / arm / vfp / vfpmodule.c
blob8063a322c790dd80b3c6b0719541d9e937c2a2bc
1 /*
2 * linux/arch/arm/vfp/vfpmodule.c
4 * Copyright (C) 2004 ARM Limited.
5 * Written by Deep Blue Solutions Limited.
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
18 #include <asm/cputype.h>
19 #include <asm/thread_notify.h>
20 #include <asm/vfp.h>
22 #include "vfpinstr.h"
23 #include "vfp.h"
26 * Our undef handlers (in entry.S)
28 void vfp_testing_entry(void);
29 void vfp_support_entry(void);
30 void vfp_null_entry(void);
32 void (*vfp_vector)(void) = vfp_null_entry;
33 union vfp_state *last_VFP_context[NR_CPUS];
36 * Dual-use variable.
37 * Used in startup: set to non-zero if VFP checks fail
38 * After startup, holds VFP architecture
40 unsigned int VFP_arch;
43 * Per-thread VFP initialization.
45 static void vfp_thread_flush(struct thread_info *thread)
47 union vfp_state *vfp = &thread->vfpstate;
48 unsigned int cpu;
50 memset(vfp, 0, sizeof(union vfp_state));
52 vfp->hard.fpexc = FPEXC_EN;
53 vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
56 * Disable VFP to ensure we initialize it first. We must ensure
57 * that the modification of last_VFP_context[] and hardware disable
58 * are done for the same CPU and without preemption.
60 cpu = get_cpu();
61 if (last_VFP_context[cpu] == vfp)
62 last_VFP_context[cpu] = NULL;
63 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
64 put_cpu();
67 static void vfp_thread_exit(struct thread_info *thread)
69 /* release case: Per-thread VFP cleanup. */
70 union vfp_state *vfp = &thread->vfpstate;
71 unsigned int cpu = get_cpu();
73 if (last_VFP_context[cpu] == vfp)
74 last_VFP_context[cpu] = NULL;
75 put_cpu();
79 * When this function is called with the following 'cmd's, the following
80 * is true while this function is being run:
81 * THREAD_NOFTIFY_SWTICH:
82 * - the previously running thread will not be scheduled onto another CPU.
83 * - the next thread to be run (v) will not be running on another CPU.
84 * - thread->cpu is the local CPU number
85 * - not preemptible as we're called in the middle of a thread switch
86 * THREAD_NOTIFY_FLUSH:
87 * - the thread (v) will be running on the local CPU, so
88 * v === current_thread_info()
89 * - thread->cpu is the local CPU number at the time it is accessed,
90 * but may change at any time.
91 * - we could be preempted if tree preempt rcu is enabled, so
92 * it is unsafe to use thread->cpu.
93 * THREAD_NOTIFY_EXIT
94 * - the thread (v) will be running on the local CPU, so
95 * v === current_thread_info()
96 * - thread->cpu is the local CPU number at the time it is accessed,
97 * but may change at any time.
98 * - we could be preempted if tree preempt rcu is enabled, so
99 * it is unsafe to use thread->cpu.
101 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
103 struct thread_info *thread = v;
105 if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
106 u32 fpexc = fmrx(FPEXC);
108 #ifdef CONFIG_SMP
109 unsigned int cpu = thread->cpu;
112 * On SMP, if VFP is enabled, save the old state in
113 * case the thread migrates to a different CPU. The
114 * restoring is done lazily.
116 if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
117 vfp_save_state(last_VFP_context[cpu], fpexc);
118 last_VFP_context[cpu]->hard.cpu = cpu;
121 * Thread migration, just force the reloading of the
122 * state on the new CPU in case the VFP registers
123 * contain stale data.
125 if (thread->vfpstate.hard.cpu != cpu)
126 last_VFP_context[cpu] = NULL;
127 #endif
130 * Always disable VFP so we can lazily save/restore the
131 * old state.
133 fmxr(FPEXC, fpexc & ~FPEXC_EN);
134 return NOTIFY_DONE;
137 if (cmd == THREAD_NOTIFY_FLUSH)
138 vfp_thread_flush(thread);
139 else
140 vfp_thread_exit(thread);
142 return NOTIFY_DONE;
145 static struct notifier_block vfp_notifier_block = {
146 .notifier_call = vfp_notifier,
150 * Raise a SIGFPE for the current process.
151 * sicode describes the signal being raised.
153 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
155 siginfo_t info;
157 memset(&info, 0, sizeof(info));
159 info.si_signo = SIGFPE;
160 info.si_code = sicode;
161 info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
164 * This is the same as NWFPE, because it's not clear what
165 * this is used for
167 current->thread.error_code = 0;
168 current->thread.trap_no = 6;
170 send_sig_info(SIGFPE, &info, current);
173 static void vfp_panic(char *reason, u32 inst)
175 int i;
177 printk(KERN_ERR "VFP: Error: %s\n", reason);
178 printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
179 fmrx(FPEXC), fmrx(FPSCR), inst);
180 for (i = 0; i < 32; i += 2)
181 printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
182 i, vfp_get_float(i), i+1, vfp_get_float(i+1));
186 * Process bitmask of exception conditions.
188 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
190 int si_code = 0;
192 pr_debug("VFP: raising exceptions %08x\n", exceptions);
194 if (exceptions == VFP_EXCEPTION_ERROR) {
195 vfp_panic("unhandled bounce", inst);
196 vfp_raise_sigfpe(0, regs);
197 return;
201 * If any of the status flags are set, update the FPSCR.
202 * Comparison instructions always return at least one of
203 * these flags set.
205 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
206 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
208 fpscr |= exceptions;
210 fmxr(FPSCR, fpscr);
212 #define RAISE(stat,en,sig) \
213 if (exceptions & stat && fpscr & en) \
214 si_code = sig;
217 * These are arranged in priority order, least to highest.
219 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
220 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
221 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
222 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
223 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
225 if (si_code)
226 vfp_raise_sigfpe(si_code, regs);
230 * Emulate a VFP instruction.
232 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
234 u32 exceptions = VFP_EXCEPTION_ERROR;
236 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
238 if (INST_CPRTDO(inst)) {
239 if (!INST_CPRT(inst)) {
241 * CPDO
243 if (vfp_single(inst)) {
244 exceptions = vfp_single_cpdo(inst, fpscr);
245 } else {
246 exceptions = vfp_double_cpdo(inst, fpscr);
248 } else {
250 * A CPRT instruction can not appear in FPINST2, nor
251 * can it cause an exception. Therefore, we do not
252 * have to emulate it.
255 } else {
257 * A CPDT instruction can not appear in FPINST2, nor can
258 * it cause an exception. Therefore, we do not have to
259 * emulate it.
262 return exceptions & ~VFP_NAN_FLAG;
266 * Package up a bounce condition.
268 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
270 u32 fpscr, orig_fpscr, fpsid, exceptions;
272 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
275 * At this point, FPEXC can have the following configuration:
277 * EX DEX IXE
278 * 0 1 x - synchronous exception
279 * 1 x 0 - asynchronous exception
280 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later
281 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1
282 * implementation), undefined otherwise
284 * Clear various bits and enable access to the VFP so we can
285 * handle the bounce.
287 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
289 fpsid = fmrx(FPSID);
290 orig_fpscr = fpscr = fmrx(FPSCR);
293 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
295 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
296 && (fpscr & FPSCR_IXE)) {
298 * Synchronous exception, emulate the trigger instruction
300 goto emulate;
303 if (fpexc & FPEXC_EX) {
304 #ifndef CONFIG_CPU_FEROCEON
306 * Asynchronous exception. The instruction is read from FPINST
307 * and the interrupted instruction has to be restarted.
309 trigger = fmrx(FPINST);
310 regs->ARM_pc -= 4;
311 #endif
312 } else if (!(fpexc & FPEXC_DEX)) {
314 * Illegal combination of bits. It can be caused by an
315 * unallocated VFP instruction but with FPSCR.IXE set and not
316 * on VFP subarch 1.
318 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
319 goto exit;
323 * Modify fpscr to indicate the number of iterations remaining.
324 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
325 * whether FPEXC.VECITR or FPSCR.LEN is used.
327 if (fpexc & (FPEXC_EX | FPEXC_VV)) {
328 u32 len;
330 len = fpexc + (1 << FPEXC_LENGTH_BIT);
332 fpscr &= ~FPSCR_LENGTH_MASK;
333 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
337 * Handle the first FP instruction. We used to take note of the
338 * FPEXC bounce reason, but this appears to be unreliable.
339 * Emulate the bounced instruction instead.
341 exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
342 if (exceptions)
343 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
346 * If there isn't a second FP instruction, exit now. Note that
347 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
349 if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
350 goto exit;
353 * The barrier() here prevents fpinst2 being read
354 * before the condition above.
356 barrier();
357 trigger = fmrx(FPINST2);
359 emulate:
360 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
361 if (exceptions)
362 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
363 exit:
364 preempt_enable();
367 static void vfp_enable(void *unused)
369 u32 access = get_copro_access();
372 * Enable full access to VFP (cp10 and cp11)
374 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
377 #ifdef CONFIG_PM
378 #include <linux/sysdev.h>
380 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
382 struct thread_info *ti = current_thread_info();
383 u32 fpexc = fmrx(FPEXC);
385 /* if vfp is on, then save state for resumption */
386 if (fpexc & FPEXC_EN) {
387 printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
388 vfp_save_state(&ti->vfpstate, fpexc);
390 /* disable, just in case */
391 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
394 /* clear any information we had about last context state */
395 memset(last_VFP_context, 0, sizeof(last_VFP_context));
397 return 0;
400 static int vfp_pm_resume(struct sys_device *dev)
402 /* ensure we have access to the vfp */
403 vfp_enable(NULL);
405 /* and disable it to ensure the next usage restores the state */
406 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
408 return 0;
411 static struct sysdev_class vfp_pm_sysclass = {
412 .name = "vfp",
413 .suspend = vfp_pm_suspend,
414 .resume = vfp_pm_resume,
417 static struct sys_device vfp_pm_sysdev = {
418 .cls = &vfp_pm_sysclass,
421 static void vfp_pm_init(void)
423 sysdev_class_register(&vfp_pm_sysclass);
424 sysdev_register(&vfp_pm_sysdev);
428 #else
429 static inline void vfp_pm_init(void) { }
430 #endif /* CONFIG_PM */
432 void vfp_sync_hwstate(struct thread_info *thread)
434 unsigned int cpu = get_cpu();
437 * If the thread we're interested in is the current owner of the
438 * hardware VFP state, then we need to save its state.
440 if (last_VFP_context[cpu] == &thread->vfpstate) {
441 u32 fpexc = fmrx(FPEXC);
444 * Save the last VFP state on this CPU.
446 fmxr(FPEXC, fpexc | FPEXC_EN);
447 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
448 fmxr(FPEXC, fpexc);
451 put_cpu();
454 void vfp_flush_hwstate(struct thread_info *thread)
456 unsigned int cpu = get_cpu();
459 * If the thread we're interested in is the current owner of the
460 * hardware VFP state, then we need to save its state.
462 if (last_VFP_context[cpu] == &thread->vfpstate) {
463 u32 fpexc = fmrx(FPEXC);
465 fmxr(FPEXC, fpexc & ~FPEXC_EN);
468 * Set the context to NULL to force a reload the next time
469 * the thread uses the VFP.
471 last_VFP_context[cpu] = NULL;
474 #ifdef CONFIG_SMP
476 * For SMP we still have to take care of the case where the thread
477 * migrates to another CPU and then back to the original CPU on which
478 * the last VFP user is still the same thread. Mark the thread VFP
479 * state as belonging to a non-existent CPU so that the saved one will
480 * be reloaded in the above case.
482 thread->vfpstate.hard.cpu = NR_CPUS;
483 #endif
484 put_cpu();
487 #include <linux/smp.h>
490 * VFP support code initialisation.
492 static int __init vfp_init(void)
494 unsigned int vfpsid;
495 unsigned int cpu_arch = cpu_architecture();
497 if (cpu_arch >= CPU_ARCH_ARMv6)
498 vfp_enable(NULL);
501 * First check that there is a VFP that we can use.
502 * The handler is already setup to just log calls, so
503 * we just need to read the VFPSID register.
505 vfp_vector = vfp_testing_entry;
506 barrier();
507 vfpsid = fmrx(FPSID);
508 barrier();
509 vfp_vector = vfp_null_entry;
511 printk(KERN_INFO "VFP support v0.3: ");
512 if (VFP_arch)
513 printk("not present\n");
514 else if (vfpsid & FPSID_NODOUBLE) {
515 printk("no double precision support\n");
516 } else {
517 smp_call_function(vfp_enable, NULL, 1);
519 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */
520 printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
521 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
522 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
523 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
524 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
525 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
527 vfp_vector = vfp_support_entry;
529 thread_register_notifier(&vfp_notifier_block);
530 vfp_pm_init();
533 * We detected VFP, and the support code is
534 * in place; report VFP support to userspace.
536 elf_hwcap |= HWCAP_VFP;
537 #ifdef CONFIG_VFPv3
538 if (VFP_arch >= 2) {
539 elf_hwcap |= HWCAP_VFPv3;
542 * Check for VFPv3 D16. CPUs in this configuration
543 * only have 16 x 64bit registers.
545 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
546 elf_hwcap |= HWCAP_VFPv3D16;
548 #endif
549 #ifdef CONFIG_NEON
551 * Check for the presence of the Advanced SIMD
552 * load/store instructions, integer and single
553 * precision floating point operations. Only check
554 * for NEON if the hardware has the MVFR registers.
556 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
557 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
558 elf_hwcap |= HWCAP_NEON;
560 #endif
562 return 0;
565 late_initcall(vfp_init);