GFS2: Clean up duplicated setattr code
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / slub.c
blob981fb730aa04d82ef7b739497beb22d10fe9f98c
1 /*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
5 * The allocator synchronizes using per slab locks and only
6 * uses a centralized lock to manage a pool of partial slabs.
8 * (C) 2007 SGI, Christoph Lameter
9 */
11 #include <linux/mm.h>
12 #include <linux/swap.h> /* struct reclaim_state */
13 #include <linux/module.h>
14 #include <linux/bit_spinlock.h>
15 #include <linux/interrupt.h>
16 #include <linux/bitops.h>
17 #include <linux/slab.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/kmemcheck.h>
21 #include <linux/cpu.h>
22 #include <linux/cpuset.h>
23 #include <linux/mempolicy.h>
24 #include <linux/ctype.h>
25 #include <linux/debugobjects.h>
26 #include <linux/kallsyms.h>
27 #include <linux/memory.h>
28 #include <linux/math64.h>
29 #include <linux/fault-inject.h>
32 * Lock order:
33 * 1. slab_lock(page)
34 * 2. slab->list_lock
36 * The slab_lock protects operations on the object of a particular
37 * slab and its metadata in the page struct. If the slab lock
38 * has been taken then no allocations nor frees can be performed
39 * on the objects in the slab nor can the slab be added or removed
40 * from the partial or full lists since this would mean modifying
41 * the page_struct of the slab.
43 * The list_lock protects the partial and full list on each node and
44 * the partial slab counter. If taken then no new slabs may be added or
45 * removed from the lists nor make the number of partial slabs be modified.
46 * (Note that the total number of slabs is an atomic value that may be
47 * modified without taking the list lock).
49 * The list_lock is a centralized lock and thus we avoid taking it as
50 * much as possible. As long as SLUB does not have to handle partial
51 * slabs, operations can continue without any centralized lock. F.e.
52 * allocating a long series of objects that fill up slabs does not require
53 * the list lock.
55 * The lock order is sometimes inverted when we are trying to get a slab
56 * off a list. We take the list_lock and then look for a page on the list
57 * to use. While we do that objects in the slabs may be freed. We can
58 * only operate on the slab if we have also taken the slab_lock. So we use
59 * a slab_trylock() on the slab. If trylock was successful then no frees
60 * can occur anymore and we can use the slab for allocations etc. If the
61 * slab_trylock() does not succeed then frees are in progress in the slab and
62 * we must stay away from it for a while since we may cause a bouncing
63 * cacheline if we try to acquire the lock. So go onto the next slab.
64 * If all pages are busy then we may allocate a new slab instead of reusing
65 * a partial slab. A new slab has noone operating on it and thus there is
66 * no danger of cacheline contention.
68 * Interrupts are disabled during allocation and deallocation in order to
69 * make the slab allocator safe to use in the context of an irq. In addition
70 * interrupts are disabled to ensure that the processor does not change
71 * while handling per_cpu slabs, due to kernel preemption.
73 * SLUB assigns one slab for allocation to each processor.
74 * Allocations only occur from these slabs called cpu slabs.
76 * Slabs with free elements are kept on a partial list and during regular
77 * operations no list for full slabs is used. If an object in a full slab is
78 * freed then the slab will show up again on the partial lists.
79 * We track full slabs for debugging purposes though because otherwise we
80 * cannot scan all objects.
82 * Slabs are freed when they become empty. Teardown and setup is
83 * minimal so we rely on the page allocators per cpu caches for
84 * fast frees and allocs.
86 * Overloading of page flags that are otherwise used for LRU management.
88 * PageActive The slab is frozen and exempt from list processing.
89 * This means that the slab is dedicated to a purpose
90 * such as satisfying allocations for a specific
91 * processor. Objects may be freed in the slab while
92 * it is frozen but slab_free will then skip the usual
93 * list operations. It is up to the processor holding
94 * the slab to integrate the slab into the slab lists
95 * when the slab is no longer needed.
97 * One use of this flag is to mark slabs that are
98 * used for allocations. Then such a slab becomes a cpu
99 * slab. The cpu slab may be equipped with an additional
100 * freelist that allows lockless access to
101 * free objects in addition to the regular freelist
102 * that requires the slab lock.
104 * PageError Slab requires special handling due to debug
105 * options set. This moves slab handling out of
106 * the fast path and disables lockless freelists.
109 #define SLAB_DEBUG_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
110 SLAB_TRACE | SLAB_DEBUG_FREE)
112 static inline int kmem_cache_debug(struct kmem_cache *s)
114 #ifdef CONFIG_SLUB_DEBUG
115 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
116 #else
117 return 0;
118 #endif
122 * Issues still to be resolved:
124 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
126 * - Variable sizing of the per node arrays
129 /* Enable to test recovery from slab corruption on boot */
130 #undef SLUB_RESILIENCY_TEST
133 * Mininum number of partial slabs. These will be left on the partial
134 * lists even if they are empty. kmem_cache_shrink may reclaim them.
136 #define MIN_PARTIAL 5
139 * Maximum number of desirable partial slabs.
140 * The existence of more partial slabs makes kmem_cache_shrink
141 * sort the partial list by the number of objects in the.
143 #define MAX_PARTIAL 10
145 #define DEBUG_DEFAULT_FLAGS (SLAB_DEBUG_FREE | SLAB_RED_ZONE | \
146 SLAB_POISON | SLAB_STORE_USER)
149 * Debugging flags that require metadata to be stored in the slab. These get
150 * disabled when slub_debug=O is used and a cache's min order increases with
151 * metadata.
153 #define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
156 * Set of flags that will prevent slab merging
158 #define SLUB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
159 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
160 SLAB_FAILSLAB)
162 #define SLUB_MERGE_SAME (SLAB_DEBUG_FREE | SLAB_RECLAIM_ACCOUNT | \
163 SLAB_CACHE_DMA | SLAB_NOTRACK)
165 #define OO_SHIFT 16
166 #define OO_MASK ((1 << OO_SHIFT) - 1)
167 #define MAX_OBJS_PER_PAGE 65535 /* since page.objects is u16 */
169 /* Internal SLUB flags */
170 #define __OBJECT_POISON 0x80000000UL /* Poison object */
172 static int kmem_size = sizeof(struct kmem_cache);
174 #ifdef CONFIG_SMP
175 static struct notifier_block slab_notifier;
176 #endif
178 static enum {
179 DOWN, /* No slab functionality available */
180 PARTIAL, /* Kmem_cache_node works */
181 UP, /* Everything works but does not show up in sysfs */
182 SYSFS /* Sysfs up */
183 } slab_state = DOWN;
185 /* A list of all slab caches on the system */
186 static DECLARE_RWSEM(slub_lock);
187 static LIST_HEAD(slab_caches);
190 * Tracking user of a slab.
192 struct track {
193 unsigned long addr; /* Called from address */
194 int cpu; /* Was running on cpu */
195 int pid; /* Pid context */
196 unsigned long when; /* When did the operation occur */
199 enum track_item { TRACK_ALLOC, TRACK_FREE };
201 #ifdef CONFIG_SYSFS
202 static int sysfs_slab_add(struct kmem_cache *);
203 static int sysfs_slab_alias(struct kmem_cache *, const char *);
204 static void sysfs_slab_remove(struct kmem_cache *);
206 #else
207 static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
208 static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
209 { return 0; }
210 static inline void sysfs_slab_remove(struct kmem_cache *s)
212 kfree(s->name);
213 kfree(s);
216 #endif
218 static inline void stat(struct kmem_cache *s, enum stat_item si)
220 #ifdef CONFIG_SLUB_STATS
221 __this_cpu_inc(s->cpu_slab->stat[si]);
222 #endif
225 /********************************************************************
226 * Core slab cache functions
227 *******************************************************************/
229 int slab_is_available(void)
231 return slab_state >= UP;
234 static inline struct kmem_cache_node *get_node(struct kmem_cache *s, int node)
236 return s->node[node];
239 /* Verify that a pointer has an address that is valid within a slab page */
240 static inline int check_valid_pointer(struct kmem_cache *s,
241 struct page *page, const void *object)
243 void *base;
245 if (!object)
246 return 1;
248 base = page_address(page);
249 if (object < base || object >= base + page->objects * s->size ||
250 (object - base) % s->size) {
251 return 0;
254 return 1;
257 static inline void *get_freepointer(struct kmem_cache *s, void *object)
259 return *(void **)(object + s->offset);
262 static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
264 *(void **)(object + s->offset) = fp;
267 /* Loop over all objects in a slab */
268 #define for_each_object(__p, __s, __addr, __objects) \
269 for (__p = (__addr); __p < (__addr) + (__objects) * (__s)->size;\
270 __p += (__s)->size)
272 /* Scan freelist */
273 #define for_each_free_object(__p, __s, __free) \
274 for (__p = (__free); __p; __p = get_freepointer((__s), __p))
276 /* Determine object index from a given position */
277 static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
279 return (p - addr) / s->size;
282 static inline struct kmem_cache_order_objects oo_make(int order,
283 unsigned long size)
285 struct kmem_cache_order_objects x = {
286 (order << OO_SHIFT) + (PAGE_SIZE << order) / size
289 return x;
292 static inline int oo_order(struct kmem_cache_order_objects x)
294 return x.x >> OO_SHIFT;
297 static inline int oo_objects(struct kmem_cache_order_objects x)
299 return x.x & OO_MASK;
302 #ifdef CONFIG_SLUB_DEBUG
304 * Debug settings:
306 #ifdef CONFIG_SLUB_DEBUG_ON
307 static int slub_debug = DEBUG_DEFAULT_FLAGS;
308 #else
309 static int slub_debug;
310 #endif
312 static char *slub_debug_slabs;
313 static int disable_higher_order_debug;
316 * Object debugging
318 static void print_section(char *text, u8 *addr, unsigned int length)
320 int i, offset;
321 int newline = 1;
322 char ascii[17];
324 ascii[16] = 0;
326 for (i = 0; i < length; i++) {
327 if (newline) {
328 printk(KERN_ERR "%8s 0x%p: ", text, addr + i);
329 newline = 0;
331 printk(KERN_CONT " %02x", addr[i]);
332 offset = i % 16;
333 ascii[offset] = isgraph(addr[i]) ? addr[i] : '.';
334 if (offset == 15) {
335 printk(KERN_CONT " %s\n", ascii);
336 newline = 1;
339 if (!newline) {
340 i %= 16;
341 while (i < 16) {
342 printk(KERN_CONT " ");
343 ascii[i] = ' ';
344 i++;
346 printk(KERN_CONT " %s\n", ascii);
350 static struct track *get_track(struct kmem_cache *s, void *object,
351 enum track_item alloc)
353 struct track *p;
355 if (s->offset)
356 p = object + s->offset + sizeof(void *);
357 else
358 p = object + s->inuse;
360 return p + alloc;
363 static void set_track(struct kmem_cache *s, void *object,
364 enum track_item alloc, unsigned long addr)
366 struct track *p = get_track(s, object, alloc);
368 if (addr) {
369 p->addr = addr;
370 p->cpu = smp_processor_id();
371 p->pid = current->pid;
372 p->when = jiffies;
373 } else
374 memset(p, 0, sizeof(struct track));
377 static void init_tracking(struct kmem_cache *s, void *object)
379 if (!(s->flags & SLAB_STORE_USER))
380 return;
382 set_track(s, object, TRACK_FREE, 0UL);
383 set_track(s, object, TRACK_ALLOC, 0UL);
386 static void print_track(const char *s, struct track *t)
388 if (!t->addr)
389 return;
391 printk(KERN_ERR "INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
392 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
395 static void print_tracking(struct kmem_cache *s, void *object)
397 if (!(s->flags & SLAB_STORE_USER))
398 return;
400 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
401 print_track("Freed", get_track(s, object, TRACK_FREE));
404 static void print_page_info(struct page *page)
406 printk(KERN_ERR "INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
407 page, page->objects, page->inuse, page->freelist, page->flags);
411 static void slab_bug(struct kmem_cache *s, char *fmt, ...)
413 va_list args;
414 char buf[100];
416 va_start(args, fmt);
417 vsnprintf(buf, sizeof(buf), fmt, args);
418 va_end(args);
419 printk(KERN_ERR "========================================"
420 "=====================================\n");
421 printk(KERN_ERR "BUG %s: %s\n", s->name, buf);
422 printk(KERN_ERR "----------------------------------------"
423 "-------------------------------------\n\n");
426 static void slab_fix(struct kmem_cache *s, char *fmt, ...)
428 va_list args;
429 char buf[100];
431 va_start(args, fmt);
432 vsnprintf(buf, sizeof(buf), fmt, args);
433 va_end(args);
434 printk(KERN_ERR "FIX %s: %s\n", s->name, buf);
437 static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
439 unsigned int off; /* Offset of last byte */
440 u8 *addr = page_address(page);
442 print_tracking(s, p);
444 print_page_info(page);
446 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
447 p, p - addr, get_freepointer(s, p));
449 if (p > addr + 16)
450 print_section("Bytes b4", p - 16, 16);
452 print_section("Object", p, min_t(unsigned long, s->objsize, PAGE_SIZE));
454 if (s->flags & SLAB_RED_ZONE)
455 print_section("Redzone", p + s->objsize,
456 s->inuse - s->objsize);
458 if (s->offset)
459 off = s->offset + sizeof(void *);
460 else
461 off = s->inuse;
463 if (s->flags & SLAB_STORE_USER)
464 off += 2 * sizeof(struct track);
466 if (off != s->size)
467 /* Beginning of the filler is the free pointer */
468 print_section("Padding", p + off, s->size - off);
470 dump_stack();
473 static void object_err(struct kmem_cache *s, struct page *page,
474 u8 *object, char *reason)
476 slab_bug(s, "%s", reason);
477 print_trailer(s, page, object);
480 static void slab_err(struct kmem_cache *s, struct page *page, char *fmt, ...)
482 va_list args;
483 char buf[100];
485 va_start(args, fmt);
486 vsnprintf(buf, sizeof(buf), fmt, args);
487 va_end(args);
488 slab_bug(s, "%s", buf);
489 print_page_info(page);
490 dump_stack();
493 static void init_object(struct kmem_cache *s, void *object, u8 val)
495 u8 *p = object;
497 if (s->flags & __OBJECT_POISON) {
498 memset(p, POISON_FREE, s->objsize - 1);
499 p[s->objsize - 1] = POISON_END;
502 if (s->flags & SLAB_RED_ZONE)
503 memset(p + s->objsize, val, s->inuse - s->objsize);
506 static u8 *check_bytes(u8 *start, unsigned int value, unsigned int bytes)
508 while (bytes) {
509 if (*start != (u8)value)
510 return start;
511 start++;
512 bytes--;
514 return NULL;
517 static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
518 void *from, void *to)
520 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
521 memset(from, data, to - from);
524 static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
525 u8 *object, char *what,
526 u8 *start, unsigned int value, unsigned int bytes)
528 u8 *fault;
529 u8 *end;
531 fault = check_bytes(start, value, bytes);
532 if (!fault)
533 return 1;
535 end = start + bytes;
536 while (end > fault && end[-1] == value)
537 end--;
539 slab_bug(s, "%s overwritten", what);
540 printk(KERN_ERR "INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
541 fault, end - 1, fault[0], value);
542 print_trailer(s, page, object);
544 restore_bytes(s, what, value, fault, end);
545 return 0;
549 * Object layout:
551 * object address
552 * Bytes of the object to be managed.
553 * If the freepointer may overlay the object then the free
554 * pointer is the first word of the object.
556 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
557 * 0xa5 (POISON_END)
559 * object + s->objsize
560 * Padding to reach word boundary. This is also used for Redzoning.
561 * Padding is extended by another word if Redzoning is enabled and
562 * objsize == inuse.
564 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
565 * 0xcc (RED_ACTIVE) for objects in use.
567 * object + s->inuse
568 * Meta data starts here.
570 * A. Free pointer (if we cannot overwrite object on free)
571 * B. Tracking data for SLAB_STORE_USER
572 * C. Padding to reach required alignment boundary or at mininum
573 * one word if debugging is on to be able to detect writes
574 * before the word boundary.
576 * Padding is done using 0x5a (POISON_INUSE)
578 * object + s->size
579 * Nothing is used beyond s->size.
581 * If slabcaches are merged then the objsize and inuse boundaries are mostly
582 * ignored. And therefore no slab options that rely on these boundaries
583 * may be used with merged slabcaches.
586 static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
588 unsigned long off = s->inuse; /* The end of info */
590 if (s->offset)
591 /* Freepointer is placed after the object. */
592 off += sizeof(void *);
594 if (s->flags & SLAB_STORE_USER)
595 /* We also have user information there */
596 off += 2 * sizeof(struct track);
598 if (s->size == off)
599 return 1;
601 return check_bytes_and_report(s, page, p, "Object padding",
602 p + off, POISON_INUSE, s->size - off);
605 /* Check the pad bytes at the end of a slab page */
606 static int slab_pad_check(struct kmem_cache *s, struct page *page)
608 u8 *start;
609 u8 *fault;
610 u8 *end;
611 int length;
612 int remainder;
614 if (!(s->flags & SLAB_POISON))
615 return 1;
617 start = page_address(page);
618 length = (PAGE_SIZE << compound_order(page));
619 end = start + length;
620 remainder = length % s->size;
621 if (!remainder)
622 return 1;
624 fault = check_bytes(end - remainder, POISON_INUSE, remainder);
625 if (!fault)
626 return 1;
627 while (end > fault && end[-1] == POISON_INUSE)
628 end--;
630 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
631 print_section("Padding", end - remainder, remainder);
633 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
634 return 0;
637 static int check_object(struct kmem_cache *s, struct page *page,
638 void *object, u8 val)
640 u8 *p = object;
641 u8 *endobject = object + s->objsize;
643 if (s->flags & SLAB_RED_ZONE) {
644 if (!check_bytes_and_report(s, page, object, "Redzone",
645 endobject, val, s->inuse - s->objsize))
646 return 0;
647 } else {
648 if ((s->flags & SLAB_POISON) && s->objsize < s->inuse) {
649 check_bytes_and_report(s, page, p, "Alignment padding",
650 endobject, POISON_INUSE, s->inuse - s->objsize);
654 if (s->flags & SLAB_POISON) {
655 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
656 (!check_bytes_and_report(s, page, p, "Poison", p,
657 POISON_FREE, s->objsize - 1) ||
658 !check_bytes_and_report(s, page, p, "Poison",
659 p + s->objsize - 1, POISON_END, 1)))
660 return 0;
662 * check_pad_bytes cleans up on its own.
664 check_pad_bytes(s, page, p);
667 if (!s->offset && val == SLUB_RED_ACTIVE)
669 * Object and freepointer overlap. Cannot check
670 * freepointer while object is allocated.
672 return 1;
674 /* Check free pointer validity */
675 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
676 object_err(s, page, p, "Freepointer corrupt");
678 * No choice but to zap it and thus lose the remainder
679 * of the free objects in this slab. May cause
680 * another error because the object count is now wrong.
682 set_freepointer(s, p, NULL);
683 return 0;
685 return 1;
688 static int check_slab(struct kmem_cache *s, struct page *page)
690 int maxobj;
692 VM_BUG_ON(!irqs_disabled());
694 if (!PageSlab(page)) {
695 slab_err(s, page, "Not a valid slab page");
696 return 0;
699 maxobj = (PAGE_SIZE << compound_order(page)) / s->size;
700 if (page->objects > maxobj) {
701 slab_err(s, page, "objects %u > max %u",
702 s->name, page->objects, maxobj);
703 return 0;
705 if (page->inuse > page->objects) {
706 slab_err(s, page, "inuse %u > max %u",
707 s->name, page->inuse, page->objects);
708 return 0;
710 /* Slab_pad_check fixes things up after itself */
711 slab_pad_check(s, page);
712 return 1;
716 * Determine if a certain object on a page is on the freelist. Must hold the
717 * slab lock to guarantee that the chains are in a consistent state.
719 static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
721 int nr = 0;
722 void *fp = page->freelist;
723 void *object = NULL;
724 unsigned long max_objects;
726 while (fp && nr <= page->objects) {
727 if (fp == search)
728 return 1;
729 if (!check_valid_pointer(s, page, fp)) {
730 if (object) {
731 object_err(s, page, object,
732 "Freechain corrupt");
733 set_freepointer(s, object, NULL);
734 break;
735 } else {
736 slab_err(s, page, "Freepointer corrupt");
737 page->freelist = NULL;
738 page->inuse = page->objects;
739 slab_fix(s, "Freelist cleared");
740 return 0;
742 break;
744 object = fp;
745 fp = get_freepointer(s, object);
746 nr++;
749 max_objects = (PAGE_SIZE << compound_order(page)) / s->size;
750 if (max_objects > MAX_OBJS_PER_PAGE)
751 max_objects = MAX_OBJS_PER_PAGE;
753 if (page->objects != max_objects) {
754 slab_err(s, page, "Wrong number of objects. Found %d but "
755 "should be %d", page->objects, max_objects);
756 page->objects = max_objects;
757 slab_fix(s, "Number of objects adjusted.");
759 if (page->inuse != page->objects - nr) {
760 slab_err(s, page, "Wrong object count. Counter is %d but "
761 "counted were %d", page->inuse, page->objects - nr);
762 page->inuse = page->objects - nr;
763 slab_fix(s, "Object count adjusted.");
765 return search == NULL;
768 static void trace(struct kmem_cache *s, struct page *page, void *object,
769 int alloc)
771 if (s->flags & SLAB_TRACE) {
772 printk(KERN_INFO "TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
773 s->name,
774 alloc ? "alloc" : "free",
775 object, page->inuse,
776 page->freelist);
778 if (!alloc)
779 print_section("Object", (void *)object, s->objsize);
781 dump_stack();
786 * Hooks for other subsystems that check memory allocations. In a typical
787 * production configuration these hooks all should produce no code at all.
789 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
791 flags &= gfp_allowed_mask;
792 lockdep_trace_alloc(flags);
793 might_sleep_if(flags & __GFP_WAIT);
795 return should_failslab(s->objsize, flags, s->flags);
798 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags, void *object)
800 flags &= gfp_allowed_mask;
801 kmemcheck_slab_alloc(s, flags, object, s->objsize);
802 kmemleak_alloc_recursive(object, s->objsize, 1, s->flags, flags);
805 static inline void slab_free_hook(struct kmem_cache *s, void *x)
807 kmemleak_free_recursive(x, s->flags);
810 static inline void slab_free_hook_irq(struct kmem_cache *s, void *object)
812 kmemcheck_slab_free(s, object, s->objsize);
813 debug_check_no_locks_freed(object, s->objsize);
814 if (!(s->flags & SLAB_DEBUG_OBJECTS))
815 debug_check_no_obj_freed(object, s->objsize);
819 * Tracking of fully allocated slabs for debugging purposes.
821 static void add_full(struct kmem_cache_node *n, struct page *page)
823 spin_lock(&n->list_lock);
824 list_add(&page->lru, &n->full);
825 spin_unlock(&n->list_lock);
828 static void remove_full(struct kmem_cache *s, struct page *page)
830 struct kmem_cache_node *n;
832 if (!(s->flags & SLAB_STORE_USER))
833 return;
835 n = get_node(s, page_to_nid(page));
837 spin_lock(&n->list_lock);
838 list_del(&page->lru);
839 spin_unlock(&n->list_lock);
842 /* Tracking of the number of slabs for debugging purposes */
843 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
845 struct kmem_cache_node *n = get_node(s, node);
847 return atomic_long_read(&n->nr_slabs);
850 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
852 return atomic_long_read(&n->nr_slabs);
855 static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
857 struct kmem_cache_node *n = get_node(s, node);
860 * May be called early in order to allocate a slab for the
861 * kmem_cache_node structure. Solve the chicken-egg
862 * dilemma by deferring the increment of the count during
863 * bootstrap (see early_kmem_cache_node_alloc).
865 if (n) {
866 atomic_long_inc(&n->nr_slabs);
867 atomic_long_add(objects, &n->total_objects);
870 static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
872 struct kmem_cache_node *n = get_node(s, node);
874 atomic_long_dec(&n->nr_slabs);
875 atomic_long_sub(objects, &n->total_objects);
878 /* Object debug checks for alloc/free paths */
879 static void setup_object_debug(struct kmem_cache *s, struct page *page,
880 void *object)
882 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
883 return;
885 init_object(s, object, SLUB_RED_INACTIVE);
886 init_tracking(s, object);
889 static noinline int alloc_debug_processing(struct kmem_cache *s, struct page *page,
890 void *object, unsigned long addr)
892 if (!check_slab(s, page))
893 goto bad;
895 if (!on_freelist(s, page, object)) {
896 object_err(s, page, object, "Object already allocated");
897 goto bad;
900 if (!check_valid_pointer(s, page, object)) {
901 object_err(s, page, object, "Freelist Pointer check fails");
902 goto bad;
905 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
906 goto bad;
908 /* Success perform special debug activities for allocs */
909 if (s->flags & SLAB_STORE_USER)
910 set_track(s, object, TRACK_ALLOC, addr);
911 trace(s, page, object, 1);
912 init_object(s, object, SLUB_RED_ACTIVE);
913 return 1;
915 bad:
916 if (PageSlab(page)) {
918 * If this is a slab page then lets do the best we can
919 * to avoid issues in the future. Marking all objects
920 * as used avoids touching the remaining objects.
922 slab_fix(s, "Marking all objects used");
923 page->inuse = page->objects;
924 page->freelist = NULL;
926 return 0;
929 static noinline int free_debug_processing(struct kmem_cache *s,
930 struct page *page, void *object, unsigned long addr)
932 if (!check_slab(s, page))
933 goto fail;
935 if (!check_valid_pointer(s, page, object)) {
936 slab_err(s, page, "Invalid object pointer 0x%p", object);
937 goto fail;
940 if (on_freelist(s, page, object)) {
941 object_err(s, page, object, "Object already free");
942 goto fail;
945 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
946 return 0;
948 if (unlikely(s != page->slab)) {
949 if (!PageSlab(page)) {
950 slab_err(s, page, "Attempt to free object(0x%p) "
951 "outside of slab", object);
952 } else if (!page->slab) {
953 printk(KERN_ERR
954 "SLUB <none>: no slab for object 0x%p.\n",
955 object);
956 dump_stack();
957 } else
958 object_err(s, page, object,
959 "page slab pointer corrupt.");
960 goto fail;
963 /* Special debug activities for freeing objects */
964 if (!PageSlubFrozen(page) && !page->freelist)
965 remove_full(s, page);
966 if (s->flags & SLAB_STORE_USER)
967 set_track(s, object, TRACK_FREE, addr);
968 trace(s, page, object, 0);
969 init_object(s, object, SLUB_RED_INACTIVE);
970 return 1;
972 fail:
973 slab_fix(s, "Object at 0x%p not freed", object);
974 return 0;
977 static int __init setup_slub_debug(char *str)
979 slub_debug = DEBUG_DEFAULT_FLAGS;
980 if (*str++ != '=' || !*str)
982 * No options specified. Switch on full debugging.
984 goto out;
986 if (*str == ',')
988 * No options but restriction on slabs. This means full
989 * debugging for slabs matching a pattern.
991 goto check_slabs;
993 if (tolower(*str) == 'o') {
995 * Avoid enabling debugging on caches if its minimum order
996 * would increase as a result.
998 disable_higher_order_debug = 1;
999 goto out;
1002 slub_debug = 0;
1003 if (*str == '-')
1005 * Switch off all debugging measures.
1007 goto out;
1010 * Determine which debug features should be switched on
1012 for (; *str && *str != ','; str++) {
1013 switch (tolower(*str)) {
1014 case 'f':
1015 slub_debug |= SLAB_DEBUG_FREE;
1016 break;
1017 case 'z':
1018 slub_debug |= SLAB_RED_ZONE;
1019 break;
1020 case 'p':
1021 slub_debug |= SLAB_POISON;
1022 break;
1023 case 'u':
1024 slub_debug |= SLAB_STORE_USER;
1025 break;
1026 case 't':
1027 slub_debug |= SLAB_TRACE;
1028 break;
1029 case 'a':
1030 slub_debug |= SLAB_FAILSLAB;
1031 break;
1032 default:
1033 printk(KERN_ERR "slub_debug option '%c' "
1034 "unknown. skipped\n", *str);
1038 check_slabs:
1039 if (*str == ',')
1040 slub_debug_slabs = str + 1;
1041 out:
1042 return 1;
1045 __setup("slub_debug", setup_slub_debug);
1047 static unsigned long kmem_cache_flags(unsigned long objsize,
1048 unsigned long flags, const char *name,
1049 void (*ctor)(void *))
1052 * Enable debugging if selected on the kernel commandline.
1054 if (slub_debug && (!slub_debug_slabs ||
1055 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs))))
1056 flags |= slub_debug;
1058 return flags;
1060 #else
1061 static inline void setup_object_debug(struct kmem_cache *s,
1062 struct page *page, void *object) {}
1064 static inline int alloc_debug_processing(struct kmem_cache *s,
1065 struct page *page, void *object, unsigned long addr) { return 0; }
1067 static inline int free_debug_processing(struct kmem_cache *s,
1068 struct page *page, void *object, unsigned long addr) { return 0; }
1070 static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1071 { return 1; }
1072 static inline int check_object(struct kmem_cache *s, struct page *page,
1073 void *object, u8 val) { return 1; }
1074 static inline void add_full(struct kmem_cache_node *n, struct page *page) {}
1075 static inline unsigned long kmem_cache_flags(unsigned long objsize,
1076 unsigned long flags, const char *name,
1077 void (*ctor)(void *))
1079 return flags;
1081 #define slub_debug 0
1083 #define disable_higher_order_debug 0
1085 static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1086 { return 0; }
1087 static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1088 { return 0; }
1089 static inline void inc_slabs_node(struct kmem_cache *s, int node,
1090 int objects) {}
1091 static inline void dec_slabs_node(struct kmem_cache *s, int node,
1092 int objects) {}
1094 static inline int slab_pre_alloc_hook(struct kmem_cache *s, gfp_t flags)
1095 { return 0; }
1097 static inline void slab_post_alloc_hook(struct kmem_cache *s, gfp_t flags,
1098 void *object) {}
1100 static inline void slab_free_hook(struct kmem_cache *s, void *x) {}
1102 static inline void slab_free_hook_irq(struct kmem_cache *s,
1103 void *object) {}
1105 #endif /* CONFIG_SLUB_DEBUG */
1108 * Slab allocation and freeing
1110 static inline struct page *alloc_slab_page(gfp_t flags, int node,
1111 struct kmem_cache_order_objects oo)
1113 int order = oo_order(oo);
1115 flags |= __GFP_NOTRACK;
1117 if (node == NUMA_NO_NODE)
1118 return alloc_pages(flags, order);
1119 else
1120 return alloc_pages_exact_node(node, flags, order);
1123 static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1125 struct page *page;
1126 struct kmem_cache_order_objects oo = s->oo;
1127 gfp_t alloc_gfp;
1129 flags |= s->allocflags;
1132 * Let the initial higher-order allocation fail under memory pressure
1133 * so we fall-back to the minimum order allocation.
1135 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
1137 page = alloc_slab_page(alloc_gfp, node, oo);
1138 if (unlikely(!page)) {
1139 oo = s->min;
1141 * Allocation may have failed due to fragmentation.
1142 * Try a lower order alloc if possible
1144 page = alloc_slab_page(flags, node, oo);
1145 if (!page)
1146 return NULL;
1148 stat(s, ORDER_FALLBACK);
1151 if (kmemcheck_enabled
1152 && !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
1153 int pages = 1 << oo_order(oo);
1155 kmemcheck_alloc_shadow(page, oo_order(oo), flags, node);
1158 * Objects from caches that have a constructor don't get
1159 * cleared when they're allocated, so we need to do it here.
1161 if (s->ctor)
1162 kmemcheck_mark_uninitialized_pages(page, pages);
1163 else
1164 kmemcheck_mark_unallocated_pages(page, pages);
1167 page->objects = oo_objects(oo);
1168 mod_zone_page_state(page_zone(page),
1169 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1170 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1171 1 << oo_order(oo));
1173 return page;
1176 static void setup_object(struct kmem_cache *s, struct page *page,
1177 void *object)
1179 setup_object_debug(s, page, object);
1180 if (unlikely(s->ctor))
1181 s->ctor(object);
1184 static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1186 struct page *page;
1187 void *start;
1188 void *last;
1189 void *p;
1191 BUG_ON(flags & GFP_SLAB_BUG_MASK);
1193 page = allocate_slab(s,
1194 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1195 if (!page)
1196 goto out;
1198 inc_slabs_node(s, page_to_nid(page), page->objects);
1199 page->slab = s;
1200 page->flags |= 1 << PG_slab;
1202 start = page_address(page);
1204 if (unlikely(s->flags & SLAB_POISON))
1205 memset(start, POISON_INUSE, PAGE_SIZE << compound_order(page));
1207 last = start;
1208 for_each_object(p, s, start, page->objects) {
1209 setup_object(s, page, last);
1210 set_freepointer(s, last, p);
1211 last = p;
1213 setup_object(s, page, last);
1214 set_freepointer(s, last, NULL);
1216 page->freelist = start;
1217 page->inuse = 0;
1218 out:
1219 return page;
1222 static void __free_slab(struct kmem_cache *s, struct page *page)
1224 int order = compound_order(page);
1225 int pages = 1 << order;
1227 if (kmem_cache_debug(s)) {
1228 void *p;
1230 slab_pad_check(s, page);
1231 for_each_object(p, s, page_address(page),
1232 page->objects)
1233 check_object(s, page, p, SLUB_RED_INACTIVE);
1236 kmemcheck_free_shadow(page, compound_order(page));
1238 mod_zone_page_state(page_zone(page),
1239 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1240 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1241 -pages);
1243 __ClearPageSlab(page);
1244 reset_page_mapcount(page);
1245 if (current->reclaim_state)
1246 current->reclaim_state->reclaimed_slab += pages;
1247 __free_pages(page, order);
1250 static void rcu_free_slab(struct rcu_head *h)
1252 struct page *page;
1254 page = container_of((struct list_head *)h, struct page, lru);
1255 __free_slab(page->slab, page);
1258 static void free_slab(struct kmem_cache *s, struct page *page)
1260 if (unlikely(s->flags & SLAB_DESTROY_BY_RCU)) {
1262 * RCU free overloads the RCU head over the LRU
1264 struct rcu_head *head = (void *)&page->lru;
1266 call_rcu(head, rcu_free_slab);
1267 } else
1268 __free_slab(s, page);
1271 static void discard_slab(struct kmem_cache *s, struct page *page)
1273 dec_slabs_node(s, page_to_nid(page), page->objects);
1274 free_slab(s, page);
1278 * Per slab locking using the pagelock
1280 static __always_inline void slab_lock(struct page *page)
1282 bit_spin_lock(PG_locked, &page->flags);
1285 static __always_inline void slab_unlock(struct page *page)
1287 __bit_spin_unlock(PG_locked, &page->flags);
1290 static __always_inline int slab_trylock(struct page *page)
1292 int rc = 1;
1294 rc = bit_spin_trylock(PG_locked, &page->flags);
1295 return rc;
1299 * Management of partially allocated slabs
1301 static void add_partial(struct kmem_cache_node *n,
1302 struct page *page, int tail)
1304 spin_lock(&n->list_lock);
1305 n->nr_partial++;
1306 if (tail)
1307 list_add_tail(&page->lru, &n->partial);
1308 else
1309 list_add(&page->lru, &n->partial);
1310 spin_unlock(&n->list_lock);
1313 static inline void __remove_partial(struct kmem_cache_node *n,
1314 struct page *page)
1316 list_del(&page->lru);
1317 n->nr_partial--;
1320 static void remove_partial(struct kmem_cache *s, struct page *page)
1322 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1324 spin_lock(&n->list_lock);
1325 __remove_partial(n, page);
1326 spin_unlock(&n->list_lock);
1330 * Lock slab and remove from the partial list.
1332 * Must hold list_lock.
1334 static inline int lock_and_freeze_slab(struct kmem_cache_node *n,
1335 struct page *page)
1337 if (slab_trylock(page)) {
1338 __remove_partial(n, page);
1339 __SetPageSlubFrozen(page);
1340 return 1;
1342 return 0;
1346 * Try to allocate a partial slab from a specific node.
1348 static struct page *get_partial_node(struct kmem_cache_node *n)
1350 struct page *page;
1353 * Racy check. If we mistakenly see no partial slabs then we
1354 * just allocate an empty slab. If we mistakenly try to get a
1355 * partial slab and there is none available then get_partials()
1356 * will return NULL.
1358 if (!n || !n->nr_partial)
1359 return NULL;
1361 spin_lock(&n->list_lock);
1362 list_for_each_entry(page, &n->partial, lru)
1363 if (lock_and_freeze_slab(n, page))
1364 goto out;
1365 page = NULL;
1366 out:
1367 spin_unlock(&n->list_lock);
1368 return page;
1372 * Get a page from somewhere. Search in increasing NUMA distances.
1374 static struct page *get_any_partial(struct kmem_cache *s, gfp_t flags)
1376 #ifdef CONFIG_NUMA
1377 struct zonelist *zonelist;
1378 struct zoneref *z;
1379 struct zone *zone;
1380 enum zone_type high_zoneidx = gfp_zone(flags);
1381 struct page *page;
1384 * The defrag ratio allows a configuration of the tradeoffs between
1385 * inter node defragmentation and node local allocations. A lower
1386 * defrag_ratio increases the tendency to do local allocations
1387 * instead of attempting to obtain partial slabs from other nodes.
1389 * If the defrag_ratio is set to 0 then kmalloc() always
1390 * returns node local objects. If the ratio is higher then kmalloc()
1391 * may return off node objects because partial slabs are obtained
1392 * from other nodes and filled up.
1394 * If /sys/kernel/slab/xx/defrag_ratio is set to 100 (which makes
1395 * defrag_ratio = 1000) then every (well almost) allocation will
1396 * first attempt to defrag slab caches on other nodes. This means
1397 * scanning over all nodes to look for partial slabs which may be
1398 * expensive if we do it every time we are trying to find a slab
1399 * with available objects.
1401 if (!s->remote_node_defrag_ratio ||
1402 get_cycles() % 1024 > s->remote_node_defrag_ratio)
1403 return NULL;
1405 get_mems_allowed();
1406 zonelist = node_zonelist(slab_node(current->mempolicy), flags);
1407 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1408 struct kmem_cache_node *n;
1410 n = get_node(s, zone_to_nid(zone));
1412 if (n && cpuset_zone_allowed_hardwall(zone, flags) &&
1413 n->nr_partial > s->min_partial) {
1414 page = get_partial_node(n);
1415 if (page) {
1416 put_mems_allowed();
1417 return page;
1421 put_mems_allowed();
1422 #endif
1423 return NULL;
1427 * Get a partial page, lock it and return it.
1429 static struct page *get_partial(struct kmem_cache *s, gfp_t flags, int node)
1431 struct page *page;
1432 int searchnode = (node == NUMA_NO_NODE) ? numa_node_id() : node;
1434 page = get_partial_node(get_node(s, searchnode));
1435 if (page || node != -1)
1436 return page;
1438 return get_any_partial(s, flags);
1442 * Move a page back to the lists.
1444 * Must be called with the slab lock held.
1446 * On exit the slab lock will have been dropped.
1448 static void unfreeze_slab(struct kmem_cache *s, struct page *page, int tail)
1449 __releases(bitlock)
1451 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1453 __ClearPageSlubFrozen(page);
1454 if (page->inuse) {
1456 if (page->freelist) {
1457 add_partial(n, page, tail);
1458 stat(s, tail ? DEACTIVATE_TO_TAIL : DEACTIVATE_TO_HEAD);
1459 } else {
1460 stat(s, DEACTIVATE_FULL);
1461 if (kmem_cache_debug(s) && (s->flags & SLAB_STORE_USER))
1462 add_full(n, page);
1464 slab_unlock(page);
1465 } else {
1466 stat(s, DEACTIVATE_EMPTY);
1467 if (n->nr_partial < s->min_partial) {
1469 * Adding an empty slab to the partial slabs in order
1470 * to avoid page allocator overhead. This slab needs
1471 * to come after the other slabs with objects in
1472 * so that the others get filled first. That way the
1473 * size of the partial list stays small.
1475 * kmem_cache_shrink can reclaim any empty slabs from
1476 * the partial list.
1478 add_partial(n, page, 1);
1479 slab_unlock(page);
1480 } else {
1481 slab_unlock(page);
1482 stat(s, FREE_SLAB);
1483 discard_slab(s, page);
1489 * Remove the cpu slab
1491 static void deactivate_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1492 __releases(bitlock)
1494 struct page *page = c->page;
1495 int tail = 1;
1497 if (page->freelist)
1498 stat(s, DEACTIVATE_REMOTE_FREES);
1500 * Merge cpu freelist into slab freelist. Typically we get here
1501 * because both freelists are empty. So this is unlikely
1502 * to occur.
1504 while (unlikely(c->freelist)) {
1505 void **object;
1507 tail = 0; /* Hot objects. Put the slab first */
1509 /* Retrieve object from cpu_freelist */
1510 object = c->freelist;
1511 c->freelist = get_freepointer(s, c->freelist);
1513 /* And put onto the regular freelist */
1514 set_freepointer(s, object, page->freelist);
1515 page->freelist = object;
1516 page->inuse--;
1518 c->page = NULL;
1519 unfreeze_slab(s, page, tail);
1522 static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
1524 stat(s, CPUSLAB_FLUSH);
1525 slab_lock(c->page);
1526 deactivate_slab(s, c);
1530 * Flush cpu slab.
1532 * Called from IPI handler with interrupts disabled.
1534 static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
1536 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
1538 if (likely(c && c->page))
1539 flush_slab(s, c);
1542 static void flush_cpu_slab(void *d)
1544 struct kmem_cache *s = d;
1546 __flush_cpu_slab(s, smp_processor_id());
1549 static void flush_all(struct kmem_cache *s)
1551 on_each_cpu(flush_cpu_slab, s, 1);
1555 * Check if the objects in a per cpu structure fit numa
1556 * locality expectations.
1558 static inline int node_match(struct kmem_cache_cpu *c, int node)
1560 #ifdef CONFIG_NUMA
1561 if (node != NUMA_NO_NODE && c->node != node)
1562 return 0;
1563 #endif
1564 return 1;
1567 static int count_free(struct page *page)
1569 return page->objects - page->inuse;
1572 static unsigned long count_partial(struct kmem_cache_node *n,
1573 int (*get_count)(struct page *))
1575 unsigned long flags;
1576 unsigned long x = 0;
1577 struct page *page;
1579 spin_lock_irqsave(&n->list_lock, flags);
1580 list_for_each_entry(page, &n->partial, lru)
1581 x += get_count(page);
1582 spin_unlock_irqrestore(&n->list_lock, flags);
1583 return x;
1586 static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
1588 #ifdef CONFIG_SLUB_DEBUG
1589 return atomic_long_read(&n->total_objects);
1590 #else
1591 return 0;
1592 #endif
1595 static noinline void
1596 slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
1598 int node;
1600 printk(KERN_WARNING
1601 "SLUB: Unable to allocate memory on node %d (gfp=0x%x)\n",
1602 nid, gfpflags);
1603 printk(KERN_WARNING " cache: %s, object size: %d, buffer size: %d, "
1604 "default order: %d, min order: %d\n", s->name, s->objsize,
1605 s->size, oo_order(s->oo), oo_order(s->min));
1607 if (oo_order(s->min) > get_order(s->objsize))
1608 printk(KERN_WARNING " %s debugging increased min order, use "
1609 "slub_debug=O to disable.\n", s->name);
1611 for_each_online_node(node) {
1612 struct kmem_cache_node *n = get_node(s, node);
1613 unsigned long nr_slabs;
1614 unsigned long nr_objs;
1615 unsigned long nr_free;
1617 if (!n)
1618 continue;
1620 nr_free = count_partial(n, count_free);
1621 nr_slabs = node_nr_slabs(n);
1622 nr_objs = node_nr_objs(n);
1624 printk(KERN_WARNING
1625 " node %d: slabs: %ld, objs: %ld, free: %ld\n",
1626 node, nr_slabs, nr_objs, nr_free);
1631 * Slow path. The lockless freelist is empty or we need to perform
1632 * debugging duties.
1634 * Interrupts are disabled.
1636 * Processing is still very fast if new objects have been freed to the
1637 * regular freelist. In that case we simply take over the regular freelist
1638 * as the lockless freelist and zap the regular freelist.
1640 * If that is not working then we fall back to the partial lists. We take the
1641 * first element of the freelist as the object to allocate now and move the
1642 * rest of the freelist to the lockless freelist.
1644 * And if we were unable to get a new slab from the partial slab lists then
1645 * we need to allocate a new slab. This is the slowest path since it involves
1646 * a call to the page allocator and the setup of a new slab.
1648 static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
1649 unsigned long addr, struct kmem_cache_cpu *c)
1651 void **object;
1652 struct page *new;
1654 /* We handle __GFP_ZERO in the caller */
1655 gfpflags &= ~__GFP_ZERO;
1657 if (!c->page)
1658 goto new_slab;
1660 slab_lock(c->page);
1661 if (unlikely(!node_match(c, node)))
1662 goto another_slab;
1664 stat(s, ALLOC_REFILL);
1666 load_freelist:
1667 object = c->page->freelist;
1668 if (unlikely(!object))
1669 goto another_slab;
1670 if (kmem_cache_debug(s))
1671 goto debug;
1673 c->freelist = get_freepointer(s, object);
1674 c->page->inuse = c->page->objects;
1675 c->page->freelist = NULL;
1676 c->node = page_to_nid(c->page);
1677 unlock_out:
1678 slab_unlock(c->page);
1679 stat(s, ALLOC_SLOWPATH);
1680 return object;
1682 another_slab:
1683 deactivate_slab(s, c);
1685 new_slab:
1686 new = get_partial(s, gfpflags, node);
1687 if (new) {
1688 c->page = new;
1689 stat(s, ALLOC_FROM_PARTIAL);
1690 goto load_freelist;
1693 gfpflags &= gfp_allowed_mask;
1694 if (gfpflags & __GFP_WAIT)
1695 local_irq_enable();
1697 new = new_slab(s, gfpflags, node);
1699 if (gfpflags & __GFP_WAIT)
1700 local_irq_disable();
1702 if (new) {
1703 c = __this_cpu_ptr(s->cpu_slab);
1704 stat(s, ALLOC_SLAB);
1705 if (c->page)
1706 flush_slab(s, c);
1707 slab_lock(new);
1708 __SetPageSlubFrozen(new);
1709 c->page = new;
1710 goto load_freelist;
1712 if (!(gfpflags & __GFP_NOWARN) && printk_ratelimit())
1713 slab_out_of_memory(s, gfpflags, node);
1714 return NULL;
1715 debug:
1716 if (!alloc_debug_processing(s, c->page, object, addr))
1717 goto another_slab;
1719 c->page->inuse++;
1720 c->page->freelist = get_freepointer(s, object);
1721 c->node = NUMA_NO_NODE;
1722 goto unlock_out;
1726 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
1727 * have the fastpath folded into their functions. So no function call
1728 * overhead for requests that can be satisfied on the fastpath.
1730 * The fastpath works by first checking if the lockless freelist can be used.
1731 * If not then __slab_alloc is called for slow processing.
1733 * Otherwise we can simply pick the next object from the lockless free list.
1735 static __always_inline void *slab_alloc(struct kmem_cache *s,
1736 gfp_t gfpflags, int node, unsigned long addr)
1738 void **object;
1739 struct kmem_cache_cpu *c;
1740 unsigned long flags;
1742 if (slab_pre_alloc_hook(s, gfpflags))
1743 return NULL;
1745 local_irq_save(flags);
1746 c = __this_cpu_ptr(s->cpu_slab);
1747 object = c->freelist;
1748 if (unlikely(!object || !node_match(c, node)))
1750 object = __slab_alloc(s, gfpflags, node, addr, c);
1752 else {
1753 c->freelist = get_freepointer(s, object);
1754 stat(s, ALLOC_FASTPATH);
1756 local_irq_restore(flags);
1758 if (unlikely(gfpflags & __GFP_ZERO) && object)
1759 memset(object, 0, s->objsize);
1761 slab_post_alloc_hook(s, gfpflags, object);
1763 return object;
1766 void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
1768 void *ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1770 trace_kmem_cache_alloc(_RET_IP_, ret, s->objsize, s->size, gfpflags);
1772 return ret;
1774 EXPORT_SYMBOL(kmem_cache_alloc);
1776 #ifdef CONFIG_TRACING
1777 void *kmem_cache_alloc_notrace(struct kmem_cache *s, gfp_t gfpflags)
1779 return slab_alloc(s, gfpflags, NUMA_NO_NODE, _RET_IP_);
1781 EXPORT_SYMBOL(kmem_cache_alloc_notrace);
1782 #endif
1784 #ifdef CONFIG_NUMA
1785 void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
1787 void *ret = slab_alloc(s, gfpflags, node, _RET_IP_);
1789 trace_kmem_cache_alloc_node(_RET_IP_, ret,
1790 s->objsize, s->size, gfpflags, node);
1792 return ret;
1794 EXPORT_SYMBOL(kmem_cache_alloc_node);
1796 #ifdef CONFIG_TRACING
1797 void *kmem_cache_alloc_node_notrace(struct kmem_cache *s,
1798 gfp_t gfpflags,
1799 int node)
1801 return slab_alloc(s, gfpflags, node, _RET_IP_);
1803 EXPORT_SYMBOL(kmem_cache_alloc_node_notrace);
1804 #endif
1805 #endif
1808 * Slow patch handling. This may still be called frequently since objects
1809 * have a longer lifetime than the cpu slabs in most processing loads.
1811 * So we still attempt to reduce cache line usage. Just take the slab
1812 * lock and free the item. If there is no additional partial page
1813 * handling required then we can return immediately.
1815 static void __slab_free(struct kmem_cache *s, struct page *page,
1816 void *x, unsigned long addr)
1818 void *prior;
1819 void **object = (void *)x;
1821 stat(s, FREE_SLOWPATH);
1822 slab_lock(page);
1824 if (kmem_cache_debug(s))
1825 goto debug;
1827 checks_ok:
1828 prior = page->freelist;
1829 set_freepointer(s, object, prior);
1830 page->freelist = object;
1831 page->inuse--;
1833 if (unlikely(PageSlubFrozen(page))) {
1834 stat(s, FREE_FROZEN);
1835 goto out_unlock;
1838 if (unlikely(!page->inuse))
1839 goto slab_empty;
1842 * Objects left in the slab. If it was not on the partial list before
1843 * then add it.
1845 if (unlikely(!prior)) {
1846 add_partial(get_node(s, page_to_nid(page)), page, 1);
1847 stat(s, FREE_ADD_PARTIAL);
1850 out_unlock:
1851 slab_unlock(page);
1852 return;
1854 slab_empty:
1855 if (prior) {
1857 * Slab still on the partial list.
1859 remove_partial(s, page);
1860 stat(s, FREE_REMOVE_PARTIAL);
1862 slab_unlock(page);
1863 stat(s, FREE_SLAB);
1864 discard_slab(s, page);
1865 return;
1867 debug:
1868 if (!free_debug_processing(s, page, x, addr))
1869 goto out_unlock;
1870 goto checks_ok;
1874 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
1875 * can perform fastpath freeing without additional function calls.
1877 * The fastpath is only possible if we are freeing to the current cpu slab
1878 * of this processor. This typically the case if we have just allocated
1879 * the item before.
1881 * If fastpath is not possible then fall back to __slab_free where we deal
1882 * with all sorts of special processing.
1884 static __always_inline void slab_free(struct kmem_cache *s,
1885 struct page *page, void *x, unsigned long addr)
1887 void **object = (void *)x;
1888 struct kmem_cache_cpu *c;
1889 unsigned long flags;
1891 slab_free_hook(s, x);
1893 local_irq_save(flags);
1894 c = __this_cpu_ptr(s->cpu_slab);
1896 slab_free_hook_irq(s, x);
1898 if (likely(page == c->page && c->node != NUMA_NO_NODE)) {
1899 set_freepointer(s, object, c->freelist);
1900 c->freelist = object;
1901 stat(s, FREE_FASTPATH);
1902 } else
1903 __slab_free(s, page, x, addr);
1905 local_irq_restore(flags);
1908 void kmem_cache_free(struct kmem_cache *s, void *x)
1910 struct page *page;
1912 page = virt_to_head_page(x);
1914 slab_free(s, page, x, _RET_IP_);
1916 trace_kmem_cache_free(_RET_IP_, x);
1918 EXPORT_SYMBOL(kmem_cache_free);
1920 /* Figure out on which slab page the object resides */
1921 static struct page *get_object_page(const void *x)
1923 struct page *page = virt_to_head_page(x);
1925 if (!PageSlab(page))
1926 return NULL;
1928 return page;
1932 * Object placement in a slab is made very easy because we always start at
1933 * offset 0. If we tune the size of the object to the alignment then we can
1934 * get the required alignment by putting one properly sized object after
1935 * another.
1937 * Notice that the allocation order determines the sizes of the per cpu
1938 * caches. Each processor has always one slab available for allocations.
1939 * Increasing the allocation order reduces the number of times that slabs
1940 * must be moved on and off the partial lists and is therefore a factor in
1941 * locking overhead.
1945 * Mininum / Maximum order of slab pages. This influences locking overhead
1946 * and slab fragmentation. A higher order reduces the number of partial slabs
1947 * and increases the number of allocations possible without having to
1948 * take the list_lock.
1950 static int slub_min_order;
1951 static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
1952 static int slub_min_objects;
1955 * Merge control. If this is set then no merging of slab caches will occur.
1956 * (Could be removed. This was introduced to pacify the merge skeptics.)
1958 static int slub_nomerge;
1961 * Calculate the order of allocation given an slab object size.
1963 * The order of allocation has significant impact on performance and other
1964 * system components. Generally order 0 allocations should be preferred since
1965 * order 0 does not cause fragmentation in the page allocator. Larger objects
1966 * be problematic to put into order 0 slabs because there may be too much
1967 * unused space left. We go to a higher order if more than 1/16th of the slab
1968 * would be wasted.
1970 * In order to reach satisfactory performance we must ensure that a minimum
1971 * number of objects is in one slab. Otherwise we may generate too much
1972 * activity on the partial lists which requires taking the list_lock. This is
1973 * less a concern for large slabs though which are rarely used.
1975 * slub_max_order specifies the order where we begin to stop considering the
1976 * number of objects in a slab as critical. If we reach slub_max_order then
1977 * we try to keep the page order as low as possible. So we accept more waste
1978 * of space in favor of a small page order.
1980 * Higher order allocations also allow the placement of more objects in a
1981 * slab and thereby reduce object handling overhead. If the user has
1982 * requested a higher mininum order then we start with that one instead of
1983 * the smallest order which will fit the object.
1985 static inline int slab_order(int size, int min_objects,
1986 int max_order, int fract_leftover)
1988 int order;
1989 int rem;
1990 int min_order = slub_min_order;
1992 if ((PAGE_SIZE << min_order) / size > MAX_OBJS_PER_PAGE)
1993 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
1995 for (order = max(min_order,
1996 fls(min_objects * size - 1) - PAGE_SHIFT);
1997 order <= max_order; order++) {
1999 unsigned long slab_size = PAGE_SIZE << order;
2001 if (slab_size < min_objects * size)
2002 continue;
2004 rem = slab_size % size;
2006 if (rem <= slab_size / fract_leftover)
2007 break;
2011 return order;
2014 static inline int calculate_order(int size)
2016 int order;
2017 int min_objects;
2018 int fraction;
2019 int max_objects;
2022 * Attempt to find best configuration for a slab. This
2023 * works by first attempting to generate a layout with
2024 * the best configuration and backing off gradually.
2026 * First we reduce the acceptable waste in a slab. Then
2027 * we reduce the minimum objects required in a slab.
2029 min_objects = slub_min_objects;
2030 if (!min_objects)
2031 min_objects = 4 * (fls(nr_cpu_ids) + 1);
2032 max_objects = (PAGE_SIZE << slub_max_order)/size;
2033 min_objects = min(min_objects, max_objects);
2035 while (min_objects > 1) {
2036 fraction = 16;
2037 while (fraction >= 4) {
2038 order = slab_order(size, min_objects,
2039 slub_max_order, fraction);
2040 if (order <= slub_max_order)
2041 return order;
2042 fraction /= 2;
2044 min_objects--;
2048 * We were unable to place multiple objects in a slab. Now
2049 * lets see if we can place a single object there.
2051 order = slab_order(size, 1, slub_max_order, 1);
2052 if (order <= slub_max_order)
2053 return order;
2056 * Doh this slab cannot be placed using slub_max_order.
2058 order = slab_order(size, 1, MAX_ORDER, 1);
2059 if (order < MAX_ORDER)
2060 return order;
2061 return -ENOSYS;
2065 * Figure out what the alignment of the objects will be.
2067 static unsigned long calculate_alignment(unsigned long flags,
2068 unsigned long align, unsigned long size)
2071 * If the user wants hardware cache aligned objects then follow that
2072 * suggestion if the object is sufficiently large.
2074 * The hardware cache alignment cannot override the specified
2075 * alignment though. If that is greater then use it.
2077 if (flags & SLAB_HWCACHE_ALIGN) {
2078 unsigned long ralign = cache_line_size();
2079 while (size <= ralign / 2)
2080 ralign /= 2;
2081 align = max(align, ralign);
2084 if (align < ARCH_SLAB_MINALIGN)
2085 align = ARCH_SLAB_MINALIGN;
2087 return ALIGN(align, sizeof(void *));
2090 static void
2091 init_kmem_cache_node(struct kmem_cache_node *n, struct kmem_cache *s)
2093 n->nr_partial = 0;
2094 spin_lock_init(&n->list_lock);
2095 INIT_LIST_HEAD(&n->partial);
2096 #ifdef CONFIG_SLUB_DEBUG
2097 atomic_long_set(&n->nr_slabs, 0);
2098 atomic_long_set(&n->total_objects, 0);
2099 INIT_LIST_HEAD(&n->full);
2100 #endif
2103 static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
2105 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
2106 SLUB_PAGE_SHIFT * sizeof(struct kmem_cache_cpu));
2108 s->cpu_slab = alloc_percpu(struct kmem_cache_cpu);
2110 return s->cpu_slab != NULL;
2113 static struct kmem_cache *kmem_cache_node;
2116 * No kmalloc_node yet so do it by hand. We know that this is the first
2117 * slab on the node for this slabcache. There are no concurrent accesses
2118 * possible.
2120 * Note that this function only works on the kmalloc_node_cache
2121 * when allocating for the kmalloc_node_cache. This is used for bootstrapping
2122 * memory on a fresh node that has no slab structures yet.
2124 static void early_kmem_cache_node_alloc(int node)
2126 struct page *page;
2127 struct kmem_cache_node *n;
2128 unsigned long flags;
2130 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
2132 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
2134 BUG_ON(!page);
2135 if (page_to_nid(page) != node) {
2136 printk(KERN_ERR "SLUB: Unable to allocate memory from "
2137 "node %d\n", node);
2138 printk(KERN_ERR "SLUB: Allocating a useless per node structure "
2139 "in order to be able to continue\n");
2142 n = page->freelist;
2143 BUG_ON(!n);
2144 page->freelist = get_freepointer(kmem_cache_node, n);
2145 page->inuse++;
2146 kmem_cache_node->node[node] = n;
2147 #ifdef CONFIG_SLUB_DEBUG
2148 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
2149 init_tracking(kmem_cache_node, n);
2150 #endif
2151 init_kmem_cache_node(n, kmem_cache_node);
2152 inc_slabs_node(kmem_cache_node, node, page->objects);
2155 * lockdep requires consistent irq usage for each lock
2156 * so even though there cannot be a race this early in
2157 * the boot sequence, we still disable irqs.
2159 local_irq_save(flags);
2160 add_partial(n, page, 0);
2161 local_irq_restore(flags);
2164 static void free_kmem_cache_nodes(struct kmem_cache *s)
2166 int node;
2168 for_each_node_state(node, N_NORMAL_MEMORY) {
2169 struct kmem_cache_node *n = s->node[node];
2171 if (n)
2172 kmem_cache_free(kmem_cache_node, n);
2174 s->node[node] = NULL;
2178 static int init_kmem_cache_nodes(struct kmem_cache *s)
2180 int node;
2182 for_each_node_state(node, N_NORMAL_MEMORY) {
2183 struct kmem_cache_node *n;
2185 if (slab_state == DOWN) {
2186 early_kmem_cache_node_alloc(node);
2187 continue;
2189 n = kmem_cache_alloc_node(kmem_cache_node,
2190 GFP_KERNEL, node);
2192 if (!n) {
2193 free_kmem_cache_nodes(s);
2194 return 0;
2197 s->node[node] = n;
2198 init_kmem_cache_node(n, s);
2200 return 1;
2203 static void set_min_partial(struct kmem_cache *s, unsigned long min)
2205 if (min < MIN_PARTIAL)
2206 min = MIN_PARTIAL;
2207 else if (min > MAX_PARTIAL)
2208 min = MAX_PARTIAL;
2209 s->min_partial = min;
2213 * calculate_sizes() determines the order and the distribution of data within
2214 * a slab object.
2216 static int calculate_sizes(struct kmem_cache *s, int forced_order)
2218 unsigned long flags = s->flags;
2219 unsigned long size = s->objsize;
2220 unsigned long align = s->align;
2221 int order;
2224 * Round up object size to the next word boundary. We can only
2225 * place the free pointer at word boundaries and this determines
2226 * the possible location of the free pointer.
2228 size = ALIGN(size, sizeof(void *));
2230 #ifdef CONFIG_SLUB_DEBUG
2232 * Determine if we can poison the object itself. If the user of
2233 * the slab may touch the object after free or before allocation
2234 * then we should never poison the object itself.
2236 if ((flags & SLAB_POISON) && !(flags & SLAB_DESTROY_BY_RCU) &&
2237 !s->ctor)
2238 s->flags |= __OBJECT_POISON;
2239 else
2240 s->flags &= ~__OBJECT_POISON;
2244 * If we are Redzoning then check if there is some space between the
2245 * end of the object and the free pointer. If not then add an
2246 * additional word to have some bytes to store Redzone information.
2248 if ((flags & SLAB_RED_ZONE) && size == s->objsize)
2249 size += sizeof(void *);
2250 #endif
2253 * With that we have determined the number of bytes in actual use
2254 * by the object. This is the potential offset to the free pointer.
2256 s->inuse = size;
2258 if (((flags & (SLAB_DESTROY_BY_RCU | SLAB_POISON)) ||
2259 s->ctor)) {
2261 * Relocate free pointer after the object if it is not
2262 * permitted to overwrite the first word of the object on
2263 * kmem_cache_free.
2265 * This is the case if we do RCU, have a constructor or
2266 * destructor or are poisoning the objects.
2268 s->offset = size;
2269 size += sizeof(void *);
2272 #ifdef CONFIG_SLUB_DEBUG
2273 if (flags & SLAB_STORE_USER)
2275 * Need to store information about allocs and frees after
2276 * the object.
2278 size += 2 * sizeof(struct track);
2280 if (flags & SLAB_RED_ZONE)
2282 * Add some empty padding so that we can catch
2283 * overwrites from earlier objects rather than let
2284 * tracking information or the free pointer be
2285 * corrupted if a user writes before the start
2286 * of the object.
2288 size += sizeof(void *);
2289 #endif
2292 * Determine the alignment based on various parameters that the
2293 * user specified and the dynamic determination of cache line size
2294 * on bootup.
2296 align = calculate_alignment(flags, align, s->objsize);
2297 s->align = align;
2300 * SLUB stores one object immediately after another beginning from
2301 * offset 0. In order to align the objects we have to simply size
2302 * each object to conform to the alignment.
2304 size = ALIGN(size, align);
2305 s->size = size;
2306 if (forced_order >= 0)
2307 order = forced_order;
2308 else
2309 order = calculate_order(size);
2311 if (order < 0)
2312 return 0;
2314 s->allocflags = 0;
2315 if (order)
2316 s->allocflags |= __GFP_COMP;
2318 if (s->flags & SLAB_CACHE_DMA)
2319 s->allocflags |= SLUB_DMA;
2321 if (s->flags & SLAB_RECLAIM_ACCOUNT)
2322 s->allocflags |= __GFP_RECLAIMABLE;
2325 * Determine the number of objects per slab
2327 s->oo = oo_make(order, size);
2328 s->min = oo_make(get_order(size), size);
2329 if (oo_objects(s->oo) > oo_objects(s->max))
2330 s->max = s->oo;
2332 return !!oo_objects(s->oo);
2336 static int kmem_cache_open(struct kmem_cache *s,
2337 const char *name, size_t size,
2338 size_t align, unsigned long flags,
2339 void (*ctor)(void *))
2341 memset(s, 0, kmem_size);
2342 s->name = name;
2343 s->ctor = ctor;
2344 s->objsize = size;
2345 s->align = align;
2346 s->flags = kmem_cache_flags(size, flags, name, ctor);
2348 if (!calculate_sizes(s, -1))
2349 goto error;
2350 if (disable_higher_order_debug) {
2352 * Disable debugging flags that store metadata if the min slab
2353 * order increased.
2355 if (get_order(s->size) > get_order(s->objsize)) {
2356 s->flags &= ~DEBUG_METADATA_FLAGS;
2357 s->offset = 0;
2358 if (!calculate_sizes(s, -1))
2359 goto error;
2364 * The larger the object size is, the more pages we want on the partial
2365 * list to avoid pounding the page allocator excessively.
2367 set_min_partial(s, ilog2(s->size));
2368 s->refcount = 1;
2369 #ifdef CONFIG_NUMA
2370 s->remote_node_defrag_ratio = 1000;
2371 #endif
2372 if (!init_kmem_cache_nodes(s))
2373 goto error;
2375 if (alloc_kmem_cache_cpus(s))
2376 return 1;
2378 free_kmem_cache_nodes(s);
2379 error:
2380 if (flags & SLAB_PANIC)
2381 panic("Cannot create slab %s size=%lu realsize=%u "
2382 "order=%u offset=%u flags=%lx\n",
2383 s->name, (unsigned long)size, s->size, oo_order(s->oo),
2384 s->offset, flags);
2385 return 0;
2389 * Check if a given pointer is valid
2391 int kmem_ptr_validate(struct kmem_cache *s, const void *object)
2393 struct page *page;
2395 if (!kern_ptr_validate(object, s->size))
2396 return 0;
2398 page = get_object_page(object);
2400 if (!page || s != page->slab)
2401 /* No slab or wrong slab */
2402 return 0;
2404 if (!check_valid_pointer(s, page, object))
2405 return 0;
2408 * We could also check if the object is on the slabs freelist.
2409 * But this would be too expensive and it seems that the main
2410 * purpose of kmem_ptr_valid() is to check if the object belongs
2411 * to a certain slab.
2413 return 1;
2415 EXPORT_SYMBOL(kmem_ptr_validate);
2418 * Determine the size of a slab object
2420 unsigned int kmem_cache_size(struct kmem_cache *s)
2422 return s->objsize;
2424 EXPORT_SYMBOL(kmem_cache_size);
2426 const char *kmem_cache_name(struct kmem_cache *s)
2428 return s->name;
2430 EXPORT_SYMBOL(kmem_cache_name);
2432 static void list_slab_objects(struct kmem_cache *s, struct page *page,
2433 const char *text)
2435 #ifdef CONFIG_SLUB_DEBUG
2436 void *addr = page_address(page);
2437 void *p;
2438 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
2439 sizeof(long), GFP_ATOMIC);
2440 if (!map)
2441 return;
2442 slab_err(s, page, "%s", text);
2443 slab_lock(page);
2444 for_each_free_object(p, s, page->freelist)
2445 set_bit(slab_index(p, s, addr), map);
2447 for_each_object(p, s, addr, page->objects) {
2449 if (!test_bit(slab_index(p, s, addr), map)) {
2450 printk(KERN_ERR "INFO: Object 0x%p @offset=%tu\n",
2451 p, p - addr);
2452 print_tracking(s, p);
2455 slab_unlock(page);
2456 kfree(map);
2457 #endif
2461 * Attempt to free all partial slabs on a node.
2463 static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
2465 unsigned long flags;
2466 struct page *page, *h;
2468 spin_lock_irqsave(&n->list_lock, flags);
2469 list_for_each_entry_safe(page, h, &n->partial, lru) {
2470 if (!page->inuse) {
2471 __remove_partial(n, page);
2472 discard_slab(s, page);
2473 } else {
2474 list_slab_objects(s, page,
2475 "Objects remaining on kmem_cache_close()");
2478 spin_unlock_irqrestore(&n->list_lock, flags);
2482 * Release all resources used by a slab cache.
2484 static inline int kmem_cache_close(struct kmem_cache *s)
2486 int node;
2488 flush_all(s);
2489 free_percpu(s->cpu_slab);
2490 /* Attempt to free all objects */
2491 for_each_node_state(node, N_NORMAL_MEMORY) {
2492 struct kmem_cache_node *n = get_node(s, node);
2494 free_partial(s, n);
2495 if (n->nr_partial || slabs_node(s, node))
2496 return 1;
2498 free_kmem_cache_nodes(s);
2499 return 0;
2503 * Close a cache and release the kmem_cache structure
2504 * (must be used for caches created using kmem_cache_create)
2506 void kmem_cache_destroy(struct kmem_cache *s)
2508 down_write(&slub_lock);
2509 s->refcount--;
2510 if (!s->refcount) {
2511 list_del(&s->list);
2512 if (kmem_cache_close(s)) {
2513 printk(KERN_ERR "SLUB %s: %s called for cache that "
2514 "still has objects.\n", s->name, __func__);
2515 dump_stack();
2517 if (s->flags & SLAB_DESTROY_BY_RCU)
2518 rcu_barrier();
2519 sysfs_slab_remove(s);
2521 up_write(&slub_lock);
2523 EXPORT_SYMBOL(kmem_cache_destroy);
2525 /********************************************************************
2526 * Kmalloc subsystem
2527 *******************************************************************/
2529 struct kmem_cache *kmalloc_caches[SLUB_PAGE_SHIFT];
2530 EXPORT_SYMBOL(kmalloc_caches);
2532 static struct kmem_cache *kmem_cache;
2534 #ifdef CONFIG_ZONE_DMA
2535 static struct kmem_cache *kmalloc_dma_caches[SLUB_PAGE_SHIFT];
2536 #endif
2538 static int __init setup_slub_min_order(char *str)
2540 get_option(&str, &slub_min_order);
2542 return 1;
2545 __setup("slub_min_order=", setup_slub_min_order);
2547 static int __init setup_slub_max_order(char *str)
2549 get_option(&str, &slub_max_order);
2550 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
2552 return 1;
2555 __setup("slub_max_order=", setup_slub_max_order);
2557 static int __init setup_slub_min_objects(char *str)
2559 get_option(&str, &slub_min_objects);
2561 return 1;
2564 __setup("slub_min_objects=", setup_slub_min_objects);
2566 static int __init setup_slub_nomerge(char *str)
2568 slub_nomerge = 1;
2569 return 1;
2572 __setup("slub_nomerge", setup_slub_nomerge);
2574 static struct kmem_cache *__init create_kmalloc_cache(const char *name,
2575 int size, unsigned int flags)
2577 struct kmem_cache *s;
2579 s = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
2582 * This function is called with IRQs disabled during early-boot on
2583 * single CPU so there's no need to take slub_lock here.
2585 if (!kmem_cache_open(s, name, size, ARCH_KMALLOC_MINALIGN,
2586 flags, NULL))
2587 goto panic;
2589 list_add(&s->list, &slab_caches);
2590 return s;
2592 panic:
2593 panic("Creation of kmalloc slab %s size=%d failed.\n", name, size);
2594 return NULL;
2598 * Conversion table for small slabs sizes / 8 to the index in the
2599 * kmalloc array. This is necessary for slabs < 192 since we have non power
2600 * of two cache sizes there. The size of larger slabs can be determined using
2601 * fls.
2603 static s8 size_index[24] = {
2604 3, /* 8 */
2605 4, /* 16 */
2606 5, /* 24 */
2607 5, /* 32 */
2608 6, /* 40 */
2609 6, /* 48 */
2610 6, /* 56 */
2611 6, /* 64 */
2612 1, /* 72 */
2613 1, /* 80 */
2614 1, /* 88 */
2615 1, /* 96 */
2616 7, /* 104 */
2617 7, /* 112 */
2618 7, /* 120 */
2619 7, /* 128 */
2620 2, /* 136 */
2621 2, /* 144 */
2622 2, /* 152 */
2623 2, /* 160 */
2624 2, /* 168 */
2625 2, /* 176 */
2626 2, /* 184 */
2627 2 /* 192 */
2630 static inline int size_index_elem(size_t bytes)
2632 return (bytes - 1) / 8;
2635 static struct kmem_cache *get_slab(size_t size, gfp_t flags)
2637 int index;
2639 if (size <= 192) {
2640 if (!size)
2641 return ZERO_SIZE_PTR;
2643 index = size_index[size_index_elem(size)];
2644 } else
2645 index = fls(size - 1);
2647 #ifdef CONFIG_ZONE_DMA
2648 if (unlikely((flags & SLUB_DMA)))
2649 return kmalloc_dma_caches[index];
2651 #endif
2652 return kmalloc_caches[index];
2655 void *__kmalloc(size_t size, gfp_t flags)
2657 struct kmem_cache *s;
2658 void *ret;
2660 if (unlikely(size > SLUB_MAX_SIZE))
2661 return kmalloc_large(size, flags);
2663 s = get_slab(size, flags);
2665 if (unlikely(ZERO_OR_NULL_PTR(s)))
2666 return s;
2668 ret = slab_alloc(s, flags, NUMA_NO_NODE, _RET_IP_);
2670 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
2672 return ret;
2674 EXPORT_SYMBOL(__kmalloc);
2676 #ifdef CONFIG_NUMA
2677 static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
2679 struct page *page;
2680 void *ptr = NULL;
2682 flags |= __GFP_COMP | __GFP_NOTRACK;
2683 page = alloc_pages_node(node, flags, get_order(size));
2684 if (page)
2685 ptr = page_address(page);
2687 kmemleak_alloc(ptr, size, 1, flags);
2688 return ptr;
2691 void *__kmalloc_node(size_t size, gfp_t flags, int node)
2693 struct kmem_cache *s;
2694 void *ret;
2696 if (unlikely(size > SLUB_MAX_SIZE)) {
2697 ret = kmalloc_large_node(size, flags, node);
2699 trace_kmalloc_node(_RET_IP_, ret,
2700 size, PAGE_SIZE << get_order(size),
2701 flags, node);
2703 return ret;
2706 s = get_slab(size, flags);
2708 if (unlikely(ZERO_OR_NULL_PTR(s)))
2709 return s;
2711 ret = slab_alloc(s, flags, node, _RET_IP_);
2713 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
2715 return ret;
2717 EXPORT_SYMBOL(__kmalloc_node);
2718 #endif
2720 size_t ksize(const void *object)
2722 struct page *page;
2723 struct kmem_cache *s;
2725 if (unlikely(object == ZERO_SIZE_PTR))
2726 return 0;
2728 page = virt_to_head_page(object);
2730 if (unlikely(!PageSlab(page))) {
2731 WARN_ON(!PageCompound(page));
2732 return PAGE_SIZE << compound_order(page);
2734 s = page->slab;
2736 #ifdef CONFIG_SLUB_DEBUG
2738 * Debugging requires use of the padding between object
2739 * and whatever may come after it.
2741 if (s->flags & (SLAB_RED_ZONE | SLAB_POISON))
2742 return s->objsize;
2744 #endif
2746 * If we have the need to store the freelist pointer
2747 * back there or track user information then we can
2748 * only use the space before that information.
2750 if (s->flags & (SLAB_DESTROY_BY_RCU | SLAB_STORE_USER))
2751 return s->inuse;
2753 * Else we can use all the padding etc for the allocation
2755 return s->size;
2757 EXPORT_SYMBOL(ksize);
2759 void kfree(const void *x)
2761 struct page *page;
2762 void *object = (void *)x;
2764 trace_kfree(_RET_IP_, x);
2766 if (unlikely(ZERO_OR_NULL_PTR(x)))
2767 return;
2769 page = virt_to_head_page(x);
2770 if (unlikely(!PageSlab(page))) {
2771 BUG_ON(!PageCompound(page));
2772 kmemleak_free(x);
2773 put_page(page);
2774 return;
2776 slab_free(page->slab, page, object, _RET_IP_);
2778 EXPORT_SYMBOL(kfree);
2781 * kmem_cache_shrink removes empty slabs from the partial lists and sorts
2782 * the remaining slabs by the number of items in use. The slabs with the
2783 * most items in use come first. New allocations will then fill those up
2784 * and thus they can be removed from the partial lists.
2786 * The slabs with the least items are placed last. This results in them
2787 * being allocated from last increasing the chance that the last objects
2788 * are freed in them.
2790 int kmem_cache_shrink(struct kmem_cache *s)
2792 int node;
2793 int i;
2794 struct kmem_cache_node *n;
2795 struct page *page;
2796 struct page *t;
2797 int objects = oo_objects(s->max);
2798 struct list_head *slabs_by_inuse =
2799 kmalloc(sizeof(struct list_head) * objects, GFP_KERNEL);
2800 unsigned long flags;
2802 if (!slabs_by_inuse)
2803 return -ENOMEM;
2805 flush_all(s);
2806 for_each_node_state(node, N_NORMAL_MEMORY) {
2807 n = get_node(s, node);
2809 if (!n->nr_partial)
2810 continue;
2812 for (i = 0; i < objects; i++)
2813 INIT_LIST_HEAD(slabs_by_inuse + i);
2815 spin_lock_irqsave(&n->list_lock, flags);
2818 * Build lists indexed by the items in use in each slab.
2820 * Note that concurrent frees may occur while we hold the
2821 * list_lock. page->inuse here is the upper limit.
2823 list_for_each_entry_safe(page, t, &n->partial, lru) {
2824 if (!page->inuse && slab_trylock(page)) {
2826 * Must hold slab lock here because slab_free
2827 * may have freed the last object and be
2828 * waiting to release the slab.
2830 __remove_partial(n, page);
2831 slab_unlock(page);
2832 discard_slab(s, page);
2833 } else {
2834 list_move(&page->lru,
2835 slabs_by_inuse + page->inuse);
2840 * Rebuild the partial list with the slabs filled up most
2841 * first and the least used slabs at the end.
2843 for (i = objects - 1; i >= 0; i--)
2844 list_splice(slabs_by_inuse + i, n->partial.prev);
2846 spin_unlock_irqrestore(&n->list_lock, flags);
2849 kfree(slabs_by_inuse);
2850 return 0;
2852 EXPORT_SYMBOL(kmem_cache_shrink);
2854 #if defined(CONFIG_MEMORY_HOTPLUG)
2855 static int slab_mem_going_offline_callback(void *arg)
2857 struct kmem_cache *s;
2859 down_read(&slub_lock);
2860 list_for_each_entry(s, &slab_caches, list)
2861 kmem_cache_shrink(s);
2862 up_read(&slub_lock);
2864 return 0;
2867 static void slab_mem_offline_callback(void *arg)
2869 struct kmem_cache_node *n;
2870 struct kmem_cache *s;
2871 struct memory_notify *marg = arg;
2872 int offline_node;
2874 offline_node = marg->status_change_nid;
2877 * If the node still has available memory. we need kmem_cache_node
2878 * for it yet.
2880 if (offline_node < 0)
2881 return;
2883 down_read(&slub_lock);
2884 list_for_each_entry(s, &slab_caches, list) {
2885 n = get_node(s, offline_node);
2886 if (n) {
2888 * if n->nr_slabs > 0, slabs still exist on the node
2889 * that is going down. We were unable to free them,
2890 * and offline_pages() function shouldn't call this
2891 * callback. So, we must fail.
2893 BUG_ON(slabs_node(s, offline_node));
2895 s->node[offline_node] = NULL;
2896 kmem_cache_free(kmem_cache_node, n);
2899 up_read(&slub_lock);
2902 static int slab_mem_going_online_callback(void *arg)
2904 struct kmem_cache_node *n;
2905 struct kmem_cache *s;
2906 struct memory_notify *marg = arg;
2907 int nid = marg->status_change_nid;
2908 int ret = 0;
2911 * If the node's memory is already available, then kmem_cache_node is
2912 * already created. Nothing to do.
2914 if (nid < 0)
2915 return 0;
2918 * We are bringing a node online. No memory is available yet. We must
2919 * allocate a kmem_cache_node structure in order to bring the node
2920 * online.
2922 down_read(&slub_lock);
2923 list_for_each_entry(s, &slab_caches, list) {
2925 * XXX: kmem_cache_alloc_node will fallback to other nodes
2926 * since memory is not yet available from the node that
2927 * is brought up.
2929 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
2930 if (!n) {
2931 ret = -ENOMEM;
2932 goto out;
2934 init_kmem_cache_node(n, s);
2935 s->node[nid] = n;
2937 out:
2938 up_read(&slub_lock);
2939 return ret;
2942 static int slab_memory_callback(struct notifier_block *self,
2943 unsigned long action, void *arg)
2945 int ret = 0;
2947 switch (action) {
2948 case MEM_GOING_ONLINE:
2949 ret = slab_mem_going_online_callback(arg);
2950 break;
2951 case MEM_GOING_OFFLINE:
2952 ret = slab_mem_going_offline_callback(arg);
2953 break;
2954 case MEM_OFFLINE:
2955 case MEM_CANCEL_ONLINE:
2956 slab_mem_offline_callback(arg);
2957 break;
2958 case MEM_ONLINE:
2959 case MEM_CANCEL_OFFLINE:
2960 break;
2962 if (ret)
2963 ret = notifier_from_errno(ret);
2964 else
2965 ret = NOTIFY_OK;
2966 return ret;
2969 #endif /* CONFIG_MEMORY_HOTPLUG */
2971 /********************************************************************
2972 * Basic setup of slabs
2973 *******************************************************************/
2976 * Used for early kmem_cache structures that were allocated using
2977 * the page allocator
2980 static void __init kmem_cache_bootstrap_fixup(struct kmem_cache *s)
2982 int node;
2984 list_add(&s->list, &slab_caches);
2985 s->refcount = -1;
2987 for_each_node_state(node, N_NORMAL_MEMORY) {
2988 struct kmem_cache_node *n = get_node(s, node);
2989 struct page *p;
2991 if (n) {
2992 list_for_each_entry(p, &n->partial, lru)
2993 p->slab = s;
2995 #ifdef CONFIG_SLAB_DEBUG
2996 list_for_each_entry(p, &n->full, lru)
2997 p->slab = s;
2998 #endif
3003 void __init kmem_cache_init(void)
3005 int i;
3006 int caches = 0;
3007 struct kmem_cache *temp_kmem_cache;
3008 int order;
3009 struct kmem_cache *temp_kmem_cache_node;
3010 unsigned long kmalloc_size;
3012 kmem_size = offsetof(struct kmem_cache, node) +
3013 nr_node_ids * sizeof(struct kmem_cache_node *);
3015 /* Allocate two kmem_caches from the page allocator */
3016 kmalloc_size = ALIGN(kmem_size, cache_line_size());
3017 order = get_order(2 * kmalloc_size);
3018 kmem_cache = (void *)__get_free_pages(GFP_NOWAIT, order);
3021 * Must first have the slab cache available for the allocations of the
3022 * struct kmem_cache_node's. There is special bootstrap code in
3023 * kmem_cache_open for slab_state == DOWN.
3025 kmem_cache_node = (void *)kmem_cache + kmalloc_size;
3027 kmem_cache_open(kmem_cache_node, "kmem_cache_node",
3028 sizeof(struct kmem_cache_node),
3029 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3031 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
3033 /* Able to allocate the per node structures */
3034 slab_state = PARTIAL;
3036 temp_kmem_cache = kmem_cache;
3037 kmem_cache_open(kmem_cache, "kmem_cache", kmem_size,
3038 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
3039 kmem_cache = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3040 memcpy(kmem_cache, temp_kmem_cache, kmem_size);
3043 * Allocate kmem_cache_node properly from the kmem_cache slab.
3044 * kmem_cache_node is separately allocated so no need to
3045 * update any list pointers.
3047 temp_kmem_cache_node = kmem_cache_node;
3049 kmem_cache_node = kmem_cache_alloc(kmem_cache, GFP_NOWAIT);
3050 memcpy(kmem_cache_node, temp_kmem_cache_node, kmem_size);
3052 kmem_cache_bootstrap_fixup(kmem_cache_node);
3054 caches++;
3055 kmem_cache_bootstrap_fixup(kmem_cache);
3056 caches++;
3057 /* Free temporary boot structure */
3058 free_pages((unsigned long)temp_kmem_cache, order);
3060 /* Now we can use the kmem_cache to allocate kmalloc slabs */
3063 * Patch up the size_index table if we have strange large alignment
3064 * requirements for the kmalloc array. This is only the case for
3065 * MIPS it seems. The standard arches will not generate any code here.
3067 * Largest permitted alignment is 256 bytes due to the way we
3068 * handle the index determination for the smaller caches.
3070 * Make sure that nothing crazy happens if someone starts tinkering
3071 * around with ARCH_KMALLOC_MINALIGN
3073 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
3074 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
3076 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
3077 int elem = size_index_elem(i);
3078 if (elem >= ARRAY_SIZE(size_index))
3079 break;
3080 size_index[elem] = KMALLOC_SHIFT_LOW;
3083 if (KMALLOC_MIN_SIZE == 64) {
3085 * The 96 byte size cache is not used if the alignment
3086 * is 64 byte.
3088 for (i = 64 + 8; i <= 96; i += 8)
3089 size_index[size_index_elem(i)] = 7;
3090 } else if (KMALLOC_MIN_SIZE == 128) {
3092 * The 192 byte sized cache is not used if the alignment
3093 * is 128 byte. Redirect kmalloc to use the 256 byte cache
3094 * instead.
3096 for (i = 128 + 8; i <= 192; i += 8)
3097 size_index[size_index_elem(i)] = 8;
3100 /* Caches that are not of the two-to-the-power-of size */
3101 if (KMALLOC_MIN_SIZE <= 32) {
3102 kmalloc_caches[1] = create_kmalloc_cache("kmalloc-96", 96, 0);
3103 caches++;
3106 if (KMALLOC_MIN_SIZE <= 64) {
3107 kmalloc_caches[2] = create_kmalloc_cache("kmalloc-192", 192, 0);
3108 caches++;
3111 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3112 kmalloc_caches[i] = create_kmalloc_cache("kmalloc", 1 << i, 0);
3113 caches++;
3116 slab_state = UP;
3118 /* Provide the correct kmalloc names now that the caches are up */
3119 if (KMALLOC_MIN_SIZE <= 32) {
3120 kmalloc_caches[1]->name = kstrdup(kmalloc_caches[1]->name, GFP_NOWAIT);
3121 BUG_ON(!kmalloc_caches[1]->name);
3124 if (KMALLOC_MIN_SIZE <= 64) {
3125 kmalloc_caches[2]->name = kstrdup(kmalloc_caches[2]->name, GFP_NOWAIT);
3126 BUG_ON(!kmalloc_caches[2]->name);
3129 for (i = KMALLOC_SHIFT_LOW; i < SLUB_PAGE_SHIFT; i++) {
3130 char *s = kasprintf(GFP_NOWAIT, "kmalloc-%d", 1 << i);
3132 BUG_ON(!s);
3133 kmalloc_caches[i]->name = s;
3136 #ifdef CONFIG_SMP
3137 register_cpu_notifier(&slab_notifier);
3138 #endif
3140 #ifdef CONFIG_ZONE_DMA
3141 for (i = 0; i < SLUB_PAGE_SHIFT; i++) {
3142 struct kmem_cache *s = kmalloc_caches[i];
3144 if (s && s->size) {
3145 char *name = kasprintf(GFP_NOWAIT,
3146 "dma-kmalloc-%d", s->objsize);
3148 BUG_ON(!name);
3149 kmalloc_dma_caches[i] = create_kmalloc_cache(name,
3150 s->objsize, SLAB_CACHE_DMA);
3153 #endif
3154 printk(KERN_INFO
3155 "SLUB: Genslabs=%d, HWalign=%d, Order=%d-%d, MinObjects=%d,"
3156 " CPUs=%d, Nodes=%d\n",
3157 caches, cache_line_size(),
3158 slub_min_order, slub_max_order, slub_min_objects,
3159 nr_cpu_ids, nr_node_ids);
3162 void __init kmem_cache_init_late(void)
3167 * Find a mergeable slab cache
3169 static int slab_unmergeable(struct kmem_cache *s)
3171 if (slub_nomerge || (s->flags & SLUB_NEVER_MERGE))
3172 return 1;
3174 if (s->ctor)
3175 return 1;
3178 * We may have set a slab to be unmergeable during bootstrap.
3180 if (s->refcount < 0)
3181 return 1;
3183 return 0;
3186 static struct kmem_cache *find_mergeable(size_t size,
3187 size_t align, unsigned long flags, const char *name,
3188 void (*ctor)(void *))
3190 struct kmem_cache *s;
3192 if (slub_nomerge || (flags & SLUB_NEVER_MERGE))
3193 return NULL;
3195 if (ctor)
3196 return NULL;
3198 size = ALIGN(size, sizeof(void *));
3199 align = calculate_alignment(flags, align, size);
3200 size = ALIGN(size, align);
3201 flags = kmem_cache_flags(size, flags, name, NULL);
3203 list_for_each_entry(s, &slab_caches, list) {
3204 if (slab_unmergeable(s))
3205 continue;
3207 if (size > s->size)
3208 continue;
3210 if ((flags & SLUB_MERGE_SAME) != (s->flags & SLUB_MERGE_SAME))
3211 continue;
3213 * Check if alignment is compatible.
3214 * Courtesy of Adrian Drzewiecki
3216 if ((s->size & ~(align - 1)) != s->size)
3217 continue;
3219 if (s->size - size >= sizeof(void *))
3220 continue;
3222 return s;
3224 return NULL;
3227 struct kmem_cache *kmem_cache_create(const char *name, size_t size,
3228 size_t align, unsigned long flags, void (*ctor)(void *))
3230 struct kmem_cache *s;
3231 char *n;
3233 if (WARN_ON(!name))
3234 return NULL;
3236 down_write(&slub_lock);
3237 s = find_mergeable(size, align, flags, name, ctor);
3238 if (s) {
3239 s->refcount++;
3241 * Adjust the object sizes so that we clear
3242 * the complete object on kzalloc.
3244 s->objsize = max(s->objsize, (int)size);
3245 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
3247 if (sysfs_slab_alias(s, name)) {
3248 s->refcount--;
3249 goto err;
3251 up_write(&slub_lock);
3252 return s;
3255 n = kstrdup(name, GFP_KERNEL);
3256 if (!n)
3257 goto err;
3259 s = kmalloc(kmem_size, GFP_KERNEL);
3260 if (s) {
3261 if (kmem_cache_open(s, n,
3262 size, align, flags, ctor)) {
3263 list_add(&s->list, &slab_caches);
3264 if (sysfs_slab_add(s)) {
3265 list_del(&s->list);
3266 kfree(n);
3267 kfree(s);
3268 goto err;
3270 up_write(&slub_lock);
3271 return s;
3273 kfree(n);
3274 kfree(s);
3276 err:
3277 up_write(&slub_lock);
3279 if (flags & SLAB_PANIC)
3280 panic("Cannot create slabcache %s\n", name);
3281 else
3282 s = NULL;
3283 return s;
3285 EXPORT_SYMBOL(kmem_cache_create);
3287 #ifdef CONFIG_SMP
3289 * Use the cpu notifier to insure that the cpu slabs are flushed when
3290 * necessary.
3292 static int __cpuinit slab_cpuup_callback(struct notifier_block *nfb,
3293 unsigned long action, void *hcpu)
3295 long cpu = (long)hcpu;
3296 struct kmem_cache *s;
3297 unsigned long flags;
3299 switch (action) {
3300 case CPU_UP_CANCELED:
3301 case CPU_UP_CANCELED_FROZEN:
3302 case CPU_DEAD:
3303 case CPU_DEAD_FROZEN:
3304 down_read(&slub_lock);
3305 list_for_each_entry(s, &slab_caches, list) {
3306 local_irq_save(flags);
3307 __flush_cpu_slab(s, cpu);
3308 local_irq_restore(flags);
3310 up_read(&slub_lock);
3311 break;
3312 default:
3313 break;
3315 return NOTIFY_OK;
3318 static struct notifier_block __cpuinitdata slab_notifier = {
3319 .notifier_call = slab_cpuup_callback
3322 #endif
3324 void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
3326 struct kmem_cache *s;
3327 void *ret;
3329 if (unlikely(size > SLUB_MAX_SIZE))
3330 return kmalloc_large(size, gfpflags);
3332 s = get_slab(size, gfpflags);
3334 if (unlikely(ZERO_OR_NULL_PTR(s)))
3335 return s;
3337 ret = slab_alloc(s, gfpflags, NUMA_NO_NODE, caller);
3339 /* Honor the call site pointer we recieved. */
3340 trace_kmalloc(caller, ret, size, s->size, gfpflags);
3342 return ret;
3345 #ifdef CONFIG_NUMA
3346 void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
3347 int node, unsigned long caller)
3349 struct kmem_cache *s;
3350 void *ret;
3352 if (unlikely(size > SLUB_MAX_SIZE)) {
3353 ret = kmalloc_large_node(size, gfpflags, node);
3355 trace_kmalloc_node(caller, ret,
3356 size, PAGE_SIZE << get_order(size),
3357 gfpflags, node);
3359 return ret;
3362 s = get_slab(size, gfpflags);
3364 if (unlikely(ZERO_OR_NULL_PTR(s)))
3365 return s;
3367 ret = slab_alloc(s, gfpflags, node, caller);
3369 /* Honor the call site pointer we recieved. */
3370 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
3372 return ret;
3374 #endif
3376 #ifdef CONFIG_SYSFS
3377 static int count_inuse(struct page *page)
3379 return page->inuse;
3382 static int count_total(struct page *page)
3384 return page->objects;
3386 #endif
3388 #ifdef CONFIG_SLUB_DEBUG
3389 static int validate_slab(struct kmem_cache *s, struct page *page,
3390 unsigned long *map)
3392 void *p;
3393 void *addr = page_address(page);
3395 if (!check_slab(s, page) ||
3396 !on_freelist(s, page, NULL))
3397 return 0;
3399 /* Now we know that a valid freelist exists */
3400 bitmap_zero(map, page->objects);
3402 for_each_free_object(p, s, page->freelist) {
3403 set_bit(slab_index(p, s, addr), map);
3404 if (!check_object(s, page, p, 0))
3405 return 0;
3408 for_each_object(p, s, addr, page->objects)
3409 if (!test_bit(slab_index(p, s, addr), map))
3410 if (!check_object(s, page, p, 1))
3411 return 0;
3412 return 1;
3415 static void validate_slab_slab(struct kmem_cache *s, struct page *page,
3416 unsigned long *map)
3418 if (slab_trylock(page)) {
3419 validate_slab(s, page, map);
3420 slab_unlock(page);
3421 } else
3422 printk(KERN_INFO "SLUB %s: Skipped busy slab 0x%p\n",
3423 s->name, page);
3426 static int validate_slab_node(struct kmem_cache *s,
3427 struct kmem_cache_node *n, unsigned long *map)
3429 unsigned long count = 0;
3430 struct page *page;
3431 unsigned long flags;
3433 spin_lock_irqsave(&n->list_lock, flags);
3435 list_for_each_entry(page, &n->partial, lru) {
3436 validate_slab_slab(s, page, map);
3437 count++;
3439 if (count != n->nr_partial)
3440 printk(KERN_ERR "SLUB %s: %ld partial slabs counted but "
3441 "counter=%ld\n", s->name, count, n->nr_partial);
3443 if (!(s->flags & SLAB_STORE_USER))
3444 goto out;
3446 list_for_each_entry(page, &n->full, lru) {
3447 validate_slab_slab(s, page, map);
3448 count++;
3450 if (count != atomic_long_read(&n->nr_slabs))
3451 printk(KERN_ERR "SLUB: %s %ld slabs counted but "
3452 "counter=%ld\n", s->name, count,
3453 atomic_long_read(&n->nr_slabs));
3455 out:
3456 spin_unlock_irqrestore(&n->list_lock, flags);
3457 return count;
3460 static long validate_slab_cache(struct kmem_cache *s)
3462 int node;
3463 unsigned long count = 0;
3464 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3465 sizeof(unsigned long), GFP_KERNEL);
3467 if (!map)
3468 return -ENOMEM;
3470 flush_all(s);
3471 for_each_node_state(node, N_NORMAL_MEMORY) {
3472 struct kmem_cache_node *n = get_node(s, node);
3474 count += validate_slab_node(s, n, map);
3476 kfree(map);
3477 return count;
3480 * Generate lists of code addresses where slabcache objects are allocated
3481 * and freed.
3484 struct location {
3485 unsigned long count;
3486 unsigned long addr;
3487 long long sum_time;
3488 long min_time;
3489 long max_time;
3490 long min_pid;
3491 long max_pid;
3492 DECLARE_BITMAP(cpus, NR_CPUS);
3493 nodemask_t nodes;
3496 struct loc_track {
3497 unsigned long max;
3498 unsigned long count;
3499 struct location *loc;
3502 static void free_loc_track(struct loc_track *t)
3504 if (t->max)
3505 free_pages((unsigned long)t->loc,
3506 get_order(sizeof(struct location) * t->max));
3509 static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
3511 struct location *l;
3512 int order;
3514 order = get_order(sizeof(struct location) * max);
3516 l = (void *)__get_free_pages(flags, order);
3517 if (!l)
3518 return 0;
3520 if (t->count) {
3521 memcpy(l, t->loc, sizeof(struct location) * t->count);
3522 free_loc_track(t);
3524 t->max = max;
3525 t->loc = l;
3526 return 1;
3529 static int add_location(struct loc_track *t, struct kmem_cache *s,
3530 const struct track *track)
3532 long start, end, pos;
3533 struct location *l;
3534 unsigned long caddr;
3535 unsigned long age = jiffies - track->when;
3537 start = -1;
3538 end = t->count;
3540 for ( ; ; ) {
3541 pos = start + (end - start + 1) / 2;
3544 * There is nothing at "end". If we end up there
3545 * we need to add something to before end.
3547 if (pos == end)
3548 break;
3550 caddr = t->loc[pos].addr;
3551 if (track->addr == caddr) {
3553 l = &t->loc[pos];
3554 l->count++;
3555 if (track->when) {
3556 l->sum_time += age;
3557 if (age < l->min_time)
3558 l->min_time = age;
3559 if (age > l->max_time)
3560 l->max_time = age;
3562 if (track->pid < l->min_pid)
3563 l->min_pid = track->pid;
3564 if (track->pid > l->max_pid)
3565 l->max_pid = track->pid;
3567 cpumask_set_cpu(track->cpu,
3568 to_cpumask(l->cpus));
3570 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3571 return 1;
3574 if (track->addr < caddr)
3575 end = pos;
3576 else
3577 start = pos;
3581 * Not found. Insert new tracking element.
3583 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
3584 return 0;
3586 l = t->loc + pos;
3587 if (pos < t->count)
3588 memmove(l + 1, l,
3589 (t->count - pos) * sizeof(struct location));
3590 t->count++;
3591 l->count = 1;
3592 l->addr = track->addr;
3593 l->sum_time = age;
3594 l->min_time = age;
3595 l->max_time = age;
3596 l->min_pid = track->pid;
3597 l->max_pid = track->pid;
3598 cpumask_clear(to_cpumask(l->cpus));
3599 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
3600 nodes_clear(l->nodes);
3601 node_set(page_to_nid(virt_to_page(track)), l->nodes);
3602 return 1;
3605 static void process_slab(struct loc_track *t, struct kmem_cache *s,
3606 struct page *page, enum track_item alloc,
3607 unsigned long *map)
3609 void *addr = page_address(page);
3610 void *p;
3612 bitmap_zero(map, page->objects);
3613 for_each_free_object(p, s, page->freelist)
3614 set_bit(slab_index(p, s, addr), map);
3616 for_each_object(p, s, addr, page->objects)
3617 if (!test_bit(slab_index(p, s, addr), map))
3618 add_location(t, s, get_track(s, p, alloc));
3621 static int list_locations(struct kmem_cache *s, char *buf,
3622 enum track_item alloc)
3624 int len = 0;
3625 unsigned long i;
3626 struct loc_track t = { 0, 0, NULL };
3627 int node;
3628 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
3629 sizeof(unsigned long), GFP_KERNEL);
3631 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
3632 GFP_TEMPORARY)) {
3633 kfree(map);
3634 return sprintf(buf, "Out of memory\n");
3636 /* Push back cpu slabs */
3637 flush_all(s);
3639 for_each_node_state(node, N_NORMAL_MEMORY) {
3640 struct kmem_cache_node *n = get_node(s, node);
3641 unsigned long flags;
3642 struct page *page;
3644 if (!atomic_long_read(&n->nr_slabs))
3645 continue;
3647 spin_lock_irqsave(&n->list_lock, flags);
3648 list_for_each_entry(page, &n->partial, lru)
3649 process_slab(&t, s, page, alloc, map);
3650 list_for_each_entry(page, &n->full, lru)
3651 process_slab(&t, s, page, alloc, map);
3652 spin_unlock_irqrestore(&n->list_lock, flags);
3655 for (i = 0; i < t.count; i++) {
3656 struct location *l = &t.loc[i];
3658 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
3659 break;
3660 len += sprintf(buf + len, "%7ld ", l->count);
3662 if (l->addr)
3663 len += sprint_symbol(buf + len, (unsigned long)l->addr);
3664 else
3665 len += sprintf(buf + len, "<not-available>");
3667 if (l->sum_time != l->min_time) {
3668 len += sprintf(buf + len, " age=%ld/%ld/%ld",
3669 l->min_time,
3670 (long)div_u64(l->sum_time, l->count),
3671 l->max_time);
3672 } else
3673 len += sprintf(buf + len, " age=%ld",
3674 l->min_time);
3676 if (l->min_pid != l->max_pid)
3677 len += sprintf(buf + len, " pid=%ld-%ld",
3678 l->min_pid, l->max_pid);
3679 else
3680 len += sprintf(buf + len, " pid=%ld",
3681 l->min_pid);
3683 if (num_online_cpus() > 1 &&
3684 !cpumask_empty(to_cpumask(l->cpus)) &&
3685 len < PAGE_SIZE - 60) {
3686 len += sprintf(buf + len, " cpus=");
3687 len += cpulist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3688 to_cpumask(l->cpus));
3691 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
3692 len < PAGE_SIZE - 60) {
3693 len += sprintf(buf + len, " nodes=");
3694 len += nodelist_scnprintf(buf + len, PAGE_SIZE - len - 50,
3695 l->nodes);
3698 len += sprintf(buf + len, "\n");
3701 free_loc_track(&t);
3702 kfree(map);
3703 if (!t.count)
3704 len += sprintf(buf, "No data\n");
3705 return len;
3707 #endif
3709 #ifdef SLUB_RESILIENCY_TEST
3710 static void resiliency_test(void)
3712 u8 *p;
3714 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || SLUB_PAGE_SHIFT < 10);
3716 printk(KERN_ERR "SLUB resiliency testing\n");
3717 printk(KERN_ERR "-----------------------\n");
3718 printk(KERN_ERR "A. Corruption after allocation\n");
3720 p = kzalloc(16, GFP_KERNEL);
3721 p[16] = 0x12;
3722 printk(KERN_ERR "\n1. kmalloc-16: Clobber Redzone/next pointer"
3723 " 0x12->0x%p\n\n", p + 16);
3725 validate_slab_cache(kmalloc_caches[4]);
3727 /* Hmmm... The next two are dangerous */
3728 p = kzalloc(32, GFP_KERNEL);
3729 p[32 + sizeof(void *)] = 0x34;
3730 printk(KERN_ERR "\n2. kmalloc-32: Clobber next pointer/next slab"
3731 " 0x34 -> -0x%p\n", p);
3732 printk(KERN_ERR
3733 "If allocated object is overwritten then not detectable\n\n");
3735 validate_slab_cache(kmalloc_caches[5]);
3736 p = kzalloc(64, GFP_KERNEL);
3737 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
3738 *p = 0x56;
3739 printk(KERN_ERR "\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
3741 printk(KERN_ERR
3742 "If allocated object is overwritten then not detectable\n\n");
3743 validate_slab_cache(kmalloc_caches[6]);
3745 printk(KERN_ERR "\nB. Corruption after free\n");
3746 p = kzalloc(128, GFP_KERNEL);
3747 kfree(p);
3748 *p = 0x78;
3749 printk(KERN_ERR "1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
3750 validate_slab_cache(kmalloc_caches[7]);
3752 p = kzalloc(256, GFP_KERNEL);
3753 kfree(p);
3754 p[50] = 0x9a;
3755 printk(KERN_ERR "\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n",
3757 validate_slab_cache(kmalloc_caches[8]);
3759 p = kzalloc(512, GFP_KERNEL);
3760 kfree(p);
3761 p[512] = 0xab;
3762 printk(KERN_ERR "\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
3763 validate_slab_cache(kmalloc_caches[9]);
3765 #else
3766 #ifdef CONFIG_SYSFS
3767 static void resiliency_test(void) {};
3768 #endif
3769 #endif
3771 #ifdef CONFIG_SYSFS
3772 enum slab_stat_type {
3773 SL_ALL, /* All slabs */
3774 SL_PARTIAL, /* Only partially allocated slabs */
3775 SL_CPU, /* Only slabs used for cpu caches */
3776 SL_OBJECTS, /* Determine allocated objects not slabs */
3777 SL_TOTAL /* Determine object capacity not slabs */
3780 #define SO_ALL (1 << SL_ALL)
3781 #define SO_PARTIAL (1 << SL_PARTIAL)
3782 #define SO_CPU (1 << SL_CPU)
3783 #define SO_OBJECTS (1 << SL_OBJECTS)
3784 #define SO_TOTAL (1 << SL_TOTAL)
3786 static ssize_t show_slab_objects(struct kmem_cache *s,
3787 char *buf, unsigned long flags)
3789 unsigned long total = 0;
3790 int node;
3791 int x;
3792 unsigned long *nodes;
3793 unsigned long *per_cpu;
3795 nodes = kzalloc(2 * sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
3796 if (!nodes)
3797 return -ENOMEM;
3798 per_cpu = nodes + nr_node_ids;
3800 if (flags & SO_CPU) {
3801 int cpu;
3803 for_each_possible_cpu(cpu) {
3804 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
3806 if (!c || c->node < 0)
3807 continue;
3809 if (c->page) {
3810 if (flags & SO_TOTAL)
3811 x = c->page->objects;
3812 else if (flags & SO_OBJECTS)
3813 x = c->page->inuse;
3814 else
3815 x = 1;
3817 total += x;
3818 nodes[c->node] += x;
3820 per_cpu[c->node]++;
3824 down_read(&slub_lock);
3825 #ifdef CONFIG_SLUB_DEBUG
3826 if (flags & SO_ALL) {
3827 for_each_node_state(node, N_NORMAL_MEMORY) {
3828 struct kmem_cache_node *n = get_node(s, node);
3830 if (flags & SO_TOTAL)
3831 x = atomic_long_read(&n->total_objects);
3832 else if (flags & SO_OBJECTS)
3833 x = atomic_long_read(&n->total_objects) -
3834 count_partial(n, count_free);
3836 else
3837 x = atomic_long_read(&n->nr_slabs);
3838 total += x;
3839 nodes[node] += x;
3842 } else
3843 #endif
3844 if (flags & SO_PARTIAL) {
3845 for_each_node_state(node, N_NORMAL_MEMORY) {
3846 struct kmem_cache_node *n = get_node(s, node);
3848 if (flags & SO_TOTAL)
3849 x = count_partial(n, count_total);
3850 else if (flags & SO_OBJECTS)
3851 x = count_partial(n, count_inuse);
3852 else
3853 x = n->nr_partial;
3854 total += x;
3855 nodes[node] += x;
3858 x = sprintf(buf, "%lu", total);
3859 #ifdef CONFIG_NUMA
3860 for_each_node_state(node, N_NORMAL_MEMORY)
3861 if (nodes[node])
3862 x += sprintf(buf + x, " N%d=%lu",
3863 node, nodes[node]);
3864 #endif
3865 up_read(&slub_lock);
3866 kfree(nodes);
3867 return x + sprintf(buf + x, "\n");
3870 #ifdef CONFIG_SLUB_DEBUG
3871 static int any_slab_objects(struct kmem_cache *s)
3873 int node;
3875 for_each_online_node(node) {
3876 struct kmem_cache_node *n = get_node(s, node);
3878 if (!n)
3879 continue;
3881 if (atomic_long_read(&n->total_objects))
3882 return 1;
3884 return 0;
3886 #endif
3888 #define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
3889 #define to_slab(n) container_of(n, struct kmem_cache, kobj);
3891 struct slab_attribute {
3892 struct attribute attr;
3893 ssize_t (*show)(struct kmem_cache *s, char *buf);
3894 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
3897 #define SLAB_ATTR_RO(_name) \
3898 static struct slab_attribute _name##_attr = __ATTR_RO(_name)
3900 #define SLAB_ATTR(_name) \
3901 static struct slab_attribute _name##_attr = \
3902 __ATTR(_name, 0644, _name##_show, _name##_store)
3904 static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
3906 return sprintf(buf, "%d\n", s->size);
3908 SLAB_ATTR_RO(slab_size);
3910 static ssize_t align_show(struct kmem_cache *s, char *buf)
3912 return sprintf(buf, "%d\n", s->align);
3914 SLAB_ATTR_RO(align);
3916 static ssize_t object_size_show(struct kmem_cache *s, char *buf)
3918 return sprintf(buf, "%d\n", s->objsize);
3920 SLAB_ATTR_RO(object_size);
3922 static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
3924 return sprintf(buf, "%d\n", oo_objects(s->oo));
3926 SLAB_ATTR_RO(objs_per_slab);
3928 static ssize_t order_store(struct kmem_cache *s,
3929 const char *buf, size_t length)
3931 unsigned long order;
3932 int err;
3934 err = strict_strtoul(buf, 10, &order);
3935 if (err)
3936 return err;
3938 if (order > slub_max_order || order < slub_min_order)
3939 return -EINVAL;
3941 calculate_sizes(s, order);
3942 return length;
3945 static ssize_t order_show(struct kmem_cache *s, char *buf)
3947 return sprintf(buf, "%d\n", oo_order(s->oo));
3949 SLAB_ATTR(order);
3951 static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
3953 return sprintf(buf, "%lu\n", s->min_partial);
3956 static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
3957 size_t length)
3959 unsigned long min;
3960 int err;
3962 err = strict_strtoul(buf, 10, &min);
3963 if (err)
3964 return err;
3966 set_min_partial(s, min);
3967 return length;
3969 SLAB_ATTR(min_partial);
3971 static ssize_t ctor_show(struct kmem_cache *s, char *buf)
3973 if (s->ctor) {
3974 int n = sprint_symbol(buf, (unsigned long)s->ctor);
3976 return n + sprintf(buf + n, "\n");
3978 return 0;
3980 SLAB_ATTR_RO(ctor);
3982 static ssize_t aliases_show(struct kmem_cache *s, char *buf)
3984 return sprintf(buf, "%d\n", s->refcount - 1);
3986 SLAB_ATTR_RO(aliases);
3988 static ssize_t partial_show(struct kmem_cache *s, char *buf)
3990 return show_slab_objects(s, buf, SO_PARTIAL);
3992 SLAB_ATTR_RO(partial);
3994 static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
3996 return show_slab_objects(s, buf, SO_CPU);
3998 SLAB_ATTR_RO(cpu_slabs);
4000 static ssize_t objects_show(struct kmem_cache *s, char *buf)
4002 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
4004 SLAB_ATTR_RO(objects);
4006 static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4008 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4010 SLAB_ATTR_RO(objects_partial);
4012 static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
4014 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
4017 static ssize_t reclaim_account_store(struct kmem_cache *s,
4018 const char *buf, size_t length)
4020 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
4021 if (buf[0] == '1')
4022 s->flags |= SLAB_RECLAIM_ACCOUNT;
4023 return length;
4025 SLAB_ATTR(reclaim_account);
4027 static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
4029 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
4031 SLAB_ATTR_RO(hwcache_align);
4033 #ifdef CONFIG_ZONE_DMA
4034 static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
4036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
4038 SLAB_ATTR_RO(cache_dma);
4039 #endif
4041 static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
4043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DESTROY_BY_RCU));
4045 SLAB_ATTR_RO(destroy_by_rcu);
4047 #ifdef CONFIG_SLUB_DEBUG
4048 static ssize_t slabs_show(struct kmem_cache *s, char *buf)
4050 return show_slab_objects(s, buf, SO_ALL);
4052 SLAB_ATTR_RO(slabs);
4054 static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
4056 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
4058 SLAB_ATTR_RO(total_objects);
4060 static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
4062 return sprintf(buf, "%d\n", !!(s->flags & SLAB_DEBUG_FREE));
4065 static ssize_t sanity_checks_store(struct kmem_cache *s,
4066 const char *buf, size_t length)
4068 s->flags &= ~SLAB_DEBUG_FREE;
4069 if (buf[0] == '1')
4070 s->flags |= SLAB_DEBUG_FREE;
4071 return length;
4073 SLAB_ATTR(sanity_checks);
4075 static ssize_t trace_show(struct kmem_cache *s, char *buf)
4077 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
4080 static ssize_t trace_store(struct kmem_cache *s, const char *buf,
4081 size_t length)
4083 s->flags &= ~SLAB_TRACE;
4084 if (buf[0] == '1')
4085 s->flags |= SLAB_TRACE;
4086 return length;
4088 SLAB_ATTR(trace);
4090 static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
4092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
4095 static ssize_t red_zone_store(struct kmem_cache *s,
4096 const char *buf, size_t length)
4098 if (any_slab_objects(s))
4099 return -EBUSY;
4101 s->flags &= ~SLAB_RED_ZONE;
4102 if (buf[0] == '1')
4103 s->flags |= SLAB_RED_ZONE;
4104 calculate_sizes(s, -1);
4105 return length;
4107 SLAB_ATTR(red_zone);
4109 static ssize_t poison_show(struct kmem_cache *s, char *buf)
4111 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
4114 static ssize_t poison_store(struct kmem_cache *s,
4115 const char *buf, size_t length)
4117 if (any_slab_objects(s))
4118 return -EBUSY;
4120 s->flags &= ~SLAB_POISON;
4121 if (buf[0] == '1')
4122 s->flags |= SLAB_POISON;
4123 calculate_sizes(s, -1);
4124 return length;
4126 SLAB_ATTR(poison);
4128 static ssize_t store_user_show(struct kmem_cache *s, char *buf)
4130 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
4133 static ssize_t store_user_store(struct kmem_cache *s,
4134 const char *buf, size_t length)
4136 if (any_slab_objects(s))
4137 return -EBUSY;
4139 s->flags &= ~SLAB_STORE_USER;
4140 if (buf[0] == '1')
4141 s->flags |= SLAB_STORE_USER;
4142 calculate_sizes(s, -1);
4143 return length;
4145 SLAB_ATTR(store_user);
4147 static ssize_t validate_show(struct kmem_cache *s, char *buf)
4149 return 0;
4152 static ssize_t validate_store(struct kmem_cache *s,
4153 const char *buf, size_t length)
4155 int ret = -EINVAL;
4157 if (buf[0] == '1') {
4158 ret = validate_slab_cache(s);
4159 if (ret >= 0)
4160 ret = length;
4162 return ret;
4164 SLAB_ATTR(validate);
4166 static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
4168 if (!(s->flags & SLAB_STORE_USER))
4169 return -ENOSYS;
4170 return list_locations(s, buf, TRACK_ALLOC);
4172 SLAB_ATTR_RO(alloc_calls);
4174 static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
4176 if (!(s->flags & SLAB_STORE_USER))
4177 return -ENOSYS;
4178 return list_locations(s, buf, TRACK_FREE);
4180 SLAB_ATTR_RO(free_calls);
4181 #endif /* CONFIG_SLUB_DEBUG */
4183 #ifdef CONFIG_FAILSLAB
4184 static ssize_t failslab_show(struct kmem_cache *s, char *buf)
4186 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
4189 static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
4190 size_t length)
4192 s->flags &= ~SLAB_FAILSLAB;
4193 if (buf[0] == '1')
4194 s->flags |= SLAB_FAILSLAB;
4195 return length;
4197 SLAB_ATTR(failslab);
4198 #endif
4200 static ssize_t shrink_show(struct kmem_cache *s, char *buf)
4202 return 0;
4205 static ssize_t shrink_store(struct kmem_cache *s,
4206 const char *buf, size_t length)
4208 if (buf[0] == '1') {
4209 int rc = kmem_cache_shrink(s);
4211 if (rc)
4212 return rc;
4213 } else
4214 return -EINVAL;
4215 return length;
4217 SLAB_ATTR(shrink);
4219 #ifdef CONFIG_NUMA
4220 static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
4222 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
4225 static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
4226 const char *buf, size_t length)
4228 unsigned long ratio;
4229 int err;
4231 err = strict_strtoul(buf, 10, &ratio);
4232 if (err)
4233 return err;
4235 if (ratio <= 100)
4236 s->remote_node_defrag_ratio = ratio * 10;
4238 return length;
4240 SLAB_ATTR(remote_node_defrag_ratio);
4241 #endif
4243 #ifdef CONFIG_SLUB_STATS
4244 static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
4246 unsigned long sum = 0;
4247 int cpu;
4248 int len;
4249 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
4251 if (!data)
4252 return -ENOMEM;
4254 for_each_online_cpu(cpu) {
4255 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
4257 data[cpu] = x;
4258 sum += x;
4261 len = sprintf(buf, "%lu", sum);
4263 #ifdef CONFIG_SMP
4264 for_each_online_cpu(cpu) {
4265 if (data[cpu] && len < PAGE_SIZE - 20)
4266 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
4268 #endif
4269 kfree(data);
4270 return len + sprintf(buf + len, "\n");
4273 static void clear_stat(struct kmem_cache *s, enum stat_item si)
4275 int cpu;
4277 for_each_online_cpu(cpu)
4278 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
4281 #define STAT_ATTR(si, text) \
4282 static ssize_t text##_show(struct kmem_cache *s, char *buf) \
4284 return show_stat(s, buf, si); \
4286 static ssize_t text##_store(struct kmem_cache *s, \
4287 const char *buf, size_t length) \
4289 if (buf[0] != '0') \
4290 return -EINVAL; \
4291 clear_stat(s, si); \
4292 return length; \
4294 SLAB_ATTR(text); \
4296 STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
4297 STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
4298 STAT_ATTR(FREE_FASTPATH, free_fastpath);
4299 STAT_ATTR(FREE_SLOWPATH, free_slowpath);
4300 STAT_ATTR(FREE_FROZEN, free_frozen);
4301 STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
4302 STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
4303 STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
4304 STAT_ATTR(ALLOC_SLAB, alloc_slab);
4305 STAT_ATTR(ALLOC_REFILL, alloc_refill);
4306 STAT_ATTR(FREE_SLAB, free_slab);
4307 STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
4308 STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
4309 STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
4310 STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
4311 STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
4312 STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
4313 STAT_ATTR(ORDER_FALLBACK, order_fallback);
4314 #endif
4316 static struct attribute *slab_attrs[] = {
4317 &slab_size_attr.attr,
4318 &object_size_attr.attr,
4319 &objs_per_slab_attr.attr,
4320 &order_attr.attr,
4321 &min_partial_attr.attr,
4322 &objects_attr.attr,
4323 &objects_partial_attr.attr,
4324 &partial_attr.attr,
4325 &cpu_slabs_attr.attr,
4326 &ctor_attr.attr,
4327 &aliases_attr.attr,
4328 &align_attr.attr,
4329 &hwcache_align_attr.attr,
4330 &reclaim_account_attr.attr,
4331 &destroy_by_rcu_attr.attr,
4332 &shrink_attr.attr,
4333 #ifdef CONFIG_SLUB_DEBUG
4334 &total_objects_attr.attr,
4335 &slabs_attr.attr,
4336 &sanity_checks_attr.attr,
4337 &trace_attr.attr,
4338 &red_zone_attr.attr,
4339 &poison_attr.attr,
4340 &store_user_attr.attr,
4341 &validate_attr.attr,
4342 &alloc_calls_attr.attr,
4343 &free_calls_attr.attr,
4344 #endif
4345 #ifdef CONFIG_ZONE_DMA
4346 &cache_dma_attr.attr,
4347 #endif
4348 #ifdef CONFIG_NUMA
4349 &remote_node_defrag_ratio_attr.attr,
4350 #endif
4351 #ifdef CONFIG_SLUB_STATS
4352 &alloc_fastpath_attr.attr,
4353 &alloc_slowpath_attr.attr,
4354 &free_fastpath_attr.attr,
4355 &free_slowpath_attr.attr,
4356 &free_frozen_attr.attr,
4357 &free_add_partial_attr.attr,
4358 &free_remove_partial_attr.attr,
4359 &alloc_from_partial_attr.attr,
4360 &alloc_slab_attr.attr,
4361 &alloc_refill_attr.attr,
4362 &free_slab_attr.attr,
4363 &cpuslab_flush_attr.attr,
4364 &deactivate_full_attr.attr,
4365 &deactivate_empty_attr.attr,
4366 &deactivate_to_head_attr.attr,
4367 &deactivate_to_tail_attr.attr,
4368 &deactivate_remote_frees_attr.attr,
4369 &order_fallback_attr.attr,
4370 #endif
4371 #ifdef CONFIG_FAILSLAB
4372 &failslab_attr.attr,
4373 #endif
4375 NULL
4378 static struct attribute_group slab_attr_group = {
4379 .attrs = slab_attrs,
4382 static ssize_t slab_attr_show(struct kobject *kobj,
4383 struct attribute *attr,
4384 char *buf)
4386 struct slab_attribute *attribute;
4387 struct kmem_cache *s;
4388 int err;
4390 attribute = to_slab_attr(attr);
4391 s = to_slab(kobj);
4393 if (!attribute->show)
4394 return -EIO;
4396 err = attribute->show(s, buf);
4398 return err;
4401 static ssize_t slab_attr_store(struct kobject *kobj,
4402 struct attribute *attr,
4403 const char *buf, size_t len)
4405 struct slab_attribute *attribute;
4406 struct kmem_cache *s;
4407 int err;
4409 attribute = to_slab_attr(attr);
4410 s = to_slab(kobj);
4412 if (!attribute->store)
4413 return -EIO;
4415 err = attribute->store(s, buf, len);
4417 return err;
4420 static void kmem_cache_release(struct kobject *kobj)
4422 struct kmem_cache *s = to_slab(kobj);
4424 kfree(s->name);
4425 kfree(s);
4428 static const struct sysfs_ops slab_sysfs_ops = {
4429 .show = slab_attr_show,
4430 .store = slab_attr_store,
4433 static struct kobj_type slab_ktype = {
4434 .sysfs_ops = &slab_sysfs_ops,
4435 .release = kmem_cache_release
4438 static int uevent_filter(struct kset *kset, struct kobject *kobj)
4440 struct kobj_type *ktype = get_ktype(kobj);
4442 if (ktype == &slab_ktype)
4443 return 1;
4444 return 0;
4447 static const struct kset_uevent_ops slab_uevent_ops = {
4448 .filter = uevent_filter,
4451 static struct kset *slab_kset;
4453 #define ID_STR_LENGTH 64
4455 /* Create a unique string id for a slab cache:
4457 * Format :[flags-]size
4459 static char *create_unique_id(struct kmem_cache *s)
4461 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
4462 char *p = name;
4464 BUG_ON(!name);
4466 *p++ = ':';
4468 * First flags affecting slabcache operations. We will only
4469 * get here for aliasable slabs so we do not need to support
4470 * too many flags. The flags here must cover all flags that
4471 * are matched during merging to guarantee that the id is
4472 * unique.
4474 if (s->flags & SLAB_CACHE_DMA)
4475 *p++ = 'd';
4476 if (s->flags & SLAB_RECLAIM_ACCOUNT)
4477 *p++ = 'a';
4478 if (s->flags & SLAB_DEBUG_FREE)
4479 *p++ = 'F';
4480 if (!(s->flags & SLAB_NOTRACK))
4481 *p++ = 't';
4482 if (p != name + 1)
4483 *p++ = '-';
4484 p += sprintf(p, "%07d", s->size);
4485 BUG_ON(p > name + ID_STR_LENGTH - 1);
4486 return name;
4489 static int sysfs_slab_add(struct kmem_cache *s)
4491 int err;
4492 const char *name;
4493 int unmergeable;
4495 if (slab_state < SYSFS)
4496 /* Defer until later */
4497 return 0;
4499 unmergeable = slab_unmergeable(s);
4500 if (unmergeable) {
4502 * Slabcache can never be merged so we can use the name proper.
4503 * This is typically the case for debug situations. In that
4504 * case we can catch duplicate names easily.
4506 sysfs_remove_link(&slab_kset->kobj, s->name);
4507 name = s->name;
4508 } else {
4510 * Create a unique name for the slab as a target
4511 * for the symlinks.
4513 name = create_unique_id(s);
4516 s->kobj.kset = slab_kset;
4517 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, name);
4518 if (err) {
4519 kobject_put(&s->kobj);
4520 return err;
4523 err = sysfs_create_group(&s->kobj, &slab_attr_group);
4524 if (err) {
4525 kobject_del(&s->kobj);
4526 kobject_put(&s->kobj);
4527 return err;
4529 kobject_uevent(&s->kobj, KOBJ_ADD);
4530 if (!unmergeable) {
4531 /* Setup first alias */
4532 sysfs_slab_alias(s, s->name);
4533 kfree(name);
4535 return 0;
4538 static void sysfs_slab_remove(struct kmem_cache *s)
4540 if (slab_state < SYSFS)
4542 * Sysfs has not been setup yet so no need to remove the
4543 * cache from sysfs.
4545 return;
4547 kobject_uevent(&s->kobj, KOBJ_REMOVE);
4548 kobject_del(&s->kobj);
4549 kobject_put(&s->kobj);
4553 * Need to buffer aliases during bootup until sysfs becomes
4554 * available lest we lose that information.
4556 struct saved_alias {
4557 struct kmem_cache *s;
4558 const char *name;
4559 struct saved_alias *next;
4562 static struct saved_alias *alias_list;
4564 static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
4566 struct saved_alias *al;
4568 if (slab_state == SYSFS) {
4570 * If we have a leftover link then remove it.
4572 sysfs_remove_link(&slab_kset->kobj, name);
4573 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
4576 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
4577 if (!al)
4578 return -ENOMEM;
4580 al->s = s;
4581 al->name = name;
4582 al->next = alias_list;
4583 alias_list = al;
4584 return 0;
4587 static int __init slab_sysfs_init(void)
4589 struct kmem_cache *s;
4590 int err;
4592 down_write(&slub_lock);
4594 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
4595 if (!slab_kset) {
4596 up_write(&slub_lock);
4597 printk(KERN_ERR "Cannot register slab subsystem.\n");
4598 return -ENOSYS;
4601 slab_state = SYSFS;
4603 list_for_each_entry(s, &slab_caches, list) {
4604 err = sysfs_slab_add(s);
4605 if (err)
4606 printk(KERN_ERR "SLUB: Unable to add boot slab %s"
4607 " to sysfs\n", s->name);
4610 while (alias_list) {
4611 struct saved_alias *al = alias_list;
4613 alias_list = alias_list->next;
4614 err = sysfs_slab_alias(al->s, al->name);
4615 if (err)
4616 printk(KERN_ERR "SLUB: Unable to add boot slab alias"
4617 " %s to sysfs\n", s->name);
4618 kfree(al);
4621 up_write(&slub_lock);
4622 resiliency_test();
4623 return 0;
4626 __initcall(slab_sysfs_init);
4627 #endif /* CONFIG_SYSFS */
4630 * The /proc/slabinfo ABI
4632 #ifdef CONFIG_SLABINFO
4633 static void print_slabinfo_header(struct seq_file *m)
4635 seq_puts(m, "slabinfo - version: 2.1\n");
4636 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
4637 "<objperslab> <pagesperslab>");
4638 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
4639 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
4640 seq_putc(m, '\n');
4643 static void *s_start(struct seq_file *m, loff_t *pos)
4645 loff_t n = *pos;
4647 down_read(&slub_lock);
4648 if (!n)
4649 print_slabinfo_header(m);
4651 return seq_list_start(&slab_caches, *pos);
4654 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
4656 return seq_list_next(p, &slab_caches, pos);
4659 static void s_stop(struct seq_file *m, void *p)
4661 up_read(&slub_lock);
4664 static int s_show(struct seq_file *m, void *p)
4666 unsigned long nr_partials = 0;
4667 unsigned long nr_slabs = 0;
4668 unsigned long nr_inuse = 0;
4669 unsigned long nr_objs = 0;
4670 unsigned long nr_free = 0;
4671 struct kmem_cache *s;
4672 int node;
4674 s = list_entry(p, struct kmem_cache, list);
4676 for_each_online_node(node) {
4677 struct kmem_cache_node *n = get_node(s, node);
4679 if (!n)
4680 continue;
4682 nr_partials += n->nr_partial;
4683 nr_slabs += atomic_long_read(&n->nr_slabs);
4684 nr_objs += atomic_long_read(&n->total_objects);
4685 nr_free += count_partial(n, count_free);
4688 nr_inuse = nr_objs - nr_free;
4690 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d", s->name, nr_inuse,
4691 nr_objs, s->size, oo_objects(s->oo),
4692 (1 << oo_order(s->oo)));
4693 seq_printf(m, " : tunables %4u %4u %4u", 0, 0, 0);
4694 seq_printf(m, " : slabdata %6lu %6lu %6lu", nr_slabs, nr_slabs,
4695 0UL);
4696 seq_putc(m, '\n');
4697 return 0;
4700 static const struct seq_operations slabinfo_op = {
4701 .start = s_start,
4702 .next = s_next,
4703 .stop = s_stop,
4704 .show = s_show,
4707 static int slabinfo_open(struct inode *inode, struct file *file)
4709 return seq_open(file, &slabinfo_op);
4712 static const struct file_operations proc_slabinfo_operations = {
4713 .open = slabinfo_open,
4714 .read = seq_read,
4715 .llseek = seq_lseek,
4716 .release = seq_release,
4719 static int __init slab_proc_init(void)
4721 proc_create("slabinfo", S_IRUGO, NULL, &proc_slabinfo_operations);
4722 return 0;
4724 module_init(slab_proc_init);
4725 #endif /* CONFIG_SLABINFO */