Merge tag 'regulator-3.8-rc3' of git://git.kernel.org/pub/scm/linux/kernel/git/brooni...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / hugetlbpage.c
blob1a6de0a7d8eba53a516bc0f6359cbd5240580b15
1 /*
2 * PPC Huge TLB Page Support for Kernel.
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
11 #include <linux/mm.h>
12 #include <linux/io.h>
13 #include <linux/slab.h>
14 #include <linux/hugetlb.h>
15 #include <linux/export.h>
16 #include <linux/of_fdt.h>
17 #include <linux/memblock.h>
18 #include <linux/bootmem.h>
19 #include <linux/moduleparam.h>
20 #include <asm/pgtable.h>
21 #include <asm/pgalloc.h>
22 #include <asm/tlb.h>
23 #include <asm/setup.h>
25 #define PAGE_SHIFT_64K 16
26 #define PAGE_SHIFT_16M 24
27 #define PAGE_SHIFT_16G 34
29 unsigned int HPAGE_SHIFT;
32 * Tracks gpages after the device tree is scanned and before the
33 * huge_boot_pages list is ready. On non-Freescale implementations, this is
34 * just used to track 16G pages and so is a single array. FSL-based
35 * implementations may have more than one gpage size, so we need multiple
36 * arrays
38 #ifdef CONFIG_PPC_FSL_BOOK3E
39 #define MAX_NUMBER_GPAGES 128
40 struct psize_gpages {
41 u64 gpage_list[MAX_NUMBER_GPAGES];
42 unsigned int nr_gpages;
44 static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
45 #else
46 #define MAX_NUMBER_GPAGES 1024
47 static u64 gpage_freearray[MAX_NUMBER_GPAGES];
48 static unsigned nr_gpages;
49 #endif
51 static inline int shift_to_mmu_psize(unsigned int shift)
53 int psize;
55 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize)
56 if (mmu_psize_defs[psize].shift == shift)
57 return psize;
58 return -1;
61 static inline unsigned int mmu_psize_to_shift(unsigned int mmu_psize)
63 if (mmu_psize_defs[mmu_psize].shift)
64 return mmu_psize_defs[mmu_psize].shift;
65 BUG();
68 #define hugepd_none(hpd) ((hpd).pd == 0)
70 pte_t *find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea, unsigned *shift)
72 pgd_t *pg;
73 pud_t *pu;
74 pmd_t *pm;
75 hugepd_t *hpdp = NULL;
76 unsigned pdshift = PGDIR_SHIFT;
78 if (shift)
79 *shift = 0;
81 pg = pgdir + pgd_index(ea);
82 if (is_hugepd(pg)) {
83 hpdp = (hugepd_t *)pg;
84 } else if (!pgd_none(*pg)) {
85 pdshift = PUD_SHIFT;
86 pu = pud_offset(pg, ea);
87 if (is_hugepd(pu))
88 hpdp = (hugepd_t *)pu;
89 else if (!pud_none(*pu)) {
90 pdshift = PMD_SHIFT;
91 pm = pmd_offset(pu, ea);
92 if (is_hugepd(pm))
93 hpdp = (hugepd_t *)pm;
94 else if (!pmd_none(*pm)) {
95 return pte_offset_kernel(pm, ea);
100 if (!hpdp)
101 return NULL;
103 if (shift)
104 *shift = hugepd_shift(*hpdp);
105 return hugepte_offset(hpdp, ea, pdshift);
107 EXPORT_SYMBOL_GPL(find_linux_pte_or_hugepte);
109 pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
111 return find_linux_pte_or_hugepte(mm->pgd, addr, NULL);
114 static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
115 unsigned long address, unsigned pdshift, unsigned pshift)
117 struct kmem_cache *cachep;
118 pte_t *new;
120 #ifdef CONFIG_PPC_FSL_BOOK3E
121 int i;
122 int num_hugepd = 1 << (pshift - pdshift);
123 cachep = hugepte_cache;
124 #else
125 cachep = PGT_CACHE(pdshift - pshift);
126 #endif
128 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
130 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
131 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
133 if (! new)
134 return -ENOMEM;
136 spin_lock(&mm->page_table_lock);
137 #ifdef CONFIG_PPC_FSL_BOOK3E
139 * We have multiple higher-level entries that point to the same
140 * actual pte location. Fill in each as we go and backtrack on error.
141 * We need all of these so the DTLB pgtable walk code can find the
142 * right higher-level entry without knowing if it's a hugepage or not.
144 for (i = 0; i < num_hugepd; i++, hpdp++) {
145 if (unlikely(!hugepd_none(*hpdp)))
146 break;
147 else
148 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
150 /* If we bailed from the for loop early, an error occurred, clean up */
151 if (i < num_hugepd) {
152 for (i = i - 1 ; i >= 0; i--, hpdp--)
153 hpdp->pd = 0;
154 kmem_cache_free(cachep, new);
156 #else
157 if (!hugepd_none(*hpdp))
158 kmem_cache_free(cachep, new);
159 else
160 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
161 #endif
162 spin_unlock(&mm->page_table_lock);
163 return 0;
167 * These macros define how to determine which level of the page table holds
168 * the hpdp.
170 #ifdef CONFIG_PPC_FSL_BOOK3E
171 #define HUGEPD_PGD_SHIFT PGDIR_SHIFT
172 #define HUGEPD_PUD_SHIFT PUD_SHIFT
173 #else
174 #define HUGEPD_PGD_SHIFT PUD_SHIFT
175 #define HUGEPD_PUD_SHIFT PMD_SHIFT
176 #endif
178 pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
180 pgd_t *pg;
181 pud_t *pu;
182 pmd_t *pm;
183 hugepd_t *hpdp = NULL;
184 unsigned pshift = __ffs(sz);
185 unsigned pdshift = PGDIR_SHIFT;
187 addr &= ~(sz-1);
189 pg = pgd_offset(mm, addr);
191 if (pshift >= HUGEPD_PGD_SHIFT) {
192 hpdp = (hugepd_t *)pg;
193 } else {
194 pdshift = PUD_SHIFT;
195 pu = pud_alloc(mm, pg, addr);
196 if (pshift >= HUGEPD_PUD_SHIFT) {
197 hpdp = (hugepd_t *)pu;
198 } else {
199 pdshift = PMD_SHIFT;
200 pm = pmd_alloc(mm, pu, addr);
201 hpdp = (hugepd_t *)pm;
205 if (!hpdp)
206 return NULL;
208 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
210 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
211 return NULL;
213 return hugepte_offset(hpdp, addr, pdshift);
216 #ifdef CONFIG_PPC_FSL_BOOK3E
217 /* Build list of addresses of gigantic pages. This function is used in early
218 * boot before the buddy or bootmem allocator is setup.
220 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
222 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
223 int i;
225 if (addr == 0)
226 return;
228 gpage_freearray[idx].nr_gpages = number_of_pages;
230 for (i = 0; i < number_of_pages; i++) {
231 gpage_freearray[idx].gpage_list[i] = addr;
232 addr += page_size;
237 * Moves the gigantic page addresses from the temporary list to the
238 * huge_boot_pages list.
240 int alloc_bootmem_huge_page(struct hstate *hstate)
242 struct huge_bootmem_page *m;
243 int idx = shift_to_mmu_psize(hstate->order + PAGE_SHIFT);
244 int nr_gpages = gpage_freearray[idx].nr_gpages;
246 if (nr_gpages == 0)
247 return 0;
249 #ifdef CONFIG_HIGHMEM
251 * If gpages can be in highmem we can't use the trick of storing the
252 * data structure in the page; allocate space for this
254 m = alloc_bootmem(sizeof(struct huge_bootmem_page));
255 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
256 #else
257 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
258 #endif
260 list_add(&m->list, &huge_boot_pages);
261 gpage_freearray[idx].nr_gpages = nr_gpages;
262 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
263 m->hstate = hstate;
265 return 1;
268 * Scan the command line hugepagesz= options for gigantic pages; store those in
269 * a list that we use to allocate the memory once all options are parsed.
272 unsigned long gpage_npages[MMU_PAGE_COUNT];
274 static int __init do_gpage_early_setup(char *param, char *val,
275 const char *unused)
277 static phys_addr_t size;
278 unsigned long npages;
281 * The hugepagesz and hugepages cmdline options are interleaved. We
282 * use the size variable to keep track of whether or not this was done
283 * properly and skip over instances where it is incorrect. Other
284 * command-line parsing code will issue warnings, so we don't need to.
287 if ((strcmp(param, "default_hugepagesz") == 0) ||
288 (strcmp(param, "hugepagesz") == 0)) {
289 size = memparse(val, NULL);
290 } else if (strcmp(param, "hugepages") == 0) {
291 if (size != 0) {
292 if (sscanf(val, "%lu", &npages) <= 0)
293 npages = 0;
294 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
295 size = 0;
298 return 0;
303 * This function allocates physical space for pages that are larger than the
304 * buddy allocator can handle. We want to allocate these in highmem because
305 * the amount of lowmem is limited. This means that this function MUST be
306 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
307 * allocate to grab highmem.
309 void __init reserve_hugetlb_gpages(void)
311 static __initdata char cmdline[COMMAND_LINE_SIZE];
312 phys_addr_t size, base;
313 int i;
315 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
316 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
317 &do_gpage_early_setup);
320 * Walk gpage list in reverse, allocating larger page sizes first.
321 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
322 * When we reach the point in the list where pages are no longer
323 * considered gpages, we're done.
325 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
326 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
327 continue;
328 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
329 break;
331 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
332 base = memblock_alloc_base(size * gpage_npages[i], size,
333 MEMBLOCK_ALLOC_ANYWHERE);
334 add_gpage(base, size, gpage_npages[i]);
338 #else /* !PPC_FSL_BOOK3E */
340 /* Build list of addresses of gigantic pages. This function is used in early
341 * boot before the buddy or bootmem allocator is setup.
343 void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
345 if (!addr)
346 return;
347 while (number_of_pages > 0) {
348 gpage_freearray[nr_gpages] = addr;
349 nr_gpages++;
350 number_of_pages--;
351 addr += page_size;
355 /* Moves the gigantic page addresses from the temporary list to the
356 * huge_boot_pages list.
358 int alloc_bootmem_huge_page(struct hstate *hstate)
360 struct huge_bootmem_page *m;
361 if (nr_gpages == 0)
362 return 0;
363 m = phys_to_virt(gpage_freearray[--nr_gpages]);
364 gpage_freearray[nr_gpages] = 0;
365 list_add(&m->list, &huge_boot_pages);
366 m->hstate = hstate;
367 return 1;
369 #endif
371 int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
373 return 0;
376 #ifdef CONFIG_PPC_FSL_BOOK3E
377 #define HUGEPD_FREELIST_SIZE \
378 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
380 struct hugepd_freelist {
381 struct rcu_head rcu;
382 unsigned int index;
383 void *ptes[0];
386 static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
388 static void hugepd_free_rcu_callback(struct rcu_head *head)
390 struct hugepd_freelist *batch =
391 container_of(head, struct hugepd_freelist, rcu);
392 unsigned int i;
394 for (i = 0; i < batch->index; i++)
395 kmem_cache_free(hugepte_cache, batch->ptes[i]);
397 free_page((unsigned long)batch);
400 static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
402 struct hugepd_freelist **batchp;
404 batchp = &__get_cpu_var(hugepd_freelist_cur);
406 if (atomic_read(&tlb->mm->mm_users) < 2 ||
407 cpumask_equal(mm_cpumask(tlb->mm),
408 cpumask_of(smp_processor_id()))) {
409 kmem_cache_free(hugepte_cache, hugepte);
410 return;
413 if (*batchp == NULL) {
414 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
415 (*batchp)->index = 0;
418 (*batchp)->ptes[(*batchp)->index++] = hugepte;
419 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
420 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
421 *batchp = NULL;
424 #endif
426 static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
427 unsigned long start, unsigned long end,
428 unsigned long floor, unsigned long ceiling)
430 pte_t *hugepte = hugepd_page(*hpdp);
431 int i;
433 unsigned long pdmask = ~((1UL << pdshift) - 1);
434 unsigned int num_hugepd = 1;
436 #ifdef CONFIG_PPC_FSL_BOOK3E
437 /* Note: On fsl the hpdp may be the first of several */
438 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
439 #else
440 unsigned int shift = hugepd_shift(*hpdp);
441 #endif
443 start &= pdmask;
444 if (start < floor)
445 return;
446 if (ceiling) {
447 ceiling &= pdmask;
448 if (! ceiling)
449 return;
451 if (end - 1 > ceiling - 1)
452 return;
454 for (i = 0; i < num_hugepd; i++, hpdp++)
455 hpdp->pd = 0;
457 tlb->need_flush = 1;
459 #ifdef CONFIG_PPC_FSL_BOOK3E
460 hugepd_free(tlb, hugepte);
461 #else
462 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
463 #endif
466 static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
467 unsigned long addr, unsigned long end,
468 unsigned long floor, unsigned long ceiling)
470 pmd_t *pmd;
471 unsigned long next;
472 unsigned long start;
474 start = addr;
475 do {
476 pmd = pmd_offset(pud, addr);
477 next = pmd_addr_end(addr, end);
478 if (pmd_none(*pmd))
479 continue;
480 #ifdef CONFIG_PPC_FSL_BOOK3E
482 * Increment next by the size of the huge mapping since
483 * there may be more than one entry at this level for a
484 * single hugepage, but all of them point to
485 * the same kmem cache that holds the hugepte.
487 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
488 #endif
489 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
490 addr, next, floor, ceiling);
491 } while (addr = next, addr != end);
493 start &= PUD_MASK;
494 if (start < floor)
495 return;
496 if (ceiling) {
497 ceiling &= PUD_MASK;
498 if (!ceiling)
499 return;
501 if (end - 1 > ceiling - 1)
502 return;
504 pmd = pmd_offset(pud, start);
505 pud_clear(pud);
506 pmd_free_tlb(tlb, pmd, start);
509 static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
510 unsigned long addr, unsigned long end,
511 unsigned long floor, unsigned long ceiling)
513 pud_t *pud;
514 unsigned long next;
515 unsigned long start;
517 start = addr;
518 do {
519 pud = pud_offset(pgd, addr);
520 next = pud_addr_end(addr, end);
521 if (!is_hugepd(pud)) {
522 if (pud_none_or_clear_bad(pud))
523 continue;
524 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
525 ceiling);
526 } else {
527 #ifdef CONFIG_PPC_FSL_BOOK3E
529 * Increment next by the size of the huge mapping since
530 * there may be more than one entry at this level for a
531 * single hugepage, but all of them point to
532 * the same kmem cache that holds the hugepte.
534 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
535 #endif
536 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
537 addr, next, floor, ceiling);
539 } while (addr = next, addr != end);
541 start &= PGDIR_MASK;
542 if (start < floor)
543 return;
544 if (ceiling) {
545 ceiling &= PGDIR_MASK;
546 if (!ceiling)
547 return;
549 if (end - 1 > ceiling - 1)
550 return;
552 pud = pud_offset(pgd, start);
553 pgd_clear(pgd);
554 pud_free_tlb(tlb, pud, start);
558 * This function frees user-level page tables of a process.
560 * Must be called with pagetable lock held.
562 void hugetlb_free_pgd_range(struct mmu_gather *tlb,
563 unsigned long addr, unsigned long end,
564 unsigned long floor, unsigned long ceiling)
566 pgd_t *pgd;
567 unsigned long next;
570 * Because there are a number of different possible pagetable
571 * layouts for hugepage ranges, we limit knowledge of how
572 * things should be laid out to the allocation path
573 * (huge_pte_alloc(), above). Everything else works out the
574 * structure as it goes from information in the hugepd
575 * pointers. That means that we can't here use the
576 * optimization used in the normal page free_pgd_range(), of
577 * checking whether we're actually covering a large enough
578 * range to have to do anything at the top level of the walk
579 * instead of at the bottom.
581 * To make sense of this, you should probably go read the big
582 * block comment at the top of the normal free_pgd_range(),
583 * too.
586 do {
587 next = pgd_addr_end(addr, end);
588 pgd = pgd_offset(tlb->mm, addr);
589 if (!is_hugepd(pgd)) {
590 if (pgd_none_or_clear_bad(pgd))
591 continue;
592 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
593 } else {
594 #ifdef CONFIG_PPC_FSL_BOOK3E
596 * Increment next by the size of the huge mapping since
597 * there may be more than one entry at the pgd level
598 * for a single hugepage, but all of them point to the
599 * same kmem cache that holds the hugepte.
601 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
602 #endif
603 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
604 addr, next, floor, ceiling);
606 } while (addr = next, addr != end);
609 struct page *
610 follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
612 pte_t *ptep;
613 struct page *page;
614 unsigned shift;
615 unsigned long mask;
617 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &shift);
619 /* Verify it is a huge page else bail. */
620 if (!ptep || !shift)
621 return ERR_PTR(-EINVAL);
623 mask = (1UL << shift) - 1;
624 page = pte_page(*ptep);
625 if (page)
626 page += (address & mask) / PAGE_SIZE;
628 return page;
631 int pmd_huge(pmd_t pmd)
633 return 0;
636 int pud_huge(pud_t pud)
638 return 0;
641 struct page *
642 follow_huge_pmd(struct mm_struct *mm, unsigned long address,
643 pmd_t *pmd, int write)
645 BUG();
646 return NULL;
649 static noinline int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
650 unsigned long end, int write, struct page **pages, int *nr)
652 unsigned long mask;
653 unsigned long pte_end;
654 struct page *head, *page, *tail;
655 pte_t pte;
656 int refs;
658 pte_end = (addr + sz) & ~(sz-1);
659 if (pte_end < end)
660 end = pte_end;
662 pte = *ptep;
663 mask = _PAGE_PRESENT | _PAGE_USER;
664 if (write)
665 mask |= _PAGE_RW;
667 if ((pte_val(pte) & mask) != mask)
668 return 0;
670 /* hugepages are never "special" */
671 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
673 refs = 0;
674 head = pte_page(pte);
676 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
677 tail = page;
678 do {
679 VM_BUG_ON(compound_head(page) != head);
680 pages[*nr] = page;
681 (*nr)++;
682 page++;
683 refs++;
684 } while (addr += PAGE_SIZE, addr != end);
686 if (!page_cache_add_speculative(head, refs)) {
687 *nr -= refs;
688 return 0;
691 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
692 /* Could be optimized better */
693 *nr -= refs;
694 while (refs--)
695 put_page(head);
696 return 0;
700 * Any tail page need their mapcount reference taken before we
701 * return.
703 while (refs--) {
704 if (PageTail(tail))
705 get_huge_page_tail(tail);
706 tail++;
709 return 1;
712 static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
713 unsigned long sz)
715 unsigned long __boundary = (addr + sz) & ~(sz-1);
716 return (__boundary - 1 < end - 1) ? __boundary : end;
719 int gup_hugepd(hugepd_t *hugepd, unsigned pdshift,
720 unsigned long addr, unsigned long end,
721 int write, struct page **pages, int *nr)
723 pte_t *ptep;
724 unsigned long sz = 1UL << hugepd_shift(*hugepd);
725 unsigned long next;
727 ptep = hugepte_offset(hugepd, addr, pdshift);
728 do {
729 next = hugepte_addr_end(addr, end, sz);
730 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
731 return 0;
732 } while (ptep++, addr = next, addr != end);
734 return 1;
737 #ifdef CONFIG_PPC_MM_SLICES
738 unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
739 unsigned long len, unsigned long pgoff,
740 unsigned long flags)
742 struct hstate *hstate = hstate_file(file);
743 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
745 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1, 0);
747 #endif
749 unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
751 #ifdef CONFIG_PPC_MM_SLICES
752 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
754 return 1UL << mmu_psize_to_shift(psize);
755 #else
756 if (!is_vm_hugetlb_page(vma))
757 return PAGE_SIZE;
759 return huge_page_size(hstate_vma(vma));
760 #endif
763 static inline bool is_power_of_4(unsigned long x)
765 if (is_power_of_2(x))
766 return (__ilog2(x) % 2) ? false : true;
767 return false;
770 static int __init add_huge_page_size(unsigned long long size)
772 int shift = __ffs(size);
773 int mmu_psize;
775 /* Check that it is a page size supported by the hardware and
776 * that it fits within pagetable and slice limits. */
777 #ifdef CONFIG_PPC_FSL_BOOK3E
778 if ((size < PAGE_SIZE) || !is_power_of_4(size))
779 return -EINVAL;
780 #else
781 if (!is_power_of_2(size)
782 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
783 return -EINVAL;
784 #endif
786 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
787 return -EINVAL;
789 #ifdef CONFIG_SPU_FS_64K_LS
790 /* Disable support for 64K huge pages when 64K SPU local store
791 * support is enabled as the current implementation conflicts.
793 if (shift == PAGE_SHIFT_64K)
794 return -EINVAL;
795 #endif /* CONFIG_SPU_FS_64K_LS */
797 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
799 /* Return if huge page size has already been setup */
800 if (size_to_hstate(size))
801 return 0;
803 hugetlb_add_hstate(shift - PAGE_SHIFT);
805 return 0;
808 static int __init hugepage_setup_sz(char *str)
810 unsigned long long size;
812 size = memparse(str, &str);
814 if (add_huge_page_size(size) != 0)
815 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
817 return 1;
819 __setup("hugepagesz=", hugepage_setup_sz);
821 #ifdef CONFIG_PPC_FSL_BOOK3E
822 struct kmem_cache *hugepte_cache;
823 static int __init hugetlbpage_init(void)
825 int psize;
827 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
828 unsigned shift;
830 if (!mmu_psize_defs[psize].shift)
831 continue;
833 shift = mmu_psize_to_shift(psize);
835 /* Don't treat normal page sizes as huge... */
836 if (shift != PAGE_SHIFT)
837 if (add_huge_page_size(1ULL << shift) < 0)
838 continue;
842 * Create a kmem cache for hugeptes. The bottom bits in the pte have
843 * size information encoded in them, so align them to allow this
845 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
846 HUGEPD_SHIFT_MASK + 1, 0, NULL);
847 if (hugepte_cache == NULL)
848 panic("%s: Unable to create kmem cache for hugeptes\n",
849 __func__);
851 /* Default hpage size = 4M */
852 if (mmu_psize_defs[MMU_PAGE_4M].shift)
853 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
854 else
855 panic("%s: Unable to set default huge page size\n", __func__);
858 return 0;
860 #else
861 static int __init hugetlbpage_init(void)
863 int psize;
865 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
866 return -ENODEV;
868 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
869 unsigned shift;
870 unsigned pdshift;
872 if (!mmu_psize_defs[psize].shift)
873 continue;
875 shift = mmu_psize_to_shift(psize);
877 if (add_huge_page_size(1ULL << shift) < 0)
878 continue;
880 if (shift < PMD_SHIFT)
881 pdshift = PMD_SHIFT;
882 else if (shift < PUD_SHIFT)
883 pdshift = PUD_SHIFT;
884 else
885 pdshift = PGDIR_SHIFT;
887 pgtable_cache_add(pdshift - shift, NULL);
888 if (!PGT_CACHE(pdshift - shift))
889 panic("hugetlbpage_init(): could not create "
890 "pgtable cache for %d bit pagesize\n", shift);
893 /* Set default large page size. Currently, we pick 16M or 1M
894 * depending on what is available
896 if (mmu_psize_defs[MMU_PAGE_16M].shift)
897 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
898 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
899 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
901 return 0;
903 #endif
904 module_init(hugetlbpage_init);
906 void flush_dcache_icache_hugepage(struct page *page)
908 int i;
909 void *start;
911 BUG_ON(!PageCompound(page));
913 for (i = 0; i < (1UL << compound_order(page)); i++) {
914 if (!PageHighMem(page)) {
915 __flush_dcache_icache(page_address(page+i));
916 } else {
917 start = kmap_atomic(page+i);
918 __flush_dcache_icache(start);
919 kunmap_atomic(start);