2 * drivers/net/ks8851_mll.c
3 * Copyright (c) 2009 Micrel Inc.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License version 2 as
7 * published by the Free Software Foundation.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 * KS8851 16bit MLL chip from Micrel Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/netdevice.h>
27 #include <linux/etherdevice.h>
28 #include <linux/ethtool.h>
29 #include <linux/cache.h>
30 #include <linux/crc32.h>
31 #include <linux/mii.h>
32 #include <linux/platform_device.h>
33 #include <linux/delay.h>
35 #define DRV_NAME "ks8851_mll"
37 static u8 KS_DEFAULT_MAC_ADDRESS
[] = { 0x00, 0x10, 0xA1, 0x86, 0x95, 0x11 };
38 #define MAX_RECV_FRAMES 32
39 #define MAX_BUF_SIZE 2048
40 #define TX_BUF_SIZE 2000
41 #define RX_BUF_SIZE 2000
44 #define CCR_EEPROM (1 << 9)
45 #define CCR_SPI (1 << 8)
46 #define CCR_8BIT (1 << 7)
47 #define CCR_16BIT (1 << 6)
48 #define CCR_32BIT (1 << 5)
49 #define CCR_SHARED (1 << 4)
50 #define CCR_32PIN (1 << 0)
52 /* MAC address registers */
58 #define OBCR_ODS_16MA (1 << 6)
61 #define EEPCR_EESA (1 << 4)
62 #define EEPCR_EESB (1 << 3)
63 #define EEPCR_EEDO (1 << 2)
64 #define EEPCR_EESCK (1 << 1)
65 #define EEPCR_EECS (1 << 0)
68 #define MBIR_TXMBF (1 << 12)
69 #define MBIR_TXMBFA (1 << 11)
70 #define MBIR_RXMBF (1 << 4)
71 #define MBIR_RXMBFA (1 << 3)
74 #define GRR_QMU (1 << 1)
75 #define GRR_GSR (1 << 0)
78 #define WFCR_MPRXE (1 << 7)
79 #define WFCR_WF3E (1 << 3)
80 #define WFCR_WF2E (1 << 2)
81 #define WFCR_WF1E (1 << 1)
82 #define WFCR_WF0E (1 << 0)
84 #define KS_WF0CRC0 0x30
85 #define KS_WF0CRC1 0x32
86 #define KS_WF0BM0 0x34
87 #define KS_WF0BM1 0x36
88 #define KS_WF0BM2 0x38
89 #define KS_WF0BM3 0x3A
91 #define KS_WF1CRC0 0x40
92 #define KS_WF1CRC1 0x42
93 #define KS_WF1BM0 0x44
94 #define KS_WF1BM1 0x46
95 #define KS_WF1BM2 0x48
96 #define KS_WF1BM3 0x4A
98 #define KS_WF2CRC0 0x50
99 #define KS_WF2CRC1 0x52
100 #define KS_WF2BM0 0x54
101 #define KS_WF2BM1 0x56
102 #define KS_WF2BM2 0x58
103 #define KS_WF2BM3 0x5A
105 #define KS_WF3CRC0 0x60
106 #define KS_WF3CRC1 0x62
107 #define KS_WF3BM0 0x64
108 #define KS_WF3BM1 0x66
109 #define KS_WF3BM2 0x68
110 #define KS_WF3BM3 0x6A
113 #define TXCR_TCGICMP (1 << 8)
114 #define TXCR_TCGUDP (1 << 7)
115 #define TXCR_TCGTCP (1 << 6)
116 #define TXCR_TCGIP (1 << 5)
117 #define TXCR_FTXQ (1 << 4)
118 #define TXCR_TXFCE (1 << 3)
119 #define TXCR_TXPE (1 << 2)
120 #define TXCR_TXCRC (1 << 1)
121 #define TXCR_TXE (1 << 0)
124 #define TXSR_TXLC (1 << 13)
125 #define TXSR_TXMC (1 << 12)
126 #define TXSR_TXFID_MASK (0x3f << 0)
127 #define TXSR_TXFID_SHIFT (0)
128 #define TXSR_TXFID_GET(_v) (((_v) >> 0) & 0x3f)
131 #define KS_RXCR1 0x74
132 #define RXCR1_FRXQ (1 << 15)
133 #define RXCR1_RXUDPFCC (1 << 14)
134 #define RXCR1_RXTCPFCC (1 << 13)
135 #define RXCR1_RXIPFCC (1 << 12)
136 #define RXCR1_RXPAFMA (1 << 11)
137 #define RXCR1_RXFCE (1 << 10)
138 #define RXCR1_RXEFE (1 << 9)
139 #define RXCR1_RXMAFMA (1 << 8)
140 #define RXCR1_RXBE (1 << 7)
141 #define RXCR1_RXME (1 << 6)
142 #define RXCR1_RXUE (1 << 5)
143 #define RXCR1_RXAE (1 << 4)
144 #define RXCR1_RXINVF (1 << 1)
145 #define RXCR1_RXE (1 << 0)
146 #define RXCR1_FILTER_MASK (RXCR1_RXINVF | RXCR1_RXAE | \
147 RXCR1_RXMAFMA | RXCR1_RXPAFMA)
149 #define KS_RXCR2 0x76
150 #define RXCR2_SRDBL_MASK (0x7 << 5)
151 #define RXCR2_SRDBL_SHIFT (5)
152 #define RXCR2_SRDBL_4B (0x0 << 5)
153 #define RXCR2_SRDBL_8B (0x1 << 5)
154 #define RXCR2_SRDBL_16B (0x2 << 5)
155 #define RXCR2_SRDBL_32B (0x3 << 5)
156 /* #define RXCR2_SRDBL_FRAME (0x4 << 5) */
157 #define RXCR2_IUFFP (1 << 4)
158 #define RXCR2_RXIUFCEZ (1 << 3)
159 #define RXCR2_UDPLFE (1 << 2)
160 #define RXCR2_RXICMPFCC (1 << 1)
161 #define RXCR2_RXSAF (1 << 0)
163 #define KS_TXMIR 0x78
165 #define KS_RXFHSR 0x7C
166 #define RXFSHR_RXFV (1 << 15)
167 #define RXFSHR_RXICMPFCS (1 << 13)
168 #define RXFSHR_RXIPFCS (1 << 12)
169 #define RXFSHR_RXTCPFCS (1 << 11)
170 #define RXFSHR_RXUDPFCS (1 << 10)
171 #define RXFSHR_RXBF (1 << 7)
172 #define RXFSHR_RXMF (1 << 6)
173 #define RXFSHR_RXUF (1 << 5)
174 #define RXFSHR_RXMR (1 << 4)
175 #define RXFSHR_RXFT (1 << 3)
176 #define RXFSHR_RXFTL (1 << 2)
177 #define RXFSHR_RXRF (1 << 1)
178 #define RXFSHR_RXCE (1 << 0)
179 #define RXFSHR_ERR (RXFSHR_RXCE | RXFSHR_RXRF |\
180 RXFSHR_RXFTL | RXFSHR_RXMR |\
181 RXFSHR_RXICMPFCS | RXFSHR_RXIPFCS |\
183 #define KS_RXFHBCR 0x7E
184 #define RXFHBCR_CNT_MASK 0x0FFF
186 #define KS_TXQCR 0x80
187 #define TXQCR_AETFE (1 << 2)
188 #define TXQCR_TXQMAM (1 << 1)
189 #define TXQCR_METFE (1 << 0)
191 #define KS_RXQCR 0x82
192 #define RXQCR_RXDTTS (1 << 12)
193 #define RXQCR_RXDBCTS (1 << 11)
194 #define RXQCR_RXFCTS (1 << 10)
195 #define RXQCR_RXIPHTOE (1 << 9)
196 #define RXQCR_RXDTTE (1 << 7)
197 #define RXQCR_RXDBCTE (1 << 6)
198 #define RXQCR_RXFCTE (1 << 5)
199 #define RXQCR_ADRFE (1 << 4)
200 #define RXQCR_SDA (1 << 3)
201 #define RXQCR_RRXEF (1 << 0)
202 #define RXQCR_CMD_CNTL (RXQCR_RXFCTE|RXQCR_ADRFE)
204 #define KS_TXFDPR 0x84
205 #define TXFDPR_TXFPAI (1 << 14)
206 #define TXFDPR_TXFP_MASK (0x7ff << 0)
207 #define TXFDPR_TXFP_SHIFT (0)
209 #define KS_RXFDPR 0x86
210 #define RXFDPR_RXFPAI (1 << 14)
212 #define KS_RXDTTR 0x8C
213 #define KS_RXDBCTR 0x8E
217 #define IRQ_LCI (1 << 15)
218 #define IRQ_TXI (1 << 14)
219 #define IRQ_RXI (1 << 13)
220 #define IRQ_RXOI (1 << 11)
221 #define IRQ_TXPSI (1 << 9)
222 #define IRQ_RXPSI (1 << 8)
223 #define IRQ_TXSAI (1 << 6)
224 #define IRQ_RXWFDI (1 << 5)
225 #define IRQ_RXMPDI (1 << 4)
226 #define IRQ_LDI (1 << 3)
227 #define IRQ_EDI (1 << 2)
228 #define IRQ_SPIBEI (1 << 1)
229 #define IRQ_DEDI (1 << 0)
231 #define KS_RXFCTR 0x9C
232 #define RXFCTR_THRESHOLD_MASK 0x00FF
235 #define RXFCTR_RXFC_MASK (0xff << 8)
236 #define RXFCTR_RXFC_SHIFT (8)
237 #define RXFCTR_RXFC_GET(_v) (((_v) >> 8) & 0xff)
238 #define RXFCTR_RXFCT_MASK (0xff << 0)
239 #define RXFCTR_RXFCT_SHIFT (0)
241 #define KS_TXNTFSR 0x9E
243 #define KS_MAHTR0 0xA0
244 #define KS_MAHTR1 0xA2
245 #define KS_MAHTR2 0xA4
246 #define KS_MAHTR3 0xA6
248 #define KS_FCLWR 0xB0
249 #define KS_FCHWR 0xB2
250 #define KS_FCOWR 0xB4
252 #define KS_CIDER 0xC0
253 #define CIDER_ID 0x8870
254 #define CIDER_REV_MASK (0x7 << 1)
255 #define CIDER_REV_SHIFT (1)
256 #define CIDER_REV_GET(_v) (((_v) >> 1) & 0x7)
260 #define IACR_RDEN (1 << 12)
261 #define IACR_TSEL_MASK (0x3 << 10)
262 #define IACR_TSEL_SHIFT (10)
263 #define IACR_TSEL_MIB (0x3 << 10)
264 #define IACR_ADDR_MASK (0x1f << 0)
265 #define IACR_ADDR_SHIFT (0)
267 #define KS_IADLR 0xD0
268 #define KS_IAHDR 0xD2
270 #define KS_PMECR 0xD4
271 #define PMECR_PME_DELAY (1 << 14)
272 #define PMECR_PME_POL (1 << 12)
273 #define PMECR_WOL_WAKEUP (1 << 11)
274 #define PMECR_WOL_MAGICPKT (1 << 10)
275 #define PMECR_WOL_LINKUP (1 << 9)
276 #define PMECR_WOL_ENERGY (1 << 8)
277 #define PMECR_AUTO_WAKE_EN (1 << 7)
278 #define PMECR_WAKEUP_NORMAL (1 << 6)
279 #define PMECR_WKEVT_MASK (0xf << 2)
280 #define PMECR_WKEVT_SHIFT (2)
281 #define PMECR_WKEVT_GET(_v) (((_v) >> 2) & 0xf)
282 #define PMECR_WKEVT_ENERGY (0x1 << 2)
283 #define PMECR_WKEVT_LINK (0x2 << 2)
284 #define PMECR_WKEVT_MAGICPKT (0x4 << 2)
285 #define PMECR_WKEVT_FRAME (0x8 << 2)
286 #define PMECR_PM_MASK (0x3 << 0)
287 #define PMECR_PM_SHIFT (0)
288 #define PMECR_PM_NORMAL (0x0 << 0)
289 #define PMECR_PM_ENERGY (0x1 << 0)
290 #define PMECR_PM_SOFTDOWN (0x2 << 0)
291 #define PMECR_PM_POWERSAVE (0x3 << 0)
293 /* Standard MII PHY data */
294 #define KS_P1MBCR 0xE4
295 #define P1MBCR_FORCE_FDX (1 << 8)
297 #define KS_P1MBSR 0xE6
298 #define P1MBSR_AN_COMPLETE (1 << 5)
299 #define P1MBSR_AN_CAPABLE (1 << 3)
300 #define P1MBSR_LINK_UP (1 << 2)
302 #define KS_PHY1ILR 0xE8
303 #define KS_PHY1IHR 0xEA
304 #define KS_P1ANAR 0xEC
305 #define KS_P1ANLPR 0xEE
307 #define KS_P1SCLMD 0xF4
308 #define P1SCLMD_LEDOFF (1 << 15)
309 #define P1SCLMD_TXIDS (1 << 14)
310 #define P1SCLMD_RESTARTAN (1 << 13)
311 #define P1SCLMD_DISAUTOMDIX (1 << 10)
312 #define P1SCLMD_FORCEMDIX (1 << 9)
313 #define P1SCLMD_AUTONEGEN (1 << 7)
314 #define P1SCLMD_FORCE100 (1 << 6)
315 #define P1SCLMD_FORCEFDX (1 << 5)
316 #define P1SCLMD_ADV_FLOW (1 << 4)
317 #define P1SCLMD_ADV_100BT_FDX (1 << 3)
318 #define P1SCLMD_ADV_100BT_HDX (1 << 2)
319 #define P1SCLMD_ADV_10BT_FDX (1 << 1)
320 #define P1SCLMD_ADV_10BT_HDX (1 << 0)
323 #define P1CR_HP_MDIX (1 << 15)
324 #define P1CR_REV_POL (1 << 13)
325 #define P1CR_OP_100M (1 << 10)
326 #define P1CR_OP_FDX (1 << 9)
327 #define P1CR_OP_MDI (1 << 7)
328 #define P1CR_AN_DONE (1 << 6)
329 #define P1CR_LINK_GOOD (1 << 5)
330 #define P1CR_PNTR_FLOW (1 << 4)
331 #define P1CR_PNTR_100BT_FDX (1 << 3)
332 #define P1CR_PNTR_100BT_HDX (1 << 2)
333 #define P1CR_PNTR_10BT_FDX (1 << 1)
334 #define P1CR_PNTR_10BT_HDX (1 << 0)
336 /* TX Frame control */
338 #define TXFR_TXIC (1 << 15)
339 #define TXFR_TXFID_MASK (0x3f << 0)
340 #define TXFR_TXFID_SHIFT (0)
343 #define P1SR_HP_MDIX (1 << 15)
344 #define P1SR_REV_POL (1 << 13)
345 #define P1SR_OP_100M (1 << 10)
346 #define P1SR_OP_FDX (1 << 9)
347 #define P1SR_OP_MDI (1 << 7)
348 #define P1SR_AN_DONE (1 << 6)
349 #define P1SR_LINK_GOOD (1 << 5)
350 #define P1SR_PNTR_FLOW (1 << 4)
351 #define P1SR_PNTR_100BT_FDX (1 << 3)
352 #define P1SR_PNTR_100BT_HDX (1 << 2)
353 #define P1SR_PNTR_10BT_FDX (1 << 1)
354 #define P1SR_PNTR_10BT_HDX (1 << 0)
356 #define ENUM_BUS_NONE 0
357 #define ENUM_BUS_8BIT 1
358 #define ENUM_BUS_16BIT 2
359 #define ENUM_BUS_32BIT 3
361 #define MAX_MCAST_LST 32
362 #define HW_MCAST_SIZE 8
363 #define MAC_ADDR_LEN 6
366 * union ks_tx_hdr - tx header data
367 * @txb: The header as bytes
368 * @txw: The header as 16bit, little-endian words
370 * A dual representation of the tx header data to allow
371 * access to individual bytes, and to allow 16bit accesses
372 * with 16bit alignment.
380 * struct ks_net - KS8851 driver private data
381 * @net_device : The network device we're bound to
382 * @hw_addr : start address of data register.
383 * @hw_addr_cmd : start address of command register.
384 * @txh : temporaly buffer to save status/length.
385 * @lock : Lock to ensure that the device is not accessed when busy.
386 * @pdev : Pointer to platform device.
387 * @mii : The MII state information for the mii calls.
388 * @frame_head_info : frame header information for multi-pkt rx.
389 * @statelock : Lock on this structure for tx list.
390 * @msg_enable : The message flags controlling driver output (see ethtool).
391 * @frame_cnt : number of frames received.
392 * @bus_width : i/o bus width.
393 * @irq : irq number assigned to this device.
394 * @rc_rxqcr : Cached copy of KS_RXQCR.
395 * @rc_txcr : Cached copy of KS_TXCR.
396 * @rc_ier : Cached copy of KS_IER.
397 * @sharedbus : Multipex(addr and data bus) mode indicator.
398 * @cmd_reg_cache : command register cached.
399 * @cmd_reg_cache_int : command register cached. Used in the irq handler.
400 * @promiscuous : promiscuous mode indicator.
401 * @all_mcast : mutlicast indicator.
402 * @mcast_lst_size : size of multicast list.
403 * @mcast_lst : multicast list.
404 * @mcast_bits : multicast enabed.
405 * @mac_addr : MAC address assigned to this device.
407 * @extra_byte : number of extra byte prepended rx pkt.
408 * @enabled : indicator this device works.
410 * The @lock ensures that the chip is protected when certain operations are
411 * in progress. When the read or write packet transfer is in progress, most
412 * of the chip registers are not accessible until the transfer is finished and
413 * the DMA has been de-asserted.
415 * The @statelock is used to protect information in the structure which may
416 * need to be accessed via several sources, such as the network driver layer
417 * or one of the work queues.
421 /* Receive multiplex framer header info */
422 struct type_frame_head
{
423 u16 sts
; /* Frame status */
424 u16 len
; /* Byte count */
428 struct net_device
*netdev
;
429 void __iomem
*hw_addr
;
430 void __iomem
*hw_addr_cmd
;
431 union ks_tx_hdr txh ____cacheline_aligned
;
432 struct mutex lock
; /* spinlock to be interrupt safe */
433 struct platform_device
*pdev
;
434 struct mii_if_info mii
;
435 struct type_frame_head
*frame_head_info
;
436 spinlock_t statelock
;
447 u16 cmd_reg_cache_int
;
451 u8 mcast_lst
[MAX_MCAST_LST
][MAC_ADDR_LEN
];
452 u8 mcast_bits
[HW_MCAST_SIZE
];
459 static int msg_enable
;
461 #define ks_info(_ks, _msg...) dev_info(&(_ks)->pdev->dev, _msg)
462 #define ks_warn(_ks, _msg...) dev_warn(&(_ks)->pdev->dev, _msg)
463 #define ks_dbg(_ks, _msg...) dev_dbg(&(_ks)->pdev->dev, _msg)
464 #define ks_err(_ks, _msg...) dev_err(&(_ks)->pdev->dev, _msg)
466 #define BE3 0x8000 /* Byte Enable 3 */
467 #define BE2 0x4000 /* Byte Enable 2 */
468 #define BE1 0x2000 /* Byte Enable 1 */
469 #define BE0 0x1000 /* Byte Enable 0 */
472 * register read/write calls.
474 * All these calls issue transactions to access the chip's registers. They
475 * all require that the necessary lock is held to prevent accesses when the
476 * chip is busy transfering packet data (RX/TX FIFO accesses).
480 * ks_rdreg8 - read 8 bit register from device
481 * @ks : The chip information
482 * @offset: The register address
484 * Read a 8bit register from the chip, returning the result
486 static u8
ks_rdreg8(struct ks_net
*ks
, int offset
)
489 u8 shift_bit
= offset
& 0x03;
490 u8 shift_data
= (offset
& 1) << 3;
491 ks
->cmd_reg_cache
= (u16
) offset
| (u16
)(BE0
<< shift_bit
);
492 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
493 data
= ioread16(ks
->hw_addr
);
494 return (u8
)(data
>> shift_data
);
498 * ks_rdreg16 - read 16 bit register from device
499 * @ks : The chip information
500 * @offset: The register address
502 * Read a 16bit register from the chip, returning the result
505 static u16
ks_rdreg16(struct ks_net
*ks
, int offset
)
507 ks
->cmd_reg_cache
= (u16
)offset
| ((BE1
| BE0
) << (offset
& 0x02));
508 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
509 return ioread16(ks
->hw_addr
);
513 * ks_wrreg8 - write 8bit register value to chip
514 * @ks: The chip information
515 * @offset: The register address
516 * @value: The value to write
519 static void ks_wrreg8(struct ks_net
*ks
, int offset
, u8 value
)
521 u8 shift_bit
= (offset
& 0x03);
522 u16 value_write
= (u16
)(value
<< ((offset
& 1) << 3));
523 ks
->cmd_reg_cache
= (u16
)offset
| (BE0
<< shift_bit
);
524 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
525 iowrite16(value_write
, ks
->hw_addr
);
529 * ks_wrreg16 - write 16bit register value to chip
530 * @ks: The chip information
531 * @offset: The register address
532 * @value: The value to write
536 static void ks_wrreg16(struct ks_net
*ks
, int offset
, u16 value
)
538 ks
->cmd_reg_cache
= (u16
)offset
| ((BE1
| BE0
) << (offset
& 0x02));
539 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
540 iowrite16(value
, ks
->hw_addr
);
544 * ks_inblk - read a block of data from QMU. This is called after sudo DMA mode enabled.
545 * @ks: The chip state
546 * @wptr: buffer address to save data
547 * @len: length in byte to read
550 static inline void ks_inblk(struct ks_net
*ks
, u16
*wptr
, u32 len
)
554 *wptr
++ = (u16
)ioread16(ks
->hw_addr
);
558 * ks_outblk - write data to QMU. This is called after sudo DMA mode enabled.
559 * @ks: The chip information
560 * @wptr: buffer address
561 * @len: length in byte to write
564 static inline void ks_outblk(struct ks_net
*ks
, u16
*wptr
, u32 len
)
568 iowrite16(*wptr
++, ks
->hw_addr
);
571 static void ks_disable_int(struct ks_net
*ks
)
573 ks_wrreg16(ks
, KS_IER
, 0x0000);
574 } /* ks_disable_int */
576 static void ks_enable_int(struct ks_net
*ks
)
578 ks_wrreg16(ks
, KS_IER
, ks
->rc_ier
);
579 } /* ks_enable_int */
582 * ks_tx_fifo_space - return the available hardware buffer size.
583 * @ks: The chip information
586 static inline u16
ks_tx_fifo_space(struct ks_net
*ks
)
588 return ks_rdreg16(ks
, KS_TXMIR
) & 0x1fff;
592 * ks_save_cmd_reg - save the command register from the cache.
593 * @ks: The chip information
596 static inline void ks_save_cmd_reg(struct ks_net
*ks
)
598 /*ks8851 MLL has a bug to read back the command register.
599 * So rely on software to save the content of command register.
601 ks
->cmd_reg_cache_int
= ks
->cmd_reg_cache
;
605 * ks_restore_cmd_reg - restore the command register from the cache and
606 * write to hardware register.
607 * @ks: The chip information
610 static inline void ks_restore_cmd_reg(struct ks_net
*ks
)
612 ks
->cmd_reg_cache
= ks
->cmd_reg_cache_int
;
613 iowrite16(ks
->cmd_reg_cache
, ks
->hw_addr_cmd
);
617 * ks_set_powermode - set power mode of the device
618 * @ks: The chip information
619 * @pwrmode: The power mode value to write to KS_PMECR.
621 * Change the power mode of the chip.
623 static void ks_set_powermode(struct ks_net
*ks
, unsigned pwrmode
)
627 if (netif_msg_hw(ks
))
628 ks_dbg(ks
, "setting power mode %d\n", pwrmode
);
630 ks_rdreg16(ks
, KS_GRR
);
631 pmecr
= ks_rdreg16(ks
, KS_PMECR
);
632 pmecr
&= ~PMECR_PM_MASK
;
635 ks_wrreg16(ks
, KS_PMECR
, pmecr
);
639 * ks_read_config - read chip configuration of bus width.
640 * @ks: The chip information
643 static void ks_read_config(struct ks_net
*ks
)
647 /* Regardless of bus width, 8 bit read should always work.*/
648 reg_data
= ks_rdreg8(ks
, KS_CCR
) & 0x00FF;
649 reg_data
|= ks_rdreg8(ks
, KS_CCR
+1) << 8;
651 /* addr/data bus are multiplexed */
652 ks
->sharedbus
= (reg_data
& CCR_SHARED
) == CCR_SHARED
;
654 /* There are garbage data when reading data from QMU,
655 depending on bus-width.
658 if (reg_data
& CCR_8BIT
) {
659 ks
->bus_width
= ENUM_BUS_8BIT
;
661 } else if (reg_data
& CCR_16BIT
) {
662 ks
->bus_width
= ENUM_BUS_16BIT
;
665 ks
->bus_width
= ENUM_BUS_32BIT
;
671 * ks_soft_reset - issue one of the soft reset to the device
672 * @ks: The device state.
673 * @op: The bit(s) to set in the GRR
675 * Issue the relevant soft-reset command to the device's GRR register
678 * Note, the delays are in there as a caution to ensure that the reset
679 * has time to take effect and then complete. Since the datasheet does
680 * not currently specify the exact sequence, we have chosen something
681 * that seems to work with our device.
683 static void ks_soft_reset(struct ks_net
*ks
, unsigned op
)
685 /* Disable interrupt first */
686 ks_wrreg16(ks
, KS_IER
, 0x0000);
687 ks_wrreg16(ks
, KS_GRR
, op
);
688 mdelay(10); /* wait a short time to effect reset */
689 ks_wrreg16(ks
, KS_GRR
, 0);
690 mdelay(1); /* wait for condition to clear */
694 void ks_enable_qmu(struct ks_net
*ks
)
698 w
= ks_rdreg16(ks
, KS_TXCR
);
699 /* Enables QMU Transmit (TXCR). */
700 ks_wrreg16(ks
, KS_TXCR
, w
| TXCR_TXE
);
703 * RX Frame Count Threshold Enable and Auto-Dequeue RXQ Frame
707 w
= ks_rdreg16(ks
, KS_RXQCR
);
708 ks_wrreg16(ks
, KS_RXQCR
, w
| RXQCR_RXFCTE
);
710 /* Enables QMU Receive (RXCR1). */
711 w
= ks_rdreg16(ks
, KS_RXCR1
);
712 ks_wrreg16(ks
, KS_RXCR1
, w
| RXCR1_RXE
);
714 } /* ks_enable_qmu */
716 static void ks_disable_qmu(struct ks_net
*ks
)
720 w
= ks_rdreg16(ks
, KS_TXCR
);
722 /* Disables QMU Transmit (TXCR). */
724 ks_wrreg16(ks
, KS_TXCR
, w
);
726 /* Disables QMU Receive (RXCR1). */
727 w
= ks_rdreg16(ks
, KS_RXCR1
);
729 ks_wrreg16(ks
, KS_RXCR1
, w
);
733 } /* ks_disable_qmu */
736 * ks_read_qmu - read 1 pkt data from the QMU.
737 * @ks: The chip information
738 * @buf: buffer address to save 1 pkt
740 * Here is the sequence to read 1 pkt:
741 * 1. set sudo DMA mode
742 * 2. read prepend data
744 * 4. reset sudo DMA Mode
746 static inline void ks_read_qmu(struct ks_net
*ks
, u16
*buf
, u32 len
)
748 u32 r
= ks
->extra_byte
& 0x1 ;
749 u32 w
= ks
->extra_byte
- r
;
751 /* 1. set sudo DMA mode */
752 ks_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
);
753 ks_wrreg8(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_SDA
) & 0xff);
755 /* 2. read prepend data */
757 * read 4 + extra bytes and discard them.
758 * extra bytes for dummy, 2 for status, 2 for len
761 /* use likely(r) for 8 bit access for performance */
763 ioread8(ks
->hw_addr
);
764 ks_inblk(ks
, buf
, w
+ 2 + 2);
766 /* 3. read pkt data */
767 ks_inblk(ks
, buf
, ALIGN(len
, 4));
769 /* 4. reset sudo DMA Mode */
770 ks_wrreg8(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
774 * ks_rcv - read multiple pkts data from the QMU.
775 * @ks: The chip information
776 * @netdev: The network device being opened.
778 * Read all of header information before reading pkt content.
779 * It is not allowed only port of pkts in QMU after issuing
782 static void ks_rcv(struct ks_net
*ks
, struct net_device
*netdev
)
785 struct type_frame_head
*frame_hdr
= ks
->frame_head_info
;
788 ks
->frame_cnt
= ks_rdreg16(ks
, KS_RXFCTR
) >> 8;
790 /* read all header information */
791 for (i
= 0; i
< ks
->frame_cnt
; i
++) {
792 /* Checking Received packet status */
793 frame_hdr
->sts
= ks_rdreg16(ks
, KS_RXFHSR
);
794 /* Get packet len from hardware */
795 frame_hdr
->len
= ks_rdreg16(ks
, KS_RXFHBCR
);
799 frame_hdr
= ks
->frame_head_info
;
800 while (ks
->frame_cnt
--) {
801 skb
= dev_alloc_skb(frame_hdr
->len
+ 16);
802 if (likely(skb
&& (frame_hdr
->sts
& RXFSHR_RXFV
) &&
803 (frame_hdr
->len
< RX_BUF_SIZE
) && frame_hdr
->len
)) {
805 /* read data block including CRC 4 bytes */
806 ks_read_qmu(ks
, (u16
*)skb
->data
, frame_hdr
->len
);
807 skb_put(skb
, frame_hdr
->len
);
809 skb
->protocol
= eth_type_trans(skb
, netdev
);
812 printk(KERN_ERR
"%s: err:skb alloc\n", __func__
);
813 ks_wrreg16(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_RRXEF
));
815 dev_kfree_skb_irq(skb
);
822 * ks_update_link_status - link status update.
823 * @netdev: The network device being opened.
824 * @ks: The chip information
828 static void ks_update_link_status(struct net_device
*netdev
, struct ks_net
*ks
)
830 /* check the status of the link */
832 if (ks_rdreg16(ks
, KS_P1SR
) & P1SR_LINK_GOOD
) {
833 netif_carrier_on(netdev
);
834 link_up_status
= true;
836 netif_carrier_off(netdev
);
837 link_up_status
= false;
839 if (netif_msg_link(ks
))
840 ks_dbg(ks
, "%s: %s\n",
841 __func__
, link_up_status
? "UP" : "DOWN");
845 * ks_irq - device interrupt handler
846 * @irq: Interrupt number passed from the IRQ hnalder.
847 * @pw: The private word passed to register_irq(), our struct ks_net.
849 * This is the handler invoked to find out what happened
851 * Read the interrupt status, work out what needs to be done and then clear
852 * any of the interrupts that are not needed.
855 static irqreturn_t
ks_irq(int irq
, void *pw
)
857 struct ks_net
*ks
= pw
;
858 struct net_device
*netdev
= ks
->netdev
;
861 /*this should be the first in IRQ handler */
864 status
= ks_rdreg16(ks
, KS_ISR
);
865 if (unlikely(!status
)) {
866 ks_restore_cmd_reg(ks
);
870 ks_wrreg16(ks
, KS_ISR
, status
);
872 if (likely(status
& IRQ_RXI
))
875 if (unlikely(status
& IRQ_LCI
))
876 ks_update_link_status(netdev
, ks
);
878 if (unlikely(status
& IRQ_TXI
))
879 netif_wake_queue(netdev
);
881 if (unlikely(status
& IRQ_LDI
)) {
883 u16 pmecr
= ks_rdreg16(ks
, KS_PMECR
);
884 pmecr
&= ~PMECR_WKEVT_MASK
;
885 ks_wrreg16(ks
, KS_PMECR
, pmecr
| PMECR_WKEVT_LINK
);
888 /* this should be the last in IRQ handler*/
889 ks_restore_cmd_reg(ks
);
895 * ks_net_open - open network device
896 * @netdev: The network device being opened.
898 * Called when the network device is marked active, such as a user executing
899 * 'ifconfig up' on the device.
901 static int ks_net_open(struct net_device
*netdev
)
903 struct ks_net
*ks
= netdev_priv(netdev
);
906 #define KS_INT_FLAGS (IRQF_DISABLED|IRQF_TRIGGER_LOW)
907 /* lock the card, even if we may not actually do anything
908 * else at the moment.
911 if (netif_msg_ifup(ks
))
912 ks_dbg(ks
, "%s - entry\n", __func__
);
915 err
= request_irq(ks
->irq
, ks_irq
, KS_INT_FLAGS
, DRV_NAME
, netdev
);
918 printk(KERN_ERR
"Failed to request IRQ: %d: %d\n",
923 /* wake up powermode to normal mode */
924 ks_set_powermode(ks
, PMECR_PM_NORMAL
);
925 mdelay(1); /* wait for normal mode to take effect */
927 ks_wrreg16(ks
, KS_ISR
, 0xffff);
930 netif_start_queue(ks
->netdev
);
932 if (netif_msg_ifup(ks
))
933 ks_dbg(ks
, "network device %s up\n", netdev
->name
);
939 * ks_net_stop - close network device
940 * @netdev: The device being closed.
942 * Called to close down a network device which has been active. Cancell any
943 * work, shutdown the RX and TX process and then place the chip into a low
944 * power state whilst it is not being used.
946 static int ks_net_stop(struct net_device
*netdev
)
948 struct ks_net
*ks
= netdev_priv(netdev
);
950 if (netif_msg_ifdown(ks
))
951 ks_info(ks
, "%s: shutting down\n", netdev
->name
);
953 netif_stop_queue(netdev
);
955 mutex_lock(&ks
->lock
);
957 /* turn off the IRQs and ack any outstanding */
958 ks_wrreg16(ks
, KS_IER
, 0x0000);
959 ks_wrreg16(ks
, KS_ISR
, 0xffff);
961 /* shutdown RX/TX QMU */
964 /* set powermode to soft power down to save power */
965 ks_set_powermode(ks
, PMECR_PM_SOFTDOWN
);
966 free_irq(ks
->irq
, netdev
);
967 mutex_unlock(&ks
->lock
);
973 * ks_write_qmu - write 1 pkt data to the QMU.
974 * @ks: The chip information
975 * @pdata: buffer address to save 1 pkt
976 * @len: Pkt length in byte
977 * Here is the sequence to write 1 pkt:
978 * 1. set sudo DMA mode
979 * 2. write status/length
981 * 4. reset sudo DMA Mode
982 * 5. reset sudo DMA mode
983 * 6. Wait until pkt is out
985 static void ks_write_qmu(struct ks_net
*ks
, u8
*pdata
, u16 len
)
987 /* start header at txb[0] to align txw entries */
989 ks
->txh
.txw
[1] = cpu_to_le16(len
);
991 /* 1. set sudo-DMA mode */
992 ks_wrreg8(ks
, KS_RXQCR
, (ks
->rc_rxqcr
| RXQCR_SDA
) & 0xff);
993 /* 2. write status/lenth info */
994 ks_outblk(ks
, ks
->txh
.txw
, 4);
995 /* 3. write pkt data */
996 ks_outblk(ks
, (u16
*)pdata
, ALIGN(len
, 4));
997 /* 4. reset sudo-DMA mode */
998 ks_wrreg8(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
999 /* 5. Enqueue Tx(move the pkt from TX buffer into TXQ) */
1000 ks_wrreg16(ks
, KS_TXQCR
, TXQCR_METFE
);
1001 /* 6. wait until TXQCR_METFE is auto-cleared */
1002 while (ks_rdreg16(ks
, KS_TXQCR
) & TXQCR_METFE
)
1007 * ks_start_xmit - transmit packet
1008 * @skb : The buffer to transmit
1009 * @netdev : The device used to transmit the packet.
1011 * Called by the network layer to transmit the @skb.
1012 * spin_lock_irqsave is required because tx and rx should be mutual exclusive.
1013 * So while tx is in-progress, prevent IRQ interrupt from happenning.
1015 static int ks_start_xmit(struct sk_buff
*skb
, struct net_device
*netdev
)
1017 int retv
= NETDEV_TX_OK
;
1018 struct ks_net
*ks
= netdev_priv(netdev
);
1020 disable_irq(netdev
->irq
);
1022 spin_lock(&ks
->statelock
);
1024 /* Extra space are required:
1025 * 4 byte for alignment, 4 for status/length, 4 for CRC
1028 if (likely(ks_tx_fifo_space(ks
) >= skb
->len
+ 12)) {
1029 ks_write_qmu(ks
, skb
->data
, skb
->len
);
1032 retv
= NETDEV_TX_BUSY
;
1033 spin_unlock(&ks
->statelock
);
1035 enable_irq(netdev
->irq
);
1040 * ks_start_rx - ready to serve pkts
1041 * @ks : The chip information
1044 static void ks_start_rx(struct ks_net
*ks
)
1048 /* Enables QMU Receive (RXCR1). */
1049 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1051 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1055 * ks_stop_rx - stop to serve pkts
1056 * @ks : The chip information
1059 static void ks_stop_rx(struct ks_net
*ks
)
1063 /* Disables QMU Receive (RXCR1). */
1064 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1065 cntl
&= ~RXCR1_RXE
;
1066 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1070 static unsigned long const ethernet_polynomial
= 0x04c11db7U
;
1072 static unsigned long ether_gen_crc(int length
, u8
*data
)
1075 while (--length
>= 0) {
1076 u8 current_octet
= *data
++;
1079 for (bit
= 0; bit
< 8; bit
++, current_octet
>>= 1) {
1081 ((crc
< 0) ^ (current_octet
& 1) ?
1082 ethernet_polynomial
: 0);
1085 return (unsigned long)crc
;
1086 } /* ether_gen_crc */
1089 * ks_set_grpaddr - set multicast information
1090 * @ks : The chip information
1093 static void ks_set_grpaddr(struct ks_net
*ks
)
1096 u32 index
, position
, value
;
1098 memset(ks
->mcast_bits
, 0, sizeof(u8
) * HW_MCAST_SIZE
);
1100 for (i
= 0; i
< ks
->mcast_lst_size
; i
++) {
1101 position
= (ether_gen_crc(6, ks
->mcast_lst
[i
]) >> 26) & 0x3f;
1102 index
= position
>> 3;
1103 value
= 1 << (position
& 7);
1104 ks
->mcast_bits
[index
] |= (u8
)value
;
1107 for (i
= 0; i
< HW_MCAST_SIZE
; i
++) {
1109 ks_wrreg16(ks
, (u16
)((KS_MAHTR0
+ i
) & ~1),
1110 (ks
->mcast_bits
[i
] << 8) |
1111 ks
->mcast_bits
[i
- 1]);
1114 } /* ks_set_grpaddr */
1117 * ks_clear_mcast - clear multicast information
1119 * @ks : The chip information
1120 * This routine removes all mcast addresses set in the hardware.
1123 static void ks_clear_mcast(struct ks_net
*ks
)
1126 for (i
= 0; i
< HW_MCAST_SIZE
; i
++)
1127 ks
->mcast_bits
[i
] = 0;
1129 mcast_size
= HW_MCAST_SIZE
>> 2;
1130 for (i
= 0; i
< mcast_size
; i
++)
1131 ks_wrreg16(ks
, KS_MAHTR0
+ (2*i
), 0);
1134 static void ks_set_promis(struct ks_net
*ks
, u16 promiscuous_mode
)
1137 ks
->promiscuous
= promiscuous_mode
;
1138 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1139 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1141 cntl
&= ~RXCR1_FILTER_MASK
;
1142 if (promiscuous_mode
)
1143 /* Enable Promiscuous mode */
1144 cntl
|= RXCR1_RXAE
| RXCR1_RXINVF
;
1146 /* Disable Promiscuous mode (default normal mode) */
1147 cntl
|= RXCR1_RXPAFMA
;
1149 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1154 } /* ks_set_promis */
1156 static void ks_set_mcast(struct ks_net
*ks
, u16 mcast
)
1160 ks
->all_mcast
= mcast
;
1161 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1162 cntl
= ks_rdreg16(ks
, KS_RXCR1
);
1163 cntl
&= ~RXCR1_FILTER_MASK
;
1165 /* Enable "Perfect with Multicast address passed mode" */
1166 cntl
|= (RXCR1_RXAE
| RXCR1_RXMAFMA
| RXCR1_RXPAFMA
);
1169 * Disable "Perfect with Multicast address passed
1170 * mode" (normal mode).
1172 cntl
|= RXCR1_RXPAFMA
;
1174 ks_wrreg16(ks
, KS_RXCR1
, cntl
);
1178 } /* ks_set_mcast */
1180 static void ks_set_rx_mode(struct net_device
*netdev
)
1182 struct ks_net
*ks
= netdev_priv(netdev
);
1183 struct dev_mc_list
*ptr
;
1185 /* Turn on/off promiscuous mode. */
1186 if ((netdev
->flags
& IFF_PROMISC
) == IFF_PROMISC
)
1188 (u16
)((netdev
->flags
& IFF_PROMISC
) == IFF_PROMISC
));
1189 /* Turn on/off all mcast mode. */
1190 else if ((netdev
->flags
& IFF_ALLMULTI
) == IFF_ALLMULTI
)
1192 (u16
)((netdev
->flags
& IFF_ALLMULTI
) == IFF_ALLMULTI
));
1194 ks_set_promis(ks
, false);
1196 if ((netdev
->flags
& IFF_MULTICAST
) && netdev
->mc_count
) {
1197 if (netdev
->mc_count
<= MAX_MCAST_LST
) {
1199 for (ptr
= netdev
->mc_list
; ptr
; ptr
= ptr
->next
) {
1200 if (!(*ptr
->dmi_addr
& 1))
1202 if (i
>= MAX_MCAST_LST
)
1204 memcpy(ks
->mcast_lst
[i
++], ptr
->dmi_addr
,
1207 ks
->mcast_lst_size
= (u8
)i
;
1211 * List too big to support so
1212 * turn on all mcast mode.
1214 ks
->mcast_lst_size
= MAX_MCAST_LST
;
1215 ks_set_mcast(ks
, true);
1218 ks
->mcast_lst_size
= 0;
1221 } /* ks_set_rx_mode */
1223 static void ks_set_mac(struct ks_net
*ks
, u8
*data
)
1225 u16
*pw
= (u16
*)data
;
1228 ks_stop_rx(ks
); /* Stop receiving for reconfiguration */
1231 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1232 ks_wrreg16(ks
, KS_MARH
, w
);
1235 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1236 ks_wrreg16(ks
, KS_MARM
, w
);
1239 w
= ((u
& 0xFF) << 8) | ((u
>> 8) & 0xFF);
1240 ks_wrreg16(ks
, KS_MARL
, w
);
1242 memcpy(ks
->mac_addr
, data
, 6);
1248 static int ks_set_mac_address(struct net_device
*netdev
, void *paddr
)
1250 struct ks_net
*ks
= netdev_priv(netdev
);
1251 struct sockaddr
*addr
= paddr
;
1254 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1256 da
= (u8
*)netdev
->dev_addr
;
1262 static int ks_net_ioctl(struct net_device
*netdev
, struct ifreq
*req
, int cmd
)
1264 struct ks_net
*ks
= netdev_priv(netdev
);
1266 if (!netif_running(netdev
))
1269 return generic_mii_ioctl(&ks
->mii
, if_mii(req
), cmd
, NULL
);
1272 static const struct net_device_ops ks_netdev_ops
= {
1273 .ndo_open
= ks_net_open
,
1274 .ndo_stop
= ks_net_stop
,
1275 .ndo_do_ioctl
= ks_net_ioctl
,
1276 .ndo_start_xmit
= ks_start_xmit
,
1277 .ndo_set_mac_address
= ks_set_mac_address
,
1278 .ndo_set_rx_mode
= ks_set_rx_mode
,
1279 .ndo_change_mtu
= eth_change_mtu
,
1280 .ndo_validate_addr
= eth_validate_addr
,
1283 /* ethtool support */
1285 static void ks_get_drvinfo(struct net_device
*netdev
,
1286 struct ethtool_drvinfo
*di
)
1288 strlcpy(di
->driver
, DRV_NAME
, sizeof(di
->driver
));
1289 strlcpy(di
->version
, "1.00", sizeof(di
->version
));
1290 strlcpy(di
->bus_info
, dev_name(netdev
->dev
.parent
),
1291 sizeof(di
->bus_info
));
1294 static u32
ks_get_msglevel(struct net_device
*netdev
)
1296 struct ks_net
*ks
= netdev_priv(netdev
);
1297 return ks
->msg_enable
;
1300 static void ks_set_msglevel(struct net_device
*netdev
, u32 to
)
1302 struct ks_net
*ks
= netdev_priv(netdev
);
1303 ks
->msg_enable
= to
;
1306 static int ks_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1308 struct ks_net
*ks
= netdev_priv(netdev
);
1309 return mii_ethtool_gset(&ks
->mii
, cmd
);
1312 static int ks_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
1314 struct ks_net
*ks
= netdev_priv(netdev
);
1315 return mii_ethtool_sset(&ks
->mii
, cmd
);
1318 static u32
ks_get_link(struct net_device
*netdev
)
1320 struct ks_net
*ks
= netdev_priv(netdev
);
1321 return mii_link_ok(&ks
->mii
);
1324 static int ks_nway_reset(struct net_device
*netdev
)
1326 struct ks_net
*ks
= netdev_priv(netdev
);
1327 return mii_nway_restart(&ks
->mii
);
1330 static const struct ethtool_ops ks_ethtool_ops
= {
1331 .get_drvinfo
= ks_get_drvinfo
,
1332 .get_msglevel
= ks_get_msglevel
,
1333 .set_msglevel
= ks_set_msglevel
,
1334 .get_settings
= ks_get_settings
,
1335 .set_settings
= ks_set_settings
,
1336 .get_link
= ks_get_link
,
1337 .nway_reset
= ks_nway_reset
,
1340 /* MII interface controls */
1343 * ks_phy_reg - convert MII register into a KS8851 register
1344 * @reg: MII register number.
1346 * Return the KS8851 register number for the corresponding MII PHY register
1347 * if possible. Return zero if the MII register has no direct mapping to the
1348 * KS8851 register set.
1350 static int ks_phy_reg(int reg
)
1371 * ks_phy_read - MII interface PHY register read.
1372 * @netdev: The network device the PHY is on.
1373 * @phy_addr: Address of PHY (ignored as we only have one)
1374 * @reg: The register to read.
1376 * This call reads data from the PHY register specified in @reg. Since the
1377 * device does not support all the MII registers, the non-existant values
1378 * are always returned as zero.
1380 * We return zero for unsupported registers as the MII code does not check
1381 * the value returned for any error status, and simply returns it to the
1382 * caller. The mii-tool that the driver was tested with takes any -ve error
1383 * as real PHY capabilities, thus displaying incorrect data to the user.
1385 static int ks_phy_read(struct net_device
*netdev
, int phy_addr
, int reg
)
1387 struct ks_net
*ks
= netdev_priv(netdev
);
1391 ksreg
= ks_phy_reg(reg
);
1393 return 0x0; /* no error return allowed, so use zero */
1395 mutex_lock(&ks
->lock
);
1396 result
= ks_rdreg16(ks
, ksreg
);
1397 mutex_unlock(&ks
->lock
);
1402 static void ks_phy_write(struct net_device
*netdev
,
1403 int phy
, int reg
, int value
)
1405 struct ks_net
*ks
= netdev_priv(netdev
);
1408 ksreg
= ks_phy_reg(reg
);
1410 mutex_lock(&ks
->lock
);
1411 ks_wrreg16(ks
, ksreg
, value
);
1412 mutex_unlock(&ks
->lock
);
1417 * ks_read_selftest - read the selftest memory info.
1418 * @ks: The device state
1420 * Read and check the TX/RX memory selftest information.
1422 static int ks_read_selftest(struct ks_net
*ks
)
1424 unsigned both_done
= MBIR_TXMBF
| MBIR_RXMBF
;
1428 rd
= ks_rdreg16(ks
, KS_MBIR
);
1430 if ((rd
& both_done
) != both_done
) {
1431 ks_warn(ks
, "Memory selftest not finished\n");
1435 if (rd
& MBIR_TXMBFA
) {
1436 ks_err(ks
, "TX memory selftest fails\n");
1440 if (rd
& MBIR_RXMBFA
) {
1441 ks_err(ks
, "RX memory selftest fails\n");
1445 ks_info(ks
, "the selftest passes\n");
1449 static void ks_setup(struct ks_net
*ks
)
1454 * Configure QMU Transmit
1457 /* Setup Transmit Frame Data Pointer Auto-Increment (TXFDPR) */
1458 ks_wrreg16(ks
, KS_TXFDPR
, TXFDPR_TXFPAI
);
1460 /* Setup Receive Frame Data Pointer Auto-Increment */
1461 ks_wrreg16(ks
, KS_RXFDPR
, RXFDPR_RXFPAI
);
1463 /* Setup Receive Frame Threshold - 1 frame (RXFCTFC) */
1464 ks_wrreg16(ks
, KS_RXFCTR
, 1 & RXFCTR_THRESHOLD_MASK
);
1466 /* Setup RxQ Command Control (RXQCR) */
1467 ks
->rc_rxqcr
= RXQCR_CMD_CNTL
;
1468 ks_wrreg16(ks
, KS_RXQCR
, ks
->rc_rxqcr
);
1471 * set the force mode to half duplex, default is full duplex
1472 * because if the auto-negotiation fails, most switch uses
1476 w
= ks_rdreg16(ks
, KS_P1MBCR
);
1477 w
&= ~P1MBCR_FORCE_FDX
;
1478 ks_wrreg16(ks
, KS_P1MBCR
, w
);
1480 w
= TXCR_TXFCE
| TXCR_TXPE
| TXCR_TXCRC
| TXCR_TCGIP
;
1481 ks_wrreg16(ks
, KS_TXCR
, w
);
1483 w
= RXCR1_RXFCE
| RXCR1_RXBE
| RXCR1_RXUE
| RXCR1_RXME
| RXCR1_RXIPFCC
;
1485 if (ks
->promiscuous
) /* bPromiscuous */
1486 w
|= (RXCR1_RXAE
| RXCR1_RXINVF
);
1487 else if (ks
->all_mcast
) /* Multicast address passed mode */
1488 w
|= (RXCR1_RXAE
| RXCR1_RXMAFMA
| RXCR1_RXPAFMA
);
1489 else /* Normal mode */
1492 ks_wrreg16(ks
, KS_RXCR1
, w
);
1496 static void ks_setup_int(struct ks_net
*ks
)
1499 /* Clear the interrupts status of the hardware. */
1500 ks_wrreg16(ks
, KS_ISR
, 0xffff);
1502 /* Enables the interrupts of the hardware. */
1503 ks
->rc_ier
= (IRQ_LCI
| IRQ_TXI
| IRQ_RXI
);
1504 } /* ks_setup_int */
1506 static int ks_hw_init(struct ks_net
*ks
)
1508 #define MHEADER_SIZE (sizeof(struct type_frame_head) * MAX_RECV_FRAMES)
1509 ks
->promiscuous
= 0;
1511 ks
->mcast_lst_size
= 0;
1513 ks
->frame_head_info
= (struct type_frame_head
*) \
1514 kmalloc(MHEADER_SIZE
, GFP_KERNEL
);
1515 if (!ks
->frame_head_info
) {
1516 printk(KERN_ERR
"Error: Fail to allocate frame memory\n");
1520 ks_set_mac(ks
, KS_DEFAULT_MAC_ADDRESS
);
1525 static int __devinit
ks8851_probe(struct platform_device
*pdev
)
1528 struct resource
*io_d
, *io_c
;
1529 struct net_device
*netdev
;
1533 io_d
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1534 io_c
= platform_get_resource(pdev
, IORESOURCE_MEM
, 1);
1536 if (!request_mem_region(io_d
->start
, resource_size(io_d
), DRV_NAME
))
1537 goto err_mem_region
;
1539 if (!request_mem_region(io_c
->start
, resource_size(io_c
), DRV_NAME
))
1540 goto err_mem_region1
;
1542 netdev
= alloc_etherdev(sizeof(struct ks_net
));
1544 goto err_alloc_etherdev
;
1546 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
1548 ks
= netdev_priv(netdev
);
1549 ks
->netdev
= netdev
;
1550 ks
->hw_addr
= ioremap(io_d
->start
, resource_size(io_d
));
1555 ks
->hw_addr_cmd
= ioremap(io_c
->start
, resource_size(io_c
));
1556 if (!ks
->hw_addr_cmd
)
1559 ks
->irq
= platform_get_irq(pdev
, 0);
1568 mutex_init(&ks
->lock
);
1569 spin_lock_init(&ks
->statelock
);
1571 netdev
->netdev_ops
= &ks_netdev_ops
;
1572 netdev
->ethtool_ops
= &ks_ethtool_ops
;
1574 /* setup mii state */
1575 ks
->mii
.dev
= netdev
;
1577 ks
->mii
.phy_id_mask
= 1;
1578 ks
->mii
.reg_num_mask
= 0xf;
1579 ks
->mii
.mdio_read
= ks_phy_read
;
1580 ks
->mii
.mdio_write
= ks_phy_write
;
1582 ks_info(ks
, "message enable is %d\n", msg_enable
);
1583 /* set the default message enable */
1584 ks
->msg_enable
= netif_msg_init(msg_enable
, (NETIF_MSG_DRV
|
1589 /* simple check for a valid chip being connected to the bus */
1590 if ((ks_rdreg16(ks
, KS_CIDER
) & ~CIDER_REV_MASK
) != CIDER_ID
) {
1591 ks_err(ks
, "failed to read device ID\n");
1596 if (ks_read_selftest(ks
)) {
1597 ks_err(ks
, "failed to read device ID\n");
1602 err
= register_netdev(netdev
);
1606 platform_set_drvdata(pdev
, netdev
);
1608 ks_soft_reset(ks
, GRR_GSR
);
1613 memcpy(netdev
->dev_addr
, ks
->mac_addr
, 6);
1615 data
= ks_rdreg16(ks
, KS_OBCR
);
1616 ks_wrreg16(ks
, KS_OBCR
, data
| OBCR_ODS_16MA
);
1619 * If you want to use the default MAC addr,
1620 * comment out the 2 functions below.
1623 random_ether_addr(netdev
->dev_addr
);
1624 ks_set_mac(ks
, netdev
->dev_addr
);
1626 id
= ks_rdreg16(ks
, KS_CIDER
);
1628 printk(KERN_INFO DRV_NAME
1629 " Found chip, family: 0x%x, id: 0x%x, rev: 0x%x\n",
1630 (id
>> 8) & 0xff, (id
>> 4) & 0xf, (id
>> 1) & 0x7);
1635 iounmap(ks
->hw_addr_cmd
);
1637 iounmap(ks
->hw_addr
);
1639 free_netdev(netdev
);
1641 release_mem_region(io_c
->start
, resource_size(io_c
));
1643 release_mem_region(io_d
->start
, resource_size(io_d
));
1648 static int __devexit
ks8851_remove(struct platform_device
*pdev
)
1650 struct net_device
*netdev
= platform_get_drvdata(pdev
);
1651 struct ks_net
*ks
= netdev_priv(netdev
);
1652 struct resource
*iomem
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1654 kfree(ks
->frame_head_info
);
1655 unregister_netdev(netdev
);
1656 iounmap(ks
->hw_addr
);
1657 free_netdev(netdev
);
1658 release_mem_region(iomem
->start
, resource_size(iomem
));
1659 platform_set_drvdata(pdev
, NULL
);
1664 static struct platform_driver ks8851_platform_driver
= {
1667 .owner
= THIS_MODULE
,
1669 .probe
= ks8851_probe
,
1670 .remove
= __devexit_p(ks8851_remove
),
1673 static int __init
ks8851_init(void)
1675 return platform_driver_register(&ks8851_platform_driver
);
1678 static void __exit
ks8851_exit(void)
1680 platform_driver_unregister(&ks8851_platform_driver
);
1683 module_init(ks8851_init
);
1684 module_exit(ks8851_exit
);
1686 MODULE_DESCRIPTION("KS8851 MLL Network driver");
1687 MODULE_AUTHOR("David Choi <david.choi@micrel.com>");
1688 MODULE_LICENSE("GPL");
1689 module_param_named(message
, msg_enable
, int, 0);
1690 MODULE_PARM_DESC(message
, "Message verbosity level (0=none, 31=all)");