2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/sched.h>
41 #include <linux/seq_file.h>
42 #include <linux/mii.h>
43 #include <linux/dmi.h>
48 #define DRV_NAME "skge"
49 #define DRV_VERSION "1.13"
50 #define PFX DRV_NAME " "
52 #define DEFAULT_TX_RING_SIZE 128
53 #define DEFAULT_RX_RING_SIZE 512
54 #define MAX_TX_RING_SIZE 1024
55 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
56 #define MAX_RX_RING_SIZE 4096
57 #define RX_COPY_THRESHOLD 128
58 #define RX_BUF_SIZE 1536
59 #define PHY_RETRIES 1000
60 #define ETH_JUMBO_MTU 9000
61 #define TX_WATCHDOG (5 * HZ)
62 #define NAPI_WEIGHT 64
66 #define SKGE_EEPROM_MAGIC 0x9933aabb
69 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
70 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
71 MODULE_LICENSE("GPL");
72 MODULE_VERSION(DRV_VERSION
);
74 static const u32 default_msg
75 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
76 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
78 static int debug
= -1; /* defaults above */
79 module_param(debug
, int, 0);
80 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
82 static const struct pci_device_id skge_id_table
[] = {
83 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
88 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
89 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
90 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
91 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
92 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
93 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
96 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
98 static int skge_up(struct net_device
*dev
);
99 static int skge_down(struct net_device
*dev
);
100 static void skge_phy_reset(struct skge_port
*skge
);
101 static void skge_tx_clean(struct net_device
*dev
);
102 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
103 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
104 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
105 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
106 static void yukon_init(struct skge_hw
*hw
, int port
);
107 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
108 static void genesis_link_up(struct skge_port
*skge
);
109 static void skge_set_multicast(struct net_device
*dev
);
111 /* Avoid conditionals by using array */
112 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
113 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
114 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
115 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
116 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
117 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
119 static int skge_get_regs_len(struct net_device
*dev
)
125 * Returns copy of whole control register region
126 * Note: skip RAM address register because accessing it will
129 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
132 const struct skge_port
*skge
= netdev_priv(dev
);
133 const void __iomem
*io
= skge
->hw
->regs
;
136 memset(p
, 0, regs
->len
);
137 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
139 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
140 regs
->len
- B3_RI_WTO_R1
);
143 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
144 static u32
wol_supported(const struct skge_hw
*hw
)
146 if (hw
->chip_id
== CHIP_ID_GENESIS
)
149 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
152 return WAKE_MAGIC
| WAKE_PHY
;
155 static void skge_wol_init(struct skge_port
*skge
)
157 struct skge_hw
*hw
= skge
->hw
;
158 int port
= skge
->port
;
161 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
162 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
165 skge_write8(hw
, B0_POWER_CTRL
,
166 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
168 /* WA code for COMA mode -- clear PHY reset */
169 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
170 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
171 u32 reg
= skge_read32(hw
, B2_GP_IO
);
174 skge_write32(hw
, B2_GP_IO
, reg
);
177 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
179 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
180 GPC_ANEG_1
| GPC_RST_SET
);
182 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
184 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
185 GPC_ANEG_1
| GPC_RST_CLR
);
187 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
189 /* Force to 10/100 skge_reset will re-enable on resume */
190 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
191 PHY_AN_100FULL
| PHY_AN_100HALF
|
192 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
194 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
195 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
196 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
197 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
200 /* Set GMAC to no flow control and auto update for speed/duplex */
201 gma_write16(hw
, port
, GM_GP_CTRL
,
202 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
203 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
205 /* Set WOL address */
206 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
207 skge
->netdev
->dev_addr
, ETH_ALEN
);
209 /* Turn on appropriate WOL control bits */
210 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
212 if (skge
->wol
& WAKE_PHY
)
213 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
215 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
217 if (skge
->wol
& WAKE_MAGIC
)
218 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
220 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
222 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
223 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
226 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
229 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
231 struct skge_port
*skge
= netdev_priv(dev
);
233 wol
->supported
= wol_supported(skge
->hw
);
234 wol
->wolopts
= skge
->wol
;
237 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
239 struct skge_port
*skge
= netdev_priv(dev
);
240 struct skge_hw
*hw
= skge
->hw
;
242 if ((wol
->wolopts
& ~wol_supported(hw
))
243 || !device_can_wakeup(&hw
->pdev
->dev
))
246 skge
->wol
= wol
->wolopts
;
248 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
253 /* Determine supported/advertised modes based on hardware.
254 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
256 static u32
skge_supported_modes(const struct skge_hw
*hw
)
261 supported
= SUPPORTED_10baseT_Half
262 | SUPPORTED_10baseT_Full
263 | SUPPORTED_100baseT_Half
264 | SUPPORTED_100baseT_Full
265 | SUPPORTED_1000baseT_Half
266 | SUPPORTED_1000baseT_Full
267 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
269 if (hw
->chip_id
== CHIP_ID_GENESIS
)
270 supported
&= ~(SUPPORTED_10baseT_Half
271 | SUPPORTED_10baseT_Full
272 | SUPPORTED_100baseT_Half
273 | SUPPORTED_100baseT_Full
);
275 else if (hw
->chip_id
== CHIP_ID_YUKON
)
276 supported
&= ~SUPPORTED_1000baseT_Half
;
278 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
279 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
284 static int skge_get_settings(struct net_device
*dev
,
285 struct ethtool_cmd
*ecmd
)
287 struct skge_port
*skge
= netdev_priv(dev
);
288 struct skge_hw
*hw
= skge
->hw
;
290 ecmd
->transceiver
= XCVR_INTERNAL
;
291 ecmd
->supported
= skge_supported_modes(hw
);
294 ecmd
->port
= PORT_TP
;
295 ecmd
->phy_address
= hw
->phy_addr
;
297 ecmd
->port
= PORT_FIBRE
;
299 ecmd
->advertising
= skge
->advertising
;
300 ecmd
->autoneg
= skge
->autoneg
;
301 ecmd
->speed
= skge
->speed
;
302 ecmd
->duplex
= skge
->duplex
;
306 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
308 struct skge_port
*skge
= netdev_priv(dev
);
309 const struct skge_hw
*hw
= skge
->hw
;
310 u32 supported
= skge_supported_modes(hw
);
313 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
314 ecmd
->advertising
= supported
;
320 switch (ecmd
->speed
) {
322 if (ecmd
->duplex
== DUPLEX_FULL
)
323 setting
= SUPPORTED_1000baseT_Full
;
324 else if (ecmd
->duplex
== DUPLEX_HALF
)
325 setting
= SUPPORTED_1000baseT_Half
;
330 if (ecmd
->duplex
== DUPLEX_FULL
)
331 setting
= SUPPORTED_100baseT_Full
;
332 else if (ecmd
->duplex
== DUPLEX_HALF
)
333 setting
= SUPPORTED_100baseT_Half
;
339 if (ecmd
->duplex
== DUPLEX_FULL
)
340 setting
= SUPPORTED_10baseT_Full
;
341 else if (ecmd
->duplex
== DUPLEX_HALF
)
342 setting
= SUPPORTED_10baseT_Half
;
350 if ((setting
& supported
) == 0)
353 skge
->speed
= ecmd
->speed
;
354 skge
->duplex
= ecmd
->duplex
;
357 skge
->autoneg
= ecmd
->autoneg
;
358 skge
->advertising
= ecmd
->advertising
;
360 if (netif_running(dev
)) {
372 static void skge_get_drvinfo(struct net_device
*dev
,
373 struct ethtool_drvinfo
*info
)
375 struct skge_port
*skge
= netdev_priv(dev
);
377 strcpy(info
->driver
, DRV_NAME
);
378 strcpy(info
->version
, DRV_VERSION
);
379 strcpy(info
->fw_version
, "N/A");
380 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
383 static const struct skge_stat
{
384 char name
[ETH_GSTRING_LEN
];
388 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
389 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
391 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
392 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
393 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
394 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
395 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
396 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
397 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
398 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
400 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
401 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
402 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
403 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
404 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
405 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
407 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
408 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
409 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
410 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
411 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
414 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
418 return ARRAY_SIZE(skge_stats
);
424 static void skge_get_ethtool_stats(struct net_device
*dev
,
425 struct ethtool_stats
*stats
, u64
*data
)
427 struct skge_port
*skge
= netdev_priv(dev
);
429 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
430 genesis_get_stats(skge
, data
);
432 yukon_get_stats(skge
, data
);
435 /* Use hardware MIB variables for critical path statistics and
436 * transmit feedback not reported at interrupt.
437 * Other errors are accounted for in interrupt handler.
439 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
441 struct skge_port
*skge
= netdev_priv(dev
);
442 u64 data
[ARRAY_SIZE(skge_stats
)];
444 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
445 genesis_get_stats(skge
, data
);
447 yukon_get_stats(skge
, data
);
449 dev
->stats
.tx_bytes
= data
[0];
450 dev
->stats
.rx_bytes
= data
[1];
451 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
452 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
453 dev
->stats
.multicast
= data
[3] + data
[5];
454 dev
->stats
.collisions
= data
[10];
455 dev
->stats
.tx_aborted_errors
= data
[12];
460 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
466 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
467 memcpy(data
+ i
* ETH_GSTRING_LEN
,
468 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
473 static void skge_get_ring_param(struct net_device
*dev
,
474 struct ethtool_ringparam
*p
)
476 struct skge_port
*skge
= netdev_priv(dev
);
478 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
479 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
480 p
->rx_mini_max_pending
= 0;
481 p
->rx_jumbo_max_pending
= 0;
483 p
->rx_pending
= skge
->rx_ring
.count
;
484 p
->tx_pending
= skge
->tx_ring
.count
;
485 p
->rx_mini_pending
= 0;
486 p
->rx_jumbo_pending
= 0;
489 static int skge_set_ring_param(struct net_device
*dev
,
490 struct ethtool_ringparam
*p
)
492 struct skge_port
*skge
= netdev_priv(dev
);
495 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
496 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
499 skge
->rx_ring
.count
= p
->rx_pending
;
500 skge
->tx_ring
.count
= p
->tx_pending
;
502 if (netif_running(dev
)) {
512 static u32
skge_get_msglevel(struct net_device
*netdev
)
514 struct skge_port
*skge
= netdev_priv(netdev
);
515 return skge
->msg_enable
;
518 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
520 struct skge_port
*skge
= netdev_priv(netdev
);
521 skge
->msg_enable
= value
;
524 static int skge_nway_reset(struct net_device
*dev
)
526 struct skge_port
*skge
= netdev_priv(dev
);
528 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
531 skge_phy_reset(skge
);
535 static int skge_set_sg(struct net_device
*dev
, u32 data
)
537 struct skge_port
*skge
= netdev_priv(dev
);
538 struct skge_hw
*hw
= skge
->hw
;
540 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
542 return ethtool_op_set_sg(dev
, data
);
545 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
547 struct skge_port
*skge
= netdev_priv(dev
);
548 struct skge_hw
*hw
= skge
->hw
;
550 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
553 return ethtool_op_set_tx_csum(dev
, data
);
556 static u32
skge_get_rx_csum(struct net_device
*dev
)
558 struct skge_port
*skge
= netdev_priv(dev
);
560 return skge
->rx_csum
;
563 /* Only Yukon supports checksum offload. */
564 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
566 struct skge_port
*skge
= netdev_priv(dev
);
568 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
571 skge
->rx_csum
= data
;
575 static void skge_get_pauseparam(struct net_device
*dev
,
576 struct ethtool_pauseparam
*ecmd
)
578 struct skge_port
*skge
= netdev_priv(dev
);
580 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
581 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
582 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
584 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
587 static int skge_set_pauseparam(struct net_device
*dev
,
588 struct ethtool_pauseparam
*ecmd
)
590 struct skge_port
*skge
= netdev_priv(dev
);
591 struct ethtool_pauseparam old
;
594 skge_get_pauseparam(dev
, &old
);
596 if (ecmd
->autoneg
!= old
.autoneg
)
597 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
599 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
600 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
601 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
602 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
603 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
604 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
606 skge
->flow_control
= FLOW_MODE_NONE
;
609 if (netif_running(dev
)) {
621 /* Chip internal frequency for clock calculations */
622 static inline u32
hwkhz(const struct skge_hw
*hw
)
624 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
627 /* Chip HZ to microseconds */
628 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
630 return (ticks
* 1000) / hwkhz(hw
);
633 /* Microseconds to chip HZ */
634 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
636 return hwkhz(hw
) * usec
/ 1000;
639 static int skge_get_coalesce(struct net_device
*dev
,
640 struct ethtool_coalesce
*ecmd
)
642 struct skge_port
*skge
= netdev_priv(dev
);
643 struct skge_hw
*hw
= skge
->hw
;
644 int port
= skge
->port
;
646 ecmd
->rx_coalesce_usecs
= 0;
647 ecmd
->tx_coalesce_usecs
= 0;
649 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
650 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
651 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
653 if (msk
& rxirqmask
[port
])
654 ecmd
->rx_coalesce_usecs
= delay
;
655 if (msk
& txirqmask
[port
])
656 ecmd
->tx_coalesce_usecs
= delay
;
662 /* Note: interrupt timer is per board, but can turn on/off per port */
663 static int skge_set_coalesce(struct net_device
*dev
,
664 struct ethtool_coalesce
*ecmd
)
666 struct skge_port
*skge
= netdev_priv(dev
);
667 struct skge_hw
*hw
= skge
->hw
;
668 int port
= skge
->port
;
669 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
672 if (ecmd
->rx_coalesce_usecs
== 0)
673 msk
&= ~rxirqmask
[port
];
674 else if (ecmd
->rx_coalesce_usecs
< 25 ||
675 ecmd
->rx_coalesce_usecs
> 33333)
678 msk
|= rxirqmask
[port
];
679 delay
= ecmd
->rx_coalesce_usecs
;
682 if (ecmd
->tx_coalesce_usecs
== 0)
683 msk
&= ~txirqmask
[port
];
684 else if (ecmd
->tx_coalesce_usecs
< 25 ||
685 ecmd
->tx_coalesce_usecs
> 33333)
688 msk
|= txirqmask
[port
];
689 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
692 skge_write32(hw
, B2_IRQM_MSK
, msk
);
694 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
696 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
697 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
702 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
703 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
705 struct skge_hw
*hw
= skge
->hw
;
706 int port
= skge
->port
;
708 spin_lock_bh(&hw
->phy_lock
);
709 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
712 if (hw
->phy_type
== SK_PHY_BCOM
)
713 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
715 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
716 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
718 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
719 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
720 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
724 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
725 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
727 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
728 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
733 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
734 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
735 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
737 if (hw
->phy_type
== SK_PHY_BCOM
)
738 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
740 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
741 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
742 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
749 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
750 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
751 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
752 PHY_M_LED_MO_10(MO_LED_OFF
) |
753 PHY_M_LED_MO_100(MO_LED_OFF
) |
754 PHY_M_LED_MO_1000(MO_LED_OFF
) |
755 PHY_M_LED_MO_RX(MO_LED_OFF
));
758 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
759 PHY_M_LED_PULS_DUR(PULS_170MS
) |
760 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
764 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
765 PHY_M_LED_MO_RX(MO_LED_OFF
) |
766 (skge
->speed
== SPEED_100
?
767 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
770 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
771 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
772 PHY_M_LED_MO_DUP(MO_LED_ON
) |
773 PHY_M_LED_MO_10(MO_LED_ON
) |
774 PHY_M_LED_MO_100(MO_LED_ON
) |
775 PHY_M_LED_MO_1000(MO_LED_ON
) |
776 PHY_M_LED_MO_RX(MO_LED_ON
));
779 spin_unlock_bh(&hw
->phy_lock
);
782 /* blink LED's for finding board */
783 static int skge_phys_id(struct net_device
*dev
, u32 data
)
785 struct skge_port
*skge
= netdev_priv(dev
);
787 enum led_mode mode
= LED_MODE_TST
;
789 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
790 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
795 skge_led(skge
, mode
);
796 mode
^= LED_MODE_TST
;
798 if (msleep_interruptible(BLINK_MS
))
803 /* back to regular LED state */
804 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
809 static int skge_get_eeprom_len(struct net_device
*dev
)
811 struct skge_port
*skge
= netdev_priv(dev
);
814 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
815 return 1 << ( ((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
818 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
822 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
825 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
826 } while (!(offset
& PCI_VPD_ADDR_F
));
828 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
832 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
834 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
835 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
836 offset
| PCI_VPD_ADDR_F
);
839 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
840 } while (offset
& PCI_VPD_ADDR_F
);
843 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
846 struct skge_port
*skge
= netdev_priv(dev
);
847 struct pci_dev
*pdev
= skge
->hw
->pdev
;
848 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
849 int length
= eeprom
->len
;
850 u16 offset
= eeprom
->offset
;
855 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
858 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
859 int n
= min_t(int, length
, sizeof(val
));
861 memcpy(data
, &val
, n
);
869 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
872 struct skge_port
*skge
= netdev_priv(dev
);
873 struct pci_dev
*pdev
= skge
->hw
->pdev
;
874 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
875 int length
= eeprom
->len
;
876 u16 offset
= eeprom
->offset
;
881 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
886 int n
= min_t(int, length
, sizeof(val
));
889 val
= skge_vpd_read(pdev
, cap
, offset
);
890 memcpy(&val
, data
, n
);
892 skge_vpd_write(pdev
, cap
, offset
, val
);
901 static const struct ethtool_ops skge_ethtool_ops
= {
902 .get_settings
= skge_get_settings
,
903 .set_settings
= skge_set_settings
,
904 .get_drvinfo
= skge_get_drvinfo
,
905 .get_regs_len
= skge_get_regs_len
,
906 .get_regs
= skge_get_regs
,
907 .get_wol
= skge_get_wol
,
908 .set_wol
= skge_set_wol
,
909 .get_msglevel
= skge_get_msglevel
,
910 .set_msglevel
= skge_set_msglevel
,
911 .nway_reset
= skge_nway_reset
,
912 .get_link
= ethtool_op_get_link
,
913 .get_eeprom_len
= skge_get_eeprom_len
,
914 .get_eeprom
= skge_get_eeprom
,
915 .set_eeprom
= skge_set_eeprom
,
916 .get_ringparam
= skge_get_ring_param
,
917 .set_ringparam
= skge_set_ring_param
,
918 .get_pauseparam
= skge_get_pauseparam
,
919 .set_pauseparam
= skge_set_pauseparam
,
920 .get_coalesce
= skge_get_coalesce
,
921 .set_coalesce
= skge_set_coalesce
,
922 .set_sg
= skge_set_sg
,
923 .set_tx_csum
= skge_set_tx_csum
,
924 .get_rx_csum
= skge_get_rx_csum
,
925 .set_rx_csum
= skge_set_rx_csum
,
926 .get_strings
= skge_get_strings
,
927 .phys_id
= skge_phys_id
,
928 .get_sset_count
= skge_get_sset_count
,
929 .get_ethtool_stats
= skge_get_ethtool_stats
,
933 * Allocate ring elements and chain them together
934 * One-to-one association of board descriptors with ring elements
936 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
938 struct skge_tx_desc
*d
;
939 struct skge_element
*e
;
942 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
946 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
948 if (i
== ring
->count
- 1) {
949 e
->next
= ring
->start
;
950 d
->next_offset
= base
;
953 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
956 ring
->to_use
= ring
->to_clean
= ring
->start
;
961 /* Allocate and setup a new buffer for receiving */
962 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
963 struct sk_buff
*skb
, unsigned int bufsize
)
965 struct skge_rx_desc
*rd
= e
->desc
;
968 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
972 rd
->dma_hi
= map
>> 32;
974 rd
->csum1_start
= ETH_HLEN
;
975 rd
->csum2_start
= ETH_HLEN
;
981 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
982 pci_unmap_addr_set(e
, mapaddr
, map
);
983 pci_unmap_len_set(e
, maplen
, bufsize
);
986 /* Resume receiving using existing skb,
987 * Note: DMA address is not changed by chip.
988 * MTU not changed while receiver active.
990 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
992 struct skge_rx_desc
*rd
= e
->desc
;
995 rd
->csum2_start
= ETH_HLEN
;
999 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1003 /* Free all buffers in receive ring, assumes receiver stopped */
1004 static void skge_rx_clean(struct skge_port
*skge
)
1006 struct skge_hw
*hw
= skge
->hw
;
1007 struct skge_ring
*ring
= &skge
->rx_ring
;
1008 struct skge_element
*e
;
1012 struct skge_rx_desc
*rd
= e
->desc
;
1015 pci_unmap_single(hw
->pdev
,
1016 pci_unmap_addr(e
, mapaddr
),
1017 pci_unmap_len(e
, maplen
),
1018 PCI_DMA_FROMDEVICE
);
1019 dev_kfree_skb(e
->skb
);
1022 } while ((e
= e
->next
) != ring
->start
);
1026 /* Allocate buffers for receive ring
1027 * For receive: to_clean is next received frame.
1029 static int skge_rx_fill(struct net_device
*dev
)
1031 struct skge_port
*skge
= netdev_priv(dev
);
1032 struct skge_ring
*ring
= &skge
->rx_ring
;
1033 struct skge_element
*e
;
1037 struct sk_buff
*skb
;
1039 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1044 skb_reserve(skb
, NET_IP_ALIGN
);
1045 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1046 } while ( (e
= e
->next
) != ring
->start
);
1048 ring
->to_clean
= ring
->start
;
1052 static const char *skge_pause(enum pause_status status
)
1055 case FLOW_STAT_NONE
:
1057 case FLOW_STAT_REM_SEND
:
1059 case FLOW_STAT_LOC_SEND
:
1061 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1064 return "indeterminated";
1069 static void skge_link_up(struct skge_port
*skge
)
1071 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1072 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1074 netif_carrier_on(skge
->netdev
);
1075 netif_wake_queue(skge
->netdev
);
1077 if (netif_msg_link(skge
)) {
1078 printk(KERN_INFO PFX
1079 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1080 skge
->netdev
->name
, skge
->speed
,
1081 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1082 skge_pause(skge
->flow_status
));
1086 static void skge_link_down(struct skge_port
*skge
)
1088 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1089 netif_carrier_off(skge
->netdev
);
1090 netif_stop_queue(skge
->netdev
);
1092 if (netif_msg_link(skge
))
1093 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
1097 static void xm_link_down(struct skge_hw
*hw
, int port
)
1099 struct net_device
*dev
= hw
->dev
[port
];
1100 struct skge_port
*skge
= netdev_priv(dev
);
1102 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1104 if (netif_carrier_ok(dev
))
1105 skge_link_down(skge
);
1108 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1112 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1113 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1115 if (hw
->phy_type
== SK_PHY_XMAC
)
1118 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1119 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1126 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1131 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1134 if (__xm_phy_read(hw
, port
, reg
, &v
))
1135 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1136 hw
->dev
[port
]->name
);
1140 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1144 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1145 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1146 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1153 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1154 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1155 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1162 static void genesis_init(struct skge_hw
*hw
)
1164 /* set blink source counter */
1165 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1166 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1168 /* configure mac arbiter */
1169 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1171 /* configure mac arbiter timeout values */
1172 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1173 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1174 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1175 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1177 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1178 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1179 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1180 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1182 /* configure packet arbiter timeout */
1183 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1184 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1185 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1186 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1187 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1190 static void genesis_reset(struct skge_hw
*hw
, int port
)
1192 const u8 zero
[8] = { 0 };
1195 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1197 /* reset the statistics module */
1198 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1199 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1200 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1201 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1202 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1204 /* disable Broadcom PHY IRQ */
1205 if (hw
->phy_type
== SK_PHY_BCOM
)
1206 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1208 xm_outhash(hw
, port
, XM_HSM
, zero
);
1210 /* Flush TX and RX fifo */
1211 reg
= xm_read32(hw
, port
, XM_MODE
);
1212 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1213 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1217 /* Convert mode to MII values */
1218 static const u16 phy_pause_map
[] = {
1219 [FLOW_MODE_NONE
] = 0,
1220 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1221 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1222 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1225 /* special defines for FIBER (88E1011S only) */
1226 static const u16 fiber_pause_map
[] = {
1227 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1228 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1229 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1230 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1234 /* Check status of Broadcom phy link */
1235 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1237 struct net_device
*dev
= hw
->dev
[port
];
1238 struct skge_port
*skge
= netdev_priv(dev
);
1241 /* read twice because of latch */
1242 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1243 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1245 if ((status
& PHY_ST_LSYNC
) == 0) {
1246 xm_link_down(hw
, port
);
1250 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1253 if (!(status
& PHY_ST_AN_OVER
))
1256 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1257 if (lpa
& PHY_B_AN_RF
) {
1258 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1263 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1265 /* Check Duplex mismatch */
1266 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1267 case PHY_B_RES_1000FD
:
1268 skge
->duplex
= DUPLEX_FULL
;
1270 case PHY_B_RES_1000HD
:
1271 skge
->duplex
= DUPLEX_HALF
;
1274 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1279 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1280 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1281 case PHY_B_AS_PAUSE_MSK
:
1282 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1285 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1288 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1291 skge
->flow_status
= FLOW_STAT_NONE
;
1293 skge
->speed
= SPEED_1000
;
1296 if (!netif_carrier_ok(dev
))
1297 genesis_link_up(skge
);
1300 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1301 * Phy on for 100 or 10Mbit operation
1303 static void bcom_phy_init(struct skge_port
*skge
)
1305 struct skge_hw
*hw
= skge
->hw
;
1306 int port
= skge
->port
;
1308 u16 id1
, r
, ext
, ctl
;
1310 /* magic workaround patterns for Broadcom */
1311 static const struct {
1315 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1316 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1317 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1318 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1320 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1321 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1324 /* read Id from external PHY (all have the same address) */
1325 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1327 /* Optimize MDIO transfer by suppressing preamble. */
1328 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1330 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1333 case PHY_BCOM_ID1_C0
:
1335 * Workaround BCOM Errata for the C0 type.
1336 * Write magic patterns to reserved registers.
1338 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1339 xm_phy_write(hw
, port
,
1340 C0hack
[i
].reg
, C0hack
[i
].val
);
1343 case PHY_BCOM_ID1_A1
:
1345 * Workaround BCOM Errata for the A1 type.
1346 * Write magic patterns to reserved registers.
1348 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1349 xm_phy_write(hw
, port
,
1350 A1hack
[i
].reg
, A1hack
[i
].val
);
1355 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1356 * Disable Power Management after reset.
1358 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1359 r
|= PHY_B_AC_DIS_PM
;
1360 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1363 xm_read16(hw
, port
, XM_ISRC
);
1365 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1366 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1368 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1370 * Workaround BCOM Errata #1 for the C5 type.
1371 * 1000Base-T Link Acquisition Failure in Slave Mode
1372 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1374 u16 adv
= PHY_B_1000C_RD
;
1375 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1376 adv
|= PHY_B_1000C_AHD
;
1377 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1378 adv
|= PHY_B_1000C_AFD
;
1379 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1381 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1383 if (skge
->duplex
== DUPLEX_FULL
)
1384 ctl
|= PHY_CT_DUP_MD
;
1385 /* Force to slave */
1386 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1389 /* Set autonegotiation pause parameters */
1390 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1391 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1393 /* Handle Jumbo frames */
1394 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1395 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1396 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1398 ext
|= PHY_B_PEC_HIGH_LA
;
1402 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1403 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1405 /* Use link status change interrupt */
1406 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1409 static void xm_phy_init(struct skge_port
*skge
)
1411 struct skge_hw
*hw
= skge
->hw
;
1412 int port
= skge
->port
;
1415 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1416 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1417 ctrl
|= PHY_X_AN_HD
;
1418 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1419 ctrl
|= PHY_X_AN_FD
;
1421 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1423 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1425 /* Restart Auto-negotiation */
1426 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1428 /* Set DuplexMode in Config register */
1429 if (skge
->duplex
== DUPLEX_FULL
)
1430 ctrl
|= PHY_CT_DUP_MD
;
1432 * Do NOT enable Auto-negotiation here. This would hold
1433 * the link down because no IDLEs are transmitted
1437 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1439 /* Poll PHY for status changes */
1440 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1443 static int xm_check_link(struct net_device
*dev
)
1445 struct skge_port
*skge
= netdev_priv(dev
);
1446 struct skge_hw
*hw
= skge
->hw
;
1447 int port
= skge
->port
;
1450 /* read twice because of latch */
1451 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1452 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1454 if ((status
& PHY_ST_LSYNC
) == 0) {
1455 xm_link_down(hw
, port
);
1459 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1462 if (!(status
& PHY_ST_AN_OVER
))
1465 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1466 if (lpa
& PHY_B_AN_RF
) {
1467 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1472 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1474 /* Check Duplex mismatch */
1475 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1477 skge
->duplex
= DUPLEX_FULL
;
1480 skge
->duplex
= DUPLEX_HALF
;
1483 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1488 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1489 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1490 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1491 (lpa
& PHY_X_P_SYM_MD
))
1492 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1493 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1494 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1495 /* Enable PAUSE receive, disable PAUSE transmit */
1496 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1497 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1498 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1499 /* Disable PAUSE receive, enable PAUSE transmit */
1500 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1502 skge
->flow_status
= FLOW_STAT_NONE
;
1504 skge
->speed
= SPEED_1000
;
1507 if (!netif_carrier_ok(dev
))
1508 genesis_link_up(skge
);
1512 /* Poll to check for link coming up.
1514 * Since internal PHY is wired to a level triggered pin, can't
1515 * get an interrupt when carrier is detected, need to poll for
1518 static void xm_link_timer(unsigned long arg
)
1520 struct skge_port
*skge
= (struct skge_port
*) arg
;
1521 struct net_device
*dev
= skge
->netdev
;
1522 struct skge_hw
*hw
= skge
->hw
;
1523 int port
= skge
->port
;
1525 unsigned long flags
;
1527 if (!netif_running(dev
))
1530 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1533 * Verify that the link by checking GPIO register three times.
1534 * This pin has the signal from the link_sync pin connected to it.
1536 for (i
= 0; i
< 3; i
++) {
1537 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1541 /* Re-enable interrupt to detect link down */
1542 if (xm_check_link(dev
)) {
1543 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1544 msk
&= ~XM_IS_INP_ASS
;
1545 xm_write16(hw
, port
, XM_IMSK
, msk
);
1546 xm_read16(hw
, port
, XM_ISRC
);
1549 mod_timer(&skge
->link_timer
,
1550 round_jiffies(jiffies
+ LINK_HZ
));
1552 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1555 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1557 struct net_device
*dev
= hw
->dev
[port
];
1558 struct skge_port
*skge
= netdev_priv(dev
);
1559 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1562 const u8 zero
[6] = { 0 };
1564 for (i
= 0; i
< 10; i
++) {
1565 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1567 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1572 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1575 /* Unreset the XMAC. */
1576 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1579 * Perform additional initialization for external PHYs,
1580 * namely for the 1000baseTX cards that use the XMAC's
1583 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1584 /* Take external Phy out of reset */
1585 r
= skge_read32(hw
, B2_GP_IO
);
1587 r
|= GP_DIR_0
|GP_IO_0
;
1589 r
|= GP_DIR_2
|GP_IO_2
;
1591 skge_write32(hw
, B2_GP_IO
, r
);
1593 /* Enable GMII interface */
1594 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1598 switch(hw
->phy_type
) {
1603 bcom_phy_init(skge
);
1604 bcom_check_link(hw
, port
);
1607 /* Set Station Address */
1608 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1610 /* We don't use match addresses so clear */
1611 for (i
= 1; i
< 16; i
++)
1612 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1614 /* Clear MIB counters */
1615 xm_write16(hw
, port
, XM_STAT_CMD
,
1616 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1617 /* Clear two times according to Errata #3 */
1618 xm_write16(hw
, port
, XM_STAT_CMD
,
1619 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1621 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1622 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1624 /* We don't need the FCS appended to the packet. */
1625 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1627 r
|= XM_RX_BIG_PK_OK
;
1629 if (skge
->duplex
== DUPLEX_HALF
) {
1631 * If in manual half duplex mode the other side might be in
1632 * full duplex mode, so ignore if a carrier extension is not seen
1633 * on frames received
1635 r
|= XM_RX_DIS_CEXT
;
1637 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1639 /* We want short frames padded to 60 bytes. */
1640 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1642 /* Increase threshold for jumbo frames on dual port */
1643 if (hw
->ports
> 1 && jumbo
)
1644 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1646 xm_write16(hw
, port
, XM_TX_THR
, 512);
1649 * Enable the reception of all error frames. This is is
1650 * a necessary evil due to the design of the XMAC. The
1651 * XMAC's receive FIFO is only 8K in size, however jumbo
1652 * frames can be up to 9000 bytes in length. When bad
1653 * frame filtering is enabled, the XMAC's RX FIFO operates
1654 * in 'store and forward' mode. For this to work, the
1655 * entire frame has to fit into the FIFO, but that means
1656 * that jumbo frames larger than 8192 bytes will be
1657 * truncated. Disabling all bad frame filtering causes
1658 * the RX FIFO to operate in streaming mode, in which
1659 * case the XMAC will start transferring frames out of the
1660 * RX FIFO as soon as the FIFO threshold is reached.
1662 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1666 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1667 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1668 * and 'Octets Rx OK Hi Cnt Ov'.
1670 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1673 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1674 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1675 * and 'Octets Tx OK Hi Cnt Ov'.
1677 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1679 /* Configure MAC arbiter */
1680 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1682 /* configure timeout values */
1683 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1684 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1685 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1686 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1688 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1689 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1690 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1691 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1693 /* Configure Rx MAC FIFO */
1694 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1695 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1696 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1698 /* Configure Tx MAC FIFO */
1699 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1700 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1701 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1704 /* Enable frame flushing if jumbo frames used */
1705 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1707 /* enable timeout timers if normal frames */
1708 skge_write16(hw
, B3_PA_CTRL
,
1709 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1713 static void genesis_stop(struct skge_port
*skge
)
1715 struct skge_hw
*hw
= skge
->hw
;
1716 int port
= skge
->port
;
1717 unsigned retries
= 1000;
1720 /* Disable Tx and Rx */
1721 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1722 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1723 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1725 genesis_reset(hw
, port
);
1727 /* Clear Tx packet arbiter timeout IRQ */
1728 skge_write16(hw
, B3_PA_CTRL
,
1729 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1732 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1734 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1735 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1737 } while (--retries
> 0);
1739 /* For external PHYs there must be special handling */
1740 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1741 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1749 skge_write32(hw
, B2_GP_IO
, reg
);
1750 skge_read32(hw
, B2_GP_IO
);
1753 xm_write16(hw
, port
, XM_MMU_CMD
,
1754 xm_read16(hw
, port
, XM_MMU_CMD
)
1755 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1757 xm_read16(hw
, port
, XM_MMU_CMD
);
1761 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1763 struct skge_hw
*hw
= skge
->hw
;
1764 int port
= skge
->port
;
1766 unsigned long timeout
= jiffies
+ HZ
;
1768 xm_write16(hw
, port
,
1769 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1771 /* wait for update to complete */
1772 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1773 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1774 if (time_after(jiffies
, timeout
))
1779 /* special case for 64 bit octet counter */
1780 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1781 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1782 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1783 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1785 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1786 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1789 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1791 struct net_device
*dev
= hw
->dev
[port
];
1792 struct skge_port
*skge
= netdev_priv(dev
);
1793 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1795 if (netif_msg_intr(skge
))
1796 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1799 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1800 xm_link_down(hw
, port
);
1801 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1804 if (status
& XM_IS_TXF_UR
) {
1805 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1806 ++dev
->stats
.tx_fifo_errors
;
1810 static void genesis_link_up(struct skge_port
*skge
)
1812 struct skge_hw
*hw
= skge
->hw
;
1813 int port
= skge
->port
;
1817 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1820 * enabling pause frame reception is required for 1000BT
1821 * because the XMAC is not reset if the link is going down
1823 if (skge
->flow_status
== FLOW_STAT_NONE
||
1824 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1825 /* Disable Pause Frame Reception */
1826 cmd
|= XM_MMU_IGN_PF
;
1828 /* Enable Pause Frame Reception */
1829 cmd
&= ~XM_MMU_IGN_PF
;
1831 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1833 mode
= xm_read32(hw
, port
, XM_MODE
);
1834 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1835 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1837 * Configure Pause Frame Generation
1838 * Use internal and external Pause Frame Generation.
1839 * Sending pause frames is edge triggered.
1840 * Send a Pause frame with the maximum pause time if
1841 * internal oder external FIFO full condition occurs.
1842 * Send a zero pause time frame to re-start transmission.
1844 /* XM_PAUSE_DA = '010000C28001' (default) */
1845 /* XM_MAC_PTIME = 0xffff (maximum) */
1846 /* remember this value is defined in big endian (!) */
1847 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1849 mode
|= XM_PAUSE_MODE
;
1850 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1853 * disable pause frame generation is required for 1000BT
1854 * because the XMAC is not reset if the link is going down
1856 /* Disable Pause Mode in Mode Register */
1857 mode
&= ~XM_PAUSE_MODE
;
1859 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1862 xm_write32(hw
, port
, XM_MODE
, mode
);
1864 /* Turn on detection of Tx underrun */
1865 msk
= xm_read16(hw
, port
, XM_IMSK
);
1866 msk
&= ~XM_IS_TXF_UR
;
1867 xm_write16(hw
, port
, XM_IMSK
, msk
);
1869 xm_read16(hw
, port
, XM_ISRC
);
1871 /* get MMU Command Reg. */
1872 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1873 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1874 cmd
|= XM_MMU_GMII_FD
;
1877 * Workaround BCOM Errata (#10523) for all BCom Phys
1878 * Enable Power Management after link up
1880 if (hw
->phy_type
== SK_PHY_BCOM
) {
1881 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1882 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1883 & ~PHY_B_AC_DIS_PM
);
1884 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1888 xm_write16(hw
, port
, XM_MMU_CMD
,
1889 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1894 static inline void bcom_phy_intr(struct skge_port
*skge
)
1896 struct skge_hw
*hw
= skge
->hw
;
1897 int port
= skge
->port
;
1900 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1901 if (netif_msg_intr(skge
))
1902 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1903 skge
->netdev
->name
, isrc
);
1905 if (isrc
& PHY_B_IS_PSE
)
1906 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1907 hw
->dev
[port
]->name
);
1909 /* Workaround BCom Errata:
1910 * enable and disable loopback mode if "NO HCD" occurs.
1912 if (isrc
& PHY_B_IS_NO_HDCL
) {
1913 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1914 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1915 ctrl
| PHY_CT_LOOP
);
1916 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1917 ctrl
& ~PHY_CT_LOOP
);
1920 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1921 bcom_check_link(hw
, port
);
1925 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1929 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1930 gma_write16(hw
, port
, GM_SMI_CTRL
,
1931 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1932 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1935 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1939 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1940 hw
->dev
[port
]->name
);
1944 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1948 gma_write16(hw
, port
, GM_SMI_CTRL
,
1949 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1950 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1952 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1954 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1960 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1964 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1967 if (__gm_phy_read(hw
, port
, reg
, &v
))
1968 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1969 hw
->dev
[port
]->name
);
1973 /* Marvell Phy Initialization */
1974 static void yukon_init(struct skge_hw
*hw
, int port
)
1976 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1977 u16 ctrl
, ct1000
, adv
;
1979 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1980 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1982 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1983 PHY_M_EC_MAC_S_MSK
);
1984 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1986 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1988 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1991 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1992 if (skge
->autoneg
== AUTONEG_DISABLE
)
1993 ctrl
&= ~PHY_CT_ANE
;
1995 ctrl
|= PHY_CT_RESET
;
1996 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2002 if (skge
->autoneg
== AUTONEG_ENABLE
) {
2004 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2005 ct1000
|= PHY_M_1000C_AFD
;
2006 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2007 ct1000
|= PHY_M_1000C_AHD
;
2008 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2009 adv
|= PHY_M_AN_100_FD
;
2010 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2011 adv
|= PHY_M_AN_100_HD
;
2012 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2013 adv
|= PHY_M_AN_10_FD
;
2014 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2015 adv
|= PHY_M_AN_10_HD
;
2017 /* Set Flow-control capabilities */
2018 adv
|= phy_pause_map
[skge
->flow_control
];
2020 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2021 adv
|= PHY_M_AN_1000X_AFD
;
2022 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2023 adv
|= PHY_M_AN_1000X_AHD
;
2025 adv
|= fiber_pause_map
[skge
->flow_control
];
2028 /* Restart Auto-negotiation */
2029 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2031 /* forced speed/duplex settings */
2032 ct1000
= PHY_M_1000C_MSE
;
2034 if (skge
->duplex
== DUPLEX_FULL
)
2035 ctrl
|= PHY_CT_DUP_MD
;
2037 switch (skge
->speed
) {
2039 ctrl
|= PHY_CT_SP1000
;
2042 ctrl
|= PHY_CT_SP100
;
2046 ctrl
|= PHY_CT_RESET
;
2049 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2051 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2052 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2054 /* Enable phy interrupt on autonegotiation complete (or link up) */
2055 if (skge
->autoneg
== AUTONEG_ENABLE
)
2056 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2058 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2061 static void yukon_reset(struct skge_hw
*hw
, int port
)
2063 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2064 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2065 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2066 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2067 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2069 gma_write16(hw
, port
, GM_RX_CTRL
,
2070 gma_read16(hw
, port
, GM_RX_CTRL
)
2071 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2074 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2075 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2080 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2083 reg
= skge_read32(hw
, B2_FAR
);
2084 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2085 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2086 skge_write32(hw
, B2_FAR
, reg
);
2090 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2092 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2095 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2097 /* WA code for COMA mode -- set PHY reset */
2098 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2099 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2100 reg
= skge_read32(hw
, B2_GP_IO
);
2101 reg
|= GP_DIR_9
| GP_IO_9
;
2102 skge_write32(hw
, B2_GP_IO
, reg
);
2106 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2107 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2109 /* WA code for COMA mode -- clear PHY reset */
2110 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2111 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2112 reg
= skge_read32(hw
, B2_GP_IO
);
2115 skge_write32(hw
, B2_GP_IO
, reg
);
2118 /* Set hardware config mode */
2119 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2120 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2121 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2123 /* Clear GMC reset */
2124 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2125 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2126 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2128 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2129 reg
= GM_GPCR_AU_ALL_DIS
;
2130 gma_write16(hw
, port
, GM_GP_CTRL
,
2131 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2133 switch (skge
->speed
) {
2135 reg
&= ~GM_GPCR_SPEED_100
;
2136 reg
|= GM_GPCR_SPEED_1000
;
2139 reg
&= ~GM_GPCR_SPEED_1000
;
2140 reg
|= GM_GPCR_SPEED_100
;
2143 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2147 if (skge
->duplex
== DUPLEX_FULL
)
2148 reg
|= GM_GPCR_DUP_FULL
;
2150 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2152 switch (skge
->flow_control
) {
2153 case FLOW_MODE_NONE
:
2154 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2155 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2157 case FLOW_MODE_LOC_SEND
:
2158 /* disable Rx flow-control */
2159 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2161 case FLOW_MODE_SYMMETRIC
:
2162 case FLOW_MODE_SYM_OR_REM
:
2163 /* enable Tx & Rx flow-control */
2167 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2168 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2170 yukon_init(hw
, port
);
2173 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2174 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2176 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2177 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2178 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2180 /* transmit control */
2181 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2183 /* receive control reg: unicast + multicast + no FCS */
2184 gma_write16(hw
, port
, GM_RX_CTRL
,
2185 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2187 /* transmit flow control */
2188 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2190 /* transmit parameter */
2191 gma_write16(hw
, port
, GM_TX_PARAM
,
2192 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2193 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2194 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2196 /* configure the Serial Mode Register */
2197 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2199 | IPG_DATA_VAL(IPG_DATA_DEF
);
2201 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2202 reg
|= GM_SMOD_JUMBO_ENA
;
2204 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2206 /* physical address: used for pause frames */
2207 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2208 /* virtual address for data */
2209 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2211 /* enable interrupt mask for counter overflows */
2212 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2213 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2214 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2216 /* Initialize Mac Fifo */
2218 /* Configure Rx MAC FIFO */
2219 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2220 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2222 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2223 if (is_yukon_lite_a0(hw
))
2224 reg
&= ~GMF_RX_F_FL_ON
;
2226 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2227 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2229 * because Pause Packet Truncation in GMAC is not working
2230 * we have to increase the Flush Threshold to 64 bytes
2231 * in order to flush pause packets in Rx FIFO on Yukon-1
2233 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2235 /* Configure Tx MAC FIFO */
2236 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2237 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2240 /* Go into power down mode */
2241 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2245 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2246 ctrl
|= PHY_M_PC_POL_R_DIS
;
2247 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2249 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2250 ctrl
|= PHY_CT_RESET
;
2251 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2253 /* switch IEEE compatible power down mode on */
2254 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2255 ctrl
|= PHY_CT_PDOWN
;
2256 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2259 static void yukon_stop(struct skge_port
*skge
)
2261 struct skge_hw
*hw
= skge
->hw
;
2262 int port
= skge
->port
;
2264 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2265 yukon_reset(hw
, port
);
2267 gma_write16(hw
, port
, GM_GP_CTRL
,
2268 gma_read16(hw
, port
, GM_GP_CTRL
)
2269 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2270 gma_read16(hw
, port
, GM_GP_CTRL
);
2272 yukon_suspend(hw
, port
);
2274 /* set GPHY Control reset */
2275 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2276 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2279 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2281 struct skge_hw
*hw
= skge
->hw
;
2282 int port
= skge
->port
;
2285 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2286 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2287 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2288 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2290 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2291 data
[i
] = gma_read32(hw
, port
,
2292 skge_stats
[i
].gma_offset
);
2295 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2297 struct net_device
*dev
= hw
->dev
[port
];
2298 struct skge_port
*skge
= netdev_priv(dev
);
2299 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2301 if (netif_msg_intr(skge
))
2302 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2305 if (status
& GM_IS_RX_FF_OR
) {
2306 ++dev
->stats
.rx_fifo_errors
;
2307 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2310 if (status
& GM_IS_TX_FF_UR
) {
2311 ++dev
->stats
.tx_fifo_errors
;
2312 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2317 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2319 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2320 case PHY_M_PS_SPEED_1000
:
2322 case PHY_M_PS_SPEED_100
:
2329 static void yukon_link_up(struct skge_port
*skge
)
2331 struct skge_hw
*hw
= skge
->hw
;
2332 int port
= skge
->port
;
2335 /* Enable Transmit FIFO Underrun */
2336 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2338 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2339 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2340 reg
|= GM_GPCR_DUP_FULL
;
2343 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2344 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2346 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2350 static void yukon_link_down(struct skge_port
*skge
)
2352 struct skge_hw
*hw
= skge
->hw
;
2353 int port
= skge
->port
;
2356 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2357 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2358 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2360 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2361 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2362 ctrl
|= PHY_M_AN_ASP
;
2363 /* restore Asymmetric Pause bit */
2364 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2367 skge_link_down(skge
);
2369 yukon_init(hw
, port
);
2372 static void yukon_phy_intr(struct skge_port
*skge
)
2374 struct skge_hw
*hw
= skge
->hw
;
2375 int port
= skge
->port
;
2376 const char *reason
= NULL
;
2377 u16 istatus
, phystat
;
2379 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2380 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2382 if (netif_msg_intr(skge
))
2383 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2384 skge
->netdev
->name
, istatus
, phystat
);
2386 if (istatus
& PHY_M_IS_AN_COMPL
) {
2387 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2389 reason
= "remote fault";
2393 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2394 reason
= "master/slave fault";
2398 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2399 reason
= "speed/duplex";
2403 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2404 ? DUPLEX_FULL
: DUPLEX_HALF
;
2405 skge
->speed
= yukon_speed(hw
, phystat
);
2407 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2408 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2409 case PHY_M_PS_PAUSE_MSK
:
2410 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2412 case PHY_M_PS_RX_P_EN
:
2413 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2415 case PHY_M_PS_TX_P_EN
:
2416 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2419 skge
->flow_status
= FLOW_STAT_NONE
;
2422 if (skge
->flow_status
== FLOW_STAT_NONE
||
2423 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2424 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2426 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2427 yukon_link_up(skge
);
2431 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2432 skge
->speed
= yukon_speed(hw
, phystat
);
2434 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2435 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2436 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2437 if (phystat
& PHY_M_PS_LINK_UP
)
2438 yukon_link_up(skge
);
2440 yukon_link_down(skge
);
2444 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2445 skge
->netdev
->name
, reason
);
2447 /* XXX restart autonegotiation? */
2450 static void skge_phy_reset(struct skge_port
*skge
)
2452 struct skge_hw
*hw
= skge
->hw
;
2453 int port
= skge
->port
;
2454 struct net_device
*dev
= hw
->dev
[port
];
2456 netif_stop_queue(skge
->netdev
);
2457 netif_carrier_off(skge
->netdev
);
2459 spin_lock_bh(&hw
->phy_lock
);
2460 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2461 genesis_reset(hw
, port
);
2462 genesis_mac_init(hw
, port
);
2464 yukon_reset(hw
, port
);
2465 yukon_init(hw
, port
);
2467 spin_unlock_bh(&hw
->phy_lock
);
2469 skge_set_multicast(dev
);
2472 /* Basic MII support */
2473 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2475 struct mii_ioctl_data
*data
= if_mii(ifr
);
2476 struct skge_port
*skge
= netdev_priv(dev
);
2477 struct skge_hw
*hw
= skge
->hw
;
2478 int err
= -EOPNOTSUPP
;
2480 if (!netif_running(dev
))
2481 return -ENODEV
; /* Phy still in reset */
2485 data
->phy_id
= hw
->phy_addr
;
2490 spin_lock_bh(&hw
->phy_lock
);
2491 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2492 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2494 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2495 spin_unlock_bh(&hw
->phy_lock
);
2496 data
->val_out
= val
;
2501 spin_lock_bh(&hw
->phy_lock
);
2502 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2503 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2506 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2508 spin_unlock_bh(&hw
->phy_lock
);
2514 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2520 end
= start
+ len
- 1;
2522 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2523 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2524 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2525 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2526 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2528 if (q
== Q_R1
|| q
== Q_R2
) {
2529 /* Set thresholds on receive queue's */
2530 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2532 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2535 /* Enable store & forward on Tx queue's because
2536 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2538 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2541 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2544 /* Setup Bus Memory Interface */
2545 static void skge_qset(struct skge_port
*skge
, u16 q
,
2546 const struct skge_element
*e
)
2548 struct skge_hw
*hw
= skge
->hw
;
2549 u32 watermark
= 0x600;
2550 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2552 /* optimization to reduce window on 32bit/33mhz */
2553 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2556 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2557 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2558 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2559 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2562 static int skge_up(struct net_device
*dev
)
2564 struct skge_port
*skge
= netdev_priv(dev
);
2565 struct skge_hw
*hw
= skge
->hw
;
2566 int port
= skge
->port
;
2567 u32 chunk
, ram_addr
;
2568 size_t rx_size
, tx_size
;
2571 if (!is_valid_ether_addr(dev
->dev_addr
))
2574 if (netif_msg_ifup(skge
))
2575 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2577 if (dev
->mtu
> RX_BUF_SIZE
)
2578 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2580 skge
->rx_buf_size
= RX_BUF_SIZE
;
2583 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2584 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2585 skge
->mem_size
= tx_size
+ rx_size
;
2586 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2590 BUG_ON(skge
->dma
& 7);
2592 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2593 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2598 memset(skge
->mem
, 0, skge
->mem_size
);
2600 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2604 err
= skge_rx_fill(dev
);
2608 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2609 skge
->dma
+ rx_size
);
2613 /* Initialize MAC */
2614 spin_lock_bh(&hw
->phy_lock
);
2615 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2616 genesis_mac_init(hw
, port
);
2618 yukon_mac_init(hw
, port
);
2619 spin_unlock_bh(&hw
->phy_lock
);
2621 /* Configure RAMbuffers - equally between ports and tx/rx */
2622 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2623 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2625 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2626 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2628 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2629 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2630 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2632 /* Start receiver BMU */
2634 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2635 skge_led(skge
, LED_MODE_ON
);
2637 spin_lock_irq(&hw
->hw_lock
);
2638 hw
->intr_mask
|= portmask
[port
];
2639 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2640 spin_unlock_irq(&hw
->hw_lock
);
2642 napi_enable(&skge
->napi
);
2646 skge_rx_clean(skge
);
2647 kfree(skge
->rx_ring
.start
);
2649 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2656 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2658 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2659 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2660 RB_RST_SET
|RB_DIS_OP_MD
);
2661 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2664 static int skge_down(struct net_device
*dev
)
2666 struct skge_port
*skge
= netdev_priv(dev
);
2667 struct skge_hw
*hw
= skge
->hw
;
2668 int port
= skge
->port
;
2670 if (skge
->mem
== NULL
)
2673 if (netif_msg_ifdown(skge
))
2674 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2676 netif_tx_disable(dev
);
2678 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2679 del_timer_sync(&skge
->link_timer
);
2681 napi_disable(&skge
->napi
);
2682 netif_carrier_off(dev
);
2684 spin_lock_irq(&hw
->hw_lock
);
2685 hw
->intr_mask
&= ~portmask
[port
];
2686 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2687 spin_unlock_irq(&hw
->hw_lock
);
2689 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2690 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2695 /* Stop transmitter */
2696 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2697 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2698 RB_RST_SET
|RB_DIS_OP_MD
);
2701 /* Disable Force Sync bit and Enable Alloc bit */
2702 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2703 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2705 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2706 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2707 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2709 /* Reset PCI FIFO */
2710 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2711 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2713 /* Reset the RAM Buffer async Tx queue */
2714 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2716 skge_rx_stop(hw
, port
);
2718 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2719 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2720 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2722 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2723 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2726 skge_led(skge
, LED_MODE_OFF
);
2728 netif_tx_lock_bh(dev
);
2730 netif_tx_unlock_bh(dev
);
2732 skge_rx_clean(skge
);
2734 kfree(skge
->rx_ring
.start
);
2735 kfree(skge
->tx_ring
.start
);
2736 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2741 static inline int skge_avail(const struct skge_ring
*ring
)
2744 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2745 + (ring
->to_clean
- ring
->to_use
) - 1;
2748 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2749 struct net_device
*dev
)
2751 struct skge_port
*skge
= netdev_priv(dev
);
2752 struct skge_hw
*hw
= skge
->hw
;
2753 struct skge_element
*e
;
2754 struct skge_tx_desc
*td
;
2759 if (skb_padto(skb
, ETH_ZLEN
))
2760 return NETDEV_TX_OK
;
2762 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2763 return NETDEV_TX_BUSY
;
2765 e
= skge
->tx_ring
.to_use
;
2767 BUG_ON(td
->control
& BMU_OWN
);
2769 len
= skb_headlen(skb
);
2770 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2771 pci_unmap_addr_set(e
, mapaddr
, map
);
2772 pci_unmap_len_set(e
, maplen
, len
);
2775 td
->dma_hi
= map
>> 32;
2777 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2778 const int offset
= skb_transport_offset(skb
);
2780 /* This seems backwards, but it is what the sk98lin
2781 * does. Looks like hardware is wrong?
2783 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2784 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2785 control
= BMU_TCP_CHECK
;
2787 control
= BMU_UDP_CHECK
;
2790 td
->csum_start
= offset
;
2791 td
->csum_write
= offset
+ skb
->csum_offset
;
2793 control
= BMU_CHECK
;
2795 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2796 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2798 struct skge_tx_desc
*tf
= td
;
2800 control
|= BMU_STFWD
;
2801 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2802 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2804 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2805 frag
->size
, PCI_DMA_TODEVICE
);
2810 BUG_ON(tf
->control
& BMU_OWN
);
2813 tf
->dma_hi
= (u64
) map
>> 32;
2814 pci_unmap_addr_set(e
, mapaddr
, map
);
2815 pci_unmap_len_set(e
, maplen
, frag
->size
);
2817 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2819 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2821 /* Make sure all the descriptors written */
2823 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2826 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2828 if (unlikely(netif_msg_tx_queued(skge
)))
2829 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2830 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2832 skge
->tx_ring
.to_use
= e
->next
;
2835 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2836 pr_debug("%s: transmit queue full\n", dev
->name
);
2837 netif_stop_queue(dev
);
2840 return NETDEV_TX_OK
;
2844 /* Free resources associated with this reing element */
2845 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2848 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2850 /* skb header vs. fragment */
2851 if (control
& BMU_STF
)
2852 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2853 pci_unmap_len(e
, maplen
),
2856 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2857 pci_unmap_len(e
, maplen
),
2860 if (control
& BMU_EOF
) {
2861 if (unlikely(netif_msg_tx_done(skge
)))
2862 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2863 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2865 dev_kfree_skb(e
->skb
);
2869 /* Free all buffers in transmit ring */
2870 static void skge_tx_clean(struct net_device
*dev
)
2872 struct skge_port
*skge
= netdev_priv(dev
);
2873 struct skge_element
*e
;
2875 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2876 struct skge_tx_desc
*td
= e
->desc
;
2877 skge_tx_free(skge
, e
, td
->control
);
2881 skge
->tx_ring
.to_clean
= e
;
2884 static void skge_tx_timeout(struct net_device
*dev
)
2886 struct skge_port
*skge
= netdev_priv(dev
);
2888 if (netif_msg_timer(skge
))
2889 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2891 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2893 netif_wake_queue(dev
);
2896 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2900 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2903 if (!netif_running(dev
)) {
2919 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2921 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2925 crc
= ether_crc_le(ETH_ALEN
, addr
);
2927 filter
[bit
/8] |= 1 << (bit
%8);
2930 static void genesis_set_multicast(struct net_device
*dev
)
2932 struct skge_port
*skge
= netdev_priv(dev
);
2933 struct skge_hw
*hw
= skge
->hw
;
2934 int port
= skge
->port
;
2935 int i
, count
= dev
->mc_count
;
2936 struct dev_mc_list
*list
= dev
->mc_list
;
2940 mode
= xm_read32(hw
, port
, XM_MODE
);
2941 mode
|= XM_MD_ENA_HASH
;
2942 if (dev
->flags
& IFF_PROMISC
)
2943 mode
|= XM_MD_ENA_PROM
;
2945 mode
&= ~XM_MD_ENA_PROM
;
2947 if (dev
->flags
& IFF_ALLMULTI
)
2948 memset(filter
, 0xff, sizeof(filter
));
2950 memset(filter
, 0, sizeof(filter
));
2952 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2953 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2954 genesis_add_filter(filter
, pause_mc_addr
);
2956 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2957 genesis_add_filter(filter
, list
->dmi_addr
);
2960 xm_write32(hw
, port
, XM_MODE
, mode
);
2961 xm_outhash(hw
, port
, XM_HSM
, filter
);
2964 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2966 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2967 filter
[bit
/8] |= 1 << (bit
%8);
2970 static void yukon_set_multicast(struct net_device
*dev
)
2972 struct skge_port
*skge
= netdev_priv(dev
);
2973 struct skge_hw
*hw
= skge
->hw
;
2974 int port
= skge
->port
;
2975 struct dev_mc_list
*list
= dev
->mc_list
;
2976 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2977 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2981 memset(filter
, 0, sizeof(filter
));
2983 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2984 reg
|= GM_RXCR_UCF_ENA
;
2986 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2987 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2988 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2989 memset(filter
, 0xff, sizeof(filter
));
2990 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2991 reg
&= ~GM_RXCR_MCF_ENA
;
2994 reg
|= GM_RXCR_MCF_ENA
;
2997 yukon_add_filter(filter
, pause_mc_addr
);
2999 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
3000 yukon_add_filter(filter
, list
->dmi_addr
);
3004 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3005 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3006 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3007 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3008 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3009 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3010 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3011 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3013 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3016 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3018 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3019 return status
>> XMR_FS_LEN_SHIFT
;
3021 return status
>> GMR_FS_LEN_SHIFT
;
3024 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3026 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3027 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3029 return (status
& GMR_FS_ANY_ERR
) ||
3030 (status
& GMR_FS_RX_OK
) == 0;
3033 static void skge_set_multicast(struct net_device
*dev
)
3035 struct skge_port
*skge
= netdev_priv(dev
);
3036 struct skge_hw
*hw
= skge
->hw
;
3038 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3039 genesis_set_multicast(dev
);
3041 yukon_set_multicast(dev
);
3046 /* Get receive buffer from descriptor.
3047 * Handles copy of small buffers and reallocation failures
3049 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3050 struct skge_element
*e
,
3051 u32 control
, u32 status
, u16 csum
)
3053 struct skge_port
*skge
= netdev_priv(dev
);
3054 struct sk_buff
*skb
;
3055 u16 len
= control
& BMU_BBC
;
3057 if (unlikely(netif_msg_rx_status(skge
)))
3058 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
3059 dev
->name
, e
- skge
->rx_ring
.start
,
3062 if (len
> skge
->rx_buf_size
)
3065 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3068 if (bad_phy_status(skge
->hw
, status
))
3071 if (phy_length(skge
->hw
, status
) != len
)
3074 if (len
< RX_COPY_THRESHOLD
) {
3075 skb
= netdev_alloc_skb(dev
, len
+ 2);
3079 skb_reserve(skb
, 2);
3080 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3081 pci_unmap_addr(e
, mapaddr
),
3082 len
, PCI_DMA_FROMDEVICE
);
3083 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3084 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3085 pci_unmap_addr(e
, mapaddr
),
3086 len
, PCI_DMA_FROMDEVICE
);
3087 skge_rx_reuse(e
, skge
->rx_buf_size
);
3089 struct sk_buff
*nskb
;
3090 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
3094 skb_reserve(nskb
, NET_IP_ALIGN
);
3095 pci_unmap_single(skge
->hw
->pdev
,
3096 pci_unmap_addr(e
, mapaddr
),
3097 pci_unmap_len(e
, maplen
),
3098 PCI_DMA_FROMDEVICE
);
3100 prefetch(skb
->data
);
3101 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3105 if (skge
->rx_csum
) {
3107 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3110 skb
->protocol
= eth_type_trans(skb
, dev
);
3115 if (netif_msg_rx_err(skge
))
3116 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
3117 dev
->name
, e
- skge
->rx_ring
.start
,
3120 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3121 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3122 dev
->stats
.rx_length_errors
++;
3123 if (status
& XMR_FS_FRA_ERR
)
3124 dev
->stats
.rx_frame_errors
++;
3125 if (status
& XMR_FS_FCS_ERR
)
3126 dev
->stats
.rx_crc_errors
++;
3128 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3129 dev
->stats
.rx_length_errors
++;
3130 if (status
& GMR_FS_FRAGMENT
)
3131 dev
->stats
.rx_frame_errors
++;
3132 if (status
& GMR_FS_CRC_ERR
)
3133 dev
->stats
.rx_crc_errors
++;
3137 skge_rx_reuse(e
, skge
->rx_buf_size
);
3141 /* Free all buffers in Tx ring which are no longer owned by device */
3142 static void skge_tx_done(struct net_device
*dev
)
3144 struct skge_port
*skge
= netdev_priv(dev
);
3145 struct skge_ring
*ring
= &skge
->tx_ring
;
3146 struct skge_element
*e
;
3148 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3150 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3151 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3153 if (control
& BMU_OWN
)
3156 skge_tx_free(skge
, e
, control
);
3158 skge
->tx_ring
.to_clean
= e
;
3160 /* Can run lockless until we need to synchronize to restart queue. */
3163 if (unlikely(netif_queue_stopped(dev
) &&
3164 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3166 if (unlikely(netif_queue_stopped(dev
) &&
3167 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3168 netif_wake_queue(dev
);
3171 netif_tx_unlock(dev
);
3175 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3177 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3178 struct net_device
*dev
= skge
->netdev
;
3179 struct skge_hw
*hw
= skge
->hw
;
3180 struct skge_ring
*ring
= &skge
->rx_ring
;
3181 struct skge_element
*e
;
3186 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3188 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3189 struct skge_rx_desc
*rd
= e
->desc
;
3190 struct sk_buff
*skb
;
3194 control
= rd
->control
;
3195 if (control
& BMU_OWN
)
3198 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3200 netif_receive_skb(skb
);
3207 /* restart receiver */
3209 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3211 if (work_done
< to_do
) {
3212 unsigned long flags
;
3214 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3215 __napi_complete(napi
);
3216 hw
->intr_mask
|= napimask
[skge
->port
];
3217 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3218 skge_read32(hw
, B0_IMSK
);
3219 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3225 /* Parity errors seem to happen when Genesis is connected to a switch
3226 * with no other ports present. Heartbeat error??
3228 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3230 struct net_device
*dev
= hw
->dev
[port
];
3232 ++dev
->stats
.tx_heartbeat_errors
;
3234 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3235 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3238 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3239 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3240 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3241 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3244 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3246 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3247 genesis_mac_intr(hw
, port
);
3249 yukon_mac_intr(hw
, port
);
3252 /* Handle device specific framing and timeout interrupts */
3253 static void skge_error_irq(struct skge_hw
*hw
)
3255 struct pci_dev
*pdev
= hw
->pdev
;
3256 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3258 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3259 /* clear xmac errors */
3260 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3261 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3262 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3263 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3265 /* Timestamp (unused) overflow */
3266 if (hwstatus
& IS_IRQ_TIST_OV
)
3267 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3270 if (hwstatus
& IS_RAM_RD_PAR
) {
3271 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3272 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3275 if (hwstatus
& IS_RAM_WR_PAR
) {
3276 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3277 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3280 if (hwstatus
& IS_M1_PAR_ERR
)
3281 skge_mac_parity(hw
, 0);
3283 if (hwstatus
& IS_M2_PAR_ERR
)
3284 skge_mac_parity(hw
, 1);
3286 if (hwstatus
& IS_R1_PAR_ERR
) {
3287 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3289 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3292 if (hwstatus
& IS_R2_PAR_ERR
) {
3293 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3295 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3298 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3299 u16 pci_status
, pci_cmd
;
3301 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3302 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3304 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3305 pci_cmd
, pci_status
);
3307 /* Write the error bits back to clear them. */
3308 pci_status
&= PCI_STATUS_ERROR_BITS
;
3309 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3310 pci_write_config_word(pdev
, PCI_COMMAND
,
3311 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3312 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3313 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3315 /* if error still set then just ignore it */
3316 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3317 if (hwstatus
& IS_IRQ_STAT
) {
3318 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3319 hw
->intr_mask
&= ~IS_HW_ERR
;
3325 * Interrupt from PHY are handled in tasklet (softirq)
3326 * because accessing phy registers requires spin wait which might
3327 * cause excess interrupt latency.
3329 static void skge_extirq(unsigned long arg
)
3331 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3334 for (port
= 0; port
< hw
->ports
; port
++) {
3335 struct net_device
*dev
= hw
->dev
[port
];
3337 if (netif_running(dev
)) {
3338 struct skge_port
*skge
= netdev_priv(dev
);
3340 spin_lock(&hw
->phy_lock
);
3341 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3342 yukon_phy_intr(skge
);
3343 else if (hw
->phy_type
== SK_PHY_BCOM
)
3344 bcom_phy_intr(skge
);
3345 spin_unlock(&hw
->phy_lock
);
3349 spin_lock_irq(&hw
->hw_lock
);
3350 hw
->intr_mask
|= IS_EXT_REG
;
3351 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3352 skge_read32(hw
, B0_IMSK
);
3353 spin_unlock_irq(&hw
->hw_lock
);
3356 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3358 struct skge_hw
*hw
= dev_id
;
3362 spin_lock(&hw
->hw_lock
);
3363 /* Reading this register masks IRQ */
3364 status
= skge_read32(hw
, B0_SP_ISRC
);
3365 if (status
== 0 || status
== ~0)
3369 status
&= hw
->intr_mask
;
3370 if (status
& IS_EXT_REG
) {
3371 hw
->intr_mask
&= ~IS_EXT_REG
;
3372 tasklet_schedule(&hw
->phy_task
);
3375 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3376 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3377 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3378 napi_schedule(&skge
->napi
);
3381 if (status
& IS_PA_TO_TX1
)
3382 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3384 if (status
& IS_PA_TO_RX1
) {
3385 ++hw
->dev
[0]->stats
.rx_over_errors
;
3386 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3390 if (status
& IS_MAC1
)
3391 skge_mac_intr(hw
, 0);
3394 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3396 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3397 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3398 napi_schedule(&skge
->napi
);
3401 if (status
& IS_PA_TO_RX2
) {
3402 ++hw
->dev
[1]->stats
.rx_over_errors
;
3403 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3406 if (status
& IS_PA_TO_TX2
)
3407 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3409 if (status
& IS_MAC2
)
3410 skge_mac_intr(hw
, 1);
3413 if (status
& IS_HW_ERR
)
3416 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3417 skge_read32(hw
, B0_IMSK
);
3419 spin_unlock(&hw
->hw_lock
);
3421 return IRQ_RETVAL(handled
);
3424 #ifdef CONFIG_NET_POLL_CONTROLLER
3425 static void skge_netpoll(struct net_device
*dev
)
3427 struct skge_port
*skge
= netdev_priv(dev
);
3429 disable_irq(dev
->irq
);
3430 skge_intr(dev
->irq
, skge
->hw
);
3431 enable_irq(dev
->irq
);
3435 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3437 struct skge_port
*skge
= netdev_priv(dev
);
3438 struct skge_hw
*hw
= skge
->hw
;
3439 unsigned port
= skge
->port
;
3440 const struct sockaddr
*addr
= p
;
3443 if (!is_valid_ether_addr(addr
->sa_data
))
3444 return -EADDRNOTAVAIL
;
3446 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3448 if (!netif_running(dev
)) {
3449 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3450 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3453 spin_lock_bh(&hw
->phy_lock
);
3454 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3455 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3457 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3458 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3460 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3461 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3463 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3464 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3467 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3468 spin_unlock_bh(&hw
->phy_lock
);
3474 static const struct {
3478 { CHIP_ID_GENESIS
, "Genesis" },
3479 { CHIP_ID_YUKON
, "Yukon" },
3480 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3481 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3484 static const char *skge_board_name(const struct skge_hw
*hw
)
3487 static char buf
[16];
3489 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3490 if (skge_chips
[i
].id
== hw
->chip_id
)
3491 return skge_chips
[i
].name
;
3493 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3499 * Setup the board data structure, but don't bring up
3502 static int skge_reset(struct skge_hw
*hw
)
3505 u16 ctst
, pci_status
;
3506 u8 t8
, mac_cfg
, pmd_type
;
3509 ctst
= skge_read16(hw
, B0_CTST
);
3512 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3513 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3515 /* clear PCI errors, if any */
3516 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3517 skge_write8(hw
, B2_TST_CTRL2
, 0);
3519 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3520 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3521 pci_status
| PCI_STATUS_ERROR_BITS
);
3522 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3523 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3525 /* restore CLK_RUN bits (for Yukon-Lite) */
3526 skge_write16(hw
, B0_CTST
,
3527 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3529 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3530 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3531 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3532 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3534 switch (hw
->chip_id
) {
3535 case CHIP_ID_GENESIS
:
3536 switch (hw
->phy_type
) {
3538 hw
->phy_addr
= PHY_ADDR_XMAC
;
3541 hw
->phy_addr
= PHY_ADDR_BCOM
;
3544 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3551 case CHIP_ID_YUKON_LITE
:
3552 case CHIP_ID_YUKON_LP
:
3553 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3556 hw
->phy_addr
= PHY_ADDR_MARV
;
3560 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3565 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3566 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3567 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3569 /* read the adapters RAM size */
3570 t8
= skge_read8(hw
, B2_E_0
);
3571 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3573 /* special case: 4 x 64k x 36, offset = 0x80000 */
3574 hw
->ram_size
= 0x100000;
3575 hw
->ram_offset
= 0x80000;
3577 hw
->ram_size
= t8
* 512;
3580 hw
->ram_size
= 0x20000;
3582 hw
->ram_size
= t8
* 4096;
3584 hw
->intr_mask
= IS_HW_ERR
;
3586 /* Use PHY IRQ for all but fiber based Genesis board */
3587 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3588 hw
->intr_mask
|= IS_EXT_REG
;
3590 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3593 /* switch power to VCC (WA for VAUX problem) */
3594 skge_write8(hw
, B0_POWER_CTRL
,
3595 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3597 /* avoid boards with stuck Hardware error bits */
3598 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3599 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3600 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3601 hw
->intr_mask
&= ~IS_HW_ERR
;
3604 /* Clear PHY COMA */
3605 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3606 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3607 reg
&= ~PCI_PHY_COMA
;
3608 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3609 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3612 for (i
= 0; i
< hw
->ports
; i
++) {
3613 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3614 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3618 /* turn off hardware timer (unused) */
3619 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3620 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3621 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3623 /* enable the Tx Arbiters */
3624 for (i
= 0; i
< hw
->ports
; i
++)
3625 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3627 /* Initialize ram interface */
3628 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3630 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3631 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3632 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3633 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3634 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3635 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3636 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3637 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3638 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3639 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3640 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3641 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3643 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3645 /* Set interrupt moderation for Transmit only
3646 * Receive interrupts avoided by NAPI
3648 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3649 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3650 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3652 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3654 for (i
= 0; i
< hw
->ports
; i
++) {
3655 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3656 genesis_reset(hw
, i
);
3665 #ifdef CONFIG_SKGE_DEBUG
3667 static struct dentry
*skge_debug
;
3669 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3671 struct net_device
*dev
= seq
->private;
3672 const struct skge_port
*skge
= netdev_priv(dev
);
3673 const struct skge_hw
*hw
= skge
->hw
;
3674 const struct skge_element
*e
;
3676 if (!netif_running(dev
))
3679 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3680 skge_read32(hw
, B0_IMSK
));
3682 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3683 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3684 const struct skge_tx_desc
*t
= e
->desc
;
3685 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3686 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3687 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3690 seq_printf(seq
, "\nRx Ring: \n");
3691 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3692 const struct skge_rx_desc
*r
= e
->desc
;
3694 if (r
->control
& BMU_OWN
)
3697 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3698 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3699 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3705 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3707 return single_open(file
, skge_debug_show
, inode
->i_private
);
3710 static const struct file_operations skge_debug_fops
= {
3711 .owner
= THIS_MODULE
,
3712 .open
= skge_debug_open
,
3714 .llseek
= seq_lseek
,
3715 .release
= single_release
,
3719 * Use network device events to create/remove/rename
3720 * debugfs file entries
3722 static int skge_device_event(struct notifier_block
*unused
,
3723 unsigned long event
, void *ptr
)
3725 struct net_device
*dev
= ptr
;
3726 struct skge_port
*skge
;
3729 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3732 skge
= netdev_priv(dev
);
3734 case NETDEV_CHANGENAME
:
3735 if (skge
->debugfs
) {
3736 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3737 skge_debug
, dev
->name
);
3741 pr_info(PFX
"%s: rename failed\n", dev
->name
);
3742 debugfs_remove(skge
->debugfs
);
3747 case NETDEV_GOING_DOWN
:
3748 if (skge
->debugfs
) {
3749 debugfs_remove(skge
->debugfs
);
3750 skge
->debugfs
= NULL
;
3755 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3758 if (!d
|| IS_ERR(d
))
3759 pr_info(PFX
"%s: debugfs create failed\n",
3770 static struct notifier_block skge_notifier
= {
3771 .notifier_call
= skge_device_event
,
3775 static __init
void skge_debug_init(void)
3779 ent
= debugfs_create_dir("skge", NULL
);
3780 if (!ent
|| IS_ERR(ent
)) {
3781 pr_info(PFX
"debugfs create directory failed\n");
3786 register_netdevice_notifier(&skge_notifier
);
3789 static __exit
void skge_debug_cleanup(void)
3792 unregister_netdevice_notifier(&skge_notifier
);
3793 debugfs_remove(skge_debug
);
3799 #define skge_debug_init()
3800 #define skge_debug_cleanup()
3803 static const struct net_device_ops skge_netdev_ops
= {
3804 .ndo_open
= skge_up
,
3805 .ndo_stop
= skge_down
,
3806 .ndo_start_xmit
= skge_xmit_frame
,
3807 .ndo_do_ioctl
= skge_ioctl
,
3808 .ndo_get_stats
= skge_get_stats
,
3809 .ndo_tx_timeout
= skge_tx_timeout
,
3810 .ndo_change_mtu
= skge_change_mtu
,
3811 .ndo_validate_addr
= eth_validate_addr
,
3812 .ndo_set_multicast_list
= skge_set_multicast
,
3813 .ndo_set_mac_address
= skge_set_mac_address
,
3814 #ifdef CONFIG_NET_POLL_CONTROLLER
3815 .ndo_poll_controller
= skge_netpoll
,
3820 /* Initialize network device */
3821 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3824 struct skge_port
*skge
;
3825 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3828 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3832 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3833 dev
->netdev_ops
= &skge_netdev_ops
;
3834 dev
->ethtool_ops
= &skge_ethtool_ops
;
3835 dev
->watchdog_timeo
= TX_WATCHDOG
;
3836 dev
->irq
= hw
->pdev
->irq
;
3839 dev
->features
|= NETIF_F_HIGHDMA
;
3841 skge
= netdev_priv(dev
);
3842 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3845 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3847 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3848 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3850 /* Auto speed and flow control */
3851 skge
->autoneg
= AUTONEG_ENABLE
;
3852 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3855 skge
->advertising
= skge_supported_modes(hw
);
3857 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3858 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3859 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3862 hw
->dev
[port
] = dev
;
3866 /* Only used for Genesis XMAC */
3867 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3869 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3870 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3874 /* read the mac address */
3875 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3876 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3878 /* device is off until link detection */
3879 netif_carrier_off(dev
);
3880 netif_stop_queue(dev
);
3885 static void __devinit
skge_show_addr(struct net_device
*dev
)
3887 const struct skge_port
*skge
= netdev_priv(dev
);
3889 if (netif_msg_probe(skge
))
3890 printk(KERN_INFO PFX
"%s: addr %pM\n",
3891 dev
->name
, dev
->dev_addr
);
3894 static int only_32bit_dma
;
3896 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3897 const struct pci_device_id
*ent
)
3899 struct net_device
*dev
, *dev1
;
3901 int err
, using_dac
= 0;
3903 err
= pci_enable_device(pdev
);
3905 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3909 err
= pci_request_regions(pdev
, DRV_NAME
);
3911 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3912 goto err_out_disable_pdev
;
3915 pci_set_master(pdev
);
3917 if (!only_32bit_dma
&& !pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3919 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3920 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3922 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3926 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3927 goto err_out_free_regions
;
3931 /* byte swap descriptors in hardware */
3935 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3936 reg
|= PCI_REV_DESC
;
3937 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3942 /* space for skge@pci:0000:04:00.0 */
3943 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:" )
3944 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3946 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3947 goto err_out_free_regions
;
3949 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3952 spin_lock_init(&hw
->hw_lock
);
3953 spin_lock_init(&hw
->phy_lock
);
3954 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3956 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3958 dev_err(&pdev
->dev
, "cannot map device registers\n");
3959 goto err_out_free_hw
;
3962 err
= skge_reset(hw
);
3964 goto err_out_iounmap
;
3966 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3967 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3968 skge_board_name(hw
), hw
->chip_rev
);
3970 dev
= skge_devinit(hw
, 0, using_dac
);
3972 goto err_out_led_off
;
3974 /* Some motherboards are broken and has zero in ROM. */
3975 if (!is_valid_ether_addr(dev
->dev_addr
))
3976 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3978 err
= register_netdev(dev
);
3980 dev_err(&pdev
->dev
, "cannot register net device\n");
3981 goto err_out_free_netdev
;
3984 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3986 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3987 dev
->name
, pdev
->irq
);
3988 goto err_out_unregister
;
3990 skge_show_addr(dev
);
3992 if (hw
->ports
> 1) {
3993 dev1
= skge_devinit(hw
, 1, using_dac
);
3994 if (dev1
&& register_netdev(dev1
) == 0)
3995 skge_show_addr(dev1
);
3997 /* Failure to register second port need not be fatal */
3998 dev_warn(&pdev
->dev
, "register of second port failed\n");
4005 pci_set_drvdata(pdev
, hw
);
4010 unregister_netdev(dev
);
4011 err_out_free_netdev
:
4014 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4019 err_out_free_regions
:
4020 pci_release_regions(pdev
);
4021 err_out_disable_pdev
:
4022 pci_disable_device(pdev
);
4023 pci_set_drvdata(pdev
, NULL
);
4028 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4030 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4031 struct net_device
*dev0
, *dev1
;
4036 flush_scheduled_work();
4038 if ((dev1
= hw
->dev
[1]))
4039 unregister_netdev(dev1
);
4041 unregister_netdev(dev0
);
4043 tasklet_disable(&hw
->phy_task
);
4045 spin_lock_irq(&hw
->hw_lock
);
4047 skge_write32(hw
, B0_IMSK
, 0);
4048 skge_read32(hw
, B0_IMSK
);
4049 spin_unlock_irq(&hw
->hw_lock
);
4051 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4052 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4054 free_irq(pdev
->irq
, hw
);
4055 pci_release_regions(pdev
);
4056 pci_disable_device(pdev
);
4063 pci_set_drvdata(pdev
, NULL
);
4067 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4069 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4070 int i
, err
, wol
= 0;
4075 err
= pci_save_state(pdev
);
4079 for (i
= 0; i
< hw
->ports
; i
++) {
4080 struct net_device
*dev
= hw
->dev
[i
];
4081 struct skge_port
*skge
= netdev_priv(dev
);
4083 if (netif_running(dev
))
4086 skge_wol_init(skge
);
4091 skge_write32(hw
, B0_IMSK
, 0);
4093 pci_prepare_to_sleep(pdev
);
4098 static int skge_resume(struct pci_dev
*pdev
)
4100 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4106 err
= pci_back_from_sleep(pdev
);
4110 err
= pci_restore_state(pdev
);
4114 err
= skge_reset(hw
);
4118 for (i
= 0; i
< hw
->ports
; i
++) {
4119 struct net_device
*dev
= hw
->dev
[i
];
4121 if (netif_running(dev
)) {
4125 printk(KERN_ERR PFX
"%s: could not up: %d\n",
4137 static void skge_shutdown(struct pci_dev
*pdev
)
4139 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4145 for (i
= 0; i
< hw
->ports
; i
++) {
4146 struct net_device
*dev
= hw
->dev
[i
];
4147 struct skge_port
*skge
= netdev_priv(dev
);
4150 skge_wol_init(skge
);
4154 if (pci_enable_wake(pdev
, PCI_D3cold
, wol
))
4155 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4157 pci_disable_device(pdev
);
4158 pci_set_power_state(pdev
, PCI_D3hot
);
4162 static struct pci_driver skge_driver
= {
4164 .id_table
= skge_id_table
,
4165 .probe
= skge_probe
,
4166 .remove
= __devexit_p(skge_remove
),
4168 .suspend
= skge_suspend
,
4169 .resume
= skge_resume
,
4171 .shutdown
= skge_shutdown
,
4174 static struct dmi_system_id skge_32bit_dma_boards
[] = {
4176 .ident
= "Gigabyte nForce boards",
4178 DMI_MATCH(DMI_BOARD_VENDOR
, "Gigabyte Technology Co"),
4179 DMI_MATCH(DMI_BOARD_NAME
, "nForce"),
4185 static int __init
skge_init_module(void)
4187 if (dmi_check_system(skge_32bit_dma_boards
))
4190 return pci_register_driver(&skge_driver
);
4193 static void __exit
skge_cleanup_module(void)
4195 pci_unregister_driver(&skge_driver
);
4196 skge_debug_cleanup();
4199 module_init(skge_init_module
);
4200 module_exit(skge_cleanup_module
);