x86, UV: Add support for SGI UV2 hub chip
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / x86 / platform / uv / tlb_uv.c
bloba9856c09c4255a0edb521d5e3d5d587c2c189901
1 /*
2 * SGI UltraViolet TLB flush routines.
4 * (c) 2008-2010 Cliff Wickman <cpw@sgi.com>, SGI.
6 * This code is released under the GNU General Public License version 2 or
7 * later.
8 */
9 #include <linux/seq_file.h>
10 #include <linux/proc_fs.h>
11 #include <linux/debugfs.h>
12 #include <linux/kernel.h>
13 #include <linux/slab.h>
14 #include <linux/delay.h>
16 #include <asm/mmu_context.h>
17 #include <asm/uv/uv.h>
18 #include <asm/uv/uv_mmrs.h>
19 #include <asm/uv/uv_hub.h>
20 #include <asm/uv/uv_bau.h>
21 #include <asm/apic.h>
22 #include <asm/idle.h>
23 #include <asm/tsc.h>
24 #include <asm/irq_vectors.h>
25 #include <asm/timer.h>
27 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
28 static int timeout_base_ns[] = {
29 20,
30 160,
31 1280,
32 10240,
33 81920,
34 655360,
35 5242880,
36 167772160
38 static int timeout_us;
39 static int nobau;
40 static int baudisabled;
41 static spinlock_t disable_lock;
42 static cycles_t congested_cycles;
44 /* tunables: */
45 static int max_bau_concurrent = MAX_BAU_CONCURRENT;
46 static int max_bau_concurrent_constant = MAX_BAU_CONCURRENT;
47 static int plugged_delay = PLUGGED_DELAY;
48 static int plugsb4reset = PLUGSB4RESET;
49 static int timeoutsb4reset = TIMEOUTSB4RESET;
50 static int ipi_reset_limit = IPI_RESET_LIMIT;
51 static int complete_threshold = COMPLETE_THRESHOLD;
52 static int congested_response_us = CONGESTED_RESPONSE_US;
53 static int congested_reps = CONGESTED_REPS;
54 static int congested_period = CONGESTED_PERIOD;
55 static struct dentry *tunables_dir;
56 static struct dentry *tunables_file;
58 static int __init setup_nobau(char *arg)
60 nobau = 1;
61 return 0;
63 early_param("nobau", setup_nobau);
65 /* base pnode in this partition */
66 static int uv_partition_base_pnode __read_mostly;
67 /* position of pnode (which is nasid>>1): */
68 static int uv_nshift __read_mostly;
69 static unsigned long uv_mmask __read_mostly;
71 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
72 static DEFINE_PER_CPU(struct bau_control, bau_control);
73 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
76 * Determine the first node on a uvhub. 'Nodes' are used for kernel
77 * memory allocation.
79 static int __init uvhub_to_first_node(int uvhub)
81 int node, b;
83 for_each_online_node(node) {
84 b = uv_node_to_blade_id(node);
85 if (uvhub == b)
86 return node;
88 return -1;
92 * Determine the apicid of the first cpu on a uvhub.
94 static int __init uvhub_to_first_apicid(int uvhub)
96 int cpu;
98 for_each_present_cpu(cpu)
99 if (uvhub == uv_cpu_to_blade_id(cpu))
100 return per_cpu(x86_cpu_to_apicid, cpu);
101 return -1;
105 * Free a software acknowledge hardware resource by clearing its Pending
106 * bit. This will return a reply to the sender.
107 * If the message has timed out, a reply has already been sent by the
108 * hardware but the resource has not been released. In that case our
109 * clear of the Timeout bit (as well) will free the resource. No reply will
110 * be sent (the hardware will only do one reply per message).
112 static inline void uv_reply_to_message(struct msg_desc *mdp,
113 struct bau_control *bcp)
115 unsigned long dw;
116 struct bau_payload_queue_entry *msg;
118 msg = mdp->msg;
119 if (!msg->canceled) {
120 dw = (msg->sw_ack_vector << UV_SW_ACK_NPENDING) |
121 msg->sw_ack_vector;
122 uv_write_local_mmr(
123 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS, dw);
125 msg->replied_to = 1;
126 msg->sw_ack_vector = 0;
130 * Process the receipt of a RETRY message
132 static inline void uv_bau_process_retry_msg(struct msg_desc *mdp,
133 struct bau_control *bcp)
135 int i;
136 int cancel_count = 0;
137 int slot2;
138 unsigned long msg_res;
139 unsigned long mmr = 0;
140 struct bau_payload_queue_entry *msg;
141 struct bau_payload_queue_entry *msg2;
142 struct ptc_stats *stat;
144 msg = mdp->msg;
145 stat = bcp->statp;
146 stat->d_retries++;
148 * cancel any message from msg+1 to the retry itself
150 for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
151 if (msg2 > mdp->va_queue_last)
152 msg2 = mdp->va_queue_first;
153 if (msg2 == msg)
154 break;
156 /* same conditions for cancellation as uv_do_reset */
157 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
158 (msg2->sw_ack_vector) && ((msg2->sw_ack_vector &
159 msg->sw_ack_vector) == 0) &&
160 (msg2->sending_cpu == msg->sending_cpu) &&
161 (msg2->msg_type != MSG_NOOP)) {
162 slot2 = msg2 - mdp->va_queue_first;
163 mmr = uv_read_local_mmr
164 (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
165 msg_res = msg2->sw_ack_vector;
167 * This is a message retry; clear the resources held
168 * by the previous message only if they timed out.
169 * If it has not timed out we have an unexpected
170 * situation to report.
172 if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
174 * is the resource timed out?
175 * make everyone ignore the cancelled message.
177 msg2->canceled = 1;
178 stat->d_canceled++;
179 cancel_count++;
180 uv_write_local_mmr(
181 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
182 (msg_res << UV_SW_ACK_NPENDING) |
183 msg_res);
187 if (!cancel_count)
188 stat->d_nocanceled++;
192 * Do all the things a cpu should do for a TLB shootdown message.
193 * Other cpu's may come here at the same time for this message.
195 static void uv_bau_process_message(struct msg_desc *mdp,
196 struct bau_control *bcp)
198 int msg_ack_count;
199 short socket_ack_count = 0;
200 struct ptc_stats *stat;
201 struct bau_payload_queue_entry *msg;
202 struct bau_control *smaster = bcp->socket_master;
205 * This must be a normal message, or retry of a normal message
207 msg = mdp->msg;
208 stat = bcp->statp;
209 if (msg->address == TLB_FLUSH_ALL) {
210 local_flush_tlb();
211 stat->d_alltlb++;
212 } else {
213 __flush_tlb_one(msg->address);
214 stat->d_onetlb++;
216 stat->d_requestee++;
219 * One cpu on each uvhub has the additional job on a RETRY
220 * of releasing the resource held by the message that is
221 * being retried. That message is identified by sending
222 * cpu number.
224 if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
225 uv_bau_process_retry_msg(mdp, bcp);
228 * This is a sw_ack message, so we have to reply to it.
229 * Count each responding cpu on the socket. This avoids
230 * pinging the count's cache line back and forth between
231 * the sockets.
233 socket_ack_count = atomic_add_short_return(1, (struct atomic_short *)
234 &smaster->socket_acknowledge_count[mdp->msg_slot]);
235 if (socket_ack_count == bcp->cpus_in_socket) {
237 * Both sockets dump their completed count total into
238 * the message's count.
240 smaster->socket_acknowledge_count[mdp->msg_slot] = 0;
241 msg_ack_count = atomic_add_short_return(socket_ack_count,
242 (struct atomic_short *)&msg->acknowledge_count);
244 if (msg_ack_count == bcp->cpus_in_uvhub) {
246 * All cpus in uvhub saw it; reply
248 uv_reply_to_message(mdp, bcp);
252 return;
256 * Determine the first cpu on a uvhub.
258 static int uvhub_to_first_cpu(int uvhub)
260 int cpu;
261 for_each_present_cpu(cpu)
262 if (uvhub == uv_cpu_to_blade_id(cpu))
263 return cpu;
264 return -1;
268 * Last resort when we get a large number of destination timeouts is
269 * to clear resources held by a given cpu.
270 * Do this with IPI so that all messages in the BAU message queue
271 * can be identified by their nonzero sw_ack_vector field.
273 * This is entered for a single cpu on the uvhub.
274 * The sender want's this uvhub to free a specific message's
275 * sw_ack resources.
277 static void
278 uv_do_reset(void *ptr)
280 int i;
281 int slot;
282 int count = 0;
283 unsigned long mmr;
284 unsigned long msg_res;
285 struct bau_control *bcp;
286 struct reset_args *rap;
287 struct bau_payload_queue_entry *msg;
288 struct ptc_stats *stat;
290 bcp = &per_cpu(bau_control, smp_processor_id());
291 rap = (struct reset_args *)ptr;
292 stat = bcp->statp;
293 stat->d_resets++;
296 * We're looking for the given sender, and
297 * will free its sw_ack resource.
298 * If all cpu's finally responded after the timeout, its
299 * message 'replied_to' was set.
301 for (msg = bcp->va_queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
302 /* uv_do_reset: same conditions for cancellation as
303 uv_bau_process_retry_msg() */
304 if ((msg->replied_to == 0) &&
305 (msg->canceled == 0) &&
306 (msg->sending_cpu == rap->sender) &&
307 (msg->sw_ack_vector) &&
308 (msg->msg_type != MSG_NOOP)) {
310 * make everyone else ignore this message
312 msg->canceled = 1;
313 slot = msg - bcp->va_queue_first;
314 count++;
316 * only reset the resource if it is still pending
318 mmr = uv_read_local_mmr
319 (UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE);
320 msg_res = msg->sw_ack_vector;
321 if (mmr & msg_res) {
322 stat->d_rcanceled++;
323 uv_write_local_mmr(
324 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE_ALIAS,
325 (msg_res << UV_SW_ACK_NPENDING) |
326 msg_res);
330 return;
334 * Use IPI to get all target uvhubs to release resources held by
335 * a given sending cpu number.
337 static void uv_reset_with_ipi(struct bau_target_uvhubmask *distribution,
338 int sender)
340 int uvhub;
341 int cpu;
342 cpumask_t mask;
343 struct reset_args reset_args;
345 reset_args.sender = sender;
347 cpus_clear(mask);
348 /* find a single cpu for each uvhub in this distribution mask */
349 for (uvhub = 0;
350 uvhub < sizeof(struct bau_target_uvhubmask) * BITSPERBYTE;
351 uvhub++) {
352 if (!bau_uvhub_isset(uvhub, distribution))
353 continue;
354 /* find a cpu for this uvhub */
355 cpu = uvhub_to_first_cpu(uvhub);
356 cpu_set(cpu, mask);
358 /* IPI all cpus; Preemption is already disabled */
359 smp_call_function_many(&mask, uv_do_reset, (void *)&reset_args, 1);
360 return;
363 static inline unsigned long
364 cycles_2_us(unsigned long long cyc)
366 unsigned long long ns;
367 unsigned long us;
368 ns = (cyc * per_cpu(cyc2ns, smp_processor_id()))
369 >> CYC2NS_SCALE_FACTOR;
370 us = ns / 1000;
371 return us;
375 * wait for all cpus on this hub to finish their sends and go quiet
376 * leaves uvhub_quiesce set so that no new broadcasts are started by
377 * bau_flush_send_and_wait()
379 static inline void
380 quiesce_local_uvhub(struct bau_control *hmaster)
382 atomic_add_short_return(1, (struct atomic_short *)
383 &hmaster->uvhub_quiesce);
387 * mark this quiet-requestor as done
389 static inline void
390 end_uvhub_quiesce(struct bau_control *hmaster)
392 atomic_add_short_return(-1, (struct atomic_short *)
393 &hmaster->uvhub_quiesce);
397 * Wait for completion of a broadcast software ack message
398 * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
400 static int uv1_wait_completion(struct bau_desc *bau_desc,
401 unsigned long mmr_offset, int right_shift, int this_cpu,
402 struct bau_control *bcp, struct bau_control *smaster, long try)
404 unsigned long descriptor_status;
405 cycles_t ttime;
406 struct ptc_stats *stat = bcp->statp;
408 /* spin on the status MMR, waiting for it to go idle */
409 while ((descriptor_status = (((unsigned long)
410 uv_read_local_mmr(mmr_offset) >>
411 right_shift) & UV_ACT_STATUS_MASK)) !=
412 DESC_STATUS_IDLE) {
414 * Our software ack messages may be blocked because
415 * there are no swack resources available. As long
416 * as none of them has timed out hardware will NACK
417 * our message and its state will stay IDLE.
419 if (descriptor_status == DESC_STATUS_SOURCE_TIMEOUT) {
420 stat->s_stimeout++;
421 return FLUSH_GIVEUP;
422 } else if (descriptor_status ==
423 DESC_STATUS_DESTINATION_TIMEOUT) {
424 stat->s_dtimeout++;
425 ttime = get_cycles();
428 * Our retries may be blocked by all destination
429 * swack resources being consumed, and a timeout
430 * pending. In that case hardware returns the
431 * ERROR that looks like a destination timeout.
433 if (cycles_2_us(ttime - bcp->send_message) <
434 timeout_us) {
435 bcp->conseccompletes = 0;
436 return FLUSH_RETRY_PLUGGED;
439 bcp->conseccompletes = 0;
440 return FLUSH_RETRY_TIMEOUT;
441 } else {
443 * descriptor_status is still BUSY
445 cpu_relax();
448 bcp->conseccompletes++;
449 return FLUSH_COMPLETE;
452 static int uv2_wait_completion(struct bau_desc *bau_desc,
453 unsigned long mmr_offset, int right_shift, int this_cpu,
454 struct bau_control *bcp, struct bau_control *smaster, long try)
456 unsigned long descriptor_status;
457 unsigned long descriptor_status2;
458 int cpu;
459 cycles_t ttime;
460 struct ptc_stats *stat = bcp->statp;
462 /* UV2 has an extra bit of status */
463 cpu = bcp->uvhub_cpu;
464 /* spin on the status MMR, waiting for it to go idle */
465 descriptor_status = (((unsigned long)(uv_read_local_mmr
466 (mmr_offset)) >> right_shift) & UV_ACT_STATUS_MASK);
467 descriptor_status2 = (((unsigned long)uv_read_local_mmr
468 (UV2H_LB_BAU_SB_ACTIVATION_STATUS_2) >> cpu) & 0x1UL);
469 descriptor_status = (descriptor_status << 1) |
470 descriptor_status2;
471 while (descriptor_status != UV2H_DESC_IDLE) {
473 * Our software ack messages may be blocked because
474 * there are no swack resources available. As long
475 * as none of them has timed out hardware will NACK
476 * our message and its state will stay IDLE.
478 if ((descriptor_status == UV2H_DESC_SOURCE_TIMEOUT) ||
479 (descriptor_status == UV2H_DESC_DEST_STRONG_NACK) ||
480 (descriptor_status == UV2H_DESC_DEST_PUT_ERR)) {
481 stat->s_stimeout++;
482 return FLUSH_GIVEUP;
483 } else if (descriptor_status == UV2H_DESC_DEST_TIMEOUT) {
484 stat->s_dtimeout++;
485 ttime = get_cycles();
488 * Our retries may be blocked by all destination
489 * swack resources being consumed, and a timeout
490 * pending. In that case hardware returns the
491 * ERROR that looks like a destination timeout.
493 if (cycles_2_us(ttime - bcp->send_message) <
494 timeout_us) {
495 bcp->conseccompletes = 0;
496 return FLUSH_RETRY_PLUGGED;
499 bcp->conseccompletes = 0;
500 return FLUSH_RETRY_TIMEOUT;
501 } else {
503 * descriptor_status is still BUSY
505 cpu_relax();
507 descriptor_status = (((unsigned long)(uv_read_local_mmr
508 (mmr_offset)) >> right_shift) &
509 UV_ACT_STATUS_MASK);
510 descriptor_status2 = (((unsigned long)uv_read_local_mmr
511 (UV2H_LB_BAU_SB_ACTIVATION_STATUS_2) >> cpu) &
512 0x1UL);
513 descriptor_status = (descriptor_status << 1) |
514 descriptor_status2;
516 bcp->conseccompletes++;
517 return FLUSH_COMPLETE;
520 static int uv_wait_completion(struct bau_desc *bau_desc,
521 unsigned long mmr_offset, int right_shift, int this_cpu,
522 struct bau_control *bcp, struct bau_control *smaster, long try)
524 if (is_uv1_hub())
525 return uv1_wait_completion(bau_desc, mmr_offset, right_shift,
526 this_cpu, bcp, smaster, try);
527 else
528 return uv2_wait_completion(bau_desc, mmr_offset, right_shift,
529 this_cpu, bcp, smaster, try);
532 static inline cycles_t
533 sec_2_cycles(unsigned long sec)
535 unsigned long ns;
536 cycles_t cyc;
538 ns = sec * 1000000000;
539 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
540 return cyc;
544 * conditionally add 1 to *v, unless *v is >= u
545 * return 0 if we cannot add 1 to *v because it is >= u
546 * return 1 if we can add 1 to *v because it is < u
547 * the add is atomic
549 * This is close to atomic_add_unless(), but this allows the 'u' value
550 * to be lowered below the current 'v'. atomic_add_unless can only stop
551 * on equal.
553 static inline int atomic_inc_unless_ge(spinlock_t *lock, atomic_t *v, int u)
555 spin_lock(lock);
556 if (atomic_read(v) >= u) {
557 spin_unlock(lock);
558 return 0;
560 atomic_inc(v);
561 spin_unlock(lock);
562 return 1;
566 * Our retries are blocked by all destination swack resources being
567 * in use, and a timeout is pending. In that case hardware immediately
568 * returns the ERROR that looks like a destination timeout.
570 static void
571 destination_plugged(struct bau_desc *bau_desc, struct bau_control *bcp,
572 struct bau_control *hmaster, struct ptc_stats *stat)
574 udelay(bcp->plugged_delay);
575 bcp->plugged_tries++;
576 if (bcp->plugged_tries >= bcp->plugsb4reset) {
577 bcp->plugged_tries = 0;
578 quiesce_local_uvhub(hmaster);
579 spin_lock(&hmaster->queue_lock);
580 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
581 spin_unlock(&hmaster->queue_lock);
582 end_uvhub_quiesce(hmaster);
583 bcp->ipi_attempts++;
584 stat->s_resets_plug++;
588 static void
589 destination_timeout(struct bau_desc *bau_desc, struct bau_control *bcp,
590 struct bau_control *hmaster, struct ptc_stats *stat)
592 hmaster->max_bau_concurrent = 1;
593 bcp->timeout_tries++;
594 if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
595 bcp->timeout_tries = 0;
596 quiesce_local_uvhub(hmaster);
597 spin_lock(&hmaster->queue_lock);
598 uv_reset_with_ipi(&bau_desc->distribution, bcp->cpu);
599 spin_unlock(&hmaster->queue_lock);
600 end_uvhub_quiesce(hmaster);
601 bcp->ipi_attempts++;
602 stat->s_resets_timeout++;
607 * Completions are taking a very long time due to a congested numalink
608 * network.
610 static void
611 disable_for_congestion(struct bau_control *bcp, struct ptc_stats *stat)
613 int tcpu;
614 struct bau_control *tbcp;
616 /* let only one cpu do this disabling */
617 spin_lock(&disable_lock);
618 if (!baudisabled && bcp->period_requests &&
619 ((bcp->period_time / bcp->period_requests) > congested_cycles)) {
620 /* it becomes this cpu's job to turn on the use of the
621 BAU again */
622 baudisabled = 1;
623 bcp->set_bau_off = 1;
624 bcp->set_bau_on_time = get_cycles() +
625 sec_2_cycles(bcp->congested_period);
626 stat->s_bau_disabled++;
627 for_each_present_cpu(tcpu) {
628 tbcp = &per_cpu(bau_control, tcpu);
629 tbcp->baudisabled = 1;
632 spin_unlock(&disable_lock);
636 * uv_flush_send_and_wait
638 * Send a broadcast and wait for it to complete.
640 * The flush_mask contains the cpus the broadcast is to be sent to including
641 * cpus that are on the local uvhub.
643 * Returns 0 if all flushing represented in the mask was done.
644 * Returns 1 if it gives up entirely and the original cpu mask is to be
645 * returned to the kernel.
647 int uv_flush_send_and_wait(struct bau_desc *bau_desc,
648 struct cpumask *flush_mask, struct bau_control *bcp)
650 int right_shift;
651 int completion_status = 0;
652 int seq_number = 0;
653 long try = 0;
654 int cpu = bcp->uvhub_cpu;
655 int this_cpu = bcp->cpu;
656 unsigned long mmr_offset;
657 unsigned long index;
658 cycles_t time1;
659 cycles_t time2;
660 cycles_t elapsed;
661 struct ptc_stats *stat = bcp->statp;
662 struct bau_control *smaster = bcp->socket_master;
663 struct bau_control *hmaster = bcp->uvhub_master;
665 if (is_uv1_hub() &&
666 !atomic_inc_unless_ge(&hmaster->uvhub_lock,
667 &hmaster->active_descriptor_count,
668 hmaster->max_bau_concurrent)) {
669 stat->s_throttles++;
670 do {
671 cpu_relax();
672 } while (!atomic_inc_unless_ge(&hmaster->uvhub_lock,
673 &hmaster->active_descriptor_count,
674 hmaster->max_bau_concurrent));
676 while (hmaster->uvhub_quiesce)
677 cpu_relax();
679 if (cpu < UV_CPUS_PER_ACT_STATUS) {
680 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
681 right_shift = cpu * UV_ACT_STATUS_SIZE;
682 } else {
683 mmr_offset = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
684 right_shift =
685 ((cpu - UV_CPUS_PER_ACT_STATUS) * UV_ACT_STATUS_SIZE);
687 time1 = get_cycles();
688 do {
689 if (try == 0) {
690 bau_desc->header.msg_type = MSG_REGULAR;
691 seq_number = bcp->message_number++;
692 } else {
693 bau_desc->header.msg_type = MSG_RETRY;
694 stat->s_retry_messages++;
696 bau_desc->header.sequence = seq_number;
697 index = (1UL << UVH_LB_BAU_SB_ACTIVATION_CONTROL_PUSH_SHFT) |
698 bcp->uvhub_cpu;
699 bcp->send_message = get_cycles();
700 uv_write_local_mmr(UVH_LB_BAU_SB_ACTIVATION_CONTROL, index);
701 try++;
702 completion_status = uv_wait_completion(bau_desc, mmr_offset,
703 right_shift, this_cpu, bcp, smaster, try);
705 if (completion_status == FLUSH_RETRY_PLUGGED) {
706 destination_plugged(bau_desc, bcp, hmaster, stat);
707 } else if (completion_status == FLUSH_RETRY_TIMEOUT) {
708 destination_timeout(bau_desc, bcp, hmaster, stat);
710 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
711 bcp->ipi_attempts = 0;
712 completion_status = FLUSH_GIVEUP;
713 break;
715 cpu_relax();
716 } while ((completion_status == FLUSH_RETRY_PLUGGED) ||
717 (completion_status == FLUSH_RETRY_TIMEOUT));
718 time2 = get_cycles();
719 bcp->plugged_tries = 0;
720 bcp->timeout_tries = 0;
721 if ((completion_status == FLUSH_COMPLETE) &&
722 (bcp->conseccompletes > bcp->complete_threshold) &&
723 (hmaster->max_bau_concurrent <
724 hmaster->max_bau_concurrent_constant))
725 hmaster->max_bau_concurrent++;
726 while (hmaster->uvhub_quiesce)
727 cpu_relax();
728 atomic_dec(&hmaster->active_descriptor_count);
729 if (time2 > time1) {
730 elapsed = time2 - time1;
731 stat->s_time += elapsed;
732 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
733 bcp->period_requests++;
734 bcp->period_time += elapsed;
735 if ((elapsed > congested_cycles) &&
736 (bcp->period_requests > bcp->congested_reps)) {
737 disable_for_congestion(bcp, stat);
740 } else
741 stat->s_requestor--;
742 if (completion_status == FLUSH_COMPLETE && try > 1)
743 stat->s_retriesok++;
744 else if (completion_status == FLUSH_GIVEUP) {
745 stat->s_giveup++;
746 return 1;
748 return 0;
752 * uv_flush_tlb_others - globally purge translation cache of a virtual
753 * address or all TLB's
754 * @cpumask: mask of all cpu's in which the address is to be removed
755 * @mm: mm_struct containing virtual address range
756 * @va: virtual address to be removed (or TLB_FLUSH_ALL for all TLB's on cpu)
757 * @cpu: the current cpu
759 * This is the entry point for initiating any UV global TLB shootdown.
761 * Purges the translation caches of all specified processors of the given
762 * virtual address, or purges all TLB's on specified processors.
764 * The caller has derived the cpumask from the mm_struct. This function
765 * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
767 * The cpumask is converted into a uvhubmask of the uvhubs containing
768 * those cpus.
770 * Note that this function should be called with preemption disabled.
772 * Returns NULL if all remote flushing was done.
773 * Returns pointer to cpumask if some remote flushing remains to be
774 * done. The returned pointer is valid till preemption is re-enabled.
776 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
777 struct mm_struct *mm,
778 unsigned long va, unsigned int cpu)
780 int locals = 0;
781 int remotes = 0;
782 int hubs = 0;
783 int tcpu;
784 int tpnode;
785 struct bau_desc *bau_desc;
786 struct cpumask *flush_mask;
787 struct ptc_stats *stat;
788 struct bau_control *bcp;
789 struct bau_control *tbcp;
790 struct hub_and_pnode *hpp;
792 /* kernel was booted 'nobau' */
793 if (nobau)
794 return cpumask;
796 bcp = &per_cpu(bau_control, cpu);
797 stat = bcp->statp;
799 /* bau was disabled due to slow response */
800 if (bcp->baudisabled) {
801 /* the cpu that disabled it must re-enable it */
802 if (bcp->set_bau_off) {
803 if (get_cycles() >= bcp->set_bau_on_time) {
804 stat->s_bau_reenabled++;
805 baudisabled = 0;
806 for_each_present_cpu(tcpu) {
807 tbcp = &per_cpu(bau_control, tcpu);
808 tbcp->baudisabled = 0;
809 tbcp->period_requests = 0;
810 tbcp->period_time = 0;
814 return cpumask;
818 * Each sending cpu has a per-cpu mask which it fills from the caller's
819 * cpu mask. All cpus are converted to uvhubs and copied to the
820 * activation descriptor.
822 flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
823 /* don't actually do a shootdown of the local cpu */
824 cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
825 if (cpu_isset(cpu, *cpumask))
826 stat->s_ntargself++;
828 bau_desc = bcp->descriptor_base;
829 bau_desc += UV_ITEMS_PER_DESCRIPTOR * bcp->uvhub_cpu;
830 bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
832 for_each_cpu(tcpu, flush_mask) {
834 * The distribution vector is a bit map of pnodes, relative
835 * to the partition base pnode (and the partition base nasid
836 * in the header).
837 * Translate cpu to pnode and hub using an array stored
838 * in local memory.
840 hpp = &bcp->socket_master->target_hub_and_pnode[tcpu];
841 tpnode = hpp->pnode - bcp->partition_base_pnode;
842 bau_uvhub_set(tpnode, &bau_desc->distribution);
843 if (hpp->uvhub == bcp->uvhub)
844 locals++;
845 else
846 remotes++;
848 if ((locals + remotes) == 0)
849 return NULL;
850 stat->s_requestor++;
851 stat->s_ntargcpu += remotes + locals;
852 stat->s_ntargremotes += remotes;
853 stat->s_ntarglocals += locals;
854 remotes = bau_uvhub_weight(&bau_desc->distribution);
856 /* uvhub statistics */
857 hubs = bau_uvhub_weight(&bau_desc->distribution);
858 if (locals) {
859 stat->s_ntarglocaluvhub++;
860 stat->s_ntargremoteuvhub += (hubs - 1);
861 } else
862 stat->s_ntargremoteuvhub += hubs;
863 stat->s_ntarguvhub += hubs;
864 if (hubs >= 16)
865 stat->s_ntarguvhub16++;
866 else if (hubs >= 8)
867 stat->s_ntarguvhub8++;
868 else if (hubs >= 4)
869 stat->s_ntarguvhub4++;
870 else if (hubs >= 2)
871 stat->s_ntarguvhub2++;
872 else
873 stat->s_ntarguvhub1++;
875 bau_desc->payload.address = va;
876 bau_desc->payload.sending_cpu = cpu;
879 * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
880 * or 1 if it gave up and the original cpumask should be returned.
882 if (!uv_flush_send_and_wait(bau_desc, flush_mask, bcp))
883 return NULL;
884 else
885 return cpumask;
889 * The BAU message interrupt comes here. (registered by set_intr_gate)
890 * See entry_64.S
892 * We received a broadcast assist message.
894 * Interrupts are disabled; this interrupt could represent
895 * the receipt of several messages.
897 * All cores/threads on this hub get this interrupt.
898 * The last one to see it does the software ack.
899 * (the resource will not be freed until noninterruptable cpus see this
900 * interrupt; hardware may timeout the s/w ack and reply ERROR)
902 void uv_bau_message_interrupt(struct pt_regs *regs)
904 int count = 0;
905 cycles_t time_start;
906 struct bau_payload_queue_entry *msg;
907 struct bau_control *bcp;
908 struct ptc_stats *stat;
909 struct msg_desc msgdesc;
911 time_start = get_cycles();
912 bcp = &per_cpu(bau_control, smp_processor_id());
913 stat = bcp->statp;
914 msgdesc.va_queue_first = bcp->va_queue_first;
915 msgdesc.va_queue_last = bcp->va_queue_last;
916 msg = bcp->bau_msg_head;
917 while (msg->sw_ack_vector) {
918 count++;
919 msgdesc.msg_slot = msg - msgdesc.va_queue_first;
920 msgdesc.sw_ack_slot = ffs(msg->sw_ack_vector) - 1;
921 msgdesc.msg = msg;
922 uv_bau_process_message(&msgdesc, bcp);
923 msg++;
924 if (msg > msgdesc.va_queue_last)
925 msg = msgdesc.va_queue_first;
926 bcp->bau_msg_head = msg;
928 stat->d_time += (get_cycles() - time_start);
929 if (!count)
930 stat->d_nomsg++;
931 else if (count > 1)
932 stat->d_multmsg++;
933 ack_APIC_irq();
937 * uv_enable_timeouts
939 * Each target uvhub (i.e. a uvhub that has no cpu's) needs to have
940 * shootdown message timeouts enabled. The timeout does not cause
941 * an interrupt, but causes an error message to be returned to
942 * the sender.
944 static void __init uv_enable_timeouts(void)
946 int uvhub;
947 int nuvhubs;
948 int pnode;
949 unsigned long mmr_image;
951 nuvhubs = uv_num_possible_blades();
953 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
954 if (!uv_blade_nr_possible_cpus(uvhub))
955 continue;
957 pnode = uv_blade_to_pnode(uvhub);
958 mmr_image =
959 uv_read_global_mmr64(pnode, UVH_LB_BAU_MISC_CONTROL);
961 * Set the timeout period and then lock it in, in three
962 * steps; captures and locks in the period.
964 * To program the period, the SOFT_ACK_MODE must be off.
966 mmr_image &= ~((unsigned long)1 <<
967 UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
968 uv_write_global_mmr64
969 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
971 * Set the 4-bit period.
973 mmr_image &= ~((unsigned long)0xf <<
974 UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
975 mmr_image |= (UV_INTD_SOFT_ACK_TIMEOUT_PERIOD <<
976 UVH_LB_BAU_MISC_CONTROL_INTD_SOFT_ACK_TIMEOUT_PERIOD_SHFT);
977 uv_write_global_mmr64
978 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
980 * UV1:
981 * Subsequent reversals of the timebase bit (3) cause an
982 * immediate timeout of one or all INTD resources as
983 * indicated in bits 2:0 (7 causes all of them to timeout).
985 mmr_image |= ((unsigned long)1 <<
986 UVH_LB_BAU_MISC_CONTROL_ENABLE_INTD_SOFT_ACK_MODE_SHFT);
987 if (is_uv2_hub()) {
988 mmr_image |= ((unsigned long)1 << UV2_LEG_SHFT);
989 mmr_image |= ((unsigned long)1 << UV2_EXT_SHFT);
991 uv_write_global_mmr64
992 (pnode, UVH_LB_BAU_MISC_CONTROL, mmr_image);
996 static void *uv_ptc_seq_start(struct seq_file *file, loff_t *offset)
998 if (*offset < num_possible_cpus())
999 return offset;
1000 return NULL;
1003 static void *uv_ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1005 (*offset)++;
1006 if (*offset < num_possible_cpus())
1007 return offset;
1008 return NULL;
1011 static void uv_ptc_seq_stop(struct seq_file *file, void *data)
1015 static inline unsigned long long
1016 microsec_2_cycles(unsigned long microsec)
1018 unsigned long ns;
1019 unsigned long long cyc;
1021 ns = microsec * 1000;
1022 cyc = (ns << CYC2NS_SCALE_FACTOR)/(per_cpu(cyc2ns, smp_processor_id()));
1023 return cyc;
1027 * Display the statistics thru /proc.
1028 * 'data' points to the cpu number
1030 static int uv_ptc_seq_show(struct seq_file *file, void *data)
1032 struct ptc_stats *stat;
1033 int cpu;
1035 cpu = *(loff_t *)data;
1037 if (!cpu) {
1038 seq_printf(file,
1039 "# cpu sent stime self locals remotes ncpus localhub ");
1040 seq_printf(file,
1041 "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1042 seq_printf(file,
1043 "numuvhubs4 numuvhubs2 numuvhubs1 dto ");
1044 seq_printf(file,
1045 "retries rok resetp resett giveup sto bz throt ");
1046 seq_printf(file,
1047 "sw_ack recv rtime all ");
1048 seq_printf(file,
1049 "one mult none retry canc nocan reset rcan ");
1050 seq_printf(file,
1051 "disable enable\n");
1053 if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1054 stat = &per_cpu(ptcstats, cpu);
1055 /* source side statistics */
1056 seq_printf(file,
1057 "cpu %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1058 cpu, stat->s_requestor, cycles_2_us(stat->s_time),
1059 stat->s_ntargself, stat->s_ntarglocals,
1060 stat->s_ntargremotes, stat->s_ntargcpu,
1061 stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1062 stat->s_ntarguvhub, stat->s_ntarguvhub16);
1063 seq_printf(file, "%ld %ld %ld %ld %ld ",
1064 stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1065 stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1066 stat->s_dtimeout);
1067 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1068 stat->s_retry_messages, stat->s_retriesok,
1069 stat->s_resets_plug, stat->s_resets_timeout,
1070 stat->s_giveup, stat->s_stimeout,
1071 stat->s_busy, stat->s_throttles);
1073 /* destination side statistics */
1074 seq_printf(file,
1075 "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1076 uv_read_global_mmr64(uv_cpu_to_pnode(cpu),
1077 UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE),
1078 stat->d_requestee, cycles_2_us(stat->d_time),
1079 stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1080 stat->d_nomsg, stat->d_retries, stat->d_canceled,
1081 stat->d_nocanceled, stat->d_resets,
1082 stat->d_rcanceled);
1083 seq_printf(file, "%ld %ld\n",
1084 stat->s_bau_disabled, stat->s_bau_reenabled);
1087 return 0;
1091 * Display the tunables thru debugfs
1093 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1094 size_t count, loff_t *ppos)
1096 char *buf;
1097 int ret;
1099 buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d\n",
1100 "max_bau_concurrent plugged_delay plugsb4reset",
1101 "timeoutsb4reset ipi_reset_limit complete_threshold",
1102 "congested_response_us congested_reps congested_period",
1103 max_bau_concurrent, plugged_delay, plugsb4reset,
1104 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1105 congested_response_us, congested_reps, congested_period);
1107 if (!buf)
1108 return -ENOMEM;
1110 ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1111 kfree(buf);
1112 return ret;
1116 * -1: resetf the statistics
1117 * 0: display meaning of the statistics
1119 static ssize_t uv_ptc_proc_write(struct file *file, const char __user *user,
1120 size_t count, loff_t *data)
1122 int cpu;
1123 long input_arg;
1124 char optstr[64];
1125 struct ptc_stats *stat;
1127 if (count == 0 || count > sizeof(optstr))
1128 return -EINVAL;
1129 if (copy_from_user(optstr, user, count))
1130 return -EFAULT;
1131 optstr[count - 1] = '\0';
1132 if (strict_strtol(optstr, 10, &input_arg) < 0) {
1133 printk(KERN_DEBUG "%s is invalid\n", optstr);
1134 return -EINVAL;
1137 if (input_arg == 0) {
1138 printk(KERN_DEBUG "# cpu: cpu number\n");
1139 printk(KERN_DEBUG "Sender statistics:\n");
1140 printk(KERN_DEBUG
1141 "sent: number of shootdown messages sent\n");
1142 printk(KERN_DEBUG
1143 "stime: time spent sending messages\n");
1144 printk(KERN_DEBUG
1145 "numuvhubs: number of hubs targeted with shootdown\n");
1146 printk(KERN_DEBUG
1147 "numuvhubs16: number times 16 or more hubs targeted\n");
1148 printk(KERN_DEBUG
1149 "numuvhubs8: number times 8 or more hubs targeted\n");
1150 printk(KERN_DEBUG
1151 "numuvhubs4: number times 4 or more hubs targeted\n");
1152 printk(KERN_DEBUG
1153 "numuvhubs2: number times 2 or more hubs targeted\n");
1154 printk(KERN_DEBUG
1155 "numuvhubs1: number times 1 hub targeted\n");
1156 printk(KERN_DEBUG
1157 "numcpus: number of cpus targeted with shootdown\n");
1158 printk(KERN_DEBUG
1159 "dto: number of destination timeouts\n");
1160 printk(KERN_DEBUG
1161 "retries: destination timeout retries sent\n");
1162 printk(KERN_DEBUG
1163 "rok: : destination timeouts successfully retried\n");
1164 printk(KERN_DEBUG
1165 "resetp: ipi-style resource resets for plugs\n");
1166 printk(KERN_DEBUG
1167 "resett: ipi-style resource resets for timeouts\n");
1168 printk(KERN_DEBUG
1169 "giveup: fall-backs to ipi-style shootdowns\n");
1170 printk(KERN_DEBUG
1171 "sto: number of source timeouts\n");
1172 printk(KERN_DEBUG
1173 "bz: number of stay-busy's\n");
1174 printk(KERN_DEBUG
1175 "throt: number times spun in throttle\n");
1176 printk(KERN_DEBUG "Destination side statistics:\n");
1177 printk(KERN_DEBUG
1178 "sw_ack: image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE\n");
1179 printk(KERN_DEBUG
1180 "recv: shootdown messages received\n");
1181 printk(KERN_DEBUG
1182 "rtime: time spent processing messages\n");
1183 printk(KERN_DEBUG
1184 "all: shootdown all-tlb messages\n");
1185 printk(KERN_DEBUG
1186 "one: shootdown one-tlb messages\n");
1187 printk(KERN_DEBUG
1188 "mult: interrupts that found multiple messages\n");
1189 printk(KERN_DEBUG
1190 "none: interrupts that found no messages\n");
1191 printk(KERN_DEBUG
1192 "retry: number of retry messages processed\n");
1193 printk(KERN_DEBUG
1194 "canc: number messages canceled by retries\n");
1195 printk(KERN_DEBUG
1196 "nocan: number retries that found nothing to cancel\n");
1197 printk(KERN_DEBUG
1198 "reset: number of ipi-style reset requests processed\n");
1199 printk(KERN_DEBUG
1200 "rcan: number messages canceled by reset requests\n");
1201 printk(KERN_DEBUG
1202 "disable: number times use of the BAU was disabled\n");
1203 printk(KERN_DEBUG
1204 "enable: number times use of the BAU was re-enabled\n");
1205 } else if (input_arg == -1) {
1206 for_each_present_cpu(cpu) {
1207 stat = &per_cpu(ptcstats, cpu);
1208 memset(stat, 0, sizeof(struct ptc_stats));
1212 return count;
1215 static int local_atoi(const char *name)
1217 int val = 0;
1219 for (;; name++) {
1220 switch (*name) {
1221 case '0' ... '9':
1222 val = 10*val+(*name-'0');
1223 break;
1224 default:
1225 return val;
1231 * set the tunables
1232 * 0 values reset them to defaults
1234 static ssize_t tunables_write(struct file *file, const char __user *user,
1235 size_t count, loff_t *data)
1237 int cpu;
1238 int cnt = 0;
1239 int val;
1240 char *p;
1241 char *q;
1242 char instr[64];
1243 struct bau_control *bcp;
1245 if (count == 0 || count > sizeof(instr)-1)
1246 return -EINVAL;
1247 if (copy_from_user(instr, user, count))
1248 return -EFAULT;
1250 instr[count] = '\0';
1251 /* count the fields */
1252 p = instr + strspn(instr, WHITESPACE);
1253 q = p;
1254 for (; *p; p = q + strspn(q, WHITESPACE)) {
1255 q = p + strcspn(p, WHITESPACE);
1256 cnt++;
1257 if (q == p)
1258 break;
1260 if (cnt != 9) {
1261 printk(KERN_INFO "bau tunable error: should be 9 numbers\n");
1262 return -EINVAL;
1265 p = instr + strspn(instr, WHITESPACE);
1266 q = p;
1267 for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1268 q = p + strcspn(p, WHITESPACE);
1269 val = local_atoi(p);
1270 switch (cnt) {
1271 case 0:
1272 if (val == 0) {
1273 max_bau_concurrent = MAX_BAU_CONCURRENT;
1274 max_bau_concurrent_constant =
1275 MAX_BAU_CONCURRENT;
1276 continue;
1278 bcp = &per_cpu(bau_control, smp_processor_id());
1279 if (val < 1 || val > bcp->cpus_in_uvhub) {
1280 printk(KERN_DEBUG
1281 "Error: BAU max concurrent %d is invalid\n",
1282 val);
1283 return -EINVAL;
1285 max_bau_concurrent = val;
1286 max_bau_concurrent_constant = val;
1287 continue;
1288 case 1:
1289 if (val == 0)
1290 plugged_delay = PLUGGED_DELAY;
1291 else
1292 plugged_delay = val;
1293 continue;
1294 case 2:
1295 if (val == 0)
1296 plugsb4reset = PLUGSB4RESET;
1297 else
1298 plugsb4reset = val;
1299 continue;
1300 case 3:
1301 if (val == 0)
1302 timeoutsb4reset = TIMEOUTSB4RESET;
1303 else
1304 timeoutsb4reset = val;
1305 continue;
1306 case 4:
1307 if (val == 0)
1308 ipi_reset_limit = IPI_RESET_LIMIT;
1309 else
1310 ipi_reset_limit = val;
1311 continue;
1312 case 5:
1313 if (val == 0)
1314 complete_threshold = COMPLETE_THRESHOLD;
1315 else
1316 complete_threshold = val;
1317 continue;
1318 case 6:
1319 if (val == 0)
1320 congested_response_us = CONGESTED_RESPONSE_US;
1321 else
1322 congested_response_us = val;
1323 continue;
1324 case 7:
1325 if (val == 0)
1326 congested_reps = CONGESTED_REPS;
1327 else
1328 congested_reps = val;
1329 continue;
1330 case 8:
1331 if (val == 0)
1332 congested_period = CONGESTED_PERIOD;
1333 else
1334 congested_period = val;
1335 continue;
1337 if (q == p)
1338 break;
1340 for_each_present_cpu(cpu) {
1341 bcp = &per_cpu(bau_control, cpu);
1342 bcp->max_bau_concurrent = max_bau_concurrent;
1343 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1344 bcp->plugged_delay = plugged_delay;
1345 bcp->plugsb4reset = plugsb4reset;
1346 bcp->timeoutsb4reset = timeoutsb4reset;
1347 bcp->ipi_reset_limit = ipi_reset_limit;
1348 bcp->complete_threshold = complete_threshold;
1349 bcp->congested_response_us = congested_response_us;
1350 bcp->congested_reps = congested_reps;
1351 bcp->congested_period = congested_period;
1353 return count;
1356 static const struct seq_operations uv_ptc_seq_ops = {
1357 .start = uv_ptc_seq_start,
1358 .next = uv_ptc_seq_next,
1359 .stop = uv_ptc_seq_stop,
1360 .show = uv_ptc_seq_show
1363 static int uv_ptc_proc_open(struct inode *inode, struct file *file)
1365 return seq_open(file, &uv_ptc_seq_ops);
1368 static int tunables_open(struct inode *inode, struct file *file)
1370 return 0;
1373 static const struct file_operations proc_uv_ptc_operations = {
1374 .open = uv_ptc_proc_open,
1375 .read = seq_read,
1376 .write = uv_ptc_proc_write,
1377 .llseek = seq_lseek,
1378 .release = seq_release,
1381 static const struct file_operations tunables_fops = {
1382 .open = tunables_open,
1383 .read = tunables_read,
1384 .write = tunables_write,
1385 .llseek = default_llseek,
1388 static int __init uv_ptc_init(void)
1390 struct proc_dir_entry *proc_uv_ptc;
1392 if (!is_uv_system())
1393 return 0;
1395 proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1396 &proc_uv_ptc_operations);
1397 if (!proc_uv_ptc) {
1398 printk(KERN_ERR "unable to create %s proc entry\n",
1399 UV_PTC_BASENAME);
1400 return -EINVAL;
1403 tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1404 if (!tunables_dir) {
1405 printk(KERN_ERR "unable to create debugfs directory %s\n",
1406 UV_BAU_TUNABLES_DIR);
1407 return -EINVAL;
1409 tunables_file = debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600,
1410 tunables_dir, NULL, &tunables_fops);
1411 if (!tunables_file) {
1412 printk(KERN_ERR "unable to create debugfs file %s\n",
1413 UV_BAU_TUNABLES_FILE);
1414 return -EINVAL;
1416 return 0;
1420 * Initialize the sending side's sending buffers.
1422 static void
1423 uv_activation_descriptor_init(int node, int pnode, int base_pnode)
1425 int i;
1426 int cpu;
1427 unsigned long pa;
1428 unsigned long m;
1429 unsigned long n;
1430 struct bau_desc *bau_desc;
1431 struct bau_desc *bd2;
1432 struct bau_control *bcp;
1435 * each bau_desc is 64 bytes; there are 8 (UV_ITEMS_PER_DESCRIPTOR)
1436 * per cpu; and one per cpu on the uvhub (UV_ADP_SIZE)
1438 bau_desc = kmalloc_node(sizeof(struct bau_desc) * UV_ADP_SIZE
1439 * UV_ITEMS_PER_DESCRIPTOR, GFP_KERNEL, node);
1440 BUG_ON(!bau_desc);
1442 pa = uv_gpa(bau_desc); /* need the real nasid*/
1443 n = pa >> uv_nshift;
1444 m = pa & uv_mmask;
1446 /* the 14-bit pnode */
1447 uv_write_global_mmr64(pnode, UVH_LB_BAU_SB_DESCRIPTOR_BASE,
1448 (n << UV_DESC_BASE_PNODE_SHIFT | m));
1450 * Initializing all 8 (UV_ITEMS_PER_DESCRIPTOR) descriptors for each
1451 * cpu even though we only use the first one; one descriptor can
1452 * describe a broadcast to 256 uv hubs.
1454 for (i = 0, bd2 = bau_desc; i < (UV_ADP_SIZE*UV_ITEMS_PER_DESCRIPTOR);
1455 i++, bd2++) {
1456 memset(bd2, 0, sizeof(struct bau_desc));
1457 bd2->header.sw_ack_flag = 1;
1459 * The base_dest_nasid set in the message header is the nasid
1460 * of the first uvhub in the partition. The bit map will
1461 * indicate destination pnode numbers relative to that base.
1462 * They may not be consecutive if nasid striding is being used.
1464 bd2->header.base_dest_nasid = UV_PNODE_TO_NASID(base_pnode);
1465 bd2->header.dest_subnodeid = UV_LB_SUBNODEID;
1466 bd2->header.command = UV_NET_ENDPOINT_INTD;
1467 bd2->header.int_both = 1;
1469 * all others need to be set to zero:
1470 * fairness chaining multilevel count replied_to
1473 for_each_present_cpu(cpu) {
1474 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1475 continue;
1476 bcp = &per_cpu(bau_control, cpu);
1477 bcp->descriptor_base = bau_desc;
1482 * initialize the destination side's receiving buffers
1483 * entered for each uvhub in the partition
1484 * - node is first node (kernel memory notion) on the uvhub
1485 * - pnode is the uvhub's physical identifier
1487 static void
1488 uv_payload_queue_init(int node, int pnode)
1490 int pn;
1491 int cpu;
1492 char *cp;
1493 unsigned long pa;
1494 struct bau_payload_queue_entry *pqp;
1495 struct bau_payload_queue_entry *pqp_malloc;
1496 struct bau_control *bcp;
1498 pqp = kmalloc_node((DEST_Q_SIZE + 1)
1499 * sizeof(struct bau_payload_queue_entry),
1500 GFP_KERNEL, node);
1501 BUG_ON(!pqp);
1502 pqp_malloc = pqp;
1504 cp = (char *)pqp + 31;
1505 pqp = (struct bau_payload_queue_entry *)(((unsigned long)cp >> 5) << 5);
1507 for_each_present_cpu(cpu) {
1508 if (pnode != uv_cpu_to_pnode(cpu))
1509 continue;
1510 /* for every cpu on this pnode: */
1511 bcp = &per_cpu(bau_control, cpu);
1512 bcp->va_queue_first = pqp;
1513 bcp->bau_msg_head = pqp;
1514 bcp->va_queue_last = pqp + (DEST_Q_SIZE - 1);
1517 * need the pnode of where the memory was really allocated
1519 pa = uv_gpa(pqp);
1520 pn = pa >> uv_nshift;
1521 uv_write_global_mmr64(pnode,
1522 UVH_LB_BAU_INTD_PAYLOAD_QUEUE_FIRST,
1523 ((unsigned long)pn << UV_PAYLOADQ_PNODE_SHIFT) |
1524 uv_physnodeaddr(pqp));
1525 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_TAIL,
1526 uv_physnodeaddr(pqp));
1527 uv_write_global_mmr64(pnode, UVH_LB_BAU_INTD_PAYLOAD_QUEUE_LAST,
1528 (unsigned long)
1529 uv_physnodeaddr(pqp + (DEST_Q_SIZE - 1)));
1530 /* in effect, all msg_type's are set to MSG_NOOP */
1531 memset(pqp, 0, sizeof(struct bau_payload_queue_entry) * DEST_Q_SIZE);
1535 * Initialization of each UV hub's structures
1537 static void __init uv_init_uvhub(int uvhub, int vector, int base_pnode)
1539 int node;
1540 int pnode;
1541 unsigned long apicid;
1543 node = uvhub_to_first_node(uvhub);
1544 pnode = uv_blade_to_pnode(uvhub);
1545 uv_activation_descriptor_init(node, pnode, base_pnode);
1546 uv_payload_queue_init(node, pnode);
1548 * The below initialization can't be in firmware because the
1549 * messaging IRQ will be determined by the OS.
1551 apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1552 uv_write_global_mmr64(pnode, UVH_BAU_DATA_CONFIG,
1553 ((apicid << 32) | vector));
1557 * We will set BAU_MISC_CONTROL with a timeout period.
1558 * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1559 * So the destination timeout period has be be calculated from them.
1561 static int
1562 calculate_destination_timeout(void)
1564 unsigned long mmr_image;
1565 int mult1;
1566 int mult2;
1567 int index;
1568 int base;
1569 int ret;
1570 unsigned long ts_ns;
1572 if (is_uv1_hub()) {
1573 mult1 = UV1_INTD_SOFT_ACK_TIMEOUT_PERIOD &
1574 BAU_MISC_CONTROL_MULT_MASK;
1575 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1576 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1577 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1578 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1579 base = timeout_base_ns[index];
1580 ts_ns = base * mult1 * mult2;
1581 ret = ts_ns / 1000;
1582 } else {
1583 /* 4 bits 0/1 for 10/80us, 3 bits of multiplier */
1584 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1585 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1586 if (mmr_image & ((unsigned long)1 << UV2_ACK_UNITS_SHFT))
1587 mult1 = 80;
1588 else
1589 mult1 = 10;
1590 base = mmr_image & UV2_ACK_MASK;
1591 ret = mult1 * base;
1593 return ret;
1597 * initialize the bau_control structure for each cpu
1599 static int __init uv_init_per_cpu(int nuvhubs, int base_part_pnode)
1601 int i;
1602 int cpu;
1603 int tcpu;
1604 int pnode;
1605 int uvhub;
1606 int have_hmaster;
1607 short socket = 0;
1608 unsigned short socket_mask;
1609 unsigned char *uvhub_mask;
1610 struct bau_control *bcp;
1611 struct uvhub_desc *bdp;
1612 struct socket_desc *sdp;
1613 struct bau_control *hmaster = NULL;
1614 struct bau_control *smaster = NULL;
1615 struct socket_desc {
1616 short num_cpus;
1617 short cpu_number[MAX_CPUS_PER_SOCKET];
1619 struct uvhub_desc {
1620 unsigned short socket_mask;
1621 short num_cpus;
1622 short uvhub;
1623 short pnode;
1624 struct socket_desc socket[2];
1626 struct uvhub_desc *uvhub_descs;
1628 timeout_us = calculate_destination_timeout();
1630 uvhub_descs = kmalloc(nuvhubs * sizeof(struct uvhub_desc), GFP_KERNEL);
1631 memset(uvhub_descs, 0, nuvhubs * sizeof(struct uvhub_desc));
1632 uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
1633 for_each_present_cpu(cpu) {
1634 bcp = &per_cpu(bau_control, cpu);
1635 memset(bcp, 0, sizeof(struct bau_control));
1636 pnode = uv_cpu_hub_info(cpu)->pnode;
1637 if ((pnode - base_part_pnode) >= UV_DISTRIBUTION_SIZE) {
1638 printk(KERN_EMERG
1639 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1640 cpu, pnode, base_part_pnode,
1641 UV_DISTRIBUTION_SIZE);
1642 return 1;
1644 bcp->osnode = cpu_to_node(cpu);
1645 bcp->partition_base_pnode = uv_partition_base_pnode;
1646 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1647 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1648 bdp = &uvhub_descs[uvhub];
1649 bdp->num_cpus++;
1650 bdp->uvhub = uvhub;
1651 bdp->pnode = pnode;
1652 /* kludge: 'assuming' one node per socket, and assuming that
1653 disabling a socket just leaves a gap in node numbers */
1654 socket = bcp->osnode & 1;
1655 bdp->socket_mask |= (1 << socket);
1656 sdp = &bdp->socket[socket];
1657 sdp->cpu_number[sdp->num_cpus] = cpu;
1658 sdp->num_cpus++;
1659 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1660 printk(KERN_EMERG "%d cpus per socket invalid\n", sdp->num_cpus);
1661 return 1;
1664 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1665 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
1666 continue;
1667 have_hmaster = 0;
1668 bdp = &uvhub_descs[uvhub];
1669 socket_mask = bdp->socket_mask;
1670 socket = 0;
1671 while (socket_mask) {
1672 if (!(socket_mask & 1))
1673 goto nextsocket;
1674 sdp = &bdp->socket[socket];
1675 for (i = 0; i < sdp->num_cpus; i++) {
1676 cpu = sdp->cpu_number[i];
1677 bcp = &per_cpu(bau_control, cpu);
1678 bcp->cpu = cpu;
1679 if (i == 0) {
1680 smaster = bcp;
1681 if (!have_hmaster) {
1682 have_hmaster++;
1683 hmaster = bcp;
1686 bcp->cpus_in_uvhub = bdp->num_cpus;
1687 bcp->cpus_in_socket = sdp->num_cpus;
1688 bcp->socket_master = smaster;
1689 bcp->uvhub = bdp->uvhub;
1690 bcp->uvhub_master = hmaster;
1691 bcp->uvhub_cpu = uv_cpu_hub_info(cpu)->
1692 blade_processor_id;
1693 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
1694 printk(KERN_EMERG
1695 "%d cpus per uvhub invalid\n",
1696 bcp->uvhub_cpu);
1697 return 1;
1700 nextsocket:
1701 socket++;
1702 socket_mask = (socket_mask >> 1);
1703 /* each socket gets a local array of pnodes/hubs */
1704 bcp = smaster;
1705 bcp->target_hub_and_pnode = kmalloc_node(
1706 sizeof(struct hub_and_pnode) *
1707 num_possible_cpus(), GFP_KERNEL, bcp->osnode);
1708 memset(bcp->target_hub_and_pnode, 0,
1709 sizeof(struct hub_and_pnode) *
1710 num_possible_cpus());
1711 for_each_present_cpu(tcpu) {
1712 bcp->target_hub_and_pnode[tcpu].pnode =
1713 uv_cpu_hub_info(tcpu)->pnode;
1714 bcp->target_hub_and_pnode[tcpu].uvhub =
1715 uv_cpu_hub_info(tcpu)->numa_blade_id;
1719 kfree(uvhub_descs);
1720 kfree(uvhub_mask);
1721 for_each_present_cpu(cpu) {
1722 bcp = &per_cpu(bau_control, cpu);
1723 bcp->baudisabled = 0;
1724 bcp->statp = &per_cpu(ptcstats, cpu);
1725 /* time interval to catch a hardware stay-busy bug */
1726 bcp->timeout_interval = microsec_2_cycles(2*timeout_us);
1727 bcp->max_bau_concurrent = max_bau_concurrent;
1728 bcp->max_bau_concurrent_constant = max_bau_concurrent;
1729 bcp->plugged_delay = plugged_delay;
1730 bcp->plugsb4reset = plugsb4reset;
1731 bcp->timeoutsb4reset = timeoutsb4reset;
1732 bcp->ipi_reset_limit = ipi_reset_limit;
1733 bcp->complete_threshold = complete_threshold;
1734 bcp->congested_response_us = congested_response_us;
1735 bcp->congested_reps = congested_reps;
1736 bcp->congested_period = congested_period;
1738 return 0;
1742 * Initialization of BAU-related structures
1744 static int __init uv_bau_init(void)
1746 int uvhub;
1747 int pnode;
1748 int nuvhubs;
1749 int cur_cpu;
1750 int vector;
1751 unsigned long mmr;
1753 if (!is_uv_system())
1754 return 0;
1756 if (nobau)
1757 return 0;
1759 for_each_possible_cpu(cur_cpu)
1760 zalloc_cpumask_var_node(&per_cpu(uv_flush_tlb_mask, cur_cpu),
1761 GFP_KERNEL, cpu_to_node(cur_cpu));
1763 uv_nshift = uv_hub_info->m_val;
1764 uv_mmask = (1UL << uv_hub_info->m_val) - 1;
1765 nuvhubs = uv_num_possible_blades();
1766 spin_lock_init(&disable_lock);
1767 congested_cycles = microsec_2_cycles(congested_response_us);
1769 uv_partition_base_pnode = 0x7fffffff;
1770 for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1771 if (uv_blade_nr_possible_cpus(uvhub) &&
1772 (uv_blade_to_pnode(uvhub) < uv_partition_base_pnode))
1773 uv_partition_base_pnode = uv_blade_to_pnode(uvhub);
1776 if (uv_init_per_cpu(nuvhubs, uv_partition_base_pnode)) {
1777 nobau = 1;
1778 return 0;
1781 vector = UV_BAU_MESSAGE;
1782 for_each_possible_blade(uvhub)
1783 if (uv_blade_nr_possible_cpus(uvhub))
1784 uv_init_uvhub(uvhub, vector, uv_partition_base_pnode);
1786 uv_enable_timeouts();
1787 alloc_intr_gate(vector, uv_bau_message_intr1);
1789 for_each_possible_blade(uvhub) {
1790 if (uv_blade_nr_possible_cpus(uvhub)) {
1791 pnode = uv_blade_to_pnode(uvhub);
1792 /* INIT the bau */
1793 uv_write_global_mmr64(pnode,
1794 UVH_LB_BAU_SB_ACTIVATION_CONTROL,
1795 ((unsigned long)1 << 63));
1796 mmr = 1; /* should be 1 to broadcast to both sockets */
1797 uv_write_global_mmr64(pnode, UVH_BAU_DATA_BROADCAST,
1798 mmr);
1802 return 0;
1804 core_initcall(uv_bau_init);
1805 fs_initcall(uv_ptc_init);