UBI: dump stack when switching to R/O mode
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / gianfar.c
blobff60b23a5b7429b99fc06e5c138a643d5b804dd3
1 /*
2 * drivers/net/gianfar.c
4 * Gianfar Ethernet Driver
5 * This driver is designed for the non-CPM ethernet controllers
6 * on the 85xx and 83xx family of integrated processors
7 * Based on 8260_io/fcc_enet.c
9 * Author: Andy Fleming
10 * Maintainer: Kumar Gala
11 * Modifier: Sandeep Gopalpet <sandeep.kumar@freescale.com>
13 * Copyright 2002-2009 Freescale Semiconductor, Inc.
14 * Copyright 2007 MontaVista Software, Inc.
16 * This program is free software; you can redistribute it and/or modify it
17 * under the terms of the GNU General Public License as published by the
18 * Free Software Foundation; either version 2 of the License, or (at your
19 * option) any later version.
21 * Gianfar: AKA Lambda Draconis, "Dragon"
22 * RA 11 31 24.2
23 * Dec +69 19 52
24 * V 3.84
25 * B-V +1.62
27 * Theory of operation
29 * The driver is initialized through of_device. Configuration information
30 * is therefore conveyed through an OF-style device tree.
32 * The Gianfar Ethernet Controller uses a ring of buffer
33 * descriptors. The beginning is indicated by a register
34 * pointing to the physical address of the start of the ring.
35 * The end is determined by a "wrap" bit being set in the
36 * last descriptor of the ring.
38 * When a packet is received, the RXF bit in the
39 * IEVENT register is set, triggering an interrupt when the
40 * corresponding bit in the IMASK register is also set (if
41 * interrupt coalescing is active, then the interrupt may not
42 * happen immediately, but will wait until either a set number
43 * of frames or amount of time have passed). In NAPI, the
44 * interrupt handler will signal there is work to be done, and
45 * exit. This method will start at the last known empty
46 * descriptor, and process every subsequent descriptor until there
47 * are none left with data (NAPI will stop after a set number of
48 * packets to give time to other tasks, but will eventually
49 * process all the packets). The data arrives inside a
50 * pre-allocated skb, and so after the skb is passed up to the
51 * stack, a new skb must be allocated, and the address field in
52 * the buffer descriptor must be updated to indicate this new
53 * skb.
55 * When the kernel requests that a packet be transmitted, the
56 * driver starts where it left off last time, and points the
57 * descriptor at the buffer which was passed in. The driver
58 * then informs the DMA engine that there are packets ready to
59 * be transmitted. Once the controller is finished transmitting
60 * the packet, an interrupt may be triggered (under the same
61 * conditions as for reception, but depending on the TXF bit).
62 * The driver then cleans up the buffer.
65 #include <linux/kernel.h>
66 #include <linux/string.h>
67 #include <linux/errno.h>
68 #include <linux/unistd.h>
69 #include <linux/slab.h>
70 #include <linux/interrupt.h>
71 #include <linux/init.h>
72 #include <linux/delay.h>
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_vlan.h>
77 #include <linux/spinlock.h>
78 #include <linux/mm.h>
79 #include <linux/of_mdio.h>
80 #include <linux/of_platform.h>
81 #include <linux/ip.h>
82 #include <linux/tcp.h>
83 #include <linux/udp.h>
84 #include <linux/in.h>
85 #include <linux/net_tstamp.h>
87 #include <asm/io.h>
88 #include <asm/reg.h>
89 #include <asm/irq.h>
90 #include <asm/uaccess.h>
91 #include <linux/module.h>
92 #include <linux/dma-mapping.h>
93 #include <linux/crc32.h>
94 #include <linux/mii.h>
95 #include <linux/phy.h>
96 #include <linux/phy_fixed.h>
97 #include <linux/of.h>
98 #include <linux/of_net.h>
100 #include "gianfar.h"
101 #include "fsl_pq_mdio.h"
103 #define TX_TIMEOUT (1*HZ)
104 #undef BRIEF_GFAR_ERRORS
105 #undef VERBOSE_GFAR_ERRORS
107 const char gfar_driver_name[] = "Gianfar Ethernet";
108 const char gfar_driver_version[] = "1.3";
110 static int gfar_enet_open(struct net_device *dev);
111 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev);
112 static void gfar_reset_task(struct work_struct *work);
113 static void gfar_timeout(struct net_device *dev);
114 static int gfar_close(struct net_device *dev);
115 struct sk_buff *gfar_new_skb(struct net_device *dev);
116 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
117 struct sk_buff *skb);
118 static int gfar_set_mac_address(struct net_device *dev);
119 static int gfar_change_mtu(struct net_device *dev, int new_mtu);
120 static irqreturn_t gfar_error(int irq, void *dev_id);
121 static irqreturn_t gfar_transmit(int irq, void *dev_id);
122 static irqreturn_t gfar_interrupt(int irq, void *dev_id);
123 static void adjust_link(struct net_device *dev);
124 static void init_registers(struct net_device *dev);
125 static int init_phy(struct net_device *dev);
126 static int gfar_probe(struct platform_device *ofdev);
127 static int gfar_remove(struct platform_device *ofdev);
128 static void free_skb_resources(struct gfar_private *priv);
129 static void gfar_set_multi(struct net_device *dev);
130 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr);
131 static void gfar_configure_serdes(struct net_device *dev);
132 static int gfar_poll(struct napi_struct *napi, int budget);
133 #ifdef CONFIG_NET_POLL_CONTROLLER
134 static void gfar_netpoll(struct net_device *dev);
135 #endif
136 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit);
137 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue);
138 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
139 int amount_pull);
140 static void gfar_vlan_rx_register(struct net_device *netdev,
141 struct vlan_group *grp);
142 void gfar_halt(struct net_device *dev);
143 static void gfar_halt_nodisable(struct net_device *dev);
144 void gfar_start(struct net_device *dev);
145 static void gfar_clear_exact_match(struct net_device *dev);
146 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
147 const u8 *addr);
148 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
150 MODULE_AUTHOR("Freescale Semiconductor, Inc");
151 MODULE_DESCRIPTION("Gianfar Ethernet Driver");
152 MODULE_LICENSE("GPL");
154 static void gfar_init_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
155 dma_addr_t buf)
157 u32 lstatus;
159 bdp->bufPtr = buf;
161 lstatus = BD_LFLAG(RXBD_EMPTY | RXBD_INTERRUPT);
162 if (bdp == rx_queue->rx_bd_base + rx_queue->rx_ring_size - 1)
163 lstatus |= BD_LFLAG(RXBD_WRAP);
165 eieio();
167 bdp->lstatus = lstatus;
170 static int gfar_init_bds(struct net_device *ndev)
172 struct gfar_private *priv = netdev_priv(ndev);
173 struct gfar_priv_tx_q *tx_queue = NULL;
174 struct gfar_priv_rx_q *rx_queue = NULL;
175 struct txbd8 *txbdp;
176 struct rxbd8 *rxbdp;
177 int i, j;
179 for (i = 0; i < priv->num_tx_queues; i++) {
180 tx_queue = priv->tx_queue[i];
181 /* Initialize some variables in our dev structure */
182 tx_queue->num_txbdfree = tx_queue->tx_ring_size;
183 tx_queue->dirty_tx = tx_queue->tx_bd_base;
184 tx_queue->cur_tx = tx_queue->tx_bd_base;
185 tx_queue->skb_curtx = 0;
186 tx_queue->skb_dirtytx = 0;
188 /* Initialize Transmit Descriptor Ring */
189 txbdp = tx_queue->tx_bd_base;
190 for (j = 0; j < tx_queue->tx_ring_size; j++) {
191 txbdp->lstatus = 0;
192 txbdp->bufPtr = 0;
193 txbdp++;
196 /* Set the last descriptor in the ring to indicate wrap */
197 txbdp--;
198 txbdp->status |= TXBD_WRAP;
201 for (i = 0; i < priv->num_rx_queues; i++) {
202 rx_queue = priv->rx_queue[i];
203 rx_queue->cur_rx = rx_queue->rx_bd_base;
204 rx_queue->skb_currx = 0;
205 rxbdp = rx_queue->rx_bd_base;
207 for (j = 0; j < rx_queue->rx_ring_size; j++) {
208 struct sk_buff *skb = rx_queue->rx_skbuff[j];
210 if (skb) {
211 gfar_init_rxbdp(rx_queue, rxbdp,
212 rxbdp->bufPtr);
213 } else {
214 skb = gfar_new_skb(ndev);
215 if (!skb) {
216 pr_err("%s: Can't allocate RX buffers\n",
217 ndev->name);
218 goto err_rxalloc_fail;
220 rx_queue->rx_skbuff[j] = skb;
222 gfar_new_rxbdp(rx_queue, rxbdp, skb);
225 rxbdp++;
230 return 0;
232 err_rxalloc_fail:
233 free_skb_resources(priv);
234 return -ENOMEM;
237 static int gfar_alloc_skb_resources(struct net_device *ndev)
239 void *vaddr;
240 dma_addr_t addr;
241 int i, j, k;
242 struct gfar_private *priv = netdev_priv(ndev);
243 struct device *dev = &priv->ofdev->dev;
244 struct gfar_priv_tx_q *tx_queue = NULL;
245 struct gfar_priv_rx_q *rx_queue = NULL;
247 priv->total_tx_ring_size = 0;
248 for (i = 0; i < priv->num_tx_queues; i++)
249 priv->total_tx_ring_size += priv->tx_queue[i]->tx_ring_size;
251 priv->total_rx_ring_size = 0;
252 for (i = 0; i < priv->num_rx_queues; i++)
253 priv->total_rx_ring_size += priv->rx_queue[i]->rx_ring_size;
255 /* Allocate memory for the buffer descriptors */
256 vaddr = dma_alloc_coherent(dev,
257 sizeof(struct txbd8) * priv->total_tx_ring_size +
258 sizeof(struct rxbd8) * priv->total_rx_ring_size,
259 &addr, GFP_KERNEL);
260 if (!vaddr) {
261 if (netif_msg_ifup(priv))
262 pr_err("%s: Could not allocate buffer descriptors!\n",
263 ndev->name);
264 return -ENOMEM;
267 for (i = 0; i < priv->num_tx_queues; i++) {
268 tx_queue = priv->tx_queue[i];
269 tx_queue->tx_bd_base = (struct txbd8 *) vaddr;
270 tx_queue->tx_bd_dma_base = addr;
271 tx_queue->dev = ndev;
272 /* enet DMA only understands physical addresses */
273 addr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
274 vaddr += sizeof(struct txbd8) *tx_queue->tx_ring_size;
277 /* Start the rx descriptor ring where the tx ring leaves off */
278 for (i = 0; i < priv->num_rx_queues; i++) {
279 rx_queue = priv->rx_queue[i];
280 rx_queue->rx_bd_base = (struct rxbd8 *) vaddr;
281 rx_queue->rx_bd_dma_base = addr;
282 rx_queue->dev = ndev;
283 addr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
284 vaddr += sizeof (struct rxbd8) * rx_queue->rx_ring_size;
287 /* Setup the skbuff rings */
288 for (i = 0; i < priv->num_tx_queues; i++) {
289 tx_queue = priv->tx_queue[i];
290 tx_queue->tx_skbuff = kmalloc(sizeof(*tx_queue->tx_skbuff) *
291 tx_queue->tx_ring_size, GFP_KERNEL);
292 if (!tx_queue->tx_skbuff) {
293 if (netif_msg_ifup(priv))
294 pr_err("%s: Could not allocate tx_skbuff\n",
295 ndev->name);
296 goto cleanup;
299 for (k = 0; k < tx_queue->tx_ring_size; k++)
300 tx_queue->tx_skbuff[k] = NULL;
303 for (i = 0; i < priv->num_rx_queues; i++) {
304 rx_queue = priv->rx_queue[i];
305 rx_queue->rx_skbuff = kmalloc(sizeof(*rx_queue->rx_skbuff) *
306 rx_queue->rx_ring_size, GFP_KERNEL);
308 if (!rx_queue->rx_skbuff) {
309 if (netif_msg_ifup(priv))
310 pr_err("%s: Could not allocate rx_skbuff\n",
311 ndev->name);
312 goto cleanup;
315 for (j = 0; j < rx_queue->rx_ring_size; j++)
316 rx_queue->rx_skbuff[j] = NULL;
319 if (gfar_init_bds(ndev))
320 goto cleanup;
322 return 0;
324 cleanup:
325 free_skb_resources(priv);
326 return -ENOMEM;
329 static void gfar_init_tx_rx_base(struct gfar_private *priv)
331 struct gfar __iomem *regs = priv->gfargrp[0].regs;
332 u32 __iomem *baddr;
333 int i;
335 baddr = &regs->tbase0;
336 for(i = 0; i < priv->num_tx_queues; i++) {
337 gfar_write(baddr, priv->tx_queue[i]->tx_bd_dma_base);
338 baddr += 2;
341 baddr = &regs->rbase0;
342 for(i = 0; i < priv->num_rx_queues; i++) {
343 gfar_write(baddr, priv->rx_queue[i]->rx_bd_dma_base);
344 baddr += 2;
348 static void gfar_init_mac(struct net_device *ndev)
350 struct gfar_private *priv = netdev_priv(ndev);
351 struct gfar __iomem *regs = priv->gfargrp[0].regs;
352 u32 rctrl = 0;
353 u32 tctrl = 0;
354 u32 attrs = 0;
356 /* write the tx/rx base registers */
357 gfar_init_tx_rx_base(priv);
359 /* Configure the coalescing support */
360 gfar_configure_coalescing(priv, 0xFF, 0xFF);
362 if (priv->rx_filer_enable) {
363 rctrl |= RCTRL_FILREN;
364 /* Program the RIR0 reg with the required distribution */
365 gfar_write(&regs->rir0, DEFAULT_RIR0);
368 if (ndev->features & NETIF_F_RXCSUM)
369 rctrl |= RCTRL_CHECKSUMMING;
371 if (priv->extended_hash) {
372 rctrl |= RCTRL_EXTHASH;
374 gfar_clear_exact_match(ndev);
375 rctrl |= RCTRL_EMEN;
378 if (priv->padding) {
379 rctrl &= ~RCTRL_PAL_MASK;
380 rctrl |= RCTRL_PADDING(priv->padding);
383 /* Insert receive time stamps into padding alignment bytes */
384 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER) {
385 rctrl &= ~RCTRL_PAL_MASK;
386 rctrl |= RCTRL_PADDING(8);
387 priv->padding = 8;
390 /* Enable HW time stamping if requested from user space */
391 if (priv->hwts_rx_en)
392 rctrl |= RCTRL_PRSDEP_INIT | RCTRL_TS_ENABLE;
394 /* keep vlan related bits if it's enabled */
395 if (priv->vlgrp) {
396 rctrl |= RCTRL_VLEX | RCTRL_PRSDEP_INIT;
397 tctrl |= TCTRL_VLINS;
400 /* Init rctrl based on our settings */
401 gfar_write(&regs->rctrl, rctrl);
403 if (ndev->features & NETIF_F_IP_CSUM)
404 tctrl |= TCTRL_INIT_CSUM;
406 tctrl |= TCTRL_TXSCHED_PRIO;
408 gfar_write(&regs->tctrl, tctrl);
410 /* Set the extraction length and index */
411 attrs = ATTRELI_EL(priv->rx_stash_size) |
412 ATTRELI_EI(priv->rx_stash_index);
414 gfar_write(&regs->attreli, attrs);
416 /* Start with defaults, and add stashing or locking
417 * depending on the approprate variables */
418 attrs = ATTR_INIT_SETTINGS;
420 if (priv->bd_stash_en)
421 attrs |= ATTR_BDSTASH;
423 if (priv->rx_stash_size != 0)
424 attrs |= ATTR_BUFSTASH;
426 gfar_write(&regs->attr, attrs);
428 gfar_write(&regs->fifo_tx_thr, priv->fifo_threshold);
429 gfar_write(&regs->fifo_tx_starve, priv->fifo_starve);
430 gfar_write(&regs->fifo_tx_starve_shutoff, priv->fifo_starve_off);
433 static struct net_device_stats *gfar_get_stats(struct net_device *dev)
435 struct gfar_private *priv = netdev_priv(dev);
436 unsigned long rx_packets = 0, rx_bytes = 0, rx_dropped = 0;
437 unsigned long tx_packets = 0, tx_bytes = 0;
438 int i = 0;
440 for (i = 0; i < priv->num_rx_queues; i++) {
441 rx_packets += priv->rx_queue[i]->stats.rx_packets;
442 rx_bytes += priv->rx_queue[i]->stats.rx_bytes;
443 rx_dropped += priv->rx_queue[i]->stats.rx_dropped;
446 dev->stats.rx_packets = rx_packets;
447 dev->stats.rx_bytes = rx_bytes;
448 dev->stats.rx_dropped = rx_dropped;
450 for (i = 0; i < priv->num_tx_queues; i++) {
451 tx_bytes += priv->tx_queue[i]->stats.tx_bytes;
452 tx_packets += priv->tx_queue[i]->stats.tx_packets;
455 dev->stats.tx_bytes = tx_bytes;
456 dev->stats.tx_packets = tx_packets;
458 return &dev->stats;
461 static const struct net_device_ops gfar_netdev_ops = {
462 .ndo_open = gfar_enet_open,
463 .ndo_start_xmit = gfar_start_xmit,
464 .ndo_stop = gfar_close,
465 .ndo_change_mtu = gfar_change_mtu,
466 .ndo_set_features = gfar_set_features,
467 .ndo_set_multicast_list = gfar_set_multi,
468 .ndo_tx_timeout = gfar_timeout,
469 .ndo_do_ioctl = gfar_ioctl,
470 .ndo_get_stats = gfar_get_stats,
471 .ndo_vlan_rx_register = gfar_vlan_rx_register,
472 .ndo_set_mac_address = eth_mac_addr,
473 .ndo_validate_addr = eth_validate_addr,
474 #ifdef CONFIG_NET_POLL_CONTROLLER
475 .ndo_poll_controller = gfar_netpoll,
476 #endif
479 unsigned int ftp_rqfpr[MAX_FILER_IDX + 1];
480 unsigned int ftp_rqfcr[MAX_FILER_IDX + 1];
482 void lock_rx_qs(struct gfar_private *priv)
484 int i = 0x0;
486 for (i = 0; i < priv->num_rx_queues; i++)
487 spin_lock(&priv->rx_queue[i]->rxlock);
490 void lock_tx_qs(struct gfar_private *priv)
492 int i = 0x0;
494 for (i = 0; i < priv->num_tx_queues; i++)
495 spin_lock(&priv->tx_queue[i]->txlock);
498 void unlock_rx_qs(struct gfar_private *priv)
500 int i = 0x0;
502 for (i = 0; i < priv->num_rx_queues; i++)
503 spin_unlock(&priv->rx_queue[i]->rxlock);
506 void unlock_tx_qs(struct gfar_private *priv)
508 int i = 0x0;
510 for (i = 0; i < priv->num_tx_queues; i++)
511 spin_unlock(&priv->tx_queue[i]->txlock);
514 /* Returns 1 if incoming frames use an FCB */
515 static inline int gfar_uses_fcb(struct gfar_private *priv)
517 return priv->vlgrp || (priv->ndev->features & NETIF_F_RXCSUM) ||
518 (priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER);
521 static void free_tx_pointers(struct gfar_private *priv)
523 int i = 0;
525 for (i = 0; i < priv->num_tx_queues; i++)
526 kfree(priv->tx_queue[i]);
529 static void free_rx_pointers(struct gfar_private *priv)
531 int i = 0;
533 for (i = 0; i < priv->num_rx_queues; i++)
534 kfree(priv->rx_queue[i]);
537 static void unmap_group_regs(struct gfar_private *priv)
539 int i = 0;
541 for (i = 0; i < MAXGROUPS; i++)
542 if (priv->gfargrp[i].regs)
543 iounmap(priv->gfargrp[i].regs);
546 static void disable_napi(struct gfar_private *priv)
548 int i = 0;
550 for (i = 0; i < priv->num_grps; i++)
551 napi_disable(&priv->gfargrp[i].napi);
554 static void enable_napi(struct gfar_private *priv)
556 int i = 0;
558 for (i = 0; i < priv->num_grps; i++)
559 napi_enable(&priv->gfargrp[i].napi);
562 static int gfar_parse_group(struct device_node *np,
563 struct gfar_private *priv, const char *model)
565 u32 *queue_mask;
567 priv->gfargrp[priv->num_grps].regs = of_iomap(np, 0);
568 if (!priv->gfargrp[priv->num_grps].regs)
569 return -ENOMEM;
571 priv->gfargrp[priv->num_grps].interruptTransmit =
572 irq_of_parse_and_map(np, 0);
574 /* If we aren't the FEC we have multiple interrupts */
575 if (model && strcasecmp(model, "FEC")) {
576 priv->gfargrp[priv->num_grps].interruptReceive =
577 irq_of_parse_and_map(np, 1);
578 priv->gfargrp[priv->num_grps].interruptError =
579 irq_of_parse_and_map(np,2);
580 if (priv->gfargrp[priv->num_grps].interruptTransmit == NO_IRQ ||
581 priv->gfargrp[priv->num_grps].interruptReceive == NO_IRQ ||
582 priv->gfargrp[priv->num_grps].interruptError == NO_IRQ)
583 return -EINVAL;
586 priv->gfargrp[priv->num_grps].grp_id = priv->num_grps;
587 priv->gfargrp[priv->num_grps].priv = priv;
588 spin_lock_init(&priv->gfargrp[priv->num_grps].grplock);
589 if(priv->mode == MQ_MG_MODE) {
590 queue_mask = (u32 *)of_get_property(np,
591 "fsl,rx-bit-map", NULL);
592 priv->gfargrp[priv->num_grps].rx_bit_map =
593 queue_mask ? *queue_mask :(DEFAULT_MAPPING >> priv->num_grps);
594 queue_mask = (u32 *)of_get_property(np,
595 "fsl,tx-bit-map", NULL);
596 priv->gfargrp[priv->num_grps].tx_bit_map =
597 queue_mask ? *queue_mask : (DEFAULT_MAPPING >> priv->num_grps);
598 } else {
599 priv->gfargrp[priv->num_grps].rx_bit_map = 0xFF;
600 priv->gfargrp[priv->num_grps].tx_bit_map = 0xFF;
602 priv->num_grps++;
604 return 0;
607 static int gfar_of_init(struct platform_device *ofdev, struct net_device **pdev)
609 const char *model;
610 const char *ctype;
611 const void *mac_addr;
612 int err = 0, i;
613 struct net_device *dev = NULL;
614 struct gfar_private *priv = NULL;
615 struct device_node *np = ofdev->dev.of_node;
616 struct device_node *child = NULL;
617 const u32 *stash;
618 const u32 *stash_len;
619 const u32 *stash_idx;
620 unsigned int num_tx_qs, num_rx_qs;
621 u32 *tx_queues, *rx_queues;
623 if (!np || !of_device_is_available(np))
624 return -ENODEV;
626 /* parse the num of tx and rx queues */
627 tx_queues = (u32 *)of_get_property(np, "fsl,num_tx_queues", NULL);
628 num_tx_qs = tx_queues ? *tx_queues : 1;
630 if (num_tx_qs > MAX_TX_QS) {
631 printk(KERN_ERR "num_tx_qs(=%d) greater than MAX_TX_QS(=%d)\n",
632 num_tx_qs, MAX_TX_QS);
633 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
634 return -EINVAL;
637 rx_queues = (u32 *)of_get_property(np, "fsl,num_rx_queues", NULL);
638 num_rx_qs = rx_queues ? *rx_queues : 1;
640 if (num_rx_qs > MAX_RX_QS) {
641 printk(KERN_ERR "num_rx_qs(=%d) greater than MAX_RX_QS(=%d)\n",
642 num_tx_qs, MAX_TX_QS);
643 printk(KERN_ERR "Cannot do alloc_etherdev, aborting\n");
644 return -EINVAL;
647 *pdev = alloc_etherdev_mq(sizeof(*priv), num_tx_qs);
648 dev = *pdev;
649 if (NULL == dev)
650 return -ENOMEM;
652 priv = netdev_priv(dev);
653 priv->node = ofdev->dev.of_node;
654 priv->ndev = dev;
656 priv->num_tx_queues = num_tx_qs;
657 netif_set_real_num_rx_queues(dev, num_rx_qs);
658 priv->num_rx_queues = num_rx_qs;
659 priv->num_grps = 0x0;
661 model = of_get_property(np, "model", NULL);
663 for (i = 0; i < MAXGROUPS; i++)
664 priv->gfargrp[i].regs = NULL;
666 /* Parse and initialize group specific information */
667 if (of_device_is_compatible(np, "fsl,etsec2")) {
668 priv->mode = MQ_MG_MODE;
669 for_each_child_of_node(np, child) {
670 err = gfar_parse_group(child, priv, model);
671 if (err)
672 goto err_grp_init;
674 } else {
675 priv->mode = SQ_SG_MODE;
676 err = gfar_parse_group(np, priv, model);
677 if(err)
678 goto err_grp_init;
681 for (i = 0; i < priv->num_tx_queues; i++)
682 priv->tx_queue[i] = NULL;
683 for (i = 0; i < priv->num_rx_queues; i++)
684 priv->rx_queue[i] = NULL;
686 for (i = 0; i < priv->num_tx_queues; i++) {
687 priv->tx_queue[i] = kzalloc(sizeof(struct gfar_priv_tx_q),
688 GFP_KERNEL);
689 if (!priv->tx_queue[i]) {
690 err = -ENOMEM;
691 goto tx_alloc_failed;
693 priv->tx_queue[i]->tx_skbuff = NULL;
694 priv->tx_queue[i]->qindex = i;
695 priv->tx_queue[i]->dev = dev;
696 spin_lock_init(&(priv->tx_queue[i]->txlock));
699 for (i = 0; i < priv->num_rx_queues; i++) {
700 priv->rx_queue[i] = kzalloc(sizeof(struct gfar_priv_rx_q),
701 GFP_KERNEL);
702 if (!priv->rx_queue[i]) {
703 err = -ENOMEM;
704 goto rx_alloc_failed;
706 priv->rx_queue[i]->rx_skbuff = NULL;
707 priv->rx_queue[i]->qindex = i;
708 priv->rx_queue[i]->dev = dev;
709 spin_lock_init(&(priv->rx_queue[i]->rxlock));
713 stash = of_get_property(np, "bd-stash", NULL);
715 if (stash) {
716 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BD_STASHING;
717 priv->bd_stash_en = 1;
720 stash_len = of_get_property(np, "rx-stash-len", NULL);
722 if (stash_len)
723 priv->rx_stash_size = *stash_len;
725 stash_idx = of_get_property(np, "rx-stash-idx", NULL);
727 if (stash_idx)
728 priv->rx_stash_index = *stash_idx;
730 if (stash_len || stash_idx)
731 priv->device_flags |= FSL_GIANFAR_DEV_HAS_BUF_STASHING;
733 mac_addr = of_get_mac_address(np);
734 if (mac_addr)
735 memcpy(dev->dev_addr, mac_addr, MAC_ADDR_LEN);
737 if (model && !strcasecmp(model, "TSEC"))
738 priv->device_flags =
739 FSL_GIANFAR_DEV_HAS_GIGABIT |
740 FSL_GIANFAR_DEV_HAS_COALESCE |
741 FSL_GIANFAR_DEV_HAS_RMON |
742 FSL_GIANFAR_DEV_HAS_MULTI_INTR;
743 if (model && !strcasecmp(model, "eTSEC"))
744 priv->device_flags =
745 FSL_GIANFAR_DEV_HAS_GIGABIT |
746 FSL_GIANFAR_DEV_HAS_COALESCE |
747 FSL_GIANFAR_DEV_HAS_RMON |
748 FSL_GIANFAR_DEV_HAS_MULTI_INTR |
749 FSL_GIANFAR_DEV_HAS_PADDING |
750 FSL_GIANFAR_DEV_HAS_CSUM |
751 FSL_GIANFAR_DEV_HAS_VLAN |
752 FSL_GIANFAR_DEV_HAS_MAGIC_PACKET |
753 FSL_GIANFAR_DEV_HAS_EXTENDED_HASH |
754 FSL_GIANFAR_DEV_HAS_TIMER;
756 ctype = of_get_property(np, "phy-connection-type", NULL);
758 /* We only care about rgmii-id. The rest are autodetected */
759 if (ctype && !strcmp(ctype, "rgmii-id"))
760 priv->interface = PHY_INTERFACE_MODE_RGMII_ID;
761 else
762 priv->interface = PHY_INTERFACE_MODE_MII;
764 if (of_get_property(np, "fsl,magic-packet", NULL))
765 priv->device_flags |= FSL_GIANFAR_DEV_HAS_MAGIC_PACKET;
767 priv->phy_node = of_parse_phandle(np, "phy-handle", 0);
769 /* Find the TBI PHY. If it's not there, we don't support SGMII */
770 priv->tbi_node = of_parse_phandle(np, "tbi-handle", 0);
772 return 0;
774 rx_alloc_failed:
775 free_rx_pointers(priv);
776 tx_alloc_failed:
777 free_tx_pointers(priv);
778 err_grp_init:
779 unmap_group_regs(priv);
780 free_netdev(dev);
781 return err;
784 static int gfar_hwtstamp_ioctl(struct net_device *netdev,
785 struct ifreq *ifr, int cmd)
787 struct hwtstamp_config config;
788 struct gfar_private *priv = netdev_priv(netdev);
790 if (copy_from_user(&config, ifr->ifr_data, sizeof(config)))
791 return -EFAULT;
793 /* reserved for future extensions */
794 if (config.flags)
795 return -EINVAL;
797 switch (config.tx_type) {
798 case HWTSTAMP_TX_OFF:
799 priv->hwts_tx_en = 0;
800 break;
801 case HWTSTAMP_TX_ON:
802 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
803 return -ERANGE;
804 priv->hwts_tx_en = 1;
805 break;
806 default:
807 return -ERANGE;
810 switch (config.rx_filter) {
811 case HWTSTAMP_FILTER_NONE:
812 if (priv->hwts_rx_en) {
813 stop_gfar(netdev);
814 priv->hwts_rx_en = 0;
815 startup_gfar(netdev);
817 break;
818 default:
819 if (!(priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER))
820 return -ERANGE;
821 if (!priv->hwts_rx_en) {
822 stop_gfar(netdev);
823 priv->hwts_rx_en = 1;
824 startup_gfar(netdev);
826 config.rx_filter = HWTSTAMP_FILTER_ALL;
827 break;
830 return copy_to_user(ifr->ifr_data, &config, sizeof(config)) ?
831 -EFAULT : 0;
834 /* Ioctl MII Interface */
835 static int gfar_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
837 struct gfar_private *priv = netdev_priv(dev);
839 if (!netif_running(dev))
840 return -EINVAL;
842 if (cmd == SIOCSHWTSTAMP)
843 return gfar_hwtstamp_ioctl(dev, rq, cmd);
845 if (!priv->phydev)
846 return -ENODEV;
848 return phy_mii_ioctl(priv->phydev, rq, cmd);
851 static unsigned int reverse_bitmap(unsigned int bit_map, unsigned int max_qs)
853 unsigned int new_bit_map = 0x0;
854 int mask = 0x1 << (max_qs - 1), i;
855 for (i = 0; i < max_qs; i++) {
856 if (bit_map & mask)
857 new_bit_map = new_bit_map + (1 << i);
858 mask = mask >> 0x1;
860 return new_bit_map;
863 static u32 cluster_entry_per_class(struct gfar_private *priv, u32 rqfar,
864 u32 class)
866 u32 rqfpr = FPR_FILER_MASK;
867 u32 rqfcr = 0x0;
869 rqfar--;
870 rqfcr = RQFCR_CLE | RQFCR_PID_MASK | RQFCR_CMP_EXACT;
871 ftp_rqfpr[rqfar] = rqfpr;
872 ftp_rqfcr[rqfar] = rqfcr;
873 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
875 rqfar--;
876 rqfcr = RQFCR_CMP_NOMATCH;
877 ftp_rqfpr[rqfar] = rqfpr;
878 ftp_rqfcr[rqfar] = rqfcr;
879 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
881 rqfar--;
882 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_PARSE | RQFCR_CLE | RQFCR_AND;
883 rqfpr = class;
884 ftp_rqfcr[rqfar] = rqfcr;
885 ftp_rqfpr[rqfar] = rqfpr;
886 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
888 rqfar--;
889 rqfcr = RQFCR_CMP_EXACT | RQFCR_PID_MASK | RQFCR_AND;
890 rqfpr = class;
891 ftp_rqfcr[rqfar] = rqfcr;
892 ftp_rqfpr[rqfar] = rqfpr;
893 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
895 return rqfar;
898 static void gfar_init_filer_table(struct gfar_private *priv)
900 int i = 0x0;
901 u32 rqfar = MAX_FILER_IDX;
902 u32 rqfcr = 0x0;
903 u32 rqfpr = FPR_FILER_MASK;
905 /* Default rule */
906 rqfcr = RQFCR_CMP_MATCH;
907 ftp_rqfcr[rqfar] = rqfcr;
908 ftp_rqfpr[rqfar] = rqfpr;
909 gfar_write_filer(priv, rqfar, rqfcr, rqfpr);
911 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6);
912 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_UDP);
913 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV6 | RQFPR_TCP);
914 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4);
915 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_UDP);
916 rqfar = cluster_entry_per_class(priv, rqfar, RQFPR_IPV4 | RQFPR_TCP);
918 /* cur_filer_idx indicated the first non-masked rule */
919 priv->cur_filer_idx = rqfar;
921 /* Rest are masked rules */
922 rqfcr = RQFCR_CMP_NOMATCH;
923 for (i = 0; i < rqfar; i++) {
924 ftp_rqfcr[i] = rqfcr;
925 ftp_rqfpr[i] = rqfpr;
926 gfar_write_filer(priv, i, rqfcr, rqfpr);
930 static void gfar_detect_errata(struct gfar_private *priv)
932 struct device *dev = &priv->ofdev->dev;
933 unsigned int pvr = mfspr(SPRN_PVR);
934 unsigned int svr = mfspr(SPRN_SVR);
935 unsigned int mod = (svr >> 16) & 0xfff6; /* w/o E suffix */
936 unsigned int rev = svr & 0xffff;
938 /* MPC8313 Rev 2.0 and higher; All MPC837x */
939 if ((pvr == 0x80850010 && mod == 0x80b0 && rev >= 0x0020) ||
940 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
941 priv->errata |= GFAR_ERRATA_74;
943 /* MPC8313 and MPC837x all rev */
944 if ((pvr == 0x80850010 && mod == 0x80b0) ||
945 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
946 priv->errata |= GFAR_ERRATA_76;
948 /* MPC8313 and MPC837x all rev */
949 if ((pvr == 0x80850010 && mod == 0x80b0) ||
950 (pvr == 0x80861010 && (mod & 0xfff9) == 0x80c0))
951 priv->errata |= GFAR_ERRATA_A002;
953 /* MPC8313 Rev < 2.0, MPC8548 rev 2.0 */
954 if ((pvr == 0x80850010 && mod == 0x80b0 && rev < 0x0020) ||
955 (pvr == 0x80210020 && mod == 0x8030 && rev == 0x0020))
956 priv->errata |= GFAR_ERRATA_12;
958 if (priv->errata)
959 dev_info(dev, "enabled errata workarounds, flags: 0x%x\n",
960 priv->errata);
963 /* Set up the ethernet device structure, private data,
964 * and anything else we need before we start */
965 static int gfar_probe(struct platform_device *ofdev)
967 u32 tempval;
968 struct net_device *dev = NULL;
969 struct gfar_private *priv = NULL;
970 struct gfar __iomem *regs = NULL;
971 int err = 0, i, grp_idx = 0;
972 int len_devname;
973 u32 rstat = 0, tstat = 0, rqueue = 0, tqueue = 0;
974 u32 isrg = 0;
975 u32 __iomem *baddr;
977 err = gfar_of_init(ofdev, &dev);
979 if (err)
980 return err;
982 priv = netdev_priv(dev);
983 priv->ndev = dev;
984 priv->ofdev = ofdev;
985 priv->node = ofdev->dev.of_node;
986 SET_NETDEV_DEV(dev, &ofdev->dev);
988 spin_lock_init(&priv->bflock);
989 INIT_WORK(&priv->reset_task, gfar_reset_task);
991 dev_set_drvdata(&ofdev->dev, priv);
992 regs = priv->gfargrp[0].regs;
994 gfar_detect_errata(priv);
996 /* Stop the DMA engine now, in case it was running before */
997 /* (The firmware could have used it, and left it running). */
998 gfar_halt(dev);
1000 /* Reset MAC layer */
1001 gfar_write(&regs->maccfg1, MACCFG1_SOFT_RESET);
1003 /* We need to delay at least 3 TX clocks */
1004 udelay(2);
1006 tempval = (MACCFG1_TX_FLOW | MACCFG1_RX_FLOW);
1007 gfar_write(&regs->maccfg1, tempval);
1009 /* Initialize MACCFG2. */
1010 tempval = MACCFG2_INIT_SETTINGS;
1011 if (gfar_has_errata(priv, GFAR_ERRATA_74))
1012 tempval |= MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK;
1013 gfar_write(&regs->maccfg2, tempval);
1015 /* Initialize ECNTRL */
1016 gfar_write(&regs->ecntrl, ECNTRL_INIT_SETTINGS);
1018 /* Set the dev->base_addr to the gfar reg region */
1019 dev->base_addr = (unsigned long) regs;
1021 SET_NETDEV_DEV(dev, &ofdev->dev);
1023 /* Fill in the dev structure */
1024 dev->watchdog_timeo = TX_TIMEOUT;
1025 dev->mtu = 1500;
1026 dev->netdev_ops = &gfar_netdev_ops;
1027 dev->ethtool_ops = &gfar_ethtool_ops;
1029 /* Register for napi ...We are registering NAPI for each grp */
1030 for (i = 0; i < priv->num_grps; i++)
1031 netif_napi_add(dev, &priv->gfargrp[i].napi, gfar_poll, GFAR_DEV_WEIGHT);
1033 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_CSUM) {
1034 dev->hw_features = NETIF_F_IP_CSUM | NETIF_F_SG |
1035 NETIF_F_RXCSUM;
1036 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG |
1037 NETIF_F_RXCSUM | NETIF_F_HIGHDMA;
1040 priv->vlgrp = NULL;
1042 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_VLAN)
1043 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
1045 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_EXTENDED_HASH) {
1046 priv->extended_hash = 1;
1047 priv->hash_width = 9;
1049 priv->hash_regs[0] = &regs->igaddr0;
1050 priv->hash_regs[1] = &regs->igaddr1;
1051 priv->hash_regs[2] = &regs->igaddr2;
1052 priv->hash_regs[3] = &regs->igaddr3;
1053 priv->hash_regs[4] = &regs->igaddr4;
1054 priv->hash_regs[5] = &regs->igaddr5;
1055 priv->hash_regs[6] = &regs->igaddr6;
1056 priv->hash_regs[7] = &regs->igaddr7;
1057 priv->hash_regs[8] = &regs->gaddr0;
1058 priv->hash_regs[9] = &regs->gaddr1;
1059 priv->hash_regs[10] = &regs->gaddr2;
1060 priv->hash_regs[11] = &regs->gaddr3;
1061 priv->hash_regs[12] = &regs->gaddr4;
1062 priv->hash_regs[13] = &regs->gaddr5;
1063 priv->hash_regs[14] = &regs->gaddr6;
1064 priv->hash_regs[15] = &regs->gaddr7;
1066 } else {
1067 priv->extended_hash = 0;
1068 priv->hash_width = 8;
1070 priv->hash_regs[0] = &regs->gaddr0;
1071 priv->hash_regs[1] = &regs->gaddr1;
1072 priv->hash_regs[2] = &regs->gaddr2;
1073 priv->hash_regs[3] = &regs->gaddr3;
1074 priv->hash_regs[4] = &regs->gaddr4;
1075 priv->hash_regs[5] = &regs->gaddr5;
1076 priv->hash_regs[6] = &regs->gaddr6;
1077 priv->hash_regs[7] = &regs->gaddr7;
1080 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_PADDING)
1081 priv->padding = DEFAULT_PADDING;
1082 else
1083 priv->padding = 0;
1085 if (dev->features & NETIF_F_IP_CSUM ||
1086 priv->device_flags & FSL_GIANFAR_DEV_HAS_TIMER)
1087 dev->hard_header_len += GMAC_FCB_LEN;
1089 /* Program the isrg regs only if number of grps > 1 */
1090 if (priv->num_grps > 1) {
1091 baddr = &regs->isrg0;
1092 for (i = 0; i < priv->num_grps; i++) {
1093 isrg |= (priv->gfargrp[i].rx_bit_map << ISRG_SHIFT_RX);
1094 isrg |= (priv->gfargrp[i].tx_bit_map << ISRG_SHIFT_TX);
1095 gfar_write(baddr, isrg);
1096 baddr++;
1097 isrg = 0x0;
1101 /* Need to reverse the bit maps as bit_map's MSB is q0
1102 * but, for_each_set_bit parses from right to left, which
1103 * basically reverses the queue numbers */
1104 for (i = 0; i< priv->num_grps; i++) {
1105 priv->gfargrp[i].tx_bit_map = reverse_bitmap(
1106 priv->gfargrp[i].tx_bit_map, MAX_TX_QS);
1107 priv->gfargrp[i].rx_bit_map = reverse_bitmap(
1108 priv->gfargrp[i].rx_bit_map, MAX_RX_QS);
1111 /* Calculate RSTAT, TSTAT, RQUEUE and TQUEUE values,
1112 * also assign queues to groups */
1113 for (grp_idx = 0; grp_idx < priv->num_grps; grp_idx++) {
1114 priv->gfargrp[grp_idx].num_rx_queues = 0x0;
1115 for_each_set_bit(i, &priv->gfargrp[grp_idx].rx_bit_map,
1116 priv->num_rx_queues) {
1117 priv->gfargrp[grp_idx].num_rx_queues++;
1118 priv->rx_queue[i]->grp = &priv->gfargrp[grp_idx];
1119 rstat = rstat | (RSTAT_CLEAR_RHALT >> i);
1120 rqueue = rqueue | ((RQUEUE_EN0 | RQUEUE_EX0) >> i);
1122 priv->gfargrp[grp_idx].num_tx_queues = 0x0;
1123 for_each_set_bit(i, &priv->gfargrp[grp_idx].tx_bit_map,
1124 priv->num_tx_queues) {
1125 priv->gfargrp[grp_idx].num_tx_queues++;
1126 priv->tx_queue[i]->grp = &priv->gfargrp[grp_idx];
1127 tstat = tstat | (TSTAT_CLEAR_THALT >> i);
1128 tqueue = tqueue | (TQUEUE_EN0 >> i);
1130 priv->gfargrp[grp_idx].rstat = rstat;
1131 priv->gfargrp[grp_idx].tstat = tstat;
1132 rstat = tstat =0;
1135 gfar_write(&regs->rqueue, rqueue);
1136 gfar_write(&regs->tqueue, tqueue);
1138 priv->rx_buffer_size = DEFAULT_RX_BUFFER_SIZE;
1140 /* Initializing some of the rx/tx queue level parameters */
1141 for (i = 0; i < priv->num_tx_queues; i++) {
1142 priv->tx_queue[i]->tx_ring_size = DEFAULT_TX_RING_SIZE;
1143 priv->tx_queue[i]->num_txbdfree = DEFAULT_TX_RING_SIZE;
1144 priv->tx_queue[i]->txcoalescing = DEFAULT_TX_COALESCE;
1145 priv->tx_queue[i]->txic = DEFAULT_TXIC;
1148 for (i = 0; i < priv->num_rx_queues; i++) {
1149 priv->rx_queue[i]->rx_ring_size = DEFAULT_RX_RING_SIZE;
1150 priv->rx_queue[i]->rxcoalescing = DEFAULT_RX_COALESCE;
1151 priv->rx_queue[i]->rxic = DEFAULT_RXIC;
1154 /* enable filer if using multiple RX queues*/
1155 if(priv->num_rx_queues > 1)
1156 priv->rx_filer_enable = 1;
1157 /* Enable most messages by default */
1158 priv->msg_enable = (NETIF_MSG_IFUP << 1 ) - 1;
1160 /* Carrier starts down, phylib will bring it up */
1161 netif_carrier_off(dev);
1163 err = register_netdev(dev);
1165 if (err) {
1166 printk(KERN_ERR "%s: Cannot register net device, aborting.\n",
1167 dev->name);
1168 goto register_fail;
1171 device_init_wakeup(&dev->dev,
1172 priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1174 /* fill out IRQ number and name fields */
1175 len_devname = strlen(dev->name);
1176 for (i = 0; i < priv->num_grps; i++) {
1177 strncpy(&priv->gfargrp[i].int_name_tx[0], dev->name,
1178 len_devname);
1179 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1180 strncpy(&priv->gfargrp[i].int_name_tx[len_devname],
1181 "_g", sizeof("_g"));
1182 priv->gfargrp[i].int_name_tx[
1183 strlen(priv->gfargrp[i].int_name_tx)] = i+48;
1184 strncpy(&priv->gfargrp[i].int_name_tx[strlen(
1185 priv->gfargrp[i].int_name_tx)],
1186 "_tx", sizeof("_tx") + 1);
1188 strncpy(&priv->gfargrp[i].int_name_rx[0], dev->name,
1189 len_devname);
1190 strncpy(&priv->gfargrp[i].int_name_rx[len_devname],
1191 "_g", sizeof("_g"));
1192 priv->gfargrp[i].int_name_rx[
1193 strlen(priv->gfargrp[i].int_name_rx)] = i+48;
1194 strncpy(&priv->gfargrp[i].int_name_rx[strlen(
1195 priv->gfargrp[i].int_name_rx)],
1196 "_rx", sizeof("_rx") + 1);
1198 strncpy(&priv->gfargrp[i].int_name_er[0], dev->name,
1199 len_devname);
1200 strncpy(&priv->gfargrp[i].int_name_er[len_devname],
1201 "_g", sizeof("_g"));
1202 priv->gfargrp[i].int_name_er[strlen(
1203 priv->gfargrp[i].int_name_er)] = i+48;
1204 strncpy(&priv->gfargrp[i].int_name_er[strlen(\
1205 priv->gfargrp[i].int_name_er)],
1206 "_er", sizeof("_er") + 1);
1207 } else
1208 priv->gfargrp[i].int_name_tx[len_devname] = '\0';
1211 /* Initialize the filer table */
1212 gfar_init_filer_table(priv);
1214 /* Create all the sysfs files */
1215 gfar_init_sysfs(dev);
1217 /* Print out the device info */
1218 printk(KERN_INFO DEVICE_NAME "%pM\n", dev->name, dev->dev_addr);
1220 /* Even more device info helps when determining which kernel */
1221 /* provided which set of benchmarks. */
1222 printk(KERN_INFO "%s: Running with NAPI enabled\n", dev->name);
1223 for (i = 0; i < priv->num_rx_queues; i++)
1224 printk(KERN_INFO "%s: RX BD ring size for Q[%d]: %d\n",
1225 dev->name, i, priv->rx_queue[i]->rx_ring_size);
1226 for(i = 0; i < priv->num_tx_queues; i++)
1227 printk(KERN_INFO "%s: TX BD ring size for Q[%d]: %d\n",
1228 dev->name, i, priv->tx_queue[i]->tx_ring_size);
1230 return 0;
1232 register_fail:
1233 unmap_group_regs(priv);
1234 free_tx_pointers(priv);
1235 free_rx_pointers(priv);
1236 if (priv->phy_node)
1237 of_node_put(priv->phy_node);
1238 if (priv->tbi_node)
1239 of_node_put(priv->tbi_node);
1240 free_netdev(dev);
1241 return err;
1244 static int gfar_remove(struct platform_device *ofdev)
1246 struct gfar_private *priv = dev_get_drvdata(&ofdev->dev);
1248 if (priv->phy_node)
1249 of_node_put(priv->phy_node);
1250 if (priv->tbi_node)
1251 of_node_put(priv->tbi_node);
1253 dev_set_drvdata(&ofdev->dev, NULL);
1255 unregister_netdev(priv->ndev);
1256 unmap_group_regs(priv);
1257 free_netdev(priv->ndev);
1259 return 0;
1262 #ifdef CONFIG_PM
1264 static int gfar_suspend(struct device *dev)
1266 struct gfar_private *priv = dev_get_drvdata(dev);
1267 struct net_device *ndev = priv->ndev;
1268 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1269 unsigned long flags;
1270 u32 tempval;
1272 int magic_packet = priv->wol_en &&
1273 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1275 netif_device_detach(ndev);
1277 if (netif_running(ndev)) {
1279 local_irq_save(flags);
1280 lock_tx_qs(priv);
1281 lock_rx_qs(priv);
1283 gfar_halt_nodisable(ndev);
1285 /* Disable Tx, and Rx if wake-on-LAN is disabled. */
1286 tempval = gfar_read(&regs->maccfg1);
1288 tempval &= ~MACCFG1_TX_EN;
1290 if (!magic_packet)
1291 tempval &= ~MACCFG1_RX_EN;
1293 gfar_write(&regs->maccfg1, tempval);
1295 unlock_rx_qs(priv);
1296 unlock_tx_qs(priv);
1297 local_irq_restore(flags);
1299 disable_napi(priv);
1301 if (magic_packet) {
1302 /* Enable interrupt on Magic Packet */
1303 gfar_write(&regs->imask, IMASK_MAG);
1305 /* Enable Magic Packet mode */
1306 tempval = gfar_read(&regs->maccfg2);
1307 tempval |= MACCFG2_MPEN;
1308 gfar_write(&regs->maccfg2, tempval);
1309 } else {
1310 phy_stop(priv->phydev);
1314 return 0;
1317 static int gfar_resume(struct device *dev)
1319 struct gfar_private *priv = dev_get_drvdata(dev);
1320 struct net_device *ndev = priv->ndev;
1321 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1322 unsigned long flags;
1323 u32 tempval;
1324 int magic_packet = priv->wol_en &&
1325 (priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET);
1327 if (!netif_running(ndev)) {
1328 netif_device_attach(ndev);
1329 return 0;
1332 if (!magic_packet && priv->phydev)
1333 phy_start(priv->phydev);
1335 /* Disable Magic Packet mode, in case something
1336 * else woke us up.
1338 local_irq_save(flags);
1339 lock_tx_qs(priv);
1340 lock_rx_qs(priv);
1342 tempval = gfar_read(&regs->maccfg2);
1343 tempval &= ~MACCFG2_MPEN;
1344 gfar_write(&regs->maccfg2, tempval);
1346 gfar_start(ndev);
1348 unlock_rx_qs(priv);
1349 unlock_tx_qs(priv);
1350 local_irq_restore(flags);
1352 netif_device_attach(ndev);
1354 enable_napi(priv);
1356 return 0;
1359 static int gfar_restore(struct device *dev)
1361 struct gfar_private *priv = dev_get_drvdata(dev);
1362 struct net_device *ndev = priv->ndev;
1364 if (!netif_running(ndev))
1365 return 0;
1367 gfar_init_bds(ndev);
1368 init_registers(ndev);
1369 gfar_set_mac_address(ndev);
1370 gfar_init_mac(ndev);
1371 gfar_start(ndev);
1373 priv->oldlink = 0;
1374 priv->oldspeed = 0;
1375 priv->oldduplex = -1;
1377 if (priv->phydev)
1378 phy_start(priv->phydev);
1380 netif_device_attach(ndev);
1381 enable_napi(priv);
1383 return 0;
1386 static struct dev_pm_ops gfar_pm_ops = {
1387 .suspend = gfar_suspend,
1388 .resume = gfar_resume,
1389 .freeze = gfar_suspend,
1390 .thaw = gfar_resume,
1391 .restore = gfar_restore,
1394 #define GFAR_PM_OPS (&gfar_pm_ops)
1396 #else
1398 #define GFAR_PM_OPS NULL
1400 #endif
1402 /* Reads the controller's registers to determine what interface
1403 * connects it to the PHY.
1405 static phy_interface_t gfar_get_interface(struct net_device *dev)
1407 struct gfar_private *priv = netdev_priv(dev);
1408 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1409 u32 ecntrl;
1411 ecntrl = gfar_read(&regs->ecntrl);
1413 if (ecntrl & ECNTRL_SGMII_MODE)
1414 return PHY_INTERFACE_MODE_SGMII;
1416 if (ecntrl & ECNTRL_TBI_MODE) {
1417 if (ecntrl & ECNTRL_REDUCED_MODE)
1418 return PHY_INTERFACE_MODE_RTBI;
1419 else
1420 return PHY_INTERFACE_MODE_TBI;
1423 if (ecntrl & ECNTRL_REDUCED_MODE) {
1424 if (ecntrl & ECNTRL_REDUCED_MII_MODE)
1425 return PHY_INTERFACE_MODE_RMII;
1426 else {
1427 phy_interface_t interface = priv->interface;
1430 * This isn't autodetected right now, so it must
1431 * be set by the device tree or platform code.
1433 if (interface == PHY_INTERFACE_MODE_RGMII_ID)
1434 return PHY_INTERFACE_MODE_RGMII_ID;
1436 return PHY_INTERFACE_MODE_RGMII;
1440 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT)
1441 return PHY_INTERFACE_MODE_GMII;
1443 return PHY_INTERFACE_MODE_MII;
1447 /* Initializes driver's PHY state, and attaches to the PHY.
1448 * Returns 0 on success.
1450 static int init_phy(struct net_device *dev)
1452 struct gfar_private *priv = netdev_priv(dev);
1453 uint gigabit_support =
1454 priv->device_flags & FSL_GIANFAR_DEV_HAS_GIGABIT ?
1455 SUPPORTED_1000baseT_Full : 0;
1456 phy_interface_t interface;
1458 priv->oldlink = 0;
1459 priv->oldspeed = 0;
1460 priv->oldduplex = -1;
1462 interface = gfar_get_interface(dev);
1464 priv->phydev = of_phy_connect(dev, priv->phy_node, &adjust_link, 0,
1465 interface);
1466 if (!priv->phydev)
1467 priv->phydev = of_phy_connect_fixed_link(dev, &adjust_link,
1468 interface);
1469 if (!priv->phydev) {
1470 dev_err(&dev->dev, "could not attach to PHY\n");
1471 return -ENODEV;
1474 if (interface == PHY_INTERFACE_MODE_SGMII)
1475 gfar_configure_serdes(dev);
1477 /* Remove any features not supported by the controller */
1478 priv->phydev->supported &= (GFAR_SUPPORTED | gigabit_support);
1479 priv->phydev->advertising = priv->phydev->supported;
1481 return 0;
1485 * Initialize TBI PHY interface for communicating with the
1486 * SERDES lynx PHY on the chip. We communicate with this PHY
1487 * through the MDIO bus on each controller, treating it as a
1488 * "normal" PHY at the address found in the TBIPA register. We assume
1489 * that the TBIPA register is valid. Either the MDIO bus code will set
1490 * it to a value that doesn't conflict with other PHYs on the bus, or the
1491 * value doesn't matter, as there are no other PHYs on the bus.
1493 static void gfar_configure_serdes(struct net_device *dev)
1495 struct gfar_private *priv = netdev_priv(dev);
1496 struct phy_device *tbiphy;
1498 if (!priv->tbi_node) {
1499 dev_warn(&dev->dev, "error: SGMII mode requires that the "
1500 "device tree specify a tbi-handle\n");
1501 return;
1504 tbiphy = of_phy_find_device(priv->tbi_node);
1505 if (!tbiphy) {
1506 dev_err(&dev->dev, "error: Could not get TBI device\n");
1507 return;
1511 * If the link is already up, we must already be ok, and don't need to
1512 * configure and reset the TBI<->SerDes link. Maybe U-Boot configured
1513 * everything for us? Resetting it takes the link down and requires
1514 * several seconds for it to come back.
1516 if (phy_read(tbiphy, MII_BMSR) & BMSR_LSTATUS)
1517 return;
1519 /* Single clk mode, mii mode off(for serdes communication) */
1520 phy_write(tbiphy, MII_TBICON, TBICON_CLK_SELECT);
1522 phy_write(tbiphy, MII_ADVERTISE,
1523 ADVERTISE_1000XFULL | ADVERTISE_1000XPAUSE |
1524 ADVERTISE_1000XPSE_ASYM);
1526 phy_write(tbiphy, MII_BMCR, BMCR_ANENABLE |
1527 BMCR_ANRESTART | BMCR_FULLDPLX | BMCR_SPEED1000);
1530 static void init_registers(struct net_device *dev)
1532 struct gfar_private *priv = netdev_priv(dev);
1533 struct gfar __iomem *regs = NULL;
1534 int i = 0;
1536 for (i = 0; i < priv->num_grps; i++) {
1537 regs = priv->gfargrp[i].regs;
1538 /* Clear IEVENT */
1539 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1541 /* Initialize IMASK */
1542 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1545 regs = priv->gfargrp[0].regs;
1546 /* Init hash registers to zero */
1547 gfar_write(&regs->igaddr0, 0);
1548 gfar_write(&regs->igaddr1, 0);
1549 gfar_write(&regs->igaddr2, 0);
1550 gfar_write(&regs->igaddr3, 0);
1551 gfar_write(&regs->igaddr4, 0);
1552 gfar_write(&regs->igaddr5, 0);
1553 gfar_write(&regs->igaddr6, 0);
1554 gfar_write(&regs->igaddr7, 0);
1556 gfar_write(&regs->gaddr0, 0);
1557 gfar_write(&regs->gaddr1, 0);
1558 gfar_write(&regs->gaddr2, 0);
1559 gfar_write(&regs->gaddr3, 0);
1560 gfar_write(&regs->gaddr4, 0);
1561 gfar_write(&regs->gaddr5, 0);
1562 gfar_write(&regs->gaddr6, 0);
1563 gfar_write(&regs->gaddr7, 0);
1565 /* Zero out the rmon mib registers if it has them */
1566 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_RMON) {
1567 memset_io(&(regs->rmon), 0, sizeof (struct rmon_mib));
1569 /* Mask off the CAM interrupts */
1570 gfar_write(&regs->rmon.cam1, 0xffffffff);
1571 gfar_write(&regs->rmon.cam2, 0xffffffff);
1574 /* Initialize the max receive buffer length */
1575 gfar_write(&regs->mrblr, priv->rx_buffer_size);
1577 /* Initialize the Minimum Frame Length Register */
1578 gfar_write(&regs->minflr, MINFLR_INIT_SETTINGS);
1581 static int __gfar_is_rx_idle(struct gfar_private *priv)
1583 u32 res;
1586 * Normaly TSEC should not hang on GRS commands, so we should
1587 * actually wait for IEVENT_GRSC flag.
1589 if (likely(!gfar_has_errata(priv, GFAR_ERRATA_A002)))
1590 return 0;
1593 * Read the eTSEC register at offset 0xD1C. If bits 7-14 are
1594 * the same as bits 23-30, the eTSEC Rx is assumed to be idle
1595 * and the Rx can be safely reset.
1597 res = gfar_read((void __iomem *)priv->gfargrp[0].regs + 0xd1c);
1598 res &= 0x7f807f80;
1599 if ((res & 0xffff) == (res >> 16))
1600 return 1;
1602 return 0;
1605 /* Halt the receive and transmit queues */
1606 static void gfar_halt_nodisable(struct net_device *dev)
1608 struct gfar_private *priv = netdev_priv(dev);
1609 struct gfar __iomem *regs = NULL;
1610 u32 tempval;
1611 int i = 0;
1613 for (i = 0; i < priv->num_grps; i++) {
1614 regs = priv->gfargrp[i].regs;
1615 /* Mask all interrupts */
1616 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1618 /* Clear all interrupts */
1619 gfar_write(&regs->ievent, IEVENT_INIT_CLEAR);
1622 regs = priv->gfargrp[0].regs;
1623 /* Stop the DMA, and wait for it to stop */
1624 tempval = gfar_read(&regs->dmactrl);
1625 if ((tempval & (DMACTRL_GRS | DMACTRL_GTS))
1626 != (DMACTRL_GRS | DMACTRL_GTS)) {
1627 int ret;
1629 tempval |= (DMACTRL_GRS | DMACTRL_GTS);
1630 gfar_write(&regs->dmactrl, tempval);
1632 do {
1633 ret = spin_event_timeout(((gfar_read(&regs->ievent) &
1634 (IEVENT_GRSC | IEVENT_GTSC)) ==
1635 (IEVENT_GRSC | IEVENT_GTSC)), 1000000, 0);
1636 if (!ret && !(gfar_read(&regs->ievent) & IEVENT_GRSC))
1637 ret = __gfar_is_rx_idle(priv);
1638 } while (!ret);
1642 /* Halt the receive and transmit queues */
1643 void gfar_halt(struct net_device *dev)
1645 struct gfar_private *priv = netdev_priv(dev);
1646 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1647 u32 tempval;
1649 gfar_halt_nodisable(dev);
1651 /* Disable Rx and Tx */
1652 tempval = gfar_read(&regs->maccfg1);
1653 tempval &= ~(MACCFG1_RX_EN | MACCFG1_TX_EN);
1654 gfar_write(&regs->maccfg1, tempval);
1657 static void free_grp_irqs(struct gfar_priv_grp *grp)
1659 free_irq(grp->interruptError, grp);
1660 free_irq(grp->interruptTransmit, grp);
1661 free_irq(grp->interruptReceive, grp);
1664 void stop_gfar(struct net_device *dev)
1666 struct gfar_private *priv = netdev_priv(dev);
1667 unsigned long flags;
1668 int i;
1670 phy_stop(priv->phydev);
1673 /* Lock it down */
1674 local_irq_save(flags);
1675 lock_tx_qs(priv);
1676 lock_rx_qs(priv);
1678 gfar_halt(dev);
1680 unlock_rx_qs(priv);
1681 unlock_tx_qs(priv);
1682 local_irq_restore(flags);
1684 /* Free the IRQs */
1685 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1686 for (i = 0; i < priv->num_grps; i++)
1687 free_grp_irqs(&priv->gfargrp[i]);
1688 } else {
1689 for (i = 0; i < priv->num_grps; i++)
1690 free_irq(priv->gfargrp[i].interruptTransmit,
1691 &priv->gfargrp[i]);
1694 free_skb_resources(priv);
1697 static void free_skb_tx_queue(struct gfar_priv_tx_q *tx_queue)
1699 struct txbd8 *txbdp;
1700 struct gfar_private *priv = netdev_priv(tx_queue->dev);
1701 int i, j;
1703 txbdp = tx_queue->tx_bd_base;
1705 for (i = 0; i < tx_queue->tx_ring_size; i++) {
1706 if (!tx_queue->tx_skbuff[i])
1707 continue;
1709 dma_unmap_single(&priv->ofdev->dev, txbdp->bufPtr,
1710 txbdp->length, DMA_TO_DEVICE);
1711 txbdp->lstatus = 0;
1712 for (j = 0; j < skb_shinfo(tx_queue->tx_skbuff[i])->nr_frags;
1713 j++) {
1714 txbdp++;
1715 dma_unmap_page(&priv->ofdev->dev, txbdp->bufPtr,
1716 txbdp->length, DMA_TO_DEVICE);
1718 txbdp++;
1719 dev_kfree_skb_any(tx_queue->tx_skbuff[i]);
1720 tx_queue->tx_skbuff[i] = NULL;
1722 kfree(tx_queue->tx_skbuff);
1725 static void free_skb_rx_queue(struct gfar_priv_rx_q *rx_queue)
1727 struct rxbd8 *rxbdp;
1728 struct gfar_private *priv = netdev_priv(rx_queue->dev);
1729 int i;
1731 rxbdp = rx_queue->rx_bd_base;
1733 for (i = 0; i < rx_queue->rx_ring_size; i++) {
1734 if (rx_queue->rx_skbuff[i]) {
1735 dma_unmap_single(&priv->ofdev->dev,
1736 rxbdp->bufPtr, priv->rx_buffer_size,
1737 DMA_FROM_DEVICE);
1738 dev_kfree_skb_any(rx_queue->rx_skbuff[i]);
1739 rx_queue->rx_skbuff[i] = NULL;
1741 rxbdp->lstatus = 0;
1742 rxbdp->bufPtr = 0;
1743 rxbdp++;
1745 kfree(rx_queue->rx_skbuff);
1748 /* If there are any tx skbs or rx skbs still around, free them.
1749 * Then free tx_skbuff and rx_skbuff */
1750 static void free_skb_resources(struct gfar_private *priv)
1752 struct gfar_priv_tx_q *tx_queue = NULL;
1753 struct gfar_priv_rx_q *rx_queue = NULL;
1754 int i;
1756 /* Go through all the buffer descriptors and free their data buffers */
1757 for (i = 0; i < priv->num_tx_queues; i++) {
1758 tx_queue = priv->tx_queue[i];
1759 if(tx_queue->tx_skbuff)
1760 free_skb_tx_queue(tx_queue);
1763 for (i = 0; i < priv->num_rx_queues; i++) {
1764 rx_queue = priv->rx_queue[i];
1765 if(rx_queue->rx_skbuff)
1766 free_skb_rx_queue(rx_queue);
1769 dma_free_coherent(&priv->ofdev->dev,
1770 sizeof(struct txbd8) * priv->total_tx_ring_size +
1771 sizeof(struct rxbd8) * priv->total_rx_ring_size,
1772 priv->tx_queue[0]->tx_bd_base,
1773 priv->tx_queue[0]->tx_bd_dma_base);
1774 skb_queue_purge(&priv->rx_recycle);
1777 void gfar_start(struct net_device *dev)
1779 struct gfar_private *priv = netdev_priv(dev);
1780 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1781 u32 tempval;
1782 int i = 0;
1784 /* Enable Rx and Tx in MACCFG1 */
1785 tempval = gfar_read(&regs->maccfg1);
1786 tempval |= (MACCFG1_RX_EN | MACCFG1_TX_EN);
1787 gfar_write(&regs->maccfg1, tempval);
1789 /* Initialize DMACTRL to have WWR and WOP */
1790 tempval = gfar_read(&regs->dmactrl);
1791 tempval |= DMACTRL_INIT_SETTINGS;
1792 gfar_write(&regs->dmactrl, tempval);
1794 /* Make sure we aren't stopped */
1795 tempval = gfar_read(&regs->dmactrl);
1796 tempval &= ~(DMACTRL_GRS | DMACTRL_GTS);
1797 gfar_write(&regs->dmactrl, tempval);
1799 for (i = 0; i < priv->num_grps; i++) {
1800 regs = priv->gfargrp[i].regs;
1801 /* Clear THLT/RHLT, so that the DMA starts polling now */
1802 gfar_write(&regs->tstat, priv->gfargrp[i].tstat);
1803 gfar_write(&regs->rstat, priv->gfargrp[i].rstat);
1804 /* Unmask the interrupts we look for */
1805 gfar_write(&regs->imask, IMASK_DEFAULT);
1808 dev->trans_start = jiffies; /* prevent tx timeout */
1811 void gfar_configure_coalescing(struct gfar_private *priv,
1812 unsigned long tx_mask, unsigned long rx_mask)
1814 struct gfar __iomem *regs = priv->gfargrp[0].regs;
1815 u32 __iomem *baddr;
1816 int i = 0;
1818 /* Backward compatible case ---- even if we enable
1819 * multiple queues, there's only single reg to program
1821 gfar_write(&regs->txic, 0);
1822 if(likely(priv->tx_queue[0]->txcoalescing))
1823 gfar_write(&regs->txic, priv->tx_queue[0]->txic);
1825 gfar_write(&regs->rxic, 0);
1826 if(unlikely(priv->rx_queue[0]->rxcoalescing))
1827 gfar_write(&regs->rxic, priv->rx_queue[0]->rxic);
1829 if (priv->mode == MQ_MG_MODE) {
1830 baddr = &regs->txic0;
1831 for_each_set_bit(i, &tx_mask, priv->num_tx_queues) {
1832 if (likely(priv->tx_queue[i]->txcoalescing)) {
1833 gfar_write(baddr + i, 0);
1834 gfar_write(baddr + i, priv->tx_queue[i]->txic);
1838 baddr = &regs->rxic0;
1839 for_each_set_bit(i, &rx_mask, priv->num_rx_queues) {
1840 if (likely(priv->rx_queue[i]->rxcoalescing)) {
1841 gfar_write(baddr + i, 0);
1842 gfar_write(baddr + i, priv->rx_queue[i]->rxic);
1848 static int register_grp_irqs(struct gfar_priv_grp *grp)
1850 struct gfar_private *priv = grp->priv;
1851 struct net_device *dev = priv->ndev;
1852 int err;
1854 /* If the device has multiple interrupts, register for
1855 * them. Otherwise, only register for the one */
1856 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
1857 /* Install our interrupt handlers for Error,
1858 * Transmit, and Receive */
1859 if ((err = request_irq(grp->interruptError, gfar_error, 0,
1860 grp->int_name_er,grp)) < 0) {
1861 if (netif_msg_intr(priv))
1862 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1863 dev->name, grp->interruptError);
1865 goto err_irq_fail;
1868 if ((err = request_irq(grp->interruptTransmit, gfar_transmit,
1869 0, grp->int_name_tx, grp)) < 0) {
1870 if (netif_msg_intr(priv))
1871 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1872 dev->name, grp->interruptTransmit);
1873 goto tx_irq_fail;
1876 if ((err = request_irq(grp->interruptReceive, gfar_receive, 0,
1877 grp->int_name_rx, grp)) < 0) {
1878 if (netif_msg_intr(priv))
1879 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1880 dev->name, grp->interruptReceive);
1881 goto rx_irq_fail;
1883 } else {
1884 if ((err = request_irq(grp->interruptTransmit, gfar_interrupt, 0,
1885 grp->int_name_tx, grp)) < 0) {
1886 if (netif_msg_intr(priv))
1887 printk(KERN_ERR "%s: Can't get IRQ %d\n",
1888 dev->name, grp->interruptTransmit);
1889 goto err_irq_fail;
1893 return 0;
1895 rx_irq_fail:
1896 free_irq(grp->interruptTransmit, grp);
1897 tx_irq_fail:
1898 free_irq(grp->interruptError, grp);
1899 err_irq_fail:
1900 return err;
1904 /* Bring the controller up and running */
1905 int startup_gfar(struct net_device *ndev)
1907 struct gfar_private *priv = netdev_priv(ndev);
1908 struct gfar __iomem *regs = NULL;
1909 int err, i, j;
1911 for (i = 0; i < priv->num_grps; i++) {
1912 regs= priv->gfargrp[i].regs;
1913 gfar_write(&regs->imask, IMASK_INIT_CLEAR);
1916 regs= priv->gfargrp[0].regs;
1917 err = gfar_alloc_skb_resources(ndev);
1918 if (err)
1919 return err;
1921 gfar_init_mac(ndev);
1923 for (i = 0; i < priv->num_grps; i++) {
1924 err = register_grp_irqs(&priv->gfargrp[i]);
1925 if (err) {
1926 for (j = 0; j < i; j++)
1927 free_grp_irqs(&priv->gfargrp[j]);
1928 goto irq_fail;
1932 /* Start the controller */
1933 gfar_start(ndev);
1935 phy_start(priv->phydev);
1937 gfar_configure_coalescing(priv, 0xFF, 0xFF);
1939 return 0;
1941 irq_fail:
1942 free_skb_resources(priv);
1943 return err;
1946 /* Called when something needs to use the ethernet device */
1947 /* Returns 0 for success. */
1948 static int gfar_enet_open(struct net_device *dev)
1950 struct gfar_private *priv = netdev_priv(dev);
1951 int err;
1953 enable_napi(priv);
1955 skb_queue_head_init(&priv->rx_recycle);
1957 /* Initialize a bunch of registers */
1958 init_registers(dev);
1960 gfar_set_mac_address(dev);
1962 err = init_phy(dev);
1964 if (err) {
1965 disable_napi(priv);
1966 return err;
1969 err = startup_gfar(dev);
1970 if (err) {
1971 disable_napi(priv);
1972 return err;
1975 netif_tx_start_all_queues(dev);
1977 device_set_wakeup_enable(&dev->dev, priv->wol_en);
1979 return err;
1982 static inline struct txfcb *gfar_add_fcb(struct sk_buff *skb)
1984 struct txfcb *fcb = (struct txfcb *)skb_push(skb, GMAC_FCB_LEN);
1986 memset(fcb, 0, GMAC_FCB_LEN);
1988 return fcb;
1991 static inline void gfar_tx_checksum(struct sk_buff *skb, struct txfcb *fcb)
1993 u8 flags = 0;
1995 /* If we're here, it's a IP packet with a TCP or UDP
1996 * payload. We set it to checksum, using a pseudo-header
1997 * we provide
1999 flags = TXFCB_DEFAULT;
2001 /* Tell the controller what the protocol is */
2002 /* And provide the already calculated phcs */
2003 if (ip_hdr(skb)->protocol == IPPROTO_UDP) {
2004 flags |= TXFCB_UDP;
2005 fcb->phcs = udp_hdr(skb)->check;
2006 } else
2007 fcb->phcs = tcp_hdr(skb)->check;
2009 /* l3os is the distance between the start of the
2010 * frame (skb->data) and the start of the IP hdr.
2011 * l4os is the distance between the start of the
2012 * l3 hdr and the l4 hdr */
2013 fcb->l3os = (u16)(skb_network_offset(skb) - GMAC_FCB_LEN);
2014 fcb->l4os = skb_network_header_len(skb);
2016 fcb->flags = flags;
2019 void inline gfar_tx_vlan(struct sk_buff *skb, struct txfcb *fcb)
2021 fcb->flags |= TXFCB_VLN;
2022 fcb->vlctl = vlan_tx_tag_get(skb);
2025 static inline struct txbd8 *skip_txbd(struct txbd8 *bdp, int stride,
2026 struct txbd8 *base, int ring_size)
2028 struct txbd8 *new_bd = bdp + stride;
2030 return (new_bd >= (base + ring_size)) ? (new_bd - ring_size) : new_bd;
2033 static inline struct txbd8 *next_txbd(struct txbd8 *bdp, struct txbd8 *base,
2034 int ring_size)
2036 return skip_txbd(bdp, 1, base, ring_size);
2039 /* This is called by the kernel when a frame is ready for transmission. */
2040 /* It is pointed to by the dev->hard_start_xmit function pointer */
2041 static int gfar_start_xmit(struct sk_buff *skb, struct net_device *dev)
2043 struct gfar_private *priv = netdev_priv(dev);
2044 struct gfar_priv_tx_q *tx_queue = NULL;
2045 struct netdev_queue *txq;
2046 struct gfar __iomem *regs = NULL;
2047 struct txfcb *fcb = NULL;
2048 struct txbd8 *txbdp, *txbdp_start, *base, *txbdp_tstamp = NULL;
2049 u32 lstatus;
2050 int i, rq = 0, do_tstamp = 0;
2051 u32 bufaddr;
2052 unsigned long flags;
2053 unsigned int nr_frags, nr_txbds, length;
2056 * TOE=1 frames larger than 2500 bytes may see excess delays
2057 * before start of transmission.
2059 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_76) &&
2060 skb->ip_summed == CHECKSUM_PARTIAL &&
2061 skb->len > 2500)) {
2062 int ret;
2064 ret = skb_checksum_help(skb);
2065 if (ret)
2066 return ret;
2069 rq = skb->queue_mapping;
2070 tx_queue = priv->tx_queue[rq];
2071 txq = netdev_get_tx_queue(dev, rq);
2072 base = tx_queue->tx_bd_base;
2073 regs = tx_queue->grp->regs;
2075 /* check if time stamp should be generated */
2076 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP &&
2077 priv->hwts_tx_en))
2078 do_tstamp = 1;
2080 /* make space for additional header when fcb is needed */
2081 if (((skb->ip_summed == CHECKSUM_PARTIAL) ||
2082 vlan_tx_tag_present(skb) ||
2083 unlikely(do_tstamp)) &&
2084 (skb_headroom(skb) < GMAC_FCB_LEN)) {
2085 struct sk_buff *skb_new;
2087 skb_new = skb_realloc_headroom(skb, GMAC_FCB_LEN);
2088 if (!skb_new) {
2089 dev->stats.tx_errors++;
2090 kfree_skb(skb);
2091 return NETDEV_TX_OK;
2093 kfree_skb(skb);
2094 skb = skb_new;
2097 /* total number of fragments in the SKB */
2098 nr_frags = skb_shinfo(skb)->nr_frags;
2100 /* calculate the required number of TxBDs for this skb */
2101 if (unlikely(do_tstamp))
2102 nr_txbds = nr_frags + 2;
2103 else
2104 nr_txbds = nr_frags + 1;
2106 /* check if there is space to queue this packet */
2107 if (nr_txbds > tx_queue->num_txbdfree) {
2108 /* no space, stop the queue */
2109 netif_tx_stop_queue(txq);
2110 dev->stats.tx_fifo_errors++;
2111 return NETDEV_TX_BUSY;
2114 /* Update transmit stats */
2115 tx_queue->stats.tx_bytes += skb->len;
2116 tx_queue->stats.tx_packets++;
2118 txbdp = txbdp_start = tx_queue->cur_tx;
2119 lstatus = txbdp->lstatus;
2121 /* Time stamp insertion requires one additional TxBD */
2122 if (unlikely(do_tstamp))
2123 txbdp_tstamp = txbdp = next_txbd(txbdp, base,
2124 tx_queue->tx_ring_size);
2126 if (nr_frags == 0) {
2127 if (unlikely(do_tstamp))
2128 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_LAST |
2129 TXBD_INTERRUPT);
2130 else
2131 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2132 } else {
2133 /* Place the fragment addresses and lengths into the TxBDs */
2134 for (i = 0; i < nr_frags; i++) {
2135 /* Point at the next BD, wrapping as needed */
2136 txbdp = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2138 length = skb_shinfo(skb)->frags[i].size;
2140 lstatus = txbdp->lstatus | length |
2141 BD_LFLAG(TXBD_READY);
2143 /* Handle the last BD specially */
2144 if (i == nr_frags - 1)
2145 lstatus |= BD_LFLAG(TXBD_LAST | TXBD_INTERRUPT);
2147 bufaddr = dma_map_page(&priv->ofdev->dev,
2148 skb_shinfo(skb)->frags[i].page,
2149 skb_shinfo(skb)->frags[i].page_offset,
2150 length,
2151 DMA_TO_DEVICE);
2153 /* set the TxBD length and buffer pointer */
2154 txbdp->bufPtr = bufaddr;
2155 txbdp->lstatus = lstatus;
2158 lstatus = txbdp_start->lstatus;
2161 /* Set up checksumming */
2162 if (CHECKSUM_PARTIAL == skb->ip_summed) {
2163 fcb = gfar_add_fcb(skb);
2164 /* as specified by errata */
2165 if (unlikely(gfar_has_errata(priv, GFAR_ERRATA_12)
2166 && ((unsigned long)fcb % 0x20) > 0x18)) {
2167 __skb_pull(skb, GMAC_FCB_LEN);
2168 skb_checksum_help(skb);
2169 } else {
2170 lstatus |= BD_LFLAG(TXBD_TOE);
2171 gfar_tx_checksum(skb, fcb);
2175 if (vlan_tx_tag_present(skb)) {
2176 if (unlikely(NULL == fcb)) {
2177 fcb = gfar_add_fcb(skb);
2178 lstatus |= BD_LFLAG(TXBD_TOE);
2181 gfar_tx_vlan(skb, fcb);
2184 /* Setup tx hardware time stamping if requested */
2185 if (unlikely(do_tstamp)) {
2186 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
2187 if (fcb == NULL)
2188 fcb = gfar_add_fcb(skb);
2189 fcb->ptp = 1;
2190 lstatus |= BD_LFLAG(TXBD_TOE);
2193 txbdp_start->bufPtr = dma_map_single(&priv->ofdev->dev, skb->data,
2194 skb_headlen(skb), DMA_TO_DEVICE);
2197 * If time stamping is requested one additional TxBD must be set up. The
2198 * first TxBD points to the FCB and must have a data length of
2199 * GMAC_FCB_LEN. The second TxBD points to the actual frame data with
2200 * the full frame length.
2202 if (unlikely(do_tstamp)) {
2203 txbdp_tstamp->bufPtr = txbdp_start->bufPtr + GMAC_FCB_LEN;
2204 txbdp_tstamp->lstatus |= BD_LFLAG(TXBD_READY) |
2205 (skb_headlen(skb) - GMAC_FCB_LEN);
2206 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | GMAC_FCB_LEN;
2207 } else {
2208 lstatus |= BD_LFLAG(TXBD_CRC | TXBD_READY) | skb_headlen(skb);
2212 * We can work in parallel with gfar_clean_tx_ring(), except
2213 * when modifying num_txbdfree. Note that we didn't grab the lock
2214 * when we were reading the num_txbdfree and checking for available
2215 * space, that's because outside of this function it can only grow,
2216 * and once we've got needed space, it cannot suddenly disappear.
2218 * The lock also protects us from gfar_error(), which can modify
2219 * regs->tstat and thus retrigger the transfers, which is why we
2220 * also must grab the lock before setting ready bit for the first
2221 * to be transmitted BD.
2223 spin_lock_irqsave(&tx_queue->txlock, flags);
2226 * The powerpc-specific eieio() is used, as wmb() has too strong
2227 * semantics (it requires synchronization between cacheable and
2228 * uncacheable mappings, which eieio doesn't provide and which we
2229 * don't need), thus requiring a more expensive sync instruction. At
2230 * some point, the set of architecture-independent barrier functions
2231 * should be expanded to include weaker barriers.
2233 eieio();
2235 txbdp_start->lstatus = lstatus;
2237 eieio(); /* force lstatus write before tx_skbuff */
2239 tx_queue->tx_skbuff[tx_queue->skb_curtx] = skb;
2241 /* Update the current skb pointer to the next entry we will use
2242 * (wrapping if necessary) */
2243 tx_queue->skb_curtx = (tx_queue->skb_curtx + 1) &
2244 TX_RING_MOD_MASK(tx_queue->tx_ring_size);
2246 tx_queue->cur_tx = next_txbd(txbdp, base, tx_queue->tx_ring_size);
2248 /* reduce TxBD free count */
2249 tx_queue->num_txbdfree -= (nr_txbds);
2251 /* If the next BD still needs to be cleaned up, then the bds
2252 are full. We need to tell the kernel to stop sending us stuff. */
2253 if (!tx_queue->num_txbdfree) {
2254 netif_tx_stop_queue(txq);
2256 dev->stats.tx_fifo_errors++;
2259 /* Tell the DMA to go go go */
2260 gfar_write(&regs->tstat, TSTAT_CLEAR_THALT >> tx_queue->qindex);
2262 /* Unlock priv */
2263 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2265 return NETDEV_TX_OK;
2268 /* Stops the kernel queue, and halts the controller */
2269 static int gfar_close(struct net_device *dev)
2271 struct gfar_private *priv = netdev_priv(dev);
2273 disable_napi(priv);
2275 cancel_work_sync(&priv->reset_task);
2276 stop_gfar(dev);
2278 /* Disconnect from the PHY */
2279 phy_disconnect(priv->phydev);
2280 priv->phydev = NULL;
2282 netif_tx_stop_all_queues(dev);
2284 return 0;
2287 /* Changes the mac address if the controller is not running. */
2288 static int gfar_set_mac_address(struct net_device *dev)
2290 gfar_set_mac_for_addr(dev, 0, dev->dev_addr);
2292 return 0;
2296 /* Enables and disables VLAN insertion/extraction */
2297 static void gfar_vlan_rx_register(struct net_device *dev,
2298 struct vlan_group *grp)
2300 struct gfar_private *priv = netdev_priv(dev);
2301 struct gfar __iomem *regs = NULL;
2302 unsigned long flags;
2303 u32 tempval;
2305 regs = priv->gfargrp[0].regs;
2306 local_irq_save(flags);
2307 lock_rx_qs(priv);
2309 priv->vlgrp = grp;
2311 if (grp) {
2312 /* Enable VLAN tag insertion */
2313 tempval = gfar_read(&regs->tctrl);
2314 tempval |= TCTRL_VLINS;
2316 gfar_write(&regs->tctrl, tempval);
2318 /* Enable VLAN tag extraction */
2319 tempval = gfar_read(&regs->rctrl);
2320 tempval |= (RCTRL_VLEX | RCTRL_PRSDEP_INIT);
2321 gfar_write(&regs->rctrl, tempval);
2322 } else {
2323 /* Disable VLAN tag insertion */
2324 tempval = gfar_read(&regs->tctrl);
2325 tempval &= ~TCTRL_VLINS;
2326 gfar_write(&regs->tctrl, tempval);
2328 /* Disable VLAN tag extraction */
2329 tempval = gfar_read(&regs->rctrl);
2330 tempval &= ~RCTRL_VLEX;
2331 /* If parse is no longer required, then disable parser */
2332 if (tempval & RCTRL_REQ_PARSER)
2333 tempval |= RCTRL_PRSDEP_INIT;
2334 else
2335 tempval &= ~RCTRL_PRSDEP_INIT;
2336 gfar_write(&regs->rctrl, tempval);
2339 gfar_change_mtu(dev, dev->mtu);
2341 unlock_rx_qs(priv);
2342 local_irq_restore(flags);
2345 static int gfar_change_mtu(struct net_device *dev, int new_mtu)
2347 int tempsize, tempval;
2348 struct gfar_private *priv = netdev_priv(dev);
2349 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2350 int oldsize = priv->rx_buffer_size;
2351 int frame_size = new_mtu + ETH_HLEN;
2353 if (priv->vlgrp)
2354 frame_size += VLAN_HLEN;
2356 if ((frame_size < 64) || (frame_size > JUMBO_FRAME_SIZE)) {
2357 if (netif_msg_drv(priv))
2358 printk(KERN_ERR "%s: Invalid MTU setting\n",
2359 dev->name);
2360 return -EINVAL;
2363 if (gfar_uses_fcb(priv))
2364 frame_size += GMAC_FCB_LEN;
2366 frame_size += priv->padding;
2368 tempsize =
2369 (frame_size & ~(INCREMENTAL_BUFFER_SIZE - 1)) +
2370 INCREMENTAL_BUFFER_SIZE;
2372 /* Only stop and start the controller if it isn't already
2373 * stopped, and we changed something */
2374 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2375 stop_gfar(dev);
2377 priv->rx_buffer_size = tempsize;
2379 dev->mtu = new_mtu;
2381 gfar_write(&regs->mrblr, priv->rx_buffer_size);
2382 gfar_write(&regs->maxfrm, priv->rx_buffer_size);
2384 /* If the mtu is larger than the max size for standard
2385 * ethernet frames (ie, a jumbo frame), then set maccfg2
2386 * to allow huge frames, and to check the length */
2387 tempval = gfar_read(&regs->maccfg2);
2389 if (priv->rx_buffer_size > DEFAULT_RX_BUFFER_SIZE ||
2390 gfar_has_errata(priv, GFAR_ERRATA_74))
2391 tempval |= (MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2392 else
2393 tempval &= ~(MACCFG2_HUGEFRAME | MACCFG2_LENGTHCHECK);
2395 gfar_write(&regs->maccfg2, tempval);
2397 if ((oldsize != tempsize) && (dev->flags & IFF_UP))
2398 startup_gfar(dev);
2400 return 0;
2403 /* gfar_reset_task gets scheduled when a packet has not been
2404 * transmitted after a set amount of time.
2405 * For now, assume that clearing out all the structures, and
2406 * starting over will fix the problem.
2408 static void gfar_reset_task(struct work_struct *work)
2410 struct gfar_private *priv = container_of(work, struct gfar_private,
2411 reset_task);
2412 struct net_device *dev = priv->ndev;
2414 if (dev->flags & IFF_UP) {
2415 netif_tx_stop_all_queues(dev);
2416 stop_gfar(dev);
2417 startup_gfar(dev);
2418 netif_tx_start_all_queues(dev);
2421 netif_tx_schedule_all(dev);
2424 static void gfar_timeout(struct net_device *dev)
2426 struct gfar_private *priv = netdev_priv(dev);
2428 dev->stats.tx_errors++;
2429 schedule_work(&priv->reset_task);
2432 static void gfar_align_skb(struct sk_buff *skb)
2434 /* We need the data buffer to be aligned properly. We will reserve
2435 * as many bytes as needed to align the data properly
2437 skb_reserve(skb, RXBUF_ALIGNMENT -
2438 (((unsigned long) skb->data) & (RXBUF_ALIGNMENT - 1)));
2441 /* Interrupt Handler for Transmit complete */
2442 static int gfar_clean_tx_ring(struct gfar_priv_tx_q *tx_queue)
2444 struct net_device *dev = tx_queue->dev;
2445 struct gfar_private *priv = netdev_priv(dev);
2446 struct gfar_priv_rx_q *rx_queue = NULL;
2447 struct txbd8 *bdp, *next = NULL;
2448 struct txbd8 *lbdp = NULL;
2449 struct txbd8 *base = tx_queue->tx_bd_base;
2450 struct sk_buff *skb;
2451 int skb_dirtytx;
2452 int tx_ring_size = tx_queue->tx_ring_size;
2453 int frags = 0, nr_txbds = 0;
2454 int i;
2455 int howmany = 0;
2456 u32 lstatus;
2457 size_t buflen;
2459 rx_queue = priv->rx_queue[tx_queue->qindex];
2460 bdp = tx_queue->dirty_tx;
2461 skb_dirtytx = tx_queue->skb_dirtytx;
2463 while ((skb = tx_queue->tx_skbuff[skb_dirtytx])) {
2464 unsigned long flags;
2466 frags = skb_shinfo(skb)->nr_frags;
2469 * When time stamping, one additional TxBD must be freed.
2470 * Also, we need to dma_unmap_single() the TxPAL.
2472 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS))
2473 nr_txbds = frags + 2;
2474 else
2475 nr_txbds = frags + 1;
2477 lbdp = skip_txbd(bdp, nr_txbds - 1, base, tx_ring_size);
2479 lstatus = lbdp->lstatus;
2481 /* Only clean completed frames */
2482 if ((lstatus & BD_LFLAG(TXBD_READY)) &&
2483 (lstatus & BD_LENGTH_MASK))
2484 break;
2486 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2487 next = next_txbd(bdp, base, tx_ring_size);
2488 buflen = next->length + GMAC_FCB_LEN;
2489 } else
2490 buflen = bdp->length;
2492 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2493 buflen, DMA_TO_DEVICE);
2495 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_IN_PROGRESS)) {
2496 struct skb_shared_hwtstamps shhwtstamps;
2497 u64 *ns = (u64*) (((u32)skb->data + 0x10) & ~0x7);
2498 memset(&shhwtstamps, 0, sizeof(shhwtstamps));
2499 shhwtstamps.hwtstamp = ns_to_ktime(*ns);
2500 skb_tstamp_tx(skb, &shhwtstamps);
2501 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2502 bdp = next;
2505 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2506 bdp = next_txbd(bdp, base, tx_ring_size);
2508 for (i = 0; i < frags; i++) {
2509 dma_unmap_page(&priv->ofdev->dev,
2510 bdp->bufPtr,
2511 bdp->length,
2512 DMA_TO_DEVICE);
2513 bdp->lstatus &= BD_LFLAG(TXBD_WRAP);
2514 bdp = next_txbd(bdp, base, tx_ring_size);
2518 * If there's room in the queue (limit it to rx_buffer_size)
2519 * we add this skb back into the pool, if it's the right size
2521 if (skb_queue_len(&priv->rx_recycle) < rx_queue->rx_ring_size &&
2522 skb_recycle_check(skb, priv->rx_buffer_size +
2523 RXBUF_ALIGNMENT)) {
2524 gfar_align_skb(skb);
2525 skb_queue_head(&priv->rx_recycle, skb);
2526 } else
2527 dev_kfree_skb_any(skb);
2529 tx_queue->tx_skbuff[skb_dirtytx] = NULL;
2531 skb_dirtytx = (skb_dirtytx + 1) &
2532 TX_RING_MOD_MASK(tx_ring_size);
2534 howmany++;
2535 spin_lock_irqsave(&tx_queue->txlock, flags);
2536 tx_queue->num_txbdfree += nr_txbds;
2537 spin_unlock_irqrestore(&tx_queue->txlock, flags);
2540 /* If we freed a buffer, we can restart transmission, if necessary */
2541 if (__netif_subqueue_stopped(dev, tx_queue->qindex) && tx_queue->num_txbdfree)
2542 netif_wake_subqueue(dev, tx_queue->qindex);
2544 /* Update dirty indicators */
2545 tx_queue->skb_dirtytx = skb_dirtytx;
2546 tx_queue->dirty_tx = bdp;
2548 return howmany;
2551 static void gfar_schedule_cleanup(struct gfar_priv_grp *gfargrp)
2553 unsigned long flags;
2555 spin_lock_irqsave(&gfargrp->grplock, flags);
2556 if (napi_schedule_prep(&gfargrp->napi)) {
2557 gfar_write(&gfargrp->regs->imask, IMASK_RTX_DISABLED);
2558 __napi_schedule(&gfargrp->napi);
2559 } else {
2561 * Clear IEVENT, so interrupts aren't called again
2562 * because of the packets that have already arrived.
2564 gfar_write(&gfargrp->regs->ievent, IEVENT_RTX_MASK);
2566 spin_unlock_irqrestore(&gfargrp->grplock, flags);
2570 /* Interrupt Handler for Transmit complete */
2571 static irqreturn_t gfar_transmit(int irq, void *grp_id)
2573 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2574 return IRQ_HANDLED;
2577 static void gfar_new_rxbdp(struct gfar_priv_rx_q *rx_queue, struct rxbd8 *bdp,
2578 struct sk_buff *skb)
2580 struct net_device *dev = rx_queue->dev;
2581 struct gfar_private *priv = netdev_priv(dev);
2582 dma_addr_t buf;
2584 buf = dma_map_single(&priv->ofdev->dev, skb->data,
2585 priv->rx_buffer_size, DMA_FROM_DEVICE);
2586 gfar_init_rxbdp(rx_queue, bdp, buf);
2589 static struct sk_buff * gfar_alloc_skb(struct net_device *dev)
2591 struct gfar_private *priv = netdev_priv(dev);
2592 struct sk_buff *skb = NULL;
2594 skb = netdev_alloc_skb(dev, priv->rx_buffer_size + RXBUF_ALIGNMENT);
2595 if (!skb)
2596 return NULL;
2598 gfar_align_skb(skb);
2600 return skb;
2603 struct sk_buff * gfar_new_skb(struct net_device *dev)
2605 struct gfar_private *priv = netdev_priv(dev);
2606 struct sk_buff *skb = NULL;
2608 skb = skb_dequeue(&priv->rx_recycle);
2609 if (!skb)
2610 skb = gfar_alloc_skb(dev);
2612 return skb;
2615 static inline void count_errors(unsigned short status, struct net_device *dev)
2617 struct gfar_private *priv = netdev_priv(dev);
2618 struct net_device_stats *stats = &dev->stats;
2619 struct gfar_extra_stats *estats = &priv->extra_stats;
2621 /* If the packet was truncated, none of the other errors
2622 * matter */
2623 if (status & RXBD_TRUNCATED) {
2624 stats->rx_length_errors++;
2626 estats->rx_trunc++;
2628 return;
2630 /* Count the errors, if there were any */
2631 if (status & (RXBD_LARGE | RXBD_SHORT)) {
2632 stats->rx_length_errors++;
2634 if (status & RXBD_LARGE)
2635 estats->rx_large++;
2636 else
2637 estats->rx_short++;
2639 if (status & RXBD_NONOCTET) {
2640 stats->rx_frame_errors++;
2641 estats->rx_nonoctet++;
2643 if (status & RXBD_CRCERR) {
2644 estats->rx_crcerr++;
2645 stats->rx_crc_errors++;
2647 if (status & RXBD_OVERRUN) {
2648 estats->rx_overrun++;
2649 stats->rx_crc_errors++;
2653 irqreturn_t gfar_receive(int irq, void *grp_id)
2655 gfar_schedule_cleanup((struct gfar_priv_grp *)grp_id);
2656 return IRQ_HANDLED;
2659 static inline void gfar_rx_checksum(struct sk_buff *skb, struct rxfcb *fcb)
2661 /* If valid headers were found, and valid sums
2662 * were verified, then we tell the kernel that no
2663 * checksumming is necessary. Otherwise, it is */
2664 if ((fcb->flags & RXFCB_CSUM_MASK) == (RXFCB_CIP | RXFCB_CTU))
2665 skb->ip_summed = CHECKSUM_UNNECESSARY;
2666 else
2667 skb_checksum_none_assert(skb);
2671 /* gfar_process_frame() -- handle one incoming packet if skb
2672 * isn't NULL. */
2673 static int gfar_process_frame(struct net_device *dev, struct sk_buff *skb,
2674 int amount_pull)
2676 struct gfar_private *priv = netdev_priv(dev);
2677 struct rxfcb *fcb = NULL;
2679 int ret;
2681 /* fcb is at the beginning if exists */
2682 fcb = (struct rxfcb *)skb->data;
2684 /* Remove the FCB from the skb */
2685 /* Remove the padded bytes, if there are any */
2686 if (amount_pull) {
2687 skb_record_rx_queue(skb, fcb->rq);
2688 skb_pull(skb, amount_pull);
2691 /* Get receive timestamp from the skb */
2692 if (priv->hwts_rx_en) {
2693 struct skb_shared_hwtstamps *shhwtstamps = skb_hwtstamps(skb);
2694 u64 *ns = (u64 *) skb->data;
2695 memset(shhwtstamps, 0, sizeof(*shhwtstamps));
2696 shhwtstamps->hwtstamp = ns_to_ktime(*ns);
2699 if (priv->padding)
2700 skb_pull(skb, priv->padding);
2702 if (dev->features & NETIF_F_RXCSUM)
2703 gfar_rx_checksum(skb, fcb);
2705 /* Tell the skb what kind of packet this is */
2706 skb->protocol = eth_type_trans(skb, dev);
2708 /* Send the packet up the stack */
2709 if (unlikely(priv->vlgrp && (fcb->flags & RXFCB_VLN)))
2710 ret = vlan_hwaccel_receive_skb(skb, priv->vlgrp, fcb->vlctl);
2711 else
2712 ret = netif_receive_skb(skb);
2714 if (NET_RX_DROP == ret)
2715 priv->extra_stats.kernel_dropped++;
2717 return 0;
2720 /* gfar_clean_rx_ring() -- Processes each frame in the rx ring
2721 * until the budget/quota has been reached. Returns the number
2722 * of frames handled
2724 int gfar_clean_rx_ring(struct gfar_priv_rx_q *rx_queue, int rx_work_limit)
2726 struct net_device *dev = rx_queue->dev;
2727 struct rxbd8 *bdp, *base;
2728 struct sk_buff *skb;
2729 int pkt_len;
2730 int amount_pull;
2731 int howmany = 0;
2732 struct gfar_private *priv = netdev_priv(dev);
2734 /* Get the first full descriptor */
2735 bdp = rx_queue->cur_rx;
2736 base = rx_queue->rx_bd_base;
2738 amount_pull = (gfar_uses_fcb(priv) ? GMAC_FCB_LEN : 0);
2740 while (!((bdp->status & RXBD_EMPTY) || (--rx_work_limit < 0))) {
2741 struct sk_buff *newskb;
2742 rmb();
2744 /* Add another skb for the future */
2745 newskb = gfar_new_skb(dev);
2747 skb = rx_queue->rx_skbuff[rx_queue->skb_currx];
2749 dma_unmap_single(&priv->ofdev->dev, bdp->bufPtr,
2750 priv->rx_buffer_size, DMA_FROM_DEVICE);
2752 if (unlikely(!(bdp->status & RXBD_ERR) &&
2753 bdp->length > priv->rx_buffer_size))
2754 bdp->status = RXBD_LARGE;
2756 /* We drop the frame if we failed to allocate a new buffer */
2757 if (unlikely(!newskb || !(bdp->status & RXBD_LAST) ||
2758 bdp->status & RXBD_ERR)) {
2759 count_errors(bdp->status, dev);
2761 if (unlikely(!newskb))
2762 newskb = skb;
2763 else if (skb)
2764 skb_queue_head(&priv->rx_recycle, skb);
2765 } else {
2766 /* Increment the number of packets */
2767 rx_queue->stats.rx_packets++;
2768 howmany++;
2770 if (likely(skb)) {
2771 pkt_len = bdp->length - ETH_FCS_LEN;
2772 /* Remove the FCS from the packet length */
2773 skb_put(skb, pkt_len);
2774 rx_queue->stats.rx_bytes += pkt_len;
2775 skb_record_rx_queue(skb, rx_queue->qindex);
2776 gfar_process_frame(dev, skb, amount_pull);
2778 } else {
2779 if (netif_msg_rx_err(priv))
2780 printk(KERN_WARNING
2781 "%s: Missing skb!\n", dev->name);
2782 rx_queue->stats.rx_dropped++;
2783 priv->extra_stats.rx_skbmissing++;
2788 rx_queue->rx_skbuff[rx_queue->skb_currx] = newskb;
2790 /* Setup the new bdp */
2791 gfar_new_rxbdp(rx_queue, bdp, newskb);
2793 /* Update to the next pointer */
2794 bdp = next_bd(bdp, base, rx_queue->rx_ring_size);
2796 /* update to point at the next skb */
2797 rx_queue->skb_currx =
2798 (rx_queue->skb_currx + 1) &
2799 RX_RING_MOD_MASK(rx_queue->rx_ring_size);
2802 /* Update the current rxbd pointer to be the next one */
2803 rx_queue->cur_rx = bdp;
2805 return howmany;
2808 static int gfar_poll(struct napi_struct *napi, int budget)
2810 struct gfar_priv_grp *gfargrp = container_of(napi,
2811 struct gfar_priv_grp, napi);
2812 struct gfar_private *priv = gfargrp->priv;
2813 struct gfar __iomem *regs = gfargrp->regs;
2814 struct gfar_priv_tx_q *tx_queue = NULL;
2815 struct gfar_priv_rx_q *rx_queue = NULL;
2816 int rx_cleaned = 0, budget_per_queue = 0, rx_cleaned_per_queue = 0;
2817 int tx_cleaned = 0, i, left_over_budget = budget;
2818 unsigned long serviced_queues = 0;
2819 int num_queues = 0;
2821 num_queues = gfargrp->num_rx_queues;
2822 budget_per_queue = budget/num_queues;
2824 /* Clear IEVENT, so interrupts aren't called again
2825 * because of the packets that have already arrived */
2826 gfar_write(&regs->ievent, IEVENT_RTX_MASK);
2828 while (num_queues && left_over_budget) {
2830 budget_per_queue = left_over_budget/num_queues;
2831 left_over_budget = 0;
2833 for_each_set_bit(i, &gfargrp->rx_bit_map, priv->num_rx_queues) {
2834 if (test_bit(i, &serviced_queues))
2835 continue;
2836 rx_queue = priv->rx_queue[i];
2837 tx_queue = priv->tx_queue[rx_queue->qindex];
2839 tx_cleaned += gfar_clean_tx_ring(tx_queue);
2840 rx_cleaned_per_queue = gfar_clean_rx_ring(rx_queue,
2841 budget_per_queue);
2842 rx_cleaned += rx_cleaned_per_queue;
2843 if(rx_cleaned_per_queue < budget_per_queue) {
2844 left_over_budget = left_over_budget +
2845 (budget_per_queue - rx_cleaned_per_queue);
2846 set_bit(i, &serviced_queues);
2847 num_queues--;
2852 if (tx_cleaned)
2853 return budget;
2855 if (rx_cleaned < budget) {
2856 napi_complete(napi);
2858 /* Clear the halt bit in RSTAT */
2859 gfar_write(&regs->rstat, gfargrp->rstat);
2861 gfar_write(&regs->imask, IMASK_DEFAULT);
2863 /* If we are coalescing interrupts, update the timer */
2864 /* Otherwise, clear it */
2865 gfar_configure_coalescing(priv,
2866 gfargrp->rx_bit_map, gfargrp->tx_bit_map);
2869 return rx_cleaned;
2872 #ifdef CONFIG_NET_POLL_CONTROLLER
2874 * Polling 'interrupt' - used by things like netconsole to send skbs
2875 * without having to re-enable interrupts. It's not called while
2876 * the interrupt routine is executing.
2878 static void gfar_netpoll(struct net_device *dev)
2880 struct gfar_private *priv = netdev_priv(dev);
2881 int i = 0;
2883 /* If the device has multiple interrupts, run tx/rx */
2884 if (priv->device_flags & FSL_GIANFAR_DEV_HAS_MULTI_INTR) {
2885 for (i = 0; i < priv->num_grps; i++) {
2886 disable_irq(priv->gfargrp[i].interruptTransmit);
2887 disable_irq(priv->gfargrp[i].interruptReceive);
2888 disable_irq(priv->gfargrp[i].interruptError);
2889 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2890 &priv->gfargrp[i]);
2891 enable_irq(priv->gfargrp[i].interruptError);
2892 enable_irq(priv->gfargrp[i].interruptReceive);
2893 enable_irq(priv->gfargrp[i].interruptTransmit);
2895 } else {
2896 for (i = 0; i < priv->num_grps; i++) {
2897 disable_irq(priv->gfargrp[i].interruptTransmit);
2898 gfar_interrupt(priv->gfargrp[i].interruptTransmit,
2899 &priv->gfargrp[i]);
2900 enable_irq(priv->gfargrp[i].interruptTransmit);
2904 #endif
2906 /* The interrupt handler for devices with one interrupt */
2907 static irqreturn_t gfar_interrupt(int irq, void *grp_id)
2909 struct gfar_priv_grp *gfargrp = grp_id;
2911 /* Save ievent for future reference */
2912 u32 events = gfar_read(&gfargrp->regs->ievent);
2914 /* Check for reception */
2915 if (events & IEVENT_RX_MASK)
2916 gfar_receive(irq, grp_id);
2918 /* Check for transmit completion */
2919 if (events & IEVENT_TX_MASK)
2920 gfar_transmit(irq, grp_id);
2922 /* Check for errors */
2923 if (events & IEVENT_ERR_MASK)
2924 gfar_error(irq, grp_id);
2926 return IRQ_HANDLED;
2929 /* Called every time the controller might need to be made
2930 * aware of new link state. The PHY code conveys this
2931 * information through variables in the phydev structure, and this
2932 * function converts those variables into the appropriate
2933 * register values, and can bring down the device if needed.
2935 static void adjust_link(struct net_device *dev)
2937 struct gfar_private *priv = netdev_priv(dev);
2938 struct gfar __iomem *regs = priv->gfargrp[0].regs;
2939 unsigned long flags;
2940 struct phy_device *phydev = priv->phydev;
2941 int new_state = 0;
2943 local_irq_save(flags);
2944 lock_tx_qs(priv);
2946 if (phydev->link) {
2947 u32 tempval = gfar_read(&regs->maccfg2);
2948 u32 ecntrl = gfar_read(&regs->ecntrl);
2950 /* Now we make sure that we can be in full duplex mode.
2951 * If not, we operate in half-duplex mode. */
2952 if (phydev->duplex != priv->oldduplex) {
2953 new_state = 1;
2954 if (!(phydev->duplex))
2955 tempval &= ~(MACCFG2_FULL_DUPLEX);
2956 else
2957 tempval |= MACCFG2_FULL_DUPLEX;
2959 priv->oldduplex = phydev->duplex;
2962 if (phydev->speed != priv->oldspeed) {
2963 new_state = 1;
2964 switch (phydev->speed) {
2965 case 1000:
2966 tempval =
2967 ((tempval & ~(MACCFG2_IF)) | MACCFG2_GMII);
2969 ecntrl &= ~(ECNTRL_R100);
2970 break;
2971 case 100:
2972 case 10:
2973 tempval =
2974 ((tempval & ~(MACCFG2_IF)) | MACCFG2_MII);
2976 /* Reduced mode distinguishes
2977 * between 10 and 100 */
2978 if (phydev->speed == SPEED_100)
2979 ecntrl |= ECNTRL_R100;
2980 else
2981 ecntrl &= ~(ECNTRL_R100);
2982 break;
2983 default:
2984 if (netif_msg_link(priv))
2985 printk(KERN_WARNING
2986 "%s: Ack! Speed (%d) is not 10/100/1000!\n",
2987 dev->name, phydev->speed);
2988 break;
2991 priv->oldspeed = phydev->speed;
2994 gfar_write(&regs->maccfg2, tempval);
2995 gfar_write(&regs->ecntrl, ecntrl);
2997 if (!priv->oldlink) {
2998 new_state = 1;
2999 priv->oldlink = 1;
3001 } else if (priv->oldlink) {
3002 new_state = 1;
3003 priv->oldlink = 0;
3004 priv->oldspeed = 0;
3005 priv->oldduplex = -1;
3008 if (new_state && netif_msg_link(priv))
3009 phy_print_status(phydev);
3010 unlock_tx_qs(priv);
3011 local_irq_restore(flags);
3014 /* Update the hash table based on the current list of multicast
3015 * addresses we subscribe to. Also, change the promiscuity of
3016 * the device based on the flags (this function is called
3017 * whenever dev->flags is changed */
3018 static void gfar_set_multi(struct net_device *dev)
3020 struct netdev_hw_addr *ha;
3021 struct gfar_private *priv = netdev_priv(dev);
3022 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3023 u32 tempval;
3025 if (dev->flags & IFF_PROMISC) {
3026 /* Set RCTRL to PROM */
3027 tempval = gfar_read(&regs->rctrl);
3028 tempval |= RCTRL_PROM;
3029 gfar_write(&regs->rctrl, tempval);
3030 } else {
3031 /* Set RCTRL to not PROM */
3032 tempval = gfar_read(&regs->rctrl);
3033 tempval &= ~(RCTRL_PROM);
3034 gfar_write(&regs->rctrl, tempval);
3037 if (dev->flags & IFF_ALLMULTI) {
3038 /* Set the hash to rx all multicast frames */
3039 gfar_write(&regs->igaddr0, 0xffffffff);
3040 gfar_write(&regs->igaddr1, 0xffffffff);
3041 gfar_write(&regs->igaddr2, 0xffffffff);
3042 gfar_write(&regs->igaddr3, 0xffffffff);
3043 gfar_write(&regs->igaddr4, 0xffffffff);
3044 gfar_write(&regs->igaddr5, 0xffffffff);
3045 gfar_write(&regs->igaddr6, 0xffffffff);
3046 gfar_write(&regs->igaddr7, 0xffffffff);
3047 gfar_write(&regs->gaddr0, 0xffffffff);
3048 gfar_write(&regs->gaddr1, 0xffffffff);
3049 gfar_write(&regs->gaddr2, 0xffffffff);
3050 gfar_write(&regs->gaddr3, 0xffffffff);
3051 gfar_write(&regs->gaddr4, 0xffffffff);
3052 gfar_write(&regs->gaddr5, 0xffffffff);
3053 gfar_write(&regs->gaddr6, 0xffffffff);
3054 gfar_write(&regs->gaddr7, 0xffffffff);
3055 } else {
3056 int em_num;
3057 int idx;
3059 /* zero out the hash */
3060 gfar_write(&regs->igaddr0, 0x0);
3061 gfar_write(&regs->igaddr1, 0x0);
3062 gfar_write(&regs->igaddr2, 0x0);
3063 gfar_write(&regs->igaddr3, 0x0);
3064 gfar_write(&regs->igaddr4, 0x0);
3065 gfar_write(&regs->igaddr5, 0x0);
3066 gfar_write(&regs->igaddr6, 0x0);
3067 gfar_write(&regs->igaddr7, 0x0);
3068 gfar_write(&regs->gaddr0, 0x0);
3069 gfar_write(&regs->gaddr1, 0x0);
3070 gfar_write(&regs->gaddr2, 0x0);
3071 gfar_write(&regs->gaddr3, 0x0);
3072 gfar_write(&regs->gaddr4, 0x0);
3073 gfar_write(&regs->gaddr5, 0x0);
3074 gfar_write(&regs->gaddr6, 0x0);
3075 gfar_write(&regs->gaddr7, 0x0);
3077 /* If we have extended hash tables, we need to
3078 * clear the exact match registers to prepare for
3079 * setting them */
3080 if (priv->extended_hash) {
3081 em_num = GFAR_EM_NUM + 1;
3082 gfar_clear_exact_match(dev);
3083 idx = 1;
3084 } else {
3085 idx = 0;
3086 em_num = 0;
3089 if (netdev_mc_empty(dev))
3090 return;
3092 /* Parse the list, and set the appropriate bits */
3093 netdev_for_each_mc_addr(ha, dev) {
3094 if (idx < em_num) {
3095 gfar_set_mac_for_addr(dev, idx, ha->addr);
3096 idx++;
3097 } else
3098 gfar_set_hash_for_addr(dev, ha->addr);
3104 /* Clears each of the exact match registers to zero, so they
3105 * don't interfere with normal reception */
3106 static void gfar_clear_exact_match(struct net_device *dev)
3108 int idx;
3109 static const u8 zero_arr[MAC_ADDR_LEN] = {0, 0, 0, 0, 0, 0};
3111 for(idx = 1;idx < GFAR_EM_NUM + 1;idx++)
3112 gfar_set_mac_for_addr(dev, idx, zero_arr);
3115 /* Set the appropriate hash bit for the given addr */
3116 /* The algorithm works like so:
3117 * 1) Take the Destination Address (ie the multicast address), and
3118 * do a CRC on it (little endian), and reverse the bits of the
3119 * result.
3120 * 2) Use the 8 most significant bits as a hash into a 256-entry
3121 * table. The table is controlled through 8 32-bit registers:
3122 * gaddr0-7. gaddr0's MSB is entry 0, and gaddr7's LSB is
3123 * gaddr7. This means that the 3 most significant bits in the
3124 * hash index which gaddr register to use, and the 5 other bits
3125 * indicate which bit (assuming an IBM numbering scheme, which
3126 * for PowerPC (tm) is usually the case) in the register holds
3127 * the entry. */
3128 static void gfar_set_hash_for_addr(struct net_device *dev, u8 *addr)
3130 u32 tempval;
3131 struct gfar_private *priv = netdev_priv(dev);
3132 u32 result = ether_crc(MAC_ADDR_LEN, addr);
3133 int width = priv->hash_width;
3134 u8 whichbit = (result >> (32 - width)) & 0x1f;
3135 u8 whichreg = result >> (32 - width + 5);
3136 u32 value = (1 << (31-whichbit));
3138 tempval = gfar_read(priv->hash_regs[whichreg]);
3139 tempval |= value;
3140 gfar_write(priv->hash_regs[whichreg], tempval);
3144 /* There are multiple MAC Address register pairs on some controllers
3145 * This function sets the numth pair to a given address
3147 static void gfar_set_mac_for_addr(struct net_device *dev, int num,
3148 const u8 *addr)
3150 struct gfar_private *priv = netdev_priv(dev);
3151 struct gfar __iomem *regs = priv->gfargrp[0].regs;
3152 int idx;
3153 char tmpbuf[MAC_ADDR_LEN];
3154 u32 tempval;
3155 u32 __iomem *macptr = &regs->macstnaddr1;
3157 macptr += num*2;
3159 /* Now copy it into the mac registers backwards, cuz */
3160 /* little endian is silly */
3161 for (idx = 0; idx < MAC_ADDR_LEN; idx++)
3162 tmpbuf[MAC_ADDR_LEN - 1 - idx] = addr[idx];
3164 gfar_write(macptr, *((u32 *) (tmpbuf)));
3166 tempval = *((u32 *) (tmpbuf + 4));
3168 gfar_write(macptr+1, tempval);
3171 /* GFAR error interrupt handler */
3172 static irqreturn_t gfar_error(int irq, void *grp_id)
3174 struct gfar_priv_grp *gfargrp = grp_id;
3175 struct gfar __iomem *regs = gfargrp->regs;
3176 struct gfar_private *priv= gfargrp->priv;
3177 struct net_device *dev = priv->ndev;
3179 /* Save ievent for future reference */
3180 u32 events = gfar_read(&regs->ievent);
3182 /* Clear IEVENT */
3183 gfar_write(&regs->ievent, events & IEVENT_ERR_MASK);
3185 /* Magic Packet is not an error. */
3186 if ((priv->device_flags & FSL_GIANFAR_DEV_HAS_MAGIC_PACKET) &&
3187 (events & IEVENT_MAG))
3188 events &= ~IEVENT_MAG;
3190 /* Hmm... */
3191 if (netif_msg_rx_err(priv) || netif_msg_tx_err(priv))
3192 printk(KERN_DEBUG "%s: error interrupt (ievent=0x%08x imask=0x%08x)\n",
3193 dev->name, events, gfar_read(&regs->imask));
3195 /* Update the error counters */
3196 if (events & IEVENT_TXE) {
3197 dev->stats.tx_errors++;
3199 if (events & IEVENT_LC)
3200 dev->stats.tx_window_errors++;
3201 if (events & IEVENT_CRL)
3202 dev->stats.tx_aborted_errors++;
3203 if (events & IEVENT_XFUN) {
3204 unsigned long flags;
3206 if (netif_msg_tx_err(priv))
3207 printk(KERN_DEBUG "%s: TX FIFO underrun, "
3208 "packet dropped.\n", dev->name);
3209 dev->stats.tx_dropped++;
3210 priv->extra_stats.tx_underrun++;
3212 local_irq_save(flags);
3213 lock_tx_qs(priv);
3215 /* Reactivate the Tx Queues */
3216 gfar_write(&regs->tstat, gfargrp->tstat);
3218 unlock_tx_qs(priv);
3219 local_irq_restore(flags);
3221 if (netif_msg_tx_err(priv))
3222 printk(KERN_DEBUG "%s: Transmit Error\n", dev->name);
3224 if (events & IEVENT_BSY) {
3225 dev->stats.rx_errors++;
3226 priv->extra_stats.rx_bsy++;
3228 gfar_receive(irq, grp_id);
3230 if (netif_msg_rx_err(priv))
3231 printk(KERN_DEBUG "%s: busy error (rstat: %x)\n",
3232 dev->name, gfar_read(&regs->rstat));
3234 if (events & IEVENT_BABR) {
3235 dev->stats.rx_errors++;
3236 priv->extra_stats.rx_babr++;
3238 if (netif_msg_rx_err(priv))
3239 printk(KERN_DEBUG "%s: babbling RX error\n", dev->name);
3241 if (events & IEVENT_EBERR) {
3242 priv->extra_stats.eberr++;
3243 if (netif_msg_rx_err(priv))
3244 printk(KERN_DEBUG "%s: bus error\n", dev->name);
3246 if ((events & IEVENT_RXC) && netif_msg_rx_status(priv))
3247 printk(KERN_DEBUG "%s: control frame\n", dev->name);
3249 if (events & IEVENT_BABT) {
3250 priv->extra_stats.tx_babt++;
3251 if (netif_msg_tx_err(priv))
3252 printk(KERN_DEBUG "%s: babbling TX error\n", dev->name);
3254 return IRQ_HANDLED;
3257 static struct of_device_id gfar_match[] =
3260 .type = "network",
3261 .compatible = "gianfar",
3264 .compatible = "fsl,etsec2",
3268 MODULE_DEVICE_TABLE(of, gfar_match);
3270 /* Structure for a device driver */
3271 static struct platform_driver gfar_driver = {
3272 .driver = {
3273 .name = "fsl-gianfar",
3274 .owner = THIS_MODULE,
3275 .pm = GFAR_PM_OPS,
3276 .of_match_table = gfar_match,
3278 .probe = gfar_probe,
3279 .remove = gfar_remove,
3282 static int __init gfar_init(void)
3284 return platform_driver_register(&gfar_driver);
3287 static void __exit gfar_exit(void)
3289 platform_driver_unregister(&gfar_driver);
3292 module_init(gfar_init);
3293 module_exit(gfar_exit);