1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index
{
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS
= MEM_CGROUP_STAT_DATA
,
102 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS
,
107 struct mem_cgroup_stat_cpu
{
108 s64 count
[MEM_CGROUP_STAT_NSTATS
];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone
{
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists
[NR_LRU_LISTS
];
119 unsigned long count
[NR_LRU_LISTS
];
121 struct zone_reclaim_stat reclaim_stat
;
122 struct rb_node tree_node
; /* RB tree node */
123 unsigned long long usage_in_excess
;/* Set to the value by which */
124 /* the soft limit is exceeded*/
126 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node
{
133 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
136 struct mem_cgroup_lru_info
{
137 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone
{
146 struct rb_root rb_root
;
150 struct mem_cgroup_tree_per_node
{
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
154 struct mem_cgroup_tree
{
155 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
160 struct mem_cgroup_threshold
{
161 struct eventfd_ctx
*eventfd
;
166 struct mem_cgroup_threshold_ary
{
167 /* An array index points to threshold just below usage. */
168 int current_threshold
;
169 /* Size of entries[] */
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries
[0];
175 struct mem_cgroup_thresholds
{
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary
*primary
;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary
*spare
;
187 struct mem_cgroup_eventfd_list
{
188 struct list_head list
;
189 struct eventfd_ctx
*eventfd
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
207 struct cgroup_subsys_state css
;
209 * the counter to account for memory usage
211 struct res_counter res
;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw
;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info
;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock
;
228 * While reclaiming in a hierarchy, we cache the last child we
231 int last_scanned_child
;
233 * Should the accounting and control be hierarchical, per subtree?
239 unsigned int swappiness
;
240 /* OOM-Killer disable */
241 int oom_kill_disable
;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum
;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock
;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds
;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds
;
255 /* For oom notifier event fd */
256 struct list_head oom_notify
;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate
;
266 struct mem_cgroup_stat_cpu
*stat
;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base
;
272 spinlock_t pcp_counter_lock
;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
281 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct
{
288 spinlock_t lock
; /* for from, to */
289 struct mem_cgroup
*from
;
290 struct mem_cgroup
*to
;
291 unsigned long precharge
;
292 unsigned long moved_charge
;
293 unsigned long moved_swap
;
294 struct task_struct
*moving_task
; /* a task moving charges */
295 struct mm_struct
*mm
;
296 wait_queue_head_t waitq
; /* a waitq for other context */
298 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
299 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
302 static bool move_anon(void)
304 return test_bit(MOVE_CHARGE_TYPE_ANON
,
305 &mc
.to
->move_charge_at_immigrate
);
308 static bool move_file(void)
310 return test_bit(MOVE_CHARGE_TYPE_FILE
,
311 &mc
.to
->move_charge_at_immigrate
);
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
322 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
324 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
325 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
327 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE (1UL << PCG_CACHE)
333 #define PCGF_USED (1UL << PCG_USED)
334 #define PCGF_LOCK (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT (1UL << PCG_ACCT)
338 /* for encoding cft->private value on file */
341 #define _OOM_TYPE (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val) ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL (0)
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 static void mem_cgroup_get(struct mem_cgroup
*mem
);
359 static void mem_cgroup_put(struct mem_cgroup
*mem
);
360 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
361 static void drain_all_stock_async(void);
363 static struct mem_cgroup_per_zone
*
364 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
366 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
369 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
374 static struct mem_cgroup_per_zone
*
375 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
377 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
378 int nid
= page_cgroup_nid(pc
);
379 int zid
= page_cgroup_zid(pc
);
384 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
387 static struct mem_cgroup_tree_per_zone
*
388 soft_limit_tree_node_zone(int nid
, int zid
)
390 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
393 static struct mem_cgroup_tree_per_zone
*
394 soft_limit_tree_from_page(struct page
*page
)
396 int nid
= page_to_nid(page
);
397 int zid
= page_zonenum(page
);
399 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
403 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
404 struct mem_cgroup_per_zone
*mz
,
405 struct mem_cgroup_tree_per_zone
*mctz
,
406 unsigned long long new_usage_in_excess
)
408 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
409 struct rb_node
*parent
= NULL
;
410 struct mem_cgroup_per_zone
*mz_node
;
415 mz
->usage_in_excess
= new_usage_in_excess
;
416 if (!mz
->usage_in_excess
)
420 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
422 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
428 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
431 rb_link_node(&mz
->tree_node
, parent
, p
);
432 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
437 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
438 struct mem_cgroup_per_zone
*mz
,
439 struct mem_cgroup_tree_per_zone
*mctz
)
443 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
448 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
449 struct mem_cgroup_per_zone
*mz
,
450 struct mem_cgroup_tree_per_zone
*mctz
)
452 spin_lock(&mctz
->lock
);
453 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
454 spin_unlock(&mctz
->lock
);
458 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
460 unsigned long long excess
;
461 struct mem_cgroup_per_zone
*mz
;
462 struct mem_cgroup_tree_per_zone
*mctz
;
463 int nid
= page_to_nid(page
);
464 int zid
= page_zonenum(page
);
465 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
472 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
473 excess
= res_counter_soft_limit_excess(&mem
->res
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
479 spin_lock(&mctz
->lock
);
480 /* if on-tree, remove it */
482 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
488 spin_unlock(&mctz
->lock
);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
496 struct mem_cgroup_per_zone
*mz
;
497 struct mem_cgroup_tree_per_zone
*mctz
;
499 for_each_node_state(node
, N_POSSIBLE
) {
500 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
501 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
502 mctz
= soft_limit_tree_node_zone(node
, zone
);
503 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
510 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
513 static struct mem_cgroup_per_zone
*
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
516 struct rb_node
*rightmost
= NULL
;
517 struct mem_cgroup_per_zone
*mz
;
521 rightmost
= rb_last(&mctz
->rb_root
);
523 goto done
; /* Nothing to reclaim from */
525 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
531 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
532 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
533 !css_tryget(&mz
->mem
->css
))
539 static struct mem_cgroup_per_zone
*
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
542 struct mem_cgroup_per_zone
*mz
;
544 spin_lock(&mctz
->lock
);
545 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
546 spin_unlock(&mctz
->lock
);
551 * Implementation Note: reading percpu statistics for memcg.
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
569 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
570 enum mem_cgroup_stat_index idx
)
576 for_each_online_cpu(cpu
)
577 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
578 #ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem
->pcp_counter_lock
);
580 val
+= mem
->nocpu_base
.count
[idx
];
581 spin_unlock(&mem
->pcp_counter_lock
);
587 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
591 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
592 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
596 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
599 int val
= (charge
) ? 1 : -1;
600 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
603 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
604 struct page_cgroup
*pc
,
607 int val
= (charge
) ? 1 : -1;
611 if (PageCgroupCache(pc
))
612 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
614 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
617 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
619 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
620 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
629 struct mem_cgroup_per_zone
*mz
;
632 for_each_online_node(nid
)
633 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
634 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
635 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
640 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
644 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
646 return !(val
& ((1 << event_mask_shift
) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
657 mem_cgroup_threshold(mem
);
658 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
659 mem_cgroup_update_tree(mem
, page
);
663 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
665 return container_of(cgroup_subsys_state(cont
,
666 mem_cgroup_subsys_id
), struct mem_cgroup
,
670 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
680 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
681 struct mem_cgroup
, css
);
684 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
686 struct mem_cgroup
*mem
= NULL
;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
697 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
700 } while (!css_tryget(&mem
->css
));
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
708 struct cgroup_subsys_state
*css
;
711 if (!mem
) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup
; /*css_put/get against root is ignored*/
713 if (!mem
->use_hierarchy
) {
714 if (css_tryget(&mem
->css
))
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
724 if (css
&& css_tryget(css
))
725 mem
= container_of(css
, struct mem_cgroup
, css
);
732 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
733 struct mem_cgroup
*root
,
736 int nextid
= css_id(&iter
->css
) + 1;
739 struct cgroup_subsys_state
*css
;
741 hierarchy_used
= iter
->use_hierarchy
;
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond
|| (root
&& !hierarchy_used
))
749 root
= root_mem_cgroup
;
755 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
757 if (css
&& css_tryget(css
))
758 iter
= container_of(css
, struct mem_cgroup
, css
);
760 /* If css is NULL, no more cgroups will be found */
762 } while (css
&& !iter
);
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
785 return (mem
== root_mem_cgroup
);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
804 struct page_cgroup
*pc
;
805 struct mem_cgroup_per_zone
*mz
;
807 if (mem_cgroup_disabled())
809 pc
= lookup_page_cgroup(page
);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc
))
813 VM_BUG_ON(!pc
->mem_cgroup
);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz
= page_cgroup_zoneinfo(pc
);
819 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
820 if (mem_cgroup_is_root(pc
->mem_cgroup
))
822 VM_BUG_ON(list_empty(&pc
->lru
));
823 list_del_init(&pc
->lru
);
827 void mem_cgroup_del_lru(struct page
*page
)
829 mem_cgroup_del_lru_list(page
, page_lru(page
));
832 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
834 struct mem_cgroup_per_zone
*mz
;
835 struct page_cgroup
*pc
;
837 if (mem_cgroup_disabled())
840 pc
= lookup_page_cgroup(page
);
842 * Used bit is set without atomic ops but after smp_wmb().
843 * For making pc->mem_cgroup visible, insert smp_rmb() here.
846 /* unused or root page is not rotated. */
847 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
849 mz
= page_cgroup_zoneinfo(pc
);
850 list_move(&pc
->lru
, &mz
->lists
[lru
]);
853 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
855 struct page_cgroup
*pc
;
856 struct mem_cgroup_per_zone
*mz
;
858 if (mem_cgroup_disabled())
860 pc
= lookup_page_cgroup(page
);
861 VM_BUG_ON(PageCgroupAcctLRU(pc
));
863 * Used bit is set without atomic ops but after smp_wmb().
864 * For making pc->mem_cgroup visible, insert smp_rmb() here.
867 if (!PageCgroupUsed(pc
))
870 mz
= page_cgroup_zoneinfo(pc
);
871 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
872 SetPageCgroupAcctLRU(pc
);
873 if (mem_cgroup_is_root(pc
->mem_cgroup
))
875 list_add(&pc
->lru
, &mz
->lists
[lru
]);
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
888 struct zone
*zone
= page_zone(page
);
889 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
891 spin_lock_irqsave(&zone
->lru_lock
, flags
);
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
896 if (!PageCgroupUsed(pc
))
897 mem_cgroup_del_lru_list(page
, page_lru(page
));
898 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
904 struct zone
*zone
= page_zone(page
);
905 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
907 spin_lock_irqsave(&zone
->lru_lock
, flags
);
908 /* link when the page is linked to LRU but page_cgroup isn't */
909 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
910 mem_cgroup_add_lru_list(page
, page_lru(page
));
911 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
915 void mem_cgroup_move_lists(struct page
*page
,
916 enum lru_list from
, enum lru_list to
)
918 if (mem_cgroup_disabled())
920 mem_cgroup_del_lru_list(page
, from
);
921 mem_cgroup_add_lru_list(page
, to
);
924 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
927 struct mem_cgroup
*curr
= NULL
;
928 struct task_struct
*p
;
930 p
= find_lock_task_mm(task
);
933 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
943 if (mem
->use_hierarchy
)
944 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
951 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
953 unsigned long active
;
954 unsigned long inactive
;
956 unsigned long inactive_ratio
;
958 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
959 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
961 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
963 inactive_ratio
= int_sqrt(10 * gb
);
968 present_pages
[0] = inactive
;
969 present_pages
[1] = active
;
972 return inactive_ratio
;
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
977 unsigned long active
;
978 unsigned long inactive
;
979 unsigned long present_pages
[2];
980 unsigned long inactive_ratio
;
982 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
984 inactive
= present_pages
[0];
985 active
= present_pages
[1];
987 if (inactive
* inactive_ratio
< active
)
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
995 unsigned long active
;
996 unsigned long inactive
;
998 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
999 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1001 return (active
> inactive
);
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
1008 int nid
= zone_to_nid(zone
);
1009 int zid
= zone_idx(zone
);
1010 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1012 return MEM_CGROUP_ZSTAT(mz
, lru
);
1015 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1018 int nid
= zone_to_nid(zone
);
1019 int zid
= zone_idx(zone
);
1020 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1022 return &mz
->reclaim_stat
;
1025 struct zone_reclaim_stat
*
1026 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1028 struct page_cgroup
*pc
;
1029 struct mem_cgroup_per_zone
*mz
;
1031 if (mem_cgroup_disabled())
1034 pc
= lookup_page_cgroup(page
);
1036 * Used bit is set without atomic ops but after smp_wmb().
1037 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1040 if (!PageCgroupUsed(pc
))
1043 mz
= page_cgroup_zoneinfo(pc
);
1047 return &mz
->reclaim_stat
;
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1051 struct list_head
*dst
,
1052 unsigned long *scanned
, int order
,
1053 int mode
, struct zone
*z
,
1054 struct mem_cgroup
*mem_cont
,
1055 int active
, int file
)
1057 unsigned long nr_taken
= 0;
1061 struct list_head
*src
;
1062 struct page_cgroup
*pc
, *tmp
;
1063 int nid
= zone_to_nid(z
);
1064 int zid
= zone_idx(z
);
1065 struct mem_cgroup_per_zone
*mz
;
1066 int lru
= LRU_FILE
* file
+ active
;
1070 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1071 src
= &mz
->lists
[lru
];
1074 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1075 if (scan
>= nr_to_scan
)
1079 if (unlikely(!PageCgroupUsed(pc
)))
1081 if (unlikely(!PageLRU(page
)))
1085 ret
= __isolate_lru_page(page
, mode
, file
);
1088 list_move(&page
->lru
, dst
);
1089 mem_cgroup_del_lru(page
);
1090 nr_taken
+= hpage_nr_pages(page
);
1093 /* we don't affect global LRU but rotate in our LRU */
1094 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1109 #define mem_cgroup_from_res_counter(counter, member) \
1110 container_of(counter, struct mem_cgroup, member)
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1114 if (do_swap_account
) {
1115 if (res_counter_check_under_limit(&mem
->res
) &&
1116 res_counter_check_under_limit(&mem
->memsw
))
1119 if (res_counter_check_under_limit(&mem
->res
))
1124 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1126 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1127 unsigned int swappiness
;
1130 if (cgrp
->parent
== NULL
)
1131 return vm_swappiness
;
1133 spin_lock(&memcg
->reclaim_param_lock
);
1134 swappiness
= memcg
->swappiness
;
1135 spin_unlock(&memcg
->reclaim_param_lock
);
1140 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1145 spin_lock(&mem
->pcp_counter_lock
);
1146 for_each_online_cpu(cpu
)
1147 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1148 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1149 spin_unlock(&mem
->pcp_counter_lock
);
1155 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1162 spin_lock(&mem
->pcp_counter_lock
);
1163 for_each_online_cpu(cpu
)
1164 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1165 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1166 spin_unlock(&mem
->pcp_counter_lock
);
1170 * 2 routines for checking "mem" is under move_account() or not.
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 * for avoiding race in accounting. If true,
1174 * pc->mem_cgroup may be overwritten.
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 * under hierarchy of moving cgroups. This is for
1178 * waiting at hith-memory prressure caused by "move".
1181 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1183 VM_BUG_ON(!rcu_read_lock_held());
1184 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1187 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1189 struct mem_cgroup
*from
;
1190 struct mem_cgroup
*to
;
1193 * Unlike task_move routines, we access mc.to, mc.from not under
1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1196 spin_lock(&mc
.lock
);
1201 if (from
== mem
|| to
== mem
1202 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1203 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1206 spin_unlock(&mc
.lock
);
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1212 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1213 if (mem_cgroup_under_move(mem
)) {
1215 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1216 /* moving charge context might have finished. */
1219 finish_wait(&mc
.waitq
, &wait
);
1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1234 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1236 struct cgroup
*task_cgrp
;
1237 struct cgroup
*mem_cgrp
;
1239 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 * on the assumption that OOM is serialized for memory controller.
1241 * If this assumption is broken, revisit this code.
1243 static char memcg_name
[PATH_MAX
];
1252 mem_cgrp
= memcg
->css
.cgroup
;
1253 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1255 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1258 * Unfortunately, we are unable to convert to a useful name
1259 * But we'll still print out the usage information
1266 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1269 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1277 * Continues from above, so we don't need an KERN_ level
1279 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1282 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1284 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1285 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1286 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1288 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1289 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1290 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1297 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1300 struct mem_cgroup
*iter
;
1302 for_each_mem_cgroup_tree(iter
, mem
)
1308 * Return the memory (and swap, if configured) limit for a memcg.
1310 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1315 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
) +
1317 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1322 return min(limit
, memsw
);
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1330 static struct mem_cgroup
*
1331 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1333 struct mem_cgroup
*ret
= NULL
;
1334 struct cgroup_subsys_state
*css
;
1337 if (!root_mem
->use_hierarchy
) {
1338 css_get(&root_mem
->css
);
1344 nextid
= root_mem
->last_scanned_child
+ 1;
1345 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1347 if (css
&& css_tryget(css
))
1348 ret
= container_of(css
, struct mem_cgroup
, css
);
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem
->reclaim_param_lock
);
1354 /* this means start scan from ID:1 */
1355 root_mem
->last_scanned_child
= 0;
1357 root_mem
->last_scanned_child
= found
;
1358 spin_unlock(&root_mem
->reclaim_param_lock
);
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
1369 * root_mem is the original ancestor that we've been reclaim from.
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1379 unsigned long reclaim_options
)
1381 struct mem_cgroup
*victim
;
1384 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1385 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1386 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1387 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem
->memsw_is_minimum
)
1394 victim
= mem_cgroup_select_victim(root_mem
);
1395 if (victim
== root_mem
) {
1398 drain_all_stock_async();
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1405 if (!check_soft
|| !total
) {
1406 css_put(&victim
->css
);
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1415 if (total
>= (excess
>> 2) ||
1416 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1417 css_put(&victim
->css
);
1422 if (!mem_cgroup_local_usage(victim
)) {
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim
->css
);
1427 /* we use swappiness of local cgroup */
1429 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1430 noswap
, get_swappiness(victim
), zone
);
1432 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1433 noswap
, get_swappiness(victim
));
1434 css_put(&victim
->css
);
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1444 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1446 } else if (mem_cgroup_check_under_limit(root_mem
))
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1458 int x
, lock_count
= 0;
1459 struct mem_cgroup
*iter
;
1461 for_each_mem_cgroup_tree(iter
, mem
) {
1462 x
= atomic_inc_return(&iter
->oom_lock
);
1463 lock_count
= max(x
, lock_count
);
1466 if (lock_count
== 1)
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1473 struct mem_cgroup
*iter
;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1480 for_each_mem_cgroup_tree(iter
, mem
)
1481 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1486 static DEFINE_MUTEX(memcg_oom_mutex
);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1489 struct oom_wait_info
{
1490 struct mem_cgroup
*mem
;
1494 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1495 unsigned mode
, int sync
, void *arg
)
1497 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1498 struct oom_wait_info
*oom_wait_info
;
1500 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1502 if (oom_wait_info
->mem
== wake_mem
)
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1511 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1512 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1516 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1519 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1525 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1527 if (mem
&& atomic_read(&mem
->oom_lock
))
1528 memcg_wakeup_oom(mem
);
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1536 struct oom_wait_info owait
;
1537 bool locked
, need_to_kill
;
1540 owait
.wait
.flags
= 0;
1541 owait
.wait
.func
= memcg_oom_wake_function
;
1542 owait
.wait
.private = current
;
1543 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1544 need_to_kill
= true;
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex
);
1547 locked
= mem_cgroup_oom_lock(mem
);
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1553 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1554 if (!locked
|| mem
->oom_kill_disable
)
1555 need_to_kill
= false;
1557 mem_cgroup_oom_notify(mem
);
1558 mutex_unlock(&memcg_oom_mutex
);
1561 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1562 mem_cgroup_out_of_memory(mem
, mask
);
1565 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1567 mutex_lock(&memcg_oom_mutex
);
1568 mem_cgroup_oom_unlock(mem
);
1569 memcg_wakeup_oom(mem
);
1570 mutex_unlock(&memcg_oom_mutex
);
1572 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
1583 * Notes: Race condition
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
1603 void mem_cgroup_update_page_stat(struct page
*page
,
1604 enum mem_cgroup_page_stat_item idx
, int val
)
1606 struct mem_cgroup
*mem
;
1607 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1608 bool need_unlock
= false;
1614 mem
= pc
->mem_cgroup
;
1615 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1617 /* pc->mem_cgroup is unstable ? */
1618 if (unlikely(mem_cgroup_stealed(mem
))) {
1619 /* take a lock against to access pc->mem_cgroup */
1620 lock_page_cgroup(pc
);
1622 mem
= pc
->mem_cgroup
;
1623 if (!mem
|| !PageCgroupUsed(pc
))
1628 case MEMCG_NR_FILE_MAPPED
:
1630 SetPageCgroupFileMapped(pc
);
1631 else if (!page_mapped(page
))
1632 ClearPageCgroupFileMapped(pc
);
1633 idx
= MEM_CGROUP_STAT_FILE_MAPPED
;
1639 this_cpu_add(mem
->stat
->count
[idx
], val
);
1642 if (unlikely(need_unlock
))
1643 unlock_page_cgroup(pc
);
1647 EXPORT_SYMBOL(mem_cgroup_update_page_stat
);
1650 * size of first charge trial. "32" comes from vmscan.c's magic value.
1651 * TODO: maybe necessary to use big numbers in big irons.
1653 #define CHARGE_SIZE (32 * PAGE_SIZE)
1654 struct memcg_stock_pcp
{
1655 struct mem_cgroup
*cached
; /* this never be root cgroup */
1657 struct work_struct work
;
1659 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1660 static atomic_t memcg_drain_count
;
1663 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1664 * from local stock and true is returned. If the stock is 0 or charges from a
1665 * cgroup which is not current target, returns false. This stock will be
1668 static bool consume_stock(struct mem_cgroup
*mem
)
1670 struct memcg_stock_pcp
*stock
;
1673 stock
= &get_cpu_var(memcg_stock
);
1674 if (mem
== stock
->cached
&& stock
->charge
)
1675 stock
->charge
-= PAGE_SIZE
;
1676 else /* need to call res_counter_charge */
1678 put_cpu_var(memcg_stock
);
1683 * Returns stocks cached in percpu to res_counter and reset cached information.
1685 static void drain_stock(struct memcg_stock_pcp
*stock
)
1687 struct mem_cgroup
*old
= stock
->cached
;
1689 if (stock
->charge
) {
1690 res_counter_uncharge(&old
->res
, stock
->charge
);
1691 if (do_swap_account
)
1692 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1694 stock
->cached
= NULL
;
1699 * This must be called under preempt disabled or must be called by
1700 * a thread which is pinned to local cpu.
1702 static void drain_local_stock(struct work_struct
*dummy
)
1704 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1709 * Cache charges(val) which is from res_counter, to local per_cpu area.
1710 * This will be consumed by consume_stock() function, later.
1712 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1714 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1716 if (stock
->cached
!= mem
) { /* reset if necessary */
1718 stock
->cached
= mem
;
1720 stock
->charge
+= val
;
1721 put_cpu_var(memcg_stock
);
1725 * Tries to drain stocked charges in other cpus. This function is asynchronous
1726 * and just put a work per cpu for draining localy on each cpu. Caller can
1727 * expects some charges will be back to res_counter later but cannot wait for
1730 static void drain_all_stock_async(void)
1733 /* This function is for scheduling "drain" in asynchronous way.
1734 * The result of "drain" is not directly handled by callers. Then,
1735 * if someone is calling drain, we don't have to call drain more.
1736 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1737 * there is a race. We just do loose check here.
1739 if (atomic_read(&memcg_drain_count
))
1741 /* Notify other cpus that system-wide "drain" is running */
1742 atomic_inc(&memcg_drain_count
);
1744 for_each_online_cpu(cpu
) {
1745 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1746 schedule_work_on(cpu
, &stock
->work
);
1749 atomic_dec(&memcg_drain_count
);
1750 /* We don't wait for flush_work */
1753 /* This is a synchronous drain interface. */
1754 static void drain_all_stock_sync(void)
1756 /* called when force_empty is called */
1757 atomic_inc(&memcg_drain_count
);
1758 schedule_on_each_cpu(drain_local_stock
);
1759 atomic_dec(&memcg_drain_count
);
1763 * This function drains percpu counter value from DEAD cpu and
1764 * move it to local cpu. Note that this function can be preempted.
1766 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
1770 spin_lock(&mem
->pcp_counter_lock
);
1771 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
1772 s64 x
= per_cpu(mem
->stat
->count
[i
], cpu
);
1774 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
1775 mem
->nocpu_base
.count
[i
] += x
;
1777 /* need to clear ON_MOVE value, works as a kind of lock. */
1778 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
1779 spin_unlock(&mem
->pcp_counter_lock
);
1782 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
1784 int idx
= MEM_CGROUP_ON_MOVE
;
1786 spin_lock(&mem
->pcp_counter_lock
);
1787 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
1788 spin_unlock(&mem
->pcp_counter_lock
);
1791 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1792 unsigned long action
,
1795 int cpu
= (unsigned long)hcpu
;
1796 struct memcg_stock_pcp
*stock
;
1797 struct mem_cgroup
*iter
;
1799 if ((action
== CPU_ONLINE
)) {
1800 for_each_mem_cgroup_all(iter
)
1801 synchronize_mem_cgroup_on_move(iter
, cpu
);
1805 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
1808 for_each_mem_cgroup_all(iter
)
1809 mem_cgroup_drain_pcp_counter(iter
, cpu
);
1811 stock
= &per_cpu(memcg_stock
, cpu
);
1817 /* See __mem_cgroup_try_charge() for details */
1819 CHARGE_OK
, /* success */
1820 CHARGE_RETRY
, /* need to retry but retry is not bad */
1821 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
1822 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
1823 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
1826 static int __mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
1827 int csize
, bool oom_check
)
1829 struct mem_cgroup
*mem_over_limit
;
1830 struct res_counter
*fail_res
;
1831 unsigned long flags
= 0;
1834 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1837 if (!do_swap_account
)
1839 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1843 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
1844 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1846 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
1848 if (csize
> PAGE_SIZE
) /* change csize and retry */
1849 return CHARGE_RETRY
;
1851 if (!(gfp_mask
& __GFP_WAIT
))
1852 return CHARGE_WOULDBLOCK
;
1854 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1857 * try_to_free_mem_cgroup_pages() might not give us a full
1858 * picture of reclaim. Some pages are reclaimed and might be
1859 * moved to swap cache or just unmapped from the cgroup.
1860 * Check the limit again to see if the reclaim reduced the
1861 * current usage of the cgroup before giving up
1863 if (ret
|| mem_cgroup_check_under_limit(mem_over_limit
))
1864 return CHARGE_RETRY
;
1867 * At task move, charge accounts can be doubly counted. So, it's
1868 * better to wait until the end of task_move if something is going on.
1870 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1871 return CHARGE_RETRY
;
1873 /* If we don't need to call oom-killer at el, return immediately */
1875 return CHARGE_NOMEM
;
1877 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
1878 return CHARGE_OOM_DIE
;
1880 return CHARGE_RETRY
;
1884 * Unlike exported interface, "oom" parameter is added. if oom==true,
1885 * oom-killer can be invoked.
1887 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1889 struct mem_cgroup
**memcg
, bool oom
,
1892 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1893 struct mem_cgroup
*mem
= NULL
;
1895 int csize
= max(CHARGE_SIZE
, (unsigned long) page_size
);
1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 * in system level. So, allow to go ahead dying process in addition to
1902 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1903 || fatal_signal_pending(current
)))
1907 * We always charge the cgroup the mm_struct belongs to.
1908 * The mm_struct's mem_cgroup changes on task migration if the
1909 * thread group leader migrates. It's possible that mm is not
1910 * set, if so charge the init_mm (happens for pagecache usage).
1915 if (*memcg
) { /* css should be a valid one */
1917 VM_BUG_ON(css_is_removed(&mem
->css
));
1918 if (mem_cgroup_is_root(mem
))
1920 if (page_size
== PAGE_SIZE
&& consume_stock(mem
))
1924 struct task_struct
*p
;
1927 p
= rcu_dereference(mm
->owner
);
1929 * Because we don't have task_lock(), "p" can exit.
1930 * In that case, "mem" can point to root or p can be NULL with
1931 * race with swapoff. Then, we have small risk of mis-accouning.
1932 * But such kind of mis-account by race always happens because
1933 * we don't have cgroup_mutex(). It's overkill and we allo that
1935 * (*) swapoff at el will charge against mm-struct not against
1936 * task-struct. So, mm->owner can be NULL.
1938 mem
= mem_cgroup_from_task(p
);
1939 if (!mem
|| mem_cgroup_is_root(mem
)) {
1943 if (page_size
== PAGE_SIZE
&& consume_stock(mem
)) {
1945 * It seems dagerous to access memcg without css_get().
1946 * But considering how consume_stok works, it's not
1947 * necessary. If consume_stock success, some charges
1948 * from this memcg are cached on this cpu. So, we
1949 * don't need to call css_get()/css_tryget() before
1950 * calling consume_stock().
1955 /* after here, we may be blocked. we need to get refcnt */
1956 if (!css_tryget(&mem
->css
)) {
1966 /* If killed, bypass charge */
1967 if (fatal_signal_pending(current
)) {
1973 if (oom
&& !nr_oom_retries
) {
1975 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1978 ret
= __mem_cgroup_do_charge(mem
, gfp_mask
, csize
, oom_check
);
1983 case CHARGE_RETRY
: /* not in OOM situation but retry */
1988 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
1991 case CHARGE_NOMEM
: /* OOM routine works */
1996 /* If oom, we never return -ENOMEM */
1999 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2003 } while (ret
!= CHARGE_OK
);
2005 if (csize
> page_size
)
2006 refill_stock(mem
, csize
- page_size
);
2020 * Somemtimes we have to undo a charge we got by try_charge().
2021 * This function is for that and do uncharge, put css's refcnt.
2022 * gotten by try_charge().
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2025 unsigned long count
)
2027 if (!mem_cgroup_is_root(mem
)) {
2028 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
2029 if (do_swap_account
)
2030 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2037 __mem_cgroup_cancel_charge(mem
, page_size
>> PAGE_SHIFT
);
2041 * A helper function to get mem_cgroup from ID. must be called under
2042 * rcu_read_lock(). The caller must check css_is_removed() or some if
2043 * it's concern. (dropping refcnt from swap can be called against removed
2046 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2048 struct cgroup_subsys_state
*css
;
2050 /* ID 0 is unused ID */
2053 css
= css_lookup(&mem_cgroup_subsys
, id
);
2056 return container_of(css
, struct mem_cgroup
, css
);
2059 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2061 struct mem_cgroup
*mem
= NULL
;
2062 struct page_cgroup
*pc
;
2066 VM_BUG_ON(!PageLocked(page
));
2068 pc
= lookup_page_cgroup(page
);
2069 lock_page_cgroup(pc
);
2070 if (PageCgroupUsed(pc
)) {
2071 mem
= pc
->mem_cgroup
;
2072 if (mem
&& !css_tryget(&mem
->css
))
2074 } else if (PageSwapCache(page
)) {
2075 ent
.val
= page_private(page
);
2076 id
= lookup_swap_cgroup(ent
);
2078 mem
= mem_cgroup_lookup(id
);
2079 if (mem
&& !css_tryget(&mem
->css
))
2083 unlock_page_cgroup(pc
);
2088 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2089 * USED state. If already USED, uncharge and return.
2091 static void ____mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2092 struct page_cgroup
*pc
,
2093 enum charge_type ctype
)
2095 pc
->mem_cgroup
= mem
;
2097 * We access a page_cgroup asynchronously without lock_page_cgroup().
2098 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2099 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2100 * before USED bit, we need memory barrier here.
2101 * See mem_cgroup_add_lru_list(), etc.
2105 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2106 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2107 SetPageCgroupCache(pc
);
2108 SetPageCgroupUsed(pc
);
2110 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2111 ClearPageCgroupCache(pc
);
2112 SetPageCgroupUsed(pc
);
2118 mem_cgroup_charge_statistics(mem
, pc
, true);
2121 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2122 struct page_cgroup
*pc
,
2123 enum charge_type ctype
,
2127 int count
= page_size
>> PAGE_SHIFT
;
2129 /* try_charge() can return NULL to *memcg, taking care of it. */
2133 lock_page_cgroup(pc
);
2134 if (unlikely(PageCgroupUsed(pc
))) {
2135 unlock_page_cgroup(pc
);
2136 mem_cgroup_cancel_charge(mem
, page_size
);
2141 * we don't need page_cgroup_lock about tail pages, becase they are not
2142 * accessed by any other context at this point.
2144 for (i
= 0; i
< count
; i
++)
2145 ____mem_cgroup_commit_charge(mem
, pc
+ i
, ctype
);
2147 unlock_page_cgroup(pc
);
2149 * "charge_statistics" updated event counter. Then, check it.
2150 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2151 * if they exceeds softlimit.
2153 memcg_check_events(mem
, pc
->page
);
2157 * __mem_cgroup_move_account - move account of the page
2158 * @pc: page_cgroup of the page.
2159 * @from: mem_cgroup which the page is moved from.
2160 * @to: mem_cgroup which the page is moved to. @from != @to.
2161 * @uncharge: whether we should call uncharge and css_put against @from.
2163 * The caller must confirm following.
2164 * - page is not on LRU (isolate_page() is useful.)
2165 * - the pc is locked, used, and ->mem_cgroup points to @from.
2167 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2168 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2169 * true, this function does "uncharge" from old cgroup, but it doesn't if
2170 * @uncharge is false, so a caller should do "uncharge".
2173 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
2174 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2176 VM_BUG_ON(from
== to
);
2177 VM_BUG_ON(PageLRU(pc
->page
));
2178 VM_BUG_ON(!page_is_cgroup_locked(pc
));
2179 VM_BUG_ON(!PageCgroupUsed(pc
));
2180 VM_BUG_ON(pc
->mem_cgroup
!= from
);
2182 if (PageCgroupFileMapped(pc
)) {
2183 /* Update mapped_file data for mem_cgroup */
2185 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2186 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2189 mem_cgroup_charge_statistics(from
, pc
, false);
2191 /* This is not "cancel", but cancel_charge does all we need. */
2192 mem_cgroup_cancel_charge(from
, PAGE_SIZE
);
2194 /* caller should have done css_get */
2195 pc
->mem_cgroup
= to
;
2196 mem_cgroup_charge_statistics(to
, pc
, true);
2198 * We charges against "to" which may not have any tasks. Then, "to"
2199 * can be under rmdir(). But in current implementation, caller of
2200 * this function is just force_empty() and move charge, so it's
2201 * garanteed that "to" is never removed. So, we don't check rmdir
2207 * check whether the @pc is valid for moving account and call
2208 * __mem_cgroup_move_account()
2210 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
2211 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2214 lock_page_cgroup(pc
);
2215 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
2216 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
2219 unlock_page_cgroup(pc
);
2223 memcg_check_events(to
, pc
->page
);
2224 memcg_check_events(from
, pc
->page
);
2229 * move charges to its parent.
2232 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
2233 struct mem_cgroup
*child
,
2236 struct page
*page
= pc
->page
;
2237 struct cgroup
*cg
= child
->css
.cgroup
;
2238 struct cgroup
*pcg
= cg
->parent
;
2239 struct mem_cgroup
*parent
;
2247 if (!get_page_unless_zero(page
))
2249 if (isolate_lru_page(page
))
2252 parent
= mem_cgroup_from_cont(pcg
);
2253 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false,
2258 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
2260 mem_cgroup_cancel_charge(parent
, PAGE_SIZE
);
2262 putback_lru_page(page
);
2270 * Charge the memory controller for page usage.
2272 * 0 if the charge was successful
2273 * < 0 if the cgroup is over its limit
2275 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2276 gfp_t gfp_mask
, enum charge_type ctype
)
2278 struct mem_cgroup
*mem
= NULL
;
2279 struct page_cgroup
*pc
;
2281 int page_size
= PAGE_SIZE
;
2283 if (PageTransHuge(page
)) {
2284 page_size
<<= compound_order(page
);
2285 VM_BUG_ON(!PageTransHuge(page
));
2288 pc
= lookup_page_cgroup(page
);
2289 /* can happen at boot */
2294 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true, page_size
);
2298 __mem_cgroup_commit_charge(mem
, pc
, ctype
, page_size
);
2302 int mem_cgroup_newpage_charge(struct page
*page
,
2303 struct mm_struct
*mm
, gfp_t gfp_mask
)
2305 if (mem_cgroup_disabled())
2308 * If already mapped, we don't have to account.
2309 * If page cache, page->mapping has address_space.
2310 * But page->mapping may have out-of-use anon_vma pointer,
2311 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2314 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2318 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2319 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2323 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2324 enum charge_type ctype
);
2326 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2331 if (mem_cgroup_disabled())
2333 if (PageCompound(page
))
2336 * Corner case handling. This is called from add_to_page_cache()
2337 * in usual. But some FS (shmem) precharges this page before calling it
2338 * and call add_to_page_cache() with GFP_NOWAIT.
2340 * For GFP_NOWAIT case, the page may be pre-charged before calling
2341 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2342 * charge twice. (It works but has to pay a bit larger cost.)
2343 * And when the page is SwapCache, it should take swap information
2344 * into account. This is under lock_page() now.
2346 if (!(gfp_mask
& __GFP_WAIT
)) {
2347 struct page_cgroup
*pc
;
2349 pc
= lookup_page_cgroup(page
);
2352 lock_page_cgroup(pc
);
2353 if (PageCgroupUsed(pc
)) {
2354 unlock_page_cgroup(pc
);
2357 unlock_page_cgroup(pc
);
2363 if (page_is_file_cache(page
))
2364 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2365 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2368 if (PageSwapCache(page
)) {
2369 struct mem_cgroup
*mem
= NULL
;
2371 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2373 __mem_cgroup_commit_charge_swapin(page
, mem
,
2374 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2376 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2377 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2383 * While swap-in, try_charge -> commit or cancel, the page is locked.
2384 * And when try_charge() successfully returns, one refcnt to memcg without
2385 * struct page_cgroup is acquired. This refcnt will be consumed by
2386 * "commit()" or removed by "cancel()"
2388 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2390 gfp_t mask
, struct mem_cgroup
**ptr
)
2392 struct mem_cgroup
*mem
;
2395 if (mem_cgroup_disabled())
2398 if (!do_swap_account
)
2401 * A racing thread's fault, or swapoff, may have already updated
2402 * the pte, and even removed page from swap cache: in those cases
2403 * do_swap_page()'s pte_same() test will fail; but there's also a
2404 * KSM case which does need to charge the page.
2406 if (!PageSwapCache(page
))
2408 mem
= try_get_mem_cgroup_from_page(page
);
2412 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true, PAGE_SIZE
);
2418 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true, PAGE_SIZE
);
2422 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2423 enum charge_type ctype
)
2425 struct page_cgroup
*pc
;
2427 if (mem_cgroup_disabled())
2431 cgroup_exclude_rmdir(&ptr
->css
);
2432 pc
= lookup_page_cgroup(page
);
2433 mem_cgroup_lru_del_before_commit_swapcache(page
);
2434 __mem_cgroup_commit_charge(ptr
, pc
, ctype
, PAGE_SIZE
);
2435 mem_cgroup_lru_add_after_commit_swapcache(page
);
2437 * Now swap is on-memory. This means this page may be
2438 * counted both as mem and swap....double count.
2439 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2440 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2441 * may call delete_from_swap_cache() before reach here.
2443 if (do_swap_account
&& PageSwapCache(page
)) {
2444 swp_entry_t ent
= {.val
= page_private(page
)};
2446 struct mem_cgroup
*memcg
;
2448 id
= swap_cgroup_record(ent
, 0);
2450 memcg
= mem_cgroup_lookup(id
);
2453 * This recorded memcg can be obsolete one. So, avoid
2454 * calling css_tryget
2456 if (!mem_cgroup_is_root(memcg
))
2457 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2458 mem_cgroup_swap_statistics(memcg
, false);
2459 mem_cgroup_put(memcg
);
2464 * At swapin, we may charge account against cgroup which has no tasks.
2465 * So, rmdir()->pre_destroy() can be called while we do this charge.
2466 * In that case, we need to call pre_destroy() again. check it here.
2468 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2471 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2473 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2474 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2477 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2479 if (mem_cgroup_disabled())
2483 mem_cgroup_cancel_charge(mem
, PAGE_SIZE
);
2487 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
,
2490 struct memcg_batch_info
*batch
= NULL
;
2491 bool uncharge_memsw
= true;
2492 /* If swapout, usage of swap doesn't decrease */
2493 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2494 uncharge_memsw
= false;
2496 batch
= ¤t
->memcg_batch
;
2498 * In usual, we do css_get() when we remember memcg pointer.
2499 * But in this case, we keep res->usage until end of a series of
2500 * uncharges. Then, it's ok to ignore memcg's refcnt.
2505 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2506 * In those cases, all pages freed continously can be expected to be in
2507 * the same cgroup and we have chance to coalesce uncharges.
2508 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2509 * because we want to do uncharge as soon as possible.
2512 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2513 goto direct_uncharge
;
2515 if (page_size
!= PAGE_SIZE
)
2516 goto direct_uncharge
;
2519 * In typical case, batch->memcg == mem. This means we can
2520 * merge a series of uncharges to an uncharge of res_counter.
2521 * If not, we uncharge res_counter ony by one.
2523 if (batch
->memcg
!= mem
)
2524 goto direct_uncharge
;
2525 /* remember freed charge and uncharge it later */
2526 batch
->bytes
+= PAGE_SIZE
;
2528 batch
->memsw_bytes
+= PAGE_SIZE
;
2531 res_counter_uncharge(&mem
->res
, page_size
);
2533 res_counter_uncharge(&mem
->memsw
, page_size
);
2534 if (unlikely(batch
->memcg
!= mem
))
2535 memcg_oom_recover(mem
);
2540 * uncharge if !page_mapped(page)
2542 static struct mem_cgroup
*
2543 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2547 struct page_cgroup
*pc
;
2548 struct mem_cgroup
*mem
= NULL
;
2549 int page_size
= PAGE_SIZE
;
2551 if (mem_cgroup_disabled())
2554 if (PageSwapCache(page
))
2557 if (PageTransHuge(page
)) {
2558 page_size
<<= compound_order(page
);
2559 VM_BUG_ON(!PageTransHuge(page
));
2562 count
= page_size
>> PAGE_SHIFT
;
2564 * Check if our page_cgroup is valid
2566 pc
= lookup_page_cgroup(page
);
2567 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2570 lock_page_cgroup(pc
);
2572 mem
= pc
->mem_cgroup
;
2574 if (!PageCgroupUsed(pc
))
2578 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2579 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2580 /* See mem_cgroup_prepare_migration() */
2581 if (page_mapped(page
) || PageCgroupMigration(pc
))
2584 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2585 if (!PageAnon(page
)) { /* Shared memory */
2586 if (page
->mapping
&& !page_is_file_cache(page
))
2588 } else if (page_mapped(page
)) /* Anon */
2595 for (i
= 0; i
< count
; i
++)
2596 mem_cgroup_charge_statistics(mem
, pc
+ i
, false);
2598 ClearPageCgroupUsed(pc
);
2600 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2601 * freed from LRU. This is safe because uncharged page is expected not
2602 * to be reused (freed soon). Exception is SwapCache, it's handled by
2603 * special functions.
2606 unlock_page_cgroup(pc
);
2608 * even after unlock, we have mem->res.usage here and this memcg
2609 * will never be freed.
2611 memcg_check_events(mem
, page
);
2612 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2613 mem_cgroup_swap_statistics(mem
, true);
2614 mem_cgroup_get(mem
);
2616 if (!mem_cgroup_is_root(mem
))
2617 __do_uncharge(mem
, ctype
, page_size
);
2622 unlock_page_cgroup(pc
);
2626 void mem_cgroup_uncharge_page(struct page
*page
)
2629 if (page_mapped(page
))
2631 if (page
->mapping
&& !PageAnon(page
))
2633 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2636 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2638 VM_BUG_ON(page_mapped(page
));
2639 VM_BUG_ON(page
->mapping
);
2640 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2644 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2645 * In that cases, pages are freed continuously and we can expect pages
2646 * are in the same memcg. All these calls itself limits the number of
2647 * pages freed at once, then uncharge_start/end() is called properly.
2648 * This may be called prural(2) times in a context,
2651 void mem_cgroup_uncharge_start(void)
2653 current
->memcg_batch
.do_batch
++;
2654 /* We can do nest. */
2655 if (current
->memcg_batch
.do_batch
== 1) {
2656 current
->memcg_batch
.memcg
= NULL
;
2657 current
->memcg_batch
.bytes
= 0;
2658 current
->memcg_batch
.memsw_bytes
= 0;
2662 void mem_cgroup_uncharge_end(void)
2664 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2666 if (!batch
->do_batch
)
2670 if (batch
->do_batch
) /* If stacked, do nothing. */
2676 * This "batch->memcg" is valid without any css_get/put etc...
2677 * bacause we hide charges behind us.
2680 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2681 if (batch
->memsw_bytes
)
2682 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2683 memcg_oom_recover(batch
->memcg
);
2684 /* forget this pointer (for sanity check) */
2685 batch
->memcg
= NULL
;
2690 * called after __delete_from_swap_cache() and drop "page" account.
2691 * memcg information is recorded to swap_cgroup of "ent"
2694 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2696 struct mem_cgroup
*memcg
;
2697 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2699 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2700 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2702 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2705 * record memcg information, if swapout && memcg != NULL,
2706 * mem_cgroup_get() was called in uncharge().
2708 if (do_swap_account
&& swapout
&& memcg
)
2709 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2713 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2715 * called from swap_entry_free(). remove record in swap_cgroup and
2716 * uncharge "memsw" account.
2718 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2720 struct mem_cgroup
*memcg
;
2723 if (!do_swap_account
)
2726 id
= swap_cgroup_record(ent
, 0);
2728 memcg
= mem_cgroup_lookup(id
);
2731 * We uncharge this because swap is freed.
2732 * This memcg can be obsolete one. We avoid calling css_tryget
2734 if (!mem_cgroup_is_root(memcg
))
2735 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2736 mem_cgroup_swap_statistics(memcg
, false);
2737 mem_cgroup_put(memcg
);
2743 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2744 * @entry: swap entry to be moved
2745 * @from: mem_cgroup which the entry is moved from
2746 * @to: mem_cgroup which the entry is moved to
2747 * @need_fixup: whether we should fixup res_counters and refcounts.
2749 * It succeeds only when the swap_cgroup's record for this entry is the same
2750 * as the mem_cgroup's id of @from.
2752 * Returns 0 on success, -EINVAL on failure.
2754 * The caller must have charged to @to, IOW, called res_counter_charge() about
2755 * both res and memsw, and called css_get().
2757 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2758 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2760 unsigned short old_id
, new_id
;
2762 old_id
= css_id(&from
->css
);
2763 new_id
= css_id(&to
->css
);
2765 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2766 mem_cgroup_swap_statistics(from
, false);
2767 mem_cgroup_swap_statistics(to
, true);
2769 * This function is only called from task migration context now.
2770 * It postpones res_counter and refcount handling till the end
2771 * of task migration(mem_cgroup_clear_mc()) for performance
2772 * improvement. But we cannot postpone mem_cgroup_get(to)
2773 * because if the process that has been moved to @to does
2774 * swap-in, the refcount of @to might be decreased to 0.
2778 if (!mem_cgroup_is_root(from
))
2779 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2780 mem_cgroup_put(from
);
2782 * we charged both to->res and to->memsw, so we should
2785 if (!mem_cgroup_is_root(to
))
2786 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2793 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2794 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2801 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2804 int mem_cgroup_prepare_migration(struct page
*page
,
2805 struct page
*newpage
, struct mem_cgroup
**ptr
)
2807 struct page_cgroup
*pc
;
2808 struct mem_cgroup
*mem
= NULL
;
2809 enum charge_type ctype
;
2812 VM_BUG_ON(PageTransHuge(page
));
2813 if (mem_cgroup_disabled())
2816 pc
= lookup_page_cgroup(page
);
2817 lock_page_cgroup(pc
);
2818 if (PageCgroupUsed(pc
)) {
2819 mem
= pc
->mem_cgroup
;
2822 * At migrating an anonymous page, its mapcount goes down
2823 * to 0 and uncharge() will be called. But, even if it's fully
2824 * unmapped, migration may fail and this page has to be
2825 * charged again. We set MIGRATION flag here and delay uncharge
2826 * until end_migration() is called
2828 * Corner Case Thinking
2830 * When the old page was mapped as Anon and it's unmap-and-freed
2831 * while migration was ongoing.
2832 * If unmap finds the old page, uncharge() of it will be delayed
2833 * until end_migration(). If unmap finds a new page, it's
2834 * uncharged when it make mapcount to be 1->0. If unmap code
2835 * finds swap_migration_entry, the new page will not be mapped
2836 * and end_migration() will find it(mapcount==0).
2839 * When the old page was mapped but migraion fails, the kernel
2840 * remaps it. A charge for it is kept by MIGRATION flag even
2841 * if mapcount goes down to 0. We can do remap successfully
2842 * without charging it again.
2845 * The "old" page is under lock_page() until the end of
2846 * migration, so, the old page itself will not be swapped-out.
2847 * If the new page is swapped out before end_migraton, our
2848 * hook to usual swap-out path will catch the event.
2851 SetPageCgroupMigration(pc
);
2853 unlock_page_cgroup(pc
);
2855 * If the page is not charged at this point,
2862 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false, PAGE_SIZE
);
2863 css_put(&mem
->css
);/* drop extra refcnt */
2864 if (ret
|| *ptr
== NULL
) {
2865 if (PageAnon(page
)) {
2866 lock_page_cgroup(pc
);
2867 ClearPageCgroupMigration(pc
);
2868 unlock_page_cgroup(pc
);
2870 * The old page may be fully unmapped while we kept it.
2872 mem_cgroup_uncharge_page(page
);
2877 * We charge new page before it's used/mapped. So, even if unlock_page()
2878 * is called before end_migration, we can catch all events on this new
2879 * page. In the case new page is migrated but not remapped, new page's
2880 * mapcount will be finally 0 and we call uncharge in end_migration().
2882 pc
= lookup_page_cgroup(newpage
);
2884 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2885 else if (page_is_file_cache(page
))
2886 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2888 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2889 __mem_cgroup_commit_charge(mem
, pc
, ctype
, PAGE_SIZE
);
2893 /* remove redundant charge if migration failed*/
2894 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2895 struct page
*oldpage
, struct page
*newpage
)
2897 struct page
*used
, *unused
;
2898 struct page_cgroup
*pc
;
2902 /* blocks rmdir() */
2903 cgroup_exclude_rmdir(&mem
->css
);
2904 /* at migration success, oldpage->mapping is NULL. */
2905 if (oldpage
->mapping
) {
2913 * We disallowed uncharge of pages under migration because mapcount
2914 * of the page goes down to zero, temporarly.
2915 * Clear the flag and check the page should be charged.
2917 pc
= lookup_page_cgroup(oldpage
);
2918 lock_page_cgroup(pc
);
2919 ClearPageCgroupMigration(pc
);
2920 unlock_page_cgroup(pc
);
2922 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
2925 * If a page is a file cache, radix-tree replacement is very atomic
2926 * and we can skip this check. When it was an Anon page, its mapcount
2927 * goes down to 0. But because we added MIGRATION flage, it's not
2928 * uncharged yet. There are several case but page->mapcount check
2929 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2930 * check. (see prepare_charge() also)
2933 mem_cgroup_uncharge_page(used
);
2935 * At migration, we may charge account against cgroup which has no
2937 * So, rmdir()->pre_destroy() can be called while we do this charge.
2938 * In that case, we need to call pre_destroy() again. check it here.
2940 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2944 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2945 * Calling hierarchical_reclaim is not enough because we should update
2946 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2947 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2948 * not from the memcg which this page would be charged to.
2949 * try_charge_swapin does all of these works properly.
2951 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2952 struct mm_struct
*mm
,
2955 struct mem_cgroup
*mem
= NULL
;
2958 if (mem_cgroup_disabled())
2961 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2963 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2968 static DEFINE_MUTEX(set_limit_mutex
);
2970 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2971 unsigned long long val
)
2974 u64 memswlimit
, memlimit
;
2976 int children
= mem_cgroup_count_children(memcg
);
2977 u64 curusage
, oldusage
;
2981 * For keeping hierarchical_reclaim simple, how long we should retry
2982 * is depends on callers. We set our retry-count to be function
2983 * of # of children which we should visit in this loop.
2985 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2987 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2990 while (retry_count
) {
2991 if (signal_pending(current
)) {
2996 * Rather than hide all in some function, I do this in
2997 * open coded manner. You see what this really does.
2998 * We have to guarantee mem->res.limit < mem->memsw.limit.
3000 mutex_lock(&set_limit_mutex
);
3001 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3002 if (memswlimit
< val
) {
3004 mutex_unlock(&set_limit_mutex
);
3008 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3012 ret
= res_counter_set_limit(&memcg
->res
, val
);
3014 if (memswlimit
== val
)
3015 memcg
->memsw_is_minimum
= true;
3017 memcg
->memsw_is_minimum
= false;
3019 mutex_unlock(&set_limit_mutex
);
3024 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3025 MEM_CGROUP_RECLAIM_SHRINK
);
3026 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
3027 /* Usage is reduced ? */
3028 if (curusage
>= oldusage
)
3031 oldusage
= curusage
;
3033 if (!ret
&& enlarge
)
3034 memcg_oom_recover(memcg
);
3039 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3040 unsigned long long val
)
3043 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3044 int children
= mem_cgroup_count_children(memcg
);
3048 /* see mem_cgroup_resize_res_limit */
3049 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3050 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3051 while (retry_count
) {
3052 if (signal_pending(current
)) {
3057 * Rather than hide all in some function, I do this in
3058 * open coded manner. You see what this really does.
3059 * We have to guarantee mem->res.limit < mem->memsw.limit.
3061 mutex_lock(&set_limit_mutex
);
3062 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3063 if (memlimit
> val
) {
3065 mutex_unlock(&set_limit_mutex
);
3068 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3069 if (memswlimit
< val
)
3071 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3073 if (memlimit
== val
)
3074 memcg
->memsw_is_minimum
= true;
3076 memcg
->memsw_is_minimum
= false;
3078 mutex_unlock(&set_limit_mutex
);
3083 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3084 MEM_CGROUP_RECLAIM_NOSWAP
|
3085 MEM_CGROUP_RECLAIM_SHRINK
);
3086 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3087 /* Usage is reduced ? */
3088 if (curusage
>= oldusage
)
3091 oldusage
= curusage
;
3093 if (!ret
&& enlarge
)
3094 memcg_oom_recover(memcg
);
3098 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3101 unsigned long nr_reclaimed
= 0;
3102 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3103 unsigned long reclaimed
;
3105 struct mem_cgroup_tree_per_zone
*mctz
;
3106 unsigned long long excess
;
3111 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3113 * This loop can run a while, specially if mem_cgroup's continuously
3114 * keep exceeding their soft limit and putting the system under
3121 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3125 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3127 MEM_CGROUP_RECLAIM_SOFT
);
3128 nr_reclaimed
+= reclaimed
;
3129 spin_lock(&mctz
->lock
);
3132 * If we failed to reclaim anything from this memory cgroup
3133 * it is time to move on to the next cgroup
3139 * Loop until we find yet another one.
3141 * By the time we get the soft_limit lock
3142 * again, someone might have aded the
3143 * group back on the RB tree. Iterate to
3144 * make sure we get a different mem.
3145 * mem_cgroup_largest_soft_limit_node returns
3146 * NULL if no other cgroup is present on
3150 __mem_cgroup_largest_soft_limit_node(mctz
);
3151 if (next_mz
== mz
) {
3152 css_put(&next_mz
->mem
->css
);
3154 } else /* next_mz == NULL or other memcg */
3158 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3159 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3161 * One school of thought says that we should not add
3162 * back the node to the tree if reclaim returns 0.
3163 * But our reclaim could return 0, simply because due
3164 * to priority we are exposing a smaller subset of
3165 * memory to reclaim from. Consider this as a longer
3168 /* If excess == 0, no tree ops */
3169 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3170 spin_unlock(&mctz
->lock
);
3171 css_put(&mz
->mem
->css
);
3174 * Could not reclaim anything and there are no more
3175 * mem cgroups to try or we seem to be looping without
3176 * reclaiming anything.
3178 if (!nr_reclaimed
&&
3180 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3182 } while (!nr_reclaimed
);
3184 css_put(&next_mz
->mem
->css
);
3185 return nr_reclaimed
;
3189 * This routine traverse page_cgroup in given list and drop them all.
3190 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3192 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3193 int node
, int zid
, enum lru_list lru
)
3196 struct mem_cgroup_per_zone
*mz
;
3197 struct page_cgroup
*pc
, *busy
;
3198 unsigned long flags
, loop
;
3199 struct list_head
*list
;
3202 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3203 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3204 list
= &mz
->lists
[lru
];
3206 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3207 /* give some margin against EBUSY etc...*/
3212 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3213 if (list_empty(list
)) {
3214 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3217 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3219 list_move(&pc
->lru
, list
);
3221 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3224 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3226 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
3230 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3231 /* found lock contention or "pc" is obsolete. */
3238 if (!ret
&& !list_empty(list
))
3244 * make mem_cgroup's charge to be 0 if there is no task.
3245 * This enables deleting this mem_cgroup.
3247 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3250 int node
, zid
, shrink
;
3251 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3252 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3257 /* should free all ? */
3263 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3266 if (signal_pending(current
))
3268 /* This is for making all *used* pages to be on LRU. */
3269 lru_add_drain_all();
3270 drain_all_stock_sync();
3272 mem_cgroup_start_move(mem
);
3273 for_each_node_state(node
, N_HIGH_MEMORY
) {
3274 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3277 ret
= mem_cgroup_force_empty_list(mem
,
3286 mem_cgroup_end_move(mem
);
3287 memcg_oom_recover(mem
);
3288 /* it seems parent cgroup doesn't have enough mem */
3292 /* "ret" should also be checked to ensure all lists are empty. */
3293 } while (mem
->res
.usage
> 0 || ret
);
3299 /* returns EBUSY if there is a task or if we come here twice. */
3300 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3304 /* we call try-to-free pages for make this cgroup empty */
3305 lru_add_drain_all();
3306 /* try to free all pages in this cgroup */
3308 while (nr_retries
&& mem
->res
.usage
> 0) {
3311 if (signal_pending(current
)) {
3315 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3316 false, get_swappiness(mem
));
3319 /* maybe some writeback is necessary */
3320 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3325 /* try move_account...there may be some *locked* pages. */
3329 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3331 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3335 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3337 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3340 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3344 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3345 struct cgroup
*parent
= cont
->parent
;
3346 struct mem_cgroup
*parent_mem
= NULL
;
3349 parent_mem
= mem_cgroup_from_cont(parent
);
3353 * If parent's use_hierarchy is set, we can't make any modifications
3354 * in the child subtrees. If it is unset, then the change can
3355 * occur, provided the current cgroup has no children.
3357 * For the root cgroup, parent_mem is NULL, we allow value to be
3358 * set if there are no children.
3360 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3361 (val
== 1 || val
== 0)) {
3362 if (list_empty(&cont
->children
))
3363 mem
->use_hierarchy
= val
;
3374 static u64
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3375 enum mem_cgroup_stat_index idx
)
3377 struct mem_cgroup
*iter
;
3380 /* each per cpu's value can be minus.Then, use s64 */
3381 for_each_mem_cgroup_tree(iter
, mem
)
3382 val
+= mem_cgroup_read_stat(iter
, idx
);
3384 if (val
< 0) /* race ? */
3389 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3393 if (!mem_cgroup_is_root(mem
)) {
3395 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3397 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3400 val
= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3401 val
+= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
);
3404 val
+= mem_cgroup_get_recursive_idx_stat(mem
,
3405 MEM_CGROUP_STAT_SWAPOUT
);
3407 return val
<< PAGE_SHIFT
;
3410 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3412 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3416 type
= MEMFILE_TYPE(cft
->private);
3417 name
= MEMFILE_ATTR(cft
->private);
3420 if (name
== RES_USAGE
)
3421 val
= mem_cgroup_usage(mem
, false);
3423 val
= res_counter_read_u64(&mem
->res
, name
);
3426 if (name
== RES_USAGE
)
3427 val
= mem_cgroup_usage(mem
, true);
3429 val
= res_counter_read_u64(&mem
->memsw
, name
);
3438 * The user of this function is...
3441 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3444 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3446 unsigned long long val
;
3449 type
= MEMFILE_TYPE(cft
->private);
3450 name
= MEMFILE_ATTR(cft
->private);
3453 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3457 /* This function does all necessary parse...reuse it */
3458 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3462 ret
= mem_cgroup_resize_limit(memcg
, val
);
3464 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3466 case RES_SOFT_LIMIT
:
3467 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3471 * For memsw, soft limits are hard to implement in terms
3472 * of semantics, for now, we support soft limits for
3473 * control without swap
3476 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3481 ret
= -EINVAL
; /* should be BUG() ? */
3487 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3488 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3490 struct cgroup
*cgroup
;
3491 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3493 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3494 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3495 cgroup
= memcg
->css
.cgroup
;
3496 if (!memcg
->use_hierarchy
)
3499 while (cgroup
->parent
) {
3500 cgroup
= cgroup
->parent
;
3501 memcg
= mem_cgroup_from_cont(cgroup
);
3502 if (!memcg
->use_hierarchy
)
3504 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3505 min_limit
= min(min_limit
, tmp
);
3506 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3507 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3510 *mem_limit
= min_limit
;
3511 *memsw_limit
= min_memsw_limit
;
3515 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3517 struct mem_cgroup
*mem
;
3520 mem
= mem_cgroup_from_cont(cont
);
3521 type
= MEMFILE_TYPE(event
);
3522 name
= MEMFILE_ATTR(event
);
3526 res_counter_reset_max(&mem
->res
);
3528 res_counter_reset_max(&mem
->memsw
);
3532 res_counter_reset_failcnt(&mem
->res
);
3534 res_counter_reset_failcnt(&mem
->memsw
);
3541 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3544 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3548 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3549 struct cftype
*cft
, u64 val
)
3551 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3553 if (val
>= (1 << NR_MOVE_TYPE
))
3556 * We check this value several times in both in can_attach() and
3557 * attach(), so we need cgroup lock to prevent this value from being
3561 mem
->move_charge_at_immigrate
= val
;
3567 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3568 struct cftype
*cft
, u64 val
)
3575 /* For read statistics */
3591 struct mcs_total_stat
{
3592 s64 stat
[NR_MCS_STAT
];
3598 } memcg_stat_strings
[NR_MCS_STAT
] = {
3599 {"cache", "total_cache"},
3600 {"rss", "total_rss"},
3601 {"mapped_file", "total_mapped_file"},
3602 {"pgpgin", "total_pgpgin"},
3603 {"pgpgout", "total_pgpgout"},
3604 {"swap", "total_swap"},
3605 {"inactive_anon", "total_inactive_anon"},
3606 {"active_anon", "total_active_anon"},
3607 {"inactive_file", "total_inactive_file"},
3608 {"active_file", "total_active_file"},
3609 {"unevictable", "total_unevictable"}
3614 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3619 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3620 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3621 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3622 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3623 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3624 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3625 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3626 s
->stat
[MCS_PGPGIN
] += val
;
3627 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3628 s
->stat
[MCS_PGPGOUT
] += val
;
3629 if (do_swap_account
) {
3630 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3631 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3635 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3636 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3637 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3638 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3639 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3640 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3641 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3642 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3643 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3644 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3648 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3650 struct mem_cgroup
*iter
;
3652 for_each_mem_cgroup_tree(iter
, mem
)
3653 mem_cgroup_get_local_stat(iter
, s
);
3656 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3657 struct cgroup_map_cb
*cb
)
3659 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3660 struct mcs_total_stat mystat
;
3663 memset(&mystat
, 0, sizeof(mystat
));
3664 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3666 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3667 if (i
== MCS_SWAP
&& !do_swap_account
)
3669 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3672 /* Hierarchical information */
3674 unsigned long long limit
, memsw_limit
;
3675 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3676 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3677 if (do_swap_account
)
3678 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3681 memset(&mystat
, 0, sizeof(mystat
));
3682 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3683 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3684 if (i
== MCS_SWAP
&& !do_swap_account
)
3686 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3689 #ifdef CONFIG_DEBUG_VM
3690 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3694 struct mem_cgroup_per_zone
*mz
;
3695 unsigned long recent_rotated
[2] = {0, 0};
3696 unsigned long recent_scanned
[2] = {0, 0};
3698 for_each_online_node(nid
)
3699 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3700 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3702 recent_rotated
[0] +=
3703 mz
->reclaim_stat
.recent_rotated
[0];
3704 recent_rotated
[1] +=
3705 mz
->reclaim_stat
.recent_rotated
[1];
3706 recent_scanned
[0] +=
3707 mz
->reclaim_stat
.recent_scanned
[0];
3708 recent_scanned
[1] +=
3709 mz
->reclaim_stat
.recent_scanned
[1];
3711 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3712 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3713 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3714 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3721 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3723 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3725 return get_swappiness(memcg
);
3728 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3731 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3732 struct mem_cgroup
*parent
;
3737 if (cgrp
->parent
== NULL
)
3740 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3744 /* If under hierarchy, only empty-root can set this value */
3745 if ((parent
->use_hierarchy
) ||
3746 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3751 spin_lock(&memcg
->reclaim_param_lock
);
3752 memcg
->swappiness
= val
;
3753 spin_unlock(&memcg
->reclaim_param_lock
);
3760 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3762 struct mem_cgroup_threshold_ary
*t
;
3768 t
= rcu_dereference(memcg
->thresholds
.primary
);
3770 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3775 usage
= mem_cgroup_usage(memcg
, swap
);
3778 * current_threshold points to threshold just below usage.
3779 * If it's not true, a threshold was crossed after last
3780 * call of __mem_cgroup_threshold().
3782 i
= t
->current_threshold
;
3785 * Iterate backward over array of thresholds starting from
3786 * current_threshold and check if a threshold is crossed.
3787 * If none of thresholds below usage is crossed, we read
3788 * only one element of the array here.
3790 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3791 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3793 /* i = current_threshold + 1 */
3797 * Iterate forward over array of thresholds starting from
3798 * current_threshold+1 and check if a threshold is crossed.
3799 * If none of thresholds above usage is crossed, we read
3800 * only one element of the array here.
3802 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3803 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3805 /* Update current_threshold */
3806 t
->current_threshold
= i
- 1;
3811 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3814 __mem_cgroup_threshold(memcg
, false);
3815 if (do_swap_account
)
3816 __mem_cgroup_threshold(memcg
, true);
3818 memcg
= parent_mem_cgroup(memcg
);
3822 static int compare_thresholds(const void *a
, const void *b
)
3824 const struct mem_cgroup_threshold
*_a
= a
;
3825 const struct mem_cgroup_threshold
*_b
= b
;
3827 return _a
->threshold
- _b
->threshold
;
3830 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
3832 struct mem_cgroup_eventfd_list
*ev
;
3834 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3835 eventfd_signal(ev
->eventfd
, 1);
3839 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3841 struct mem_cgroup
*iter
;
3843 for_each_mem_cgroup_tree(iter
, mem
)
3844 mem_cgroup_oom_notify_cb(iter
);
3847 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3848 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3850 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3851 struct mem_cgroup_thresholds
*thresholds
;
3852 struct mem_cgroup_threshold_ary
*new;
3853 int type
= MEMFILE_TYPE(cft
->private);
3854 u64 threshold
, usage
;
3857 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3861 mutex_lock(&memcg
->thresholds_lock
);
3864 thresholds
= &memcg
->thresholds
;
3865 else if (type
== _MEMSWAP
)
3866 thresholds
= &memcg
->memsw_thresholds
;
3870 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3872 /* Check if a threshold crossed before adding a new one */
3873 if (thresholds
->primary
)
3874 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3876 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3878 /* Allocate memory for new array of thresholds */
3879 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3887 /* Copy thresholds (if any) to new array */
3888 if (thresholds
->primary
) {
3889 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3890 sizeof(struct mem_cgroup_threshold
));
3893 /* Add new threshold */
3894 new->entries
[size
- 1].eventfd
= eventfd
;
3895 new->entries
[size
- 1].threshold
= threshold
;
3897 /* Sort thresholds. Registering of new threshold isn't time-critical */
3898 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3899 compare_thresholds
, NULL
);
3901 /* Find current threshold */
3902 new->current_threshold
= -1;
3903 for (i
= 0; i
< size
; i
++) {
3904 if (new->entries
[i
].threshold
< usage
) {
3906 * new->current_threshold will not be used until
3907 * rcu_assign_pointer(), so it's safe to increment
3910 ++new->current_threshold
;
3914 /* Free old spare buffer and save old primary buffer as spare */
3915 kfree(thresholds
->spare
);
3916 thresholds
->spare
= thresholds
->primary
;
3918 rcu_assign_pointer(thresholds
->primary
, new);
3920 /* To be sure that nobody uses thresholds */
3924 mutex_unlock(&memcg
->thresholds_lock
);
3929 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
3930 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3932 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3933 struct mem_cgroup_thresholds
*thresholds
;
3934 struct mem_cgroup_threshold_ary
*new;
3935 int type
= MEMFILE_TYPE(cft
->private);
3939 mutex_lock(&memcg
->thresholds_lock
);
3941 thresholds
= &memcg
->thresholds
;
3942 else if (type
== _MEMSWAP
)
3943 thresholds
= &memcg
->memsw_thresholds
;
3948 * Something went wrong if we trying to unregister a threshold
3949 * if we don't have thresholds
3951 BUG_ON(!thresholds
);
3953 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3955 /* Check if a threshold crossed before removing */
3956 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3958 /* Calculate new number of threshold */
3960 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3961 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3965 new = thresholds
->spare
;
3967 /* Set thresholds array to NULL if we don't have thresholds */
3976 /* Copy thresholds and find current threshold */
3977 new->current_threshold
= -1;
3978 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3979 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3982 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3983 if (new->entries
[j
].threshold
< usage
) {
3985 * new->current_threshold will not be used
3986 * until rcu_assign_pointer(), so it's safe to increment
3989 ++new->current_threshold
;
3995 /* Swap primary and spare array */
3996 thresholds
->spare
= thresholds
->primary
;
3997 rcu_assign_pointer(thresholds
->primary
, new);
3999 /* To be sure that nobody uses thresholds */
4002 mutex_unlock(&memcg
->thresholds_lock
);
4005 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
4006 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
4008 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
4009 struct mem_cgroup_eventfd_list
*event
;
4010 int type
= MEMFILE_TYPE(cft
->private);
4012 BUG_ON(type
!= _OOM_TYPE
);
4013 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
4017 mutex_lock(&memcg_oom_mutex
);
4019 event
->eventfd
= eventfd
;
4020 list_add(&event
->list
, &memcg
->oom_notify
);
4022 /* already in OOM ? */
4023 if (atomic_read(&memcg
->oom_lock
))
4024 eventfd_signal(eventfd
, 1);
4025 mutex_unlock(&memcg_oom_mutex
);
4030 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
4031 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
4033 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4034 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
4035 int type
= MEMFILE_TYPE(cft
->private);
4037 BUG_ON(type
!= _OOM_TYPE
);
4039 mutex_lock(&memcg_oom_mutex
);
4041 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4042 if (ev
->eventfd
== eventfd
) {
4043 list_del(&ev
->list
);
4048 mutex_unlock(&memcg_oom_mutex
);
4051 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4052 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4054 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4056 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4058 if (atomic_read(&mem
->oom_lock
))
4059 cb
->fill(cb
, "under_oom", 1);
4061 cb
->fill(cb
, "under_oom", 0);
4065 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4066 struct cftype
*cft
, u64 val
)
4068 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4069 struct mem_cgroup
*parent
;
4071 /* cannot set to root cgroup and only 0 and 1 are allowed */
4072 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4075 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4078 /* oom-kill-disable is a flag for subhierarchy. */
4079 if ((parent
->use_hierarchy
) ||
4080 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4084 mem
->oom_kill_disable
= val
;
4086 memcg_oom_recover(mem
);
4091 static struct cftype mem_cgroup_files
[] = {
4093 .name
= "usage_in_bytes",
4094 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4095 .read_u64
= mem_cgroup_read
,
4096 .register_event
= mem_cgroup_usage_register_event
,
4097 .unregister_event
= mem_cgroup_usage_unregister_event
,
4100 .name
= "max_usage_in_bytes",
4101 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4102 .trigger
= mem_cgroup_reset
,
4103 .read_u64
= mem_cgroup_read
,
4106 .name
= "limit_in_bytes",
4107 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4108 .write_string
= mem_cgroup_write
,
4109 .read_u64
= mem_cgroup_read
,
4112 .name
= "soft_limit_in_bytes",
4113 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4114 .write_string
= mem_cgroup_write
,
4115 .read_u64
= mem_cgroup_read
,
4119 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4120 .trigger
= mem_cgroup_reset
,
4121 .read_u64
= mem_cgroup_read
,
4125 .read_map
= mem_control_stat_show
,
4128 .name
= "force_empty",
4129 .trigger
= mem_cgroup_force_empty_write
,
4132 .name
= "use_hierarchy",
4133 .write_u64
= mem_cgroup_hierarchy_write
,
4134 .read_u64
= mem_cgroup_hierarchy_read
,
4137 .name
= "swappiness",
4138 .read_u64
= mem_cgroup_swappiness_read
,
4139 .write_u64
= mem_cgroup_swappiness_write
,
4142 .name
= "move_charge_at_immigrate",
4143 .read_u64
= mem_cgroup_move_charge_read
,
4144 .write_u64
= mem_cgroup_move_charge_write
,
4147 .name
= "oom_control",
4148 .read_map
= mem_cgroup_oom_control_read
,
4149 .write_u64
= mem_cgroup_oom_control_write
,
4150 .register_event
= mem_cgroup_oom_register_event
,
4151 .unregister_event
= mem_cgroup_oom_unregister_event
,
4152 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4157 static struct cftype memsw_cgroup_files
[] = {
4159 .name
= "memsw.usage_in_bytes",
4160 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4161 .read_u64
= mem_cgroup_read
,
4162 .register_event
= mem_cgroup_usage_register_event
,
4163 .unregister_event
= mem_cgroup_usage_unregister_event
,
4166 .name
= "memsw.max_usage_in_bytes",
4167 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4168 .trigger
= mem_cgroup_reset
,
4169 .read_u64
= mem_cgroup_read
,
4172 .name
= "memsw.limit_in_bytes",
4173 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4174 .write_string
= mem_cgroup_write
,
4175 .read_u64
= mem_cgroup_read
,
4178 .name
= "memsw.failcnt",
4179 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4180 .trigger
= mem_cgroup_reset
,
4181 .read_u64
= mem_cgroup_read
,
4185 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4187 if (!do_swap_account
)
4189 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4190 ARRAY_SIZE(memsw_cgroup_files
));
4193 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4199 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4201 struct mem_cgroup_per_node
*pn
;
4202 struct mem_cgroup_per_zone
*mz
;
4204 int zone
, tmp
= node
;
4206 * This routine is called against possible nodes.
4207 * But it's BUG to call kmalloc() against offline node.
4209 * TODO: this routine can waste much memory for nodes which will
4210 * never be onlined. It's better to use memory hotplug callback
4213 if (!node_state(node
, N_NORMAL_MEMORY
))
4215 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4219 mem
->info
.nodeinfo
[node
] = pn
;
4220 memset(pn
, 0, sizeof(*pn
));
4222 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4223 mz
= &pn
->zoneinfo
[zone
];
4225 INIT_LIST_HEAD(&mz
->lists
[l
]);
4226 mz
->usage_in_excess
= 0;
4227 mz
->on_tree
= false;
4233 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4235 kfree(mem
->info
.nodeinfo
[node
]);
4238 static struct mem_cgroup
*mem_cgroup_alloc(void)
4240 struct mem_cgroup
*mem
;
4241 int size
= sizeof(struct mem_cgroup
);
4243 /* Can be very big if MAX_NUMNODES is very big */
4244 if (size
< PAGE_SIZE
)
4245 mem
= kmalloc(size
, GFP_KERNEL
);
4247 mem
= vmalloc(size
);
4252 memset(mem
, 0, size
);
4253 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4256 spin_lock_init(&mem
->pcp_counter_lock
);
4260 if (size
< PAGE_SIZE
)
4268 * At destroying mem_cgroup, references from swap_cgroup can remain.
4269 * (scanning all at force_empty is too costly...)
4271 * Instead of clearing all references at force_empty, we remember
4272 * the number of reference from swap_cgroup and free mem_cgroup when
4273 * it goes down to 0.
4275 * Removal of cgroup itself succeeds regardless of refs from swap.
4278 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4282 mem_cgroup_remove_from_trees(mem
);
4283 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4285 for_each_node_state(node
, N_POSSIBLE
)
4286 free_mem_cgroup_per_zone_info(mem
, node
);
4288 free_percpu(mem
->stat
);
4289 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4295 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4297 atomic_inc(&mem
->refcnt
);
4300 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4302 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4303 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4304 __mem_cgroup_free(mem
);
4306 mem_cgroup_put(parent
);
4310 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4312 __mem_cgroup_put(mem
, 1);
4316 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4318 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4320 if (!mem
->res
.parent
)
4322 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4325 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4326 static void __init
enable_swap_cgroup(void)
4328 if (!mem_cgroup_disabled() && really_do_swap_account
)
4329 do_swap_account
= 1;
4332 static void __init
enable_swap_cgroup(void)
4337 static int mem_cgroup_soft_limit_tree_init(void)
4339 struct mem_cgroup_tree_per_node
*rtpn
;
4340 struct mem_cgroup_tree_per_zone
*rtpz
;
4341 int tmp
, node
, zone
;
4343 for_each_node_state(node
, N_POSSIBLE
) {
4345 if (!node_state(node
, N_NORMAL_MEMORY
))
4347 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4351 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4353 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4354 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4355 rtpz
->rb_root
= RB_ROOT
;
4356 spin_lock_init(&rtpz
->lock
);
4362 static struct cgroup_subsys_state
* __ref
4363 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4365 struct mem_cgroup
*mem
, *parent
;
4366 long error
= -ENOMEM
;
4369 mem
= mem_cgroup_alloc();
4371 return ERR_PTR(error
);
4373 for_each_node_state(node
, N_POSSIBLE
)
4374 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4378 if (cont
->parent
== NULL
) {
4380 enable_swap_cgroup();
4382 root_mem_cgroup
= mem
;
4383 if (mem_cgroup_soft_limit_tree_init())
4385 for_each_possible_cpu(cpu
) {
4386 struct memcg_stock_pcp
*stock
=
4387 &per_cpu(memcg_stock
, cpu
);
4388 INIT_WORK(&stock
->work
, drain_local_stock
);
4390 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4392 parent
= mem_cgroup_from_cont(cont
->parent
);
4393 mem
->use_hierarchy
= parent
->use_hierarchy
;
4394 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4397 if (parent
&& parent
->use_hierarchy
) {
4398 res_counter_init(&mem
->res
, &parent
->res
);
4399 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4401 * We increment refcnt of the parent to ensure that we can
4402 * safely access it on res_counter_charge/uncharge.
4403 * This refcnt will be decremented when freeing this
4404 * mem_cgroup(see mem_cgroup_put).
4406 mem_cgroup_get(parent
);
4408 res_counter_init(&mem
->res
, NULL
);
4409 res_counter_init(&mem
->memsw
, NULL
);
4411 mem
->last_scanned_child
= 0;
4412 spin_lock_init(&mem
->reclaim_param_lock
);
4413 INIT_LIST_HEAD(&mem
->oom_notify
);
4416 mem
->swappiness
= get_swappiness(parent
);
4417 atomic_set(&mem
->refcnt
, 1);
4418 mem
->move_charge_at_immigrate
= 0;
4419 mutex_init(&mem
->thresholds_lock
);
4422 __mem_cgroup_free(mem
);
4423 root_mem_cgroup
= NULL
;
4424 return ERR_PTR(error
);
4427 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4428 struct cgroup
*cont
)
4430 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4432 return mem_cgroup_force_empty(mem
, false);
4435 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4436 struct cgroup
*cont
)
4438 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4440 mem_cgroup_put(mem
);
4443 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4444 struct cgroup
*cont
)
4448 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4449 ARRAY_SIZE(mem_cgroup_files
));
4452 ret
= register_memsw_files(cont
, ss
);
4457 /* Handlers for move charge at task migration. */
4458 #define PRECHARGE_COUNT_AT_ONCE 256
4459 static int mem_cgroup_do_precharge(unsigned long count
)
4462 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4463 struct mem_cgroup
*mem
= mc
.to
;
4465 if (mem_cgroup_is_root(mem
)) {
4466 mc
.precharge
+= count
;
4467 /* we don't need css_get for root */
4470 /* try to charge at once */
4472 struct res_counter
*dummy
;
4474 * "mem" cannot be under rmdir() because we've already checked
4475 * by cgroup_lock_live_cgroup() that it is not removed and we
4476 * are still under the same cgroup_mutex. So we can postpone
4479 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4481 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4482 PAGE_SIZE
* count
, &dummy
)) {
4483 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4486 mc
.precharge
+= count
;
4490 /* fall back to one by one charge */
4492 if (signal_pending(current
)) {
4496 if (!batch_count
--) {
4497 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4500 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false,
4503 /* mem_cgroup_clear_mc() will do uncharge later */
4511 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4512 * @vma: the vma the pte to be checked belongs
4513 * @addr: the address corresponding to the pte to be checked
4514 * @ptent: the pte to be checked
4515 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4518 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4519 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4520 * move charge. if @target is not NULL, the page is stored in target->page
4521 * with extra refcnt got(Callers should handle it).
4522 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4523 * target for charge migration. if @target is not NULL, the entry is stored
4526 * Called with pte lock held.
4533 enum mc_target_type
{
4534 MC_TARGET_NONE
, /* not used */
4539 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4540 unsigned long addr
, pte_t ptent
)
4542 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4544 if (!page
|| !page_mapped(page
))
4546 if (PageAnon(page
)) {
4547 /* we don't move shared anon */
4548 if (!move_anon() || page_mapcount(page
) > 2)
4550 } else if (!move_file())
4551 /* we ignore mapcount for file pages */
4553 if (!get_page_unless_zero(page
))
4559 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4560 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4563 struct page
*page
= NULL
;
4564 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4566 if (!move_anon() || non_swap_entry(ent
))
4568 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4569 if (usage_count
> 1) { /* we don't move shared anon */
4574 if (do_swap_account
)
4575 entry
->val
= ent
.val
;
4580 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4581 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4583 struct page
*page
= NULL
;
4584 struct inode
*inode
;
4585 struct address_space
*mapping
;
4588 if (!vma
->vm_file
) /* anonymous vma */
4593 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4594 mapping
= vma
->vm_file
->f_mapping
;
4595 if (pte_none(ptent
))
4596 pgoff
= linear_page_index(vma
, addr
);
4597 else /* pte_file(ptent) is true */
4598 pgoff
= pte_to_pgoff(ptent
);
4600 /* page is moved even if it's not RSS of this task(page-faulted). */
4601 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4602 page
= find_get_page(mapping
, pgoff
);
4603 } else { /* shmem/tmpfs file. we should take account of swap too. */
4605 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4606 if (do_swap_account
)
4607 entry
->val
= ent
.val
;
4613 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4614 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4616 struct page
*page
= NULL
;
4617 struct page_cgroup
*pc
;
4619 swp_entry_t ent
= { .val
= 0 };
4621 if (pte_present(ptent
))
4622 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4623 else if (is_swap_pte(ptent
))
4624 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4625 else if (pte_none(ptent
) || pte_file(ptent
))
4626 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4628 if (!page
&& !ent
.val
)
4631 pc
= lookup_page_cgroup(page
);
4633 * Do only loose check w/o page_cgroup lock.
4634 * mem_cgroup_move_account() checks the pc is valid or not under
4637 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4638 ret
= MC_TARGET_PAGE
;
4640 target
->page
= page
;
4642 if (!ret
|| !target
)
4645 /* There is a swap entry and a page doesn't exist or isn't charged */
4646 if (ent
.val
&& !ret
&&
4647 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4648 ret
= MC_TARGET_SWAP
;
4655 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4656 unsigned long addr
, unsigned long end
,
4657 struct mm_walk
*walk
)
4659 struct vm_area_struct
*vma
= walk
->private;
4663 VM_BUG_ON(pmd_trans_huge(*pmd
));
4664 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4665 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4666 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4667 mc
.precharge
++; /* increment precharge temporarily */
4668 pte_unmap_unlock(pte
- 1, ptl
);
4674 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4676 unsigned long precharge
;
4677 struct vm_area_struct
*vma
;
4679 /* We've already held the mmap_sem */
4680 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4681 struct mm_walk mem_cgroup_count_precharge_walk
= {
4682 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4686 if (is_vm_hugetlb_page(vma
))
4688 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4689 &mem_cgroup_count_precharge_walk
);
4692 precharge
= mc
.precharge
;
4698 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4700 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4703 static void mem_cgroup_clear_mc(void)
4705 struct mem_cgroup
*from
= mc
.from
;
4706 struct mem_cgroup
*to
= mc
.to
;
4708 /* we must uncharge all the leftover precharges from mc.to */
4710 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4714 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4715 * we must uncharge here.
4717 if (mc
.moved_charge
) {
4718 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4719 mc
.moved_charge
= 0;
4721 /* we must fixup refcnts and charges */
4722 if (mc
.moved_swap
) {
4723 /* uncharge swap account from the old cgroup */
4724 if (!mem_cgroup_is_root(mc
.from
))
4725 res_counter_uncharge(&mc
.from
->memsw
,
4726 PAGE_SIZE
* mc
.moved_swap
);
4727 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4729 if (!mem_cgroup_is_root(mc
.to
)) {
4731 * we charged both to->res and to->memsw, so we should
4734 res_counter_uncharge(&mc
.to
->res
,
4735 PAGE_SIZE
* mc
.moved_swap
);
4737 /* we've already done mem_cgroup_get(mc.to) */
4742 up_read(&mc
.mm
->mmap_sem
);
4745 spin_lock(&mc
.lock
);
4748 spin_unlock(&mc
.lock
);
4749 mc
.moving_task
= NULL
;
4751 mem_cgroup_end_move(from
);
4752 memcg_oom_recover(from
);
4753 memcg_oom_recover(to
);
4754 wake_up_all(&mc
.waitq
);
4757 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4758 struct cgroup
*cgroup
,
4759 struct task_struct
*p
,
4763 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4765 if (mem
->move_charge_at_immigrate
) {
4766 struct mm_struct
*mm
;
4767 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4769 VM_BUG_ON(from
== mem
);
4771 mm
= get_task_mm(p
);
4774 /* We move charges only when we move a owner of the mm */
4775 if (mm
->owner
== p
) {
4777 * We do all the move charge works under one mmap_sem to
4778 * avoid deadlock with down_write(&mmap_sem)
4779 * -> try_charge() -> if (mc.moving_task) -> sleep.
4781 down_read(&mm
->mmap_sem
);
4785 VM_BUG_ON(mc
.precharge
);
4786 VM_BUG_ON(mc
.moved_charge
);
4787 VM_BUG_ON(mc
.moved_swap
);
4788 VM_BUG_ON(mc
.moving_task
);
4791 mem_cgroup_start_move(from
);
4792 spin_lock(&mc
.lock
);
4796 mc
.moved_charge
= 0;
4798 spin_unlock(&mc
.lock
);
4799 mc
.moving_task
= current
;
4802 ret
= mem_cgroup_precharge_mc(mm
);
4804 mem_cgroup_clear_mc();
4805 /* We call up_read() and mmput() in clear_mc(). */
4812 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4813 struct cgroup
*cgroup
,
4814 struct task_struct
*p
,
4817 mem_cgroup_clear_mc();
4820 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4821 unsigned long addr
, unsigned long end
,
4822 struct mm_walk
*walk
)
4825 struct vm_area_struct
*vma
= walk
->private;
4830 VM_BUG_ON(pmd_trans_huge(*pmd
));
4831 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4832 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4833 pte_t ptent
= *(pte
++);
4834 union mc_target target
;
4837 struct page_cgroup
*pc
;
4843 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4845 case MC_TARGET_PAGE
:
4847 if (isolate_lru_page(page
))
4849 pc
= lookup_page_cgroup(page
);
4850 if (!mem_cgroup_move_account(pc
,
4851 mc
.from
, mc
.to
, false)) {
4853 /* we uncharge from mc.from later. */
4856 putback_lru_page(page
);
4857 put
: /* is_target_pte_for_mc() gets the page */
4860 case MC_TARGET_SWAP
:
4862 if (!mem_cgroup_move_swap_account(ent
,
4863 mc
.from
, mc
.to
, false)) {
4865 /* we fixup refcnts and charges later. */
4873 pte_unmap_unlock(pte
- 1, ptl
);
4878 * We have consumed all precharges we got in can_attach().
4879 * We try charge one by one, but don't do any additional
4880 * charges to mc.to if we have failed in charge once in attach()
4883 ret
= mem_cgroup_do_precharge(1);
4891 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4893 struct vm_area_struct
*vma
;
4895 lru_add_drain_all();
4896 /* We've already held the mmap_sem */
4897 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4899 struct mm_walk mem_cgroup_move_charge_walk
= {
4900 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4904 if (is_vm_hugetlb_page(vma
))
4906 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4907 &mem_cgroup_move_charge_walk
);
4910 * means we have consumed all precharges and failed in
4911 * doing additional charge. Just abandon here.
4917 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4918 struct cgroup
*cont
,
4919 struct cgroup
*old_cont
,
4920 struct task_struct
*p
,
4924 /* no need to move charge */
4927 mem_cgroup_move_charge(mc
.mm
);
4928 mem_cgroup_clear_mc();
4930 #else /* !CONFIG_MMU */
4931 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4932 struct cgroup
*cgroup
,
4933 struct task_struct
*p
,
4938 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4939 struct cgroup
*cgroup
,
4940 struct task_struct
*p
,
4944 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4945 struct cgroup
*cont
,
4946 struct cgroup
*old_cont
,
4947 struct task_struct
*p
,
4953 struct cgroup_subsys mem_cgroup_subsys
= {
4955 .subsys_id
= mem_cgroup_subsys_id
,
4956 .create
= mem_cgroup_create
,
4957 .pre_destroy
= mem_cgroup_pre_destroy
,
4958 .destroy
= mem_cgroup_destroy
,
4959 .populate
= mem_cgroup_populate
,
4960 .can_attach
= mem_cgroup_can_attach
,
4961 .cancel_attach
= mem_cgroup_cancel_attach
,
4962 .attach
= mem_cgroup_move_task
,
4967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4968 static int __init
enable_swap_account(char *s
)
4970 /* consider enabled if no parameter or 1 is given */
4971 if (!s
|| !strcmp(s
, "1"))
4972 really_do_swap_account
= 1;
4973 else if (!strcmp(s
, "0"))
4974 really_do_swap_account
= 0;
4977 __setup("swapaccount", enable_swap_account
);
4979 static int __init
disable_swap_account(char *s
)
4981 enable_swap_account("0");
4984 __setup("noswapaccount", disable_swap_account
);