memcg: create extensible page stat update routines
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / memcontrol.c
blob3d8a0c79dece40cb1c5a4ed3b9eb61da43a65c13
1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
27 #include <linux/mm.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
44 #include <linux/fs.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
51 #include "internal.h"
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup *root_mem_cgroup __read_mostly;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata = 1;
68 #else
69 static int really_do_swap_account __initdata = 0;
70 #endif
72 #else
73 #define do_swap_account (0)
74 #endif
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index {
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS = MEM_CGROUP_STAT_DATA,
102 MEM_CGROUP_ON_MOVE, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS,
107 struct mem_cgroup_stat_cpu {
108 s64 count[MEM_CGROUP_STAT_NSTATS];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone {
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists[NR_LRU_LISTS];
119 unsigned long count[NR_LRU_LISTS];
121 struct zone_reclaim_stat reclaim_stat;
122 struct rb_node tree_node; /* RB tree node */
123 unsigned long long usage_in_excess;/* Set to the value by which */
124 /* the soft limit is exceeded*/
125 bool on_tree;
126 struct mem_cgroup *mem; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node {
133 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
136 struct mem_cgroup_lru_info {
137 struct mem_cgroup_per_node *nodeinfo[MAX_NUMNODES];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone {
146 struct rb_root rb_root;
147 spinlock_t lock;
150 struct mem_cgroup_tree_per_node {
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
154 struct mem_cgroup_tree {
155 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly;
160 struct mem_cgroup_threshold {
161 struct eventfd_ctx *eventfd;
162 u64 threshold;
165 /* For threshold */
166 struct mem_cgroup_threshold_ary {
167 /* An array index points to threshold just below usage. */
168 int current_threshold;
169 /* Size of entries[] */
170 unsigned int size;
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries[0];
175 struct mem_cgroup_thresholds {
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary *primary;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary *spare;
186 /* for OOM */
187 struct mem_cgroup_eventfd_list {
188 struct list_head list;
189 struct eventfd_ctx *eventfd;
192 static void mem_cgroup_threshold(struct mem_cgroup *mem);
193 static void mem_cgroup_oom_notify(struct mem_cgroup *mem);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
206 struct mem_cgroup {
207 struct cgroup_subsys_state css;
209 * the counter to account for memory usage
211 struct res_counter res;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock;
228 * While reclaiming in a hierarchy, we cache the last child we
229 * reclaimed from.
231 int last_scanned_child;
233 * Should the accounting and control be hierarchical, per subtree?
235 bool use_hierarchy;
236 atomic_t oom_lock;
237 atomic_t refcnt;
239 unsigned int swappiness;
240 /* OOM-Killer disable */
241 int oom_kill_disable;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds;
255 /* For oom notifier event fd */
256 struct list_head oom_notify;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate;
264 * percpu counter.
266 struct mem_cgroup_stat_cpu *stat;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base;
272 spinlock_t pcp_counter_lock;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
280 enum move_type {
281 MOVE_CHARGE_TYPE_ANON, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE, /* file page(including tmpfs) and swap of it */
283 NR_MOVE_TYPE,
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct {
288 spinlock_t lock; /* for from, to */
289 struct mem_cgroup *from;
290 struct mem_cgroup *to;
291 unsigned long precharge;
292 unsigned long moved_charge;
293 unsigned long moved_swap;
294 struct task_struct *moving_task; /* a task moving charges */
295 struct mm_struct *mm;
296 wait_queue_head_t waitq; /* a waitq for other context */
297 } mc = {
298 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
299 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
302 static bool move_anon(void)
304 return test_bit(MOVE_CHARGE_TYPE_ANON,
305 &mc.to->move_charge_at_immigrate);
308 static bool move_file(void)
310 return test_bit(MOVE_CHARGE_TYPE_FILE,
311 &mc.to->move_charge_at_immigrate);
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
321 enum charge_type {
322 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED,
324 MEM_CGROUP_CHARGE_TYPE_SHMEM, /* used by page migration of shmem */
325 MEM_CGROUP_CHARGE_TYPE_FORCE, /* used by force_empty */
326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
327 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
328 NR_CHARGE_TYPE,
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE (1UL << PCG_CACHE)
333 #define PCGF_USED (1UL << PCG_USED)
334 #define PCGF_LOCK (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT (1UL << PCG_ACCT)
338 /* for encoding cft->private value on file */
339 #define _MEM (0)
340 #define _MEMSWAP (1)
341 #define _OOM_TYPE (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val) ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL (0)
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 static void mem_cgroup_get(struct mem_cgroup *mem);
359 static void mem_cgroup_put(struct mem_cgroup *mem);
360 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem);
361 static void drain_all_stock_async(void);
363 static struct mem_cgroup_per_zone *
364 mem_cgroup_zoneinfo(struct mem_cgroup *mem, int nid, int zid)
366 return &mem->info.nodeinfo[nid]->zoneinfo[zid];
369 struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *mem)
371 return &mem->css;
374 static struct mem_cgroup_per_zone *
375 page_cgroup_zoneinfo(struct page_cgroup *pc)
377 struct mem_cgroup *mem = pc->mem_cgroup;
378 int nid = page_cgroup_nid(pc);
379 int zid = page_cgroup_zid(pc);
381 if (!mem)
382 return NULL;
384 return mem_cgroup_zoneinfo(mem, nid, zid);
387 static struct mem_cgroup_tree_per_zone *
388 soft_limit_tree_node_zone(int nid, int zid)
390 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
393 static struct mem_cgroup_tree_per_zone *
394 soft_limit_tree_from_page(struct page *page)
396 int nid = page_to_nid(page);
397 int zid = page_zonenum(page);
399 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
402 static void
403 __mem_cgroup_insert_exceeded(struct mem_cgroup *mem,
404 struct mem_cgroup_per_zone *mz,
405 struct mem_cgroup_tree_per_zone *mctz,
406 unsigned long long new_usage_in_excess)
408 struct rb_node **p = &mctz->rb_root.rb_node;
409 struct rb_node *parent = NULL;
410 struct mem_cgroup_per_zone *mz_node;
412 if (mz->on_tree)
413 return;
415 mz->usage_in_excess = new_usage_in_excess;
416 if (!mz->usage_in_excess)
417 return;
418 while (*p) {
419 parent = *p;
420 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
421 tree_node);
422 if (mz->usage_in_excess < mz_node->usage_in_excess)
423 p = &(*p)->rb_left;
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
428 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
429 p = &(*p)->rb_right;
431 rb_link_node(&mz->tree_node, parent, p);
432 rb_insert_color(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = true;
436 static void
437 __mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
438 struct mem_cgroup_per_zone *mz,
439 struct mem_cgroup_tree_per_zone *mctz)
441 if (!mz->on_tree)
442 return;
443 rb_erase(&mz->tree_node, &mctz->rb_root);
444 mz->on_tree = false;
447 static void
448 mem_cgroup_remove_exceeded(struct mem_cgroup *mem,
449 struct mem_cgroup_per_zone *mz,
450 struct mem_cgroup_tree_per_zone *mctz)
452 spin_lock(&mctz->lock);
453 __mem_cgroup_remove_exceeded(mem, mz, mctz);
454 spin_unlock(&mctz->lock);
458 static void mem_cgroup_update_tree(struct mem_cgroup *mem, struct page *page)
460 unsigned long long excess;
461 struct mem_cgroup_per_zone *mz;
462 struct mem_cgroup_tree_per_zone *mctz;
463 int nid = page_to_nid(page);
464 int zid = page_zonenum(page);
465 mctz = soft_limit_tree_from_page(page);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; mem; mem = parent_mem_cgroup(mem)) {
472 mz = mem_cgroup_zoneinfo(mem, nid, zid);
473 excess = res_counter_soft_limit_excess(&mem->res);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess || mz->on_tree) {
479 spin_lock(&mctz->lock);
480 /* if on-tree, remove it */
481 if (mz->on_tree)
482 __mem_cgroup_remove_exceeded(mem, mz, mctz);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mem, mz, mctz, excess);
488 spin_unlock(&mctz->lock);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup *mem)
495 int node, zone;
496 struct mem_cgroup_per_zone *mz;
497 struct mem_cgroup_tree_per_zone *mctz;
499 for_each_node_state(node, N_POSSIBLE) {
500 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
501 mz = mem_cgroup_zoneinfo(mem, node, zone);
502 mctz = soft_limit_tree_node_zone(node, zone);
503 mem_cgroup_remove_exceeded(mem, mz, mctz);
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup *mem)
510 return res_counter_soft_limit_excess(&mem->res) >> PAGE_SHIFT;
513 static struct mem_cgroup_per_zone *
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
516 struct rb_node *rightmost = NULL;
517 struct mem_cgroup_per_zone *mz;
519 retry:
520 mz = NULL;
521 rightmost = rb_last(&mctz->rb_root);
522 if (!rightmost)
523 goto done; /* Nothing to reclaim from */
525 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
531 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
532 if (!res_counter_soft_limit_excess(&mz->mem->res) ||
533 !css_tryget(&mz->mem->css))
534 goto retry;
535 done:
536 return mz;
539 static struct mem_cgroup_per_zone *
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
542 struct mem_cgroup_per_zone *mz;
544 spin_lock(&mctz->lock);
545 mz = __mem_cgroup_largest_soft_limit_node(mctz);
546 spin_unlock(&mctz->lock);
547 return mz;
551 * Implementation Note: reading percpu statistics for memcg.
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
567 * implemented.
569 static s64 mem_cgroup_read_stat(struct mem_cgroup *mem,
570 enum mem_cgroup_stat_index idx)
572 int cpu;
573 s64 val = 0;
575 get_online_cpus();
576 for_each_online_cpu(cpu)
577 val += per_cpu(mem->stat->count[idx], cpu);
578 #ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem->pcp_counter_lock);
580 val += mem->nocpu_base.count[idx];
581 spin_unlock(&mem->pcp_counter_lock);
582 #endif
583 put_online_cpus();
584 return val;
587 static s64 mem_cgroup_local_usage(struct mem_cgroup *mem)
589 s64 ret;
591 ret = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
592 ret += mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
593 return ret;
596 static void mem_cgroup_swap_statistics(struct mem_cgroup *mem,
597 bool charge)
599 int val = (charge) ? 1 : -1;
600 this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_SWAPOUT], val);
603 static void mem_cgroup_charge_statistics(struct mem_cgroup *mem,
604 struct page_cgroup *pc,
605 bool charge)
607 int val = (charge) ? 1 : -1;
609 preempt_disable();
611 if (PageCgroupCache(pc))
612 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_CACHE], val);
613 else
614 __this_cpu_add(mem->stat->count[MEM_CGROUP_STAT_RSS], val);
616 if (charge)
617 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGIN_COUNT]);
618 else
619 __this_cpu_inc(mem->stat->count[MEM_CGROUP_STAT_PGPGOUT_COUNT]);
620 __this_cpu_inc(mem->stat->count[MEM_CGROUP_EVENTS]);
622 preempt_enable();
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup *mem,
626 enum lru_list idx)
628 int nid, zid;
629 struct mem_cgroup_per_zone *mz;
630 u64 total = 0;
632 for_each_online_node(nid)
633 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
634 mz = mem_cgroup_zoneinfo(mem, nid, zid);
635 total += MEM_CGROUP_ZSTAT(mz, idx);
637 return total;
640 static bool __memcg_event_check(struct mem_cgroup *mem, int event_mask_shift)
642 s64 val;
644 val = this_cpu_read(mem->stat->count[MEM_CGROUP_EVENTS]);
646 return !(val & ((1 << event_mask_shift) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup *mem, struct page *page)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem, THRESHOLDS_EVENTS_THRESH))) {
657 mem_cgroup_threshold(mem);
658 if (unlikely(__memcg_event_check(mem, SOFTLIMIT_EVENTS_THRESH)))
659 mem_cgroup_update_tree(mem, page);
663 static struct mem_cgroup *mem_cgroup_from_cont(struct cgroup *cont)
665 return container_of(cgroup_subsys_state(cont,
666 mem_cgroup_subsys_id), struct mem_cgroup,
667 css);
670 struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
677 if (unlikely(!p))
678 return NULL;
680 return container_of(task_subsys_state(p, mem_cgroup_subsys_id),
681 struct mem_cgroup, css);
684 static struct mem_cgroup *try_get_mem_cgroup_from_mm(struct mm_struct *mm)
686 struct mem_cgroup *mem = NULL;
688 if (!mm)
689 return NULL;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
695 rcu_read_lock();
696 do {
697 mem = mem_cgroup_from_task(rcu_dereference(mm->owner));
698 if (unlikely(!mem))
699 break;
700 } while (!css_tryget(&mem->css));
701 rcu_read_unlock();
702 return mem;
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup *mem_cgroup_start_loop(struct mem_cgroup *mem)
708 struct cgroup_subsys_state *css;
709 int found;
711 if (!mem) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup; /*css_put/get against root is ignored*/
713 if (!mem->use_hierarchy) {
714 if (css_tryget(&mem->css))
715 return mem;
716 return NULL;
718 rcu_read_lock();
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css = css_get_next(&mem_cgroup_subsys, 1, &mem->css, &found);
724 if (css && css_tryget(css))
725 mem = container_of(css, struct mem_cgroup, css);
726 else
727 mem = NULL;
728 rcu_read_unlock();
729 return mem;
732 static struct mem_cgroup *mem_cgroup_get_next(struct mem_cgroup *iter,
733 struct mem_cgroup *root,
734 bool cond)
736 int nextid = css_id(&iter->css) + 1;
737 int found;
738 int hierarchy_used;
739 struct cgroup_subsys_state *css;
741 hierarchy_used = iter->use_hierarchy;
743 css_put(&iter->css);
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond || (root && !hierarchy_used))
746 return NULL;
748 if (!root)
749 root = root_mem_cgroup;
751 do {
752 iter = NULL;
753 rcu_read_lock();
755 css = css_get_next(&mem_cgroup_subsys, nextid,
756 &root->css, &found);
757 if (css && css_tryget(css))
758 iter = container_of(css, struct mem_cgroup, css);
759 rcu_read_unlock();
760 /* If css is NULL, no more cgroups will be found */
761 nextid = found + 1;
762 } while (css && !iter);
764 return iter;
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
773 iter != NULL;\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup *mem)
785 return (mem == root_mem_cgroup);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
794 * 1. charge
795 * 2. moving account
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page *page, enum lru_list lru)
804 struct page_cgroup *pc;
805 struct mem_cgroup_per_zone *mz;
807 if (mem_cgroup_disabled())
808 return;
809 pc = lookup_page_cgroup(page);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc))
812 return;
813 VM_BUG_ON(!pc->mem_cgroup);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz = page_cgroup_zoneinfo(pc);
819 MEM_CGROUP_ZSTAT(mz, lru) -= 1;
820 if (mem_cgroup_is_root(pc->mem_cgroup))
821 return;
822 VM_BUG_ON(list_empty(&pc->lru));
823 list_del_init(&pc->lru);
824 return;
827 void mem_cgroup_del_lru(struct page *page)
829 mem_cgroup_del_lru_list(page, page_lru(page));
832 void mem_cgroup_rotate_lru_list(struct page *page, enum lru_list lru)
834 struct mem_cgroup_per_zone *mz;
835 struct page_cgroup *pc;
837 if (mem_cgroup_disabled())
838 return;
840 pc = lookup_page_cgroup(page);
842 * Used bit is set without atomic ops but after smp_wmb().
843 * For making pc->mem_cgroup visible, insert smp_rmb() here.
845 smp_rmb();
846 /* unused or root page is not rotated. */
847 if (!PageCgroupUsed(pc) || mem_cgroup_is_root(pc->mem_cgroup))
848 return;
849 mz = page_cgroup_zoneinfo(pc);
850 list_move(&pc->lru, &mz->lists[lru]);
853 void mem_cgroup_add_lru_list(struct page *page, enum lru_list lru)
855 struct page_cgroup *pc;
856 struct mem_cgroup_per_zone *mz;
858 if (mem_cgroup_disabled())
859 return;
860 pc = lookup_page_cgroup(page);
861 VM_BUG_ON(PageCgroupAcctLRU(pc));
863 * Used bit is set without atomic ops but after smp_wmb().
864 * For making pc->mem_cgroup visible, insert smp_rmb() here.
866 smp_rmb();
867 if (!PageCgroupUsed(pc))
868 return;
870 mz = page_cgroup_zoneinfo(pc);
871 MEM_CGROUP_ZSTAT(mz, lru) += 1;
872 SetPageCgroupAcctLRU(pc);
873 if (mem_cgroup_is_root(pc->mem_cgroup))
874 return;
875 list_add(&pc->lru, &mz->lists[lru]);
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page *page)
887 unsigned long flags;
888 struct zone *zone = page_zone(page);
889 struct page_cgroup *pc = lookup_page_cgroup(page);
891 spin_lock_irqsave(&zone->lru_lock, flags);
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
896 if (!PageCgroupUsed(pc))
897 mem_cgroup_del_lru_list(page, page_lru(page));
898 spin_unlock_irqrestore(&zone->lru_lock, flags);
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page *page)
903 unsigned long flags;
904 struct zone *zone = page_zone(page);
905 struct page_cgroup *pc = lookup_page_cgroup(page);
907 spin_lock_irqsave(&zone->lru_lock, flags);
908 /* link when the page is linked to LRU but page_cgroup isn't */
909 if (PageLRU(page) && !PageCgroupAcctLRU(pc))
910 mem_cgroup_add_lru_list(page, page_lru(page));
911 spin_unlock_irqrestore(&zone->lru_lock, flags);
915 void mem_cgroup_move_lists(struct page *page,
916 enum lru_list from, enum lru_list to)
918 if (mem_cgroup_disabled())
919 return;
920 mem_cgroup_del_lru_list(page, from);
921 mem_cgroup_add_lru_list(page, to);
924 int task_in_mem_cgroup(struct task_struct *task, const struct mem_cgroup *mem)
926 int ret;
927 struct mem_cgroup *curr = NULL;
928 struct task_struct *p;
930 p = find_lock_task_mm(task);
931 if (!p)
932 return 0;
933 curr = try_get_mem_cgroup_from_mm(p->mm);
934 task_unlock(p);
935 if (!curr)
936 return 0;
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
943 if (mem->use_hierarchy)
944 ret = css_is_ancestor(&curr->css, &mem->css);
945 else
946 ret = (curr == mem);
947 css_put(&curr->css);
948 return ret;
951 static int calc_inactive_ratio(struct mem_cgroup *memcg, unsigned long *present_pages)
953 unsigned long active;
954 unsigned long inactive;
955 unsigned long gb;
956 unsigned long inactive_ratio;
958 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_ANON);
959 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_ANON);
961 gb = (inactive + active) >> (30 - PAGE_SHIFT);
962 if (gb)
963 inactive_ratio = int_sqrt(10 * gb);
964 else
965 inactive_ratio = 1;
967 if (present_pages) {
968 present_pages[0] = inactive;
969 present_pages[1] = active;
972 return inactive_ratio;
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup *memcg)
977 unsigned long active;
978 unsigned long inactive;
979 unsigned long present_pages[2];
980 unsigned long inactive_ratio;
982 inactive_ratio = calc_inactive_ratio(memcg, present_pages);
984 inactive = present_pages[0];
985 active = present_pages[1];
987 if (inactive * inactive_ratio < active)
988 return 1;
990 return 0;
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup *memcg)
995 unsigned long active;
996 unsigned long inactive;
998 inactive = mem_cgroup_get_local_zonestat(memcg, LRU_INACTIVE_FILE);
999 active = mem_cgroup_get_local_zonestat(memcg, LRU_ACTIVE_FILE);
1001 return (active > inactive);
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup *memcg,
1005 struct zone *zone,
1006 enum lru_list lru)
1008 int nid = zone_to_nid(zone);
1009 int zid = zone_idx(zone);
1010 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1012 return MEM_CGROUP_ZSTAT(mz, lru);
1015 struct zone_reclaim_stat *mem_cgroup_get_reclaim_stat(struct mem_cgroup *memcg,
1016 struct zone *zone)
1018 int nid = zone_to_nid(zone);
1019 int zid = zone_idx(zone);
1020 struct mem_cgroup_per_zone *mz = mem_cgroup_zoneinfo(memcg, nid, zid);
1022 return &mz->reclaim_stat;
1025 struct zone_reclaim_stat *
1026 mem_cgroup_get_reclaim_stat_from_page(struct page *page)
1028 struct page_cgroup *pc;
1029 struct mem_cgroup_per_zone *mz;
1031 if (mem_cgroup_disabled())
1032 return NULL;
1034 pc = lookup_page_cgroup(page);
1036 * Used bit is set without atomic ops but after smp_wmb().
1037 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1039 smp_rmb();
1040 if (!PageCgroupUsed(pc))
1041 return NULL;
1043 mz = page_cgroup_zoneinfo(pc);
1044 if (!mz)
1045 return NULL;
1047 return &mz->reclaim_stat;
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan,
1051 struct list_head *dst,
1052 unsigned long *scanned, int order,
1053 int mode, struct zone *z,
1054 struct mem_cgroup *mem_cont,
1055 int active, int file)
1057 unsigned long nr_taken = 0;
1058 struct page *page;
1059 unsigned long scan;
1060 LIST_HEAD(pc_list);
1061 struct list_head *src;
1062 struct page_cgroup *pc, *tmp;
1063 int nid = zone_to_nid(z);
1064 int zid = zone_idx(z);
1065 struct mem_cgroup_per_zone *mz;
1066 int lru = LRU_FILE * file + active;
1067 int ret;
1069 BUG_ON(!mem_cont);
1070 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
1071 src = &mz->lists[lru];
1073 scan = 0;
1074 list_for_each_entry_safe_reverse(pc, tmp, src, lru) {
1075 if (scan >= nr_to_scan)
1076 break;
1078 page = pc->page;
1079 if (unlikely(!PageCgroupUsed(pc)))
1080 continue;
1081 if (unlikely(!PageLRU(page)))
1082 continue;
1084 scan++;
1085 ret = __isolate_lru_page(page, mode, file);
1086 switch (ret) {
1087 case 0:
1088 list_move(&page->lru, dst);
1089 mem_cgroup_del_lru(page);
1090 nr_taken += hpage_nr_pages(page);
1091 break;
1092 case -EBUSY:
1093 /* we don't affect global LRU but rotate in our LRU */
1094 mem_cgroup_rotate_lru_list(page, page_lru(page));
1095 break;
1096 default:
1097 break;
1101 *scanned = scan;
1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan, scan, nr_taken,
1104 0, 0, 0, mode);
1106 return nr_taken;
1109 #define mem_cgroup_from_res_counter(counter, member) \
1110 container_of(counter, struct mem_cgroup, member)
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup *mem)
1114 if (do_swap_account) {
1115 if (res_counter_check_under_limit(&mem->res) &&
1116 res_counter_check_under_limit(&mem->memsw))
1117 return true;
1118 } else
1119 if (res_counter_check_under_limit(&mem->res))
1120 return true;
1121 return false;
1124 static unsigned int get_swappiness(struct mem_cgroup *memcg)
1126 struct cgroup *cgrp = memcg->css.cgroup;
1127 unsigned int swappiness;
1129 /* root ? */
1130 if (cgrp->parent == NULL)
1131 return vm_swappiness;
1133 spin_lock(&memcg->reclaim_param_lock);
1134 swappiness = memcg->swappiness;
1135 spin_unlock(&memcg->reclaim_param_lock);
1137 return swappiness;
1140 static void mem_cgroup_start_move(struct mem_cgroup *mem)
1142 int cpu;
1144 get_online_cpus();
1145 spin_lock(&mem->pcp_counter_lock);
1146 for_each_online_cpu(cpu)
1147 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) += 1;
1148 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] += 1;
1149 spin_unlock(&mem->pcp_counter_lock);
1150 put_online_cpus();
1152 synchronize_rcu();
1155 static void mem_cgroup_end_move(struct mem_cgroup *mem)
1157 int cpu;
1159 if (!mem)
1160 return;
1161 get_online_cpus();
1162 spin_lock(&mem->pcp_counter_lock);
1163 for_each_online_cpu(cpu)
1164 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) -= 1;
1165 mem->nocpu_base.count[MEM_CGROUP_ON_MOVE] -= 1;
1166 spin_unlock(&mem->pcp_counter_lock);
1167 put_online_cpus();
1170 * 2 routines for checking "mem" is under move_account() or not.
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 * for avoiding race in accounting. If true,
1174 * pc->mem_cgroup may be overwritten.
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 * under hierarchy of moving cgroups. This is for
1178 * waiting at hith-memory prressure caused by "move".
1181 static bool mem_cgroup_stealed(struct mem_cgroup *mem)
1183 VM_BUG_ON(!rcu_read_lock_held());
1184 return this_cpu_read(mem->stat->count[MEM_CGROUP_ON_MOVE]) > 0;
1187 static bool mem_cgroup_under_move(struct mem_cgroup *mem)
1189 struct mem_cgroup *from;
1190 struct mem_cgroup *to;
1191 bool ret = false;
1193 * Unlike task_move routines, we access mc.to, mc.from not under
1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1196 spin_lock(&mc.lock);
1197 from = mc.from;
1198 to = mc.to;
1199 if (!from)
1200 goto unlock;
1201 if (from == mem || to == mem
1202 || (mem->use_hierarchy && css_is_ancestor(&from->css, &mem->css))
1203 || (mem->use_hierarchy && css_is_ancestor(&to->css, &mem->css)))
1204 ret = true;
1205 unlock:
1206 spin_unlock(&mc.lock);
1207 return ret;
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup *mem)
1212 if (mc.moving_task && current != mc.moving_task) {
1213 if (mem_cgroup_under_move(mem)) {
1214 DEFINE_WAIT(wait);
1215 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1216 /* moving charge context might have finished. */
1217 if (mc.moving_task)
1218 schedule();
1219 finish_wait(&mc.waitq, &wait);
1220 return true;
1223 return false;
1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1232 * enabled
1234 void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1236 struct cgroup *task_cgrp;
1237 struct cgroup *mem_cgrp;
1239 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 * on the assumption that OOM is serialized for memory controller.
1241 * If this assumption is broken, revisit this code.
1243 static char memcg_name[PATH_MAX];
1244 int ret;
1246 if (!memcg || !p)
1247 return;
1250 rcu_read_lock();
1252 mem_cgrp = memcg->css.cgroup;
1253 task_cgrp = task_cgroup(p, mem_cgroup_subsys_id);
1255 ret = cgroup_path(task_cgrp, memcg_name, PATH_MAX);
1256 if (ret < 0) {
1258 * Unfortunately, we are unable to convert to a useful name
1259 * But we'll still print out the usage information
1261 rcu_read_unlock();
1262 goto done;
1264 rcu_read_unlock();
1266 printk(KERN_INFO "Task in %s killed", memcg_name);
1268 rcu_read_lock();
1269 ret = cgroup_path(mem_cgrp, memcg_name, PATH_MAX);
1270 if (ret < 0) {
1271 rcu_read_unlock();
1272 goto done;
1274 rcu_read_unlock();
1277 * Continues from above, so we don't need an KERN_ level
1279 printk(KERN_CONT " as a result of limit of %s\n", memcg_name);
1280 done:
1282 printk(KERN_INFO "memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 res_counter_read_u64(&memcg->res, RES_USAGE) >> 10,
1284 res_counter_read_u64(&memcg->res, RES_LIMIT) >> 10,
1285 res_counter_read_u64(&memcg->res, RES_FAILCNT));
1286 printk(KERN_INFO "memory+swap: usage %llukB, limit %llukB, "
1287 "failcnt %llu\n",
1288 res_counter_read_u64(&memcg->memsw, RES_USAGE) >> 10,
1289 res_counter_read_u64(&memcg->memsw, RES_LIMIT) >> 10,
1290 res_counter_read_u64(&memcg->memsw, RES_FAILCNT));
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1297 static int mem_cgroup_count_children(struct mem_cgroup *mem)
1299 int num = 0;
1300 struct mem_cgroup *iter;
1302 for_each_mem_cgroup_tree(iter, mem)
1303 num++;
1304 return num;
1308 * Return the memory (and swap, if configured) limit for a memcg.
1310 u64 mem_cgroup_get_limit(struct mem_cgroup *memcg)
1312 u64 limit;
1313 u64 memsw;
1315 limit = res_counter_read_u64(&memcg->res, RES_LIMIT) +
1316 total_swap_pages;
1317 memsw = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1322 return min(limit, memsw);
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1330 static struct mem_cgroup *
1331 mem_cgroup_select_victim(struct mem_cgroup *root_mem)
1333 struct mem_cgroup *ret = NULL;
1334 struct cgroup_subsys_state *css;
1335 int nextid, found;
1337 if (!root_mem->use_hierarchy) {
1338 css_get(&root_mem->css);
1339 ret = root_mem;
1342 while (!ret) {
1343 rcu_read_lock();
1344 nextid = root_mem->last_scanned_child + 1;
1345 css = css_get_next(&mem_cgroup_subsys, nextid, &root_mem->css,
1346 &found);
1347 if (css && css_tryget(css))
1348 ret = container_of(css, struct mem_cgroup, css);
1350 rcu_read_unlock();
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem->reclaim_param_lock);
1353 if (!css) {
1354 /* this means start scan from ID:1 */
1355 root_mem->last_scanned_child = 0;
1356 } else
1357 root_mem->last_scanned_child = found;
1358 spin_unlock(&root_mem->reclaim_param_lock);
1361 return ret;
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
1369 * root_mem is the original ancestor that we've been reclaim from.
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup *root_mem,
1377 struct zone *zone,
1378 gfp_t gfp_mask,
1379 unsigned long reclaim_options)
1381 struct mem_cgroup *victim;
1382 int ret, total = 0;
1383 int loop = 0;
1384 bool noswap = reclaim_options & MEM_CGROUP_RECLAIM_NOSWAP;
1385 bool shrink = reclaim_options & MEM_CGROUP_RECLAIM_SHRINK;
1386 bool check_soft = reclaim_options & MEM_CGROUP_RECLAIM_SOFT;
1387 unsigned long excess = mem_cgroup_get_excess(root_mem);
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem->memsw_is_minimum)
1391 noswap = true;
1393 while (1) {
1394 victim = mem_cgroup_select_victim(root_mem);
1395 if (victim == root_mem) {
1396 loop++;
1397 if (loop >= 1)
1398 drain_all_stock_async();
1399 if (loop >= 2) {
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1405 if (!check_soft || !total) {
1406 css_put(&victim->css);
1407 break;
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1415 if (total >= (excess >> 2) ||
1416 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS)) {
1417 css_put(&victim->css);
1418 break;
1422 if (!mem_cgroup_local_usage(victim)) {
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim->css);
1425 continue;
1427 /* we use swappiness of local cgroup */
1428 if (check_soft)
1429 ret = mem_cgroup_shrink_node_zone(victim, gfp_mask,
1430 noswap, get_swappiness(victim), zone);
1431 else
1432 ret = try_to_free_mem_cgroup_pages(victim, gfp_mask,
1433 noswap, get_swappiness(victim));
1434 css_put(&victim->css);
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1440 if (shrink)
1441 return ret;
1442 total += ret;
1443 if (check_soft) {
1444 if (res_counter_check_under_soft_limit(&root_mem->res))
1445 return total;
1446 } else if (mem_cgroup_check_under_limit(root_mem))
1447 return 1 + total;
1449 return total;
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup *mem)
1458 int x, lock_count = 0;
1459 struct mem_cgroup *iter;
1461 for_each_mem_cgroup_tree(iter, mem) {
1462 x = atomic_inc_return(&iter->oom_lock);
1463 lock_count = max(x, lock_count);
1466 if (lock_count == 1)
1467 return true;
1468 return false;
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup *mem)
1473 struct mem_cgroup *iter;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1480 for_each_mem_cgroup_tree(iter, mem)
1481 atomic_add_unless(&iter->oom_lock, -1, 0);
1482 return 0;
1486 static DEFINE_MUTEX(memcg_oom_mutex);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1489 struct oom_wait_info {
1490 struct mem_cgroup *mem;
1491 wait_queue_t wait;
1494 static int memcg_oom_wake_function(wait_queue_t *wait,
1495 unsigned mode, int sync, void *arg)
1497 struct mem_cgroup *wake_mem = (struct mem_cgroup *)arg;
1498 struct oom_wait_info *oom_wait_info;
1500 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
1502 if (oom_wait_info->mem == wake_mem)
1503 goto wakeup;
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info->mem->use_hierarchy || !wake_mem->use_hierarchy)
1506 return 0;
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1511 if (!css_is_ancestor(&oom_wait_info->mem->css, &wake_mem->css) &&
1512 !css_is_ancestor(&wake_mem->css, &oom_wait_info->mem->css))
1513 return 0;
1515 wakeup:
1516 return autoremove_wake_function(wait, mode, sync, arg);
1519 static void memcg_wakeup_oom(struct mem_cgroup *mem)
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, mem);
1525 static void memcg_oom_recover(struct mem_cgroup *mem)
1527 if (mem && atomic_read(&mem->oom_lock))
1528 memcg_wakeup_oom(mem);
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534 bool mem_cgroup_handle_oom(struct mem_cgroup *mem, gfp_t mask)
1536 struct oom_wait_info owait;
1537 bool locked, need_to_kill;
1539 owait.mem = mem;
1540 owait.wait.flags = 0;
1541 owait.wait.func = memcg_oom_wake_function;
1542 owait.wait.private = current;
1543 INIT_LIST_HEAD(&owait.wait.task_list);
1544 need_to_kill = true;
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex);
1547 locked = mem_cgroup_oom_lock(mem);
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1553 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
1554 if (!locked || mem->oom_kill_disable)
1555 need_to_kill = false;
1556 if (locked)
1557 mem_cgroup_oom_notify(mem);
1558 mutex_unlock(&memcg_oom_mutex);
1560 if (need_to_kill) {
1561 finish_wait(&memcg_oom_waitq, &owait.wait);
1562 mem_cgroup_out_of_memory(mem, mask);
1563 } else {
1564 schedule();
1565 finish_wait(&memcg_oom_waitq, &owait.wait);
1567 mutex_lock(&memcg_oom_mutex);
1568 mem_cgroup_oom_unlock(mem);
1569 memcg_wakeup_oom(mem);
1570 mutex_unlock(&memcg_oom_mutex);
1572 if (test_thread_flag(TIF_MEMDIE) || fatal_signal_pending(current))
1573 return false;
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1576 return true;
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
1583 * Notes: Race condition
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1596 * by flags.
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
1603 void mem_cgroup_update_page_stat(struct page *page,
1604 enum mem_cgroup_page_stat_item idx, int val)
1606 struct mem_cgroup *mem;
1607 struct page_cgroup *pc = lookup_page_cgroup(page);
1608 bool need_unlock = false;
1610 if (unlikely(!pc))
1611 return;
1613 rcu_read_lock();
1614 mem = pc->mem_cgroup;
1615 if (unlikely(!mem || !PageCgroupUsed(pc)))
1616 goto out;
1617 /* pc->mem_cgroup is unstable ? */
1618 if (unlikely(mem_cgroup_stealed(mem))) {
1619 /* take a lock against to access pc->mem_cgroup */
1620 lock_page_cgroup(pc);
1621 need_unlock = true;
1622 mem = pc->mem_cgroup;
1623 if (!mem || !PageCgroupUsed(pc))
1624 goto out;
1627 switch (idx) {
1628 case MEMCG_NR_FILE_MAPPED:
1629 if (val > 0)
1630 SetPageCgroupFileMapped(pc);
1631 else if (!page_mapped(page))
1632 ClearPageCgroupFileMapped(pc);
1633 idx = MEM_CGROUP_STAT_FILE_MAPPED;
1634 break;
1635 default:
1636 BUG();
1639 this_cpu_add(mem->stat->count[idx], val);
1641 out:
1642 if (unlikely(need_unlock))
1643 unlock_page_cgroup(pc);
1644 rcu_read_unlock();
1645 return;
1647 EXPORT_SYMBOL(mem_cgroup_update_page_stat);
1650 * size of first charge trial. "32" comes from vmscan.c's magic value.
1651 * TODO: maybe necessary to use big numbers in big irons.
1653 #define CHARGE_SIZE (32 * PAGE_SIZE)
1654 struct memcg_stock_pcp {
1655 struct mem_cgroup *cached; /* this never be root cgroup */
1656 int charge;
1657 struct work_struct work;
1659 static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
1660 static atomic_t memcg_drain_count;
1663 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1664 * from local stock and true is returned. If the stock is 0 or charges from a
1665 * cgroup which is not current target, returns false. This stock will be
1666 * refilled.
1668 static bool consume_stock(struct mem_cgroup *mem)
1670 struct memcg_stock_pcp *stock;
1671 bool ret = true;
1673 stock = &get_cpu_var(memcg_stock);
1674 if (mem == stock->cached && stock->charge)
1675 stock->charge -= PAGE_SIZE;
1676 else /* need to call res_counter_charge */
1677 ret = false;
1678 put_cpu_var(memcg_stock);
1679 return ret;
1683 * Returns stocks cached in percpu to res_counter and reset cached information.
1685 static void drain_stock(struct memcg_stock_pcp *stock)
1687 struct mem_cgroup *old = stock->cached;
1689 if (stock->charge) {
1690 res_counter_uncharge(&old->res, stock->charge);
1691 if (do_swap_account)
1692 res_counter_uncharge(&old->memsw, stock->charge);
1694 stock->cached = NULL;
1695 stock->charge = 0;
1699 * This must be called under preempt disabled or must be called by
1700 * a thread which is pinned to local cpu.
1702 static void drain_local_stock(struct work_struct *dummy)
1704 struct memcg_stock_pcp *stock = &__get_cpu_var(memcg_stock);
1705 drain_stock(stock);
1709 * Cache charges(val) which is from res_counter, to local per_cpu area.
1710 * This will be consumed by consume_stock() function, later.
1712 static void refill_stock(struct mem_cgroup *mem, int val)
1714 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1716 if (stock->cached != mem) { /* reset if necessary */
1717 drain_stock(stock);
1718 stock->cached = mem;
1720 stock->charge += val;
1721 put_cpu_var(memcg_stock);
1725 * Tries to drain stocked charges in other cpus. This function is asynchronous
1726 * and just put a work per cpu for draining localy on each cpu. Caller can
1727 * expects some charges will be back to res_counter later but cannot wait for
1728 * it.
1730 static void drain_all_stock_async(void)
1732 int cpu;
1733 /* This function is for scheduling "drain" in asynchronous way.
1734 * The result of "drain" is not directly handled by callers. Then,
1735 * if someone is calling drain, we don't have to call drain more.
1736 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1737 * there is a race. We just do loose check here.
1739 if (atomic_read(&memcg_drain_count))
1740 return;
1741 /* Notify other cpus that system-wide "drain" is running */
1742 atomic_inc(&memcg_drain_count);
1743 get_online_cpus();
1744 for_each_online_cpu(cpu) {
1745 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
1746 schedule_work_on(cpu, &stock->work);
1748 put_online_cpus();
1749 atomic_dec(&memcg_drain_count);
1750 /* We don't wait for flush_work */
1753 /* This is a synchronous drain interface. */
1754 static void drain_all_stock_sync(void)
1756 /* called when force_empty is called */
1757 atomic_inc(&memcg_drain_count);
1758 schedule_on_each_cpu(drain_local_stock);
1759 atomic_dec(&memcg_drain_count);
1763 * This function drains percpu counter value from DEAD cpu and
1764 * move it to local cpu. Note that this function can be preempted.
1766 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *mem, int cpu)
1768 int i;
1770 spin_lock(&mem->pcp_counter_lock);
1771 for (i = 0; i < MEM_CGROUP_STAT_DATA; i++) {
1772 s64 x = per_cpu(mem->stat->count[i], cpu);
1774 per_cpu(mem->stat->count[i], cpu) = 0;
1775 mem->nocpu_base.count[i] += x;
1777 /* need to clear ON_MOVE value, works as a kind of lock. */
1778 per_cpu(mem->stat->count[MEM_CGROUP_ON_MOVE], cpu) = 0;
1779 spin_unlock(&mem->pcp_counter_lock);
1782 static void synchronize_mem_cgroup_on_move(struct mem_cgroup *mem, int cpu)
1784 int idx = MEM_CGROUP_ON_MOVE;
1786 spin_lock(&mem->pcp_counter_lock);
1787 per_cpu(mem->stat->count[idx], cpu) = mem->nocpu_base.count[idx];
1788 spin_unlock(&mem->pcp_counter_lock);
1791 static int __cpuinit memcg_cpu_hotplug_callback(struct notifier_block *nb,
1792 unsigned long action,
1793 void *hcpu)
1795 int cpu = (unsigned long)hcpu;
1796 struct memcg_stock_pcp *stock;
1797 struct mem_cgroup *iter;
1799 if ((action == CPU_ONLINE)) {
1800 for_each_mem_cgroup_all(iter)
1801 synchronize_mem_cgroup_on_move(iter, cpu);
1802 return NOTIFY_OK;
1805 if ((action != CPU_DEAD) || action != CPU_DEAD_FROZEN)
1806 return NOTIFY_OK;
1808 for_each_mem_cgroup_all(iter)
1809 mem_cgroup_drain_pcp_counter(iter, cpu);
1811 stock = &per_cpu(memcg_stock, cpu);
1812 drain_stock(stock);
1813 return NOTIFY_OK;
1817 /* See __mem_cgroup_try_charge() for details */
1818 enum {
1819 CHARGE_OK, /* success */
1820 CHARGE_RETRY, /* need to retry but retry is not bad */
1821 CHARGE_NOMEM, /* we can't do more. return -ENOMEM */
1822 CHARGE_WOULDBLOCK, /* GFP_WAIT wasn't set and no enough res. */
1823 CHARGE_OOM_DIE, /* the current is killed because of OOM */
1826 static int __mem_cgroup_do_charge(struct mem_cgroup *mem, gfp_t gfp_mask,
1827 int csize, bool oom_check)
1829 struct mem_cgroup *mem_over_limit;
1830 struct res_counter *fail_res;
1831 unsigned long flags = 0;
1832 int ret;
1834 ret = res_counter_charge(&mem->res, csize, &fail_res);
1836 if (likely(!ret)) {
1837 if (!do_swap_account)
1838 return CHARGE_OK;
1839 ret = res_counter_charge(&mem->memsw, csize, &fail_res);
1840 if (likely(!ret))
1841 return CHARGE_OK;
1843 mem_over_limit = mem_cgroup_from_res_counter(fail_res, memsw);
1844 flags |= MEM_CGROUP_RECLAIM_NOSWAP;
1845 } else
1846 mem_over_limit = mem_cgroup_from_res_counter(fail_res, res);
1848 if (csize > PAGE_SIZE) /* change csize and retry */
1849 return CHARGE_RETRY;
1851 if (!(gfp_mask & __GFP_WAIT))
1852 return CHARGE_WOULDBLOCK;
1854 ret = mem_cgroup_hierarchical_reclaim(mem_over_limit, NULL,
1855 gfp_mask, flags);
1857 * try_to_free_mem_cgroup_pages() might not give us a full
1858 * picture of reclaim. Some pages are reclaimed and might be
1859 * moved to swap cache or just unmapped from the cgroup.
1860 * Check the limit again to see if the reclaim reduced the
1861 * current usage of the cgroup before giving up
1863 if (ret || mem_cgroup_check_under_limit(mem_over_limit))
1864 return CHARGE_RETRY;
1867 * At task move, charge accounts can be doubly counted. So, it's
1868 * better to wait until the end of task_move if something is going on.
1870 if (mem_cgroup_wait_acct_move(mem_over_limit))
1871 return CHARGE_RETRY;
1873 /* If we don't need to call oom-killer at el, return immediately */
1874 if (!oom_check)
1875 return CHARGE_NOMEM;
1876 /* check OOM */
1877 if (!mem_cgroup_handle_oom(mem_over_limit, gfp_mask))
1878 return CHARGE_OOM_DIE;
1880 return CHARGE_RETRY;
1884 * Unlike exported interface, "oom" parameter is added. if oom==true,
1885 * oom-killer can be invoked.
1887 static int __mem_cgroup_try_charge(struct mm_struct *mm,
1888 gfp_t gfp_mask,
1889 struct mem_cgroup **memcg, bool oom,
1890 int page_size)
1892 int nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1893 struct mem_cgroup *mem = NULL;
1894 int ret;
1895 int csize = max(CHARGE_SIZE, (unsigned long) page_size);
1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 * in system level. So, allow to go ahead dying process in addition to
1900 * MEMDIE process.
1902 if (unlikely(test_thread_flag(TIF_MEMDIE)
1903 || fatal_signal_pending(current)))
1904 goto bypass;
1907 * We always charge the cgroup the mm_struct belongs to.
1908 * The mm_struct's mem_cgroup changes on task migration if the
1909 * thread group leader migrates. It's possible that mm is not
1910 * set, if so charge the init_mm (happens for pagecache usage).
1912 if (!*memcg && !mm)
1913 goto bypass;
1914 again:
1915 if (*memcg) { /* css should be a valid one */
1916 mem = *memcg;
1917 VM_BUG_ON(css_is_removed(&mem->css));
1918 if (mem_cgroup_is_root(mem))
1919 goto done;
1920 if (page_size == PAGE_SIZE && consume_stock(mem))
1921 goto done;
1922 css_get(&mem->css);
1923 } else {
1924 struct task_struct *p;
1926 rcu_read_lock();
1927 p = rcu_dereference(mm->owner);
1929 * Because we don't have task_lock(), "p" can exit.
1930 * In that case, "mem" can point to root or p can be NULL with
1931 * race with swapoff. Then, we have small risk of mis-accouning.
1932 * But such kind of mis-account by race always happens because
1933 * we don't have cgroup_mutex(). It's overkill and we allo that
1934 * small race, here.
1935 * (*) swapoff at el will charge against mm-struct not against
1936 * task-struct. So, mm->owner can be NULL.
1938 mem = mem_cgroup_from_task(p);
1939 if (!mem || mem_cgroup_is_root(mem)) {
1940 rcu_read_unlock();
1941 goto done;
1943 if (page_size == PAGE_SIZE && consume_stock(mem)) {
1945 * It seems dagerous to access memcg without css_get().
1946 * But considering how consume_stok works, it's not
1947 * necessary. If consume_stock success, some charges
1948 * from this memcg are cached on this cpu. So, we
1949 * don't need to call css_get()/css_tryget() before
1950 * calling consume_stock().
1952 rcu_read_unlock();
1953 goto done;
1955 /* after here, we may be blocked. we need to get refcnt */
1956 if (!css_tryget(&mem->css)) {
1957 rcu_read_unlock();
1958 goto again;
1960 rcu_read_unlock();
1963 do {
1964 bool oom_check;
1966 /* If killed, bypass charge */
1967 if (fatal_signal_pending(current)) {
1968 css_put(&mem->css);
1969 goto bypass;
1972 oom_check = false;
1973 if (oom && !nr_oom_retries) {
1974 oom_check = true;
1975 nr_oom_retries = MEM_CGROUP_RECLAIM_RETRIES;
1978 ret = __mem_cgroup_do_charge(mem, gfp_mask, csize, oom_check);
1980 switch (ret) {
1981 case CHARGE_OK:
1982 break;
1983 case CHARGE_RETRY: /* not in OOM situation but retry */
1984 csize = page_size;
1985 css_put(&mem->css);
1986 mem = NULL;
1987 goto again;
1988 case CHARGE_WOULDBLOCK: /* !__GFP_WAIT */
1989 css_put(&mem->css);
1990 goto nomem;
1991 case CHARGE_NOMEM: /* OOM routine works */
1992 if (!oom) {
1993 css_put(&mem->css);
1994 goto nomem;
1996 /* If oom, we never return -ENOMEM */
1997 nr_oom_retries--;
1998 break;
1999 case CHARGE_OOM_DIE: /* Killed by OOM Killer */
2000 css_put(&mem->css);
2001 goto bypass;
2003 } while (ret != CHARGE_OK);
2005 if (csize > page_size)
2006 refill_stock(mem, csize - page_size);
2007 css_put(&mem->css);
2008 done:
2009 *memcg = mem;
2010 return 0;
2011 nomem:
2012 *memcg = NULL;
2013 return -ENOMEM;
2014 bypass:
2015 *memcg = NULL;
2016 return 0;
2020 * Somemtimes we have to undo a charge we got by try_charge().
2021 * This function is for that and do uncharge, put css's refcnt.
2022 * gotten by try_charge().
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2025 unsigned long count)
2027 if (!mem_cgroup_is_root(mem)) {
2028 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
2029 if (do_swap_account)
2030 res_counter_uncharge(&mem->memsw, PAGE_SIZE * count);
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup *mem,
2035 int page_size)
2037 __mem_cgroup_cancel_charge(mem, page_size >> PAGE_SHIFT);
2041 * A helper function to get mem_cgroup from ID. must be called under
2042 * rcu_read_lock(). The caller must check css_is_removed() or some if
2043 * it's concern. (dropping refcnt from swap can be called against removed
2044 * memcg.)
2046 static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2048 struct cgroup_subsys_state *css;
2050 /* ID 0 is unused ID */
2051 if (!id)
2052 return NULL;
2053 css = css_lookup(&mem_cgroup_subsys, id);
2054 if (!css)
2055 return NULL;
2056 return container_of(css, struct mem_cgroup, css);
2059 struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
2061 struct mem_cgroup *mem = NULL;
2062 struct page_cgroup *pc;
2063 unsigned short id;
2064 swp_entry_t ent;
2066 VM_BUG_ON(!PageLocked(page));
2068 pc = lookup_page_cgroup(page);
2069 lock_page_cgroup(pc);
2070 if (PageCgroupUsed(pc)) {
2071 mem = pc->mem_cgroup;
2072 if (mem && !css_tryget(&mem->css))
2073 mem = NULL;
2074 } else if (PageSwapCache(page)) {
2075 ent.val = page_private(page);
2076 id = lookup_swap_cgroup(ent);
2077 rcu_read_lock();
2078 mem = mem_cgroup_lookup(id);
2079 if (mem && !css_tryget(&mem->css))
2080 mem = NULL;
2081 rcu_read_unlock();
2083 unlock_page_cgroup(pc);
2084 return mem;
2088 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2089 * USED state. If already USED, uncharge and return.
2091 static void ____mem_cgroup_commit_charge(struct mem_cgroup *mem,
2092 struct page_cgroup *pc,
2093 enum charge_type ctype)
2095 pc->mem_cgroup = mem;
2097 * We access a page_cgroup asynchronously without lock_page_cgroup().
2098 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2099 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2100 * before USED bit, we need memory barrier here.
2101 * See mem_cgroup_add_lru_list(), etc.
2103 smp_wmb();
2104 switch (ctype) {
2105 case MEM_CGROUP_CHARGE_TYPE_CACHE:
2106 case MEM_CGROUP_CHARGE_TYPE_SHMEM:
2107 SetPageCgroupCache(pc);
2108 SetPageCgroupUsed(pc);
2109 break;
2110 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2111 ClearPageCgroupCache(pc);
2112 SetPageCgroupUsed(pc);
2113 break;
2114 default:
2115 break;
2118 mem_cgroup_charge_statistics(mem, pc, true);
2121 static void __mem_cgroup_commit_charge(struct mem_cgroup *mem,
2122 struct page_cgroup *pc,
2123 enum charge_type ctype,
2124 int page_size)
2126 int i;
2127 int count = page_size >> PAGE_SHIFT;
2129 /* try_charge() can return NULL to *memcg, taking care of it. */
2130 if (!mem)
2131 return;
2133 lock_page_cgroup(pc);
2134 if (unlikely(PageCgroupUsed(pc))) {
2135 unlock_page_cgroup(pc);
2136 mem_cgroup_cancel_charge(mem, page_size);
2137 return;
2141 * we don't need page_cgroup_lock about tail pages, becase they are not
2142 * accessed by any other context at this point.
2144 for (i = 0; i < count; i++)
2145 ____mem_cgroup_commit_charge(mem, pc + i, ctype);
2147 unlock_page_cgroup(pc);
2149 * "charge_statistics" updated event counter. Then, check it.
2150 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2151 * if they exceeds softlimit.
2153 memcg_check_events(mem, pc->page);
2157 * __mem_cgroup_move_account - move account of the page
2158 * @pc: page_cgroup of the page.
2159 * @from: mem_cgroup which the page is moved from.
2160 * @to: mem_cgroup which the page is moved to. @from != @to.
2161 * @uncharge: whether we should call uncharge and css_put against @from.
2163 * The caller must confirm following.
2164 * - page is not on LRU (isolate_page() is useful.)
2165 * - the pc is locked, used, and ->mem_cgroup points to @from.
2167 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2168 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2169 * true, this function does "uncharge" from old cgroup, but it doesn't if
2170 * @uncharge is false, so a caller should do "uncharge".
2173 static void __mem_cgroup_move_account(struct page_cgroup *pc,
2174 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2176 VM_BUG_ON(from == to);
2177 VM_BUG_ON(PageLRU(pc->page));
2178 VM_BUG_ON(!page_is_cgroup_locked(pc));
2179 VM_BUG_ON(!PageCgroupUsed(pc));
2180 VM_BUG_ON(pc->mem_cgroup != from);
2182 if (PageCgroupFileMapped(pc)) {
2183 /* Update mapped_file data for mem_cgroup */
2184 preempt_disable();
2185 __this_cpu_dec(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2186 __this_cpu_inc(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED]);
2187 preempt_enable();
2189 mem_cgroup_charge_statistics(from, pc, false);
2190 if (uncharge)
2191 /* This is not "cancel", but cancel_charge does all we need. */
2192 mem_cgroup_cancel_charge(from, PAGE_SIZE);
2194 /* caller should have done css_get */
2195 pc->mem_cgroup = to;
2196 mem_cgroup_charge_statistics(to, pc, true);
2198 * We charges against "to" which may not have any tasks. Then, "to"
2199 * can be under rmdir(). But in current implementation, caller of
2200 * this function is just force_empty() and move charge, so it's
2201 * garanteed that "to" is never removed. So, we don't check rmdir
2202 * status here.
2207 * check whether the @pc is valid for moving account and call
2208 * __mem_cgroup_move_account()
2210 static int mem_cgroup_move_account(struct page_cgroup *pc,
2211 struct mem_cgroup *from, struct mem_cgroup *to, bool uncharge)
2213 int ret = -EINVAL;
2214 lock_page_cgroup(pc);
2215 if (PageCgroupUsed(pc) && pc->mem_cgroup == from) {
2216 __mem_cgroup_move_account(pc, from, to, uncharge);
2217 ret = 0;
2219 unlock_page_cgroup(pc);
2221 * check events
2223 memcg_check_events(to, pc->page);
2224 memcg_check_events(from, pc->page);
2225 return ret;
2229 * move charges to its parent.
2232 static int mem_cgroup_move_parent(struct page_cgroup *pc,
2233 struct mem_cgroup *child,
2234 gfp_t gfp_mask)
2236 struct page *page = pc->page;
2237 struct cgroup *cg = child->css.cgroup;
2238 struct cgroup *pcg = cg->parent;
2239 struct mem_cgroup *parent;
2240 int ret;
2242 /* Is ROOT ? */
2243 if (!pcg)
2244 return -EINVAL;
2246 ret = -EBUSY;
2247 if (!get_page_unless_zero(page))
2248 goto out;
2249 if (isolate_lru_page(page))
2250 goto put;
2252 parent = mem_cgroup_from_cont(pcg);
2253 ret = __mem_cgroup_try_charge(NULL, gfp_mask, &parent, false,
2254 PAGE_SIZE);
2255 if (ret || !parent)
2256 goto put_back;
2258 ret = mem_cgroup_move_account(pc, child, parent, true);
2259 if (ret)
2260 mem_cgroup_cancel_charge(parent, PAGE_SIZE);
2261 put_back:
2262 putback_lru_page(page);
2263 put:
2264 put_page(page);
2265 out:
2266 return ret;
2270 * Charge the memory controller for page usage.
2271 * Return
2272 * 0 if the charge was successful
2273 * < 0 if the cgroup is over its limit
2275 static int mem_cgroup_charge_common(struct page *page, struct mm_struct *mm,
2276 gfp_t gfp_mask, enum charge_type ctype)
2278 struct mem_cgroup *mem = NULL;
2279 struct page_cgroup *pc;
2280 int ret;
2281 int page_size = PAGE_SIZE;
2283 if (PageTransHuge(page)) {
2284 page_size <<= compound_order(page);
2285 VM_BUG_ON(!PageTransHuge(page));
2288 pc = lookup_page_cgroup(page);
2289 /* can happen at boot */
2290 if (unlikely(!pc))
2291 return 0;
2292 prefetchw(pc);
2294 ret = __mem_cgroup_try_charge(mm, gfp_mask, &mem, true, page_size);
2295 if (ret || !mem)
2296 return ret;
2298 __mem_cgroup_commit_charge(mem, pc, ctype, page_size);
2299 return 0;
2302 int mem_cgroup_newpage_charge(struct page *page,
2303 struct mm_struct *mm, gfp_t gfp_mask)
2305 if (mem_cgroup_disabled())
2306 return 0;
2308 * If already mapped, we don't have to account.
2309 * If page cache, page->mapping has address_space.
2310 * But page->mapping may have out-of-use anon_vma pointer,
2311 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2312 * is NULL.
2314 if (page_mapped(page) || (page->mapping && !PageAnon(page)))
2315 return 0;
2316 if (unlikely(!mm))
2317 mm = &init_mm;
2318 return mem_cgroup_charge_common(page, mm, gfp_mask,
2319 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2322 static void
2323 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2324 enum charge_type ctype);
2326 int mem_cgroup_cache_charge(struct page *page, struct mm_struct *mm,
2327 gfp_t gfp_mask)
2329 int ret;
2331 if (mem_cgroup_disabled())
2332 return 0;
2333 if (PageCompound(page))
2334 return 0;
2336 * Corner case handling. This is called from add_to_page_cache()
2337 * in usual. But some FS (shmem) precharges this page before calling it
2338 * and call add_to_page_cache() with GFP_NOWAIT.
2340 * For GFP_NOWAIT case, the page may be pre-charged before calling
2341 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2342 * charge twice. (It works but has to pay a bit larger cost.)
2343 * And when the page is SwapCache, it should take swap information
2344 * into account. This is under lock_page() now.
2346 if (!(gfp_mask & __GFP_WAIT)) {
2347 struct page_cgroup *pc;
2349 pc = lookup_page_cgroup(page);
2350 if (!pc)
2351 return 0;
2352 lock_page_cgroup(pc);
2353 if (PageCgroupUsed(pc)) {
2354 unlock_page_cgroup(pc);
2355 return 0;
2357 unlock_page_cgroup(pc);
2360 if (unlikely(!mm))
2361 mm = &init_mm;
2363 if (page_is_file_cache(page))
2364 return mem_cgroup_charge_common(page, mm, gfp_mask,
2365 MEM_CGROUP_CHARGE_TYPE_CACHE);
2367 /* shmem */
2368 if (PageSwapCache(page)) {
2369 struct mem_cgroup *mem = NULL;
2371 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2372 if (!ret)
2373 __mem_cgroup_commit_charge_swapin(page, mem,
2374 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2375 } else
2376 ret = mem_cgroup_charge_common(page, mm, gfp_mask,
2377 MEM_CGROUP_CHARGE_TYPE_SHMEM);
2379 return ret;
2383 * While swap-in, try_charge -> commit or cancel, the page is locked.
2384 * And when try_charge() successfully returns, one refcnt to memcg without
2385 * struct page_cgroup is acquired. This refcnt will be consumed by
2386 * "commit()" or removed by "cancel()"
2388 int mem_cgroup_try_charge_swapin(struct mm_struct *mm,
2389 struct page *page,
2390 gfp_t mask, struct mem_cgroup **ptr)
2392 struct mem_cgroup *mem;
2393 int ret;
2395 if (mem_cgroup_disabled())
2396 return 0;
2398 if (!do_swap_account)
2399 goto charge_cur_mm;
2401 * A racing thread's fault, or swapoff, may have already updated
2402 * the pte, and even removed page from swap cache: in those cases
2403 * do_swap_page()'s pte_same() test will fail; but there's also a
2404 * KSM case which does need to charge the page.
2406 if (!PageSwapCache(page))
2407 goto charge_cur_mm;
2408 mem = try_get_mem_cgroup_from_page(page);
2409 if (!mem)
2410 goto charge_cur_mm;
2411 *ptr = mem;
2412 ret = __mem_cgroup_try_charge(NULL, mask, ptr, true, PAGE_SIZE);
2413 css_put(&mem->css);
2414 return ret;
2415 charge_cur_mm:
2416 if (unlikely(!mm))
2417 mm = &init_mm;
2418 return __mem_cgroup_try_charge(mm, mask, ptr, true, PAGE_SIZE);
2421 static void
2422 __mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr,
2423 enum charge_type ctype)
2425 struct page_cgroup *pc;
2427 if (mem_cgroup_disabled())
2428 return;
2429 if (!ptr)
2430 return;
2431 cgroup_exclude_rmdir(&ptr->css);
2432 pc = lookup_page_cgroup(page);
2433 mem_cgroup_lru_del_before_commit_swapcache(page);
2434 __mem_cgroup_commit_charge(ptr, pc, ctype, PAGE_SIZE);
2435 mem_cgroup_lru_add_after_commit_swapcache(page);
2437 * Now swap is on-memory. This means this page may be
2438 * counted both as mem and swap....double count.
2439 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2440 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2441 * may call delete_from_swap_cache() before reach here.
2443 if (do_swap_account && PageSwapCache(page)) {
2444 swp_entry_t ent = {.val = page_private(page)};
2445 unsigned short id;
2446 struct mem_cgroup *memcg;
2448 id = swap_cgroup_record(ent, 0);
2449 rcu_read_lock();
2450 memcg = mem_cgroup_lookup(id);
2451 if (memcg) {
2453 * This recorded memcg can be obsolete one. So, avoid
2454 * calling css_tryget
2456 if (!mem_cgroup_is_root(memcg))
2457 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2458 mem_cgroup_swap_statistics(memcg, false);
2459 mem_cgroup_put(memcg);
2461 rcu_read_unlock();
2464 * At swapin, we may charge account against cgroup which has no tasks.
2465 * So, rmdir()->pre_destroy() can be called while we do this charge.
2466 * In that case, we need to call pre_destroy() again. check it here.
2468 cgroup_release_and_wakeup_rmdir(&ptr->css);
2471 void mem_cgroup_commit_charge_swapin(struct page *page, struct mem_cgroup *ptr)
2473 __mem_cgroup_commit_charge_swapin(page, ptr,
2474 MEM_CGROUP_CHARGE_TYPE_MAPPED);
2477 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup *mem)
2479 if (mem_cgroup_disabled())
2480 return;
2481 if (!mem)
2482 return;
2483 mem_cgroup_cancel_charge(mem, PAGE_SIZE);
2486 static void
2487 __do_uncharge(struct mem_cgroup *mem, const enum charge_type ctype,
2488 int page_size)
2490 struct memcg_batch_info *batch = NULL;
2491 bool uncharge_memsw = true;
2492 /* If swapout, usage of swap doesn't decrease */
2493 if (!do_swap_account || ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT)
2494 uncharge_memsw = false;
2496 batch = &current->memcg_batch;
2498 * In usual, we do css_get() when we remember memcg pointer.
2499 * But in this case, we keep res->usage until end of a series of
2500 * uncharges. Then, it's ok to ignore memcg's refcnt.
2502 if (!batch->memcg)
2503 batch->memcg = mem;
2505 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2506 * In those cases, all pages freed continously can be expected to be in
2507 * the same cgroup and we have chance to coalesce uncharges.
2508 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2509 * because we want to do uncharge as soon as possible.
2512 if (!batch->do_batch || test_thread_flag(TIF_MEMDIE))
2513 goto direct_uncharge;
2515 if (page_size != PAGE_SIZE)
2516 goto direct_uncharge;
2519 * In typical case, batch->memcg == mem. This means we can
2520 * merge a series of uncharges to an uncharge of res_counter.
2521 * If not, we uncharge res_counter ony by one.
2523 if (batch->memcg != mem)
2524 goto direct_uncharge;
2525 /* remember freed charge and uncharge it later */
2526 batch->bytes += PAGE_SIZE;
2527 if (uncharge_memsw)
2528 batch->memsw_bytes += PAGE_SIZE;
2529 return;
2530 direct_uncharge:
2531 res_counter_uncharge(&mem->res, page_size);
2532 if (uncharge_memsw)
2533 res_counter_uncharge(&mem->memsw, page_size);
2534 if (unlikely(batch->memcg != mem))
2535 memcg_oom_recover(mem);
2536 return;
2540 * uncharge if !page_mapped(page)
2542 static struct mem_cgroup *
2543 __mem_cgroup_uncharge_common(struct page *page, enum charge_type ctype)
2545 int i;
2546 int count;
2547 struct page_cgroup *pc;
2548 struct mem_cgroup *mem = NULL;
2549 int page_size = PAGE_SIZE;
2551 if (mem_cgroup_disabled())
2552 return NULL;
2554 if (PageSwapCache(page))
2555 return NULL;
2557 if (PageTransHuge(page)) {
2558 page_size <<= compound_order(page);
2559 VM_BUG_ON(!PageTransHuge(page));
2562 count = page_size >> PAGE_SHIFT;
2564 * Check if our page_cgroup is valid
2566 pc = lookup_page_cgroup(page);
2567 if (unlikely(!pc || !PageCgroupUsed(pc)))
2568 return NULL;
2570 lock_page_cgroup(pc);
2572 mem = pc->mem_cgroup;
2574 if (!PageCgroupUsed(pc))
2575 goto unlock_out;
2577 switch (ctype) {
2578 case MEM_CGROUP_CHARGE_TYPE_MAPPED:
2579 case MEM_CGROUP_CHARGE_TYPE_DROP:
2580 /* See mem_cgroup_prepare_migration() */
2581 if (page_mapped(page) || PageCgroupMigration(pc))
2582 goto unlock_out;
2583 break;
2584 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT:
2585 if (!PageAnon(page)) { /* Shared memory */
2586 if (page->mapping && !page_is_file_cache(page))
2587 goto unlock_out;
2588 } else if (page_mapped(page)) /* Anon */
2589 goto unlock_out;
2590 break;
2591 default:
2592 break;
2595 for (i = 0; i < count; i++)
2596 mem_cgroup_charge_statistics(mem, pc + i, false);
2598 ClearPageCgroupUsed(pc);
2600 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2601 * freed from LRU. This is safe because uncharged page is expected not
2602 * to be reused (freed soon). Exception is SwapCache, it's handled by
2603 * special functions.
2606 unlock_page_cgroup(pc);
2608 * even after unlock, we have mem->res.usage here and this memcg
2609 * will never be freed.
2611 memcg_check_events(mem, page);
2612 if (do_swap_account && ctype == MEM_CGROUP_CHARGE_TYPE_SWAPOUT) {
2613 mem_cgroup_swap_statistics(mem, true);
2614 mem_cgroup_get(mem);
2616 if (!mem_cgroup_is_root(mem))
2617 __do_uncharge(mem, ctype, page_size);
2619 return mem;
2621 unlock_out:
2622 unlock_page_cgroup(pc);
2623 return NULL;
2626 void mem_cgroup_uncharge_page(struct page *page)
2628 /* early check. */
2629 if (page_mapped(page))
2630 return;
2631 if (page->mapping && !PageAnon(page))
2632 return;
2633 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_MAPPED);
2636 void mem_cgroup_uncharge_cache_page(struct page *page)
2638 VM_BUG_ON(page_mapped(page));
2639 VM_BUG_ON(page->mapping);
2640 __mem_cgroup_uncharge_common(page, MEM_CGROUP_CHARGE_TYPE_CACHE);
2644 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2645 * In that cases, pages are freed continuously and we can expect pages
2646 * are in the same memcg. All these calls itself limits the number of
2647 * pages freed at once, then uncharge_start/end() is called properly.
2648 * This may be called prural(2) times in a context,
2651 void mem_cgroup_uncharge_start(void)
2653 current->memcg_batch.do_batch++;
2654 /* We can do nest. */
2655 if (current->memcg_batch.do_batch == 1) {
2656 current->memcg_batch.memcg = NULL;
2657 current->memcg_batch.bytes = 0;
2658 current->memcg_batch.memsw_bytes = 0;
2662 void mem_cgroup_uncharge_end(void)
2664 struct memcg_batch_info *batch = &current->memcg_batch;
2666 if (!batch->do_batch)
2667 return;
2669 batch->do_batch--;
2670 if (batch->do_batch) /* If stacked, do nothing. */
2671 return;
2673 if (!batch->memcg)
2674 return;
2676 * This "batch->memcg" is valid without any css_get/put etc...
2677 * bacause we hide charges behind us.
2679 if (batch->bytes)
2680 res_counter_uncharge(&batch->memcg->res, batch->bytes);
2681 if (batch->memsw_bytes)
2682 res_counter_uncharge(&batch->memcg->memsw, batch->memsw_bytes);
2683 memcg_oom_recover(batch->memcg);
2684 /* forget this pointer (for sanity check) */
2685 batch->memcg = NULL;
2688 #ifdef CONFIG_SWAP
2690 * called after __delete_from_swap_cache() and drop "page" account.
2691 * memcg information is recorded to swap_cgroup of "ent"
2693 void
2694 mem_cgroup_uncharge_swapcache(struct page *page, swp_entry_t ent, bool swapout)
2696 struct mem_cgroup *memcg;
2697 int ctype = MEM_CGROUP_CHARGE_TYPE_SWAPOUT;
2699 if (!swapout) /* this was a swap cache but the swap is unused ! */
2700 ctype = MEM_CGROUP_CHARGE_TYPE_DROP;
2702 memcg = __mem_cgroup_uncharge_common(page, ctype);
2705 * record memcg information, if swapout && memcg != NULL,
2706 * mem_cgroup_get() was called in uncharge().
2708 if (do_swap_account && swapout && memcg)
2709 swap_cgroup_record(ent, css_id(&memcg->css));
2711 #endif
2713 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2715 * called from swap_entry_free(). remove record in swap_cgroup and
2716 * uncharge "memsw" account.
2718 void mem_cgroup_uncharge_swap(swp_entry_t ent)
2720 struct mem_cgroup *memcg;
2721 unsigned short id;
2723 if (!do_swap_account)
2724 return;
2726 id = swap_cgroup_record(ent, 0);
2727 rcu_read_lock();
2728 memcg = mem_cgroup_lookup(id);
2729 if (memcg) {
2731 * We uncharge this because swap is freed.
2732 * This memcg can be obsolete one. We avoid calling css_tryget
2734 if (!mem_cgroup_is_root(memcg))
2735 res_counter_uncharge(&memcg->memsw, PAGE_SIZE);
2736 mem_cgroup_swap_statistics(memcg, false);
2737 mem_cgroup_put(memcg);
2739 rcu_read_unlock();
2743 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2744 * @entry: swap entry to be moved
2745 * @from: mem_cgroup which the entry is moved from
2746 * @to: mem_cgroup which the entry is moved to
2747 * @need_fixup: whether we should fixup res_counters and refcounts.
2749 * It succeeds only when the swap_cgroup's record for this entry is the same
2750 * as the mem_cgroup's id of @from.
2752 * Returns 0 on success, -EINVAL on failure.
2754 * The caller must have charged to @to, IOW, called res_counter_charge() about
2755 * both res and memsw, and called css_get().
2757 static int mem_cgroup_move_swap_account(swp_entry_t entry,
2758 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2760 unsigned short old_id, new_id;
2762 old_id = css_id(&from->css);
2763 new_id = css_id(&to->css);
2765 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
2766 mem_cgroup_swap_statistics(from, false);
2767 mem_cgroup_swap_statistics(to, true);
2769 * This function is only called from task migration context now.
2770 * It postpones res_counter and refcount handling till the end
2771 * of task migration(mem_cgroup_clear_mc()) for performance
2772 * improvement. But we cannot postpone mem_cgroup_get(to)
2773 * because if the process that has been moved to @to does
2774 * swap-in, the refcount of @to might be decreased to 0.
2776 mem_cgroup_get(to);
2777 if (need_fixup) {
2778 if (!mem_cgroup_is_root(from))
2779 res_counter_uncharge(&from->memsw, PAGE_SIZE);
2780 mem_cgroup_put(from);
2782 * we charged both to->res and to->memsw, so we should
2783 * uncharge to->res.
2785 if (!mem_cgroup_is_root(to))
2786 res_counter_uncharge(&to->res, PAGE_SIZE);
2788 return 0;
2790 return -EINVAL;
2792 #else
2793 static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
2794 struct mem_cgroup *from, struct mem_cgroup *to, bool need_fixup)
2796 return -EINVAL;
2798 #endif
2801 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2802 * page belongs to.
2804 int mem_cgroup_prepare_migration(struct page *page,
2805 struct page *newpage, struct mem_cgroup **ptr)
2807 struct page_cgroup *pc;
2808 struct mem_cgroup *mem = NULL;
2809 enum charge_type ctype;
2810 int ret = 0;
2812 VM_BUG_ON(PageTransHuge(page));
2813 if (mem_cgroup_disabled())
2814 return 0;
2816 pc = lookup_page_cgroup(page);
2817 lock_page_cgroup(pc);
2818 if (PageCgroupUsed(pc)) {
2819 mem = pc->mem_cgroup;
2820 css_get(&mem->css);
2822 * At migrating an anonymous page, its mapcount goes down
2823 * to 0 and uncharge() will be called. But, even if it's fully
2824 * unmapped, migration may fail and this page has to be
2825 * charged again. We set MIGRATION flag here and delay uncharge
2826 * until end_migration() is called
2828 * Corner Case Thinking
2829 * A)
2830 * When the old page was mapped as Anon and it's unmap-and-freed
2831 * while migration was ongoing.
2832 * If unmap finds the old page, uncharge() of it will be delayed
2833 * until end_migration(). If unmap finds a new page, it's
2834 * uncharged when it make mapcount to be 1->0. If unmap code
2835 * finds swap_migration_entry, the new page will not be mapped
2836 * and end_migration() will find it(mapcount==0).
2838 * B)
2839 * When the old page was mapped but migraion fails, the kernel
2840 * remaps it. A charge for it is kept by MIGRATION flag even
2841 * if mapcount goes down to 0. We can do remap successfully
2842 * without charging it again.
2844 * C)
2845 * The "old" page is under lock_page() until the end of
2846 * migration, so, the old page itself will not be swapped-out.
2847 * If the new page is swapped out before end_migraton, our
2848 * hook to usual swap-out path will catch the event.
2850 if (PageAnon(page))
2851 SetPageCgroupMigration(pc);
2853 unlock_page_cgroup(pc);
2855 * If the page is not charged at this point,
2856 * we return here.
2858 if (!mem)
2859 return 0;
2861 *ptr = mem;
2862 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, ptr, false, PAGE_SIZE);
2863 css_put(&mem->css);/* drop extra refcnt */
2864 if (ret || *ptr == NULL) {
2865 if (PageAnon(page)) {
2866 lock_page_cgroup(pc);
2867 ClearPageCgroupMigration(pc);
2868 unlock_page_cgroup(pc);
2870 * The old page may be fully unmapped while we kept it.
2872 mem_cgroup_uncharge_page(page);
2874 return -ENOMEM;
2877 * We charge new page before it's used/mapped. So, even if unlock_page()
2878 * is called before end_migration, we can catch all events on this new
2879 * page. In the case new page is migrated but not remapped, new page's
2880 * mapcount will be finally 0 and we call uncharge in end_migration().
2882 pc = lookup_page_cgroup(newpage);
2883 if (PageAnon(page))
2884 ctype = MEM_CGROUP_CHARGE_TYPE_MAPPED;
2885 else if (page_is_file_cache(page))
2886 ctype = MEM_CGROUP_CHARGE_TYPE_CACHE;
2887 else
2888 ctype = MEM_CGROUP_CHARGE_TYPE_SHMEM;
2889 __mem_cgroup_commit_charge(mem, pc, ctype, PAGE_SIZE);
2890 return ret;
2893 /* remove redundant charge if migration failed*/
2894 void mem_cgroup_end_migration(struct mem_cgroup *mem,
2895 struct page *oldpage, struct page *newpage)
2897 struct page *used, *unused;
2898 struct page_cgroup *pc;
2900 if (!mem)
2901 return;
2902 /* blocks rmdir() */
2903 cgroup_exclude_rmdir(&mem->css);
2904 /* at migration success, oldpage->mapping is NULL. */
2905 if (oldpage->mapping) {
2906 used = oldpage;
2907 unused = newpage;
2908 } else {
2909 used = newpage;
2910 unused = oldpage;
2913 * We disallowed uncharge of pages under migration because mapcount
2914 * of the page goes down to zero, temporarly.
2915 * Clear the flag and check the page should be charged.
2917 pc = lookup_page_cgroup(oldpage);
2918 lock_page_cgroup(pc);
2919 ClearPageCgroupMigration(pc);
2920 unlock_page_cgroup(pc);
2922 __mem_cgroup_uncharge_common(unused, MEM_CGROUP_CHARGE_TYPE_FORCE);
2925 * If a page is a file cache, radix-tree replacement is very atomic
2926 * and we can skip this check. When it was an Anon page, its mapcount
2927 * goes down to 0. But because we added MIGRATION flage, it's not
2928 * uncharged yet. There are several case but page->mapcount check
2929 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2930 * check. (see prepare_charge() also)
2932 if (PageAnon(used))
2933 mem_cgroup_uncharge_page(used);
2935 * At migration, we may charge account against cgroup which has no
2936 * tasks.
2937 * So, rmdir()->pre_destroy() can be called while we do this charge.
2938 * In that case, we need to call pre_destroy() again. check it here.
2940 cgroup_release_and_wakeup_rmdir(&mem->css);
2944 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2945 * Calling hierarchical_reclaim is not enough because we should update
2946 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2947 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2948 * not from the memcg which this page would be charged to.
2949 * try_charge_swapin does all of these works properly.
2951 int mem_cgroup_shmem_charge_fallback(struct page *page,
2952 struct mm_struct *mm,
2953 gfp_t gfp_mask)
2955 struct mem_cgroup *mem = NULL;
2956 int ret;
2958 if (mem_cgroup_disabled())
2959 return 0;
2961 ret = mem_cgroup_try_charge_swapin(mm, page, gfp_mask, &mem);
2962 if (!ret)
2963 mem_cgroup_cancel_charge_swapin(mem); /* it does !mem check */
2965 return ret;
2968 static DEFINE_MUTEX(set_limit_mutex);
2970 static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
2971 unsigned long long val)
2973 int retry_count;
2974 u64 memswlimit, memlimit;
2975 int ret = 0;
2976 int children = mem_cgroup_count_children(memcg);
2977 u64 curusage, oldusage;
2978 int enlarge;
2981 * For keeping hierarchical_reclaim simple, how long we should retry
2982 * is depends on callers. We set our retry-count to be function
2983 * of # of children which we should visit in this loop.
2985 retry_count = MEM_CGROUP_RECLAIM_RETRIES * children;
2987 oldusage = res_counter_read_u64(&memcg->res, RES_USAGE);
2989 enlarge = 0;
2990 while (retry_count) {
2991 if (signal_pending(current)) {
2992 ret = -EINTR;
2993 break;
2996 * Rather than hide all in some function, I do this in
2997 * open coded manner. You see what this really does.
2998 * We have to guarantee mem->res.limit < mem->memsw.limit.
3000 mutex_lock(&set_limit_mutex);
3001 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3002 if (memswlimit < val) {
3003 ret = -EINVAL;
3004 mutex_unlock(&set_limit_mutex);
3005 break;
3008 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3009 if (memlimit < val)
3010 enlarge = 1;
3012 ret = res_counter_set_limit(&memcg->res, val);
3013 if (!ret) {
3014 if (memswlimit == val)
3015 memcg->memsw_is_minimum = true;
3016 else
3017 memcg->memsw_is_minimum = false;
3019 mutex_unlock(&set_limit_mutex);
3021 if (!ret)
3022 break;
3024 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3025 MEM_CGROUP_RECLAIM_SHRINK);
3026 curusage = res_counter_read_u64(&memcg->res, RES_USAGE);
3027 /* Usage is reduced ? */
3028 if (curusage >= oldusage)
3029 retry_count--;
3030 else
3031 oldusage = curusage;
3033 if (!ret && enlarge)
3034 memcg_oom_recover(memcg);
3036 return ret;
3039 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3040 unsigned long long val)
3042 int retry_count;
3043 u64 memlimit, memswlimit, oldusage, curusage;
3044 int children = mem_cgroup_count_children(memcg);
3045 int ret = -EBUSY;
3046 int enlarge = 0;
3048 /* see mem_cgroup_resize_res_limit */
3049 retry_count = children * MEM_CGROUP_RECLAIM_RETRIES;
3050 oldusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3051 while (retry_count) {
3052 if (signal_pending(current)) {
3053 ret = -EINTR;
3054 break;
3057 * Rather than hide all in some function, I do this in
3058 * open coded manner. You see what this really does.
3059 * We have to guarantee mem->res.limit < mem->memsw.limit.
3061 mutex_lock(&set_limit_mutex);
3062 memlimit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3063 if (memlimit > val) {
3064 ret = -EINVAL;
3065 mutex_unlock(&set_limit_mutex);
3066 break;
3068 memswlimit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3069 if (memswlimit < val)
3070 enlarge = 1;
3071 ret = res_counter_set_limit(&memcg->memsw, val);
3072 if (!ret) {
3073 if (memlimit == val)
3074 memcg->memsw_is_minimum = true;
3075 else
3076 memcg->memsw_is_minimum = false;
3078 mutex_unlock(&set_limit_mutex);
3080 if (!ret)
3081 break;
3083 mem_cgroup_hierarchical_reclaim(memcg, NULL, GFP_KERNEL,
3084 MEM_CGROUP_RECLAIM_NOSWAP |
3085 MEM_CGROUP_RECLAIM_SHRINK);
3086 curusage = res_counter_read_u64(&memcg->memsw, RES_USAGE);
3087 /* Usage is reduced ? */
3088 if (curusage >= oldusage)
3089 retry_count--;
3090 else
3091 oldusage = curusage;
3093 if (!ret && enlarge)
3094 memcg_oom_recover(memcg);
3095 return ret;
3098 unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3099 gfp_t gfp_mask)
3101 unsigned long nr_reclaimed = 0;
3102 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3103 unsigned long reclaimed;
3104 int loop = 0;
3105 struct mem_cgroup_tree_per_zone *mctz;
3106 unsigned long long excess;
3108 if (order > 0)
3109 return 0;
3111 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3113 * This loop can run a while, specially if mem_cgroup's continuously
3114 * keep exceeding their soft limit and putting the system under
3115 * pressure
3117 do {
3118 if (next_mz)
3119 mz = next_mz;
3120 else
3121 mz = mem_cgroup_largest_soft_limit_node(mctz);
3122 if (!mz)
3123 break;
3125 reclaimed = mem_cgroup_hierarchical_reclaim(mz->mem, zone,
3126 gfp_mask,
3127 MEM_CGROUP_RECLAIM_SOFT);
3128 nr_reclaimed += reclaimed;
3129 spin_lock(&mctz->lock);
3132 * If we failed to reclaim anything from this memory cgroup
3133 * it is time to move on to the next cgroup
3135 next_mz = NULL;
3136 if (!reclaimed) {
3137 do {
3139 * Loop until we find yet another one.
3141 * By the time we get the soft_limit lock
3142 * again, someone might have aded the
3143 * group back on the RB tree. Iterate to
3144 * make sure we get a different mem.
3145 * mem_cgroup_largest_soft_limit_node returns
3146 * NULL if no other cgroup is present on
3147 * the tree
3149 next_mz =
3150 __mem_cgroup_largest_soft_limit_node(mctz);
3151 if (next_mz == mz) {
3152 css_put(&next_mz->mem->css);
3153 next_mz = NULL;
3154 } else /* next_mz == NULL or other memcg */
3155 break;
3156 } while (1);
3158 __mem_cgroup_remove_exceeded(mz->mem, mz, mctz);
3159 excess = res_counter_soft_limit_excess(&mz->mem->res);
3161 * One school of thought says that we should not add
3162 * back the node to the tree if reclaim returns 0.
3163 * But our reclaim could return 0, simply because due
3164 * to priority we are exposing a smaller subset of
3165 * memory to reclaim from. Consider this as a longer
3166 * term TODO.
3168 /* If excess == 0, no tree ops */
3169 __mem_cgroup_insert_exceeded(mz->mem, mz, mctz, excess);
3170 spin_unlock(&mctz->lock);
3171 css_put(&mz->mem->css);
3172 loop++;
3174 * Could not reclaim anything and there are no more
3175 * mem cgroups to try or we seem to be looping without
3176 * reclaiming anything.
3178 if (!nr_reclaimed &&
3179 (next_mz == NULL ||
3180 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3181 break;
3182 } while (!nr_reclaimed);
3183 if (next_mz)
3184 css_put(&next_mz->mem->css);
3185 return nr_reclaimed;
3189 * This routine traverse page_cgroup in given list and drop them all.
3190 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3192 static int mem_cgroup_force_empty_list(struct mem_cgroup *mem,
3193 int node, int zid, enum lru_list lru)
3195 struct zone *zone;
3196 struct mem_cgroup_per_zone *mz;
3197 struct page_cgroup *pc, *busy;
3198 unsigned long flags, loop;
3199 struct list_head *list;
3200 int ret = 0;
3202 zone = &NODE_DATA(node)->node_zones[zid];
3203 mz = mem_cgroup_zoneinfo(mem, node, zid);
3204 list = &mz->lists[lru];
3206 loop = MEM_CGROUP_ZSTAT(mz, lru);
3207 /* give some margin against EBUSY etc...*/
3208 loop += 256;
3209 busy = NULL;
3210 while (loop--) {
3211 ret = 0;
3212 spin_lock_irqsave(&zone->lru_lock, flags);
3213 if (list_empty(list)) {
3214 spin_unlock_irqrestore(&zone->lru_lock, flags);
3215 break;
3217 pc = list_entry(list->prev, struct page_cgroup, lru);
3218 if (busy == pc) {
3219 list_move(&pc->lru, list);
3220 busy = NULL;
3221 spin_unlock_irqrestore(&zone->lru_lock, flags);
3222 continue;
3224 spin_unlock_irqrestore(&zone->lru_lock, flags);
3226 ret = mem_cgroup_move_parent(pc, mem, GFP_KERNEL);
3227 if (ret == -ENOMEM)
3228 break;
3230 if (ret == -EBUSY || ret == -EINVAL) {
3231 /* found lock contention or "pc" is obsolete. */
3232 busy = pc;
3233 cond_resched();
3234 } else
3235 busy = NULL;
3238 if (!ret && !list_empty(list))
3239 return -EBUSY;
3240 return ret;
3244 * make mem_cgroup's charge to be 0 if there is no task.
3245 * This enables deleting this mem_cgroup.
3247 static int mem_cgroup_force_empty(struct mem_cgroup *mem, bool free_all)
3249 int ret;
3250 int node, zid, shrink;
3251 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
3252 struct cgroup *cgrp = mem->css.cgroup;
3254 css_get(&mem->css);
3256 shrink = 0;
3257 /* should free all ? */
3258 if (free_all)
3259 goto try_to_free;
3260 move_account:
3261 do {
3262 ret = -EBUSY;
3263 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children))
3264 goto out;
3265 ret = -EINTR;
3266 if (signal_pending(current))
3267 goto out;
3268 /* This is for making all *used* pages to be on LRU. */
3269 lru_add_drain_all();
3270 drain_all_stock_sync();
3271 ret = 0;
3272 mem_cgroup_start_move(mem);
3273 for_each_node_state(node, N_HIGH_MEMORY) {
3274 for (zid = 0; !ret && zid < MAX_NR_ZONES; zid++) {
3275 enum lru_list l;
3276 for_each_lru(l) {
3277 ret = mem_cgroup_force_empty_list(mem,
3278 node, zid, l);
3279 if (ret)
3280 break;
3283 if (ret)
3284 break;
3286 mem_cgroup_end_move(mem);
3287 memcg_oom_recover(mem);
3288 /* it seems parent cgroup doesn't have enough mem */
3289 if (ret == -ENOMEM)
3290 goto try_to_free;
3291 cond_resched();
3292 /* "ret" should also be checked to ensure all lists are empty. */
3293 } while (mem->res.usage > 0 || ret);
3294 out:
3295 css_put(&mem->css);
3296 return ret;
3298 try_to_free:
3299 /* returns EBUSY if there is a task or if we come here twice. */
3300 if (cgroup_task_count(cgrp) || !list_empty(&cgrp->children) || shrink) {
3301 ret = -EBUSY;
3302 goto out;
3304 /* we call try-to-free pages for make this cgroup empty */
3305 lru_add_drain_all();
3306 /* try to free all pages in this cgroup */
3307 shrink = 1;
3308 while (nr_retries && mem->res.usage > 0) {
3309 int progress;
3311 if (signal_pending(current)) {
3312 ret = -EINTR;
3313 goto out;
3315 progress = try_to_free_mem_cgroup_pages(mem, GFP_KERNEL,
3316 false, get_swappiness(mem));
3317 if (!progress) {
3318 nr_retries--;
3319 /* maybe some writeback is necessary */
3320 congestion_wait(BLK_RW_ASYNC, HZ/10);
3324 lru_add_drain();
3325 /* try move_account...there may be some *locked* pages. */
3326 goto move_account;
3329 int mem_cgroup_force_empty_write(struct cgroup *cont, unsigned int event)
3331 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont), true);
3335 static u64 mem_cgroup_hierarchy_read(struct cgroup *cont, struct cftype *cft)
3337 return mem_cgroup_from_cont(cont)->use_hierarchy;
3340 static int mem_cgroup_hierarchy_write(struct cgroup *cont, struct cftype *cft,
3341 u64 val)
3343 int retval = 0;
3344 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3345 struct cgroup *parent = cont->parent;
3346 struct mem_cgroup *parent_mem = NULL;
3348 if (parent)
3349 parent_mem = mem_cgroup_from_cont(parent);
3351 cgroup_lock();
3353 * If parent's use_hierarchy is set, we can't make any modifications
3354 * in the child subtrees. If it is unset, then the change can
3355 * occur, provided the current cgroup has no children.
3357 * For the root cgroup, parent_mem is NULL, we allow value to be
3358 * set if there are no children.
3360 if ((!parent_mem || !parent_mem->use_hierarchy) &&
3361 (val == 1 || val == 0)) {
3362 if (list_empty(&cont->children))
3363 mem->use_hierarchy = val;
3364 else
3365 retval = -EBUSY;
3366 } else
3367 retval = -EINVAL;
3368 cgroup_unlock();
3370 return retval;
3374 static u64 mem_cgroup_get_recursive_idx_stat(struct mem_cgroup *mem,
3375 enum mem_cgroup_stat_index idx)
3377 struct mem_cgroup *iter;
3378 s64 val = 0;
3380 /* each per cpu's value can be minus.Then, use s64 */
3381 for_each_mem_cgroup_tree(iter, mem)
3382 val += mem_cgroup_read_stat(iter, idx);
3384 if (val < 0) /* race ? */
3385 val = 0;
3386 return val;
3389 static inline u64 mem_cgroup_usage(struct mem_cgroup *mem, bool swap)
3391 u64 val;
3393 if (!mem_cgroup_is_root(mem)) {
3394 if (!swap)
3395 return res_counter_read_u64(&mem->res, RES_USAGE);
3396 else
3397 return res_counter_read_u64(&mem->memsw, RES_USAGE);
3400 val = mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_CACHE);
3401 val += mem_cgroup_get_recursive_idx_stat(mem, MEM_CGROUP_STAT_RSS);
3403 if (swap)
3404 val += mem_cgroup_get_recursive_idx_stat(mem,
3405 MEM_CGROUP_STAT_SWAPOUT);
3407 return val << PAGE_SHIFT;
3410 static u64 mem_cgroup_read(struct cgroup *cont, struct cftype *cft)
3412 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
3413 u64 val;
3414 int type, name;
3416 type = MEMFILE_TYPE(cft->private);
3417 name = MEMFILE_ATTR(cft->private);
3418 switch (type) {
3419 case _MEM:
3420 if (name == RES_USAGE)
3421 val = mem_cgroup_usage(mem, false);
3422 else
3423 val = res_counter_read_u64(&mem->res, name);
3424 break;
3425 case _MEMSWAP:
3426 if (name == RES_USAGE)
3427 val = mem_cgroup_usage(mem, true);
3428 else
3429 val = res_counter_read_u64(&mem->memsw, name);
3430 break;
3431 default:
3432 BUG();
3433 break;
3435 return val;
3438 * The user of this function is...
3439 * RES_LIMIT.
3441 static int mem_cgroup_write(struct cgroup *cont, struct cftype *cft,
3442 const char *buffer)
3444 struct mem_cgroup *memcg = mem_cgroup_from_cont(cont);
3445 int type, name;
3446 unsigned long long val;
3447 int ret;
3449 type = MEMFILE_TYPE(cft->private);
3450 name = MEMFILE_ATTR(cft->private);
3451 switch (name) {
3452 case RES_LIMIT:
3453 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3454 ret = -EINVAL;
3455 break;
3457 /* This function does all necessary parse...reuse it */
3458 ret = res_counter_memparse_write_strategy(buffer, &val);
3459 if (ret)
3460 break;
3461 if (type == _MEM)
3462 ret = mem_cgroup_resize_limit(memcg, val);
3463 else
3464 ret = mem_cgroup_resize_memsw_limit(memcg, val);
3465 break;
3466 case RES_SOFT_LIMIT:
3467 ret = res_counter_memparse_write_strategy(buffer, &val);
3468 if (ret)
3469 break;
3471 * For memsw, soft limits are hard to implement in terms
3472 * of semantics, for now, we support soft limits for
3473 * control without swap
3475 if (type == _MEM)
3476 ret = res_counter_set_soft_limit(&memcg->res, val);
3477 else
3478 ret = -EINVAL;
3479 break;
3480 default:
3481 ret = -EINVAL; /* should be BUG() ? */
3482 break;
3484 return ret;
3487 static void memcg_get_hierarchical_limit(struct mem_cgroup *memcg,
3488 unsigned long long *mem_limit, unsigned long long *memsw_limit)
3490 struct cgroup *cgroup;
3491 unsigned long long min_limit, min_memsw_limit, tmp;
3493 min_limit = res_counter_read_u64(&memcg->res, RES_LIMIT);
3494 min_memsw_limit = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3495 cgroup = memcg->css.cgroup;
3496 if (!memcg->use_hierarchy)
3497 goto out;
3499 while (cgroup->parent) {
3500 cgroup = cgroup->parent;
3501 memcg = mem_cgroup_from_cont(cgroup);
3502 if (!memcg->use_hierarchy)
3503 break;
3504 tmp = res_counter_read_u64(&memcg->res, RES_LIMIT);
3505 min_limit = min(min_limit, tmp);
3506 tmp = res_counter_read_u64(&memcg->memsw, RES_LIMIT);
3507 min_memsw_limit = min(min_memsw_limit, tmp);
3509 out:
3510 *mem_limit = min_limit;
3511 *memsw_limit = min_memsw_limit;
3512 return;
3515 static int mem_cgroup_reset(struct cgroup *cont, unsigned int event)
3517 struct mem_cgroup *mem;
3518 int type, name;
3520 mem = mem_cgroup_from_cont(cont);
3521 type = MEMFILE_TYPE(event);
3522 name = MEMFILE_ATTR(event);
3523 switch (name) {
3524 case RES_MAX_USAGE:
3525 if (type == _MEM)
3526 res_counter_reset_max(&mem->res);
3527 else
3528 res_counter_reset_max(&mem->memsw);
3529 break;
3530 case RES_FAILCNT:
3531 if (type == _MEM)
3532 res_counter_reset_failcnt(&mem->res);
3533 else
3534 res_counter_reset_failcnt(&mem->memsw);
3535 break;
3538 return 0;
3541 static u64 mem_cgroup_move_charge_read(struct cgroup *cgrp,
3542 struct cftype *cft)
3544 return mem_cgroup_from_cont(cgrp)->move_charge_at_immigrate;
3547 #ifdef CONFIG_MMU
3548 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3549 struct cftype *cft, u64 val)
3551 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
3553 if (val >= (1 << NR_MOVE_TYPE))
3554 return -EINVAL;
3556 * We check this value several times in both in can_attach() and
3557 * attach(), so we need cgroup lock to prevent this value from being
3558 * inconsistent.
3560 cgroup_lock();
3561 mem->move_charge_at_immigrate = val;
3562 cgroup_unlock();
3564 return 0;
3566 #else
3567 static int mem_cgroup_move_charge_write(struct cgroup *cgrp,
3568 struct cftype *cft, u64 val)
3570 return -ENOSYS;
3572 #endif
3575 /* For read statistics */
3576 enum {
3577 MCS_CACHE,
3578 MCS_RSS,
3579 MCS_FILE_MAPPED,
3580 MCS_PGPGIN,
3581 MCS_PGPGOUT,
3582 MCS_SWAP,
3583 MCS_INACTIVE_ANON,
3584 MCS_ACTIVE_ANON,
3585 MCS_INACTIVE_FILE,
3586 MCS_ACTIVE_FILE,
3587 MCS_UNEVICTABLE,
3588 NR_MCS_STAT,
3591 struct mcs_total_stat {
3592 s64 stat[NR_MCS_STAT];
3595 struct {
3596 char *local_name;
3597 char *total_name;
3598 } memcg_stat_strings[NR_MCS_STAT] = {
3599 {"cache", "total_cache"},
3600 {"rss", "total_rss"},
3601 {"mapped_file", "total_mapped_file"},
3602 {"pgpgin", "total_pgpgin"},
3603 {"pgpgout", "total_pgpgout"},
3604 {"swap", "total_swap"},
3605 {"inactive_anon", "total_inactive_anon"},
3606 {"active_anon", "total_active_anon"},
3607 {"inactive_file", "total_inactive_file"},
3608 {"active_file", "total_active_file"},
3609 {"unevictable", "total_unevictable"}
3613 static void
3614 mem_cgroup_get_local_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3616 s64 val;
3618 /* per cpu stat */
3619 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_CACHE);
3620 s->stat[MCS_CACHE] += val * PAGE_SIZE;
3621 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_RSS);
3622 s->stat[MCS_RSS] += val * PAGE_SIZE;
3623 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_FILE_MAPPED);
3624 s->stat[MCS_FILE_MAPPED] += val * PAGE_SIZE;
3625 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGIN_COUNT);
3626 s->stat[MCS_PGPGIN] += val;
3627 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_PGPGOUT_COUNT);
3628 s->stat[MCS_PGPGOUT] += val;
3629 if (do_swap_account) {
3630 val = mem_cgroup_read_stat(mem, MEM_CGROUP_STAT_SWAPOUT);
3631 s->stat[MCS_SWAP] += val * PAGE_SIZE;
3634 /* per zone stat */
3635 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_ANON);
3636 s->stat[MCS_INACTIVE_ANON] += val * PAGE_SIZE;
3637 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_ANON);
3638 s->stat[MCS_ACTIVE_ANON] += val * PAGE_SIZE;
3639 val = mem_cgroup_get_local_zonestat(mem, LRU_INACTIVE_FILE);
3640 s->stat[MCS_INACTIVE_FILE] += val * PAGE_SIZE;
3641 val = mem_cgroup_get_local_zonestat(mem, LRU_ACTIVE_FILE);
3642 s->stat[MCS_ACTIVE_FILE] += val * PAGE_SIZE;
3643 val = mem_cgroup_get_local_zonestat(mem, LRU_UNEVICTABLE);
3644 s->stat[MCS_UNEVICTABLE] += val * PAGE_SIZE;
3647 static void
3648 mem_cgroup_get_total_stat(struct mem_cgroup *mem, struct mcs_total_stat *s)
3650 struct mem_cgroup *iter;
3652 for_each_mem_cgroup_tree(iter, mem)
3653 mem_cgroup_get_local_stat(iter, s);
3656 static int mem_control_stat_show(struct cgroup *cont, struct cftype *cft,
3657 struct cgroup_map_cb *cb)
3659 struct mem_cgroup *mem_cont = mem_cgroup_from_cont(cont);
3660 struct mcs_total_stat mystat;
3661 int i;
3663 memset(&mystat, 0, sizeof(mystat));
3664 mem_cgroup_get_local_stat(mem_cont, &mystat);
3666 for (i = 0; i < NR_MCS_STAT; i++) {
3667 if (i == MCS_SWAP && !do_swap_account)
3668 continue;
3669 cb->fill(cb, memcg_stat_strings[i].local_name, mystat.stat[i]);
3672 /* Hierarchical information */
3674 unsigned long long limit, memsw_limit;
3675 memcg_get_hierarchical_limit(mem_cont, &limit, &memsw_limit);
3676 cb->fill(cb, "hierarchical_memory_limit", limit);
3677 if (do_swap_account)
3678 cb->fill(cb, "hierarchical_memsw_limit", memsw_limit);
3681 memset(&mystat, 0, sizeof(mystat));
3682 mem_cgroup_get_total_stat(mem_cont, &mystat);
3683 for (i = 0; i < NR_MCS_STAT; i++) {
3684 if (i == MCS_SWAP && !do_swap_account)
3685 continue;
3686 cb->fill(cb, memcg_stat_strings[i].total_name, mystat.stat[i]);
3689 #ifdef CONFIG_DEBUG_VM
3690 cb->fill(cb, "inactive_ratio", calc_inactive_ratio(mem_cont, NULL));
3693 int nid, zid;
3694 struct mem_cgroup_per_zone *mz;
3695 unsigned long recent_rotated[2] = {0, 0};
3696 unsigned long recent_scanned[2] = {0, 0};
3698 for_each_online_node(nid)
3699 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
3700 mz = mem_cgroup_zoneinfo(mem_cont, nid, zid);
3702 recent_rotated[0] +=
3703 mz->reclaim_stat.recent_rotated[0];
3704 recent_rotated[1] +=
3705 mz->reclaim_stat.recent_rotated[1];
3706 recent_scanned[0] +=
3707 mz->reclaim_stat.recent_scanned[0];
3708 recent_scanned[1] +=
3709 mz->reclaim_stat.recent_scanned[1];
3711 cb->fill(cb, "recent_rotated_anon", recent_rotated[0]);
3712 cb->fill(cb, "recent_rotated_file", recent_rotated[1]);
3713 cb->fill(cb, "recent_scanned_anon", recent_scanned[0]);
3714 cb->fill(cb, "recent_scanned_file", recent_scanned[1]);
3716 #endif
3718 return 0;
3721 static u64 mem_cgroup_swappiness_read(struct cgroup *cgrp, struct cftype *cft)
3723 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3725 return get_swappiness(memcg);
3728 static int mem_cgroup_swappiness_write(struct cgroup *cgrp, struct cftype *cft,
3729 u64 val)
3731 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3732 struct mem_cgroup *parent;
3734 if (val > 100)
3735 return -EINVAL;
3737 if (cgrp->parent == NULL)
3738 return -EINVAL;
3740 parent = mem_cgroup_from_cont(cgrp->parent);
3742 cgroup_lock();
3744 /* If under hierarchy, only empty-root can set this value */
3745 if ((parent->use_hierarchy) ||
3746 (memcg->use_hierarchy && !list_empty(&cgrp->children))) {
3747 cgroup_unlock();
3748 return -EINVAL;
3751 spin_lock(&memcg->reclaim_param_lock);
3752 memcg->swappiness = val;
3753 spin_unlock(&memcg->reclaim_param_lock);
3755 cgroup_unlock();
3757 return 0;
3760 static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3762 struct mem_cgroup_threshold_ary *t;
3763 u64 usage;
3764 int i;
3766 rcu_read_lock();
3767 if (!swap)
3768 t = rcu_dereference(memcg->thresholds.primary);
3769 else
3770 t = rcu_dereference(memcg->memsw_thresholds.primary);
3772 if (!t)
3773 goto unlock;
3775 usage = mem_cgroup_usage(memcg, swap);
3778 * current_threshold points to threshold just below usage.
3779 * If it's not true, a threshold was crossed after last
3780 * call of __mem_cgroup_threshold().
3782 i = t->current_threshold;
3785 * Iterate backward over array of thresholds starting from
3786 * current_threshold and check if a threshold is crossed.
3787 * If none of thresholds below usage is crossed, we read
3788 * only one element of the array here.
3790 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3791 eventfd_signal(t->entries[i].eventfd, 1);
3793 /* i = current_threshold + 1 */
3794 i++;
3797 * Iterate forward over array of thresholds starting from
3798 * current_threshold+1 and check if a threshold is crossed.
3799 * If none of thresholds above usage is crossed, we read
3800 * only one element of the array here.
3802 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3803 eventfd_signal(t->entries[i].eventfd, 1);
3805 /* Update current_threshold */
3806 t->current_threshold = i - 1;
3807 unlock:
3808 rcu_read_unlock();
3811 static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3813 while (memcg) {
3814 __mem_cgroup_threshold(memcg, false);
3815 if (do_swap_account)
3816 __mem_cgroup_threshold(memcg, true);
3818 memcg = parent_mem_cgroup(memcg);
3822 static int compare_thresholds(const void *a, const void *b)
3824 const struct mem_cgroup_threshold *_a = a;
3825 const struct mem_cgroup_threshold *_b = b;
3827 return _a->threshold - _b->threshold;
3830 static int mem_cgroup_oom_notify_cb(struct mem_cgroup *mem)
3832 struct mem_cgroup_eventfd_list *ev;
3834 list_for_each_entry(ev, &mem->oom_notify, list)
3835 eventfd_signal(ev->eventfd, 1);
3836 return 0;
3839 static void mem_cgroup_oom_notify(struct mem_cgroup *mem)
3841 struct mem_cgroup *iter;
3843 for_each_mem_cgroup_tree(iter, mem)
3844 mem_cgroup_oom_notify_cb(iter);
3847 static int mem_cgroup_usage_register_event(struct cgroup *cgrp,
3848 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
3850 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3851 struct mem_cgroup_thresholds *thresholds;
3852 struct mem_cgroup_threshold_ary *new;
3853 int type = MEMFILE_TYPE(cft->private);
3854 u64 threshold, usage;
3855 int i, size, ret;
3857 ret = res_counter_memparse_write_strategy(args, &threshold);
3858 if (ret)
3859 return ret;
3861 mutex_lock(&memcg->thresholds_lock);
3863 if (type == _MEM)
3864 thresholds = &memcg->thresholds;
3865 else if (type == _MEMSWAP)
3866 thresholds = &memcg->memsw_thresholds;
3867 else
3868 BUG();
3870 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3872 /* Check if a threshold crossed before adding a new one */
3873 if (thresholds->primary)
3874 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3876 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
3878 /* Allocate memory for new array of thresholds */
3879 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
3880 GFP_KERNEL);
3881 if (!new) {
3882 ret = -ENOMEM;
3883 goto unlock;
3885 new->size = size;
3887 /* Copy thresholds (if any) to new array */
3888 if (thresholds->primary) {
3889 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
3890 sizeof(struct mem_cgroup_threshold));
3893 /* Add new threshold */
3894 new->entries[size - 1].eventfd = eventfd;
3895 new->entries[size - 1].threshold = threshold;
3897 /* Sort thresholds. Registering of new threshold isn't time-critical */
3898 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
3899 compare_thresholds, NULL);
3901 /* Find current threshold */
3902 new->current_threshold = -1;
3903 for (i = 0; i < size; i++) {
3904 if (new->entries[i].threshold < usage) {
3906 * new->current_threshold will not be used until
3907 * rcu_assign_pointer(), so it's safe to increment
3908 * it here.
3910 ++new->current_threshold;
3914 /* Free old spare buffer and save old primary buffer as spare */
3915 kfree(thresholds->spare);
3916 thresholds->spare = thresholds->primary;
3918 rcu_assign_pointer(thresholds->primary, new);
3920 /* To be sure that nobody uses thresholds */
3921 synchronize_rcu();
3923 unlock:
3924 mutex_unlock(&memcg->thresholds_lock);
3926 return ret;
3929 static void mem_cgroup_usage_unregister_event(struct cgroup *cgrp,
3930 struct cftype *cft, struct eventfd_ctx *eventfd)
3932 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
3933 struct mem_cgroup_thresholds *thresholds;
3934 struct mem_cgroup_threshold_ary *new;
3935 int type = MEMFILE_TYPE(cft->private);
3936 u64 usage;
3937 int i, j, size;
3939 mutex_lock(&memcg->thresholds_lock);
3940 if (type == _MEM)
3941 thresholds = &memcg->thresholds;
3942 else if (type == _MEMSWAP)
3943 thresholds = &memcg->memsw_thresholds;
3944 else
3945 BUG();
3948 * Something went wrong if we trying to unregister a threshold
3949 * if we don't have thresholds
3951 BUG_ON(!thresholds);
3953 usage = mem_cgroup_usage(memcg, type == _MEMSWAP);
3955 /* Check if a threshold crossed before removing */
3956 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3958 /* Calculate new number of threshold */
3959 size = 0;
3960 for (i = 0; i < thresholds->primary->size; i++) {
3961 if (thresholds->primary->entries[i].eventfd != eventfd)
3962 size++;
3965 new = thresholds->spare;
3967 /* Set thresholds array to NULL if we don't have thresholds */
3968 if (!size) {
3969 kfree(new);
3970 new = NULL;
3971 goto swap_buffers;
3974 new->size = size;
3976 /* Copy thresholds and find current threshold */
3977 new->current_threshold = -1;
3978 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3979 if (thresholds->primary->entries[i].eventfd == eventfd)
3980 continue;
3982 new->entries[j] = thresholds->primary->entries[i];
3983 if (new->entries[j].threshold < usage) {
3985 * new->current_threshold will not be used
3986 * until rcu_assign_pointer(), so it's safe to increment
3987 * it here.
3989 ++new->current_threshold;
3991 j++;
3994 swap_buffers:
3995 /* Swap primary and spare array */
3996 thresholds->spare = thresholds->primary;
3997 rcu_assign_pointer(thresholds->primary, new);
3999 /* To be sure that nobody uses thresholds */
4000 synchronize_rcu();
4002 mutex_unlock(&memcg->thresholds_lock);
4005 static int mem_cgroup_oom_register_event(struct cgroup *cgrp,
4006 struct cftype *cft, struct eventfd_ctx *eventfd, const char *args)
4008 struct mem_cgroup *memcg = mem_cgroup_from_cont(cgrp);
4009 struct mem_cgroup_eventfd_list *event;
4010 int type = MEMFILE_TYPE(cft->private);
4012 BUG_ON(type != _OOM_TYPE);
4013 event = kmalloc(sizeof(*event), GFP_KERNEL);
4014 if (!event)
4015 return -ENOMEM;
4017 mutex_lock(&memcg_oom_mutex);
4019 event->eventfd = eventfd;
4020 list_add(&event->list, &memcg->oom_notify);
4022 /* already in OOM ? */
4023 if (atomic_read(&memcg->oom_lock))
4024 eventfd_signal(eventfd, 1);
4025 mutex_unlock(&memcg_oom_mutex);
4027 return 0;
4030 static void mem_cgroup_oom_unregister_event(struct cgroup *cgrp,
4031 struct cftype *cft, struct eventfd_ctx *eventfd)
4033 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4034 struct mem_cgroup_eventfd_list *ev, *tmp;
4035 int type = MEMFILE_TYPE(cft->private);
4037 BUG_ON(type != _OOM_TYPE);
4039 mutex_lock(&memcg_oom_mutex);
4041 list_for_each_entry_safe(ev, tmp, &mem->oom_notify, list) {
4042 if (ev->eventfd == eventfd) {
4043 list_del(&ev->list);
4044 kfree(ev);
4048 mutex_unlock(&memcg_oom_mutex);
4051 static int mem_cgroup_oom_control_read(struct cgroup *cgrp,
4052 struct cftype *cft, struct cgroup_map_cb *cb)
4054 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4056 cb->fill(cb, "oom_kill_disable", mem->oom_kill_disable);
4058 if (atomic_read(&mem->oom_lock))
4059 cb->fill(cb, "under_oom", 1);
4060 else
4061 cb->fill(cb, "under_oom", 0);
4062 return 0;
4065 static int mem_cgroup_oom_control_write(struct cgroup *cgrp,
4066 struct cftype *cft, u64 val)
4068 struct mem_cgroup *mem = mem_cgroup_from_cont(cgrp);
4069 struct mem_cgroup *parent;
4071 /* cannot set to root cgroup and only 0 and 1 are allowed */
4072 if (!cgrp->parent || !((val == 0) || (val == 1)))
4073 return -EINVAL;
4075 parent = mem_cgroup_from_cont(cgrp->parent);
4077 cgroup_lock();
4078 /* oom-kill-disable is a flag for subhierarchy. */
4079 if ((parent->use_hierarchy) ||
4080 (mem->use_hierarchy && !list_empty(&cgrp->children))) {
4081 cgroup_unlock();
4082 return -EINVAL;
4084 mem->oom_kill_disable = val;
4085 if (!val)
4086 memcg_oom_recover(mem);
4087 cgroup_unlock();
4088 return 0;
4091 static struct cftype mem_cgroup_files[] = {
4093 .name = "usage_in_bytes",
4094 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
4095 .read_u64 = mem_cgroup_read,
4096 .register_event = mem_cgroup_usage_register_event,
4097 .unregister_event = mem_cgroup_usage_unregister_event,
4100 .name = "max_usage_in_bytes",
4101 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
4102 .trigger = mem_cgroup_reset,
4103 .read_u64 = mem_cgroup_read,
4106 .name = "limit_in_bytes",
4107 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
4108 .write_string = mem_cgroup_write,
4109 .read_u64 = mem_cgroup_read,
4112 .name = "soft_limit_in_bytes",
4113 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
4114 .write_string = mem_cgroup_write,
4115 .read_u64 = mem_cgroup_read,
4118 .name = "failcnt",
4119 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
4120 .trigger = mem_cgroup_reset,
4121 .read_u64 = mem_cgroup_read,
4124 .name = "stat",
4125 .read_map = mem_control_stat_show,
4128 .name = "force_empty",
4129 .trigger = mem_cgroup_force_empty_write,
4132 .name = "use_hierarchy",
4133 .write_u64 = mem_cgroup_hierarchy_write,
4134 .read_u64 = mem_cgroup_hierarchy_read,
4137 .name = "swappiness",
4138 .read_u64 = mem_cgroup_swappiness_read,
4139 .write_u64 = mem_cgroup_swappiness_write,
4142 .name = "move_charge_at_immigrate",
4143 .read_u64 = mem_cgroup_move_charge_read,
4144 .write_u64 = mem_cgroup_move_charge_write,
4147 .name = "oom_control",
4148 .read_map = mem_cgroup_oom_control_read,
4149 .write_u64 = mem_cgroup_oom_control_write,
4150 .register_event = mem_cgroup_oom_register_event,
4151 .unregister_event = mem_cgroup_oom_unregister_event,
4152 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4156 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4157 static struct cftype memsw_cgroup_files[] = {
4159 .name = "memsw.usage_in_bytes",
4160 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
4161 .read_u64 = mem_cgroup_read,
4162 .register_event = mem_cgroup_usage_register_event,
4163 .unregister_event = mem_cgroup_usage_unregister_event,
4166 .name = "memsw.max_usage_in_bytes",
4167 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
4168 .trigger = mem_cgroup_reset,
4169 .read_u64 = mem_cgroup_read,
4172 .name = "memsw.limit_in_bytes",
4173 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
4174 .write_string = mem_cgroup_write,
4175 .read_u64 = mem_cgroup_read,
4178 .name = "memsw.failcnt",
4179 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
4180 .trigger = mem_cgroup_reset,
4181 .read_u64 = mem_cgroup_read,
4185 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4187 if (!do_swap_account)
4188 return 0;
4189 return cgroup_add_files(cont, ss, memsw_cgroup_files,
4190 ARRAY_SIZE(memsw_cgroup_files));
4192 #else
4193 static int register_memsw_files(struct cgroup *cont, struct cgroup_subsys *ss)
4195 return 0;
4197 #endif
4199 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4201 struct mem_cgroup_per_node *pn;
4202 struct mem_cgroup_per_zone *mz;
4203 enum lru_list l;
4204 int zone, tmp = node;
4206 * This routine is called against possible nodes.
4207 * But it's BUG to call kmalloc() against offline node.
4209 * TODO: this routine can waste much memory for nodes which will
4210 * never be onlined. It's better to use memory hotplug callback
4211 * function.
4213 if (!node_state(node, N_NORMAL_MEMORY))
4214 tmp = -1;
4215 pn = kmalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
4216 if (!pn)
4217 return 1;
4219 mem->info.nodeinfo[node] = pn;
4220 memset(pn, 0, sizeof(*pn));
4222 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4223 mz = &pn->zoneinfo[zone];
4224 for_each_lru(l)
4225 INIT_LIST_HEAD(&mz->lists[l]);
4226 mz->usage_in_excess = 0;
4227 mz->on_tree = false;
4228 mz->mem = mem;
4230 return 0;
4233 static void free_mem_cgroup_per_zone_info(struct mem_cgroup *mem, int node)
4235 kfree(mem->info.nodeinfo[node]);
4238 static struct mem_cgroup *mem_cgroup_alloc(void)
4240 struct mem_cgroup *mem;
4241 int size = sizeof(struct mem_cgroup);
4243 /* Can be very big if MAX_NUMNODES is very big */
4244 if (size < PAGE_SIZE)
4245 mem = kmalloc(size, GFP_KERNEL);
4246 else
4247 mem = vmalloc(size);
4249 if (!mem)
4250 return NULL;
4252 memset(mem, 0, size);
4253 mem->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4254 if (!mem->stat)
4255 goto out_free;
4256 spin_lock_init(&mem->pcp_counter_lock);
4257 return mem;
4259 out_free:
4260 if (size < PAGE_SIZE)
4261 kfree(mem);
4262 else
4263 vfree(mem);
4264 return NULL;
4268 * At destroying mem_cgroup, references from swap_cgroup can remain.
4269 * (scanning all at force_empty is too costly...)
4271 * Instead of clearing all references at force_empty, we remember
4272 * the number of reference from swap_cgroup and free mem_cgroup when
4273 * it goes down to 0.
4275 * Removal of cgroup itself succeeds regardless of refs from swap.
4278 static void __mem_cgroup_free(struct mem_cgroup *mem)
4280 int node;
4282 mem_cgroup_remove_from_trees(mem);
4283 free_css_id(&mem_cgroup_subsys, &mem->css);
4285 for_each_node_state(node, N_POSSIBLE)
4286 free_mem_cgroup_per_zone_info(mem, node);
4288 free_percpu(mem->stat);
4289 if (sizeof(struct mem_cgroup) < PAGE_SIZE)
4290 kfree(mem);
4291 else
4292 vfree(mem);
4295 static void mem_cgroup_get(struct mem_cgroup *mem)
4297 atomic_inc(&mem->refcnt);
4300 static void __mem_cgroup_put(struct mem_cgroup *mem, int count)
4302 if (atomic_sub_and_test(count, &mem->refcnt)) {
4303 struct mem_cgroup *parent = parent_mem_cgroup(mem);
4304 __mem_cgroup_free(mem);
4305 if (parent)
4306 mem_cgroup_put(parent);
4310 static void mem_cgroup_put(struct mem_cgroup *mem)
4312 __mem_cgroup_put(mem, 1);
4316 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4318 static struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *mem)
4320 if (!mem->res.parent)
4321 return NULL;
4322 return mem_cgroup_from_res_counter(mem->res.parent, res);
4325 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4326 static void __init enable_swap_cgroup(void)
4328 if (!mem_cgroup_disabled() && really_do_swap_account)
4329 do_swap_account = 1;
4331 #else
4332 static void __init enable_swap_cgroup(void)
4335 #endif
4337 static int mem_cgroup_soft_limit_tree_init(void)
4339 struct mem_cgroup_tree_per_node *rtpn;
4340 struct mem_cgroup_tree_per_zone *rtpz;
4341 int tmp, node, zone;
4343 for_each_node_state(node, N_POSSIBLE) {
4344 tmp = node;
4345 if (!node_state(node, N_NORMAL_MEMORY))
4346 tmp = -1;
4347 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL, tmp);
4348 if (!rtpn)
4349 return 1;
4351 soft_limit_tree.rb_tree_per_node[node] = rtpn;
4353 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4354 rtpz = &rtpn->rb_tree_per_zone[zone];
4355 rtpz->rb_root = RB_ROOT;
4356 spin_lock_init(&rtpz->lock);
4359 return 0;
4362 static struct cgroup_subsys_state * __ref
4363 mem_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
4365 struct mem_cgroup *mem, *parent;
4366 long error = -ENOMEM;
4367 int node;
4369 mem = mem_cgroup_alloc();
4370 if (!mem)
4371 return ERR_PTR(error);
4373 for_each_node_state(node, N_POSSIBLE)
4374 if (alloc_mem_cgroup_per_zone_info(mem, node))
4375 goto free_out;
4377 /* root ? */
4378 if (cont->parent == NULL) {
4379 int cpu;
4380 enable_swap_cgroup();
4381 parent = NULL;
4382 root_mem_cgroup = mem;
4383 if (mem_cgroup_soft_limit_tree_init())
4384 goto free_out;
4385 for_each_possible_cpu(cpu) {
4386 struct memcg_stock_pcp *stock =
4387 &per_cpu(memcg_stock, cpu);
4388 INIT_WORK(&stock->work, drain_local_stock);
4390 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
4391 } else {
4392 parent = mem_cgroup_from_cont(cont->parent);
4393 mem->use_hierarchy = parent->use_hierarchy;
4394 mem->oom_kill_disable = parent->oom_kill_disable;
4397 if (parent && parent->use_hierarchy) {
4398 res_counter_init(&mem->res, &parent->res);
4399 res_counter_init(&mem->memsw, &parent->memsw);
4401 * We increment refcnt of the parent to ensure that we can
4402 * safely access it on res_counter_charge/uncharge.
4403 * This refcnt will be decremented when freeing this
4404 * mem_cgroup(see mem_cgroup_put).
4406 mem_cgroup_get(parent);
4407 } else {
4408 res_counter_init(&mem->res, NULL);
4409 res_counter_init(&mem->memsw, NULL);
4411 mem->last_scanned_child = 0;
4412 spin_lock_init(&mem->reclaim_param_lock);
4413 INIT_LIST_HEAD(&mem->oom_notify);
4415 if (parent)
4416 mem->swappiness = get_swappiness(parent);
4417 atomic_set(&mem->refcnt, 1);
4418 mem->move_charge_at_immigrate = 0;
4419 mutex_init(&mem->thresholds_lock);
4420 return &mem->css;
4421 free_out:
4422 __mem_cgroup_free(mem);
4423 root_mem_cgroup = NULL;
4424 return ERR_PTR(error);
4427 static int mem_cgroup_pre_destroy(struct cgroup_subsys *ss,
4428 struct cgroup *cont)
4430 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4432 return mem_cgroup_force_empty(mem, false);
4435 static void mem_cgroup_destroy(struct cgroup_subsys *ss,
4436 struct cgroup *cont)
4438 struct mem_cgroup *mem = mem_cgroup_from_cont(cont);
4440 mem_cgroup_put(mem);
4443 static int mem_cgroup_populate(struct cgroup_subsys *ss,
4444 struct cgroup *cont)
4446 int ret;
4448 ret = cgroup_add_files(cont, ss, mem_cgroup_files,
4449 ARRAY_SIZE(mem_cgroup_files));
4451 if (!ret)
4452 ret = register_memsw_files(cont, ss);
4453 return ret;
4456 #ifdef CONFIG_MMU
4457 /* Handlers for move charge at task migration. */
4458 #define PRECHARGE_COUNT_AT_ONCE 256
4459 static int mem_cgroup_do_precharge(unsigned long count)
4461 int ret = 0;
4462 int batch_count = PRECHARGE_COUNT_AT_ONCE;
4463 struct mem_cgroup *mem = mc.to;
4465 if (mem_cgroup_is_root(mem)) {
4466 mc.precharge += count;
4467 /* we don't need css_get for root */
4468 return ret;
4470 /* try to charge at once */
4471 if (count > 1) {
4472 struct res_counter *dummy;
4474 * "mem" cannot be under rmdir() because we've already checked
4475 * by cgroup_lock_live_cgroup() that it is not removed and we
4476 * are still under the same cgroup_mutex. So we can postpone
4477 * css_get().
4479 if (res_counter_charge(&mem->res, PAGE_SIZE * count, &dummy))
4480 goto one_by_one;
4481 if (do_swap_account && res_counter_charge(&mem->memsw,
4482 PAGE_SIZE * count, &dummy)) {
4483 res_counter_uncharge(&mem->res, PAGE_SIZE * count);
4484 goto one_by_one;
4486 mc.precharge += count;
4487 return ret;
4489 one_by_one:
4490 /* fall back to one by one charge */
4491 while (count--) {
4492 if (signal_pending(current)) {
4493 ret = -EINTR;
4494 break;
4496 if (!batch_count--) {
4497 batch_count = PRECHARGE_COUNT_AT_ONCE;
4498 cond_resched();
4500 ret = __mem_cgroup_try_charge(NULL, GFP_KERNEL, &mem, false,
4501 PAGE_SIZE);
4502 if (ret || !mem)
4503 /* mem_cgroup_clear_mc() will do uncharge later */
4504 return -ENOMEM;
4505 mc.precharge++;
4507 return ret;
4511 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4512 * @vma: the vma the pte to be checked belongs
4513 * @addr: the address corresponding to the pte to be checked
4514 * @ptent: the pte to be checked
4515 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4517 * Returns
4518 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4519 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4520 * move charge. if @target is not NULL, the page is stored in target->page
4521 * with extra refcnt got(Callers should handle it).
4522 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4523 * target for charge migration. if @target is not NULL, the entry is stored
4524 * in target->ent.
4526 * Called with pte lock held.
4528 union mc_target {
4529 struct page *page;
4530 swp_entry_t ent;
4533 enum mc_target_type {
4534 MC_TARGET_NONE, /* not used */
4535 MC_TARGET_PAGE,
4536 MC_TARGET_SWAP,
4539 static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4540 unsigned long addr, pte_t ptent)
4542 struct page *page = vm_normal_page(vma, addr, ptent);
4544 if (!page || !page_mapped(page))
4545 return NULL;
4546 if (PageAnon(page)) {
4547 /* we don't move shared anon */
4548 if (!move_anon() || page_mapcount(page) > 2)
4549 return NULL;
4550 } else if (!move_file())
4551 /* we ignore mapcount for file pages */
4552 return NULL;
4553 if (!get_page_unless_zero(page))
4554 return NULL;
4556 return page;
4559 static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4560 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4562 int usage_count;
4563 struct page *page = NULL;
4564 swp_entry_t ent = pte_to_swp_entry(ptent);
4566 if (!move_anon() || non_swap_entry(ent))
4567 return NULL;
4568 usage_count = mem_cgroup_count_swap_user(ent, &page);
4569 if (usage_count > 1) { /* we don't move shared anon */
4570 if (page)
4571 put_page(page);
4572 return NULL;
4574 if (do_swap_account)
4575 entry->val = ent.val;
4577 return page;
4580 static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4581 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4583 struct page *page = NULL;
4584 struct inode *inode;
4585 struct address_space *mapping;
4586 pgoff_t pgoff;
4588 if (!vma->vm_file) /* anonymous vma */
4589 return NULL;
4590 if (!move_file())
4591 return NULL;
4593 inode = vma->vm_file->f_path.dentry->d_inode;
4594 mapping = vma->vm_file->f_mapping;
4595 if (pte_none(ptent))
4596 pgoff = linear_page_index(vma, addr);
4597 else /* pte_file(ptent) is true */
4598 pgoff = pte_to_pgoff(ptent);
4600 /* page is moved even if it's not RSS of this task(page-faulted). */
4601 if (!mapping_cap_swap_backed(mapping)) { /* normal file */
4602 page = find_get_page(mapping, pgoff);
4603 } else { /* shmem/tmpfs file. we should take account of swap too. */
4604 swp_entry_t ent;
4605 mem_cgroup_get_shmem_target(inode, pgoff, &page, &ent);
4606 if (do_swap_account)
4607 entry->val = ent.val;
4610 return page;
4613 static int is_target_pte_for_mc(struct vm_area_struct *vma,
4614 unsigned long addr, pte_t ptent, union mc_target *target)
4616 struct page *page = NULL;
4617 struct page_cgroup *pc;
4618 int ret = 0;
4619 swp_entry_t ent = { .val = 0 };
4621 if (pte_present(ptent))
4622 page = mc_handle_present_pte(vma, addr, ptent);
4623 else if (is_swap_pte(ptent))
4624 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
4625 else if (pte_none(ptent) || pte_file(ptent))
4626 page = mc_handle_file_pte(vma, addr, ptent, &ent);
4628 if (!page && !ent.val)
4629 return 0;
4630 if (page) {
4631 pc = lookup_page_cgroup(page);
4633 * Do only loose check w/o page_cgroup lock.
4634 * mem_cgroup_move_account() checks the pc is valid or not under
4635 * the lock.
4637 if (PageCgroupUsed(pc) && pc->mem_cgroup == mc.from) {
4638 ret = MC_TARGET_PAGE;
4639 if (target)
4640 target->page = page;
4642 if (!ret || !target)
4643 put_page(page);
4645 /* There is a swap entry and a page doesn't exist or isn't charged */
4646 if (ent.val && !ret &&
4647 css_id(&mc.from->css) == lookup_swap_cgroup(ent)) {
4648 ret = MC_TARGET_SWAP;
4649 if (target)
4650 target->ent = ent;
4652 return ret;
4655 static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4656 unsigned long addr, unsigned long end,
4657 struct mm_walk *walk)
4659 struct vm_area_struct *vma = walk->private;
4660 pte_t *pte;
4661 spinlock_t *ptl;
4663 VM_BUG_ON(pmd_trans_huge(*pmd));
4664 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4665 for (; addr != end; pte++, addr += PAGE_SIZE)
4666 if (is_target_pte_for_mc(vma, addr, *pte, NULL))
4667 mc.precharge++; /* increment precharge temporarily */
4668 pte_unmap_unlock(pte - 1, ptl);
4669 cond_resched();
4671 return 0;
4674 static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4676 unsigned long precharge;
4677 struct vm_area_struct *vma;
4679 /* We've already held the mmap_sem */
4680 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4681 struct mm_walk mem_cgroup_count_precharge_walk = {
4682 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4683 .mm = mm,
4684 .private = vma,
4686 if (is_vm_hugetlb_page(vma))
4687 continue;
4688 walk_page_range(vma->vm_start, vma->vm_end,
4689 &mem_cgroup_count_precharge_walk);
4692 precharge = mc.precharge;
4693 mc.precharge = 0;
4695 return precharge;
4698 static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4700 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm));
4703 static void mem_cgroup_clear_mc(void)
4705 struct mem_cgroup *from = mc.from;
4706 struct mem_cgroup *to = mc.to;
4708 /* we must uncharge all the leftover precharges from mc.to */
4709 if (mc.precharge) {
4710 __mem_cgroup_cancel_charge(mc.to, mc.precharge);
4711 mc.precharge = 0;
4714 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4715 * we must uncharge here.
4717 if (mc.moved_charge) {
4718 __mem_cgroup_cancel_charge(mc.from, mc.moved_charge);
4719 mc.moved_charge = 0;
4721 /* we must fixup refcnts and charges */
4722 if (mc.moved_swap) {
4723 /* uncharge swap account from the old cgroup */
4724 if (!mem_cgroup_is_root(mc.from))
4725 res_counter_uncharge(&mc.from->memsw,
4726 PAGE_SIZE * mc.moved_swap);
4727 __mem_cgroup_put(mc.from, mc.moved_swap);
4729 if (!mem_cgroup_is_root(mc.to)) {
4731 * we charged both to->res and to->memsw, so we should
4732 * uncharge to->res.
4734 res_counter_uncharge(&mc.to->res,
4735 PAGE_SIZE * mc.moved_swap);
4737 /* we've already done mem_cgroup_get(mc.to) */
4739 mc.moved_swap = 0;
4741 if (mc.mm) {
4742 up_read(&mc.mm->mmap_sem);
4743 mmput(mc.mm);
4745 spin_lock(&mc.lock);
4746 mc.from = NULL;
4747 mc.to = NULL;
4748 spin_unlock(&mc.lock);
4749 mc.moving_task = NULL;
4750 mc.mm = NULL;
4751 mem_cgroup_end_move(from);
4752 memcg_oom_recover(from);
4753 memcg_oom_recover(to);
4754 wake_up_all(&mc.waitq);
4757 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4758 struct cgroup *cgroup,
4759 struct task_struct *p,
4760 bool threadgroup)
4762 int ret = 0;
4763 struct mem_cgroup *mem = mem_cgroup_from_cont(cgroup);
4765 if (mem->move_charge_at_immigrate) {
4766 struct mm_struct *mm;
4767 struct mem_cgroup *from = mem_cgroup_from_task(p);
4769 VM_BUG_ON(from == mem);
4771 mm = get_task_mm(p);
4772 if (!mm)
4773 return 0;
4774 /* We move charges only when we move a owner of the mm */
4775 if (mm->owner == p) {
4777 * We do all the move charge works under one mmap_sem to
4778 * avoid deadlock with down_write(&mmap_sem)
4779 * -> try_charge() -> if (mc.moving_task) -> sleep.
4781 down_read(&mm->mmap_sem);
4783 VM_BUG_ON(mc.from);
4784 VM_BUG_ON(mc.to);
4785 VM_BUG_ON(mc.precharge);
4786 VM_BUG_ON(mc.moved_charge);
4787 VM_BUG_ON(mc.moved_swap);
4788 VM_BUG_ON(mc.moving_task);
4789 VM_BUG_ON(mc.mm);
4791 mem_cgroup_start_move(from);
4792 spin_lock(&mc.lock);
4793 mc.from = from;
4794 mc.to = mem;
4795 mc.precharge = 0;
4796 mc.moved_charge = 0;
4797 mc.moved_swap = 0;
4798 spin_unlock(&mc.lock);
4799 mc.moving_task = current;
4800 mc.mm = mm;
4802 ret = mem_cgroup_precharge_mc(mm);
4803 if (ret)
4804 mem_cgroup_clear_mc();
4805 /* We call up_read() and mmput() in clear_mc(). */
4806 } else
4807 mmput(mm);
4809 return ret;
4812 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4813 struct cgroup *cgroup,
4814 struct task_struct *p,
4815 bool threadgroup)
4817 mem_cgroup_clear_mc();
4820 static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4821 unsigned long addr, unsigned long end,
4822 struct mm_walk *walk)
4824 int ret = 0;
4825 struct vm_area_struct *vma = walk->private;
4826 pte_t *pte;
4827 spinlock_t *ptl;
4829 retry:
4830 VM_BUG_ON(pmd_trans_huge(*pmd));
4831 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4832 for (; addr != end; addr += PAGE_SIZE) {
4833 pte_t ptent = *(pte++);
4834 union mc_target target;
4835 int type;
4836 struct page *page;
4837 struct page_cgroup *pc;
4838 swp_entry_t ent;
4840 if (!mc.precharge)
4841 break;
4843 type = is_target_pte_for_mc(vma, addr, ptent, &target);
4844 switch (type) {
4845 case MC_TARGET_PAGE:
4846 page = target.page;
4847 if (isolate_lru_page(page))
4848 goto put;
4849 pc = lookup_page_cgroup(page);
4850 if (!mem_cgroup_move_account(pc,
4851 mc.from, mc.to, false)) {
4852 mc.precharge--;
4853 /* we uncharge from mc.from later. */
4854 mc.moved_charge++;
4856 putback_lru_page(page);
4857 put: /* is_target_pte_for_mc() gets the page */
4858 put_page(page);
4859 break;
4860 case MC_TARGET_SWAP:
4861 ent = target.ent;
4862 if (!mem_cgroup_move_swap_account(ent,
4863 mc.from, mc.to, false)) {
4864 mc.precharge--;
4865 /* we fixup refcnts and charges later. */
4866 mc.moved_swap++;
4868 break;
4869 default:
4870 break;
4873 pte_unmap_unlock(pte - 1, ptl);
4874 cond_resched();
4876 if (addr != end) {
4878 * We have consumed all precharges we got in can_attach().
4879 * We try charge one by one, but don't do any additional
4880 * charges to mc.to if we have failed in charge once in attach()
4881 * phase.
4883 ret = mem_cgroup_do_precharge(1);
4884 if (!ret)
4885 goto retry;
4888 return ret;
4891 static void mem_cgroup_move_charge(struct mm_struct *mm)
4893 struct vm_area_struct *vma;
4895 lru_add_drain_all();
4896 /* We've already held the mmap_sem */
4897 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4898 int ret;
4899 struct mm_walk mem_cgroup_move_charge_walk = {
4900 .pmd_entry = mem_cgroup_move_charge_pte_range,
4901 .mm = mm,
4902 .private = vma,
4904 if (is_vm_hugetlb_page(vma))
4905 continue;
4906 ret = walk_page_range(vma->vm_start, vma->vm_end,
4907 &mem_cgroup_move_charge_walk);
4908 if (ret)
4910 * means we have consumed all precharges and failed in
4911 * doing additional charge. Just abandon here.
4913 break;
4917 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4918 struct cgroup *cont,
4919 struct cgroup *old_cont,
4920 struct task_struct *p,
4921 bool threadgroup)
4923 if (!mc.mm)
4924 /* no need to move charge */
4925 return;
4927 mem_cgroup_move_charge(mc.mm);
4928 mem_cgroup_clear_mc();
4930 #else /* !CONFIG_MMU */
4931 static int mem_cgroup_can_attach(struct cgroup_subsys *ss,
4932 struct cgroup *cgroup,
4933 struct task_struct *p,
4934 bool threadgroup)
4936 return 0;
4938 static void mem_cgroup_cancel_attach(struct cgroup_subsys *ss,
4939 struct cgroup *cgroup,
4940 struct task_struct *p,
4941 bool threadgroup)
4944 static void mem_cgroup_move_task(struct cgroup_subsys *ss,
4945 struct cgroup *cont,
4946 struct cgroup *old_cont,
4947 struct task_struct *p,
4948 bool threadgroup)
4951 #endif
4953 struct cgroup_subsys mem_cgroup_subsys = {
4954 .name = "memory",
4955 .subsys_id = mem_cgroup_subsys_id,
4956 .create = mem_cgroup_create,
4957 .pre_destroy = mem_cgroup_pre_destroy,
4958 .destroy = mem_cgroup_destroy,
4959 .populate = mem_cgroup_populate,
4960 .can_attach = mem_cgroup_can_attach,
4961 .cancel_attach = mem_cgroup_cancel_attach,
4962 .attach = mem_cgroup_move_task,
4963 .early_init = 0,
4964 .use_id = 1,
4967 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4968 static int __init enable_swap_account(char *s)
4970 /* consider enabled if no parameter or 1 is given */
4971 if (!s || !strcmp(s, "1"))
4972 really_do_swap_account = 1;
4973 else if (!strcmp(s, "0"))
4974 really_do_swap_account = 0;
4975 return 1;
4977 __setup("swapaccount", enable_swap_account);
4979 static int __init disable_swap_account(char *s)
4981 enable_swap_account("0");
4982 return 1;
4984 __setup("noswapaccount", disable_swap_account);
4985 #endif