usb: add USB_QUIRK_RESET_RESUME for M-Audio 88es
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / sctp / socket.c
blob4434853a9fe763994b32fc452511355e673cd7f8
1 /* SCTP kernel implementation
2 * (C) Copyright IBM Corp. 2001, 2004
3 * Copyright (c) 1999-2000 Cisco, Inc.
4 * Copyright (c) 1999-2001 Motorola, Inc.
5 * Copyright (c) 2001-2003 Intel Corp.
6 * Copyright (c) 2001-2002 Nokia, Inc.
7 * Copyright (c) 2001 La Monte H.P. Yarroll
9 * This file is part of the SCTP kernel implementation
11 * These functions interface with the sockets layer to implement the
12 * SCTP Extensions for the Sockets API.
14 * Note that the descriptions from the specification are USER level
15 * functions--this file is the functions which populate the struct proto
16 * for SCTP which is the BOTTOM of the sockets interface.
18 * This SCTP implementation is free software;
19 * you can redistribute it and/or modify it under the terms of
20 * the GNU General Public License as published by
21 * the Free Software Foundation; either version 2, or (at your option)
22 * any later version.
24 * This SCTP implementation is distributed in the hope that it
25 * will be useful, but WITHOUT ANY WARRANTY; without even the implied
26 * ************************
27 * warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
28 * See the GNU General Public License for more details.
30 * You should have received a copy of the GNU General Public License
31 * along with GNU CC; see the file COPYING. If not, write to
32 * the Free Software Foundation, 59 Temple Place - Suite 330,
33 * Boston, MA 02111-1307, USA.
35 * Please send any bug reports or fixes you make to the
36 * email address(es):
37 * lksctp developers <lksctp-developers@lists.sourceforge.net>
39 * Or submit a bug report through the following website:
40 * http://www.sf.net/projects/lksctp
42 * Written or modified by:
43 * La Monte H.P. Yarroll <piggy@acm.org>
44 * Narasimha Budihal <narsi@refcode.org>
45 * Karl Knutson <karl@athena.chicago.il.us>
46 * Jon Grimm <jgrimm@us.ibm.com>
47 * Xingang Guo <xingang.guo@intel.com>
48 * Daisy Chang <daisyc@us.ibm.com>
49 * Sridhar Samudrala <samudrala@us.ibm.com>
50 * Inaky Perez-Gonzalez <inaky.gonzalez@intel.com>
51 * Ardelle Fan <ardelle.fan@intel.com>
52 * Ryan Layer <rmlayer@us.ibm.com>
53 * Anup Pemmaiah <pemmaiah@cc.usu.edu>
54 * Kevin Gao <kevin.gao@intel.com>
56 * Any bugs reported given to us we will try to fix... any fixes shared will
57 * be incorporated into the next SCTP release.
60 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
62 #include <linux/types.h>
63 #include <linux/kernel.h>
64 #include <linux/wait.h>
65 #include <linux/time.h>
66 #include <linux/ip.h>
67 #include <linux/capability.h>
68 #include <linux/fcntl.h>
69 #include <linux/poll.h>
70 #include <linux/init.h>
71 #include <linux/crypto.h>
72 #include <linux/slab.h>
74 #include <net/ip.h>
75 #include <net/icmp.h>
76 #include <net/route.h>
77 #include <net/ipv6.h>
78 #include <net/inet_common.h>
80 #include <linux/socket.h> /* for sa_family_t */
81 #include <net/sock.h>
82 #include <net/sctp/sctp.h>
83 #include <net/sctp/sm.h>
85 /* WARNING: Please do not remove the SCTP_STATIC attribute to
86 * any of the functions below as they are used to export functions
87 * used by a project regression testsuite.
90 /* Forward declarations for internal helper functions. */
91 static int sctp_writeable(struct sock *sk);
92 static void sctp_wfree(struct sk_buff *skb);
93 static int sctp_wait_for_sndbuf(struct sctp_association *, long *timeo_p,
94 size_t msg_len);
95 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p);
96 static int sctp_wait_for_connect(struct sctp_association *, long *timeo_p);
97 static int sctp_wait_for_accept(struct sock *sk, long timeo);
98 static void sctp_wait_for_close(struct sock *sk, long timeo);
99 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
100 union sctp_addr *addr, int len);
101 static int sctp_bindx_add(struct sock *, struct sockaddr *, int);
102 static int sctp_bindx_rem(struct sock *, struct sockaddr *, int);
103 static int sctp_send_asconf_add_ip(struct sock *, struct sockaddr *, int);
104 static int sctp_send_asconf_del_ip(struct sock *, struct sockaddr *, int);
105 static int sctp_send_asconf(struct sctp_association *asoc,
106 struct sctp_chunk *chunk);
107 static int sctp_do_bind(struct sock *, union sctp_addr *, int);
108 static int sctp_autobind(struct sock *sk);
109 static void sctp_sock_migrate(struct sock *, struct sock *,
110 struct sctp_association *, sctp_socket_type_t);
111 static char *sctp_hmac_alg = SCTP_COOKIE_HMAC_ALG;
113 extern struct kmem_cache *sctp_bucket_cachep;
114 extern long sysctl_sctp_mem[3];
115 extern int sysctl_sctp_rmem[3];
116 extern int sysctl_sctp_wmem[3];
118 static int sctp_memory_pressure;
119 static atomic_long_t sctp_memory_allocated;
120 struct percpu_counter sctp_sockets_allocated;
122 static void sctp_enter_memory_pressure(struct sock *sk)
124 sctp_memory_pressure = 1;
128 /* Get the sndbuf space available at the time on the association. */
129 static inline int sctp_wspace(struct sctp_association *asoc)
131 int amt;
133 if (asoc->ep->sndbuf_policy)
134 amt = asoc->sndbuf_used;
135 else
136 amt = sk_wmem_alloc_get(asoc->base.sk);
138 if (amt >= asoc->base.sk->sk_sndbuf) {
139 if (asoc->base.sk->sk_userlocks & SOCK_SNDBUF_LOCK)
140 amt = 0;
141 else {
142 amt = sk_stream_wspace(asoc->base.sk);
143 if (amt < 0)
144 amt = 0;
146 } else {
147 amt = asoc->base.sk->sk_sndbuf - amt;
149 return amt;
152 /* Increment the used sndbuf space count of the corresponding association by
153 * the size of the outgoing data chunk.
154 * Also, set the skb destructor for sndbuf accounting later.
156 * Since it is always 1-1 between chunk and skb, and also a new skb is always
157 * allocated for chunk bundling in sctp_packet_transmit(), we can use the
158 * destructor in the data chunk skb for the purpose of the sndbuf space
159 * tracking.
161 static inline void sctp_set_owner_w(struct sctp_chunk *chunk)
163 struct sctp_association *asoc = chunk->asoc;
164 struct sock *sk = asoc->base.sk;
166 /* The sndbuf space is tracked per association. */
167 sctp_association_hold(asoc);
169 skb_set_owner_w(chunk->skb, sk);
171 chunk->skb->destructor = sctp_wfree;
172 /* Save the chunk pointer in skb for sctp_wfree to use later. */
173 *((struct sctp_chunk **)(chunk->skb->cb)) = chunk;
175 asoc->sndbuf_used += SCTP_DATA_SNDSIZE(chunk) +
176 sizeof(struct sk_buff) +
177 sizeof(struct sctp_chunk);
179 atomic_add(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
180 sk->sk_wmem_queued += chunk->skb->truesize;
181 sk_mem_charge(sk, chunk->skb->truesize);
184 /* Verify that this is a valid address. */
185 static inline int sctp_verify_addr(struct sock *sk, union sctp_addr *addr,
186 int len)
188 struct sctp_af *af;
190 /* Verify basic sockaddr. */
191 af = sctp_sockaddr_af(sctp_sk(sk), addr, len);
192 if (!af)
193 return -EINVAL;
195 /* Is this a valid SCTP address? */
196 if (!af->addr_valid(addr, sctp_sk(sk), NULL))
197 return -EINVAL;
199 if (!sctp_sk(sk)->pf->send_verify(sctp_sk(sk), (addr)))
200 return -EINVAL;
202 return 0;
205 /* Look up the association by its id. If this is not a UDP-style
206 * socket, the ID field is always ignored.
208 struct sctp_association *sctp_id2assoc(struct sock *sk, sctp_assoc_t id)
210 struct sctp_association *asoc = NULL;
212 /* If this is not a UDP-style socket, assoc id should be ignored. */
213 if (!sctp_style(sk, UDP)) {
214 /* Return NULL if the socket state is not ESTABLISHED. It
215 * could be a TCP-style listening socket or a socket which
216 * hasn't yet called connect() to establish an association.
218 if (!sctp_sstate(sk, ESTABLISHED))
219 return NULL;
221 /* Get the first and the only association from the list. */
222 if (!list_empty(&sctp_sk(sk)->ep->asocs))
223 asoc = list_entry(sctp_sk(sk)->ep->asocs.next,
224 struct sctp_association, asocs);
225 return asoc;
228 /* Otherwise this is a UDP-style socket. */
229 if (!id || (id == (sctp_assoc_t)-1))
230 return NULL;
232 spin_lock_bh(&sctp_assocs_id_lock);
233 asoc = (struct sctp_association *)idr_find(&sctp_assocs_id, (int)id);
234 spin_unlock_bh(&sctp_assocs_id_lock);
236 if (!asoc || (asoc->base.sk != sk) || asoc->base.dead)
237 return NULL;
239 return asoc;
242 /* Look up the transport from an address and an assoc id. If both address and
243 * id are specified, the associations matching the address and the id should be
244 * the same.
246 static struct sctp_transport *sctp_addr_id2transport(struct sock *sk,
247 struct sockaddr_storage *addr,
248 sctp_assoc_t id)
250 struct sctp_association *addr_asoc = NULL, *id_asoc = NULL;
251 struct sctp_transport *transport;
252 union sctp_addr *laddr = (union sctp_addr *)addr;
254 addr_asoc = sctp_endpoint_lookup_assoc(sctp_sk(sk)->ep,
255 laddr,
256 &transport);
258 if (!addr_asoc)
259 return NULL;
261 id_asoc = sctp_id2assoc(sk, id);
262 if (id_asoc && (id_asoc != addr_asoc))
263 return NULL;
265 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
266 (union sctp_addr *)addr);
268 return transport;
271 /* API 3.1.2 bind() - UDP Style Syntax
272 * The syntax of bind() is,
274 * ret = bind(int sd, struct sockaddr *addr, int addrlen);
276 * sd - the socket descriptor returned by socket().
277 * addr - the address structure (struct sockaddr_in or struct
278 * sockaddr_in6 [RFC 2553]),
279 * addr_len - the size of the address structure.
281 SCTP_STATIC int sctp_bind(struct sock *sk, struct sockaddr *addr, int addr_len)
283 int retval = 0;
285 sctp_lock_sock(sk);
287 SCTP_DEBUG_PRINTK("sctp_bind(sk: %p, addr: %p, addr_len: %d)\n",
288 sk, addr, addr_len);
290 /* Disallow binding twice. */
291 if (!sctp_sk(sk)->ep->base.bind_addr.port)
292 retval = sctp_do_bind(sk, (union sctp_addr *)addr,
293 addr_len);
294 else
295 retval = -EINVAL;
297 sctp_release_sock(sk);
299 return retval;
302 static long sctp_get_port_local(struct sock *, union sctp_addr *);
304 /* Verify this is a valid sockaddr. */
305 static struct sctp_af *sctp_sockaddr_af(struct sctp_sock *opt,
306 union sctp_addr *addr, int len)
308 struct sctp_af *af;
310 /* Check minimum size. */
311 if (len < sizeof (struct sockaddr))
312 return NULL;
314 /* V4 mapped address are really of AF_INET family */
315 if (addr->sa.sa_family == AF_INET6 &&
316 ipv6_addr_v4mapped(&addr->v6.sin6_addr)) {
317 if (!opt->pf->af_supported(AF_INET, opt))
318 return NULL;
319 } else {
320 /* Does this PF support this AF? */
321 if (!opt->pf->af_supported(addr->sa.sa_family, opt))
322 return NULL;
325 /* If we get this far, af is valid. */
326 af = sctp_get_af_specific(addr->sa.sa_family);
328 if (len < af->sockaddr_len)
329 return NULL;
331 return af;
334 /* Bind a local address either to an endpoint or to an association. */
335 SCTP_STATIC int sctp_do_bind(struct sock *sk, union sctp_addr *addr, int len)
337 struct sctp_sock *sp = sctp_sk(sk);
338 struct sctp_endpoint *ep = sp->ep;
339 struct sctp_bind_addr *bp = &ep->base.bind_addr;
340 struct sctp_af *af;
341 unsigned short snum;
342 int ret = 0;
344 /* Common sockaddr verification. */
345 af = sctp_sockaddr_af(sp, addr, len);
346 if (!af) {
347 SCTP_DEBUG_PRINTK("sctp_do_bind(sk: %p, newaddr: %p, len: %d) EINVAL\n",
348 sk, addr, len);
349 return -EINVAL;
352 snum = ntohs(addr->v4.sin_port);
354 SCTP_DEBUG_PRINTK_IPADDR("sctp_do_bind(sk: %p, new addr: ",
355 ", port: %d, new port: %d, len: %d)\n",
357 addr,
358 bp->port, snum,
359 len);
361 /* PF specific bind() address verification. */
362 if (!sp->pf->bind_verify(sp, addr))
363 return -EADDRNOTAVAIL;
365 /* We must either be unbound, or bind to the same port.
366 * It's OK to allow 0 ports if we are already bound.
367 * We'll just inhert an already bound port in this case
369 if (bp->port) {
370 if (!snum)
371 snum = bp->port;
372 else if (snum != bp->port) {
373 SCTP_DEBUG_PRINTK("sctp_do_bind:"
374 " New port %d does not match existing port "
375 "%d.\n", snum, bp->port);
376 return -EINVAL;
380 if (snum && snum < PROT_SOCK && !capable(CAP_NET_BIND_SERVICE))
381 return -EACCES;
383 /* See if the address matches any of the addresses we may have
384 * already bound before checking against other endpoints.
386 if (sctp_bind_addr_match(bp, addr, sp))
387 return -EINVAL;
389 /* Make sure we are allowed to bind here.
390 * The function sctp_get_port_local() does duplicate address
391 * detection.
393 addr->v4.sin_port = htons(snum);
394 if ((ret = sctp_get_port_local(sk, addr))) {
395 return -EADDRINUSE;
398 /* Refresh ephemeral port. */
399 if (!bp->port)
400 bp->port = inet_sk(sk)->inet_num;
402 /* Add the address to the bind address list.
403 * Use GFP_ATOMIC since BHs will be disabled.
405 ret = sctp_add_bind_addr(bp, addr, SCTP_ADDR_SRC, GFP_ATOMIC);
407 /* Copy back into socket for getsockname() use. */
408 if (!ret) {
409 inet_sk(sk)->inet_sport = htons(inet_sk(sk)->inet_num);
410 af->to_sk_saddr(addr, sk);
413 return ret;
416 /* ADDIP Section 4.1.1 Congestion Control of ASCONF Chunks
418 * R1) One and only one ASCONF Chunk MAY be in transit and unacknowledged
419 * at any one time. If a sender, after sending an ASCONF chunk, decides
420 * it needs to transfer another ASCONF Chunk, it MUST wait until the
421 * ASCONF-ACK Chunk returns from the previous ASCONF Chunk before sending a
422 * subsequent ASCONF. Note this restriction binds each side, so at any
423 * time two ASCONF may be in-transit on any given association (one sent
424 * from each endpoint).
426 static int sctp_send_asconf(struct sctp_association *asoc,
427 struct sctp_chunk *chunk)
429 int retval = 0;
431 /* If there is an outstanding ASCONF chunk, queue it for later
432 * transmission.
434 if (asoc->addip_last_asconf) {
435 list_add_tail(&chunk->list, &asoc->addip_chunk_list);
436 goto out;
439 /* Hold the chunk until an ASCONF_ACK is received. */
440 sctp_chunk_hold(chunk);
441 retval = sctp_primitive_ASCONF(asoc, chunk);
442 if (retval)
443 sctp_chunk_free(chunk);
444 else
445 asoc->addip_last_asconf = chunk;
447 out:
448 return retval;
451 /* Add a list of addresses as bind addresses to local endpoint or
452 * association.
454 * Basically run through each address specified in the addrs/addrcnt
455 * array/length pair, determine if it is IPv6 or IPv4 and call
456 * sctp_do_bind() on it.
458 * If any of them fails, then the operation will be reversed and the
459 * ones that were added will be removed.
461 * Only sctp_setsockopt_bindx() is supposed to call this function.
463 static int sctp_bindx_add(struct sock *sk, struct sockaddr *addrs, int addrcnt)
465 int cnt;
466 int retval = 0;
467 void *addr_buf;
468 struct sockaddr *sa_addr;
469 struct sctp_af *af;
471 SCTP_DEBUG_PRINTK("sctp_bindx_add (sk: %p, addrs: %p, addrcnt: %d)\n",
472 sk, addrs, addrcnt);
474 addr_buf = addrs;
475 for (cnt = 0; cnt < addrcnt; cnt++) {
476 /* The list may contain either IPv4 or IPv6 address;
477 * determine the address length for walking thru the list.
479 sa_addr = (struct sockaddr *)addr_buf;
480 af = sctp_get_af_specific(sa_addr->sa_family);
481 if (!af) {
482 retval = -EINVAL;
483 goto err_bindx_add;
486 retval = sctp_do_bind(sk, (union sctp_addr *)sa_addr,
487 af->sockaddr_len);
489 addr_buf += af->sockaddr_len;
491 err_bindx_add:
492 if (retval < 0) {
493 /* Failed. Cleanup the ones that have been added */
494 if (cnt > 0)
495 sctp_bindx_rem(sk, addrs, cnt);
496 return retval;
500 return retval;
503 /* Send an ASCONF chunk with Add IP address parameters to all the peers of the
504 * associations that are part of the endpoint indicating that a list of local
505 * addresses are added to the endpoint.
507 * If any of the addresses is already in the bind address list of the
508 * association, we do not send the chunk for that association. But it will not
509 * affect other associations.
511 * Only sctp_setsockopt_bindx() is supposed to call this function.
513 static int sctp_send_asconf_add_ip(struct sock *sk,
514 struct sockaddr *addrs,
515 int addrcnt)
517 struct sctp_sock *sp;
518 struct sctp_endpoint *ep;
519 struct sctp_association *asoc;
520 struct sctp_bind_addr *bp;
521 struct sctp_chunk *chunk;
522 struct sctp_sockaddr_entry *laddr;
523 union sctp_addr *addr;
524 union sctp_addr saveaddr;
525 void *addr_buf;
526 struct sctp_af *af;
527 struct list_head *p;
528 int i;
529 int retval = 0;
531 if (!sctp_addip_enable)
532 return retval;
534 sp = sctp_sk(sk);
535 ep = sp->ep;
537 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
538 __func__, sk, addrs, addrcnt);
540 list_for_each_entry(asoc, &ep->asocs, asocs) {
542 if (!asoc->peer.asconf_capable)
543 continue;
545 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_ADD_IP)
546 continue;
548 if (!sctp_state(asoc, ESTABLISHED))
549 continue;
551 /* Check if any address in the packed array of addresses is
552 * in the bind address list of the association. If so,
553 * do not send the asconf chunk to its peer, but continue with
554 * other associations.
556 addr_buf = addrs;
557 for (i = 0; i < addrcnt; i++) {
558 addr = (union sctp_addr *)addr_buf;
559 af = sctp_get_af_specific(addr->v4.sin_family);
560 if (!af) {
561 retval = -EINVAL;
562 goto out;
565 if (sctp_assoc_lookup_laddr(asoc, addr))
566 break;
568 addr_buf += af->sockaddr_len;
570 if (i < addrcnt)
571 continue;
573 /* Use the first valid address in bind addr list of
574 * association as Address Parameter of ASCONF CHUNK.
576 bp = &asoc->base.bind_addr;
577 p = bp->address_list.next;
578 laddr = list_entry(p, struct sctp_sockaddr_entry, list);
579 chunk = sctp_make_asconf_update_ip(asoc, &laddr->a, addrs,
580 addrcnt, SCTP_PARAM_ADD_IP);
581 if (!chunk) {
582 retval = -ENOMEM;
583 goto out;
586 retval = sctp_send_asconf(asoc, chunk);
587 if (retval)
588 goto out;
590 /* Add the new addresses to the bind address list with
591 * use_as_src set to 0.
593 addr_buf = addrs;
594 for (i = 0; i < addrcnt; i++) {
595 addr = (union sctp_addr *)addr_buf;
596 af = sctp_get_af_specific(addr->v4.sin_family);
597 memcpy(&saveaddr, addr, af->sockaddr_len);
598 retval = sctp_add_bind_addr(bp, &saveaddr,
599 SCTP_ADDR_NEW, GFP_ATOMIC);
600 addr_buf += af->sockaddr_len;
604 out:
605 return retval;
608 /* Remove a list of addresses from bind addresses list. Do not remove the
609 * last address.
611 * Basically run through each address specified in the addrs/addrcnt
612 * array/length pair, determine if it is IPv6 or IPv4 and call
613 * sctp_del_bind() on it.
615 * If any of them fails, then the operation will be reversed and the
616 * ones that were removed will be added back.
618 * At least one address has to be left; if only one address is
619 * available, the operation will return -EBUSY.
621 * Only sctp_setsockopt_bindx() is supposed to call this function.
623 static int sctp_bindx_rem(struct sock *sk, struct sockaddr *addrs, int addrcnt)
625 struct sctp_sock *sp = sctp_sk(sk);
626 struct sctp_endpoint *ep = sp->ep;
627 int cnt;
628 struct sctp_bind_addr *bp = &ep->base.bind_addr;
629 int retval = 0;
630 void *addr_buf;
631 union sctp_addr *sa_addr;
632 struct sctp_af *af;
634 SCTP_DEBUG_PRINTK("sctp_bindx_rem (sk: %p, addrs: %p, addrcnt: %d)\n",
635 sk, addrs, addrcnt);
637 addr_buf = addrs;
638 for (cnt = 0; cnt < addrcnt; cnt++) {
639 /* If the bind address list is empty or if there is only one
640 * bind address, there is nothing more to be removed (we need
641 * at least one address here).
643 if (list_empty(&bp->address_list) ||
644 (sctp_list_single_entry(&bp->address_list))) {
645 retval = -EBUSY;
646 goto err_bindx_rem;
649 sa_addr = (union sctp_addr *)addr_buf;
650 af = sctp_get_af_specific(sa_addr->sa.sa_family);
651 if (!af) {
652 retval = -EINVAL;
653 goto err_bindx_rem;
656 if (!af->addr_valid(sa_addr, sp, NULL)) {
657 retval = -EADDRNOTAVAIL;
658 goto err_bindx_rem;
661 if (sa_addr->v4.sin_port &&
662 sa_addr->v4.sin_port != htons(bp->port)) {
663 retval = -EINVAL;
664 goto err_bindx_rem;
667 if (!sa_addr->v4.sin_port)
668 sa_addr->v4.sin_port = htons(bp->port);
670 /* FIXME - There is probably a need to check if sk->sk_saddr and
671 * sk->sk_rcv_addr are currently set to one of the addresses to
672 * be removed. This is something which needs to be looked into
673 * when we are fixing the outstanding issues with multi-homing
674 * socket routing and failover schemes. Refer to comments in
675 * sctp_do_bind(). -daisy
677 retval = sctp_del_bind_addr(bp, sa_addr);
679 addr_buf += af->sockaddr_len;
680 err_bindx_rem:
681 if (retval < 0) {
682 /* Failed. Add the ones that has been removed back */
683 if (cnt > 0)
684 sctp_bindx_add(sk, addrs, cnt);
685 return retval;
689 return retval;
692 /* Send an ASCONF chunk with Delete IP address parameters to all the peers of
693 * the associations that are part of the endpoint indicating that a list of
694 * local addresses are removed from the endpoint.
696 * If any of the addresses is already in the bind address list of the
697 * association, we do not send the chunk for that association. But it will not
698 * affect other associations.
700 * Only sctp_setsockopt_bindx() is supposed to call this function.
702 static int sctp_send_asconf_del_ip(struct sock *sk,
703 struct sockaddr *addrs,
704 int addrcnt)
706 struct sctp_sock *sp;
707 struct sctp_endpoint *ep;
708 struct sctp_association *asoc;
709 struct sctp_transport *transport;
710 struct sctp_bind_addr *bp;
711 struct sctp_chunk *chunk;
712 union sctp_addr *laddr;
713 void *addr_buf;
714 struct sctp_af *af;
715 struct sctp_sockaddr_entry *saddr;
716 int i;
717 int retval = 0;
719 if (!sctp_addip_enable)
720 return retval;
722 sp = sctp_sk(sk);
723 ep = sp->ep;
725 SCTP_DEBUG_PRINTK("%s: (sk: %p, addrs: %p, addrcnt: %d)\n",
726 __func__, sk, addrs, addrcnt);
728 list_for_each_entry(asoc, &ep->asocs, asocs) {
730 if (!asoc->peer.asconf_capable)
731 continue;
733 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_DEL_IP)
734 continue;
736 if (!sctp_state(asoc, ESTABLISHED))
737 continue;
739 /* Check if any address in the packed array of addresses is
740 * not present in the bind address list of the association.
741 * If so, do not send the asconf chunk to its peer, but
742 * continue with other associations.
744 addr_buf = addrs;
745 for (i = 0; i < addrcnt; i++) {
746 laddr = (union sctp_addr *)addr_buf;
747 af = sctp_get_af_specific(laddr->v4.sin_family);
748 if (!af) {
749 retval = -EINVAL;
750 goto out;
753 if (!sctp_assoc_lookup_laddr(asoc, laddr))
754 break;
756 addr_buf += af->sockaddr_len;
758 if (i < addrcnt)
759 continue;
761 /* Find one address in the association's bind address list
762 * that is not in the packed array of addresses. This is to
763 * make sure that we do not delete all the addresses in the
764 * association.
766 bp = &asoc->base.bind_addr;
767 laddr = sctp_find_unmatch_addr(bp, (union sctp_addr *)addrs,
768 addrcnt, sp);
769 if (!laddr)
770 continue;
772 /* We do not need RCU protection throughout this loop
773 * because this is done under a socket lock from the
774 * setsockopt call.
776 chunk = sctp_make_asconf_update_ip(asoc, laddr, addrs, addrcnt,
777 SCTP_PARAM_DEL_IP);
778 if (!chunk) {
779 retval = -ENOMEM;
780 goto out;
783 /* Reset use_as_src flag for the addresses in the bind address
784 * list that are to be deleted.
786 addr_buf = addrs;
787 for (i = 0; i < addrcnt; i++) {
788 laddr = (union sctp_addr *)addr_buf;
789 af = sctp_get_af_specific(laddr->v4.sin_family);
790 list_for_each_entry(saddr, &bp->address_list, list) {
791 if (sctp_cmp_addr_exact(&saddr->a, laddr))
792 saddr->state = SCTP_ADDR_DEL;
794 addr_buf += af->sockaddr_len;
797 /* Update the route and saddr entries for all the transports
798 * as some of the addresses in the bind address list are
799 * about to be deleted and cannot be used as source addresses.
801 list_for_each_entry(transport, &asoc->peer.transport_addr_list,
802 transports) {
803 dst_release(transport->dst);
804 sctp_transport_route(transport, NULL,
805 sctp_sk(asoc->base.sk));
808 retval = sctp_send_asconf(asoc, chunk);
810 out:
811 return retval;
814 /* Helper for tunneling sctp_bindx() requests through sctp_setsockopt()
816 * API 8.1
817 * int sctp_bindx(int sd, struct sockaddr *addrs, int addrcnt,
818 * int flags);
820 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
821 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
822 * or IPv6 addresses.
824 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
825 * Section 3.1.2 for this usage.
827 * addrs is a pointer to an array of one or more socket addresses. Each
828 * address is contained in its appropriate structure (i.e. struct
829 * sockaddr_in or struct sockaddr_in6) the family of the address type
830 * must be used to distinguish the address length (note that this
831 * representation is termed a "packed array" of addresses). The caller
832 * specifies the number of addresses in the array with addrcnt.
834 * On success, sctp_bindx() returns 0. On failure, sctp_bindx() returns
835 * -1, and sets errno to the appropriate error code.
837 * For SCTP, the port given in each socket address must be the same, or
838 * sctp_bindx() will fail, setting errno to EINVAL.
840 * The flags parameter is formed from the bitwise OR of zero or more of
841 * the following currently defined flags:
843 * SCTP_BINDX_ADD_ADDR
845 * SCTP_BINDX_REM_ADDR
847 * SCTP_BINDX_ADD_ADDR directs SCTP to add the given addresses to the
848 * association, and SCTP_BINDX_REM_ADDR directs SCTP to remove the given
849 * addresses from the association. The two flags are mutually exclusive;
850 * if both are given, sctp_bindx() will fail with EINVAL. A caller may
851 * not remove all addresses from an association; sctp_bindx() will
852 * reject such an attempt with EINVAL.
854 * An application can use sctp_bindx(SCTP_BINDX_ADD_ADDR) to associate
855 * additional addresses with an endpoint after calling bind(). Or use
856 * sctp_bindx(SCTP_BINDX_REM_ADDR) to remove some addresses a listening
857 * socket is associated with so that no new association accepted will be
858 * associated with those addresses. If the endpoint supports dynamic
859 * address a SCTP_BINDX_REM_ADDR or SCTP_BINDX_ADD_ADDR may cause a
860 * endpoint to send the appropriate message to the peer to change the
861 * peers address lists.
863 * Adding and removing addresses from a connected association is
864 * optional functionality. Implementations that do not support this
865 * functionality should return EOPNOTSUPP.
867 * Basically do nothing but copying the addresses from user to kernel
868 * land and invoking either sctp_bindx_add() or sctp_bindx_rem() on the sk.
869 * This is used for tunneling the sctp_bindx() request through sctp_setsockopt()
870 * from userspace.
872 * We don't use copy_from_user() for optimization: we first do the
873 * sanity checks (buffer size -fast- and access check-healthy
874 * pointer); if all of those succeed, then we can alloc the memory
875 * (expensive operation) needed to copy the data to kernel. Then we do
876 * the copying without checking the user space area
877 * (__copy_from_user()).
879 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
880 * it.
882 * sk The sk of the socket
883 * addrs The pointer to the addresses in user land
884 * addrssize Size of the addrs buffer
885 * op Operation to perform (add or remove, see the flags of
886 * sctp_bindx)
888 * Returns 0 if ok, <0 errno code on error.
890 SCTP_STATIC int sctp_setsockopt_bindx(struct sock* sk,
891 struct sockaddr __user *addrs,
892 int addrs_size, int op)
894 struct sockaddr *kaddrs;
895 int err;
896 int addrcnt = 0;
897 int walk_size = 0;
898 struct sockaddr *sa_addr;
899 void *addr_buf;
900 struct sctp_af *af;
902 SCTP_DEBUG_PRINTK("sctp_setsocktopt_bindx: sk %p addrs %p"
903 " addrs_size %d opt %d\n", sk, addrs, addrs_size, op);
905 if (unlikely(addrs_size <= 0))
906 return -EINVAL;
908 /* Check the user passed a healthy pointer. */
909 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
910 return -EFAULT;
912 /* Alloc space for the address array in kernel memory. */
913 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
914 if (unlikely(!kaddrs))
915 return -ENOMEM;
917 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
918 kfree(kaddrs);
919 return -EFAULT;
922 /* Walk through the addrs buffer and count the number of addresses. */
923 addr_buf = kaddrs;
924 while (walk_size < addrs_size) {
925 if (walk_size + sizeof(sa_family_t) > addrs_size) {
926 kfree(kaddrs);
927 return -EINVAL;
930 sa_addr = (struct sockaddr *)addr_buf;
931 af = sctp_get_af_specific(sa_addr->sa_family);
933 /* If the address family is not supported or if this address
934 * causes the address buffer to overflow return EINVAL.
936 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
937 kfree(kaddrs);
938 return -EINVAL;
940 addrcnt++;
941 addr_buf += af->sockaddr_len;
942 walk_size += af->sockaddr_len;
945 /* Do the work. */
946 switch (op) {
947 case SCTP_BINDX_ADD_ADDR:
948 err = sctp_bindx_add(sk, kaddrs, addrcnt);
949 if (err)
950 goto out;
951 err = sctp_send_asconf_add_ip(sk, kaddrs, addrcnt);
952 break;
954 case SCTP_BINDX_REM_ADDR:
955 err = sctp_bindx_rem(sk, kaddrs, addrcnt);
956 if (err)
957 goto out;
958 err = sctp_send_asconf_del_ip(sk, kaddrs, addrcnt);
959 break;
961 default:
962 err = -EINVAL;
963 break;
966 out:
967 kfree(kaddrs);
969 return err;
972 /* __sctp_connect(struct sock* sk, struct sockaddr *kaddrs, int addrs_size)
974 * Common routine for handling connect() and sctp_connectx().
975 * Connect will come in with just a single address.
977 static int __sctp_connect(struct sock* sk,
978 struct sockaddr *kaddrs,
979 int addrs_size,
980 sctp_assoc_t *assoc_id)
982 struct sctp_sock *sp;
983 struct sctp_endpoint *ep;
984 struct sctp_association *asoc = NULL;
985 struct sctp_association *asoc2;
986 struct sctp_transport *transport;
987 union sctp_addr to;
988 struct sctp_af *af;
989 sctp_scope_t scope;
990 long timeo;
991 int err = 0;
992 int addrcnt = 0;
993 int walk_size = 0;
994 union sctp_addr *sa_addr = NULL;
995 void *addr_buf;
996 unsigned short port;
997 unsigned int f_flags = 0;
999 sp = sctp_sk(sk);
1000 ep = sp->ep;
1002 /* connect() cannot be done on a socket that is already in ESTABLISHED
1003 * state - UDP-style peeled off socket or a TCP-style socket that
1004 * is already connected.
1005 * It cannot be done even on a TCP-style listening socket.
1007 if (sctp_sstate(sk, ESTABLISHED) ||
1008 (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))) {
1009 err = -EISCONN;
1010 goto out_free;
1013 /* Walk through the addrs buffer and count the number of addresses. */
1014 addr_buf = kaddrs;
1015 while (walk_size < addrs_size) {
1016 if (walk_size + sizeof(sa_family_t) > addrs_size) {
1017 err = -EINVAL;
1018 goto out_free;
1021 sa_addr = (union sctp_addr *)addr_buf;
1022 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1024 /* If the address family is not supported or if this address
1025 * causes the address buffer to overflow return EINVAL.
1027 if (!af || (walk_size + af->sockaddr_len) > addrs_size) {
1028 err = -EINVAL;
1029 goto out_free;
1032 port = ntohs(sa_addr->v4.sin_port);
1034 /* Save current address so we can work with it */
1035 memcpy(&to, sa_addr, af->sockaddr_len);
1037 err = sctp_verify_addr(sk, &to, af->sockaddr_len);
1038 if (err)
1039 goto out_free;
1041 /* Make sure the destination port is correctly set
1042 * in all addresses.
1044 if (asoc && asoc->peer.port && asoc->peer.port != port)
1045 goto out_free;
1048 /* Check if there already is a matching association on the
1049 * endpoint (other than the one created here).
1051 asoc2 = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1052 if (asoc2 && asoc2 != asoc) {
1053 if (asoc2->state >= SCTP_STATE_ESTABLISHED)
1054 err = -EISCONN;
1055 else
1056 err = -EALREADY;
1057 goto out_free;
1060 /* If we could not find a matching association on the endpoint,
1061 * make sure that there is no peeled-off association matching
1062 * the peer address even on another socket.
1064 if (sctp_endpoint_is_peeled_off(ep, &to)) {
1065 err = -EADDRNOTAVAIL;
1066 goto out_free;
1069 if (!asoc) {
1070 /* If a bind() or sctp_bindx() is not called prior to
1071 * an sctp_connectx() call, the system picks an
1072 * ephemeral port and will choose an address set
1073 * equivalent to binding with a wildcard address.
1075 if (!ep->base.bind_addr.port) {
1076 if (sctp_autobind(sk)) {
1077 err = -EAGAIN;
1078 goto out_free;
1080 } else {
1082 * If an unprivileged user inherits a 1-many
1083 * style socket with open associations on a
1084 * privileged port, it MAY be permitted to
1085 * accept new associations, but it SHOULD NOT
1086 * be permitted to open new associations.
1088 if (ep->base.bind_addr.port < PROT_SOCK &&
1089 !capable(CAP_NET_BIND_SERVICE)) {
1090 err = -EACCES;
1091 goto out_free;
1095 scope = sctp_scope(&to);
1096 asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1097 if (!asoc) {
1098 err = -ENOMEM;
1099 goto out_free;
1102 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope,
1103 GFP_KERNEL);
1104 if (err < 0) {
1105 goto out_free;
1110 /* Prime the peer's transport structures. */
1111 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL,
1112 SCTP_UNKNOWN);
1113 if (!transport) {
1114 err = -ENOMEM;
1115 goto out_free;
1118 addrcnt++;
1119 addr_buf += af->sockaddr_len;
1120 walk_size += af->sockaddr_len;
1123 /* In case the user of sctp_connectx() wants an association
1124 * id back, assign one now.
1126 if (assoc_id) {
1127 err = sctp_assoc_set_id(asoc, GFP_KERNEL);
1128 if (err < 0)
1129 goto out_free;
1132 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1133 if (err < 0) {
1134 goto out_free;
1137 /* Initialize sk's dport and daddr for getpeername() */
1138 inet_sk(sk)->inet_dport = htons(asoc->peer.port);
1139 af = sctp_get_af_specific(sa_addr->sa.sa_family);
1140 af->to_sk_daddr(sa_addr, sk);
1141 sk->sk_err = 0;
1143 /* in-kernel sockets don't generally have a file allocated to them
1144 * if all they do is call sock_create_kern().
1146 if (sk->sk_socket->file)
1147 f_flags = sk->sk_socket->file->f_flags;
1149 timeo = sock_sndtimeo(sk, f_flags & O_NONBLOCK);
1151 err = sctp_wait_for_connect(asoc, &timeo);
1152 if ((err == 0 || err == -EINPROGRESS) && assoc_id)
1153 *assoc_id = asoc->assoc_id;
1155 /* Don't free association on exit. */
1156 asoc = NULL;
1158 out_free:
1160 SCTP_DEBUG_PRINTK("About to exit __sctp_connect() free asoc: %p"
1161 " kaddrs: %p err: %d\n",
1162 asoc, kaddrs, err);
1163 if (asoc)
1164 sctp_association_free(asoc);
1165 return err;
1168 /* Helper for tunneling sctp_connectx() requests through sctp_setsockopt()
1170 * API 8.9
1171 * int sctp_connectx(int sd, struct sockaddr *addrs, int addrcnt,
1172 * sctp_assoc_t *asoc);
1174 * If sd is an IPv4 socket, the addresses passed must be IPv4 addresses.
1175 * If the sd is an IPv6 socket, the addresses passed can either be IPv4
1176 * or IPv6 addresses.
1178 * A single address may be specified as INADDR_ANY or IN6ADDR_ANY, see
1179 * Section 3.1.2 for this usage.
1181 * addrs is a pointer to an array of one or more socket addresses. Each
1182 * address is contained in its appropriate structure (i.e. struct
1183 * sockaddr_in or struct sockaddr_in6) the family of the address type
1184 * must be used to distengish the address length (note that this
1185 * representation is termed a "packed array" of addresses). The caller
1186 * specifies the number of addresses in the array with addrcnt.
1188 * On success, sctp_connectx() returns 0. It also sets the assoc_id to
1189 * the association id of the new association. On failure, sctp_connectx()
1190 * returns -1, and sets errno to the appropriate error code. The assoc_id
1191 * is not touched by the kernel.
1193 * For SCTP, the port given in each socket address must be the same, or
1194 * sctp_connectx() will fail, setting errno to EINVAL.
1196 * An application can use sctp_connectx to initiate an association with
1197 * an endpoint that is multi-homed. Much like sctp_bindx() this call
1198 * allows a caller to specify multiple addresses at which a peer can be
1199 * reached. The way the SCTP stack uses the list of addresses to set up
1200 * the association is implementation dependent. This function only
1201 * specifies that the stack will try to make use of all the addresses in
1202 * the list when needed.
1204 * Note that the list of addresses passed in is only used for setting up
1205 * the association. It does not necessarily equal the set of addresses
1206 * the peer uses for the resulting association. If the caller wants to
1207 * find out the set of peer addresses, it must use sctp_getpaddrs() to
1208 * retrieve them after the association has been set up.
1210 * Basically do nothing but copying the addresses from user to kernel
1211 * land and invoking either sctp_connectx(). This is used for tunneling
1212 * the sctp_connectx() request through sctp_setsockopt() from userspace.
1214 * We don't use copy_from_user() for optimization: we first do the
1215 * sanity checks (buffer size -fast- and access check-healthy
1216 * pointer); if all of those succeed, then we can alloc the memory
1217 * (expensive operation) needed to copy the data to kernel. Then we do
1218 * the copying without checking the user space area
1219 * (__copy_from_user()).
1221 * On exit there is no need to do sockfd_put(), sys_setsockopt() does
1222 * it.
1224 * sk The sk of the socket
1225 * addrs The pointer to the addresses in user land
1226 * addrssize Size of the addrs buffer
1228 * Returns >=0 if ok, <0 errno code on error.
1230 SCTP_STATIC int __sctp_setsockopt_connectx(struct sock* sk,
1231 struct sockaddr __user *addrs,
1232 int addrs_size,
1233 sctp_assoc_t *assoc_id)
1235 int err = 0;
1236 struct sockaddr *kaddrs;
1238 SCTP_DEBUG_PRINTK("%s - sk %p addrs %p addrs_size %d\n",
1239 __func__, sk, addrs, addrs_size);
1241 if (unlikely(addrs_size <= 0))
1242 return -EINVAL;
1244 /* Check the user passed a healthy pointer. */
1245 if (unlikely(!access_ok(VERIFY_READ, addrs, addrs_size)))
1246 return -EFAULT;
1248 /* Alloc space for the address array in kernel memory. */
1249 kaddrs = kmalloc(addrs_size, GFP_KERNEL);
1250 if (unlikely(!kaddrs))
1251 return -ENOMEM;
1253 if (__copy_from_user(kaddrs, addrs, addrs_size)) {
1254 err = -EFAULT;
1255 } else {
1256 err = __sctp_connect(sk, kaddrs, addrs_size, assoc_id);
1259 kfree(kaddrs);
1261 return err;
1265 * This is an older interface. It's kept for backward compatibility
1266 * to the option that doesn't provide association id.
1268 SCTP_STATIC int sctp_setsockopt_connectx_old(struct sock* sk,
1269 struct sockaddr __user *addrs,
1270 int addrs_size)
1272 return __sctp_setsockopt_connectx(sk, addrs, addrs_size, NULL);
1276 * New interface for the API. The since the API is done with a socket
1277 * option, to make it simple we feed back the association id is as a return
1278 * indication to the call. Error is always negative and association id is
1279 * always positive.
1281 SCTP_STATIC int sctp_setsockopt_connectx(struct sock* sk,
1282 struct sockaddr __user *addrs,
1283 int addrs_size)
1285 sctp_assoc_t assoc_id = 0;
1286 int err = 0;
1288 err = __sctp_setsockopt_connectx(sk, addrs, addrs_size, &assoc_id);
1290 if (err)
1291 return err;
1292 else
1293 return assoc_id;
1297 * New (hopefully final) interface for the API.
1298 * We use the sctp_getaddrs_old structure so that use-space library
1299 * can avoid any unnecessary allocations. The only defferent part
1300 * is that we store the actual length of the address buffer into the
1301 * addrs_num structure member. That way we can re-use the existing
1302 * code.
1304 SCTP_STATIC int sctp_getsockopt_connectx3(struct sock* sk, int len,
1305 char __user *optval,
1306 int __user *optlen)
1308 struct sctp_getaddrs_old param;
1309 sctp_assoc_t assoc_id = 0;
1310 int err = 0;
1312 if (len < sizeof(param))
1313 return -EINVAL;
1315 if (copy_from_user(&param, optval, sizeof(param)))
1316 return -EFAULT;
1318 err = __sctp_setsockopt_connectx(sk,
1319 (struct sockaddr __user *)param.addrs,
1320 param.addr_num, &assoc_id);
1322 if (err == 0 || err == -EINPROGRESS) {
1323 if (copy_to_user(optval, &assoc_id, sizeof(assoc_id)))
1324 return -EFAULT;
1325 if (put_user(sizeof(assoc_id), optlen))
1326 return -EFAULT;
1329 return err;
1332 /* API 3.1.4 close() - UDP Style Syntax
1333 * Applications use close() to perform graceful shutdown (as described in
1334 * Section 10.1 of [SCTP]) on ALL the associations currently represented
1335 * by a UDP-style socket.
1337 * The syntax is
1339 * ret = close(int sd);
1341 * sd - the socket descriptor of the associations to be closed.
1343 * To gracefully shutdown a specific association represented by the
1344 * UDP-style socket, an application should use the sendmsg() call,
1345 * passing no user data, but including the appropriate flag in the
1346 * ancillary data (see Section xxxx).
1348 * If sd in the close() call is a branched-off socket representing only
1349 * one association, the shutdown is performed on that association only.
1351 * 4.1.6 close() - TCP Style Syntax
1353 * Applications use close() to gracefully close down an association.
1355 * The syntax is:
1357 * int close(int sd);
1359 * sd - the socket descriptor of the association to be closed.
1361 * After an application calls close() on a socket descriptor, no further
1362 * socket operations will succeed on that descriptor.
1364 * API 7.1.4 SO_LINGER
1366 * An application using the TCP-style socket can use this option to
1367 * perform the SCTP ABORT primitive. The linger option structure is:
1369 * struct linger {
1370 * int l_onoff; // option on/off
1371 * int l_linger; // linger time
1372 * };
1374 * To enable the option, set l_onoff to 1. If the l_linger value is set
1375 * to 0, calling close() is the same as the ABORT primitive. If the
1376 * value is set to a negative value, the setsockopt() call will return
1377 * an error. If the value is set to a positive value linger_time, the
1378 * close() can be blocked for at most linger_time ms. If the graceful
1379 * shutdown phase does not finish during this period, close() will
1380 * return but the graceful shutdown phase continues in the system.
1382 SCTP_STATIC void sctp_close(struct sock *sk, long timeout)
1384 struct sctp_endpoint *ep;
1385 struct sctp_association *asoc;
1386 struct list_head *pos, *temp;
1387 unsigned int data_was_unread;
1389 SCTP_DEBUG_PRINTK("sctp_close(sk: 0x%p, timeout:%ld)\n", sk, timeout);
1391 sctp_lock_sock(sk);
1392 sk->sk_shutdown = SHUTDOWN_MASK;
1393 sk->sk_state = SCTP_SS_CLOSING;
1395 ep = sctp_sk(sk)->ep;
1397 /* Clean up any skbs sitting on the receive queue. */
1398 data_was_unread = sctp_queue_purge_ulpevents(&sk->sk_receive_queue);
1399 data_was_unread += sctp_queue_purge_ulpevents(&sctp_sk(sk)->pd_lobby);
1401 /* Walk all associations on an endpoint. */
1402 list_for_each_safe(pos, temp, &ep->asocs) {
1403 asoc = list_entry(pos, struct sctp_association, asocs);
1405 if (sctp_style(sk, TCP)) {
1406 /* A closed association can still be in the list if
1407 * it belongs to a TCP-style listening socket that is
1408 * not yet accepted. If so, free it. If not, send an
1409 * ABORT or SHUTDOWN based on the linger options.
1411 if (sctp_state(asoc, CLOSED)) {
1412 sctp_unhash_established(asoc);
1413 sctp_association_free(asoc);
1414 continue;
1418 if (data_was_unread || !skb_queue_empty(&asoc->ulpq.lobby) ||
1419 !skb_queue_empty(&asoc->ulpq.reasm) ||
1420 (sock_flag(sk, SOCK_LINGER) && !sk->sk_lingertime)) {
1421 struct sctp_chunk *chunk;
1423 chunk = sctp_make_abort_user(asoc, NULL, 0);
1424 if (chunk)
1425 sctp_primitive_ABORT(asoc, chunk);
1426 } else
1427 sctp_primitive_SHUTDOWN(asoc, NULL);
1430 /* On a TCP-style socket, block for at most linger_time if set. */
1431 if (sctp_style(sk, TCP) && timeout)
1432 sctp_wait_for_close(sk, timeout);
1434 /* This will run the backlog queue. */
1435 sctp_release_sock(sk);
1437 /* Supposedly, no process has access to the socket, but
1438 * the net layers still may.
1440 sctp_local_bh_disable();
1441 sctp_bh_lock_sock(sk);
1443 /* Hold the sock, since sk_common_release() will put sock_put()
1444 * and we have just a little more cleanup.
1446 sock_hold(sk);
1447 sk_common_release(sk);
1449 sctp_bh_unlock_sock(sk);
1450 sctp_local_bh_enable();
1452 sock_put(sk);
1454 SCTP_DBG_OBJCNT_DEC(sock);
1457 /* Handle EPIPE error. */
1458 static int sctp_error(struct sock *sk, int flags, int err)
1460 if (err == -EPIPE)
1461 err = sock_error(sk) ? : -EPIPE;
1462 if (err == -EPIPE && !(flags & MSG_NOSIGNAL))
1463 send_sig(SIGPIPE, current, 0);
1464 return err;
1467 /* API 3.1.3 sendmsg() - UDP Style Syntax
1469 * An application uses sendmsg() and recvmsg() calls to transmit data to
1470 * and receive data from its peer.
1472 * ssize_t sendmsg(int socket, const struct msghdr *message,
1473 * int flags);
1475 * socket - the socket descriptor of the endpoint.
1476 * message - pointer to the msghdr structure which contains a single
1477 * user message and possibly some ancillary data.
1479 * See Section 5 for complete description of the data
1480 * structures.
1482 * flags - flags sent or received with the user message, see Section
1483 * 5 for complete description of the flags.
1485 * Note: This function could use a rewrite especially when explicit
1486 * connect support comes in.
1488 /* BUG: We do not implement the equivalent of sk_stream_wait_memory(). */
1490 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *, sctp_cmsgs_t *);
1492 SCTP_STATIC int sctp_sendmsg(struct kiocb *iocb, struct sock *sk,
1493 struct msghdr *msg, size_t msg_len)
1495 struct sctp_sock *sp;
1496 struct sctp_endpoint *ep;
1497 struct sctp_association *new_asoc=NULL, *asoc=NULL;
1498 struct sctp_transport *transport, *chunk_tp;
1499 struct sctp_chunk *chunk;
1500 union sctp_addr to;
1501 struct sockaddr *msg_name = NULL;
1502 struct sctp_sndrcvinfo default_sinfo;
1503 struct sctp_sndrcvinfo *sinfo;
1504 struct sctp_initmsg *sinit;
1505 sctp_assoc_t associd = 0;
1506 sctp_cmsgs_t cmsgs = { NULL };
1507 int err;
1508 sctp_scope_t scope;
1509 long timeo;
1510 __u16 sinfo_flags = 0;
1511 struct sctp_datamsg *datamsg;
1512 int msg_flags = msg->msg_flags;
1514 SCTP_DEBUG_PRINTK("sctp_sendmsg(sk: %p, msg: %p, msg_len: %zu)\n",
1515 sk, msg, msg_len);
1517 err = 0;
1518 sp = sctp_sk(sk);
1519 ep = sp->ep;
1521 SCTP_DEBUG_PRINTK("Using endpoint: %p.\n", ep);
1523 /* We cannot send a message over a TCP-style listening socket. */
1524 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING)) {
1525 err = -EPIPE;
1526 goto out_nounlock;
1529 /* Parse out the SCTP CMSGs. */
1530 err = sctp_msghdr_parse(msg, &cmsgs);
1532 if (err) {
1533 SCTP_DEBUG_PRINTK("msghdr parse err = %x\n", err);
1534 goto out_nounlock;
1537 /* Fetch the destination address for this packet. This
1538 * address only selects the association--it is not necessarily
1539 * the address we will send to.
1540 * For a peeled-off socket, msg_name is ignored.
1542 if (!sctp_style(sk, UDP_HIGH_BANDWIDTH) && msg->msg_name) {
1543 int msg_namelen = msg->msg_namelen;
1545 err = sctp_verify_addr(sk, (union sctp_addr *)msg->msg_name,
1546 msg_namelen);
1547 if (err)
1548 return err;
1550 if (msg_namelen > sizeof(to))
1551 msg_namelen = sizeof(to);
1552 memcpy(&to, msg->msg_name, msg_namelen);
1553 msg_name = msg->msg_name;
1556 sinfo = cmsgs.info;
1557 sinit = cmsgs.init;
1559 /* Did the user specify SNDRCVINFO? */
1560 if (sinfo) {
1561 sinfo_flags = sinfo->sinfo_flags;
1562 associd = sinfo->sinfo_assoc_id;
1565 SCTP_DEBUG_PRINTK("msg_len: %zu, sinfo_flags: 0x%x\n",
1566 msg_len, sinfo_flags);
1568 /* SCTP_EOF or SCTP_ABORT cannot be set on a TCP-style socket. */
1569 if (sctp_style(sk, TCP) && (sinfo_flags & (SCTP_EOF | SCTP_ABORT))) {
1570 err = -EINVAL;
1571 goto out_nounlock;
1574 /* If SCTP_EOF is set, no data can be sent. Disallow sending zero
1575 * length messages when SCTP_EOF|SCTP_ABORT is not set.
1576 * If SCTP_ABORT is set, the message length could be non zero with
1577 * the msg_iov set to the user abort reason.
1579 if (((sinfo_flags & SCTP_EOF) && (msg_len > 0)) ||
1580 (!(sinfo_flags & (SCTP_EOF|SCTP_ABORT)) && (msg_len == 0))) {
1581 err = -EINVAL;
1582 goto out_nounlock;
1585 /* If SCTP_ADDR_OVER is set, there must be an address
1586 * specified in msg_name.
1588 if ((sinfo_flags & SCTP_ADDR_OVER) && (!msg->msg_name)) {
1589 err = -EINVAL;
1590 goto out_nounlock;
1593 transport = NULL;
1595 SCTP_DEBUG_PRINTK("About to look up association.\n");
1597 sctp_lock_sock(sk);
1599 /* If a msg_name has been specified, assume this is to be used. */
1600 if (msg_name) {
1601 /* Look for a matching association on the endpoint. */
1602 asoc = sctp_endpoint_lookup_assoc(ep, &to, &transport);
1603 if (!asoc) {
1604 /* If we could not find a matching association on the
1605 * endpoint, make sure that it is not a TCP-style
1606 * socket that already has an association or there is
1607 * no peeled-off association on another socket.
1609 if ((sctp_style(sk, TCP) &&
1610 sctp_sstate(sk, ESTABLISHED)) ||
1611 sctp_endpoint_is_peeled_off(ep, &to)) {
1612 err = -EADDRNOTAVAIL;
1613 goto out_unlock;
1616 } else {
1617 asoc = sctp_id2assoc(sk, associd);
1618 if (!asoc) {
1619 err = -EPIPE;
1620 goto out_unlock;
1624 if (asoc) {
1625 SCTP_DEBUG_PRINTK("Just looked up association: %p.\n", asoc);
1627 /* We cannot send a message on a TCP-style SCTP_SS_ESTABLISHED
1628 * socket that has an association in CLOSED state. This can
1629 * happen when an accepted socket has an association that is
1630 * already CLOSED.
1632 if (sctp_state(asoc, CLOSED) && sctp_style(sk, TCP)) {
1633 err = -EPIPE;
1634 goto out_unlock;
1637 if (sinfo_flags & SCTP_EOF) {
1638 SCTP_DEBUG_PRINTK("Shutting down association: %p\n",
1639 asoc);
1640 sctp_primitive_SHUTDOWN(asoc, NULL);
1641 err = 0;
1642 goto out_unlock;
1644 if (sinfo_flags & SCTP_ABORT) {
1646 chunk = sctp_make_abort_user(asoc, msg, msg_len);
1647 if (!chunk) {
1648 err = -ENOMEM;
1649 goto out_unlock;
1652 SCTP_DEBUG_PRINTK("Aborting association: %p\n", asoc);
1653 sctp_primitive_ABORT(asoc, chunk);
1654 err = 0;
1655 goto out_unlock;
1659 /* Do we need to create the association? */
1660 if (!asoc) {
1661 SCTP_DEBUG_PRINTK("There is no association yet.\n");
1663 if (sinfo_flags & (SCTP_EOF | SCTP_ABORT)) {
1664 err = -EINVAL;
1665 goto out_unlock;
1668 /* Check for invalid stream against the stream counts,
1669 * either the default or the user specified stream counts.
1671 if (sinfo) {
1672 if (!sinit || (sinit && !sinit->sinit_num_ostreams)) {
1673 /* Check against the defaults. */
1674 if (sinfo->sinfo_stream >=
1675 sp->initmsg.sinit_num_ostreams) {
1676 err = -EINVAL;
1677 goto out_unlock;
1679 } else {
1680 /* Check against the requested. */
1681 if (sinfo->sinfo_stream >=
1682 sinit->sinit_num_ostreams) {
1683 err = -EINVAL;
1684 goto out_unlock;
1690 * API 3.1.2 bind() - UDP Style Syntax
1691 * If a bind() or sctp_bindx() is not called prior to a
1692 * sendmsg() call that initiates a new association, the
1693 * system picks an ephemeral port and will choose an address
1694 * set equivalent to binding with a wildcard address.
1696 if (!ep->base.bind_addr.port) {
1697 if (sctp_autobind(sk)) {
1698 err = -EAGAIN;
1699 goto out_unlock;
1701 } else {
1703 * If an unprivileged user inherits a one-to-many
1704 * style socket with open associations on a privileged
1705 * port, it MAY be permitted to accept new associations,
1706 * but it SHOULD NOT be permitted to open new
1707 * associations.
1709 if (ep->base.bind_addr.port < PROT_SOCK &&
1710 !capable(CAP_NET_BIND_SERVICE)) {
1711 err = -EACCES;
1712 goto out_unlock;
1716 scope = sctp_scope(&to);
1717 new_asoc = sctp_association_new(ep, sk, scope, GFP_KERNEL);
1718 if (!new_asoc) {
1719 err = -ENOMEM;
1720 goto out_unlock;
1722 asoc = new_asoc;
1723 err = sctp_assoc_set_bind_addr_from_ep(asoc, scope, GFP_KERNEL);
1724 if (err < 0) {
1725 err = -ENOMEM;
1726 goto out_free;
1729 /* If the SCTP_INIT ancillary data is specified, set all
1730 * the association init values accordingly.
1732 if (sinit) {
1733 if (sinit->sinit_num_ostreams) {
1734 asoc->c.sinit_num_ostreams =
1735 sinit->sinit_num_ostreams;
1737 if (sinit->sinit_max_instreams) {
1738 asoc->c.sinit_max_instreams =
1739 sinit->sinit_max_instreams;
1741 if (sinit->sinit_max_attempts) {
1742 asoc->max_init_attempts
1743 = sinit->sinit_max_attempts;
1745 if (sinit->sinit_max_init_timeo) {
1746 asoc->max_init_timeo =
1747 msecs_to_jiffies(sinit->sinit_max_init_timeo);
1751 /* Prime the peer's transport structures. */
1752 transport = sctp_assoc_add_peer(asoc, &to, GFP_KERNEL, SCTP_UNKNOWN);
1753 if (!transport) {
1754 err = -ENOMEM;
1755 goto out_free;
1759 /* ASSERT: we have a valid association at this point. */
1760 SCTP_DEBUG_PRINTK("We have a valid association.\n");
1762 if (!sinfo) {
1763 /* If the user didn't specify SNDRCVINFO, make up one with
1764 * some defaults.
1766 memset(&default_sinfo, 0, sizeof(default_sinfo));
1767 default_sinfo.sinfo_stream = asoc->default_stream;
1768 default_sinfo.sinfo_flags = asoc->default_flags;
1769 default_sinfo.sinfo_ppid = asoc->default_ppid;
1770 default_sinfo.sinfo_context = asoc->default_context;
1771 default_sinfo.sinfo_timetolive = asoc->default_timetolive;
1772 default_sinfo.sinfo_assoc_id = sctp_assoc2id(asoc);
1773 sinfo = &default_sinfo;
1776 /* API 7.1.7, the sndbuf size per association bounds the
1777 * maximum size of data that can be sent in a single send call.
1779 if (msg_len > sk->sk_sndbuf) {
1780 err = -EMSGSIZE;
1781 goto out_free;
1784 if (asoc->pmtu_pending)
1785 sctp_assoc_pending_pmtu(asoc);
1787 /* If fragmentation is disabled and the message length exceeds the
1788 * association fragmentation point, return EMSGSIZE. The I-D
1789 * does not specify what this error is, but this looks like
1790 * a great fit.
1792 if (sctp_sk(sk)->disable_fragments && (msg_len > asoc->frag_point)) {
1793 err = -EMSGSIZE;
1794 goto out_free;
1797 /* Check for invalid stream. */
1798 if (sinfo->sinfo_stream >= asoc->c.sinit_num_ostreams) {
1799 err = -EINVAL;
1800 goto out_free;
1803 timeo = sock_sndtimeo(sk, msg->msg_flags & MSG_DONTWAIT);
1804 if (!sctp_wspace(asoc)) {
1805 err = sctp_wait_for_sndbuf(asoc, &timeo, msg_len);
1806 if (err)
1807 goto out_free;
1810 /* If an address is passed with the sendto/sendmsg call, it is used
1811 * to override the primary destination address in the TCP model, or
1812 * when SCTP_ADDR_OVER flag is set in the UDP model.
1814 if ((sctp_style(sk, TCP) && msg_name) ||
1815 (sinfo_flags & SCTP_ADDR_OVER)) {
1816 chunk_tp = sctp_assoc_lookup_paddr(asoc, &to);
1817 if (!chunk_tp) {
1818 err = -EINVAL;
1819 goto out_free;
1821 } else
1822 chunk_tp = NULL;
1824 /* Auto-connect, if we aren't connected already. */
1825 if (sctp_state(asoc, CLOSED)) {
1826 err = sctp_primitive_ASSOCIATE(asoc, NULL);
1827 if (err < 0)
1828 goto out_free;
1829 SCTP_DEBUG_PRINTK("We associated primitively.\n");
1832 /* Break the message into multiple chunks of maximum size. */
1833 datamsg = sctp_datamsg_from_user(asoc, sinfo, msg, msg_len);
1834 if (!datamsg) {
1835 err = -ENOMEM;
1836 goto out_free;
1839 /* Now send the (possibly) fragmented message. */
1840 list_for_each_entry(chunk, &datamsg->chunks, frag_list) {
1841 sctp_chunk_hold(chunk);
1843 /* Do accounting for the write space. */
1844 sctp_set_owner_w(chunk);
1846 chunk->transport = chunk_tp;
1849 /* Send it to the lower layers. Note: all chunks
1850 * must either fail or succeed. The lower layer
1851 * works that way today. Keep it that way or this
1852 * breaks.
1854 err = sctp_primitive_SEND(asoc, datamsg);
1855 /* Did the lower layer accept the chunk? */
1856 if (err)
1857 sctp_datamsg_free(datamsg);
1858 else
1859 sctp_datamsg_put(datamsg);
1861 SCTP_DEBUG_PRINTK("We sent primitively.\n");
1863 if (err)
1864 goto out_free;
1865 else
1866 err = msg_len;
1868 /* If we are already past ASSOCIATE, the lower
1869 * layers are responsible for association cleanup.
1871 goto out_unlock;
1873 out_free:
1874 if (new_asoc)
1875 sctp_association_free(asoc);
1876 out_unlock:
1877 sctp_release_sock(sk);
1879 out_nounlock:
1880 return sctp_error(sk, msg_flags, err);
1882 #if 0
1883 do_sock_err:
1884 if (msg_len)
1885 err = msg_len;
1886 else
1887 err = sock_error(sk);
1888 goto out;
1890 do_interrupted:
1891 if (msg_len)
1892 err = msg_len;
1893 goto out;
1894 #endif /* 0 */
1897 /* This is an extended version of skb_pull() that removes the data from the
1898 * start of a skb even when data is spread across the list of skb's in the
1899 * frag_list. len specifies the total amount of data that needs to be removed.
1900 * when 'len' bytes could be removed from the skb, it returns 0.
1901 * If 'len' exceeds the total skb length, it returns the no. of bytes that
1902 * could not be removed.
1904 static int sctp_skb_pull(struct sk_buff *skb, int len)
1906 struct sk_buff *list;
1907 int skb_len = skb_headlen(skb);
1908 int rlen;
1910 if (len <= skb_len) {
1911 __skb_pull(skb, len);
1912 return 0;
1914 len -= skb_len;
1915 __skb_pull(skb, skb_len);
1917 skb_walk_frags(skb, list) {
1918 rlen = sctp_skb_pull(list, len);
1919 skb->len -= (len-rlen);
1920 skb->data_len -= (len-rlen);
1922 if (!rlen)
1923 return 0;
1925 len = rlen;
1928 return len;
1931 /* API 3.1.3 recvmsg() - UDP Style Syntax
1933 * ssize_t recvmsg(int socket, struct msghdr *message,
1934 * int flags);
1936 * socket - the socket descriptor of the endpoint.
1937 * message - pointer to the msghdr structure which contains a single
1938 * user message and possibly some ancillary data.
1940 * See Section 5 for complete description of the data
1941 * structures.
1943 * flags - flags sent or received with the user message, see Section
1944 * 5 for complete description of the flags.
1946 static struct sk_buff *sctp_skb_recv_datagram(struct sock *, int, int, int *);
1948 SCTP_STATIC int sctp_recvmsg(struct kiocb *iocb, struct sock *sk,
1949 struct msghdr *msg, size_t len, int noblock,
1950 int flags, int *addr_len)
1952 struct sctp_ulpevent *event = NULL;
1953 struct sctp_sock *sp = sctp_sk(sk);
1954 struct sk_buff *skb;
1955 int copied;
1956 int err = 0;
1957 int skb_len;
1959 SCTP_DEBUG_PRINTK("sctp_recvmsg(%s: %p, %s: %p, %s: %zd, %s: %d, %s: "
1960 "0x%x, %s: %p)\n", "sk", sk, "msghdr", msg,
1961 "len", len, "knoblauch", noblock,
1962 "flags", flags, "addr_len", addr_len);
1964 sctp_lock_sock(sk);
1966 if (sctp_style(sk, TCP) && !sctp_sstate(sk, ESTABLISHED)) {
1967 err = -ENOTCONN;
1968 goto out;
1971 skb = sctp_skb_recv_datagram(sk, flags, noblock, &err);
1972 if (!skb)
1973 goto out;
1975 /* Get the total length of the skb including any skb's in the
1976 * frag_list.
1978 skb_len = skb->len;
1980 copied = skb_len;
1981 if (copied > len)
1982 copied = len;
1984 err = skb_copy_datagram_iovec(skb, 0, msg->msg_iov, copied);
1986 event = sctp_skb2event(skb);
1988 if (err)
1989 goto out_free;
1991 sock_recv_ts_and_drops(msg, sk, skb);
1992 if (sctp_ulpevent_is_notification(event)) {
1993 msg->msg_flags |= MSG_NOTIFICATION;
1994 sp->pf->event_msgname(event, msg->msg_name, addr_len);
1995 } else {
1996 sp->pf->skb_msgname(skb, msg->msg_name, addr_len);
1999 /* Check if we allow SCTP_SNDRCVINFO. */
2000 if (sp->subscribe.sctp_data_io_event)
2001 sctp_ulpevent_read_sndrcvinfo(event, msg);
2002 #if 0
2003 /* FIXME: we should be calling IP/IPv6 layers. */
2004 if (sk->sk_protinfo.af_inet.cmsg_flags)
2005 ip_cmsg_recv(msg, skb);
2006 #endif
2008 err = copied;
2010 /* If skb's length exceeds the user's buffer, update the skb and
2011 * push it back to the receive_queue so that the next call to
2012 * recvmsg() will return the remaining data. Don't set MSG_EOR.
2014 if (skb_len > copied) {
2015 msg->msg_flags &= ~MSG_EOR;
2016 if (flags & MSG_PEEK)
2017 goto out_free;
2018 sctp_skb_pull(skb, copied);
2019 skb_queue_head(&sk->sk_receive_queue, skb);
2021 /* When only partial message is copied to the user, increase
2022 * rwnd by that amount. If all the data in the skb is read,
2023 * rwnd is updated when the event is freed.
2025 if (!sctp_ulpevent_is_notification(event))
2026 sctp_assoc_rwnd_increase(event->asoc, copied);
2027 goto out;
2028 } else if ((event->msg_flags & MSG_NOTIFICATION) ||
2029 (event->msg_flags & MSG_EOR))
2030 msg->msg_flags |= MSG_EOR;
2031 else
2032 msg->msg_flags &= ~MSG_EOR;
2034 out_free:
2035 if (flags & MSG_PEEK) {
2036 /* Release the skb reference acquired after peeking the skb in
2037 * sctp_skb_recv_datagram().
2039 kfree_skb(skb);
2040 } else {
2041 /* Free the event which includes releasing the reference to
2042 * the owner of the skb, freeing the skb and updating the
2043 * rwnd.
2045 sctp_ulpevent_free(event);
2047 out:
2048 sctp_release_sock(sk);
2049 return err;
2052 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
2054 * This option is a on/off flag. If enabled no SCTP message
2055 * fragmentation will be performed. Instead if a message being sent
2056 * exceeds the current PMTU size, the message will NOT be sent and
2057 * instead a error will be indicated to the user.
2059 static int sctp_setsockopt_disable_fragments(struct sock *sk,
2060 char __user *optval,
2061 unsigned int optlen)
2063 int val;
2065 if (optlen < sizeof(int))
2066 return -EINVAL;
2068 if (get_user(val, (int __user *)optval))
2069 return -EFAULT;
2071 sctp_sk(sk)->disable_fragments = (val == 0) ? 0 : 1;
2073 return 0;
2076 static int sctp_setsockopt_events(struct sock *sk, char __user *optval,
2077 unsigned int optlen)
2079 struct sctp_association *asoc;
2080 struct sctp_ulpevent *event;
2082 if (optlen > sizeof(struct sctp_event_subscribe))
2083 return -EINVAL;
2084 if (copy_from_user(&sctp_sk(sk)->subscribe, optval, optlen))
2085 return -EFAULT;
2088 * At the time when a user app subscribes to SCTP_SENDER_DRY_EVENT,
2089 * if there is no data to be sent or retransmit, the stack will
2090 * immediately send up this notification.
2092 if (sctp_ulpevent_type_enabled(SCTP_SENDER_DRY_EVENT,
2093 &sctp_sk(sk)->subscribe)) {
2094 asoc = sctp_id2assoc(sk, 0);
2096 if (asoc && sctp_outq_is_empty(&asoc->outqueue)) {
2097 event = sctp_ulpevent_make_sender_dry_event(asoc,
2098 GFP_ATOMIC);
2099 if (!event)
2100 return -ENOMEM;
2102 sctp_ulpq_tail_event(&asoc->ulpq, event);
2106 return 0;
2109 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
2111 * This socket option is applicable to the UDP-style socket only. When
2112 * set it will cause associations that are idle for more than the
2113 * specified number of seconds to automatically close. An association
2114 * being idle is defined an association that has NOT sent or received
2115 * user data. The special value of '0' indicates that no automatic
2116 * close of any associations should be performed. The option expects an
2117 * integer defining the number of seconds of idle time before an
2118 * association is closed.
2120 static int sctp_setsockopt_autoclose(struct sock *sk, char __user *optval,
2121 unsigned int optlen)
2123 struct sctp_sock *sp = sctp_sk(sk);
2125 /* Applicable to UDP-style socket only */
2126 if (sctp_style(sk, TCP))
2127 return -EOPNOTSUPP;
2128 if (optlen != sizeof(int))
2129 return -EINVAL;
2130 if (copy_from_user(&sp->autoclose, optval, optlen))
2131 return -EFAULT;
2133 return 0;
2136 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
2138 * Applications can enable or disable heartbeats for any peer address of
2139 * an association, modify an address's heartbeat interval, force a
2140 * heartbeat to be sent immediately, and adjust the address's maximum
2141 * number of retransmissions sent before an address is considered
2142 * unreachable. The following structure is used to access and modify an
2143 * address's parameters:
2145 * struct sctp_paddrparams {
2146 * sctp_assoc_t spp_assoc_id;
2147 * struct sockaddr_storage spp_address;
2148 * uint32_t spp_hbinterval;
2149 * uint16_t spp_pathmaxrxt;
2150 * uint32_t spp_pathmtu;
2151 * uint32_t spp_sackdelay;
2152 * uint32_t spp_flags;
2153 * };
2155 * spp_assoc_id - (one-to-many style socket) This is filled in the
2156 * application, and identifies the association for
2157 * this query.
2158 * spp_address - This specifies which address is of interest.
2159 * spp_hbinterval - This contains the value of the heartbeat interval,
2160 * in milliseconds. If a value of zero
2161 * is present in this field then no changes are to
2162 * be made to this parameter.
2163 * spp_pathmaxrxt - This contains the maximum number of
2164 * retransmissions before this address shall be
2165 * considered unreachable. If a value of zero
2166 * is present in this field then no changes are to
2167 * be made to this parameter.
2168 * spp_pathmtu - When Path MTU discovery is disabled the value
2169 * specified here will be the "fixed" path mtu.
2170 * Note that if the spp_address field is empty
2171 * then all associations on this address will
2172 * have this fixed path mtu set upon them.
2174 * spp_sackdelay - When delayed sack is enabled, this value specifies
2175 * the number of milliseconds that sacks will be delayed
2176 * for. This value will apply to all addresses of an
2177 * association if the spp_address field is empty. Note
2178 * also, that if delayed sack is enabled and this
2179 * value is set to 0, no change is made to the last
2180 * recorded delayed sack timer value.
2182 * spp_flags - These flags are used to control various features
2183 * on an association. The flag field may contain
2184 * zero or more of the following options.
2186 * SPP_HB_ENABLE - Enable heartbeats on the
2187 * specified address. Note that if the address
2188 * field is empty all addresses for the association
2189 * have heartbeats enabled upon them.
2191 * SPP_HB_DISABLE - Disable heartbeats on the
2192 * speicifed address. Note that if the address
2193 * field is empty all addresses for the association
2194 * will have their heartbeats disabled. Note also
2195 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
2196 * mutually exclusive, only one of these two should
2197 * be specified. Enabling both fields will have
2198 * undetermined results.
2200 * SPP_HB_DEMAND - Request a user initiated heartbeat
2201 * to be made immediately.
2203 * SPP_HB_TIME_IS_ZERO - Specify's that the time for
2204 * heartbeat delayis to be set to the value of 0
2205 * milliseconds.
2207 * SPP_PMTUD_ENABLE - This field will enable PMTU
2208 * discovery upon the specified address. Note that
2209 * if the address feild is empty then all addresses
2210 * on the association are effected.
2212 * SPP_PMTUD_DISABLE - This field will disable PMTU
2213 * discovery upon the specified address. Note that
2214 * if the address feild is empty then all addresses
2215 * on the association are effected. Not also that
2216 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
2217 * exclusive. Enabling both will have undetermined
2218 * results.
2220 * SPP_SACKDELAY_ENABLE - Setting this flag turns
2221 * on delayed sack. The time specified in spp_sackdelay
2222 * is used to specify the sack delay for this address. Note
2223 * that if spp_address is empty then all addresses will
2224 * enable delayed sack and take on the sack delay
2225 * value specified in spp_sackdelay.
2226 * SPP_SACKDELAY_DISABLE - Setting this flag turns
2227 * off delayed sack. If the spp_address field is blank then
2228 * delayed sack is disabled for the entire association. Note
2229 * also that this field is mutually exclusive to
2230 * SPP_SACKDELAY_ENABLE, setting both will have undefined
2231 * results.
2233 static int sctp_apply_peer_addr_params(struct sctp_paddrparams *params,
2234 struct sctp_transport *trans,
2235 struct sctp_association *asoc,
2236 struct sctp_sock *sp,
2237 int hb_change,
2238 int pmtud_change,
2239 int sackdelay_change)
2241 int error;
2243 if (params->spp_flags & SPP_HB_DEMAND && trans) {
2244 error = sctp_primitive_REQUESTHEARTBEAT (trans->asoc, trans);
2245 if (error)
2246 return error;
2249 /* Note that unless the spp_flag is set to SPP_HB_ENABLE the value of
2250 * this field is ignored. Note also that a value of zero indicates
2251 * the current setting should be left unchanged.
2253 if (params->spp_flags & SPP_HB_ENABLE) {
2255 /* Re-zero the interval if the SPP_HB_TIME_IS_ZERO is
2256 * set. This lets us use 0 value when this flag
2257 * is set.
2259 if (params->spp_flags & SPP_HB_TIME_IS_ZERO)
2260 params->spp_hbinterval = 0;
2262 if (params->spp_hbinterval ||
2263 (params->spp_flags & SPP_HB_TIME_IS_ZERO)) {
2264 if (trans) {
2265 trans->hbinterval =
2266 msecs_to_jiffies(params->spp_hbinterval);
2267 } else if (asoc) {
2268 asoc->hbinterval =
2269 msecs_to_jiffies(params->spp_hbinterval);
2270 } else {
2271 sp->hbinterval = params->spp_hbinterval;
2276 if (hb_change) {
2277 if (trans) {
2278 trans->param_flags =
2279 (trans->param_flags & ~SPP_HB) | hb_change;
2280 } else if (asoc) {
2281 asoc->param_flags =
2282 (asoc->param_flags & ~SPP_HB) | hb_change;
2283 } else {
2284 sp->param_flags =
2285 (sp->param_flags & ~SPP_HB) | hb_change;
2289 /* When Path MTU discovery is disabled the value specified here will
2290 * be the "fixed" path mtu (i.e. the value of the spp_flags field must
2291 * include the flag SPP_PMTUD_DISABLE for this field to have any
2292 * effect).
2294 if ((params->spp_flags & SPP_PMTUD_DISABLE) && params->spp_pathmtu) {
2295 if (trans) {
2296 trans->pathmtu = params->spp_pathmtu;
2297 sctp_assoc_sync_pmtu(asoc);
2298 } else if (asoc) {
2299 asoc->pathmtu = params->spp_pathmtu;
2300 sctp_frag_point(asoc, params->spp_pathmtu);
2301 } else {
2302 sp->pathmtu = params->spp_pathmtu;
2306 if (pmtud_change) {
2307 if (trans) {
2308 int update = (trans->param_flags & SPP_PMTUD_DISABLE) &&
2309 (params->spp_flags & SPP_PMTUD_ENABLE);
2310 trans->param_flags =
2311 (trans->param_flags & ~SPP_PMTUD) | pmtud_change;
2312 if (update) {
2313 sctp_transport_pmtu(trans, sctp_opt2sk(sp));
2314 sctp_assoc_sync_pmtu(asoc);
2316 } else if (asoc) {
2317 asoc->param_flags =
2318 (asoc->param_flags & ~SPP_PMTUD) | pmtud_change;
2319 } else {
2320 sp->param_flags =
2321 (sp->param_flags & ~SPP_PMTUD) | pmtud_change;
2325 /* Note that unless the spp_flag is set to SPP_SACKDELAY_ENABLE the
2326 * value of this field is ignored. Note also that a value of zero
2327 * indicates the current setting should be left unchanged.
2329 if ((params->spp_flags & SPP_SACKDELAY_ENABLE) && params->spp_sackdelay) {
2330 if (trans) {
2331 trans->sackdelay =
2332 msecs_to_jiffies(params->spp_sackdelay);
2333 } else if (asoc) {
2334 asoc->sackdelay =
2335 msecs_to_jiffies(params->spp_sackdelay);
2336 } else {
2337 sp->sackdelay = params->spp_sackdelay;
2341 if (sackdelay_change) {
2342 if (trans) {
2343 trans->param_flags =
2344 (trans->param_flags & ~SPP_SACKDELAY) |
2345 sackdelay_change;
2346 } else if (asoc) {
2347 asoc->param_flags =
2348 (asoc->param_flags & ~SPP_SACKDELAY) |
2349 sackdelay_change;
2350 } else {
2351 sp->param_flags =
2352 (sp->param_flags & ~SPP_SACKDELAY) |
2353 sackdelay_change;
2357 /* Note that a value of zero indicates the current setting should be
2358 left unchanged.
2360 if (params->spp_pathmaxrxt) {
2361 if (trans) {
2362 trans->pathmaxrxt = params->spp_pathmaxrxt;
2363 } else if (asoc) {
2364 asoc->pathmaxrxt = params->spp_pathmaxrxt;
2365 } else {
2366 sp->pathmaxrxt = params->spp_pathmaxrxt;
2370 return 0;
2373 static int sctp_setsockopt_peer_addr_params(struct sock *sk,
2374 char __user *optval,
2375 unsigned int optlen)
2377 struct sctp_paddrparams params;
2378 struct sctp_transport *trans = NULL;
2379 struct sctp_association *asoc = NULL;
2380 struct sctp_sock *sp = sctp_sk(sk);
2381 int error;
2382 int hb_change, pmtud_change, sackdelay_change;
2384 if (optlen != sizeof(struct sctp_paddrparams))
2385 return - EINVAL;
2387 if (copy_from_user(&params, optval, optlen))
2388 return -EFAULT;
2390 /* Validate flags and value parameters. */
2391 hb_change = params.spp_flags & SPP_HB;
2392 pmtud_change = params.spp_flags & SPP_PMTUD;
2393 sackdelay_change = params.spp_flags & SPP_SACKDELAY;
2395 if (hb_change == SPP_HB ||
2396 pmtud_change == SPP_PMTUD ||
2397 sackdelay_change == SPP_SACKDELAY ||
2398 params.spp_sackdelay > 500 ||
2399 (params.spp_pathmtu &&
2400 params.spp_pathmtu < SCTP_DEFAULT_MINSEGMENT))
2401 return -EINVAL;
2403 /* If an address other than INADDR_ANY is specified, and
2404 * no transport is found, then the request is invalid.
2406 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
2407 trans = sctp_addr_id2transport(sk, &params.spp_address,
2408 params.spp_assoc_id);
2409 if (!trans)
2410 return -EINVAL;
2413 /* Get association, if assoc_id != 0 and the socket is a one
2414 * to many style socket, and an association was not found, then
2415 * the id was invalid.
2417 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
2418 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP))
2419 return -EINVAL;
2421 /* Heartbeat demand can only be sent on a transport or
2422 * association, but not a socket.
2424 if (params.spp_flags & SPP_HB_DEMAND && !trans && !asoc)
2425 return -EINVAL;
2427 /* Process parameters. */
2428 error = sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2429 hb_change, pmtud_change,
2430 sackdelay_change);
2432 if (error)
2433 return error;
2435 /* If changes are for association, also apply parameters to each
2436 * transport.
2438 if (!trans && asoc) {
2439 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2440 transports) {
2441 sctp_apply_peer_addr_params(&params, trans, asoc, sp,
2442 hb_change, pmtud_change,
2443 sackdelay_change);
2447 return 0;
2451 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
2453 * This option will effect the way delayed acks are performed. This
2454 * option allows you to get or set the delayed ack time, in
2455 * milliseconds. It also allows changing the delayed ack frequency.
2456 * Changing the frequency to 1 disables the delayed sack algorithm. If
2457 * the assoc_id is 0, then this sets or gets the endpoints default
2458 * values. If the assoc_id field is non-zero, then the set or get
2459 * effects the specified association for the one to many model (the
2460 * assoc_id field is ignored by the one to one model). Note that if
2461 * sack_delay or sack_freq are 0 when setting this option, then the
2462 * current values will remain unchanged.
2464 * struct sctp_sack_info {
2465 * sctp_assoc_t sack_assoc_id;
2466 * uint32_t sack_delay;
2467 * uint32_t sack_freq;
2468 * };
2470 * sack_assoc_id - This parameter, indicates which association the user
2471 * is performing an action upon. Note that if this field's value is
2472 * zero then the endpoints default value is changed (effecting future
2473 * associations only).
2475 * sack_delay - This parameter contains the number of milliseconds that
2476 * the user is requesting the delayed ACK timer be set to. Note that
2477 * this value is defined in the standard to be between 200 and 500
2478 * milliseconds.
2480 * sack_freq - This parameter contains the number of packets that must
2481 * be received before a sack is sent without waiting for the delay
2482 * timer to expire. The default value for this is 2, setting this
2483 * value to 1 will disable the delayed sack algorithm.
2486 static int sctp_setsockopt_delayed_ack(struct sock *sk,
2487 char __user *optval, unsigned int optlen)
2489 struct sctp_sack_info params;
2490 struct sctp_transport *trans = NULL;
2491 struct sctp_association *asoc = NULL;
2492 struct sctp_sock *sp = sctp_sk(sk);
2494 if (optlen == sizeof(struct sctp_sack_info)) {
2495 if (copy_from_user(&params, optval, optlen))
2496 return -EFAULT;
2498 if (params.sack_delay == 0 && params.sack_freq == 0)
2499 return 0;
2500 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2501 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
2502 pr_warn("Use struct sctp_sack_info instead\n");
2503 if (copy_from_user(&params, optval, optlen))
2504 return -EFAULT;
2506 if (params.sack_delay == 0)
2507 params.sack_freq = 1;
2508 else
2509 params.sack_freq = 0;
2510 } else
2511 return - EINVAL;
2513 /* Validate value parameter. */
2514 if (params.sack_delay > 500)
2515 return -EINVAL;
2517 /* Get association, if sack_assoc_id != 0 and the socket is a one
2518 * to many style socket, and an association was not found, then
2519 * the id was invalid.
2521 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
2522 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
2523 return -EINVAL;
2525 if (params.sack_delay) {
2526 if (asoc) {
2527 asoc->sackdelay =
2528 msecs_to_jiffies(params.sack_delay);
2529 asoc->param_flags =
2530 (asoc->param_flags & ~SPP_SACKDELAY) |
2531 SPP_SACKDELAY_ENABLE;
2532 } else {
2533 sp->sackdelay = params.sack_delay;
2534 sp->param_flags =
2535 (sp->param_flags & ~SPP_SACKDELAY) |
2536 SPP_SACKDELAY_ENABLE;
2540 if (params.sack_freq == 1) {
2541 if (asoc) {
2542 asoc->param_flags =
2543 (asoc->param_flags & ~SPP_SACKDELAY) |
2544 SPP_SACKDELAY_DISABLE;
2545 } else {
2546 sp->param_flags =
2547 (sp->param_flags & ~SPP_SACKDELAY) |
2548 SPP_SACKDELAY_DISABLE;
2550 } else if (params.sack_freq > 1) {
2551 if (asoc) {
2552 asoc->sackfreq = params.sack_freq;
2553 asoc->param_flags =
2554 (asoc->param_flags & ~SPP_SACKDELAY) |
2555 SPP_SACKDELAY_ENABLE;
2556 } else {
2557 sp->sackfreq = params.sack_freq;
2558 sp->param_flags =
2559 (sp->param_flags & ~SPP_SACKDELAY) |
2560 SPP_SACKDELAY_ENABLE;
2564 /* If change is for association, also apply to each transport. */
2565 if (asoc) {
2566 list_for_each_entry(trans, &asoc->peer.transport_addr_list,
2567 transports) {
2568 if (params.sack_delay) {
2569 trans->sackdelay =
2570 msecs_to_jiffies(params.sack_delay);
2571 trans->param_flags =
2572 (trans->param_flags & ~SPP_SACKDELAY) |
2573 SPP_SACKDELAY_ENABLE;
2575 if (params.sack_freq == 1) {
2576 trans->param_flags =
2577 (trans->param_flags & ~SPP_SACKDELAY) |
2578 SPP_SACKDELAY_DISABLE;
2579 } else if (params.sack_freq > 1) {
2580 trans->sackfreq = params.sack_freq;
2581 trans->param_flags =
2582 (trans->param_flags & ~SPP_SACKDELAY) |
2583 SPP_SACKDELAY_ENABLE;
2588 return 0;
2591 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
2593 * Applications can specify protocol parameters for the default association
2594 * initialization. The option name argument to setsockopt() and getsockopt()
2595 * is SCTP_INITMSG.
2597 * Setting initialization parameters is effective only on an unconnected
2598 * socket (for UDP-style sockets only future associations are effected
2599 * by the change). With TCP-style sockets, this option is inherited by
2600 * sockets derived from a listener socket.
2602 static int sctp_setsockopt_initmsg(struct sock *sk, char __user *optval, unsigned int optlen)
2604 struct sctp_initmsg sinit;
2605 struct sctp_sock *sp = sctp_sk(sk);
2607 if (optlen != sizeof(struct sctp_initmsg))
2608 return -EINVAL;
2609 if (copy_from_user(&sinit, optval, optlen))
2610 return -EFAULT;
2612 if (sinit.sinit_num_ostreams)
2613 sp->initmsg.sinit_num_ostreams = sinit.sinit_num_ostreams;
2614 if (sinit.sinit_max_instreams)
2615 sp->initmsg.sinit_max_instreams = sinit.sinit_max_instreams;
2616 if (sinit.sinit_max_attempts)
2617 sp->initmsg.sinit_max_attempts = sinit.sinit_max_attempts;
2618 if (sinit.sinit_max_init_timeo)
2619 sp->initmsg.sinit_max_init_timeo = sinit.sinit_max_init_timeo;
2621 return 0;
2625 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
2627 * Applications that wish to use the sendto() system call may wish to
2628 * specify a default set of parameters that would normally be supplied
2629 * through the inclusion of ancillary data. This socket option allows
2630 * such an application to set the default sctp_sndrcvinfo structure.
2631 * The application that wishes to use this socket option simply passes
2632 * in to this call the sctp_sndrcvinfo structure defined in Section
2633 * 5.2.2) The input parameters accepted by this call include
2634 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
2635 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
2636 * to this call if the caller is using the UDP model.
2638 static int sctp_setsockopt_default_send_param(struct sock *sk,
2639 char __user *optval,
2640 unsigned int optlen)
2642 struct sctp_sndrcvinfo info;
2643 struct sctp_association *asoc;
2644 struct sctp_sock *sp = sctp_sk(sk);
2646 if (optlen != sizeof(struct sctp_sndrcvinfo))
2647 return -EINVAL;
2648 if (copy_from_user(&info, optval, optlen))
2649 return -EFAULT;
2651 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
2652 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
2653 return -EINVAL;
2655 if (asoc) {
2656 asoc->default_stream = info.sinfo_stream;
2657 asoc->default_flags = info.sinfo_flags;
2658 asoc->default_ppid = info.sinfo_ppid;
2659 asoc->default_context = info.sinfo_context;
2660 asoc->default_timetolive = info.sinfo_timetolive;
2661 } else {
2662 sp->default_stream = info.sinfo_stream;
2663 sp->default_flags = info.sinfo_flags;
2664 sp->default_ppid = info.sinfo_ppid;
2665 sp->default_context = info.sinfo_context;
2666 sp->default_timetolive = info.sinfo_timetolive;
2669 return 0;
2672 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
2674 * Requests that the local SCTP stack use the enclosed peer address as
2675 * the association primary. The enclosed address must be one of the
2676 * association peer's addresses.
2678 static int sctp_setsockopt_primary_addr(struct sock *sk, char __user *optval,
2679 unsigned int optlen)
2681 struct sctp_prim prim;
2682 struct sctp_transport *trans;
2684 if (optlen != sizeof(struct sctp_prim))
2685 return -EINVAL;
2687 if (copy_from_user(&prim, optval, sizeof(struct sctp_prim)))
2688 return -EFAULT;
2690 trans = sctp_addr_id2transport(sk, &prim.ssp_addr, prim.ssp_assoc_id);
2691 if (!trans)
2692 return -EINVAL;
2694 sctp_assoc_set_primary(trans->asoc, trans);
2696 return 0;
2700 * 7.1.5 SCTP_NODELAY
2702 * Turn on/off any Nagle-like algorithm. This means that packets are
2703 * generally sent as soon as possible and no unnecessary delays are
2704 * introduced, at the cost of more packets in the network. Expects an
2705 * integer boolean flag.
2707 static int sctp_setsockopt_nodelay(struct sock *sk, char __user *optval,
2708 unsigned int optlen)
2710 int val;
2712 if (optlen < sizeof(int))
2713 return -EINVAL;
2714 if (get_user(val, (int __user *)optval))
2715 return -EFAULT;
2717 sctp_sk(sk)->nodelay = (val == 0) ? 0 : 1;
2718 return 0;
2723 * 7.1.1 SCTP_RTOINFO
2725 * The protocol parameters used to initialize and bound retransmission
2726 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
2727 * and modify these parameters.
2728 * All parameters are time values, in milliseconds. A value of 0, when
2729 * modifying the parameters, indicates that the current value should not
2730 * be changed.
2733 static int sctp_setsockopt_rtoinfo(struct sock *sk, char __user *optval, unsigned int optlen)
2735 struct sctp_rtoinfo rtoinfo;
2736 struct sctp_association *asoc;
2738 if (optlen != sizeof (struct sctp_rtoinfo))
2739 return -EINVAL;
2741 if (copy_from_user(&rtoinfo, optval, optlen))
2742 return -EFAULT;
2744 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
2746 /* Set the values to the specific association */
2747 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
2748 return -EINVAL;
2750 if (asoc) {
2751 if (rtoinfo.srto_initial != 0)
2752 asoc->rto_initial =
2753 msecs_to_jiffies(rtoinfo.srto_initial);
2754 if (rtoinfo.srto_max != 0)
2755 asoc->rto_max = msecs_to_jiffies(rtoinfo.srto_max);
2756 if (rtoinfo.srto_min != 0)
2757 asoc->rto_min = msecs_to_jiffies(rtoinfo.srto_min);
2758 } else {
2759 /* If there is no association or the association-id = 0
2760 * set the values to the endpoint.
2762 struct sctp_sock *sp = sctp_sk(sk);
2764 if (rtoinfo.srto_initial != 0)
2765 sp->rtoinfo.srto_initial = rtoinfo.srto_initial;
2766 if (rtoinfo.srto_max != 0)
2767 sp->rtoinfo.srto_max = rtoinfo.srto_max;
2768 if (rtoinfo.srto_min != 0)
2769 sp->rtoinfo.srto_min = rtoinfo.srto_min;
2772 return 0;
2777 * 7.1.2 SCTP_ASSOCINFO
2779 * This option is used to tune the maximum retransmission attempts
2780 * of the association.
2781 * Returns an error if the new association retransmission value is
2782 * greater than the sum of the retransmission value of the peer.
2783 * See [SCTP] for more information.
2786 static int sctp_setsockopt_associnfo(struct sock *sk, char __user *optval, unsigned int optlen)
2789 struct sctp_assocparams assocparams;
2790 struct sctp_association *asoc;
2792 if (optlen != sizeof(struct sctp_assocparams))
2793 return -EINVAL;
2794 if (copy_from_user(&assocparams, optval, optlen))
2795 return -EFAULT;
2797 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
2799 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
2800 return -EINVAL;
2802 /* Set the values to the specific association */
2803 if (asoc) {
2804 if (assocparams.sasoc_asocmaxrxt != 0) {
2805 __u32 path_sum = 0;
2806 int paths = 0;
2807 struct sctp_transport *peer_addr;
2809 list_for_each_entry(peer_addr, &asoc->peer.transport_addr_list,
2810 transports) {
2811 path_sum += peer_addr->pathmaxrxt;
2812 paths++;
2815 /* Only validate asocmaxrxt if we have more than
2816 * one path/transport. We do this because path
2817 * retransmissions are only counted when we have more
2818 * then one path.
2820 if (paths > 1 &&
2821 assocparams.sasoc_asocmaxrxt > path_sum)
2822 return -EINVAL;
2824 asoc->max_retrans = assocparams.sasoc_asocmaxrxt;
2827 if (assocparams.sasoc_cookie_life != 0) {
2828 asoc->cookie_life.tv_sec =
2829 assocparams.sasoc_cookie_life / 1000;
2830 asoc->cookie_life.tv_usec =
2831 (assocparams.sasoc_cookie_life % 1000)
2832 * 1000;
2834 } else {
2835 /* Set the values to the endpoint */
2836 struct sctp_sock *sp = sctp_sk(sk);
2838 if (assocparams.sasoc_asocmaxrxt != 0)
2839 sp->assocparams.sasoc_asocmaxrxt =
2840 assocparams.sasoc_asocmaxrxt;
2841 if (assocparams.sasoc_cookie_life != 0)
2842 sp->assocparams.sasoc_cookie_life =
2843 assocparams.sasoc_cookie_life;
2845 return 0;
2849 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
2851 * This socket option is a boolean flag which turns on or off mapped V4
2852 * addresses. If this option is turned on and the socket is type
2853 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
2854 * If this option is turned off, then no mapping will be done of V4
2855 * addresses and a user will receive both PF_INET6 and PF_INET type
2856 * addresses on the socket.
2858 static int sctp_setsockopt_mappedv4(struct sock *sk, char __user *optval, unsigned int optlen)
2860 int val;
2861 struct sctp_sock *sp = sctp_sk(sk);
2863 if (optlen < sizeof(int))
2864 return -EINVAL;
2865 if (get_user(val, (int __user *)optval))
2866 return -EFAULT;
2867 if (val)
2868 sp->v4mapped = 1;
2869 else
2870 sp->v4mapped = 0;
2872 return 0;
2876 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
2877 * This option will get or set the maximum size to put in any outgoing
2878 * SCTP DATA chunk. If a message is larger than this size it will be
2879 * fragmented by SCTP into the specified size. Note that the underlying
2880 * SCTP implementation may fragment into smaller sized chunks when the
2881 * PMTU of the underlying association is smaller than the value set by
2882 * the user. The default value for this option is '0' which indicates
2883 * the user is NOT limiting fragmentation and only the PMTU will effect
2884 * SCTP's choice of DATA chunk size. Note also that values set larger
2885 * than the maximum size of an IP datagram will effectively let SCTP
2886 * control fragmentation (i.e. the same as setting this option to 0).
2888 * The following structure is used to access and modify this parameter:
2890 * struct sctp_assoc_value {
2891 * sctp_assoc_t assoc_id;
2892 * uint32_t assoc_value;
2893 * };
2895 * assoc_id: This parameter is ignored for one-to-one style sockets.
2896 * For one-to-many style sockets this parameter indicates which
2897 * association the user is performing an action upon. Note that if
2898 * this field's value is zero then the endpoints default value is
2899 * changed (effecting future associations only).
2900 * assoc_value: This parameter specifies the maximum size in bytes.
2902 static int sctp_setsockopt_maxseg(struct sock *sk, char __user *optval, unsigned int optlen)
2904 struct sctp_assoc_value params;
2905 struct sctp_association *asoc;
2906 struct sctp_sock *sp = sctp_sk(sk);
2907 int val;
2909 if (optlen == sizeof(int)) {
2910 pr_warn("Use of int in maxseg socket option deprecated\n");
2911 pr_warn("Use struct sctp_assoc_value instead\n");
2912 if (copy_from_user(&val, optval, optlen))
2913 return -EFAULT;
2914 params.assoc_id = 0;
2915 } else if (optlen == sizeof(struct sctp_assoc_value)) {
2916 if (copy_from_user(&params, optval, optlen))
2917 return -EFAULT;
2918 val = params.assoc_value;
2919 } else
2920 return -EINVAL;
2922 if ((val != 0) && ((val < 8) || (val > SCTP_MAX_CHUNK_LEN)))
2923 return -EINVAL;
2925 asoc = sctp_id2assoc(sk, params.assoc_id);
2926 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
2927 return -EINVAL;
2929 if (asoc) {
2930 if (val == 0) {
2931 val = asoc->pathmtu;
2932 val -= sp->pf->af->net_header_len;
2933 val -= sizeof(struct sctphdr) +
2934 sizeof(struct sctp_data_chunk);
2936 asoc->user_frag = val;
2937 asoc->frag_point = sctp_frag_point(asoc, asoc->pathmtu);
2938 } else {
2939 sp->user_frag = val;
2942 return 0;
2947 * 7.1.9 Set Peer Primary Address (SCTP_SET_PEER_PRIMARY_ADDR)
2949 * Requests that the peer mark the enclosed address as the association
2950 * primary. The enclosed address must be one of the association's
2951 * locally bound addresses. The following structure is used to make a
2952 * set primary request:
2954 static int sctp_setsockopt_peer_primary_addr(struct sock *sk, char __user *optval,
2955 unsigned int optlen)
2957 struct sctp_sock *sp;
2958 struct sctp_association *asoc = NULL;
2959 struct sctp_setpeerprim prim;
2960 struct sctp_chunk *chunk;
2961 struct sctp_af *af;
2962 int err;
2964 sp = sctp_sk(sk);
2966 if (!sctp_addip_enable)
2967 return -EPERM;
2969 if (optlen != sizeof(struct sctp_setpeerprim))
2970 return -EINVAL;
2972 if (copy_from_user(&prim, optval, optlen))
2973 return -EFAULT;
2975 asoc = sctp_id2assoc(sk, prim.sspp_assoc_id);
2976 if (!asoc)
2977 return -EINVAL;
2979 if (!asoc->peer.asconf_capable)
2980 return -EPERM;
2982 if (asoc->peer.addip_disabled_mask & SCTP_PARAM_SET_PRIMARY)
2983 return -EPERM;
2985 if (!sctp_state(asoc, ESTABLISHED))
2986 return -ENOTCONN;
2988 af = sctp_get_af_specific(prim.sspp_addr.ss_family);
2989 if (!af)
2990 return -EINVAL;
2992 if (!af->addr_valid((union sctp_addr *)&prim.sspp_addr, sp, NULL))
2993 return -EADDRNOTAVAIL;
2995 if (!sctp_assoc_lookup_laddr(asoc, (union sctp_addr *)&prim.sspp_addr))
2996 return -EADDRNOTAVAIL;
2998 /* Create an ASCONF chunk with SET_PRIMARY parameter */
2999 chunk = sctp_make_asconf_set_prim(asoc,
3000 (union sctp_addr *)&prim.sspp_addr);
3001 if (!chunk)
3002 return -ENOMEM;
3004 err = sctp_send_asconf(asoc, chunk);
3006 SCTP_DEBUG_PRINTK("We set peer primary addr primitively.\n");
3008 return err;
3011 static int sctp_setsockopt_adaptation_layer(struct sock *sk, char __user *optval,
3012 unsigned int optlen)
3014 struct sctp_setadaptation adaptation;
3016 if (optlen != sizeof(struct sctp_setadaptation))
3017 return -EINVAL;
3018 if (copy_from_user(&adaptation, optval, optlen))
3019 return -EFAULT;
3021 sctp_sk(sk)->adaptation_ind = adaptation.ssb_adaptation_ind;
3023 return 0;
3027 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
3029 * The context field in the sctp_sndrcvinfo structure is normally only
3030 * used when a failed message is retrieved holding the value that was
3031 * sent down on the actual send call. This option allows the setting of
3032 * a default context on an association basis that will be received on
3033 * reading messages from the peer. This is especially helpful in the
3034 * one-2-many model for an application to keep some reference to an
3035 * internal state machine that is processing messages on the
3036 * association. Note that the setting of this value only effects
3037 * received messages from the peer and does not effect the value that is
3038 * saved with outbound messages.
3040 static int sctp_setsockopt_context(struct sock *sk, char __user *optval,
3041 unsigned int optlen)
3043 struct sctp_assoc_value params;
3044 struct sctp_sock *sp;
3045 struct sctp_association *asoc;
3047 if (optlen != sizeof(struct sctp_assoc_value))
3048 return -EINVAL;
3049 if (copy_from_user(&params, optval, optlen))
3050 return -EFAULT;
3052 sp = sctp_sk(sk);
3054 if (params.assoc_id != 0) {
3055 asoc = sctp_id2assoc(sk, params.assoc_id);
3056 if (!asoc)
3057 return -EINVAL;
3058 asoc->default_rcv_context = params.assoc_value;
3059 } else {
3060 sp->default_rcv_context = params.assoc_value;
3063 return 0;
3067 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
3069 * This options will at a minimum specify if the implementation is doing
3070 * fragmented interleave. Fragmented interleave, for a one to many
3071 * socket, is when subsequent calls to receive a message may return
3072 * parts of messages from different associations. Some implementations
3073 * may allow you to turn this value on or off. If so, when turned off,
3074 * no fragment interleave will occur (which will cause a head of line
3075 * blocking amongst multiple associations sharing the same one to many
3076 * socket). When this option is turned on, then each receive call may
3077 * come from a different association (thus the user must receive data
3078 * with the extended calls (e.g. sctp_recvmsg) to keep track of which
3079 * association each receive belongs to.
3081 * This option takes a boolean value. A non-zero value indicates that
3082 * fragmented interleave is on. A value of zero indicates that
3083 * fragmented interleave is off.
3085 * Note that it is important that an implementation that allows this
3086 * option to be turned on, have it off by default. Otherwise an unaware
3087 * application using the one to many model may become confused and act
3088 * incorrectly.
3090 static int sctp_setsockopt_fragment_interleave(struct sock *sk,
3091 char __user *optval,
3092 unsigned int optlen)
3094 int val;
3096 if (optlen != sizeof(int))
3097 return -EINVAL;
3098 if (get_user(val, (int __user *)optval))
3099 return -EFAULT;
3101 sctp_sk(sk)->frag_interleave = (val == 0) ? 0 : 1;
3103 return 0;
3107 * 8.1.21. Set or Get the SCTP Partial Delivery Point
3108 * (SCTP_PARTIAL_DELIVERY_POINT)
3110 * This option will set or get the SCTP partial delivery point. This
3111 * point is the size of a message where the partial delivery API will be
3112 * invoked to help free up rwnd space for the peer. Setting this to a
3113 * lower value will cause partial deliveries to happen more often. The
3114 * calls argument is an integer that sets or gets the partial delivery
3115 * point. Note also that the call will fail if the user attempts to set
3116 * this value larger than the socket receive buffer size.
3118 * Note that any single message having a length smaller than or equal to
3119 * the SCTP partial delivery point will be delivered in one single read
3120 * call as long as the user provided buffer is large enough to hold the
3121 * message.
3123 static int sctp_setsockopt_partial_delivery_point(struct sock *sk,
3124 char __user *optval,
3125 unsigned int optlen)
3127 u32 val;
3129 if (optlen != sizeof(u32))
3130 return -EINVAL;
3131 if (get_user(val, (int __user *)optval))
3132 return -EFAULT;
3134 /* Note: We double the receive buffer from what the user sets
3135 * it to be, also initial rwnd is based on rcvbuf/2.
3137 if (val > (sk->sk_rcvbuf >> 1))
3138 return -EINVAL;
3140 sctp_sk(sk)->pd_point = val;
3142 return 0; /* is this the right error code? */
3146 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
3148 * This option will allow a user to change the maximum burst of packets
3149 * that can be emitted by this association. Note that the default value
3150 * is 4, and some implementations may restrict this setting so that it
3151 * can only be lowered.
3153 * NOTE: This text doesn't seem right. Do this on a socket basis with
3154 * future associations inheriting the socket value.
3156 static int sctp_setsockopt_maxburst(struct sock *sk,
3157 char __user *optval,
3158 unsigned int optlen)
3160 struct sctp_assoc_value params;
3161 struct sctp_sock *sp;
3162 struct sctp_association *asoc;
3163 int val;
3164 int assoc_id = 0;
3166 if (optlen == sizeof(int)) {
3167 pr_warn("Use of int in max_burst socket option deprecated\n");
3168 pr_warn("Use struct sctp_assoc_value instead\n");
3169 if (copy_from_user(&val, optval, optlen))
3170 return -EFAULT;
3171 } else if (optlen == sizeof(struct sctp_assoc_value)) {
3172 if (copy_from_user(&params, optval, optlen))
3173 return -EFAULT;
3174 val = params.assoc_value;
3175 assoc_id = params.assoc_id;
3176 } else
3177 return -EINVAL;
3179 sp = sctp_sk(sk);
3181 if (assoc_id != 0) {
3182 asoc = sctp_id2assoc(sk, assoc_id);
3183 if (!asoc)
3184 return -EINVAL;
3185 asoc->max_burst = val;
3186 } else
3187 sp->max_burst = val;
3189 return 0;
3193 * 7.1.18. Add a chunk that must be authenticated (SCTP_AUTH_CHUNK)
3195 * This set option adds a chunk type that the user is requesting to be
3196 * received only in an authenticated way. Changes to the list of chunks
3197 * will only effect future associations on the socket.
3199 static int sctp_setsockopt_auth_chunk(struct sock *sk,
3200 char __user *optval,
3201 unsigned int optlen)
3203 struct sctp_authchunk val;
3205 if (!sctp_auth_enable)
3206 return -EACCES;
3208 if (optlen != sizeof(struct sctp_authchunk))
3209 return -EINVAL;
3210 if (copy_from_user(&val, optval, optlen))
3211 return -EFAULT;
3213 switch (val.sauth_chunk) {
3214 case SCTP_CID_INIT:
3215 case SCTP_CID_INIT_ACK:
3216 case SCTP_CID_SHUTDOWN_COMPLETE:
3217 case SCTP_CID_AUTH:
3218 return -EINVAL;
3221 /* add this chunk id to the endpoint */
3222 return sctp_auth_ep_add_chunkid(sctp_sk(sk)->ep, val.sauth_chunk);
3226 * 7.1.19. Get or set the list of supported HMAC Identifiers (SCTP_HMAC_IDENT)
3228 * This option gets or sets the list of HMAC algorithms that the local
3229 * endpoint requires the peer to use.
3231 static int sctp_setsockopt_hmac_ident(struct sock *sk,
3232 char __user *optval,
3233 unsigned int optlen)
3235 struct sctp_hmacalgo *hmacs;
3236 u32 idents;
3237 int err;
3239 if (!sctp_auth_enable)
3240 return -EACCES;
3242 if (optlen < sizeof(struct sctp_hmacalgo))
3243 return -EINVAL;
3245 hmacs= memdup_user(optval, optlen);
3246 if (IS_ERR(hmacs))
3247 return PTR_ERR(hmacs);
3249 idents = hmacs->shmac_num_idents;
3250 if (idents == 0 || idents > SCTP_AUTH_NUM_HMACS ||
3251 (idents * sizeof(u16)) > (optlen - sizeof(struct sctp_hmacalgo))) {
3252 err = -EINVAL;
3253 goto out;
3256 err = sctp_auth_ep_set_hmacs(sctp_sk(sk)->ep, hmacs);
3257 out:
3258 kfree(hmacs);
3259 return err;
3263 * 7.1.20. Set a shared key (SCTP_AUTH_KEY)
3265 * This option will set a shared secret key which is used to build an
3266 * association shared key.
3268 static int sctp_setsockopt_auth_key(struct sock *sk,
3269 char __user *optval,
3270 unsigned int optlen)
3272 struct sctp_authkey *authkey;
3273 struct sctp_association *asoc;
3274 int ret;
3276 if (!sctp_auth_enable)
3277 return -EACCES;
3279 if (optlen <= sizeof(struct sctp_authkey))
3280 return -EINVAL;
3282 authkey= memdup_user(optval, optlen);
3283 if (IS_ERR(authkey))
3284 return PTR_ERR(authkey);
3286 if (authkey->sca_keylength > optlen - sizeof(struct sctp_authkey)) {
3287 ret = -EINVAL;
3288 goto out;
3291 asoc = sctp_id2assoc(sk, authkey->sca_assoc_id);
3292 if (!asoc && authkey->sca_assoc_id && sctp_style(sk, UDP)) {
3293 ret = -EINVAL;
3294 goto out;
3297 ret = sctp_auth_set_key(sctp_sk(sk)->ep, asoc, authkey);
3298 out:
3299 kfree(authkey);
3300 return ret;
3304 * 7.1.21. Get or set the active shared key (SCTP_AUTH_ACTIVE_KEY)
3306 * This option will get or set the active shared key to be used to build
3307 * the association shared key.
3309 static int sctp_setsockopt_active_key(struct sock *sk,
3310 char __user *optval,
3311 unsigned int optlen)
3313 struct sctp_authkeyid val;
3314 struct sctp_association *asoc;
3316 if (!sctp_auth_enable)
3317 return -EACCES;
3319 if (optlen != sizeof(struct sctp_authkeyid))
3320 return -EINVAL;
3321 if (copy_from_user(&val, optval, optlen))
3322 return -EFAULT;
3324 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3325 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3326 return -EINVAL;
3328 return sctp_auth_set_active_key(sctp_sk(sk)->ep, asoc,
3329 val.scact_keynumber);
3333 * 7.1.22. Delete a shared key (SCTP_AUTH_DELETE_KEY)
3335 * This set option will delete a shared secret key from use.
3337 static int sctp_setsockopt_del_key(struct sock *sk,
3338 char __user *optval,
3339 unsigned int optlen)
3341 struct sctp_authkeyid val;
3342 struct sctp_association *asoc;
3344 if (!sctp_auth_enable)
3345 return -EACCES;
3347 if (optlen != sizeof(struct sctp_authkeyid))
3348 return -EINVAL;
3349 if (copy_from_user(&val, optval, optlen))
3350 return -EFAULT;
3352 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
3353 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
3354 return -EINVAL;
3356 return sctp_auth_del_key_id(sctp_sk(sk)->ep, asoc,
3357 val.scact_keynumber);
3362 /* API 6.2 setsockopt(), getsockopt()
3364 * Applications use setsockopt() and getsockopt() to set or retrieve
3365 * socket options. Socket options are used to change the default
3366 * behavior of sockets calls. They are described in Section 7.
3368 * The syntax is:
3370 * ret = getsockopt(int sd, int level, int optname, void __user *optval,
3371 * int __user *optlen);
3372 * ret = setsockopt(int sd, int level, int optname, const void __user *optval,
3373 * int optlen);
3375 * sd - the socket descript.
3376 * level - set to IPPROTO_SCTP for all SCTP options.
3377 * optname - the option name.
3378 * optval - the buffer to store the value of the option.
3379 * optlen - the size of the buffer.
3381 SCTP_STATIC int sctp_setsockopt(struct sock *sk, int level, int optname,
3382 char __user *optval, unsigned int optlen)
3384 int retval = 0;
3386 SCTP_DEBUG_PRINTK("sctp_setsockopt(sk: %p... optname: %d)\n",
3387 sk, optname);
3389 /* I can hardly begin to describe how wrong this is. This is
3390 * so broken as to be worse than useless. The API draft
3391 * REALLY is NOT helpful here... I am not convinced that the
3392 * semantics of setsockopt() with a level OTHER THAN SOL_SCTP
3393 * are at all well-founded.
3395 if (level != SOL_SCTP) {
3396 struct sctp_af *af = sctp_sk(sk)->pf->af;
3397 retval = af->setsockopt(sk, level, optname, optval, optlen);
3398 goto out_nounlock;
3401 sctp_lock_sock(sk);
3403 switch (optname) {
3404 case SCTP_SOCKOPT_BINDX_ADD:
3405 /* 'optlen' is the size of the addresses buffer. */
3406 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3407 optlen, SCTP_BINDX_ADD_ADDR);
3408 break;
3410 case SCTP_SOCKOPT_BINDX_REM:
3411 /* 'optlen' is the size of the addresses buffer. */
3412 retval = sctp_setsockopt_bindx(sk, (struct sockaddr __user *)optval,
3413 optlen, SCTP_BINDX_REM_ADDR);
3414 break;
3416 case SCTP_SOCKOPT_CONNECTX_OLD:
3417 /* 'optlen' is the size of the addresses buffer. */
3418 retval = sctp_setsockopt_connectx_old(sk,
3419 (struct sockaddr __user *)optval,
3420 optlen);
3421 break;
3423 case SCTP_SOCKOPT_CONNECTX:
3424 /* 'optlen' is the size of the addresses buffer. */
3425 retval = sctp_setsockopt_connectx(sk,
3426 (struct sockaddr __user *)optval,
3427 optlen);
3428 break;
3430 case SCTP_DISABLE_FRAGMENTS:
3431 retval = sctp_setsockopt_disable_fragments(sk, optval, optlen);
3432 break;
3434 case SCTP_EVENTS:
3435 retval = sctp_setsockopt_events(sk, optval, optlen);
3436 break;
3438 case SCTP_AUTOCLOSE:
3439 retval = sctp_setsockopt_autoclose(sk, optval, optlen);
3440 break;
3442 case SCTP_PEER_ADDR_PARAMS:
3443 retval = sctp_setsockopt_peer_addr_params(sk, optval, optlen);
3444 break;
3446 case SCTP_DELAYED_SACK:
3447 retval = sctp_setsockopt_delayed_ack(sk, optval, optlen);
3448 break;
3449 case SCTP_PARTIAL_DELIVERY_POINT:
3450 retval = sctp_setsockopt_partial_delivery_point(sk, optval, optlen);
3451 break;
3453 case SCTP_INITMSG:
3454 retval = sctp_setsockopt_initmsg(sk, optval, optlen);
3455 break;
3456 case SCTP_DEFAULT_SEND_PARAM:
3457 retval = sctp_setsockopt_default_send_param(sk, optval,
3458 optlen);
3459 break;
3460 case SCTP_PRIMARY_ADDR:
3461 retval = sctp_setsockopt_primary_addr(sk, optval, optlen);
3462 break;
3463 case SCTP_SET_PEER_PRIMARY_ADDR:
3464 retval = sctp_setsockopt_peer_primary_addr(sk, optval, optlen);
3465 break;
3466 case SCTP_NODELAY:
3467 retval = sctp_setsockopt_nodelay(sk, optval, optlen);
3468 break;
3469 case SCTP_RTOINFO:
3470 retval = sctp_setsockopt_rtoinfo(sk, optval, optlen);
3471 break;
3472 case SCTP_ASSOCINFO:
3473 retval = sctp_setsockopt_associnfo(sk, optval, optlen);
3474 break;
3475 case SCTP_I_WANT_MAPPED_V4_ADDR:
3476 retval = sctp_setsockopt_mappedv4(sk, optval, optlen);
3477 break;
3478 case SCTP_MAXSEG:
3479 retval = sctp_setsockopt_maxseg(sk, optval, optlen);
3480 break;
3481 case SCTP_ADAPTATION_LAYER:
3482 retval = sctp_setsockopt_adaptation_layer(sk, optval, optlen);
3483 break;
3484 case SCTP_CONTEXT:
3485 retval = sctp_setsockopt_context(sk, optval, optlen);
3486 break;
3487 case SCTP_FRAGMENT_INTERLEAVE:
3488 retval = sctp_setsockopt_fragment_interleave(sk, optval, optlen);
3489 break;
3490 case SCTP_MAX_BURST:
3491 retval = sctp_setsockopt_maxburst(sk, optval, optlen);
3492 break;
3493 case SCTP_AUTH_CHUNK:
3494 retval = sctp_setsockopt_auth_chunk(sk, optval, optlen);
3495 break;
3496 case SCTP_HMAC_IDENT:
3497 retval = sctp_setsockopt_hmac_ident(sk, optval, optlen);
3498 break;
3499 case SCTP_AUTH_KEY:
3500 retval = sctp_setsockopt_auth_key(sk, optval, optlen);
3501 break;
3502 case SCTP_AUTH_ACTIVE_KEY:
3503 retval = sctp_setsockopt_active_key(sk, optval, optlen);
3504 break;
3505 case SCTP_AUTH_DELETE_KEY:
3506 retval = sctp_setsockopt_del_key(sk, optval, optlen);
3507 break;
3508 default:
3509 retval = -ENOPROTOOPT;
3510 break;
3513 sctp_release_sock(sk);
3515 out_nounlock:
3516 return retval;
3519 /* API 3.1.6 connect() - UDP Style Syntax
3521 * An application may use the connect() call in the UDP model to initiate an
3522 * association without sending data.
3524 * The syntax is:
3526 * ret = connect(int sd, const struct sockaddr *nam, socklen_t len);
3528 * sd: the socket descriptor to have a new association added to.
3530 * nam: the address structure (either struct sockaddr_in or struct
3531 * sockaddr_in6 defined in RFC2553 [7]).
3533 * len: the size of the address.
3535 SCTP_STATIC int sctp_connect(struct sock *sk, struct sockaddr *addr,
3536 int addr_len)
3538 int err = 0;
3539 struct sctp_af *af;
3541 sctp_lock_sock(sk);
3543 SCTP_DEBUG_PRINTK("%s - sk: %p, sockaddr: %p, addr_len: %d\n",
3544 __func__, sk, addr, addr_len);
3546 /* Validate addr_len before calling common connect/connectx routine. */
3547 af = sctp_get_af_specific(addr->sa_family);
3548 if (!af || addr_len < af->sockaddr_len) {
3549 err = -EINVAL;
3550 } else {
3551 /* Pass correct addr len to common routine (so it knows there
3552 * is only one address being passed.
3554 err = __sctp_connect(sk, addr, af->sockaddr_len, NULL);
3557 sctp_release_sock(sk);
3558 return err;
3561 /* FIXME: Write comments. */
3562 SCTP_STATIC int sctp_disconnect(struct sock *sk, int flags)
3564 return -EOPNOTSUPP; /* STUB */
3567 /* 4.1.4 accept() - TCP Style Syntax
3569 * Applications use accept() call to remove an established SCTP
3570 * association from the accept queue of the endpoint. A new socket
3571 * descriptor will be returned from accept() to represent the newly
3572 * formed association.
3574 SCTP_STATIC struct sock *sctp_accept(struct sock *sk, int flags, int *err)
3576 struct sctp_sock *sp;
3577 struct sctp_endpoint *ep;
3578 struct sock *newsk = NULL;
3579 struct sctp_association *asoc;
3580 long timeo;
3581 int error = 0;
3583 sctp_lock_sock(sk);
3585 sp = sctp_sk(sk);
3586 ep = sp->ep;
3588 if (!sctp_style(sk, TCP)) {
3589 error = -EOPNOTSUPP;
3590 goto out;
3593 if (!sctp_sstate(sk, LISTENING)) {
3594 error = -EINVAL;
3595 goto out;
3598 timeo = sock_rcvtimeo(sk, flags & O_NONBLOCK);
3600 error = sctp_wait_for_accept(sk, timeo);
3601 if (error)
3602 goto out;
3604 /* We treat the list of associations on the endpoint as the accept
3605 * queue and pick the first association on the list.
3607 asoc = list_entry(ep->asocs.next, struct sctp_association, asocs);
3609 newsk = sp->pf->create_accept_sk(sk, asoc);
3610 if (!newsk) {
3611 error = -ENOMEM;
3612 goto out;
3615 /* Populate the fields of the newsk from the oldsk and migrate the
3616 * asoc to the newsk.
3618 sctp_sock_migrate(sk, newsk, asoc, SCTP_SOCKET_TCP);
3620 out:
3621 sctp_release_sock(sk);
3622 *err = error;
3623 return newsk;
3626 /* The SCTP ioctl handler. */
3627 SCTP_STATIC int sctp_ioctl(struct sock *sk, int cmd, unsigned long arg)
3629 int rc = -ENOTCONN;
3631 sctp_lock_sock(sk);
3634 * SEQPACKET-style sockets in LISTENING state are valid, for
3635 * SCTP, so only discard TCP-style sockets in LISTENING state.
3637 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
3638 goto out;
3640 switch (cmd) {
3641 case SIOCINQ: {
3642 struct sk_buff *skb;
3643 unsigned int amount = 0;
3645 skb = skb_peek(&sk->sk_receive_queue);
3646 if (skb != NULL) {
3648 * We will only return the amount of this packet since
3649 * that is all that will be read.
3651 amount = skb->len;
3653 rc = put_user(amount, (int __user *)arg);
3654 break;
3656 default:
3657 rc = -ENOIOCTLCMD;
3658 break;
3660 out:
3661 sctp_release_sock(sk);
3662 return rc;
3665 /* This is the function which gets called during socket creation to
3666 * initialized the SCTP-specific portion of the sock.
3667 * The sock structure should already be zero-filled memory.
3669 SCTP_STATIC int sctp_init_sock(struct sock *sk)
3671 struct sctp_endpoint *ep;
3672 struct sctp_sock *sp;
3674 SCTP_DEBUG_PRINTK("sctp_init_sock(sk: %p)\n", sk);
3676 sp = sctp_sk(sk);
3678 /* Initialize the SCTP per socket area. */
3679 switch (sk->sk_type) {
3680 case SOCK_SEQPACKET:
3681 sp->type = SCTP_SOCKET_UDP;
3682 break;
3683 case SOCK_STREAM:
3684 sp->type = SCTP_SOCKET_TCP;
3685 break;
3686 default:
3687 return -ESOCKTNOSUPPORT;
3690 /* Initialize default send parameters. These parameters can be
3691 * modified with the SCTP_DEFAULT_SEND_PARAM socket option.
3693 sp->default_stream = 0;
3694 sp->default_ppid = 0;
3695 sp->default_flags = 0;
3696 sp->default_context = 0;
3697 sp->default_timetolive = 0;
3699 sp->default_rcv_context = 0;
3700 sp->max_burst = sctp_max_burst;
3702 /* Initialize default setup parameters. These parameters
3703 * can be modified with the SCTP_INITMSG socket option or
3704 * overridden by the SCTP_INIT CMSG.
3706 sp->initmsg.sinit_num_ostreams = sctp_max_outstreams;
3707 sp->initmsg.sinit_max_instreams = sctp_max_instreams;
3708 sp->initmsg.sinit_max_attempts = sctp_max_retrans_init;
3709 sp->initmsg.sinit_max_init_timeo = sctp_rto_max;
3711 /* Initialize default RTO related parameters. These parameters can
3712 * be modified for with the SCTP_RTOINFO socket option.
3714 sp->rtoinfo.srto_initial = sctp_rto_initial;
3715 sp->rtoinfo.srto_max = sctp_rto_max;
3716 sp->rtoinfo.srto_min = sctp_rto_min;
3718 /* Initialize default association related parameters. These parameters
3719 * can be modified with the SCTP_ASSOCINFO socket option.
3721 sp->assocparams.sasoc_asocmaxrxt = sctp_max_retrans_association;
3722 sp->assocparams.sasoc_number_peer_destinations = 0;
3723 sp->assocparams.sasoc_peer_rwnd = 0;
3724 sp->assocparams.sasoc_local_rwnd = 0;
3725 sp->assocparams.sasoc_cookie_life = sctp_valid_cookie_life;
3727 /* Initialize default event subscriptions. By default, all the
3728 * options are off.
3730 memset(&sp->subscribe, 0, sizeof(struct sctp_event_subscribe));
3732 /* Default Peer Address Parameters. These defaults can
3733 * be modified via SCTP_PEER_ADDR_PARAMS
3735 sp->hbinterval = sctp_hb_interval;
3736 sp->pathmaxrxt = sctp_max_retrans_path;
3737 sp->pathmtu = 0; // allow default discovery
3738 sp->sackdelay = sctp_sack_timeout;
3739 sp->sackfreq = 2;
3740 sp->param_flags = SPP_HB_ENABLE |
3741 SPP_PMTUD_ENABLE |
3742 SPP_SACKDELAY_ENABLE;
3744 /* If enabled no SCTP message fragmentation will be performed.
3745 * Configure through SCTP_DISABLE_FRAGMENTS socket option.
3747 sp->disable_fragments = 0;
3749 /* Enable Nagle algorithm by default. */
3750 sp->nodelay = 0;
3752 /* Enable by default. */
3753 sp->v4mapped = 1;
3755 /* Auto-close idle associations after the configured
3756 * number of seconds. A value of 0 disables this
3757 * feature. Configure through the SCTP_AUTOCLOSE socket option,
3758 * for UDP-style sockets only.
3760 sp->autoclose = 0;
3762 /* User specified fragmentation limit. */
3763 sp->user_frag = 0;
3765 sp->adaptation_ind = 0;
3767 sp->pf = sctp_get_pf_specific(sk->sk_family);
3769 /* Control variables for partial data delivery. */
3770 atomic_set(&sp->pd_mode, 0);
3771 skb_queue_head_init(&sp->pd_lobby);
3772 sp->frag_interleave = 0;
3774 /* Create a per socket endpoint structure. Even if we
3775 * change the data structure relationships, this may still
3776 * be useful for storing pre-connect address information.
3778 ep = sctp_endpoint_new(sk, GFP_KERNEL);
3779 if (!ep)
3780 return -ENOMEM;
3782 sp->ep = ep;
3783 sp->hmac = NULL;
3785 SCTP_DBG_OBJCNT_INC(sock);
3787 local_bh_disable();
3788 percpu_counter_inc(&sctp_sockets_allocated);
3789 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, 1);
3790 local_bh_enable();
3792 return 0;
3795 /* Cleanup any SCTP per socket resources. */
3796 SCTP_STATIC void sctp_destroy_sock(struct sock *sk)
3798 struct sctp_endpoint *ep;
3800 SCTP_DEBUG_PRINTK("sctp_destroy_sock(sk: %p)\n", sk);
3802 /* Release our hold on the endpoint. */
3803 ep = sctp_sk(sk)->ep;
3804 sctp_endpoint_free(ep);
3805 local_bh_disable();
3806 percpu_counter_dec(&sctp_sockets_allocated);
3807 sock_prot_inuse_add(sock_net(sk), sk->sk_prot, -1);
3808 local_bh_enable();
3811 /* API 4.1.7 shutdown() - TCP Style Syntax
3812 * int shutdown(int socket, int how);
3814 * sd - the socket descriptor of the association to be closed.
3815 * how - Specifies the type of shutdown. The values are
3816 * as follows:
3817 * SHUT_RD
3818 * Disables further receive operations. No SCTP
3819 * protocol action is taken.
3820 * SHUT_WR
3821 * Disables further send operations, and initiates
3822 * the SCTP shutdown sequence.
3823 * SHUT_RDWR
3824 * Disables further send and receive operations
3825 * and initiates the SCTP shutdown sequence.
3827 SCTP_STATIC void sctp_shutdown(struct sock *sk, int how)
3829 struct sctp_endpoint *ep;
3830 struct sctp_association *asoc;
3832 if (!sctp_style(sk, TCP))
3833 return;
3835 if (how & SEND_SHUTDOWN) {
3836 ep = sctp_sk(sk)->ep;
3837 if (!list_empty(&ep->asocs)) {
3838 asoc = list_entry(ep->asocs.next,
3839 struct sctp_association, asocs);
3840 sctp_primitive_SHUTDOWN(asoc, NULL);
3845 /* 7.2.1 Association Status (SCTP_STATUS)
3847 * Applications can retrieve current status information about an
3848 * association, including association state, peer receiver window size,
3849 * number of unacked data chunks, and number of data chunks pending
3850 * receipt. This information is read-only.
3852 static int sctp_getsockopt_sctp_status(struct sock *sk, int len,
3853 char __user *optval,
3854 int __user *optlen)
3856 struct sctp_status status;
3857 struct sctp_association *asoc = NULL;
3858 struct sctp_transport *transport;
3859 sctp_assoc_t associd;
3860 int retval = 0;
3862 if (len < sizeof(status)) {
3863 retval = -EINVAL;
3864 goto out;
3867 len = sizeof(status);
3868 if (copy_from_user(&status, optval, len)) {
3869 retval = -EFAULT;
3870 goto out;
3873 associd = status.sstat_assoc_id;
3874 asoc = sctp_id2assoc(sk, associd);
3875 if (!asoc) {
3876 retval = -EINVAL;
3877 goto out;
3880 transport = asoc->peer.primary_path;
3882 status.sstat_assoc_id = sctp_assoc2id(asoc);
3883 status.sstat_state = asoc->state;
3884 status.sstat_rwnd = asoc->peer.rwnd;
3885 status.sstat_unackdata = asoc->unack_data;
3887 status.sstat_penddata = sctp_tsnmap_pending(&asoc->peer.tsn_map);
3888 status.sstat_instrms = asoc->c.sinit_max_instreams;
3889 status.sstat_outstrms = asoc->c.sinit_num_ostreams;
3890 status.sstat_fragmentation_point = asoc->frag_point;
3891 status.sstat_primary.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3892 memcpy(&status.sstat_primary.spinfo_address, &transport->ipaddr,
3893 transport->af_specific->sockaddr_len);
3894 /* Map ipv4 address into v4-mapped-on-v6 address. */
3895 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
3896 (union sctp_addr *)&status.sstat_primary.spinfo_address);
3897 status.sstat_primary.spinfo_state = transport->state;
3898 status.sstat_primary.spinfo_cwnd = transport->cwnd;
3899 status.sstat_primary.spinfo_srtt = transport->srtt;
3900 status.sstat_primary.spinfo_rto = jiffies_to_msecs(transport->rto);
3901 status.sstat_primary.spinfo_mtu = transport->pathmtu;
3903 if (status.sstat_primary.spinfo_state == SCTP_UNKNOWN)
3904 status.sstat_primary.spinfo_state = SCTP_ACTIVE;
3906 if (put_user(len, optlen)) {
3907 retval = -EFAULT;
3908 goto out;
3911 SCTP_DEBUG_PRINTK("sctp_getsockopt_sctp_status(%d): %d %d %d\n",
3912 len, status.sstat_state, status.sstat_rwnd,
3913 status.sstat_assoc_id);
3915 if (copy_to_user(optval, &status, len)) {
3916 retval = -EFAULT;
3917 goto out;
3920 out:
3921 return retval;
3925 /* 7.2.2 Peer Address Information (SCTP_GET_PEER_ADDR_INFO)
3927 * Applications can retrieve information about a specific peer address
3928 * of an association, including its reachability state, congestion
3929 * window, and retransmission timer values. This information is
3930 * read-only.
3932 static int sctp_getsockopt_peer_addr_info(struct sock *sk, int len,
3933 char __user *optval,
3934 int __user *optlen)
3936 struct sctp_paddrinfo pinfo;
3937 struct sctp_transport *transport;
3938 int retval = 0;
3940 if (len < sizeof(pinfo)) {
3941 retval = -EINVAL;
3942 goto out;
3945 len = sizeof(pinfo);
3946 if (copy_from_user(&pinfo, optval, len)) {
3947 retval = -EFAULT;
3948 goto out;
3951 transport = sctp_addr_id2transport(sk, &pinfo.spinfo_address,
3952 pinfo.spinfo_assoc_id);
3953 if (!transport)
3954 return -EINVAL;
3956 pinfo.spinfo_assoc_id = sctp_assoc2id(transport->asoc);
3957 pinfo.spinfo_state = transport->state;
3958 pinfo.spinfo_cwnd = transport->cwnd;
3959 pinfo.spinfo_srtt = transport->srtt;
3960 pinfo.spinfo_rto = jiffies_to_msecs(transport->rto);
3961 pinfo.spinfo_mtu = transport->pathmtu;
3963 if (pinfo.spinfo_state == SCTP_UNKNOWN)
3964 pinfo.spinfo_state = SCTP_ACTIVE;
3966 if (put_user(len, optlen)) {
3967 retval = -EFAULT;
3968 goto out;
3971 if (copy_to_user(optval, &pinfo, len)) {
3972 retval = -EFAULT;
3973 goto out;
3976 out:
3977 return retval;
3980 /* 7.1.12 Enable/Disable message fragmentation (SCTP_DISABLE_FRAGMENTS)
3982 * This option is a on/off flag. If enabled no SCTP message
3983 * fragmentation will be performed. Instead if a message being sent
3984 * exceeds the current PMTU size, the message will NOT be sent and
3985 * instead a error will be indicated to the user.
3987 static int sctp_getsockopt_disable_fragments(struct sock *sk, int len,
3988 char __user *optval, int __user *optlen)
3990 int val;
3992 if (len < sizeof(int))
3993 return -EINVAL;
3995 len = sizeof(int);
3996 val = (sctp_sk(sk)->disable_fragments == 1);
3997 if (put_user(len, optlen))
3998 return -EFAULT;
3999 if (copy_to_user(optval, &val, len))
4000 return -EFAULT;
4001 return 0;
4004 /* 7.1.15 Set notification and ancillary events (SCTP_EVENTS)
4006 * This socket option is used to specify various notifications and
4007 * ancillary data the user wishes to receive.
4009 static int sctp_getsockopt_events(struct sock *sk, int len, char __user *optval,
4010 int __user *optlen)
4012 if (len <= 0)
4013 return -EINVAL;
4014 if (len > sizeof(struct sctp_event_subscribe))
4015 len = sizeof(struct sctp_event_subscribe);
4016 if (put_user(len, optlen))
4017 return -EFAULT;
4018 if (copy_to_user(optval, &sctp_sk(sk)->subscribe, len))
4019 return -EFAULT;
4020 return 0;
4023 /* 7.1.8 Automatic Close of associations (SCTP_AUTOCLOSE)
4025 * This socket option is applicable to the UDP-style socket only. When
4026 * set it will cause associations that are idle for more than the
4027 * specified number of seconds to automatically close. An association
4028 * being idle is defined an association that has NOT sent or received
4029 * user data. The special value of '0' indicates that no automatic
4030 * close of any associations should be performed. The option expects an
4031 * integer defining the number of seconds of idle time before an
4032 * association is closed.
4034 static int sctp_getsockopt_autoclose(struct sock *sk, int len, char __user *optval, int __user *optlen)
4036 /* Applicable to UDP-style socket only */
4037 if (sctp_style(sk, TCP))
4038 return -EOPNOTSUPP;
4039 if (len < sizeof(int))
4040 return -EINVAL;
4041 len = sizeof(int);
4042 if (put_user(len, optlen))
4043 return -EFAULT;
4044 if (copy_to_user(optval, &sctp_sk(sk)->autoclose, sizeof(int)))
4045 return -EFAULT;
4046 return 0;
4049 /* Helper routine to branch off an association to a new socket. */
4050 SCTP_STATIC int sctp_do_peeloff(struct sctp_association *asoc,
4051 struct socket **sockp)
4053 struct sock *sk = asoc->base.sk;
4054 struct socket *sock;
4055 struct sctp_af *af;
4056 int err = 0;
4058 /* An association cannot be branched off from an already peeled-off
4059 * socket, nor is this supported for tcp style sockets.
4061 if (!sctp_style(sk, UDP))
4062 return -EINVAL;
4064 /* Create a new socket. */
4065 err = sock_create(sk->sk_family, SOCK_SEQPACKET, IPPROTO_SCTP, &sock);
4066 if (err < 0)
4067 return err;
4069 sctp_copy_sock(sock->sk, sk, asoc);
4071 /* Make peeled-off sockets more like 1-1 accepted sockets.
4072 * Set the daddr and initialize id to something more random
4074 af = sctp_get_af_specific(asoc->peer.primary_addr.sa.sa_family);
4075 af->to_sk_daddr(&asoc->peer.primary_addr, sk);
4077 /* Populate the fields of the newsk from the oldsk and migrate the
4078 * asoc to the newsk.
4080 sctp_sock_migrate(sk, sock->sk, asoc, SCTP_SOCKET_UDP_HIGH_BANDWIDTH);
4082 *sockp = sock;
4084 return err;
4087 static int sctp_getsockopt_peeloff(struct sock *sk, int len, char __user *optval, int __user *optlen)
4089 sctp_peeloff_arg_t peeloff;
4090 struct socket *newsock;
4091 int retval = 0;
4092 struct sctp_association *asoc;
4094 if (len < sizeof(sctp_peeloff_arg_t))
4095 return -EINVAL;
4096 len = sizeof(sctp_peeloff_arg_t);
4097 if (copy_from_user(&peeloff, optval, len))
4098 return -EFAULT;
4100 asoc = sctp_id2assoc(sk, peeloff.associd);
4101 if (!asoc) {
4102 retval = -EINVAL;
4103 goto out;
4106 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p\n", __func__, sk, asoc);
4108 retval = sctp_do_peeloff(asoc, &newsock);
4109 if (retval < 0)
4110 goto out;
4112 /* Map the socket to an unused fd that can be returned to the user. */
4113 retval = sock_map_fd(newsock, 0);
4114 if (retval < 0) {
4115 sock_release(newsock);
4116 goto out;
4119 SCTP_DEBUG_PRINTK("%s: sk: %p asoc: %p newsk: %p sd: %d\n",
4120 __func__, sk, asoc, newsock->sk, retval);
4122 /* Return the fd mapped to the new socket. */
4123 peeloff.sd = retval;
4124 if (put_user(len, optlen))
4125 return -EFAULT;
4126 if (copy_to_user(optval, &peeloff, len))
4127 retval = -EFAULT;
4129 out:
4130 return retval;
4133 /* 7.1.13 Peer Address Parameters (SCTP_PEER_ADDR_PARAMS)
4135 * Applications can enable or disable heartbeats for any peer address of
4136 * an association, modify an address's heartbeat interval, force a
4137 * heartbeat to be sent immediately, and adjust the address's maximum
4138 * number of retransmissions sent before an address is considered
4139 * unreachable. The following structure is used to access and modify an
4140 * address's parameters:
4142 * struct sctp_paddrparams {
4143 * sctp_assoc_t spp_assoc_id;
4144 * struct sockaddr_storage spp_address;
4145 * uint32_t spp_hbinterval;
4146 * uint16_t spp_pathmaxrxt;
4147 * uint32_t spp_pathmtu;
4148 * uint32_t spp_sackdelay;
4149 * uint32_t spp_flags;
4150 * };
4152 * spp_assoc_id - (one-to-many style socket) This is filled in the
4153 * application, and identifies the association for
4154 * this query.
4155 * spp_address - This specifies which address is of interest.
4156 * spp_hbinterval - This contains the value of the heartbeat interval,
4157 * in milliseconds. If a value of zero
4158 * is present in this field then no changes are to
4159 * be made to this parameter.
4160 * spp_pathmaxrxt - This contains the maximum number of
4161 * retransmissions before this address shall be
4162 * considered unreachable. If a value of zero
4163 * is present in this field then no changes are to
4164 * be made to this parameter.
4165 * spp_pathmtu - When Path MTU discovery is disabled the value
4166 * specified here will be the "fixed" path mtu.
4167 * Note that if the spp_address field is empty
4168 * then all associations on this address will
4169 * have this fixed path mtu set upon them.
4171 * spp_sackdelay - When delayed sack is enabled, this value specifies
4172 * the number of milliseconds that sacks will be delayed
4173 * for. This value will apply to all addresses of an
4174 * association if the spp_address field is empty. Note
4175 * also, that if delayed sack is enabled and this
4176 * value is set to 0, no change is made to the last
4177 * recorded delayed sack timer value.
4179 * spp_flags - These flags are used to control various features
4180 * on an association. The flag field may contain
4181 * zero or more of the following options.
4183 * SPP_HB_ENABLE - Enable heartbeats on the
4184 * specified address. Note that if the address
4185 * field is empty all addresses for the association
4186 * have heartbeats enabled upon them.
4188 * SPP_HB_DISABLE - Disable heartbeats on the
4189 * speicifed address. Note that if the address
4190 * field is empty all addresses for the association
4191 * will have their heartbeats disabled. Note also
4192 * that SPP_HB_ENABLE and SPP_HB_DISABLE are
4193 * mutually exclusive, only one of these two should
4194 * be specified. Enabling both fields will have
4195 * undetermined results.
4197 * SPP_HB_DEMAND - Request a user initiated heartbeat
4198 * to be made immediately.
4200 * SPP_PMTUD_ENABLE - This field will enable PMTU
4201 * discovery upon the specified address. Note that
4202 * if the address feild is empty then all addresses
4203 * on the association are effected.
4205 * SPP_PMTUD_DISABLE - This field will disable PMTU
4206 * discovery upon the specified address. Note that
4207 * if the address feild is empty then all addresses
4208 * on the association are effected. Not also that
4209 * SPP_PMTUD_ENABLE and SPP_PMTUD_DISABLE are mutually
4210 * exclusive. Enabling both will have undetermined
4211 * results.
4213 * SPP_SACKDELAY_ENABLE - Setting this flag turns
4214 * on delayed sack. The time specified in spp_sackdelay
4215 * is used to specify the sack delay for this address. Note
4216 * that if spp_address is empty then all addresses will
4217 * enable delayed sack and take on the sack delay
4218 * value specified in spp_sackdelay.
4219 * SPP_SACKDELAY_DISABLE - Setting this flag turns
4220 * off delayed sack. If the spp_address field is blank then
4221 * delayed sack is disabled for the entire association. Note
4222 * also that this field is mutually exclusive to
4223 * SPP_SACKDELAY_ENABLE, setting both will have undefined
4224 * results.
4226 static int sctp_getsockopt_peer_addr_params(struct sock *sk, int len,
4227 char __user *optval, int __user *optlen)
4229 struct sctp_paddrparams params;
4230 struct sctp_transport *trans = NULL;
4231 struct sctp_association *asoc = NULL;
4232 struct sctp_sock *sp = sctp_sk(sk);
4234 if (len < sizeof(struct sctp_paddrparams))
4235 return -EINVAL;
4236 len = sizeof(struct sctp_paddrparams);
4237 if (copy_from_user(&params, optval, len))
4238 return -EFAULT;
4240 /* If an address other than INADDR_ANY is specified, and
4241 * no transport is found, then the request is invalid.
4243 if (!sctp_is_any(sk, ( union sctp_addr *)&params.spp_address)) {
4244 trans = sctp_addr_id2transport(sk, &params.spp_address,
4245 params.spp_assoc_id);
4246 if (!trans) {
4247 SCTP_DEBUG_PRINTK("Failed no transport\n");
4248 return -EINVAL;
4252 /* Get association, if assoc_id != 0 and the socket is a one
4253 * to many style socket, and an association was not found, then
4254 * the id was invalid.
4256 asoc = sctp_id2assoc(sk, params.spp_assoc_id);
4257 if (!asoc && params.spp_assoc_id && sctp_style(sk, UDP)) {
4258 SCTP_DEBUG_PRINTK("Failed no association\n");
4259 return -EINVAL;
4262 if (trans) {
4263 /* Fetch transport values. */
4264 params.spp_hbinterval = jiffies_to_msecs(trans->hbinterval);
4265 params.spp_pathmtu = trans->pathmtu;
4266 params.spp_pathmaxrxt = trans->pathmaxrxt;
4267 params.spp_sackdelay = jiffies_to_msecs(trans->sackdelay);
4269 /*draft-11 doesn't say what to return in spp_flags*/
4270 params.spp_flags = trans->param_flags;
4271 } else if (asoc) {
4272 /* Fetch association values. */
4273 params.spp_hbinterval = jiffies_to_msecs(asoc->hbinterval);
4274 params.spp_pathmtu = asoc->pathmtu;
4275 params.spp_pathmaxrxt = asoc->pathmaxrxt;
4276 params.spp_sackdelay = jiffies_to_msecs(asoc->sackdelay);
4278 /*draft-11 doesn't say what to return in spp_flags*/
4279 params.spp_flags = asoc->param_flags;
4280 } else {
4281 /* Fetch socket values. */
4282 params.spp_hbinterval = sp->hbinterval;
4283 params.spp_pathmtu = sp->pathmtu;
4284 params.spp_sackdelay = sp->sackdelay;
4285 params.spp_pathmaxrxt = sp->pathmaxrxt;
4287 /*draft-11 doesn't say what to return in spp_flags*/
4288 params.spp_flags = sp->param_flags;
4291 if (copy_to_user(optval, &params, len))
4292 return -EFAULT;
4294 if (put_user(len, optlen))
4295 return -EFAULT;
4297 return 0;
4301 * 7.1.23. Get or set delayed ack timer (SCTP_DELAYED_SACK)
4303 * This option will effect the way delayed acks are performed. This
4304 * option allows you to get or set the delayed ack time, in
4305 * milliseconds. It also allows changing the delayed ack frequency.
4306 * Changing the frequency to 1 disables the delayed sack algorithm. If
4307 * the assoc_id is 0, then this sets or gets the endpoints default
4308 * values. If the assoc_id field is non-zero, then the set or get
4309 * effects the specified association for the one to many model (the
4310 * assoc_id field is ignored by the one to one model). Note that if
4311 * sack_delay or sack_freq are 0 when setting this option, then the
4312 * current values will remain unchanged.
4314 * struct sctp_sack_info {
4315 * sctp_assoc_t sack_assoc_id;
4316 * uint32_t sack_delay;
4317 * uint32_t sack_freq;
4318 * };
4320 * sack_assoc_id - This parameter, indicates which association the user
4321 * is performing an action upon. Note that if this field's value is
4322 * zero then the endpoints default value is changed (effecting future
4323 * associations only).
4325 * sack_delay - This parameter contains the number of milliseconds that
4326 * the user is requesting the delayed ACK timer be set to. Note that
4327 * this value is defined in the standard to be between 200 and 500
4328 * milliseconds.
4330 * sack_freq - This parameter contains the number of packets that must
4331 * be received before a sack is sent without waiting for the delay
4332 * timer to expire. The default value for this is 2, setting this
4333 * value to 1 will disable the delayed sack algorithm.
4335 static int sctp_getsockopt_delayed_ack(struct sock *sk, int len,
4336 char __user *optval,
4337 int __user *optlen)
4339 struct sctp_sack_info params;
4340 struct sctp_association *asoc = NULL;
4341 struct sctp_sock *sp = sctp_sk(sk);
4343 if (len >= sizeof(struct sctp_sack_info)) {
4344 len = sizeof(struct sctp_sack_info);
4346 if (copy_from_user(&params, optval, len))
4347 return -EFAULT;
4348 } else if (len == sizeof(struct sctp_assoc_value)) {
4349 pr_warn("Use of struct sctp_assoc_value in delayed_ack socket option deprecated\n");
4350 pr_warn("Use struct sctp_sack_info instead\n");
4351 if (copy_from_user(&params, optval, len))
4352 return -EFAULT;
4353 } else
4354 return - EINVAL;
4356 /* Get association, if sack_assoc_id != 0 and the socket is a one
4357 * to many style socket, and an association was not found, then
4358 * the id was invalid.
4360 asoc = sctp_id2assoc(sk, params.sack_assoc_id);
4361 if (!asoc && params.sack_assoc_id && sctp_style(sk, UDP))
4362 return -EINVAL;
4364 if (asoc) {
4365 /* Fetch association values. */
4366 if (asoc->param_flags & SPP_SACKDELAY_ENABLE) {
4367 params.sack_delay = jiffies_to_msecs(
4368 asoc->sackdelay);
4369 params.sack_freq = asoc->sackfreq;
4371 } else {
4372 params.sack_delay = 0;
4373 params.sack_freq = 1;
4375 } else {
4376 /* Fetch socket values. */
4377 if (sp->param_flags & SPP_SACKDELAY_ENABLE) {
4378 params.sack_delay = sp->sackdelay;
4379 params.sack_freq = sp->sackfreq;
4380 } else {
4381 params.sack_delay = 0;
4382 params.sack_freq = 1;
4386 if (copy_to_user(optval, &params, len))
4387 return -EFAULT;
4389 if (put_user(len, optlen))
4390 return -EFAULT;
4392 return 0;
4395 /* 7.1.3 Initialization Parameters (SCTP_INITMSG)
4397 * Applications can specify protocol parameters for the default association
4398 * initialization. The option name argument to setsockopt() and getsockopt()
4399 * is SCTP_INITMSG.
4401 * Setting initialization parameters is effective only on an unconnected
4402 * socket (for UDP-style sockets only future associations are effected
4403 * by the change). With TCP-style sockets, this option is inherited by
4404 * sockets derived from a listener socket.
4406 static int sctp_getsockopt_initmsg(struct sock *sk, int len, char __user *optval, int __user *optlen)
4408 if (len < sizeof(struct sctp_initmsg))
4409 return -EINVAL;
4410 len = sizeof(struct sctp_initmsg);
4411 if (put_user(len, optlen))
4412 return -EFAULT;
4413 if (copy_to_user(optval, &sctp_sk(sk)->initmsg, len))
4414 return -EFAULT;
4415 return 0;
4419 static int sctp_getsockopt_peer_addrs(struct sock *sk, int len,
4420 char __user *optval, int __user *optlen)
4422 struct sctp_association *asoc;
4423 int cnt = 0;
4424 struct sctp_getaddrs getaddrs;
4425 struct sctp_transport *from;
4426 void __user *to;
4427 union sctp_addr temp;
4428 struct sctp_sock *sp = sctp_sk(sk);
4429 int addrlen;
4430 size_t space_left;
4431 int bytes_copied;
4433 if (len < sizeof(struct sctp_getaddrs))
4434 return -EINVAL;
4436 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4437 return -EFAULT;
4439 /* For UDP-style sockets, id specifies the association to query. */
4440 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4441 if (!asoc)
4442 return -EINVAL;
4444 to = optval + offsetof(struct sctp_getaddrs,addrs);
4445 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4447 list_for_each_entry(from, &asoc->peer.transport_addr_list,
4448 transports) {
4449 memcpy(&temp, &from->ipaddr, sizeof(temp));
4450 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4451 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4452 if (space_left < addrlen)
4453 return -ENOMEM;
4454 if (copy_to_user(to, &temp, addrlen))
4455 return -EFAULT;
4456 to += addrlen;
4457 cnt++;
4458 space_left -= addrlen;
4461 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num))
4462 return -EFAULT;
4463 bytes_copied = ((char __user *)to) - optval;
4464 if (put_user(bytes_copied, optlen))
4465 return -EFAULT;
4467 return 0;
4470 static int sctp_copy_laddrs(struct sock *sk, __u16 port, void *to,
4471 size_t space_left, int *bytes_copied)
4473 struct sctp_sockaddr_entry *addr;
4474 union sctp_addr temp;
4475 int cnt = 0;
4476 int addrlen;
4478 rcu_read_lock();
4479 list_for_each_entry_rcu(addr, &sctp_local_addr_list, list) {
4480 if (!addr->valid)
4481 continue;
4483 if ((PF_INET == sk->sk_family) &&
4484 (AF_INET6 == addr->a.sa.sa_family))
4485 continue;
4486 if ((PF_INET6 == sk->sk_family) &&
4487 inet_v6_ipv6only(sk) &&
4488 (AF_INET == addr->a.sa.sa_family))
4489 continue;
4490 memcpy(&temp, &addr->a, sizeof(temp));
4491 if (!temp.v4.sin_port)
4492 temp.v4.sin_port = htons(port);
4494 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sctp_sk(sk),
4495 &temp);
4496 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4497 if (space_left < addrlen) {
4498 cnt = -ENOMEM;
4499 break;
4501 memcpy(to, &temp, addrlen);
4503 to += addrlen;
4504 cnt ++;
4505 space_left -= addrlen;
4506 *bytes_copied += addrlen;
4508 rcu_read_unlock();
4510 return cnt;
4514 static int sctp_getsockopt_local_addrs(struct sock *sk, int len,
4515 char __user *optval, int __user *optlen)
4517 struct sctp_bind_addr *bp;
4518 struct sctp_association *asoc;
4519 int cnt = 0;
4520 struct sctp_getaddrs getaddrs;
4521 struct sctp_sockaddr_entry *addr;
4522 void __user *to;
4523 union sctp_addr temp;
4524 struct sctp_sock *sp = sctp_sk(sk);
4525 int addrlen;
4526 int err = 0;
4527 size_t space_left;
4528 int bytes_copied = 0;
4529 void *addrs;
4530 void *buf;
4532 if (len < sizeof(struct sctp_getaddrs))
4533 return -EINVAL;
4535 if (copy_from_user(&getaddrs, optval, sizeof(struct sctp_getaddrs)))
4536 return -EFAULT;
4539 * For UDP-style sockets, id specifies the association to query.
4540 * If the id field is set to the value '0' then the locally bound
4541 * addresses are returned without regard to any particular
4542 * association.
4544 if (0 == getaddrs.assoc_id) {
4545 bp = &sctp_sk(sk)->ep->base.bind_addr;
4546 } else {
4547 asoc = sctp_id2assoc(sk, getaddrs.assoc_id);
4548 if (!asoc)
4549 return -EINVAL;
4550 bp = &asoc->base.bind_addr;
4553 to = optval + offsetof(struct sctp_getaddrs,addrs);
4554 space_left = len - offsetof(struct sctp_getaddrs,addrs);
4556 addrs = kmalloc(space_left, GFP_KERNEL);
4557 if (!addrs)
4558 return -ENOMEM;
4560 /* If the endpoint is bound to 0.0.0.0 or ::0, get the valid
4561 * addresses from the global local address list.
4563 if (sctp_list_single_entry(&bp->address_list)) {
4564 addr = list_entry(bp->address_list.next,
4565 struct sctp_sockaddr_entry, list);
4566 if (sctp_is_any(sk, &addr->a)) {
4567 cnt = sctp_copy_laddrs(sk, bp->port, addrs,
4568 space_left, &bytes_copied);
4569 if (cnt < 0) {
4570 err = cnt;
4571 goto out;
4573 goto copy_getaddrs;
4577 buf = addrs;
4578 /* Protection on the bound address list is not needed since
4579 * in the socket option context we hold a socket lock and
4580 * thus the bound address list can't change.
4582 list_for_each_entry(addr, &bp->address_list, list) {
4583 memcpy(&temp, &addr->a, sizeof(temp));
4584 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp, &temp);
4585 addrlen = sctp_get_af_specific(temp.sa.sa_family)->sockaddr_len;
4586 if (space_left < addrlen) {
4587 err = -ENOMEM; /*fixme: right error?*/
4588 goto out;
4590 memcpy(buf, &temp, addrlen);
4591 buf += addrlen;
4592 bytes_copied += addrlen;
4593 cnt ++;
4594 space_left -= addrlen;
4597 copy_getaddrs:
4598 if (copy_to_user(to, addrs, bytes_copied)) {
4599 err = -EFAULT;
4600 goto out;
4602 if (put_user(cnt, &((struct sctp_getaddrs __user *)optval)->addr_num)) {
4603 err = -EFAULT;
4604 goto out;
4606 if (put_user(bytes_copied, optlen))
4607 err = -EFAULT;
4608 out:
4609 kfree(addrs);
4610 return err;
4613 /* 7.1.10 Set Primary Address (SCTP_PRIMARY_ADDR)
4615 * Requests that the local SCTP stack use the enclosed peer address as
4616 * the association primary. The enclosed address must be one of the
4617 * association peer's addresses.
4619 static int sctp_getsockopt_primary_addr(struct sock *sk, int len,
4620 char __user *optval, int __user *optlen)
4622 struct sctp_prim prim;
4623 struct sctp_association *asoc;
4624 struct sctp_sock *sp = sctp_sk(sk);
4626 if (len < sizeof(struct sctp_prim))
4627 return -EINVAL;
4629 len = sizeof(struct sctp_prim);
4631 if (copy_from_user(&prim, optval, len))
4632 return -EFAULT;
4634 asoc = sctp_id2assoc(sk, prim.ssp_assoc_id);
4635 if (!asoc)
4636 return -EINVAL;
4638 if (!asoc->peer.primary_path)
4639 return -ENOTCONN;
4641 memcpy(&prim.ssp_addr, &asoc->peer.primary_path->ipaddr,
4642 asoc->peer.primary_path->af_specific->sockaddr_len);
4644 sctp_get_pf_specific(sk->sk_family)->addr_v4map(sp,
4645 (union sctp_addr *)&prim.ssp_addr);
4647 if (put_user(len, optlen))
4648 return -EFAULT;
4649 if (copy_to_user(optval, &prim, len))
4650 return -EFAULT;
4652 return 0;
4656 * 7.1.11 Set Adaptation Layer Indicator (SCTP_ADAPTATION_LAYER)
4658 * Requests that the local endpoint set the specified Adaptation Layer
4659 * Indication parameter for all future INIT and INIT-ACK exchanges.
4661 static int sctp_getsockopt_adaptation_layer(struct sock *sk, int len,
4662 char __user *optval, int __user *optlen)
4664 struct sctp_setadaptation adaptation;
4666 if (len < sizeof(struct sctp_setadaptation))
4667 return -EINVAL;
4669 len = sizeof(struct sctp_setadaptation);
4671 adaptation.ssb_adaptation_ind = sctp_sk(sk)->adaptation_ind;
4673 if (put_user(len, optlen))
4674 return -EFAULT;
4675 if (copy_to_user(optval, &adaptation, len))
4676 return -EFAULT;
4678 return 0;
4683 * 7.1.14 Set default send parameters (SCTP_DEFAULT_SEND_PARAM)
4685 * Applications that wish to use the sendto() system call may wish to
4686 * specify a default set of parameters that would normally be supplied
4687 * through the inclusion of ancillary data. This socket option allows
4688 * such an application to set the default sctp_sndrcvinfo structure.
4691 * The application that wishes to use this socket option simply passes
4692 * in to this call the sctp_sndrcvinfo structure defined in Section
4693 * 5.2.2) The input parameters accepted by this call include
4694 * sinfo_stream, sinfo_flags, sinfo_ppid, sinfo_context,
4695 * sinfo_timetolive. The user must provide the sinfo_assoc_id field in
4696 * to this call if the caller is using the UDP model.
4698 * For getsockopt, it get the default sctp_sndrcvinfo structure.
4700 static int sctp_getsockopt_default_send_param(struct sock *sk,
4701 int len, char __user *optval,
4702 int __user *optlen)
4704 struct sctp_sndrcvinfo info;
4705 struct sctp_association *asoc;
4706 struct sctp_sock *sp = sctp_sk(sk);
4708 if (len < sizeof(struct sctp_sndrcvinfo))
4709 return -EINVAL;
4711 len = sizeof(struct sctp_sndrcvinfo);
4713 if (copy_from_user(&info, optval, len))
4714 return -EFAULT;
4716 asoc = sctp_id2assoc(sk, info.sinfo_assoc_id);
4717 if (!asoc && info.sinfo_assoc_id && sctp_style(sk, UDP))
4718 return -EINVAL;
4720 if (asoc) {
4721 info.sinfo_stream = asoc->default_stream;
4722 info.sinfo_flags = asoc->default_flags;
4723 info.sinfo_ppid = asoc->default_ppid;
4724 info.sinfo_context = asoc->default_context;
4725 info.sinfo_timetolive = asoc->default_timetolive;
4726 } else {
4727 info.sinfo_stream = sp->default_stream;
4728 info.sinfo_flags = sp->default_flags;
4729 info.sinfo_ppid = sp->default_ppid;
4730 info.sinfo_context = sp->default_context;
4731 info.sinfo_timetolive = sp->default_timetolive;
4734 if (put_user(len, optlen))
4735 return -EFAULT;
4736 if (copy_to_user(optval, &info, len))
4737 return -EFAULT;
4739 return 0;
4744 * 7.1.5 SCTP_NODELAY
4746 * Turn on/off any Nagle-like algorithm. This means that packets are
4747 * generally sent as soon as possible and no unnecessary delays are
4748 * introduced, at the cost of more packets in the network. Expects an
4749 * integer boolean flag.
4752 static int sctp_getsockopt_nodelay(struct sock *sk, int len,
4753 char __user *optval, int __user *optlen)
4755 int val;
4757 if (len < sizeof(int))
4758 return -EINVAL;
4760 len = sizeof(int);
4761 val = (sctp_sk(sk)->nodelay == 1);
4762 if (put_user(len, optlen))
4763 return -EFAULT;
4764 if (copy_to_user(optval, &val, len))
4765 return -EFAULT;
4766 return 0;
4771 * 7.1.1 SCTP_RTOINFO
4773 * The protocol parameters used to initialize and bound retransmission
4774 * timeout (RTO) are tunable. sctp_rtoinfo structure is used to access
4775 * and modify these parameters.
4776 * All parameters are time values, in milliseconds. A value of 0, when
4777 * modifying the parameters, indicates that the current value should not
4778 * be changed.
4781 static int sctp_getsockopt_rtoinfo(struct sock *sk, int len,
4782 char __user *optval,
4783 int __user *optlen) {
4784 struct sctp_rtoinfo rtoinfo;
4785 struct sctp_association *asoc;
4787 if (len < sizeof (struct sctp_rtoinfo))
4788 return -EINVAL;
4790 len = sizeof(struct sctp_rtoinfo);
4792 if (copy_from_user(&rtoinfo, optval, len))
4793 return -EFAULT;
4795 asoc = sctp_id2assoc(sk, rtoinfo.srto_assoc_id);
4797 if (!asoc && rtoinfo.srto_assoc_id && sctp_style(sk, UDP))
4798 return -EINVAL;
4800 /* Values corresponding to the specific association. */
4801 if (asoc) {
4802 rtoinfo.srto_initial = jiffies_to_msecs(asoc->rto_initial);
4803 rtoinfo.srto_max = jiffies_to_msecs(asoc->rto_max);
4804 rtoinfo.srto_min = jiffies_to_msecs(asoc->rto_min);
4805 } else {
4806 /* Values corresponding to the endpoint. */
4807 struct sctp_sock *sp = sctp_sk(sk);
4809 rtoinfo.srto_initial = sp->rtoinfo.srto_initial;
4810 rtoinfo.srto_max = sp->rtoinfo.srto_max;
4811 rtoinfo.srto_min = sp->rtoinfo.srto_min;
4814 if (put_user(len, optlen))
4815 return -EFAULT;
4817 if (copy_to_user(optval, &rtoinfo, len))
4818 return -EFAULT;
4820 return 0;
4825 * 7.1.2 SCTP_ASSOCINFO
4827 * This option is used to tune the maximum retransmission attempts
4828 * of the association.
4829 * Returns an error if the new association retransmission value is
4830 * greater than the sum of the retransmission value of the peer.
4831 * See [SCTP] for more information.
4834 static int sctp_getsockopt_associnfo(struct sock *sk, int len,
4835 char __user *optval,
4836 int __user *optlen)
4839 struct sctp_assocparams assocparams;
4840 struct sctp_association *asoc;
4841 struct list_head *pos;
4842 int cnt = 0;
4844 if (len < sizeof (struct sctp_assocparams))
4845 return -EINVAL;
4847 len = sizeof(struct sctp_assocparams);
4849 if (copy_from_user(&assocparams, optval, len))
4850 return -EFAULT;
4852 asoc = sctp_id2assoc(sk, assocparams.sasoc_assoc_id);
4854 if (!asoc && assocparams.sasoc_assoc_id && sctp_style(sk, UDP))
4855 return -EINVAL;
4857 /* Values correspoinding to the specific association */
4858 if (asoc) {
4859 assocparams.sasoc_asocmaxrxt = asoc->max_retrans;
4860 assocparams.sasoc_peer_rwnd = asoc->peer.rwnd;
4861 assocparams.sasoc_local_rwnd = asoc->a_rwnd;
4862 assocparams.sasoc_cookie_life = (asoc->cookie_life.tv_sec
4863 * 1000) +
4864 (asoc->cookie_life.tv_usec
4865 / 1000);
4867 list_for_each(pos, &asoc->peer.transport_addr_list) {
4868 cnt ++;
4871 assocparams.sasoc_number_peer_destinations = cnt;
4872 } else {
4873 /* Values corresponding to the endpoint */
4874 struct sctp_sock *sp = sctp_sk(sk);
4876 assocparams.sasoc_asocmaxrxt = sp->assocparams.sasoc_asocmaxrxt;
4877 assocparams.sasoc_peer_rwnd = sp->assocparams.sasoc_peer_rwnd;
4878 assocparams.sasoc_local_rwnd = sp->assocparams.sasoc_local_rwnd;
4879 assocparams.sasoc_cookie_life =
4880 sp->assocparams.sasoc_cookie_life;
4881 assocparams.sasoc_number_peer_destinations =
4882 sp->assocparams.
4883 sasoc_number_peer_destinations;
4886 if (put_user(len, optlen))
4887 return -EFAULT;
4889 if (copy_to_user(optval, &assocparams, len))
4890 return -EFAULT;
4892 return 0;
4896 * 7.1.16 Set/clear IPv4 mapped addresses (SCTP_I_WANT_MAPPED_V4_ADDR)
4898 * This socket option is a boolean flag which turns on or off mapped V4
4899 * addresses. If this option is turned on and the socket is type
4900 * PF_INET6, then IPv4 addresses will be mapped to V6 representation.
4901 * If this option is turned off, then no mapping will be done of V4
4902 * addresses and a user will receive both PF_INET6 and PF_INET type
4903 * addresses on the socket.
4905 static int sctp_getsockopt_mappedv4(struct sock *sk, int len,
4906 char __user *optval, int __user *optlen)
4908 int val;
4909 struct sctp_sock *sp = sctp_sk(sk);
4911 if (len < sizeof(int))
4912 return -EINVAL;
4914 len = sizeof(int);
4915 val = sp->v4mapped;
4916 if (put_user(len, optlen))
4917 return -EFAULT;
4918 if (copy_to_user(optval, &val, len))
4919 return -EFAULT;
4921 return 0;
4925 * 7.1.29. Set or Get the default context (SCTP_CONTEXT)
4926 * (chapter and verse is quoted at sctp_setsockopt_context())
4928 static int sctp_getsockopt_context(struct sock *sk, int len,
4929 char __user *optval, int __user *optlen)
4931 struct sctp_assoc_value params;
4932 struct sctp_sock *sp;
4933 struct sctp_association *asoc;
4935 if (len < sizeof(struct sctp_assoc_value))
4936 return -EINVAL;
4938 len = sizeof(struct sctp_assoc_value);
4940 if (copy_from_user(&params, optval, len))
4941 return -EFAULT;
4943 sp = sctp_sk(sk);
4945 if (params.assoc_id != 0) {
4946 asoc = sctp_id2assoc(sk, params.assoc_id);
4947 if (!asoc)
4948 return -EINVAL;
4949 params.assoc_value = asoc->default_rcv_context;
4950 } else {
4951 params.assoc_value = sp->default_rcv_context;
4954 if (put_user(len, optlen))
4955 return -EFAULT;
4956 if (copy_to_user(optval, &params, len))
4957 return -EFAULT;
4959 return 0;
4963 * 8.1.16. Get or Set the Maximum Fragmentation Size (SCTP_MAXSEG)
4964 * This option will get or set the maximum size to put in any outgoing
4965 * SCTP DATA chunk. If a message is larger than this size it will be
4966 * fragmented by SCTP into the specified size. Note that the underlying
4967 * SCTP implementation may fragment into smaller sized chunks when the
4968 * PMTU of the underlying association is smaller than the value set by
4969 * the user. The default value for this option is '0' which indicates
4970 * the user is NOT limiting fragmentation and only the PMTU will effect
4971 * SCTP's choice of DATA chunk size. Note also that values set larger
4972 * than the maximum size of an IP datagram will effectively let SCTP
4973 * control fragmentation (i.e. the same as setting this option to 0).
4975 * The following structure is used to access and modify this parameter:
4977 * struct sctp_assoc_value {
4978 * sctp_assoc_t assoc_id;
4979 * uint32_t assoc_value;
4980 * };
4982 * assoc_id: This parameter is ignored for one-to-one style sockets.
4983 * For one-to-many style sockets this parameter indicates which
4984 * association the user is performing an action upon. Note that if
4985 * this field's value is zero then the endpoints default value is
4986 * changed (effecting future associations only).
4987 * assoc_value: This parameter specifies the maximum size in bytes.
4989 static int sctp_getsockopt_maxseg(struct sock *sk, int len,
4990 char __user *optval, int __user *optlen)
4992 struct sctp_assoc_value params;
4993 struct sctp_association *asoc;
4995 if (len == sizeof(int)) {
4996 pr_warn("Use of int in maxseg socket option deprecated\n");
4997 pr_warn("Use struct sctp_assoc_value instead\n");
4998 params.assoc_id = 0;
4999 } else if (len >= sizeof(struct sctp_assoc_value)) {
5000 len = sizeof(struct sctp_assoc_value);
5001 if (copy_from_user(&params, optval, sizeof(params)))
5002 return -EFAULT;
5003 } else
5004 return -EINVAL;
5006 asoc = sctp_id2assoc(sk, params.assoc_id);
5007 if (!asoc && params.assoc_id && sctp_style(sk, UDP))
5008 return -EINVAL;
5010 if (asoc)
5011 params.assoc_value = asoc->frag_point;
5012 else
5013 params.assoc_value = sctp_sk(sk)->user_frag;
5015 if (put_user(len, optlen))
5016 return -EFAULT;
5017 if (len == sizeof(int)) {
5018 if (copy_to_user(optval, &params.assoc_value, len))
5019 return -EFAULT;
5020 } else {
5021 if (copy_to_user(optval, &params, len))
5022 return -EFAULT;
5025 return 0;
5029 * 7.1.24. Get or set fragmented interleave (SCTP_FRAGMENT_INTERLEAVE)
5030 * (chapter and verse is quoted at sctp_setsockopt_fragment_interleave())
5032 static int sctp_getsockopt_fragment_interleave(struct sock *sk, int len,
5033 char __user *optval, int __user *optlen)
5035 int val;
5037 if (len < sizeof(int))
5038 return -EINVAL;
5040 len = sizeof(int);
5042 val = sctp_sk(sk)->frag_interleave;
5043 if (put_user(len, optlen))
5044 return -EFAULT;
5045 if (copy_to_user(optval, &val, len))
5046 return -EFAULT;
5048 return 0;
5052 * 7.1.25. Set or Get the sctp partial delivery point
5053 * (chapter and verse is quoted at sctp_setsockopt_partial_delivery_point())
5055 static int sctp_getsockopt_partial_delivery_point(struct sock *sk, int len,
5056 char __user *optval,
5057 int __user *optlen)
5059 u32 val;
5061 if (len < sizeof(u32))
5062 return -EINVAL;
5064 len = sizeof(u32);
5066 val = sctp_sk(sk)->pd_point;
5067 if (put_user(len, optlen))
5068 return -EFAULT;
5069 if (copy_to_user(optval, &val, len))
5070 return -EFAULT;
5072 return 0;
5076 * 7.1.28. Set or Get the maximum burst (SCTP_MAX_BURST)
5077 * (chapter and verse is quoted at sctp_setsockopt_maxburst())
5079 static int sctp_getsockopt_maxburst(struct sock *sk, int len,
5080 char __user *optval,
5081 int __user *optlen)
5083 struct sctp_assoc_value params;
5084 struct sctp_sock *sp;
5085 struct sctp_association *asoc;
5087 if (len == sizeof(int)) {
5088 pr_warn("Use of int in max_burst socket option deprecated\n");
5089 pr_warn("Use struct sctp_assoc_value instead\n");
5090 params.assoc_id = 0;
5091 } else if (len >= sizeof(struct sctp_assoc_value)) {
5092 len = sizeof(struct sctp_assoc_value);
5093 if (copy_from_user(&params, optval, len))
5094 return -EFAULT;
5095 } else
5096 return -EINVAL;
5098 sp = sctp_sk(sk);
5100 if (params.assoc_id != 0) {
5101 asoc = sctp_id2assoc(sk, params.assoc_id);
5102 if (!asoc)
5103 return -EINVAL;
5104 params.assoc_value = asoc->max_burst;
5105 } else
5106 params.assoc_value = sp->max_burst;
5108 if (len == sizeof(int)) {
5109 if (copy_to_user(optval, &params.assoc_value, len))
5110 return -EFAULT;
5111 } else {
5112 if (copy_to_user(optval, &params, len))
5113 return -EFAULT;
5116 return 0;
5120 static int sctp_getsockopt_hmac_ident(struct sock *sk, int len,
5121 char __user *optval, int __user *optlen)
5123 struct sctp_hmacalgo __user *p = (void __user *)optval;
5124 struct sctp_hmac_algo_param *hmacs;
5125 __u16 data_len = 0;
5126 u32 num_idents;
5128 if (!sctp_auth_enable)
5129 return -EACCES;
5131 hmacs = sctp_sk(sk)->ep->auth_hmacs_list;
5132 data_len = ntohs(hmacs->param_hdr.length) - sizeof(sctp_paramhdr_t);
5134 if (len < sizeof(struct sctp_hmacalgo) + data_len)
5135 return -EINVAL;
5137 len = sizeof(struct sctp_hmacalgo) + data_len;
5138 num_idents = data_len / sizeof(u16);
5140 if (put_user(len, optlen))
5141 return -EFAULT;
5142 if (put_user(num_idents, &p->shmac_num_idents))
5143 return -EFAULT;
5144 if (copy_to_user(p->shmac_idents, hmacs->hmac_ids, data_len))
5145 return -EFAULT;
5146 return 0;
5149 static int sctp_getsockopt_active_key(struct sock *sk, int len,
5150 char __user *optval, int __user *optlen)
5152 struct sctp_authkeyid val;
5153 struct sctp_association *asoc;
5155 if (!sctp_auth_enable)
5156 return -EACCES;
5158 if (len < sizeof(struct sctp_authkeyid))
5159 return -EINVAL;
5160 if (copy_from_user(&val, optval, sizeof(struct sctp_authkeyid)))
5161 return -EFAULT;
5163 asoc = sctp_id2assoc(sk, val.scact_assoc_id);
5164 if (!asoc && val.scact_assoc_id && sctp_style(sk, UDP))
5165 return -EINVAL;
5167 if (asoc)
5168 val.scact_keynumber = asoc->active_key_id;
5169 else
5170 val.scact_keynumber = sctp_sk(sk)->ep->active_key_id;
5172 len = sizeof(struct sctp_authkeyid);
5173 if (put_user(len, optlen))
5174 return -EFAULT;
5175 if (copy_to_user(optval, &val, len))
5176 return -EFAULT;
5178 return 0;
5181 static int sctp_getsockopt_peer_auth_chunks(struct sock *sk, int len,
5182 char __user *optval, int __user *optlen)
5184 struct sctp_authchunks __user *p = (void __user *)optval;
5185 struct sctp_authchunks val;
5186 struct sctp_association *asoc;
5187 struct sctp_chunks_param *ch;
5188 u32 num_chunks = 0;
5189 char __user *to;
5191 if (!sctp_auth_enable)
5192 return -EACCES;
5194 if (len < sizeof(struct sctp_authchunks))
5195 return -EINVAL;
5197 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5198 return -EFAULT;
5200 to = p->gauth_chunks;
5201 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5202 if (!asoc)
5203 return -EINVAL;
5205 ch = asoc->peer.peer_chunks;
5206 if (!ch)
5207 goto num;
5209 /* See if the user provided enough room for all the data */
5210 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5211 if (len < num_chunks)
5212 return -EINVAL;
5214 if (copy_to_user(to, ch->chunks, num_chunks))
5215 return -EFAULT;
5216 num:
5217 len = sizeof(struct sctp_authchunks) + num_chunks;
5218 if (put_user(len, optlen)) return -EFAULT;
5219 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5220 return -EFAULT;
5221 return 0;
5224 static int sctp_getsockopt_local_auth_chunks(struct sock *sk, int len,
5225 char __user *optval, int __user *optlen)
5227 struct sctp_authchunks __user *p = (void __user *)optval;
5228 struct sctp_authchunks val;
5229 struct sctp_association *asoc;
5230 struct sctp_chunks_param *ch;
5231 u32 num_chunks = 0;
5232 char __user *to;
5234 if (!sctp_auth_enable)
5235 return -EACCES;
5237 if (len < sizeof(struct sctp_authchunks))
5238 return -EINVAL;
5240 if (copy_from_user(&val, optval, sizeof(struct sctp_authchunks)))
5241 return -EFAULT;
5243 to = p->gauth_chunks;
5244 asoc = sctp_id2assoc(sk, val.gauth_assoc_id);
5245 if (!asoc && val.gauth_assoc_id && sctp_style(sk, UDP))
5246 return -EINVAL;
5248 if (asoc)
5249 ch = (struct sctp_chunks_param*)asoc->c.auth_chunks;
5250 else
5251 ch = sctp_sk(sk)->ep->auth_chunk_list;
5253 if (!ch)
5254 goto num;
5256 num_chunks = ntohs(ch->param_hdr.length) - sizeof(sctp_paramhdr_t);
5257 if (len < sizeof(struct sctp_authchunks) + num_chunks)
5258 return -EINVAL;
5260 if (copy_to_user(to, ch->chunks, num_chunks))
5261 return -EFAULT;
5262 num:
5263 len = sizeof(struct sctp_authchunks) + num_chunks;
5264 if (put_user(len, optlen))
5265 return -EFAULT;
5266 if (put_user(num_chunks, &p->gauth_number_of_chunks))
5267 return -EFAULT;
5269 return 0;
5273 * 8.2.5. Get the Current Number of Associations (SCTP_GET_ASSOC_NUMBER)
5274 * This option gets the current number of associations that are attached
5275 * to a one-to-many style socket. The option value is an uint32_t.
5277 static int sctp_getsockopt_assoc_number(struct sock *sk, int len,
5278 char __user *optval, int __user *optlen)
5280 struct sctp_sock *sp = sctp_sk(sk);
5281 struct sctp_association *asoc;
5282 u32 val = 0;
5284 if (sctp_style(sk, TCP))
5285 return -EOPNOTSUPP;
5287 if (len < sizeof(u32))
5288 return -EINVAL;
5290 len = sizeof(u32);
5292 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5293 val++;
5296 if (put_user(len, optlen))
5297 return -EFAULT;
5298 if (copy_to_user(optval, &val, len))
5299 return -EFAULT;
5301 return 0;
5305 * 8.2.6. Get the Current Identifiers of Associations
5306 * (SCTP_GET_ASSOC_ID_LIST)
5308 * This option gets the current list of SCTP association identifiers of
5309 * the SCTP associations handled by a one-to-many style socket.
5311 static int sctp_getsockopt_assoc_ids(struct sock *sk, int len,
5312 char __user *optval, int __user *optlen)
5314 struct sctp_sock *sp = sctp_sk(sk);
5315 struct sctp_association *asoc;
5316 struct sctp_assoc_ids *ids;
5317 u32 num = 0;
5319 if (sctp_style(sk, TCP))
5320 return -EOPNOTSUPP;
5322 if (len < sizeof(struct sctp_assoc_ids))
5323 return -EINVAL;
5325 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5326 num++;
5329 if (len < sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num)
5330 return -EINVAL;
5332 len = sizeof(struct sctp_assoc_ids) + sizeof(sctp_assoc_t) * num;
5334 ids = kmalloc(len, GFP_KERNEL);
5335 if (unlikely(!ids))
5336 return -ENOMEM;
5338 ids->gaids_number_of_ids = num;
5339 num = 0;
5340 list_for_each_entry(asoc, &(sp->ep->asocs), asocs) {
5341 ids->gaids_assoc_id[num++] = asoc->assoc_id;
5344 if (put_user(len, optlen) || copy_to_user(optval, ids, len)) {
5345 kfree(ids);
5346 return -EFAULT;
5349 kfree(ids);
5350 return 0;
5353 SCTP_STATIC int sctp_getsockopt(struct sock *sk, int level, int optname,
5354 char __user *optval, int __user *optlen)
5356 int retval = 0;
5357 int len;
5359 SCTP_DEBUG_PRINTK("sctp_getsockopt(sk: %p... optname: %d)\n",
5360 sk, optname);
5362 /* I can hardly begin to describe how wrong this is. This is
5363 * so broken as to be worse than useless. The API draft
5364 * REALLY is NOT helpful here... I am not convinced that the
5365 * semantics of getsockopt() with a level OTHER THAN SOL_SCTP
5366 * are at all well-founded.
5368 if (level != SOL_SCTP) {
5369 struct sctp_af *af = sctp_sk(sk)->pf->af;
5371 retval = af->getsockopt(sk, level, optname, optval, optlen);
5372 return retval;
5375 if (get_user(len, optlen))
5376 return -EFAULT;
5378 sctp_lock_sock(sk);
5380 switch (optname) {
5381 case SCTP_STATUS:
5382 retval = sctp_getsockopt_sctp_status(sk, len, optval, optlen);
5383 break;
5384 case SCTP_DISABLE_FRAGMENTS:
5385 retval = sctp_getsockopt_disable_fragments(sk, len, optval,
5386 optlen);
5387 break;
5388 case SCTP_EVENTS:
5389 retval = sctp_getsockopt_events(sk, len, optval, optlen);
5390 break;
5391 case SCTP_AUTOCLOSE:
5392 retval = sctp_getsockopt_autoclose(sk, len, optval, optlen);
5393 break;
5394 case SCTP_SOCKOPT_PEELOFF:
5395 retval = sctp_getsockopt_peeloff(sk, len, optval, optlen);
5396 break;
5397 case SCTP_PEER_ADDR_PARAMS:
5398 retval = sctp_getsockopt_peer_addr_params(sk, len, optval,
5399 optlen);
5400 break;
5401 case SCTP_DELAYED_SACK:
5402 retval = sctp_getsockopt_delayed_ack(sk, len, optval,
5403 optlen);
5404 break;
5405 case SCTP_INITMSG:
5406 retval = sctp_getsockopt_initmsg(sk, len, optval, optlen);
5407 break;
5408 case SCTP_GET_PEER_ADDRS:
5409 retval = sctp_getsockopt_peer_addrs(sk, len, optval,
5410 optlen);
5411 break;
5412 case SCTP_GET_LOCAL_ADDRS:
5413 retval = sctp_getsockopt_local_addrs(sk, len, optval,
5414 optlen);
5415 break;
5416 case SCTP_SOCKOPT_CONNECTX3:
5417 retval = sctp_getsockopt_connectx3(sk, len, optval, optlen);
5418 break;
5419 case SCTP_DEFAULT_SEND_PARAM:
5420 retval = sctp_getsockopt_default_send_param(sk, len,
5421 optval, optlen);
5422 break;
5423 case SCTP_PRIMARY_ADDR:
5424 retval = sctp_getsockopt_primary_addr(sk, len, optval, optlen);
5425 break;
5426 case SCTP_NODELAY:
5427 retval = sctp_getsockopt_nodelay(sk, len, optval, optlen);
5428 break;
5429 case SCTP_RTOINFO:
5430 retval = sctp_getsockopt_rtoinfo(sk, len, optval, optlen);
5431 break;
5432 case SCTP_ASSOCINFO:
5433 retval = sctp_getsockopt_associnfo(sk, len, optval, optlen);
5434 break;
5435 case SCTP_I_WANT_MAPPED_V4_ADDR:
5436 retval = sctp_getsockopt_mappedv4(sk, len, optval, optlen);
5437 break;
5438 case SCTP_MAXSEG:
5439 retval = sctp_getsockopt_maxseg(sk, len, optval, optlen);
5440 break;
5441 case SCTP_GET_PEER_ADDR_INFO:
5442 retval = sctp_getsockopt_peer_addr_info(sk, len, optval,
5443 optlen);
5444 break;
5445 case SCTP_ADAPTATION_LAYER:
5446 retval = sctp_getsockopt_adaptation_layer(sk, len, optval,
5447 optlen);
5448 break;
5449 case SCTP_CONTEXT:
5450 retval = sctp_getsockopt_context(sk, len, optval, optlen);
5451 break;
5452 case SCTP_FRAGMENT_INTERLEAVE:
5453 retval = sctp_getsockopt_fragment_interleave(sk, len, optval,
5454 optlen);
5455 break;
5456 case SCTP_PARTIAL_DELIVERY_POINT:
5457 retval = sctp_getsockopt_partial_delivery_point(sk, len, optval,
5458 optlen);
5459 break;
5460 case SCTP_MAX_BURST:
5461 retval = sctp_getsockopt_maxburst(sk, len, optval, optlen);
5462 break;
5463 case SCTP_AUTH_KEY:
5464 case SCTP_AUTH_CHUNK:
5465 case SCTP_AUTH_DELETE_KEY:
5466 retval = -EOPNOTSUPP;
5467 break;
5468 case SCTP_HMAC_IDENT:
5469 retval = sctp_getsockopt_hmac_ident(sk, len, optval, optlen);
5470 break;
5471 case SCTP_AUTH_ACTIVE_KEY:
5472 retval = sctp_getsockopt_active_key(sk, len, optval, optlen);
5473 break;
5474 case SCTP_PEER_AUTH_CHUNKS:
5475 retval = sctp_getsockopt_peer_auth_chunks(sk, len, optval,
5476 optlen);
5477 break;
5478 case SCTP_LOCAL_AUTH_CHUNKS:
5479 retval = sctp_getsockopt_local_auth_chunks(sk, len, optval,
5480 optlen);
5481 break;
5482 case SCTP_GET_ASSOC_NUMBER:
5483 retval = sctp_getsockopt_assoc_number(sk, len, optval, optlen);
5484 break;
5485 case SCTP_GET_ASSOC_ID_LIST:
5486 retval = sctp_getsockopt_assoc_ids(sk, len, optval, optlen);
5487 break;
5488 default:
5489 retval = -ENOPROTOOPT;
5490 break;
5493 sctp_release_sock(sk);
5494 return retval;
5497 static void sctp_hash(struct sock *sk)
5499 /* STUB */
5502 static void sctp_unhash(struct sock *sk)
5504 /* STUB */
5507 /* Check if port is acceptable. Possibly find first available port.
5509 * The port hash table (contained in the 'global' SCTP protocol storage
5510 * returned by struct sctp_protocol *sctp_get_protocol()). The hash
5511 * table is an array of 4096 lists (sctp_bind_hashbucket). Each
5512 * list (the list number is the port number hashed out, so as you
5513 * would expect from a hash function, all the ports in a given list have
5514 * such a number that hashes out to the same list number; you were
5515 * expecting that, right?); so each list has a set of ports, with a
5516 * link to the socket (struct sock) that uses it, the port number and
5517 * a fastreuse flag (FIXME: NPI ipg).
5519 static struct sctp_bind_bucket *sctp_bucket_create(
5520 struct sctp_bind_hashbucket *head, unsigned short snum);
5522 static long sctp_get_port_local(struct sock *sk, union sctp_addr *addr)
5524 struct sctp_bind_hashbucket *head; /* hash list */
5525 struct sctp_bind_bucket *pp; /* hash list port iterator */
5526 struct hlist_node *node;
5527 unsigned short snum;
5528 int ret;
5530 snum = ntohs(addr->v4.sin_port);
5532 SCTP_DEBUG_PRINTK("sctp_get_port() begins, snum=%d\n", snum);
5533 sctp_local_bh_disable();
5535 if (snum == 0) {
5536 /* Search for an available port. */
5537 int low, high, remaining, index;
5538 unsigned int rover;
5540 inet_get_local_port_range(&low, &high);
5541 remaining = (high - low) + 1;
5542 rover = net_random() % remaining + low;
5544 do {
5545 rover++;
5546 if ((rover < low) || (rover > high))
5547 rover = low;
5548 if (inet_is_reserved_local_port(rover))
5549 continue;
5550 index = sctp_phashfn(rover);
5551 head = &sctp_port_hashtable[index];
5552 sctp_spin_lock(&head->lock);
5553 sctp_for_each_hentry(pp, node, &head->chain)
5554 if (pp->port == rover)
5555 goto next;
5556 break;
5557 next:
5558 sctp_spin_unlock(&head->lock);
5559 } while (--remaining > 0);
5561 /* Exhausted local port range during search? */
5562 ret = 1;
5563 if (remaining <= 0)
5564 goto fail;
5566 /* OK, here is the one we will use. HEAD (the port
5567 * hash table list entry) is non-NULL and we hold it's
5568 * mutex.
5570 snum = rover;
5571 } else {
5572 /* We are given an specific port number; we verify
5573 * that it is not being used. If it is used, we will
5574 * exahust the search in the hash list corresponding
5575 * to the port number (snum) - we detect that with the
5576 * port iterator, pp being NULL.
5578 head = &sctp_port_hashtable[sctp_phashfn(snum)];
5579 sctp_spin_lock(&head->lock);
5580 sctp_for_each_hentry(pp, node, &head->chain) {
5581 if (pp->port == snum)
5582 goto pp_found;
5585 pp = NULL;
5586 goto pp_not_found;
5587 pp_found:
5588 if (!hlist_empty(&pp->owner)) {
5589 /* We had a port hash table hit - there is an
5590 * available port (pp != NULL) and it is being
5591 * used by other socket (pp->owner not empty); that other
5592 * socket is going to be sk2.
5594 int reuse = sk->sk_reuse;
5595 struct sock *sk2;
5597 SCTP_DEBUG_PRINTK("sctp_get_port() found a possible match\n");
5598 if (pp->fastreuse && sk->sk_reuse &&
5599 sk->sk_state != SCTP_SS_LISTENING)
5600 goto success;
5602 /* Run through the list of sockets bound to the port
5603 * (pp->port) [via the pointers bind_next and
5604 * bind_pprev in the struct sock *sk2 (pp->sk)]. On each one,
5605 * we get the endpoint they describe and run through
5606 * the endpoint's list of IP (v4 or v6) addresses,
5607 * comparing each of the addresses with the address of
5608 * the socket sk. If we find a match, then that means
5609 * that this port/socket (sk) combination are already
5610 * in an endpoint.
5612 sk_for_each_bound(sk2, node, &pp->owner) {
5613 struct sctp_endpoint *ep2;
5614 ep2 = sctp_sk(sk2)->ep;
5616 if (sk == sk2 ||
5617 (reuse && sk2->sk_reuse &&
5618 sk2->sk_state != SCTP_SS_LISTENING))
5619 continue;
5621 if (sctp_bind_addr_conflict(&ep2->base.bind_addr, addr,
5622 sctp_sk(sk2), sctp_sk(sk))) {
5623 ret = (long)sk2;
5624 goto fail_unlock;
5627 SCTP_DEBUG_PRINTK("sctp_get_port(): Found a match\n");
5629 pp_not_found:
5630 /* If there was a hash table miss, create a new port. */
5631 ret = 1;
5632 if (!pp && !(pp = sctp_bucket_create(head, snum)))
5633 goto fail_unlock;
5635 /* In either case (hit or miss), make sure fastreuse is 1 only
5636 * if sk->sk_reuse is too (that is, if the caller requested
5637 * SO_REUSEADDR on this socket -sk-).
5639 if (hlist_empty(&pp->owner)) {
5640 if (sk->sk_reuse && sk->sk_state != SCTP_SS_LISTENING)
5641 pp->fastreuse = 1;
5642 else
5643 pp->fastreuse = 0;
5644 } else if (pp->fastreuse &&
5645 (!sk->sk_reuse || sk->sk_state == SCTP_SS_LISTENING))
5646 pp->fastreuse = 0;
5648 /* We are set, so fill up all the data in the hash table
5649 * entry, tie the socket list information with the rest of the
5650 * sockets FIXME: Blurry, NPI (ipg).
5652 success:
5653 if (!sctp_sk(sk)->bind_hash) {
5654 inet_sk(sk)->inet_num = snum;
5655 sk_add_bind_node(sk, &pp->owner);
5656 sctp_sk(sk)->bind_hash = pp;
5658 ret = 0;
5660 fail_unlock:
5661 sctp_spin_unlock(&head->lock);
5663 fail:
5664 sctp_local_bh_enable();
5665 return ret;
5668 /* Assign a 'snum' port to the socket. If snum == 0, an ephemeral
5669 * port is requested.
5671 static int sctp_get_port(struct sock *sk, unsigned short snum)
5673 long ret;
5674 union sctp_addr addr;
5675 struct sctp_af *af = sctp_sk(sk)->pf->af;
5677 /* Set up a dummy address struct from the sk. */
5678 af->from_sk(&addr, sk);
5679 addr.v4.sin_port = htons(snum);
5681 /* Note: sk->sk_num gets filled in if ephemeral port request. */
5682 ret = sctp_get_port_local(sk, &addr);
5684 return ret ? 1 : 0;
5688 * Move a socket to LISTENING state.
5690 SCTP_STATIC int sctp_listen_start(struct sock *sk, int backlog)
5692 struct sctp_sock *sp = sctp_sk(sk);
5693 struct sctp_endpoint *ep = sp->ep;
5694 struct crypto_hash *tfm = NULL;
5696 /* Allocate HMAC for generating cookie. */
5697 if (!sctp_sk(sk)->hmac && sctp_hmac_alg) {
5698 tfm = crypto_alloc_hash(sctp_hmac_alg, 0, CRYPTO_ALG_ASYNC);
5699 if (IS_ERR(tfm)) {
5700 if (net_ratelimit()) {
5701 pr_info("failed to load transform for %s: %ld\n",
5702 sctp_hmac_alg, PTR_ERR(tfm));
5704 return -ENOSYS;
5706 sctp_sk(sk)->hmac = tfm;
5710 * If a bind() or sctp_bindx() is not called prior to a listen()
5711 * call that allows new associations to be accepted, the system
5712 * picks an ephemeral port and will choose an address set equivalent
5713 * to binding with a wildcard address.
5715 * This is not currently spelled out in the SCTP sockets
5716 * extensions draft, but follows the practice as seen in TCP
5717 * sockets.
5720 sk->sk_state = SCTP_SS_LISTENING;
5721 if (!ep->base.bind_addr.port) {
5722 if (sctp_autobind(sk))
5723 return -EAGAIN;
5724 } else {
5725 if (sctp_get_port(sk, inet_sk(sk)->inet_num)) {
5726 sk->sk_state = SCTP_SS_CLOSED;
5727 return -EADDRINUSE;
5731 sk->sk_max_ack_backlog = backlog;
5732 sctp_hash_endpoint(ep);
5733 return 0;
5737 * 4.1.3 / 5.1.3 listen()
5739 * By default, new associations are not accepted for UDP style sockets.
5740 * An application uses listen() to mark a socket as being able to
5741 * accept new associations.
5743 * On TCP style sockets, applications use listen() to ready the SCTP
5744 * endpoint for accepting inbound associations.
5746 * On both types of endpoints a backlog of '0' disables listening.
5748 * Move a socket to LISTENING state.
5750 int sctp_inet_listen(struct socket *sock, int backlog)
5752 struct sock *sk = sock->sk;
5753 struct sctp_endpoint *ep = sctp_sk(sk)->ep;
5754 int err = -EINVAL;
5756 if (unlikely(backlog < 0))
5757 return err;
5759 sctp_lock_sock(sk);
5761 /* Peeled-off sockets are not allowed to listen(). */
5762 if (sctp_style(sk, UDP_HIGH_BANDWIDTH))
5763 goto out;
5765 if (sock->state != SS_UNCONNECTED)
5766 goto out;
5768 /* If backlog is zero, disable listening. */
5769 if (!backlog) {
5770 if (sctp_sstate(sk, CLOSED))
5771 goto out;
5773 err = 0;
5774 sctp_unhash_endpoint(ep);
5775 sk->sk_state = SCTP_SS_CLOSED;
5776 if (sk->sk_reuse)
5777 sctp_sk(sk)->bind_hash->fastreuse = 1;
5778 goto out;
5781 /* If we are already listening, just update the backlog */
5782 if (sctp_sstate(sk, LISTENING))
5783 sk->sk_max_ack_backlog = backlog;
5784 else {
5785 err = sctp_listen_start(sk, backlog);
5786 if (err)
5787 goto out;
5790 err = 0;
5791 out:
5792 sctp_release_sock(sk);
5793 return err;
5797 * This function is done by modeling the current datagram_poll() and the
5798 * tcp_poll(). Note that, based on these implementations, we don't
5799 * lock the socket in this function, even though it seems that,
5800 * ideally, locking or some other mechanisms can be used to ensure
5801 * the integrity of the counters (sndbuf and wmem_alloc) used
5802 * in this place. We assume that we don't need locks either until proven
5803 * otherwise.
5805 * Another thing to note is that we include the Async I/O support
5806 * here, again, by modeling the current TCP/UDP code. We don't have
5807 * a good way to test with it yet.
5809 unsigned int sctp_poll(struct file *file, struct socket *sock, poll_table *wait)
5811 struct sock *sk = sock->sk;
5812 struct sctp_sock *sp = sctp_sk(sk);
5813 unsigned int mask;
5815 poll_wait(file, sk_sleep(sk), wait);
5817 /* A TCP-style listening socket becomes readable when the accept queue
5818 * is not empty.
5820 if (sctp_style(sk, TCP) && sctp_sstate(sk, LISTENING))
5821 return (!list_empty(&sp->ep->asocs)) ?
5822 (POLLIN | POLLRDNORM) : 0;
5824 mask = 0;
5826 /* Is there any exceptional events? */
5827 if (sk->sk_err || !skb_queue_empty(&sk->sk_error_queue))
5828 mask |= POLLERR;
5829 if (sk->sk_shutdown & RCV_SHUTDOWN)
5830 mask |= POLLRDHUP | POLLIN | POLLRDNORM;
5831 if (sk->sk_shutdown == SHUTDOWN_MASK)
5832 mask |= POLLHUP;
5834 /* Is it readable? Reconsider this code with TCP-style support. */
5835 if (!skb_queue_empty(&sk->sk_receive_queue))
5836 mask |= POLLIN | POLLRDNORM;
5838 /* The association is either gone or not ready. */
5839 if (!sctp_style(sk, UDP) && sctp_sstate(sk, CLOSED))
5840 return mask;
5842 /* Is it writable? */
5843 if (sctp_writeable(sk)) {
5844 mask |= POLLOUT | POLLWRNORM;
5845 } else {
5846 set_bit(SOCK_ASYNC_NOSPACE, &sk->sk_socket->flags);
5848 * Since the socket is not locked, the buffer
5849 * might be made available after the writeable check and
5850 * before the bit is set. This could cause a lost I/O
5851 * signal. tcp_poll() has a race breaker for this race
5852 * condition. Based on their implementation, we put
5853 * in the following code to cover it as well.
5855 if (sctp_writeable(sk))
5856 mask |= POLLOUT | POLLWRNORM;
5858 return mask;
5861 /********************************************************************
5862 * 2nd Level Abstractions
5863 ********************************************************************/
5865 static struct sctp_bind_bucket *sctp_bucket_create(
5866 struct sctp_bind_hashbucket *head, unsigned short snum)
5868 struct sctp_bind_bucket *pp;
5870 pp = kmem_cache_alloc(sctp_bucket_cachep, GFP_ATOMIC);
5871 if (pp) {
5872 SCTP_DBG_OBJCNT_INC(bind_bucket);
5873 pp->port = snum;
5874 pp->fastreuse = 0;
5875 INIT_HLIST_HEAD(&pp->owner);
5876 hlist_add_head(&pp->node, &head->chain);
5878 return pp;
5881 /* Caller must hold hashbucket lock for this tb with local BH disabled */
5882 static void sctp_bucket_destroy(struct sctp_bind_bucket *pp)
5884 if (pp && hlist_empty(&pp->owner)) {
5885 __hlist_del(&pp->node);
5886 kmem_cache_free(sctp_bucket_cachep, pp);
5887 SCTP_DBG_OBJCNT_DEC(bind_bucket);
5891 /* Release this socket's reference to a local port. */
5892 static inline void __sctp_put_port(struct sock *sk)
5894 struct sctp_bind_hashbucket *head =
5895 &sctp_port_hashtable[sctp_phashfn(inet_sk(sk)->inet_num)];
5896 struct sctp_bind_bucket *pp;
5898 sctp_spin_lock(&head->lock);
5899 pp = sctp_sk(sk)->bind_hash;
5900 __sk_del_bind_node(sk);
5901 sctp_sk(sk)->bind_hash = NULL;
5902 inet_sk(sk)->inet_num = 0;
5903 sctp_bucket_destroy(pp);
5904 sctp_spin_unlock(&head->lock);
5907 void sctp_put_port(struct sock *sk)
5909 sctp_local_bh_disable();
5910 __sctp_put_port(sk);
5911 sctp_local_bh_enable();
5915 * The system picks an ephemeral port and choose an address set equivalent
5916 * to binding with a wildcard address.
5917 * One of those addresses will be the primary address for the association.
5918 * This automatically enables the multihoming capability of SCTP.
5920 static int sctp_autobind(struct sock *sk)
5922 union sctp_addr autoaddr;
5923 struct sctp_af *af;
5924 __be16 port;
5926 /* Initialize a local sockaddr structure to INADDR_ANY. */
5927 af = sctp_sk(sk)->pf->af;
5929 port = htons(inet_sk(sk)->inet_num);
5930 af->inaddr_any(&autoaddr, port);
5932 return sctp_do_bind(sk, &autoaddr, af->sockaddr_len);
5935 /* Parse out IPPROTO_SCTP CMSG headers. Perform only minimal validation.
5937 * From RFC 2292
5938 * 4.2 The cmsghdr Structure *
5940 * When ancillary data is sent or received, any number of ancillary data
5941 * objects can be specified by the msg_control and msg_controllen members of
5942 * the msghdr structure, because each object is preceded by
5943 * a cmsghdr structure defining the object's length (the cmsg_len member).
5944 * Historically Berkeley-derived implementations have passed only one object
5945 * at a time, but this API allows multiple objects to be
5946 * passed in a single call to sendmsg() or recvmsg(). The following example
5947 * shows two ancillary data objects in a control buffer.
5949 * |<--------------------------- msg_controllen -------------------------->|
5950 * | |
5952 * |<----- ancillary data object ----->|<----- ancillary data object ----->|
5954 * |<---------- CMSG_SPACE() --------->|<---------- CMSG_SPACE() --------->|
5955 * | | |
5957 * |<---------- cmsg_len ---------->| |<--------- cmsg_len ----------->| |
5959 * |<--------- CMSG_LEN() --------->| |<-------- CMSG_LEN() ---------->| |
5960 * | | | | |
5962 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5963 * |cmsg_|cmsg_|cmsg_|XX| |XX|cmsg_|cmsg_|cmsg_|XX| |XX|
5965 * |len |level|type |XX|cmsg_data[]|XX|len |level|type |XX|cmsg_data[]|XX|
5967 * +-----+-----+-----+--+-----------+--+-----+-----+-----+--+-----------+--+
5971 * msg_control
5972 * points here
5974 SCTP_STATIC int sctp_msghdr_parse(const struct msghdr *msg,
5975 sctp_cmsgs_t *cmsgs)
5977 struct cmsghdr *cmsg;
5978 struct msghdr *my_msg = (struct msghdr *)msg;
5980 for (cmsg = CMSG_FIRSTHDR(msg);
5981 cmsg != NULL;
5982 cmsg = CMSG_NXTHDR(my_msg, cmsg)) {
5983 if (!CMSG_OK(my_msg, cmsg))
5984 return -EINVAL;
5986 /* Should we parse this header or ignore? */
5987 if (cmsg->cmsg_level != IPPROTO_SCTP)
5988 continue;
5990 /* Strictly check lengths following example in SCM code. */
5991 switch (cmsg->cmsg_type) {
5992 case SCTP_INIT:
5993 /* SCTP Socket API Extension
5994 * 5.2.1 SCTP Initiation Structure (SCTP_INIT)
5996 * This cmsghdr structure provides information for
5997 * initializing new SCTP associations with sendmsg().
5998 * The SCTP_INITMSG socket option uses this same data
5999 * structure. This structure is not used for
6000 * recvmsg().
6002 * cmsg_level cmsg_type cmsg_data[]
6003 * ------------ ------------ ----------------------
6004 * IPPROTO_SCTP SCTP_INIT struct sctp_initmsg
6006 if (cmsg->cmsg_len !=
6007 CMSG_LEN(sizeof(struct sctp_initmsg)))
6008 return -EINVAL;
6009 cmsgs->init = (struct sctp_initmsg *)CMSG_DATA(cmsg);
6010 break;
6012 case SCTP_SNDRCV:
6013 /* SCTP Socket API Extension
6014 * 5.2.2 SCTP Header Information Structure(SCTP_SNDRCV)
6016 * This cmsghdr structure specifies SCTP options for
6017 * sendmsg() and describes SCTP header information
6018 * about a received message through recvmsg().
6020 * cmsg_level cmsg_type cmsg_data[]
6021 * ------------ ------------ ----------------------
6022 * IPPROTO_SCTP SCTP_SNDRCV struct sctp_sndrcvinfo
6024 if (cmsg->cmsg_len !=
6025 CMSG_LEN(sizeof(struct sctp_sndrcvinfo)))
6026 return -EINVAL;
6028 cmsgs->info =
6029 (struct sctp_sndrcvinfo *)CMSG_DATA(cmsg);
6031 /* Minimally, validate the sinfo_flags. */
6032 if (cmsgs->info->sinfo_flags &
6033 ~(SCTP_UNORDERED | SCTP_ADDR_OVER |
6034 SCTP_ABORT | SCTP_EOF))
6035 return -EINVAL;
6036 break;
6038 default:
6039 return -EINVAL;
6042 return 0;
6046 * Wait for a packet..
6047 * Note: This function is the same function as in core/datagram.c
6048 * with a few modifications to make lksctp work.
6050 static int sctp_wait_for_packet(struct sock * sk, int *err, long *timeo_p)
6052 int error;
6053 DEFINE_WAIT(wait);
6055 prepare_to_wait_exclusive(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6057 /* Socket errors? */
6058 error = sock_error(sk);
6059 if (error)
6060 goto out;
6062 if (!skb_queue_empty(&sk->sk_receive_queue))
6063 goto ready;
6065 /* Socket shut down? */
6066 if (sk->sk_shutdown & RCV_SHUTDOWN)
6067 goto out;
6069 /* Sequenced packets can come disconnected. If so we report the
6070 * problem.
6072 error = -ENOTCONN;
6074 /* Is there a good reason to think that we may receive some data? */
6075 if (list_empty(&sctp_sk(sk)->ep->asocs) && !sctp_sstate(sk, LISTENING))
6076 goto out;
6078 /* Handle signals. */
6079 if (signal_pending(current))
6080 goto interrupted;
6082 /* Let another process have a go. Since we are going to sleep
6083 * anyway. Note: This may cause odd behaviors if the message
6084 * does not fit in the user's buffer, but this seems to be the
6085 * only way to honor MSG_DONTWAIT realistically.
6087 sctp_release_sock(sk);
6088 *timeo_p = schedule_timeout(*timeo_p);
6089 sctp_lock_sock(sk);
6091 ready:
6092 finish_wait(sk_sleep(sk), &wait);
6093 return 0;
6095 interrupted:
6096 error = sock_intr_errno(*timeo_p);
6098 out:
6099 finish_wait(sk_sleep(sk), &wait);
6100 *err = error;
6101 return error;
6104 /* Receive a datagram.
6105 * Note: This is pretty much the same routine as in core/datagram.c
6106 * with a few changes to make lksctp work.
6108 static struct sk_buff *sctp_skb_recv_datagram(struct sock *sk, int flags,
6109 int noblock, int *err)
6111 int error;
6112 struct sk_buff *skb;
6113 long timeo;
6115 timeo = sock_rcvtimeo(sk, noblock);
6117 SCTP_DEBUG_PRINTK("Timeout: timeo: %ld, MAX: %ld.\n",
6118 timeo, MAX_SCHEDULE_TIMEOUT);
6120 do {
6121 /* Again only user level code calls this function,
6122 * so nothing interrupt level
6123 * will suddenly eat the receive_queue.
6125 * Look at current nfs client by the way...
6126 * However, this function was correct in any case. 8)
6128 if (flags & MSG_PEEK) {
6129 spin_lock_bh(&sk->sk_receive_queue.lock);
6130 skb = skb_peek(&sk->sk_receive_queue);
6131 if (skb)
6132 atomic_inc(&skb->users);
6133 spin_unlock_bh(&sk->sk_receive_queue.lock);
6134 } else {
6135 skb = skb_dequeue(&sk->sk_receive_queue);
6138 if (skb)
6139 return skb;
6141 /* Caller is allowed not to check sk->sk_err before calling. */
6142 error = sock_error(sk);
6143 if (error)
6144 goto no_packet;
6146 if (sk->sk_shutdown & RCV_SHUTDOWN)
6147 break;
6149 /* User doesn't want to wait. */
6150 error = -EAGAIN;
6151 if (!timeo)
6152 goto no_packet;
6153 } while (sctp_wait_for_packet(sk, err, &timeo) == 0);
6155 return NULL;
6157 no_packet:
6158 *err = error;
6159 return NULL;
6162 /* If sndbuf has changed, wake up per association sndbuf waiters. */
6163 static void __sctp_write_space(struct sctp_association *asoc)
6165 struct sock *sk = asoc->base.sk;
6166 struct socket *sock = sk->sk_socket;
6168 if ((sctp_wspace(asoc) > 0) && sock) {
6169 if (waitqueue_active(&asoc->wait))
6170 wake_up_interruptible(&asoc->wait);
6172 if (sctp_writeable(sk)) {
6173 wait_queue_head_t *wq = sk_sleep(sk);
6175 if (wq && waitqueue_active(wq))
6176 wake_up_interruptible(wq);
6178 /* Note that we try to include the Async I/O support
6179 * here by modeling from the current TCP/UDP code.
6180 * We have not tested with it yet.
6182 if (!(sk->sk_shutdown & SEND_SHUTDOWN))
6183 sock_wake_async(sock,
6184 SOCK_WAKE_SPACE, POLL_OUT);
6189 /* Do accounting for the sndbuf space.
6190 * Decrement the used sndbuf space of the corresponding association by the
6191 * data size which was just transmitted(freed).
6193 static void sctp_wfree(struct sk_buff *skb)
6195 struct sctp_association *asoc;
6196 struct sctp_chunk *chunk;
6197 struct sock *sk;
6199 /* Get the saved chunk pointer. */
6200 chunk = *((struct sctp_chunk **)(skb->cb));
6201 asoc = chunk->asoc;
6202 sk = asoc->base.sk;
6203 asoc->sndbuf_used -= SCTP_DATA_SNDSIZE(chunk) +
6204 sizeof(struct sk_buff) +
6205 sizeof(struct sctp_chunk);
6207 atomic_sub(sizeof(struct sctp_chunk), &sk->sk_wmem_alloc);
6210 * This undoes what is done via sctp_set_owner_w and sk_mem_charge
6212 sk->sk_wmem_queued -= skb->truesize;
6213 sk_mem_uncharge(sk, skb->truesize);
6215 sock_wfree(skb);
6216 __sctp_write_space(asoc);
6218 sctp_association_put(asoc);
6221 /* Do accounting for the receive space on the socket.
6222 * Accounting for the association is done in ulpevent.c
6223 * We set this as a destructor for the cloned data skbs so that
6224 * accounting is done at the correct time.
6226 void sctp_sock_rfree(struct sk_buff *skb)
6228 struct sock *sk = skb->sk;
6229 struct sctp_ulpevent *event = sctp_skb2event(skb);
6231 atomic_sub(event->rmem_len, &sk->sk_rmem_alloc);
6234 * Mimic the behavior of sock_rfree
6236 sk_mem_uncharge(sk, event->rmem_len);
6240 /* Helper function to wait for space in the sndbuf. */
6241 static int sctp_wait_for_sndbuf(struct sctp_association *asoc, long *timeo_p,
6242 size_t msg_len)
6244 struct sock *sk = asoc->base.sk;
6245 int err = 0;
6246 long current_timeo = *timeo_p;
6247 DEFINE_WAIT(wait);
6249 SCTP_DEBUG_PRINTK("wait_for_sndbuf: asoc=%p, timeo=%ld, msg_len=%zu\n",
6250 asoc, (long)(*timeo_p), msg_len);
6252 /* Increment the association's refcnt. */
6253 sctp_association_hold(asoc);
6255 /* Wait on the association specific sndbuf space. */
6256 for (;;) {
6257 prepare_to_wait_exclusive(&asoc->wait, &wait,
6258 TASK_INTERRUPTIBLE);
6259 if (!*timeo_p)
6260 goto do_nonblock;
6261 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6262 asoc->base.dead)
6263 goto do_error;
6264 if (signal_pending(current))
6265 goto do_interrupted;
6266 if (msg_len <= sctp_wspace(asoc))
6267 break;
6269 /* Let another process have a go. Since we are going
6270 * to sleep anyway.
6272 sctp_release_sock(sk);
6273 current_timeo = schedule_timeout(current_timeo);
6274 BUG_ON(sk != asoc->base.sk);
6275 sctp_lock_sock(sk);
6277 *timeo_p = current_timeo;
6280 out:
6281 finish_wait(&asoc->wait, &wait);
6283 /* Release the association's refcnt. */
6284 sctp_association_put(asoc);
6286 return err;
6288 do_error:
6289 err = -EPIPE;
6290 goto out;
6292 do_interrupted:
6293 err = sock_intr_errno(*timeo_p);
6294 goto out;
6296 do_nonblock:
6297 err = -EAGAIN;
6298 goto out;
6301 void sctp_data_ready(struct sock *sk, int len)
6303 struct socket_wq *wq;
6305 rcu_read_lock();
6306 wq = rcu_dereference(sk->sk_wq);
6307 if (wq_has_sleeper(wq))
6308 wake_up_interruptible_sync_poll(&wq->wait, POLLIN |
6309 POLLRDNORM | POLLRDBAND);
6310 sk_wake_async(sk, SOCK_WAKE_WAITD, POLL_IN);
6311 rcu_read_unlock();
6314 /* If socket sndbuf has changed, wake up all per association waiters. */
6315 void sctp_write_space(struct sock *sk)
6317 struct sctp_association *asoc;
6319 /* Wake up the tasks in each wait queue. */
6320 list_for_each_entry(asoc, &((sctp_sk(sk))->ep->asocs), asocs) {
6321 __sctp_write_space(asoc);
6325 /* Is there any sndbuf space available on the socket?
6327 * Note that sk_wmem_alloc is the sum of the send buffers on all of the
6328 * associations on the same socket. For a UDP-style socket with
6329 * multiple associations, it is possible for it to be "unwriteable"
6330 * prematurely. I assume that this is acceptable because
6331 * a premature "unwriteable" is better than an accidental "writeable" which
6332 * would cause an unwanted block under certain circumstances. For the 1-1
6333 * UDP-style sockets or TCP-style sockets, this code should work.
6334 * - Daisy
6336 static int sctp_writeable(struct sock *sk)
6338 int amt = 0;
6340 amt = sk->sk_sndbuf - sk_wmem_alloc_get(sk);
6341 if (amt < 0)
6342 amt = 0;
6343 return amt;
6346 /* Wait for an association to go into ESTABLISHED state. If timeout is 0,
6347 * returns immediately with EINPROGRESS.
6349 static int sctp_wait_for_connect(struct sctp_association *asoc, long *timeo_p)
6351 struct sock *sk = asoc->base.sk;
6352 int err = 0;
6353 long current_timeo = *timeo_p;
6354 DEFINE_WAIT(wait);
6356 SCTP_DEBUG_PRINTK("%s: asoc=%p, timeo=%ld\n", __func__, asoc,
6357 (long)(*timeo_p));
6359 /* Increment the association's refcnt. */
6360 sctp_association_hold(asoc);
6362 for (;;) {
6363 prepare_to_wait_exclusive(&asoc->wait, &wait,
6364 TASK_INTERRUPTIBLE);
6365 if (!*timeo_p)
6366 goto do_nonblock;
6367 if (sk->sk_shutdown & RCV_SHUTDOWN)
6368 break;
6369 if (sk->sk_err || asoc->state >= SCTP_STATE_SHUTDOWN_PENDING ||
6370 asoc->base.dead)
6371 goto do_error;
6372 if (signal_pending(current))
6373 goto do_interrupted;
6375 if (sctp_state(asoc, ESTABLISHED))
6376 break;
6378 /* Let another process have a go. Since we are going
6379 * to sleep anyway.
6381 sctp_release_sock(sk);
6382 current_timeo = schedule_timeout(current_timeo);
6383 sctp_lock_sock(sk);
6385 *timeo_p = current_timeo;
6388 out:
6389 finish_wait(&asoc->wait, &wait);
6391 /* Release the association's refcnt. */
6392 sctp_association_put(asoc);
6394 return err;
6396 do_error:
6397 if (asoc->init_err_counter + 1 > asoc->max_init_attempts)
6398 err = -ETIMEDOUT;
6399 else
6400 err = -ECONNREFUSED;
6401 goto out;
6403 do_interrupted:
6404 err = sock_intr_errno(*timeo_p);
6405 goto out;
6407 do_nonblock:
6408 err = -EINPROGRESS;
6409 goto out;
6412 static int sctp_wait_for_accept(struct sock *sk, long timeo)
6414 struct sctp_endpoint *ep;
6415 int err = 0;
6416 DEFINE_WAIT(wait);
6418 ep = sctp_sk(sk)->ep;
6421 for (;;) {
6422 prepare_to_wait_exclusive(sk_sleep(sk), &wait,
6423 TASK_INTERRUPTIBLE);
6425 if (list_empty(&ep->asocs)) {
6426 sctp_release_sock(sk);
6427 timeo = schedule_timeout(timeo);
6428 sctp_lock_sock(sk);
6431 err = -EINVAL;
6432 if (!sctp_sstate(sk, LISTENING))
6433 break;
6435 err = 0;
6436 if (!list_empty(&ep->asocs))
6437 break;
6439 err = sock_intr_errno(timeo);
6440 if (signal_pending(current))
6441 break;
6443 err = -EAGAIN;
6444 if (!timeo)
6445 break;
6448 finish_wait(sk_sleep(sk), &wait);
6450 return err;
6453 static void sctp_wait_for_close(struct sock *sk, long timeout)
6455 DEFINE_WAIT(wait);
6457 do {
6458 prepare_to_wait(sk_sleep(sk), &wait, TASK_INTERRUPTIBLE);
6459 if (list_empty(&sctp_sk(sk)->ep->asocs))
6460 break;
6461 sctp_release_sock(sk);
6462 timeout = schedule_timeout(timeout);
6463 sctp_lock_sock(sk);
6464 } while (!signal_pending(current) && timeout);
6466 finish_wait(sk_sleep(sk), &wait);
6469 static void sctp_skb_set_owner_r_frag(struct sk_buff *skb, struct sock *sk)
6471 struct sk_buff *frag;
6473 if (!skb->data_len)
6474 goto done;
6476 /* Don't forget the fragments. */
6477 skb_walk_frags(skb, frag)
6478 sctp_skb_set_owner_r_frag(frag, sk);
6480 done:
6481 sctp_skb_set_owner_r(skb, sk);
6484 void sctp_copy_sock(struct sock *newsk, struct sock *sk,
6485 struct sctp_association *asoc)
6487 struct inet_sock *inet = inet_sk(sk);
6488 struct inet_sock *newinet;
6490 newsk->sk_type = sk->sk_type;
6491 newsk->sk_bound_dev_if = sk->sk_bound_dev_if;
6492 newsk->sk_flags = sk->sk_flags;
6493 newsk->sk_no_check = sk->sk_no_check;
6494 newsk->sk_reuse = sk->sk_reuse;
6496 newsk->sk_shutdown = sk->sk_shutdown;
6497 newsk->sk_destruct = inet_sock_destruct;
6498 newsk->sk_family = sk->sk_family;
6499 newsk->sk_protocol = IPPROTO_SCTP;
6500 newsk->sk_backlog_rcv = sk->sk_prot->backlog_rcv;
6501 newsk->sk_sndbuf = sk->sk_sndbuf;
6502 newsk->sk_rcvbuf = sk->sk_rcvbuf;
6503 newsk->sk_lingertime = sk->sk_lingertime;
6504 newsk->sk_rcvtimeo = sk->sk_rcvtimeo;
6505 newsk->sk_sndtimeo = sk->sk_sndtimeo;
6507 newinet = inet_sk(newsk);
6509 /* Initialize sk's sport, dport, rcv_saddr and daddr for
6510 * getsockname() and getpeername()
6512 newinet->inet_sport = inet->inet_sport;
6513 newinet->inet_saddr = inet->inet_saddr;
6514 newinet->inet_rcv_saddr = inet->inet_rcv_saddr;
6515 newinet->inet_dport = htons(asoc->peer.port);
6516 newinet->pmtudisc = inet->pmtudisc;
6517 newinet->inet_id = asoc->next_tsn ^ jiffies;
6519 newinet->uc_ttl = inet->uc_ttl;
6520 newinet->mc_loop = 1;
6521 newinet->mc_ttl = 1;
6522 newinet->mc_index = 0;
6523 newinet->mc_list = NULL;
6526 /* Populate the fields of the newsk from the oldsk and migrate the assoc
6527 * and its messages to the newsk.
6529 static void sctp_sock_migrate(struct sock *oldsk, struct sock *newsk,
6530 struct sctp_association *assoc,
6531 sctp_socket_type_t type)
6533 struct sctp_sock *oldsp = sctp_sk(oldsk);
6534 struct sctp_sock *newsp = sctp_sk(newsk);
6535 struct sctp_bind_bucket *pp; /* hash list port iterator */
6536 struct sctp_endpoint *newep = newsp->ep;
6537 struct sk_buff *skb, *tmp;
6538 struct sctp_ulpevent *event;
6539 struct sctp_bind_hashbucket *head;
6541 /* Migrate socket buffer sizes and all the socket level options to the
6542 * new socket.
6544 newsk->sk_sndbuf = oldsk->sk_sndbuf;
6545 newsk->sk_rcvbuf = oldsk->sk_rcvbuf;
6546 /* Brute force copy old sctp opt. */
6547 inet_sk_copy_descendant(newsk, oldsk);
6549 /* Restore the ep value that was overwritten with the above structure
6550 * copy.
6552 newsp->ep = newep;
6553 newsp->hmac = NULL;
6555 /* Hook this new socket in to the bind_hash list. */
6556 head = &sctp_port_hashtable[sctp_phashfn(inet_sk(oldsk)->inet_num)];
6557 sctp_local_bh_disable();
6558 sctp_spin_lock(&head->lock);
6559 pp = sctp_sk(oldsk)->bind_hash;
6560 sk_add_bind_node(newsk, &pp->owner);
6561 sctp_sk(newsk)->bind_hash = pp;
6562 inet_sk(newsk)->inet_num = inet_sk(oldsk)->inet_num;
6563 sctp_spin_unlock(&head->lock);
6564 sctp_local_bh_enable();
6566 /* Copy the bind_addr list from the original endpoint to the new
6567 * endpoint so that we can handle restarts properly
6569 sctp_bind_addr_dup(&newsp->ep->base.bind_addr,
6570 &oldsp->ep->base.bind_addr, GFP_KERNEL);
6572 /* Move any messages in the old socket's receive queue that are for the
6573 * peeled off association to the new socket's receive queue.
6575 sctp_skb_for_each(skb, &oldsk->sk_receive_queue, tmp) {
6576 event = sctp_skb2event(skb);
6577 if (event->asoc == assoc) {
6578 __skb_unlink(skb, &oldsk->sk_receive_queue);
6579 __skb_queue_tail(&newsk->sk_receive_queue, skb);
6580 sctp_skb_set_owner_r_frag(skb, newsk);
6584 /* Clean up any messages pending delivery due to partial
6585 * delivery. Three cases:
6586 * 1) No partial deliver; no work.
6587 * 2) Peeling off partial delivery; keep pd_lobby in new pd_lobby.
6588 * 3) Peeling off non-partial delivery; move pd_lobby to receive_queue.
6590 skb_queue_head_init(&newsp->pd_lobby);
6591 atomic_set(&sctp_sk(newsk)->pd_mode, assoc->ulpq.pd_mode);
6593 if (atomic_read(&sctp_sk(oldsk)->pd_mode)) {
6594 struct sk_buff_head *queue;
6596 /* Decide which queue to move pd_lobby skbs to. */
6597 if (assoc->ulpq.pd_mode) {
6598 queue = &newsp->pd_lobby;
6599 } else
6600 queue = &newsk->sk_receive_queue;
6602 /* Walk through the pd_lobby, looking for skbs that
6603 * need moved to the new socket.
6605 sctp_skb_for_each(skb, &oldsp->pd_lobby, tmp) {
6606 event = sctp_skb2event(skb);
6607 if (event->asoc == assoc) {
6608 __skb_unlink(skb, &oldsp->pd_lobby);
6609 __skb_queue_tail(queue, skb);
6610 sctp_skb_set_owner_r_frag(skb, newsk);
6614 /* Clear up any skbs waiting for the partial
6615 * delivery to finish.
6617 if (assoc->ulpq.pd_mode)
6618 sctp_clear_pd(oldsk, NULL);
6622 sctp_skb_for_each(skb, &assoc->ulpq.reasm, tmp)
6623 sctp_skb_set_owner_r_frag(skb, newsk);
6625 sctp_skb_for_each(skb, &assoc->ulpq.lobby, tmp)
6626 sctp_skb_set_owner_r_frag(skb, newsk);
6628 /* Set the type of socket to indicate that it is peeled off from the
6629 * original UDP-style socket or created with the accept() call on a
6630 * TCP-style socket..
6632 newsp->type = type;
6634 /* Mark the new socket "in-use" by the user so that any packets
6635 * that may arrive on the association after we've moved it are
6636 * queued to the backlog. This prevents a potential race between
6637 * backlog processing on the old socket and new-packet processing
6638 * on the new socket.
6640 * The caller has just allocated newsk so we can guarantee that other
6641 * paths won't try to lock it and then oldsk.
6643 lock_sock_nested(newsk, SINGLE_DEPTH_NESTING);
6644 sctp_assoc_migrate(assoc, newsk);
6646 /* If the association on the newsk is already closed before accept()
6647 * is called, set RCV_SHUTDOWN flag.
6649 if (sctp_state(assoc, CLOSED) && sctp_style(newsk, TCP))
6650 newsk->sk_shutdown |= RCV_SHUTDOWN;
6652 newsk->sk_state = SCTP_SS_ESTABLISHED;
6653 sctp_release_sock(newsk);
6657 /* This proto struct describes the ULP interface for SCTP. */
6658 struct proto sctp_prot = {
6659 .name = "SCTP",
6660 .owner = THIS_MODULE,
6661 .close = sctp_close,
6662 .connect = sctp_connect,
6663 .disconnect = sctp_disconnect,
6664 .accept = sctp_accept,
6665 .ioctl = sctp_ioctl,
6666 .init = sctp_init_sock,
6667 .destroy = sctp_destroy_sock,
6668 .shutdown = sctp_shutdown,
6669 .setsockopt = sctp_setsockopt,
6670 .getsockopt = sctp_getsockopt,
6671 .sendmsg = sctp_sendmsg,
6672 .recvmsg = sctp_recvmsg,
6673 .bind = sctp_bind,
6674 .backlog_rcv = sctp_backlog_rcv,
6675 .hash = sctp_hash,
6676 .unhash = sctp_unhash,
6677 .get_port = sctp_get_port,
6678 .obj_size = sizeof(struct sctp_sock),
6679 .sysctl_mem = sysctl_sctp_mem,
6680 .sysctl_rmem = sysctl_sctp_rmem,
6681 .sysctl_wmem = sysctl_sctp_wmem,
6682 .memory_pressure = &sctp_memory_pressure,
6683 .enter_memory_pressure = sctp_enter_memory_pressure,
6684 .memory_allocated = &sctp_memory_allocated,
6685 .sockets_allocated = &sctp_sockets_allocated,
6688 #if defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE)
6690 struct proto sctpv6_prot = {
6691 .name = "SCTPv6",
6692 .owner = THIS_MODULE,
6693 .close = sctp_close,
6694 .connect = sctp_connect,
6695 .disconnect = sctp_disconnect,
6696 .accept = sctp_accept,
6697 .ioctl = sctp_ioctl,
6698 .init = sctp_init_sock,
6699 .destroy = sctp_destroy_sock,
6700 .shutdown = sctp_shutdown,
6701 .setsockopt = sctp_setsockopt,
6702 .getsockopt = sctp_getsockopt,
6703 .sendmsg = sctp_sendmsg,
6704 .recvmsg = sctp_recvmsg,
6705 .bind = sctp_bind,
6706 .backlog_rcv = sctp_backlog_rcv,
6707 .hash = sctp_hash,
6708 .unhash = sctp_unhash,
6709 .get_port = sctp_get_port,
6710 .obj_size = sizeof(struct sctp6_sock),
6711 .sysctl_mem = sysctl_sctp_mem,
6712 .sysctl_rmem = sysctl_sctp_rmem,
6713 .sysctl_wmem = sysctl_sctp_wmem,
6714 .memory_pressure = &sctp_memory_pressure,
6715 .enter_memory_pressure = sctp_enter_memory_pressure,
6716 .memory_allocated = &sctp_memory_allocated,
6717 .sockets_allocated = &sctp_sockets_allocated,
6719 #endif /* defined(CONFIG_IPV6) || defined(CONFIG_IPV6_MODULE) */