usb: add USB_QUIRK_RESET_RESUME for M-Audio 88es
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid5.c
blob1f6c68df6f382de7f62fddb459c3a9d5bf2377e0
1 /*
2 * raid5.c : Multiple Devices driver for Linux
3 * Copyright (C) 1996, 1997 Ingo Molnar, Miguel de Icaza, Gadi Oxman
4 * Copyright (C) 1999, 2000 Ingo Molnar
5 * Copyright (C) 2002, 2003 H. Peter Anvin
7 * RAID-4/5/6 management functions.
8 * Thanks to Penguin Computing for making the RAID-6 development possible
9 * by donating a test server!
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * BITMAP UNPLUGGING:
24 * The sequencing for updating the bitmap reliably is a little
25 * subtle (and I got it wrong the first time) so it deserves some
26 * explanation.
28 * We group bitmap updates into batches. Each batch has a number.
29 * We may write out several batches at once, but that isn't very important.
30 * conf->seq_write is the number of the last batch successfully written.
31 * conf->seq_flush is the number of the last batch that was closed to
32 * new additions.
33 * When we discover that we will need to write to any block in a stripe
34 * (in add_stripe_bio) we update the in-memory bitmap and record in sh->bm_seq
35 * the number of the batch it will be in. This is seq_flush+1.
36 * When we are ready to do a write, if that batch hasn't been written yet,
37 * we plug the array and queue the stripe for later.
38 * When an unplug happens, we increment bm_flush, thus closing the current
39 * batch.
40 * When we notice that bm_flush > bm_write, we write out all pending updates
41 * to the bitmap, and advance bm_write to where bm_flush was.
42 * This may occasionally write a bit out twice, but is sure never to
43 * miss any bits.
46 #include <linux/blkdev.h>
47 #include <linux/kthread.h>
48 #include <linux/raid/pq.h>
49 #include <linux/async_tx.h>
50 #include <linux/async.h>
51 #include <linux/seq_file.h>
52 #include <linux/cpu.h>
53 #include <linux/slab.h>
54 #include "md.h"
55 #include "raid5.h"
56 #include "raid0.h"
57 #include "bitmap.h"
60 * Stripe cache
63 #define NR_STRIPES 256
64 #define STRIPE_SIZE PAGE_SIZE
65 #define STRIPE_SHIFT (PAGE_SHIFT - 9)
66 #define STRIPE_SECTORS (STRIPE_SIZE>>9)
67 #define IO_THRESHOLD 1
68 #define BYPASS_THRESHOLD 1
69 #define NR_HASH (PAGE_SIZE / sizeof(struct hlist_head))
70 #define HASH_MASK (NR_HASH - 1)
72 #define stripe_hash(conf, sect) (&((conf)->stripe_hashtbl[((sect) >> STRIPE_SHIFT) & HASH_MASK]))
74 /* bio's attached to a stripe+device for I/O are linked together in bi_sector
75 * order without overlap. There may be several bio's per stripe+device, and
76 * a bio could span several devices.
77 * When walking this list for a particular stripe+device, we must never proceed
78 * beyond a bio that extends past this device, as the next bio might no longer
79 * be valid.
80 * This macro is used to determine the 'next' bio in the list, given the sector
81 * of the current stripe+device
83 #define r5_next_bio(bio, sect) ( ( (bio)->bi_sector + ((bio)->bi_size>>9) < sect + STRIPE_SECTORS) ? (bio)->bi_next : NULL)
85 * The following can be used to debug the driver
87 #define RAID5_PARANOIA 1
88 #if RAID5_PARANOIA && defined(CONFIG_SMP)
89 # define CHECK_DEVLOCK() assert_spin_locked(&conf->device_lock)
90 #else
91 # define CHECK_DEVLOCK()
92 #endif
94 #ifdef DEBUG
95 #define inline
96 #define __inline__
97 #endif
99 #define printk_rl(args...) ((void) (printk_ratelimit() && printk(args)))
102 * We maintain a biased count of active stripes in the bottom 16 bits of
103 * bi_phys_segments, and a count of processed stripes in the upper 16 bits
105 static inline int raid5_bi_phys_segments(struct bio *bio)
107 return bio->bi_phys_segments & 0xffff;
110 static inline int raid5_bi_hw_segments(struct bio *bio)
112 return (bio->bi_phys_segments >> 16) & 0xffff;
115 static inline int raid5_dec_bi_phys_segments(struct bio *bio)
117 --bio->bi_phys_segments;
118 return raid5_bi_phys_segments(bio);
121 static inline int raid5_dec_bi_hw_segments(struct bio *bio)
123 unsigned short val = raid5_bi_hw_segments(bio);
125 --val;
126 bio->bi_phys_segments = (val << 16) | raid5_bi_phys_segments(bio);
127 return val;
130 static inline void raid5_set_bi_hw_segments(struct bio *bio, unsigned int cnt)
132 bio->bi_phys_segments = raid5_bi_phys_segments(bio) | (cnt << 16);
135 /* Find first data disk in a raid6 stripe */
136 static inline int raid6_d0(struct stripe_head *sh)
138 if (sh->ddf_layout)
139 /* ddf always start from first device */
140 return 0;
141 /* md starts just after Q block */
142 if (sh->qd_idx == sh->disks - 1)
143 return 0;
144 else
145 return sh->qd_idx + 1;
147 static inline int raid6_next_disk(int disk, int raid_disks)
149 disk++;
150 return (disk < raid_disks) ? disk : 0;
153 /* When walking through the disks in a raid5, starting at raid6_d0,
154 * We need to map each disk to a 'slot', where the data disks are slot
155 * 0 .. raid_disks-3, the parity disk is raid_disks-2 and the Q disk
156 * is raid_disks-1. This help does that mapping.
158 static int raid6_idx_to_slot(int idx, struct stripe_head *sh,
159 int *count, int syndrome_disks)
161 int slot = *count;
163 if (sh->ddf_layout)
164 (*count)++;
165 if (idx == sh->pd_idx)
166 return syndrome_disks;
167 if (idx == sh->qd_idx)
168 return syndrome_disks + 1;
169 if (!sh->ddf_layout)
170 (*count)++;
171 return slot;
174 static void return_io(struct bio *return_bi)
176 struct bio *bi = return_bi;
177 while (bi) {
179 return_bi = bi->bi_next;
180 bi->bi_next = NULL;
181 bi->bi_size = 0;
182 bio_endio(bi, 0);
183 bi = return_bi;
187 static void print_raid5_conf (raid5_conf_t *conf);
189 static int stripe_operations_active(struct stripe_head *sh)
191 return sh->check_state || sh->reconstruct_state ||
192 test_bit(STRIPE_BIOFILL_RUN, &sh->state) ||
193 test_bit(STRIPE_COMPUTE_RUN, &sh->state);
196 static void __release_stripe(raid5_conf_t *conf, struct stripe_head *sh)
198 if (atomic_dec_and_test(&sh->count)) {
199 BUG_ON(!list_empty(&sh->lru));
200 BUG_ON(atomic_read(&conf->active_stripes)==0);
201 if (test_bit(STRIPE_HANDLE, &sh->state)) {
202 if (test_bit(STRIPE_DELAYED, &sh->state))
203 list_add_tail(&sh->lru, &conf->delayed_list);
204 else if (test_bit(STRIPE_BIT_DELAY, &sh->state) &&
205 sh->bm_seq - conf->seq_write > 0)
206 list_add_tail(&sh->lru, &conf->bitmap_list);
207 else {
208 clear_bit(STRIPE_BIT_DELAY, &sh->state);
209 list_add_tail(&sh->lru, &conf->handle_list);
211 md_wakeup_thread(conf->mddev->thread);
212 } else {
213 BUG_ON(stripe_operations_active(sh));
214 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
215 atomic_dec(&conf->preread_active_stripes);
216 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD)
217 md_wakeup_thread(conf->mddev->thread);
219 atomic_dec(&conf->active_stripes);
220 if (!test_bit(STRIPE_EXPANDING, &sh->state)) {
221 list_add_tail(&sh->lru, &conf->inactive_list);
222 wake_up(&conf->wait_for_stripe);
223 if (conf->retry_read_aligned)
224 md_wakeup_thread(conf->mddev->thread);
230 static void release_stripe(struct stripe_head *sh)
232 raid5_conf_t *conf = sh->raid_conf;
233 unsigned long flags;
235 spin_lock_irqsave(&conf->device_lock, flags);
236 __release_stripe(conf, sh);
237 spin_unlock_irqrestore(&conf->device_lock, flags);
240 static inline void remove_hash(struct stripe_head *sh)
242 pr_debug("remove_hash(), stripe %llu\n",
243 (unsigned long long)sh->sector);
245 hlist_del_init(&sh->hash);
248 static inline void insert_hash(raid5_conf_t *conf, struct stripe_head *sh)
250 struct hlist_head *hp = stripe_hash(conf, sh->sector);
252 pr_debug("insert_hash(), stripe %llu\n",
253 (unsigned long long)sh->sector);
255 CHECK_DEVLOCK();
256 hlist_add_head(&sh->hash, hp);
260 /* find an idle stripe, make sure it is unhashed, and return it. */
261 static struct stripe_head *get_free_stripe(raid5_conf_t *conf)
263 struct stripe_head *sh = NULL;
264 struct list_head *first;
266 CHECK_DEVLOCK();
267 if (list_empty(&conf->inactive_list))
268 goto out;
269 first = conf->inactive_list.next;
270 sh = list_entry(first, struct stripe_head, lru);
271 list_del_init(first);
272 remove_hash(sh);
273 atomic_inc(&conf->active_stripes);
274 out:
275 return sh;
278 static void shrink_buffers(struct stripe_head *sh)
280 struct page *p;
281 int i;
282 int num = sh->raid_conf->pool_size;
284 for (i = 0; i < num ; i++) {
285 p = sh->dev[i].page;
286 if (!p)
287 continue;
288 sh->dev[i].page = NULL;
289 put_page(p);
293 static int grow_buffers(struct stripe_head *sh)
295 int i;
296 int num = sh->raid_conf->pool_size;
298 for (i = 0; i < num; i++) {
299 struct page *page;
301 if (!(page = alloc_page(GFP_KERNEL))) {
302 return 1;
304 sh->dev[i].page = page;
306 return 0;
309 static void raid5_build_block(struct stripe_head *sh, int i, int previous);
310 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
311 struct stripe_head *sh);
313 static void init_stripe(struct stripe_head *sh, sector_t sector, int previous)
315 raid5_conf_t *conf = sh->raid_conf;
316 int i;
318 BUG_ON(atomic_read(&sh->count) != 0);
319 BUG_ON(test_bit(STRIPE_HANDLE, &sh->state));
320 BUG_ON(stripe_operations_active(sh));
322 CHECK_DEVLOCK();
323 pr_debug("init_stripe called, stripe %llu\n",
324 (unsigned long long)sh->sector);
326 remove_hash(sh);
328 sh->generation = conf->generation - previous;
329 sh->disks = previous ? conf->previous_raid_disks : conf->raid_disks;
330 sh->sector = sector;
331 stripe_set_idx(sector, conf, previous, sh);
332 sh->state = 0;
335 for (i = sh->disks; i--; ) {
336 struct r5dev *dev = &sh->dev[i];
338 if (dev->toread || dev->read || dev->towrite || dev->written ||
339 test_bit(R5_LOCKED, &dev->flags)) {
340 printk(KERN_ERR "sector=%llx i=%d %p %p %p %p %d\n",
341 (unsigned long long)sh->sector, i, dev->toread,
342 dev->read, dev->towrite, dev->written,
343 test_bit(R5_LOCKED, &dev->flags));
344 BUG();
346 dev->flags = 0;
347 raid5_build_block(sh, i, previous);
349 insert_hash(conf, sh);
352 static struct stripe_head *__find_stripe(raid5_conf_t *conf, sector_t sector,
353 short generation)
355 struct stripe_head *sh;
356 struct hlist_node *hn;
358 CHECK_DEVLOCK();
359 pr_debug("__find_stripe, sector %llu\n", (unsigned long long)sector);
360 hlist_for_each_entry(sh, hn, stripe_hash(conf, sector), hash)
361 if (sh->sector == sector && sh->generation == generation)
362 return sh;
363 pr_debug("__stripe %llu not in cache\n", (unsigned long long)sector);
364 return NULL;
368 * Need to check if array has failed when deciding whether to:
369 * - start an array
370 * - remove non-faulty devices
371 * - add a spare
372 * - allow a reshape
373 * This determination is simple when no reshape is happening.
374 * However if there is a reshape, we need to carefully check
375 * both the before and after sections.
376 * This is because some failed devices may only affect one
377 * of the two sections, and some non-in_sync devices may
378 * be insync in the section most affected by failed devices.
380 static int has_failed(raid5_conf_t *conf)
382 int degraded;
383 int i;
384 if (conf->mddev->reshape_position == MaxSector)
385 return conf->mddev->degraded > conf->max_degraded;
387 rcu_read_lock();
388 degraded = 0;
389 for (i = 0; i < conf->previous_raid_disks; i++) {
390 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
391 if (!rdev || test_bit(Faulty, &rdev->flags))
392 degraded++;
393 else if (test_bit(In_sync, &rdev->flags))
395 else
396 /* not in-sync or faulty.
397 * If the reshape increases the number of devices,
398 * this is being recovered by the reshape, so
399 * this 'previous' section is not in_sync.
400 * If the number of devices is being reduced however,
401 * the device can only be part of the array if
402 * we are reverting a reshape, so this section will
403 * be in-sync.
405 if (conf->raid_disks >= conf->previous_raid_disks)
406 degraded++;
408 rcu_read_unlock();
409 if (degraded > conf->max_degraded)
410 return 1;
411 rcu_read_lock();
412 degraded = 0;
413 for (i = 0; i < conf->raid_disks; i++) {
414 mdk_rdev_t *rdev = rcu_dereference(conf->disks[i].rdev);
415 if (!rdev || test_bit(Faulty, &rdev->flags))
416 degraded++;
417 else if (test_bit(In_sync, &rdev->flags))
419 else
420 /* not in-sync or faulty.
421 * If reshape increases the number of devices, this
422 * section has already been recovered, else it
423 * almost certainly hasn't.
425 if (conf->raid_disks <= conf->previous_raid_disks)
426 degraded++;
428 rcu_read_unlock();
429 if (degraded > conf->max_degraded)
430 return 1;
431 return 0;
434 static struct stripe_head *
435 get_active_stripe(raid5_conf_t *conf, sector_t sector,
436 int previous, int noblock, int noquiesce)
438 struct stripe_head *sh;
440 pr_debug("get_stripe, sector %llu\n", (unsigned long long)sector);
442 spin_lock_irq(&conf->device_lock);
444 do {
445 wait_event_lock_irq(conf->wait_for_stripe,
446 conf->quiesce == 0 || noquiesce,
447 conf->device_lock, /* nothing */);
448 sh = __find_stripe(conf, sector, conf->generation - previous);
449 if (!sh) {
450 if (!conf->inactive_blocked)
451 sh = get_free_stripe(conf);
452 if (noblock && sh == NULL)
453 break;
454 if (!sh) {
455 conf->inactive_blocked = 1;
456 wait_event_lock_irq(conf->wait_for_stripe,
457 !list_empty(&conf->inactive_list) &&
458 (atomic_read(&conf->active_stripes)
459 < (conf->max_nr_stripes *3/4)
460 || !conf->inactive_blocked),
461 conf->device_lock,
463 conf->inactive_blocked = 0;
464 } else
465 init_stripe(sh, sector, previous);
466 } else {
467 if (atomic_read(&sh->count)) {
468 BUG_ON(!list_empty(&sh->lru)
469 && !test_bit(STRIPE_EXPANDING, &sh->state));
470 } else {
471 if (!test_bit(STRIPE_HANDLE, &sh->state))
472 atomic_inc(&conf->active_stripes);
473 if (list_empty(&sh->lru) &&
474 !test_bit(STRIPE_EXPANDING, &sh->state))
475 BUG();
476 list_del_init(&sh->lru);
479 } while (sh == NULL);
481 if (sh)
482 atomic_inc(&sh->count);
484 spin_unlock_irq(&conf->device_lock);
485 return sh;
488 static void
489 raid5_end_read_request(struct bio *bi, int error);
490 static void
491 raid5_end_write_request(struct bio *bi, int error);
493 static void ops_run_io(struct stripe_head *sh, struct stripe_head_state *s)
495 raid5_conf_t *conf = sh->raid_conf;
496 int i, disks = sh->disks;
498 might_sleep();
500 for (i = disks; i--; ) {
501 int rw;
502 struct bio *bi;
503 mdk_rdev_t *rdev;
504 if (test_and_clear_bit(R5_Wantwrite, &sh->dev[i].flags)) {
505 if (test_and_clear_bit(R5_WantFUA, &sh->dev[i].flags))
506 rw = WRITE_FUA;
507 else
508 rw = WRITE;
509 } else if (test_and_clear_bit(R5_Wantread, &sh->dev[i].flags))
510 rw = READ;
511 else
512 continue;
514 bi = &sh->dev[i].req;
516 bi->bi_rw = rw;
517 if (rw & WRITE)
518 bi->bi_end_io = raid5_end_write_request;
519 else
520 bi->bi_end_io = raid5_end_read_request;
522 rcu_read_lock();
523 rdev = rcu_dereference(conf->disks[i].rdev);
524 if (rdev && test_bit(Faulty, &rdev->flags))
525 rdev = NULL;
526 if (rdev)
527 atomic_inc(&rdev->nr_pending);
528 rcu_read_unlock();
530 if (rdev) {
531 if (s->syncing || s->expanding || s->expanded)
532 md_sync_acct(rdev->bdev, STRIPE_SECTORS);
534 set_bit(STRIPE_IO_STARTED, &sh->state);
536 bi->bi_bdev = rdev->bdev;
537 pr_debug("%s: for %llu schedule op %ld on disc %d\n",
538 __func__, (unsigned long long)sh->sector,
539 bi->bi_rw, i);
540 atomic_inc(&sh->count);
541 bi->bi_sector = sh->sector + rdev->data_offset;
542 bi->bi_flags = 1 << BIO_UPTODATE;
543 bi->bi_vcnt = 1;
544 bi->bi_max_vecs = 1;
545 bi->bi_idx = 0;
546 bi->bi_io_vec = &sh->dev[i].vec;
547 bi->bi_io_vec[0].bv_len = STRIPE_SIZE;
548 bi->bi_io_vec[0].bv_offset = 0;
549 bi->bi_size = STRIPE_SIZE;
550 bi->bi_next = NULL;
551 if ((rw & WRITE) &&
552 test_bit(R5_ReWrite, &sh->dev[i].flags))
553 atomic_add(STRIPE_SECTORS,
554 &rdev->corrected_errors);
555 generic_make_request(bi);
556 } else {
557 if (rw & WRITE)
558 set_bit(STRIPE_DEGRADED, &sh->state);
559 pr_debug("skip op %ld on disc %d for sector %llu\n",
560 bi->bi_rw, i, (unsigned long long)sh->sector);
561 clear_bit(R5_LOCKED, &sh->dev[i].flags);
562 set_bit(STRIPE_HANDLE, &sh->state);
567 static struct dma_async_tx_descriptor *
568 async_copy_data(int frombio, struct bio *bio, struct page *page,
569 sector_t sector, struct dma_async_tx_descriptor *tx)
571 struct bio_vec *bvl;
572 struct page *bio_page;
573 int i;
574 int page_offset;
575 struct async_submit_ctl submit;
576 enum async_tx_flags flags = 0;
578 if (bio->bi_sector >= sector)
579 page_offset = (signed)(bio->bi_sector - sector) * 512;
580 else
581 page_offset = (signed)(sector - bio->bi_sector) * -512;
583 if (frombio)
584 flags |= ASYNC_TX_FENCE;
585 init_async_submit(&submit, flags, tx, NULL, NULL, NULL);
587 bio_for_each_segment(bvl, bio, i) {
588 int len = bvl->bv_len;
589 int clen;
590 int b_offset = 0;
592 if (page_offset < 0) {
593 b_offset = -page_offset;
594 page_offset += b_offset;
595 len -= b_offset;
598 if (len > 0 && page_offset + len > STRIPE_SIZE)
599 clen = STRIPE_SIZE - page_offset;
600 else
601 clen = len;
603 if (clen > 0) {
604 b_offset += bvl->bv_offset;
605 bio_page = bvl->bv_page;
606 if (frombio)
607 tx = async_memcpy(page, bio_page, page_offset,
608 b_offset, clen, &submit);
609 else
610 tx = async_memcpy(bio_page, page, b_offset,
611 page_offset, clen, &submit);
613 /* chain the operations */
614 submit.depend_tx = tx;
616 if (clen < len) /* hit end of page */
617 break;
618 page_offset += len;
621 return tx;
624 static void ops_complete_biofill(void *stripe_head_ref)
626 struct stripe_head *sh = stripe_head_ref;
627 struct bio *return_bi = NULL;
628 raid5_conf_t *conf = sh->raid_conf;
629 int i;
631 pr_debug("%s: stripe %llu\n", __func__,
632 (unsigned long long)sh->sector);
634 /* clear completed biofills */
635 spin_lock_irq(&conf->device_lock);
636 for (i = sh->disks; i--; ) {
637 struct r5dev *dev = &sh->dev[i];
639 /* acknowledge completion of a biofill operation */
640 /* and check if we need to reply to a read request,
641 * new R5_Wantfill requests are held off until
642 * !STRIPE_BIOFILL_RUN
644 if (test_and_clear_bit(R5_Wantfill, &dev->flags)) {
645 struct bio *rbi, *rbi2;
647 BUG_ON(!dev->read);
648 rbi = dev->read;
649 dev->read = NULL;
650 while (rbi && rbi->bi_sector <
651 dev->sector + STRIPE_SECTORS) {
652 rbi2 = r5_next_bio(rbi, dev->sector);
653 if (!raid5_dec_bi_phys_segments(rbi)) {
654 rbi->bi_next = return_bi;
655 return_bi = rbi;
657 rbi = rbi2;
661 spin_unlock_irq(&conf->device_lock);
662 clear_bit(STRIPE_BIOFILL_RUN, &sh->state);
664 return_io(return_bi);
666 set_bit(STRIPE_HANDLE, &sh->state);
667 release_stripe(sh);
670 static void ops_run_biofill(struct stripe_head *sh)
672 struct dma_async_tx_descriptor *tx = NULL;
673 raid5_conf_t *conf = sh->raid_conf;
674 struct async_submit_ctl submit;
675 int i;
677 pr_debug("%s: stripe %llu\n", __func__,
678 (unsigned long long)sh->sector);
680 for (i = sh->disks; i--; ) {
681 struct r5dev *dev = &sh->dev[i];
682 if (test_bit(R5_Wantfill, &dev->flags)) {
683 struct bio *rbi;
684 spin_lock_irq(&conf->device_lock);
685 dev->read = rbi = dev->toread;
686 dev->toread = NULL;
687 spin_unlock_irq(&conf->device_lock);
688 while (rbi && rbi->bi_sector <
689 dev->sector + STRIPE_SECTORS) {
690 tx = async_copy_data(0, rbi, dev->page,
691 dev->sector, tx);
692 rbi = r5_next_bio(rbi, dev->sector);
697 atomic_inc(&sh->count);
698 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_biofill, sh, NULL);
699 async_trigger_callback(&submit);
702 static void mark_target_uptodate(struct stripe_head *sh, int target)
704 struct r5dev *tgt;
706 if (target < 0)
707 return;
709 tgt = &sh->dev[target];
710 set_bit(R5_UPTODATE, &tgt->flags);
711 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
712 clear_bit(R5_Wantcompute, &tgt->flags);
715 static void ops_complete_compute(void *stripe_head_ref)
717 struct stripe_head *sh = stripe_head_ref;
719 pr_debug("%s: stripe %llu\n", __func__,
720 (unsigned long long)sh->sector);
722 /* mark the computed target(s) as uptodate */
723 mark_target_uptodate(sh, sh->ops.target);
724 mark_target_uptodate(sh, sh->ops.target2);
726 clear_bit(STRIPE_COMPUTE_RUN, &sh->state);
727 if (sh->check_state == check_state_compute_run)
728 sh->check_state = check_state_compute_result;
729 set_bit(STRIPE_HANDLE, &sh->state);
730 release_stripe(sh);
733 /* return a pointer to the address conversion region of the scribble buffer */
734 static addr_conv_t *to_addr_conv(struct stripe_head *sh,
735 struct raid5_percpu *percpu)
737 return percpu->scribble + sizeof(struct page *) * (sh->disks + 2);
740 static struct dma_async_tx_descriptor *
741 ops_run_compute5(struct stripe_head *sh, struct raid5_percpu *percpu)
743 int disks = sh->disks;
744 struct page **xor_srcs = percpu->scribble;
745 int target = sh->ops.target;
746 struct r5dev *tgt = &sh->dev[target];
747 struct page *xor_dest = tgt->page;
748 int count = 0;
749 struct dma_async_tx_descriptor *tx;
750 struct async_submit_ctl submit;
751 int i;
753 pr_debug("%s: stripe %llu block: %d\n",
754 __func__, (unsigned long long)sh->sector, target);
755 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
757 for (i = disks; i--; )
758 if (i != target)
759 xor_srcs[count++] = sh->dev[i].page;
761 atomic_inc(&sh->count);
763 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST, NULL,
764 ops_complete_compute, sh, to_addr_conv(sh, percpu));
765 if (unlikely(count == 1))
766 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
767 else
768 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
770 return tx;
773 /* set_syndrome_sources - populate source buffers for gen_syndrome
774 * @srcs - (struct page *) array of size sh->disks
775 * @sh - stripe_head to parse
777 * Populates srcs in proper layout order for the stripe and returns the
778 * 'count' of sources to be used in a call to async_gen_syndrome. The P
779 * destination buffer is recorded in srcs[count] and the Q destination
780 * is recorded in srcs[count+1]].
782 static int set_syndrome_sources(struct page **srcs, struct stripe_head *sh)
784 int disks = sh->disks;
785 int syndrome_disks = sh->ddf_layout ? disks : (disks - 2);
786 int d0_idx = raid6_d0(sh);
787 int count;
788 int i;
790 for (i = 0; i < disks; i++)
791 srcs[i] = NULL;
793 count = 0;
794 i = d0_idx;
795 do {
796 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
798 srcs[slot] = sh->dev[i].page;
799 i = raid6_next_disk(i, disks);
800 } while (i != d0_idx);
802 return syndrome_disks;
805 static struct dma_async_tx_descriptor *
806 ops_run_compute6_1(struct stripe_head *sh, struct raid5_percpu *percpu)
808 int disks = sh->disks;
809 struct page **blocks = percpu->scribble;
810 int target;
811 int qd_idx = sh->qd_idx;
812 struct dma_async_tx_descriptor *tx;
813 struct async_submit_ctl submit;
814 struct r5dev *tgt;
815 struct page *dest;
816 int i;
817 int count;
819 if (sh->ops.target < 0)
820 target = sh->ops.target2;
821 else if (sh->ops.target2 < 0)
822 target = sh->ops.target;
823 else
824 /* we should only have one valid target */
825 BUG();
826 BUG_ON(target < 0);
827 pr_debug("%s: stripe %llu block: %d\n",
828 __func__, (unsigned long long)sh->sector, target);
830 tgt = &sh->dev[target];
831 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
832 dest = tgt->page;
834 atomic_inc(&sh->count);
836 if (target == qd_idx) {
837 count = set_syndrome_sources(blocks, sh);
838 blocks[count] = NULL; /* regenerating p is not necessary */
839 BUG_ON(blocks[count+1] != dest); /* q should already be set */
840 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
841 ops_complete_compute, sh,
842 to_addr_conv(sh, percpu));
843 tx = async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
844 } else {
845 /* Compute any data- or p-drive using XOR */
846 count = 0;
847 for (i = disks; i-- ; ) {
848 if (i == target || i == qd_idx)
849 continue;
850 blocks[count++] = sh->dev[i].page;
853 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
854 NULL, ops_complete_compute, sh,
855 to_addr_conv(sh, percpu));
856 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE, &submit);
859 return tx;
862 static struct dma_async_tx_descriptor *
863 ops_run_compute6_2(struct stripe_head *sh, struct raid5_percpu *percpu)
865 int i, count, disks = sh->disks;
866 int syndrome_disks = sh->ddf_layout ? disks : disks-2;
867 int d0_idx = raid6_d0(sh);
868 int faila = -1, failb = -1;
869 int target = sh->ops.target;
870 int target2 = sh->ops.target2;
871 struct r5dev *tgt = &sh->dev[target];
872 struct r5dev *tgt2 = &sh->dev[target2];
873 struct dma_async_tx_descriptor *tx;
874 struct page **blocks = percpu->scribble;
875 struct async_submit_ctl submit;
877 pr_debug("%s: stripe %llu block1: %d block2: %d\n",
878 __func__, (unsigned long long)sh->sector, target, target2);
879 BUG_ON(target < 0 || target2 < 0);
880 BUG_ON(!test_bit(R5_Wantcompute, &tgt->flags));
881 BUG_ON(!test_bit(R5_Wantcompute, &tgt2->flags));
883 /* we need to open-code set_syndrome_sources to handle the
884 * slot number conversion for 'faila' and 'failb'
886 for (i = 0; i < disks ; i++)
887 blocks[i] = NULL;
888 count = 0;
889 i = d0_idx;
890 do {
891 int slot = raid6_idx_to_slot(i, sh, &count, syndrome_disks);
893 blocks[slot] = sh->dev[i].page;
895 if (i == target)
896 faila = slot;
897 if (i == target2)
898 failb = slot;
899 i = raid6_next_disk(i, disks);
900 } while (i != d0_idx);
902 BUG_ON(faila == failb);
903 if (failb < faila)
904 swap(faila, failb);
905 pr_debug("%s: stripe: %llu faila: %d failb: %d\n",
906 __func__, (unsigned long long)sh->sector, faila, failb);
908 atomic_inc(&sh->count);
910 if (failb == syndrome_disks+1) {
911 /* Q disk is one of the missing disks */
912 if (faila == syndrome_disks) {
913 /* Missing P+Q, just recompute */
914 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
915 ops_complete_compute, sh,
916 to_addr_conv(sh, percpu));
917 return async_gen_syndrome(blocks, 0, syndrome_disks+2,
918 STRIPE_SIZE, &submit);
919 } else {
920 struct page *dest;
921 int data_target;
922 int qd_idx = sh->qd_idx;
924 /* Missing D+Q: recompute D from P, then recompute Q */
925 if (target == qd_idx)
926 data_target = target2;
927 else
928 data_target = target;
930 count = 0;
931 for (i = disks; i-- ; ) {
932 if (i == data_target || i == qd_idx)
933 continue;
934 blocks[count++] = sh->dev[i].page;
936 dest = sh->dev[data_target].page;
937 init_async_submit(&submit,
938 ASYNC_TX_FENCE|ASYNC_TX_XOR_ZERO_DST,
939 NULL, NULL, NULL,
940 to_addr_conv(sh, percpu));
941 tx = async_xor(dest, blocks, 0, count, STRIPE_SIZE,
942 &submit);
944 count = set_syndrome_sources(blocks, sh);
945 init_async_submit(&submit, ASYNC_TX_FENCE, tx,
946 ops_complete_compute, sh,
947 to_addr_conv(sh, percpu));
948 return async_gen_syndrome(blocks, 0, count+2,
949 STRIPE_SIZE, &submit);
951 } else {
952 init_async_submit(&submit, ASYNC_TX_FENCE, NULL,
953 ops_complete_compute, sh,
954 to_addr_conv(sh, percpu));
955 if (failb == syndrome_disks) {
956 /* We're missing D+P. */
957 return async_raid6_datap_recov(syndrome_disks+2,
958 STRIPE_SIZE, faila,
959 blocks, &submit);
960 } else {
961 /* We're missing D+D. */
962 return async_raid6_2data_recov(syndrome_disks+2,
963 STRIPE_SIZE, faila, failb,
964 blocks, &submit);
970 static void ops_complete_prexor(void *stripe_head_ref)
972 struct stripe_head *sh = stripe_head_ref;
974 pr_debug("%s: stripe %llu\n", __func__,
975 (unsigned long long)sh->sector);
978 static struct dma_async_tx_descriptor *
979 ops_run_prexor(struct stripe_head *sh, struct raid5_percpu *percpu,
980 struct dma_async_tx_descriptor *tx)
982 int disks = sh->disks;
983 struct page **xor_srcs = percpu->scribble;
984 int count = 0, pd_idx = sh->pd_idx, i;
985 struct async_submit_ctl submit;
987 /* existing parity data subtracted */
988 struct page *xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
990 pr_debug("%s: stripe %llu\n", __func__,
991 (unsigned long long)sh->sector);
993 for (i = disks; i--; ) {
994 struct r5dev *dev = &sh->dev[i];
995 /* Only process blocks that are known to be uptodate */
996 if (test_bit(R5_Wantdrain, &dev->flags))
997 xor_srcs[count++] = dev->page;
1000 init_async_submit(&submit, ASYNC_TX_FENCE|ASYNC_TX_XOR_DROP_DST, tx,
1001 ops_complete_prexor, sh, to_addr_conv(sh, percpu));
1002 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1004 return tx;
1007 static struct dma_async_tx_descriptor *
1008 ops_run_biodrain(struct stripe_head *sh, struct dma_async_tx_descriptor *tx)
1010 int disks = sh->disks;
1011 int i;
1013 pr_debug("%s: stripe %llu\n", __func__,
1014 (unsigned long long)sh->sector);
1016 for (i = disks; i--; ) {
1017 struct r5dev *dev = &sh->dev[i];
1018 struct bio *chosen;
1020 if (test_and_clear_bit(R5_Wantdrain, &dev->flags)) {
1021 struct bio *wbi;
1023 spin_lock(&sh->lock);
1024 chosen = dev->towrite;
1025 dev->towrite = NULL;
1026 BUG_ON(dev->written);
1027 wbi = dev->written = chosen;
1028 spin_unlock(&sh->lock);
1030 while (wbi && wbi->bi_sector <
1031 dev->sector + STRIPE_SECTORS) {
1032 if (wbi->bi_rw & REQ_FUA)
1033 set_bit(R5_WantFUA, &dev->flags);
1034 tx = async_copy_data(1, wbi, dev->page,
1035 dev->sector, tx);
1036 wbi = r5_next_bio(wbi, dev->sector);
1041 return tx;
1044 static void ops_complete_reconstruct(void *stripe_head_ref)
1046 struct stripe_head *sh = stripe_head_ref;
1047 int disks = sh->disks;
1048 int pd_idx = sh->pd_idx;
1049 int qd_idx = sh->qd_idx;
1050 int i;
1051 bool fua = false;
1053 pr_debug("%s: stripe %llu\n", __func__,
1054 (unsigned long long)sh->sector);
1056 for (i = disks; i--; )
1057 fua |= test_bit(R5_WantFUA, &sh->dev[i].flags);
1059 for (i = disks; i--; ) {
1060 struct r5dev *dev = &sh->dev[i];
1062 if (dev->written || i == pd_idx || i == qd_idx) {
1063 set_bit(R5_UPTODATE, &dev->flags);
1064 if (fua)
1065 set_bit(R5_WantFUA, &dev->flags);
1069 if (sh->reconstruct_state == reconstruct_state_drain_run)
1070 sh->reconstruct_state = reconstruct_state_drain_result;
1071 else if (sh->reconstruct_state == reconstruct_state_prexor_drain_run)
1072 sh->reconstruct_state = reconstruct_state_prexor_drain_result;
1073 else {
1074 BUG_ON(sh->reconstruct_state != reconstruct_state_run);
1075 sh->reconstruct_state = reconstruct_state_result;
1078 set_bit(STRIPE_HANDLE, &sh->state);
1079 release_stripe(sh);
1082 static void
1083 ops_run_reconstruct5(struct stripe_head *sh, struct raid5_percpu *percpu,
1084 struct dma_async_tx_descriptor *tx)
1086 int disks = sh->disks;
1087 struct page **xor_srcs = percpu->scribble;
1088 struct async_submit_ctl submit;
1089 int count = 0, pd_idx = sh->pd_idx, i;
1090 struct page *xor_dest;
1091 int prexor = 0;
1092 unsigned long flags;
1094 pr_debug("%s: stripe %llu\n", __func__,
1095 (unsigned long long)sh->sector);
1097 /* check if prexor is active which means only process blocks
1098 * that are part of a read-modify-write (written)
1100 if (sh->reconstruct_state == reconstruct_state_prexor_drain_run) {
1101 prexor = 1;
1102 xor_dest = xor_srcs[count++] = sh->dev[pd_idx].page;
1103 for (i = disks; i--; ) {
1104 struct r5dev *dev = &sh->dev[i];
1105 if (dev->written)
1106 xor_srcs[count++] = dev->page;
1108 } else {
1109 xor_dest = sh->dev[pd_idx].page;
1110 for (i = disks; i--; ) {
1111 struct r5dev *dev = &sh->dev[i];
1112 if (i != pd_idx)
1113 xor_srcs[count++] = dev->page;
1117 /* 1/ if we prexor'd then the dest is reused as a source
1118 * 2/ if we did not prexor then we are redoing the parity
1119 * set ASYNC_TX_XOR_DROP_DST and ASYNC_TX_XOR_ZERO_DST
1120 * for the synchronous xor case
1122 flags = ASYNC_TX_ACK |
1123 (prexor ? ASYNC_TX_XOR_DROP_DST : ASYNC_TX_XOR_ZERO_DST);
1125 atomic_inc(&sh->count);
1127 init_async_submit(&submit, flags, tx, ops_complete_reconstruct, sh,
1128 to_addr_conv(sh, percpu));
1129 if (unlikely(count == 1))
1130 tx = async_memcpy(xor_dest, xor_srcs[0], 0, 0, STRIPE_SIZE, &submit);
1131 else
1132 tx = async_xor(xor_dest, xor_srcs, 0, count, STRIPE_SIZE, &submit);
1135 static void
1136 ops_run_reconstruct6(struct stripe_head *sh, struct raid5_percpu *percpu,
1137 struct dma_async_tx_descriptor *tx)
1139 struct async_submit_ctl submit;
1140 struct page **blocks = percpu->scribble;
1141 int count;
1143 pr_debug("%s: stripe %llu\n", __func__, (unsigned long long)sh->sector);
1145 count = set_syndrome_sources(blocks, sh);
1147 atomic_inc(&sh->count);
1149 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_reconstruct,
1150 sh, to_addr_conv(sh, percpu));
1151 async_gen_syndrome(blocks, 0, count+2, STRIPE_SIZE, &submit);
1154 static void ops_complete_check(void *stripe_head_ref)
1156 struct stripe_head *sh = stripe_head_ref;
1158 pr_debug("%s: stripe %llu\n", __func__,
1159 (unsigned long long)sh->sector);
1161 sh->check_state = check_state_check_result;
1162 set_bit(STRIPE_HANDLE, &sh->state);
1163 release_stripe(sh);
1166 static void ops_run_check_p(struct stripe_head *sh, struct raid5_percpu *percpu)
1168 int disks = sh->disks;
1169 int pd_idx = sh->pd_idx;
1170 int qd_idx = sh->qd_idx;
1171 struct page *xor_dest;
1172 struct page **xor_srcs = percpu->scribble;
1173 struct dma_async_tx_descriptor *tx;
1174 struct async_submit_ctl submit;
1175 int count;
1176 int i;
1178 pr_debug("%s: stripe %llu\n", __func__,
1179 (unsigned long long)sh->sector);
1181 count = 0;
1182 xor_dest = sh->dev[pd_idx].page;
1183 xor_srcs[count++] = xor_dest;
1184 for (i = disks; i--; ) {
1185 if (i == pd_idx || i == qd_idx)
1186 continue;
1187 xor_srcs[count++] = sh->dev[i].page;
1190 init_async_submit(&submit, 0, NULL, NULL, NULL,
1191 to_addr_conv(sh, percpu));
1192 tx = async_xor_val(xor_dest, xor_srcs, 0, count, STRIPE_SIZE,
1193 &sh->ops.zero_sum_result, &submit);
1195 atomic_inc(&sh->count);
1196 init_async_submit(&submit, ASYNC_TX_ACK, tx, ops_complete_check, sh, NULL);
1197 tx = async_trigger_callback(&submit);
1200 static void ops_run_check_pq(struct stripe_head *sh, struct raid5_percpu *percpu, int checkp)
1202 struct page **srcs = percpu->scribble;
1203 struct async_submit_ctl submit;
1204 int count;
1206 pr_debug("%s: stripe %llu checkp: %d\n", __func__,
1207 (unsigned long long)sh->sector, checkp);
1209 count = set_syndrome_sources(srcs, sh);
1210 if (!checkp)
1211 srcs[count] = NULL;
1213 atomic_inc(&sh->count);
1214 init_async_submit(&submit, ASYNC_TX_ACK, NULL, ops_complete_check,
1215 sh, to_addr_conv(sh, percpu));
1216 async_syndrome_val(srcs, 0, count+2, STRIPE_SIZE,
1217 &sh->ops.zero_sum_result, percpu->spare_page, &submit);
1220 static void __raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1222 int overlap_clear = 0, i, disks = sh->disks;
1223 struct dma_async_tx_descriptor *tx = NULL;
1224 raid5_conf_t *conf = sh->raid_conf;
1225 int level = conf->level;
1226 struct raid5_percpu *percpu;
1227 unsigned long cpu;
1229 cpu = get_cpu();
1230 percpu = per_cpu_ptr(conf->percpu, cpu);
1231 if (test_bit(STRIPE_OP_BIOFILL, &ops_request)) {
1232 ops_run_biofill(sh);
1233 overlap_clear++;
1236 if (test_bit(STRIPE_OP_COMPUTE_BLK, &ops_request)) {
1237 if (level < 6)
1238 tx = ops_run_compute5(sh, percpu);
1239 else {
1240 if (sh->ops.target2 < 0 || sh->ops.target < 0)
1241 tx = ops_run_compute6_1(sh, percpu);
1242 else
1243 tx = ops_run_compute6_2(sh, percpu);
1245 /* terminate the chain if reconstruct is not set to be run */
1246 if (tx && !test_bit(STRIPE_OP_RECONSTRUCT, &ops_request))
1247 async_tx_ack(tx);
1250 if (test_bit(STRIPE_OP_PREXOR, &ops_request))
1251 tx = ops_run_prexor(sh, percpu, tx);
1253 if (test_bit(STRIPE_OP_BIODRAIN, &ops_request)) {
1254 tx = ops_run_biodrain(sh, tx);
1255 overlap_clear++;
1258 if (test_bit(STRIPE_OP_RECONSTRUCT, &ops_request)) {
1259 if (level < 6)
1260 ops_run_reconstruct5(sh, percpu, tx);
1261 else
1262 ops_run_reconstruct6(sh, percpu, tx);
1265 if (test_bit(STRIPE_OP_CHECK, &ops_request)) {
1266 if (sh->check_state == check_state_run)
1267 ops_run_check_p(sh, percpu);
1268 else if (sh->check_state == check_state_run_q)
1269 ops_run_check_pq(sh, percpu, 0);
1270 else if (sh->check_state == check_state_run_pq)
1271 ops_run_check_pq(sh, percpu, 1);
1272 else
1273 BUG();
1276 if (overlap_clear)
1277 for (i = disks; i--; ) {
1278 struct r5dev *dev = &sh->dev[i];
1279 if (test_and_clear_bit(R5_Overlap, &dev->flags))
1280 wake_up(&sh->raid_conf->wait_for_overlap);
1282 put_cpu();
1285 #ifdef CONFIG_MULTICORE_RAID456
1286 static void async_run_ops(void *param, async_cookie_t cookie)
1288 struct stripe_head *sh = param;
1289 unsigned long ops_request = sh->ops.request;
1291 clear_bit_unlock(STRIPE_OPS_REQ_PENDING, &sh->state);
1292 wake_up(&sh->ops.wait_for_ops);
1294 __raid_run_ops(sh, ops_request);
1295 release_stripe(sh);
1298 static void raid_run_ops(struct stripe_head *sh, unsigned long ops_request)
1300 /* since handle_stripe can be called outside of raid5d context
1301 * we need to ensure sh->ops.request is de-staged before another
1302 * request arrives
1304 wait_event(sh->ops.wait_for_ops,
1305 !test_and_set_bit_lock(STRIPE_OPS_REQ_PENDING, &sh->state));
1306 sh->ops.request = ops_request;
1308 atomic_inc(&sh->count);
1309 async_schedule(async_run_ops, sh);
1311 #else
1312 #define raid_run_ops __raid_run_ops
1313 #endif
1315 static int grow_one_stripe(raid5_conf_t *conf)
1317 struct stripe_head *sh;
1318 sh = kmem_cache_alloc(conf->slab_cache, GFP_KERNEL);
1319 if (!sh)
1320 return 0;
1321 memset(sh, 0, sizeof(*sh) + (conf->pool_size-1)*sizeof(struct r5dev));
1322 sh->raid_conf = conf;
1323 spin_lock_init(&sh->lock);
1324 #ifdef CONFIG_MULTICORE_RAID456
1325 init_waitqueue_head(&sh->ops.wait_for_ops);
1326 #endif
1328 if (grow_buffers(sh)) {
1329 shrink_buffers(sh);
1330 kmem_cache_free(conf->slab_cache, sh);
1331 return 0;
1333 /* we just created an active stripe so... */
1334 atomic_set(&sh->count, 1);
1335 atomic_inc(&conf->active_stripes);
1336 INIT_LIST_HEAD(&sh->lru);
1337 release_stripe(sh);
1338 return 1;
1341 static int grow_stripes(raid5_conf_t *conf, int num)
1343 struct kmem_cache *sc;
1344 int devs = max(conf->raid_disks, conf->previous_raid_disks);
1346 if (conf->mddev->gendisk)
1347 sprintf(conf->cache_name[0],
1348 "raid%d-%s", conf->level, mdname(conf->mddev));
1349 else
1350 sprintf(conf->cache_name[0],
1351 "raid%d-%p", conf->level, conf->mddev);
1352 sprintf(conf->cache_name[1], "%s-alt", conf->cache_name[0]);
1354 conf->active_name = 0;
1355 sc = kmem_cache_create(conf->cache_name[conf->active_name],
1356 sizeof(struct stripe_head)+(devs-1)*sizeof(struct r5dev),
1357 0, 0, NULL);
1358 if (!sc)
1359 return 1;
1360 conf->slab_cache = sc;
1361 conf->pool_size = devs;
1362 while (num--)
1363 if (!grow_one_stripe(conf))
1364 return 1;
1365 return 0;
1369 * scribble_len - return the required size of the scribble region
1370 * @num - total number of disks in the array
1372 * The size must be enough to contain:
1373 * 1/ a struct page pointer for each device in the array +2
1374 * 2/ room to convert each entry in (1) to its corresponding dma
1375 * (dma_map_page()) or page (page_address()) address.
1377 * Note: the +2 is for the destination buffers of the ddf/raid6 case where we
1378 * calculate over all devices (not just the data blocks), using zeros in place
1379 * of the P and Q blocks.
1381 static size_t scribble_len(int num)
1383 size_t len;
1385 len = sizeof(struct page *) * (num+2) + sizeof(addr_conv_t) * (num+2);
1387 return len;
1390 static int resize_stripes(raid5_conf_t *conf, int newsize)
1392 /* Make all the stripes able to hold 'newsize' devices.
1393 * New slots in each stripe get 'page' set to a new page.
1395 * This happens in stages:
1396 * 1/ create a new kmem_cache and allocate the required number of
1397 * stripe_heads.
1398 * 2/ gather all the old stripe_heads and tranfer the pages across
1399 * to the new stripe_heads. This will have the side effect of
1400 * freezing the array as once all stripe_heads have been collected,
1401 * no IO will be possible. Old stripe heads are freed once their
1402 * pages have been transferred over, and the old kmem_cache is
1403 * freed when all stripes are done.
1404 * 3/ reallocate conf->disks to be suitable bigger. If this fails,
1405 * we simple return a failre status - no need to clean anything up.
1406 * 4/ allocate new pages for the new slots in the new stripe_heads.
1407 * If this fails, we don't bother trying the shrink the
1408 * stripe_heads down again, we just leave them as they are.
1409 * As each stripe_head is processed the new one is released into
1410 * active service.
1412 * Once step2 is started, we cannot afford to wait for a write,
1413 * so we use GFP_NOIO allocations.
1415 struct stripe_head *osh, *nsh;
1416 LIST_HEAD(newstripes);
1417 struct disk_info *ndisks;
1418 unsigned long cpu;
1419 int err;
1420 struct kmem_cache *sc;
1421 int i;
1423 if (newsize <= conf->pool_size)
1424 return 0; /* never bother to shrink */
1426 err = md_allow_write(conf->mddev);
1427 if (err)
1428 return err;
1430 /* Step 1 */
1431 sc = kmem_cache_create(conf->cache_name[1-conf->active_name],
1432 sizeof(struct stripe_head)+(newsize-1)*sizeof(struct r5dev),
1433 0, 0, NULL);
1434 if (!sc)
1435 return -ENOMEM;
1437 for (i = conf->max_nr_stripes; i; i--) {
1438 nsh = kmem_cache_alloc(sc, GFP_KERNEL);
1439 if (!nsh)
1440 break;
1442 memset(nsh, 0, sizeof(*nsh) + (newsize-1)*sizeof(struct r5dev));
1444 nsh->raid_conf = conf;
1445 spin_lock_init(&nsh->lock);
1446 #ifdef CONFIG_MULTICORE_RAID456
1447 init_waitqueue_head(&nsh->ops.wait_for_ops);
1448 #endif
1450 list_add(&nsh->lru, &newstripes);
1452 if (i) {
1453 /* didn't get enough, give up */
1454 while (!list_empty(&newstripes)) {
1455 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1456 list_del(&nsh->lru);
1457 kmem_cache_free(sc, nsh);
1459 kmem_cache_destroy(sc);
1460 return -ENOMEM;
1462 /* Step 2 - Must use GFP_NOIO now.
1463 * OK, we have enough stripes, start collecting inactive
1464 * stripes and copying them over
1466 list_for_each_entry(nsh, &newstripes, lru) {
1467 spin_lock_irq(&conf->device_lock);
1468 wait_event_lock_irq(conf->wait_for_stripe,
1469 !list_empty(&conf->inactive_list),
1470 conf->device_lock,
1472 osh = get_free_stripe(conf);
1473 spin_unlock_irq(&conf->device_lock);
1474 atomic_set(&nsh->count, 1);
1475 for(i=0; i<conf->pool_size; i++)
1476 nsh->dev[i].page = osh->dev[i].page;
1477 for( ; i<newsize; i++)
1478 nsh->dev[i].page = NULL;
1479 kmem_cache_free(conf->slab_cache, osh);
1481 kmem_cache_destroy(conf->slab_cache);
1483 /* Step 3.
1484 * At this point, we are holding all the stripes so the array
1485 * is completely stalled, so now is a good time to resize
1486 * conf->disks and the scribble region
1488 ndisks = kzalloc(newsize * sizeof(struct disk_info), GFP_NOIO);
1489 if (ndisks) {
1490 for (i=0; i<conf->raid_disks; i++)
1491 ndisks[i] = conf->disks[i];
1492 kfree(conf->disks);
1493 conf->disks = ndisks;
1494 } else
1495 err = -ENOMEM;
1497 get_online_cpus();
1498 conf->scribble_len = scribble_len(newsize);
1499 for_each_present_cpu(cpu) {
1500 struct raid5_percpu *percpu;
1501 void *scribble;
1503 percpu = per_cpu_ptr(conf->percpu, cpu);
1504 scribble = kmalloc(conf->scribble_len, GFP_NOIO);
1506 if (scribble) {
1507 kfree(percpu->scribble);
1508 percpu->scribble = scribble;
1509 } else {
1510 err = -ENOMEM;
1511 break;
1514 put_online_cpus();
1516 /* Step 4, return new stripes to service */
1517 while(!list_empty(&newstripes)) {
1518 nsh = list_entry(newstripes.next, struct stripe_head, lru);
1519 list_del_init(&nsh->lru);
1521 for (i=conf->raid_disks; i < newsize; i++)
1522 if (nsh->dev[i].page == NULL) {
1523 struct page *p = alloc_page(GFP_NOIO);
1524 nsh->dev[i].page = p;
1525 if (!p)
1526 err = -ENOMEM;
1528 release_stripe(nsh);
1530 /* critical section pass, GFP_NOIO no longer needed */
1532 conf->slab_cache = sc;
1533 conf->active_name = 1-conf->active_name;
1534 conf->pool_size = newsize;
1535 return err;
1538 static int drop_one_stripe(raid5_conf_t *conf)
1540 struct stripe_head *sh;
1542 spin_lock_irq(&conf->device_lock);
1543 sh = get_free_stripe(conf);
1544 spin_unlock_irq(&conf->device_lock);
1545 if (!sh)
1546 return 0;
1547 BUG_ON(atomic_read(&sh->count));
1548 shrink_buffers(sh);
1549 kmem_cache_free(conf->slab_cache, sh);
1550 atomic_dec(&conf->active_stripes);
1551 return 1;
1554 static void shrink_stripes(raid5_conf_t *conf)
1556 while (drop_one_stripe(conf))
1559 if (conf->slab_cache)
1560 kmem_cache_destroy(conf->slab_cache);
1561 conf->slab_cache = NULL;
1564 static void raid5_end_read_request(struct bio * bi, int error)
1566 struct stripe_head *sh = bi->bi_private;
1567 raid5_conf_t *conf = sh->raid_conf;
1568 int disks = sh->disks, i;
1569 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1570 char b[BDEVNAME_SIZE];
1571 mdk_rdev_t *rdev;
1574 for (i=0 ; i<disks; i++)
1575 if (bi == &sh->dev[i].req)
1576 break;
1578 pr_debug("end_read_request %llu/%d, count: %d, uptodate %d.\n",
1579 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1580 uptodate);
1581 if (i == disks) {
1582 BUG();
1583 return;
1586 if (uptodate) {
1587 set_bit(R5_UPTODATE, &sh->dev[i].flags);
1588 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
1589 rdev = conf->disks[i].rdev;
1590 printk_rl(KERN_INFO "md/raid:%s: read error corrected"
1591 " (%lu sectors at %llu on %s)\n",
1592 mdname(conf->mddev), STRIPE_SECTORS,
1593 (unsigned long long)(sh->sector
1594 + rdev->data_offset),
1595 bdevname(rdev->bdev, b));
1596 clear_bit(R5_ReadError, &sh->dev[i].flags);
1597 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1599 if (atomic_read(&conf->disks[i].rdev->read_errors))
1600 atomic_set(&conf->disks[i].rdev->read_errors, 0);
1601 } else {
1602 const char *bdn = bdevname(conf->disks[i].rdev->bdev, b);
1603 int retry = 0;
1604 rdev = conf->disks[i].rdev;
1606 clear_bit(R5_UPTODATE, &sh->dev[i].flags);
1607 atomic_inc(&rdev->read_errors);
1608 if (conf->mddev->degraded >= conf->max_degraded)
1609 printk_rl(KERN_WARNING
1610 "md/raid:%s: read error not correctable "
1611 "(sector %llu on %s).\n",
1612 mdname(conf->mddev),
1613 (unsigned long long)(sh->sector
1614 + rdev->data_offset),
1615 bdn);
1616 else if (test_bit(R5_ReWrite, &sh->dev[i].flags))
1617 /* Oh, no!!! */
1618 printk_rl(KERN_WARNING
1619 "md/raid:%s: read error NOT corrected!! "
1620 "(sector %llu on %s).\n",
1621 mdname(conf->mddev),
1622 (unsigned long long)(sh->sector
1623 + rdev->data_offset),
1624 bdn);
1625 else if (atomic_read(&rdev->read_errors)
1626 > conf->max_nr_stripes)
1627 printk(KERN_WARNING
1628 "md/raid:%s: Too many read errors, failing device %s.\n",
1629 mdname(conf->mddev), bdn);
1630 else
1631 retry = 1;
1632 if (retry)
1633 set_bit(R5_ReadError, &sh->dev[i].flags);
1634 else {
1635 clear_bit(R5_ReadError, &sh->dev[i].flags);
1636 clear_bit(R5_ReWrite, &sh->dev[i].flags);
1637 md_error(conf->mddev, rdev);
1640 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1641 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1642 set_bit(STRIPE_HANDLE, &sh->state);
1643 release_stripe(sh);
1646 static void raid5_end_write_request(struct bio *bi, int error)
1648 struct stripe_head *sh = bi->bi_private;
1649 raid5_conf_t *conf = sh->raid_conf;
1650 int disks = sh->disks, i;
1651 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
1653 for (i=0 ; i<disks; i++)
1654 if (bi == &sh->dev[i].req)
1655 break;
1657 pr_debug("end_write_request %llu/%d, count %d, uptodate: %d.\n",
1658 (unsigned long long)sh->sector, i, atomic_read(&sh->count),
1659 uptodate);
1660 if (i == disks) {
1661 BUG();
1662 return;
1665 if (!uptodate)
1666 md_error(conf->mddev, conf->disks[i].rdev);
1668 rdev_dec_pending(conf->disks[i].rdev, conf->mddev);
1670 clear_bit(R5_LOCKED, &sh->dev[i].flags);
1671 set_bit(STRIPE_HANDLE, &sh->state);
1672 release_stripe(sh);
1676 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous);
1678 static void raid5_build_block(struct stripe_head *sh, int i, int previous)
1680 struct r5dev *dev = &sh->dev[i];
1682 bio_init(&dev->req);
1683 dev->req.bi_io_vec = &dev->vec;
1684 dev->req.bi_vcnt++;
1685 dev->req.bi_max_vecs++;
1686 dev->vec.bv_page = dev->page;
1687 dev->vec.bv_len = STRIPE_SIZE;
1688 dev->vec.bv_offset = 0;
1690 dev->req.bi_sector = sh->sector;
1691 dev->req.bi_private = sh;
1693 dev->flags = 0;
1694 dev->sector = compute_blocknr(sh, i, previous);
1697 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
1699 char b[BDEVNAME_SIZE];
1700 raid5_conf_t *conf = mddev->private;
1701 pr_debug("raid456: error called\n");
1703 if (test_and_clear_bit(In_sync, &rdev->flags)) {
1704 unsigned long flags;
1705 spin_lock_irqsave(&conf->device_lock, flags);
1706 mddev->degraded++;
1707 spin_unlock_irqrestore(&conf->device_lock, flags);
1709 * if recovery was running, make sure it aborts.
1711 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
1713 set_bit(Faulty, &rdev->flags);
1714 set_bit(MD_CHANGE_DEVS, &mddev->flags);
1715 printk(KERN_ALERT
1716 "md/raid:%s: Disk failure on %s, disabling device.\n"
1717 "md/raid:%s: Operation continuing on %d devices.\n",
1718 mdname(mddev),
1719 bdevname(rdev->bdev, b),
1720 mdname(mddev),
1721 conf->raid_disks - mddev->degraded);
1725 * Input: a 'big' sector number,
1726 * Output: index of the data and parity disk, and the sector # in them.
1728 static sector_t raid5_compute_sector(raid5_conf_t *conf, sector_t r_sector,
1729 int previous, int *dd_idx,
1730 struct stripe_head *sh)
1732 sector_t stripe, stripe2;
1733 sector_t chunk_number;
1734 unsigned int chunk_offset;
1735 int pd_idx, qd_idx;
1736 int ddf_layout = 0;
1737 sector_t new_sector;
1738 int algorithm = previous ? conf->prev_algo
1739 : conf->algorithm;
1740 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1741 : conf->chunk_sectors;
1742 int raid_disks = previous ? conf->previous_raid_disks
1743 : conf->raid_disks;
1744 int data_disks = raid_disks - conf->max_degraded;
1746 /* First compute the information on this sector */
1749 * Compute the chunk number and the sector offset inside the chunk
1751 chunk_offset = sector_div(r_sector, sectors_per_chunk);
1752 chunk_number = r_sector;
1755 * Compute the stripe number
1757 stripe = chunk_number;
1758 *dd_idx = sector_div(stripe, data_disks);
1759 stripe2 = stripe;
1761 * Select the parity disk based on the user selected algorithm.
1763 pd_idx = qd_idx = ~0;
1764 switch(conf->level) {
1765 case 4:
1766 pd_idx = data_disks;
1767 break;
1768 case 5:
1769 switch (algorithm) {
1770 case ALGORITHM_LEFT_ASYMMETRIC:
1771 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1772 if (*dd_idx >= pd_idx)
1773 (*dd_idx)++;
1774 break;
1775 case ALGORITHM_RIGHT_ASYMMETRIC:
1776 pd_idx = sector_div(stripe2, raid_disks);
1777 if (*dd_idx >= pd_idx)
1778 (*dd_idx)++;
1779 break;
1780 case ALGORITHM_LEFT_SYMMETRIC:
1781 pd_idx = data_disks - sector_div(stripe2, raid_disks);
1782 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1783 break;
1784 case ALGORITHM_RIGHT_SYMMETRIC:
1785 pd_idx = sector_div(stripe2, raid_disks);
1786 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1787 break;
1788 case ALGORITHM_PARITY_0:
1789 pd_idx = 0;
1790 (*dd_idx)++;
1791 break;
1792 case ALGORITHM_PARITY_N:
1793 pd_idx = data_disks;
1794 break;
1795 default:
1796 BUG();
1798 break;
1799 case 6:
1801 switch (algorithm) {
1802 case ALGORITHM_LEFT_ASYMMETRIC:
1803 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1804 qd_idx = pd_idx + 1;
1805 if (pd_idx == raid_disks-1) {
1806 (*dd_idx)++; /* Q D D D P */
1807 qd_idx = 0;
1808 } else if (*dd_idx >= pd_idx)
1809 (*dd_idx) += 2; /* D D P Q D */
1810 break;
1811 case ALGORITHM_RIGHT_ASYMMETRIC:
1812 pd_idx = sector_div(stripe2, raid_disks);
1813 qd_idx = pd_idx + 1;
1814 if (pd_idx == raid_disks-1) {
1815 (*dd_idx)++; /* Q D D D P */
1816 qd_idx = 0;
1817 } else if (*dd_idx >= pd_idx)
1818 (*dd_idx) += 2; /* D D P Q D */
1819 break;
1820 case ALGORITHM_LEFT_SYMMETRIC:
1821 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1822 qd_idx = (pd_idx + 1) % raid_disks;
1823 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1824 break;
1825 case ALGORITHM_RIGHT_SYMMETRIC:
1826 pd_idx = sector_div(stripe2, raid_disks);
1827 qd_idx = (pd_idx + 1) % raid_disks;
1828 *dd_idx = (pd_idx + 2 + *dd_idx) % raid_disks;
1829 break;
1831 case ALGORITHM_PARITY_0:
1832 pd_idx = 0;
1833 qd_idx = 1;
1834 (*dd_idx) += 2;
1835 break;
1836 case ALGORITHM_PARITY_N:
1837 pd_idx = data_disks;
1838 qd_idx = data_disks + 1;
1839 break;
1841 case ALGORITHM_ROTATING_ZERO_RESTART:
1842 /* Exactly the same as RIGHT_ASYMMETRIC, but or
1843 * of blocks for computing Q is different.
1845 pd_idx = sector_div(stripe2, raid_disks);
1846 qd_idx = pd_idx + 1;
1847 if (pd_idx == raid_disks-1) {
1848 (*dd_idx)++; /* Q D D D P */
1849 qd_idx = 0;
1850 } else if (*dd_idx >= pd_idx)
1851 (*dd_idx) += 2; /* D D P Q D */
1852 ddf_layout = 1;
1853 break;
1855 case ALGORITHM_ROTATING_N_RESTART:
1856 /* Same a left_asymmetric, by first stripe is
1857 * D D D P Q rather than
1858 * Q D D D P
1860 stripe2 += 1;
1861 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1862 qd_idx = pd_idx + 1;
1863 if (pd_idx == raid_disks-1) {
1864 (*dd_idx)++; /* Q D D D P */
1865 qd_idx = 0;
1866 } else if (*dd_idx >= pd_idx)
1867 (*dd_idx) += 2; /* D D P Q D */
1868 ddf_layout = 1;
1869 break;
1871 case ALGORITHM_ROTATING_N_CONTINUE:
1872 /* Same as left_symmetric but Q is before P */
1873 pd_idx = raid_disks - 1 - sector_div(stripe2, raid_disks);
1874 qd_idx = (pd_idx + raid_disks - 1) % raid_disks;
1875 *dd_idx = (pd_idx + 1 + *dd_idx) % raid_disks;
1876 ddf_layout = 1;
1877 break;
1879 case ALGORITHM_LEFT_ASYMMETRIC_6:
1880 /* RAID5 left_asymmetric, with Q on last device */
1881 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1882 if (*dd_idx >= pd_idx)
1883 (*dd_idx)++;
1884 qd_idx = raid_disks - 1;
1885 break;
1887 case ALGORITHM_RIGHT_ASYMMETRIC_6:
1888 pd_idx = sector_div(stripe2, raid_disks-1);
1889 if (*dd_idx >= pd_idx)
1890 (*dd_idx)++;
1891 qd_idx = raid_disks - 1;
1892 break;
1894 case ALGORITHM_LEFT_SYMMETRIC_6:
1895 pd_idx = data_disks - sector_div(stripe2, raid_disks-1);
1896 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1897 qd_idx = raid_disks - 1;
1898 break;
1900 case ALGORITHM_RIGHT_SYMMETRIC_6:
1901 pd_idx = sector_div(stripe2, raid_disks-1);
1902 *dd_idx = (pd_idx + 1 + *dd_idx) % (raid_disks-1);
1903 qd_idx = raid_disks - 1;
1904 break;
1906 case ALGORITHM_PARITY_0_6:
1907 pd_idx = 0;
1908 (*dd_idx)++;
1909 qd_idx = raid_disks - 1;
1910 break;
1912 default:
1913 BUG();
1915 break;
1918 if (sh) {
1919 sh->pd_idx = pd_idx;
1920 sh->qd_idx = qd_idx;
1921 sh->ddf_layout = ddf_layout;
1924 * Finally, compute the new sector number
1926 new_sector = (sector_t)stripe * sectors_per_chunk + chunk_offset;
1927 return new_sector;
1931 static sector_t compute_blocknr(struct stripe_head *sh, int i, int previous)
1933 raid5_conf_t *conf = sh->raid_conf;
1934 int raid_disks = sh->disks;
1935 int data_disks = raid_disks - conf->max_degraded;
1936 sector_t new_sector = sh->sector, check;
1937 int sectors_per_chunk = previous ? conf->prev_chunk_sectors
1938 : conf->chunk_sectors;
1939 int algorithm = previous ? conf->prev_algo
1940 : conf->algorithm;
1941 sector_t stripe;
1942 int chunk_offset;
1943 sector_t chunk_number;
1944 int dummy1, dd_idx = i;
1945 sector_t r_sector;
1946 struct stripe_head sh2;
1949 chunk_offset = sector_div(new_sector, sectors_per_chunk);
1950 stripe = new_sector;
1952 if (i == sh->pd_idx)
1953 return 0;
1954 switch(conf->level) {
1955 case 4: break;
1956 case 5:
1957 switch (algorithm) {
1958 case ALGORITHM_LEFT_ASYMMETRIC:
1959 case ALGORITHM_RIGHT_ASYMMETRIC:
1960 if (i > sh->pd_idx)
1961 i--;
1962 break;
1963 case ALGORITHM_LEFT_SYMMETRIC:
1964 case ALGORITHM_RIGHT_SYMMETRIC:
1965 if (i < sh->pd_idx)
1966 i += raid_disks;
1967 i -= (sh->pd_idx + 1);
1968 break;
1969 case ALGORITHM_PARITY_0:
1970 i -= 1;
1971 break;
1972 case ALGORITHM_PARITY_N:
1973 break;
1974 default:
1975 BUG();
1977 break;
1978 case 6:
1979 if (i == sh->qd_idx)
1980 return 0; /* It is the Q disk */
1981 switch (algorithm) {
1982 case ALGORITHM_LEFT_ASYMMETRIC:
1983 case ALGORITHM_RIGHT_ASYMMETRIC:
1984 case ALGORITHM_ROTATING_ZERO_RESTART:
1985 case ALGORITHM_ROTATING_N_RESTART:
1986 if (sh->pd_idx == raid_disks-1)
1987 i--; /* Q D D D P */
1988 else if (i > sh->pd_idx)
1989 i -= 2; /* D D P Q D */
1990 break;
1991 case ALGORITHM_LEFT_SYMMETRIC:
1992 case ALGORITHM_RIGHT_SYMMETRIC:
1993 if (sh->pd_idx == raid_disks-1)
1994 i--; /* Q D D D P */
1995 else {
1996 /* D D P Q D */
1997 if (i < sh->pd_idx)
1998 i += raid_disks;
1999 i -= (sh->pd_idx + 2);
2001 break;
2002 case ALGORITHM_PARITY_0:
2003 i -= 2;
2004 break;
2005 case ALGORITHM_PARITY_N:
2006 break;
2007 case ALGORITHM_ROTATING_N_CONTINUE:
2008 /* Like left_symmetric, but P is before Q */
2009 if (sh->pd_idx == 0)
2010 i--; /* P D D D Q */
2011 else {
2012 /* D D Q P D */
2013 if (i < sh->pd_idx)
2014 i += raid_disks;
2015 i -= (sh->pd_idx + 1);
2017 break;
2018 case ALGORITHM_LEFT_ASYMMETRIC_6:
2019 case ALGORITHM_RIGHT_ASYMMETRIC_6:
2020 if (i > sh->pd_idx)
2021 i--;
2022 break;
2023 case ALGORITHM_LEFT_SYMMETRIC_6:
2024 case ALGORITHM_RIGHT_SYMMETRIC_6:
2025 if (i < sh->pd_idx)
2026 i += data_disks + 1;
2027 i -= (sh->pd_idx + 1);
2028 break;
2029 case ALGORITHM_PARITY_0_6:
2030 i -= 1;
2031 break;
2032 default:
2033 BUG();
2035 break;
2038 chunk_number = stripe * data_disks + i;
2039 r_sector = chunk_number * sectors_per_chunk + chunk_offset;
2041 check = raid5_compute_sector(conf, r_sector,
2042 previous, &dummy1, &sh2);
2043 if (check != sh->sector || dummy1 != dd_idx || sh2.pd_idx != sh->pd_idx
2044 || sh2.qd_idx != sh->qd_idx) {
2045 printk(KERN_ERR "md/raid:%s: compute_blocknr: map not correct\n",
2046 mdname(conf->mddev));
2047 return 0;
2049 return r_sector;
2053 static void
2054 schedule_reconstruction(struct stripe_head *sh, struct stripe_head_state *s,
2055 int rcw, int expand)
2057 int i, pd_idx = sh->pd_idx, disks = sh->disks;
2058 raid5_conf_t *conf = sh->raid_conf;
2059 int level = conf->level;
2061 if (rcw) {
2062 /* if we are not expanding this is a proper write request, and
2063 * there will be bios with new data to be drained into the
2064 * stripe cache
2066 if (!expand) {
2067 sh->reconstruct_state = reconstruct_state_drain_run;
2068 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2069 } else
2070 sh->reconstruct_state = reconstruct_state_run;
2072 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2074 for (i = disks; i--; ) {
2075 struct r5dev *dev = &sh->dev[i];
2077 if (dev->towrite) {
2078 set_bit(R5_LOCKED, &dev->flags);
2079 set_bit(R5_Wantdrain, &dev->flags);
2080 if (!expand)
2081 clear_bit(R5_UPTODATE, &dev->flags);
2082 s->locked++;
2085 if (s->locked + conf->max_degraded == disks)
2086 if (!test_and_set_bit(STRIPE_FULL_WRITE, &sh->state))
2087 atomic_inc(&conf->pending_full_writes);
2088 } else {
2089 BUG_ON(level == 6);
2090 BUG_ON(!(test_bit(R5_UPTODATE, &sh->dev[pd_idx].flags) ||
2091 test_bit(R5_Wantcompute, &sh->dev[pd_idx].flags)));
2093 sh->reconstruct_state = reconstruct_state_prexor_drain_run;
2094 set_bit(STRIPE_OP_PREXOR, &s->ops_request);
2095 set_bit(STRIPE_OP_BIODRAIN, &s->ops_request);
2096 set_bit(STRIPE_OP_RECONSTRUCT, &s->ops_request);
2098 for (i = disks; i--; ) {
2099 struct r5dev *dev = &sh->dev[i];
2100 if (i == pd_idx)
2101 continue;
2103 if (dev->towrite &&
2104 (test_bit(R5_UPTODATE, &dev->flags) ||
2105 test_bit(R5_Wantcompute, &dev->flags))) {
2106 set_bit(R5_Wantdrain, &dev->flags);
2107 set_bit(R5_LOCKED, &dev->flags);
2108 clear_bit(R5_UPTODATE, &dev->flags);
2109 s->locked++;
2114 /* keep the parity disk(s) locked while asynchronous operations
2115 * are in flight
2117 set_bit(R5_LOCKED, &sh->dev[pd_idx].flags);
2118 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2119 s->locked++;
2121 if (level == 6) {
2122 int qd_idx = sh->qd_idx;
2123 struct r5dev *dev = &sh->dev[qd_idx];
2125 set_bit(R5_LOCKED, &dev->flags);
2126 clear_bit(R5_UPTODATE, &dev->flags);
2127 s->locked++;
2130 pr_debug("%s: stripe %llu locked: %d ops_request: %lx\n",
2131 __func__, (unsigned long long)sh->sector,
2132 s->locked, s->ops_request);
2136 * Each stripe/dev can have one or more bion attached.
2137 * toread/towrite point to the first in a chain.
2138 * The bi_next chain must be in order.
2140 static int add_stripe_bio(struct stripe_head *sh, struct bio *bi, int dd_idx, int forwrite)
2142 struct bio **bip;
2143 raid5_conf_t *conf = sh->raid_conf;
2144 int firstwrite=0;
2146 pr_debug("adding bh b#%llu to stripe s#%llu\n",
2147 (unsigned long long)bi->bi_sector,
2148 (unsigned long long)sh->sector);
2151 spin_lock(&sh->lock);
2152 spin_lock_irq(&conf->device_lock);
2153 if (forwrite) {
2154 bip = &sh->dev[dd_idx].towrite;
2155 if (*bip == NULL && sh->dev[dd_idx].written == NULL)
2156 firstwrite = 1;
2157 } else
2158 bip = &sh->dev[dd_idx].toread;
2159 while (*bip && (*bip)->bi_sector < bi->bi_sector) {
2160 if ((*bip)->bi_sector + ((*bip)->bi_size >> 9) > bi->bi_sector)
2161 goto overlap;
2162 bip = & (*bip)->bi_next;
2164 if (*bip && (*bip)->bi_sector < bi->bi_sector + ((bi->bi_size)>>9))
2165 goto overlap;
2167 BUG_ON(*bip && bi->bi_next && (*bip) != bi->bi_next);
2168 if (*bip)
2169 bi->bi_next = *bip;
2170 *bip = bi;
2171 bi->bi_phys_segments++;
2172 spin_unlock_irq(&conf->device_lock);
2173 spin_unlock(&sh->lock);
2175 pr_debug("added bi b#%llu to stripe s#%llu, disk %d.\n",
2176 (unsigned long long)bi->bi_sector,
2177 (unsigned long long)sh->sector, dd_idx);
2179 if (conf->mddev->bitmap && firstwrite) {
2180 bitmap_startwrite(conf->mddev->bitmap, sh->sector,
2181 STRIPE_SECTORS, 0);
2182 sh->bm_seq = conf->seq_flush+1;
2183 set_bit(STRIPE_BIT_DELAY, &sh->state);
2186 if (forwrite) {
2187 /* check if page is covered */
2188 sector_t sector = sh->dev[dd_idx].sector;
2189 for (bi=sh->dev[dd_idx].towrite;
2190 sector < sh->dev[dd_idx].sector + STRIPE_SECTORS &&
2191 bi && bi->bi_sector <= sector;
2192 bi = r5_next_bio(bi, sh->dev[dd_idx].sector)) {
2193 if (bi->bi_sector + (bi->bi_size>>9) >= sector)
2194 sector = bi->bi_sector + (bi->bi_size>>9);
2196 if (sector >= sh->dev[dd_idx].sector + STRIPE_SECTORS)
2197 set_bit(R5_OVERWRITE, &sh->dev[dd_idx].flags);
2199 return 1;
2201 overlap:
2202 set_bit(R5_Overlap, &sh->dev[dd_idx].flags);
2203 spin_unlock_irq(&conf->device_lock);
2204 spin_unlock(&sh->lock);
2205 return 0;
2208 static void end_reshape(raid5_conf_t *conf);
2210 static void stripe_set_idx(sector_t stripe, raid5_conf_t *conf, int previous,
2211 struct stripe_head *sh)
2213 int sectors_per_chunk =
2214 previous ? conf->prev_chunk_sectors : conf->chunk_sectors;
2215 int dd_idx;
2216 int chunk_offset = sector_div(stripe, sectors_per_chunk);
2217 int disks = previous ? conf->previous_raid_disks : conf->raid_disks;
2219 raid5_compute_sector(conf,
2220 stripe * (disks - conf->max_degraded)
2221 *sectors_per_chunk + chunk_offset,
2222 previous,
2223 &dd_idx, sh);
2226 static void
2227 handle_failed_stripe(raid5_conf_t *conf, struct stripe_head *sh,
2228 struct stripe_head_state *s, int disks,
2229 struct bio **return_bi)
2231 int i;
2232 for (i = disks; i--; ) {
2233 struct bio *bi;
2234 int bitmap_end = 0;
2236 if (test_bit(R5_ReadError, &sh->dev[i].flags)) {
2237 mdk_rdev_t *rdev;
2238 rcu_read_lock();
2239 rdev = rcu_dereference(conf->disks[i].rdev);
2240 if (rdev && test_bit(In_sync, &rdev->flags))
2241 /* multiple read failures in one stripe */
2242 md_error(conf->mddev, rdev);
2243 rcu_read_unlock();
2245 spin_lock_irq(&conf->device_lock);
2246 /* fail all writes first */
2247 bi = sh->dev[i].towrite;
2248 sh->dev[i].towrite = NULL;
2249 if (bi) {
2250 s->to_write--;
2251 bitmap_end = 1;
2254 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2255 wake_up(&conf->wait_for_overlap);
2257 while (bi && bi->bi_sector <
2258 sh->dev[i].sector + STRIPE_SECTORS) {
2259 struct bio *nextbi = r5_next_bio(bi, sh->dev[i].sector);
2260 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2261 if (!raid5_dec_bi_phys_segments(bi)) {
2262 md_write_end(conf->mddev);
2263 bi->bi_next = *return_bi;
2264 *return_bi = bi;
2266 bi = nextbi;
2268 /* and fail all 'written' */
2269 bi = sh->dev[i].written;
2270 sh->dev[i].written = NULL;
2271 if (bi) bitmap_end = 1;
2272 while (bi && bi->bi_sector <
2273 sh->dev[i].sector + STRIPE_SECTORS) {
2274 struct bio *bi2 = r5_next_bio(bi, sh->dev[i].sector);
2275 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2276 if (!raid5_dec_bi_phys_segments(bi)) {
2277 md_write_end(conf->mddev);
2278 bi->bi_next = *return_bi;
2279 *return_bi = bi;
2281 bi = bi2;
2284 /* fail any reads if this device is non-operational and
2285 * the data has not reached the cache yet.
2287 if (!test_bit(R5_Wantfill, &sh->dev[i].flags) &&
2288 (!test_bit(R5_Insync, &sh->dev[i].flags) ||
2289 test_bit(R5_ReadError, &sh->dev[i].flags))) {
2290 bi = sh->dev[i].toread;
2291 sh->dev[i].toread = NULL;
2292 if (test_and_clear_bit(R5_Overlap, &sh->dev[i].flags))
2293 wake_up(&conf->wait_for_overlap);
2294 if (bi) s->to_read--;
2295 while (bi && bi->bi_sector <
2296 sh->dev[i].sector + STRIPE_SECTORS) {
2297 struct bio *nextbi =
2298 r5_next_bio(bi, sh->dev[i].sector);
2299 clear_bit(BIO_UPTODATE, &bi->bi_flags);
2300 if (!raid5_dec_bi_phys_segments(bi)) {
2301 bi->bi_next = *return_bi;
2302 *return_bi = bi;
2304 bi = nextbi;
2307 spin_unlock_irq(&conf->device_lock);
2308 if (bitmap_end)
2309 bitmap_endwrite(conf->mddev->bitmap, sh->sector,
2310 STRIPE_SECTORS, 0, 0);
2313 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2314 if (atomic_dec_and_test(&conf->pending_full_writes))
2315 md_wakeup_thread(conf->mddev->thread);
2318 /* fetch_block5 - checks the given member device to see if its data needs
2319 * to be read or computed to satisfy a request.
2321 * Returns 1 when no more member devices need to be checked, otherwise returns
2322 * 0 to tell the loop in handle_stripe_fill5 to continue
2324 static int fetch_block5(struct stripe_head *sh, struct stripe_head_state *s,
2325 int disk_idx, int disks)
2327 struct r5dev *dev = &sh->dev[disk_idx];
2328 struct r5dev *failed_dev = &sh->dev[s->failed_num];
2330 /* is the data in this block needed, and can we get it? */
2331 if (!test_bit(R5_LOCKED, &dev->flags) &&
2332 !test_bit(R5_UPTODATE, &dev->flags) &&
2333 (dev->toread ||
2334 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2335 s->syncing || s->expanding ||
2336 (s->failed &&
2337 (failed_dev->toread ||
2338 (failed_dev->towrite &&
2339 !test_bit(R5_OVERWRITE, &failed_dev->flags)))))) {
2340 /* We would like to get this block, possibly by computing it,
2341 * otherwise read it if the backing disk is insync
2343 if ((s->uptodate == disks - 1) &&
2344 (s->failed && disk_idx == s->failed_num)) {
2345 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2346 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2347 set_bit(R5_Wantcompute, &dev->flags);
2348 sh->ops.target = disk_idx;
2349 sh->ops.target2 = -1;
2350 s->req_compute = 1;
2351 /* Careful: from this point on 'uptodate' is in the eye
2352 * of raid_run_ops which services 'compute' operations
2353 * before writes. R5_Wantcompute flags a block that will
2354 * be R5_UPTODATE by the time it is needed for a
2355 * subsequent operation.
2357 s->uptodate++;
2358 return 1; /* uptodate + compute == disks */
2359 } else if (test_bit(R5_Insync, &dev->flags)) {
2360 set_bit(R5_LOCKED, &dev->flags);
2361 set_bit(R5_Wantread, &dev->flags);
2362 s->locked++;
2363 pr_debug("Reading block %d (sync=%d)\n", disk_idx,
2364 s->syncing);
2368 return 0;
2372 * handle_stripe_fill5 - read or compute data to satisfy pending requests.
2374 static void handle_stripe_fill5(struct stripe_head *sh,
2375 struct stripe_head_state *s, int disks)
2377 int i;
2379 /* look for blocks to read/compute, skip this if a compute
2380 * is already in flight, or if the stripe contents are in the
2381 * midst of changing due to a write
2383 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2384 !sh->reconstruct_state)
2385 for (i = disks; i--; )
2386 if (fetch_block5(sh, s, i, disks))
2387 break;
2388 set_bit(STRIPE_HANDLE, &sh->state);
2391 /* fetch_block6 - checks the given member device to see if its data needs
2392 * to be read or computed to satisfy a request.
2394 * Returns 1 when no more member devices need to be checked, otherwise returns
2395 * 0 to tell the loop in handle_stripe_fill6 to continue
2397 static int fetch_block6(struct stripe_head *sh, struct stripe_head_state *s,
2398 struct r6_state *r6s, int disk_idx, int disks)
2400 struct r5dev *dev = &sh->dev[disk_idx];
2401 struct r5dev *fdev[2] = { &sh->dev[r6s->failed_num[0]],
2402 &sh->dev[r6s->failed_num[1]] };
2404 if (!test_bit(R5_LOCKED, &dev->flags) &&
2405 !test_bit(R5_UPTODATE, &dev->flags) &&
2406 (dev->toread ||
2407 (dev->towrite && !test_bit(R5_OVERWRITE, &dev->flags)) ||
2408 s->syncing || s->expanding ||
2409 (s->failed >= 1 &&
2410 (fdev[0]->toread || s->to_write)) ||
2411 (s->failed >= 2 &&
2412 (fdev[1]->toread || s->to_write)))) {
2413 /* we would like to get this block, possibly by computing it,
2414 * otherwise read it if the backing disk is insync
2416 BUG_ON(test_bit(R5_Wantcompute, &dev->flags));
2417 BUG_ON(test_bit(R5_Wantread, &dev->flags));
2418 if ((s->uptodate == disks - 1) &&
2419 (s->failed && (disk_idx == r6s->failed_num[0] ||
2420 disk_idx == r6s->failed_num[1]))) {
2421 /* have disk failed, and we're requested to fetch it;
2422 * do compute it
2424 pr_debug("Computing stripe %llu block %d\n",
2425 (unsigned long long)sh->sector, disk_idx);
2426 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2427 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2428 set_bit(R5_Wantcompute, &dev->flags);
2429 sh->ops.target = disk_idx;
2430 sh->ops.target2 = -1; /* no 2nd target */
2431 s->req_compute = 1;
2432 s->uptodate++;
2433 return 1;
2434 } else if (s->uptodate == disks-2 && s->failed >= 2) {
2435 /* Computing 2-failure is *very* expensive; only
2436 * do it if failed >= 2
2438 int other;
2439 for (other = disks; other--; ) {
2440 if (other == disk_idx)
2441 continue;
2442 if (!test_bit(R5_UPTODATE,
2443 &sh->dev[other].flags))
2444 break;
2446 BUG_ON(other < 0);
2447 pr_debug("Computing stripe %llu blocks %d,%d\n",
2448 (unsigned long long)sh->sector,
2449 disk_idx, other);
2450 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2451 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2452 set_bit(R5_Wantcompute, &sh->dev[disk_idx].flags);
2453 set_bit(R5_Wantcompute, &sh->dev[other].flags);
2454 sh->ops.target = disk_idx;
2455 sh->ops.target2 = other;
2456 s->uptodate += 2;
2457 s->req_compute = 1;
2458 return 1;
2459 } else if (test_bit(R5_Insync, &dev->flags)) {
2460 set_bit(R5_LOCKED, &dev->flags);
2461 set_bit(R5_Wantread, &dev->flags);
2462 s->locked++;
2463 pr_debug("Reading block %d (sync=%d)\n",
2464 disk_idx, s->syncing);
2468 return 0;
2472 * handle_stripe_fill6 - read or compute data to satisfy pending requests.
2474 static void handle_stripe_fill6(struct stripe_head *sh,
2475 struct stripe_head_state *s, struct r6_state *r6s,
2476 int disks)
2478 int i;
2480 /* look for blocks to read/compute, skip this if a compute
2481 * is already in flight, or if the stripe contents are in the
2482 * midst of changing due to a write
2484 if (!test_bit(STRIPE_COMPUTE_RUN, &sh->state) && !sh->check_state &&
2485 !sh->reconstruct_state)
2486 for (i = disks; i--; )
2487 if (fetch_block6(sh, s, r6s, i, disks))
2488 break;
2489 set_bit(STRIPE_HANDLE, &sh->state);
2493 /* handle_stripe_clean_event
2494 * any written block on an uptodate or failed drive can be returned.
2495 * Note that if we 'wrote' to a failed drive, it will be UPTODATE, but
2496 * never LOCKED, so we don't need to test 'failed' directly.
2498 static void handle_stripe_clean_event(raid5_conf_t *conf,
2499 struct stripe_head *sh, int disks, struct bio **return_bi)
2501 int i;
2502 struct r5dev *dev;
2504 for (i = disks; i--; )
2505 if (sh->dev[i].written) {
2506 dev = &sh->dev[i];
2507 if (!test_bit(R5_LOCKED, &dev->flags) &&
2508 test_bit(R5_UPTODATE, &dev->flags)) {
2509 /* We can return any write requests */
2510 struct bio *wbi, *wbi2;
2511 int bitmap_end = 0;
2512 pr_debug("Return write for disc %d\n", i);
2513 spin_lock_irq(&conf->device_lock);
2514 wbi = dev->written;
2515 dev->written = NULL;
2516 while (wbi && wbi->bi_sector <
2517 dev->sector + STRIPE_SECTORS) {
2518 wbi2 = r5_next_bio(wbi, dev->sector);
2519 if (!raid5_dec_bi_phys_segments(wbi)) {
2520 md_write_end(conf->mddev);
2521 wbi->bi_next = *return_bi;
2522 *return_bi = wbi;
2524 wbi = wbi2;
2526 if (dev->towrite == NULL)
2527 bitmap_end = 1;
2528 spin_unlock_irq(&conf->device_lock);
2529 if (bitmap_end)
2530 bitmap_endwrite(conf->mddev->bitmap,
2531 sh->sector,
2532 STRIPE_SECTORS,
2533 !test_bit(STRIPE_DEGRADED, &sh->state),
2538 if (test_and_clear_bit(STRIPE_FULL_WRITE, &sh->state))
2539 if (atomic_dec_and_test(&conf->pending_full_writes))
2540 md_wakeup_thread(conf->mddev->thread);
2543 static void handle_stripe_dirtying5(raid5_conf_t *conf,
2544 struct stripe_head *sh, struct stripe_head_state *s, int disks)
2546 int rmw = 0, rcw = 0, i;
2547 for (i = disks; i--; ) {
2548 /* would I have to read this buffer for read_modify_write */
2549 struct r5dev *dev = &sh->dev[i];
2550 if ((dev->towrite || i == sh->pd_idx) &&
2551 !test_bit(R5_LOCKED, &dev->flags) &&
2552 !(test_bit(R5_UPTODATE, &dev->flags) ||
2553 test_bit(R5_Wantcompute, &dev->flags))) {
2554 if (test_bit(R5_Insync, &dev->flags))
2555 rmw++;
2556 else
2557 rmw += 2*disks; /* cannot read it */
2559 /* Would I have to read this buffer for reconstruct_write */
2560 if (!test_bit(R5_OVERWRITE, &dev->flags) && i != sh->pd_idx &&
2561 !test_bit(R5_LOCKED, &dev->flags) &&
2562 !(test_bit(R5_UPTODATE, &dev->flags) ||
2563 test_bit(R5_Wantcompute, &dev->flags))) {
2564 if (test_bit(R5_Insync, &dev->flags)) rcw++;
2565 else
2566 rcw += 2*disks;
2569 pr_debug("for sector %llu, rmw=%d rcw=%d\n",
2570 (unsigned long long)sh->sector, rmw, rcw);
2571 set_bit(STRIPE_HANDLE, &sh->state);
2572 if (rmw < rcw && rmw > 0)
2573 /* prefer read-modify-write, but need to get some data */
2574 for (i = disks; i--; ) {
2575 struct r5dev *dev = &sh->dev[i];
2576 if ((dev->towrite || i == sh->pd_idx) &&
2577 !test_bit(R5_LOCKED, &dev->flags) &&
2578 !(test_bit(R5_UPTODATE, &dev->flags) ||
2579 test_bit(R5_Wantcompute, &dev->flags)) &&
2580 test_bit(R5_Insync, &dev->flags)) {
2581 if (
2582 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2583 pr_debug("Read_old block "
2584 "%d for r-m-w\n", i);
2585 set_bit(R5_LOCKED, &dev->flags);
2586 set_bit(R5_Wantread, &dev->flags);
2587 s->locked++;
2588 } else {
2589 set_bit(STRIPE_DELAYED, &sh->state);
2590 set_bit(STRIPE_HANDLE, &sh->state);
2594 if (rcw <= rmw && rcw > 0)
2595 /* want reconstruct write, but need to get some data */
2596 for (i = disks; i--; ) {
2597 struct r5dev *dev = &sh->dev[i];
2598 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2599 i != sh->pd_idx &&
2600 !test_bit(R5_LOCKED, &dev->flags) &&
2601 !(test_bit(R5_UPTODATE, &dev->flags) ||
2602 test_bit(R5_Wantcompute, &dev->flags)) &&
2603 test_bit(R5_Insync, &dev->flags)) {
2604 if (
2605 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2606 pr_debug("Read_old block "
2607 "%d for Reconstruct\n", i);
2608 set_bit(R5_LOCKED, &dev->flags);
2609 set_bit(R5_Wantread, &dev->flags);
2610 s->locked++;
2611 } else {
2612 set_bit(STRIPE_DELAYED, &sh->state);
2613 set_bit(STRIPE_HANDLE, &sh->state);
2617 /* now if nothing is locked, and if we have enough data,
2618 * we can start a write request
2620 /* since handle_stripe can be called at any time we need to handle the
2621 * case where a compute block operation has been submitted and then a
2622 * subsequent call wants to start a write request. raid_run_ops only
2623 * handles the case where compute block and reconstruct are requested
2624 * simultaneously. If this is not the case then new writes need to be
2625 * held off until the compute completes.
2627 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2628 (s->locked == 0 && (rcw == 0 || rmw == 0) &&
2629 !test_bit(STRIPE_BIT_DELAY, &sh->state)))
2630 schedule_reconstruction(sh, s, rcw == 0, 0);
2633 static void handle_stripe_dirtying6(raid5_conf_t *conf,
2634 struct stripe_head *sh, struct stripe_head_state *s,
2635 struct r6_state *r6s, int disks)
2637 int rcw = 0, pd_idx = sh->pd_idx, i;
2638 int qd_idx = sh->qd_idx;
2640 set_bit(STRIPE_HANDLE, &sh->state);
2641 for (i = disks; i--; ) {
2642 struct r5dev *dev = &sh->dev[i];
2643 /* check if we haven't enough data */
2644 if (!test_bit(R5_OVERWRITE, &dev->flags) &&
2645 i != pd_idx && i != qd_idx &&
2646 !test_bit(R5_LOCKED, &dev->flags) &&
2647 !(test_bit(R5_UPTODATE, &dev->flags) ||
2648 test_bit(R5_Wantcompute, &dev->flags))) {
2649 rcw++;
2650 if (!test_bit(R5_Insync, &dev->flags))
2651 continue; /* it's a failed drive */
2653 if (
2654 test_bit(STRIPE_PREREAD_ACTIVE, &sh->state)) {
2655 pr_debug("Read_old stripe %llu "
2656 "block %d for Reconstruct\n",
2657 (unsigned long long)sh->sector, i);
2658 set_bit(R5_LOCKED, &dev->flags);
2659 set_bit(R5_Wantread, &dev->flags);
2660 s->locked++;
2661 } else {
2662 pr_debug("Request delayed stripe %llu "
2663 "block %d for Reconstruct\n",
2664 (unsigned long long)sh->sector, i);
2665 set_bit(STRIPE_DELAYED, &sh->state);
2666 set_bit(STRIPE_HANDLE, &sh->state);
2670 /* now if nothing is locked, and if we have enough data, we can start a
2671 * write request
2673 if ((s->req_compute || !test_bit(STRIPE_COMPUTE_RUN, &sh->state)) &&
2674 s->locked == 0 && rcw == 0 &&
2675 !test_bit(STRIPE_BIT_DELAY, &sh->state)) {
2676 schedule_reconstruction(sh, s, 1, 0);
2680 static void handle_parity_checks5(raid5_conf_t *conf, struct stripe_head *sh,
2681 struct stripe_head_state *s, int disks)
2683 struct r5dev *dev = NULL;
2685 set_bit(STRIPE_HANDLE, &sh->state);
2687 switch (sh->check_state) {
2688 case check_state_idle:
2689 /* start a new check operation if there are no failures */
2690 if (s->failed == 0) {
2691 BUG_ON(s->uptodate != disks);
2692 sh->check_state = check_state_run;
2693 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2694 clear_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags);
2695 s->uptodate--;
2696 break;
2698 dev = &sh->dev[s->failed_num];
2699 /* fall through */
2700 case check_state_compute_result:
2701 sh->check_state = check_state_idle;
2702 if (!dev)
2703 dev = &sh->dev[sh->pd_idx];
2705 /* check that a write has not made the stripe insync */
2706 if (test_bit(STRIPE_INSYNC, &sh->state))
2707 break;
2709 /* either failed parity check, or recovery is happening */
2710 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
2711 BUG_ON(s->uptodate != disks);
2713 set_bit(R5_LOCKED, &dev->flags);
2714 s->locked++;
2715 set_bit(R5_Wantwrite, &dev->flags);
2717 clear_bit(STRIPE_DEGRADED, &sh->state);
2718 set_bit(STRIPE_INSYNC, &sh->state);
2719 break;
2720 case check_state_run:
2721 break; /* we will be called again upon completion */
2722 case check_state_check_result:
2723 sh->check_state = check_state_idle;
2725 /* if a failure occurred during the check operation, leave
2726 * STRIPE_INSYNC not set and let the stripe be handled again
2728 if (s->failed)
2729 break;
2731 /* handle a successful check operation, if parity is correct
2732 * we are done. Otherwise update the mismatch count and repair
2733 * parity if !MD_RECOVERY_CHECK
2735 if ((sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) == 0)
2736 /* parity is correct (on disc,
2737 * not in buffer any more)
2739 set_bit(STRIPE_INSYNC, &sh->state);
2740 else {
2741 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2742 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2743 /* don't try to repair!! */
2744 set_bit(STRIPE_INSYNC, &sh->state);
2745 else {
2746 sh->check_state = check_state_compute_run;
2747 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2748 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2749 set_bit(R5_Wantcompute,
2750 &sh->dev[sh->pd_idx].flags);
2751 sh->ops.target = sh->pd_idx;
2752 sh->ops.target2 = -1;
2753 s->uptodate++;
2756 break;
2757 case check_state_compute_run:
2758 break;
2759 default:
2760 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2761 __func__, sh->check_state,
2762 (unsigned long long) sh->sector);
2763 BUG();
2768 static void handle_parity_checks6(raid5_conf_t *conf, struct stripe_head *sh,
2769 struct stripe_head_state *s,
2770 struct r6_state *r6s, int disks)
2772 int pd_idx = sh->pd_idx;
2773 int qd_idx = sh->qd_idx;
2774 struct r5dev *dev;
2776 set_bit(STRIPE_HANDLE, &sh->state);
2778 BUG_ON(s->failed > 2);
2780 /* Want to check and possibly repair P and Q.
2781 * However there could be one 'failed' device, in which
2782 * case we can only check one of them, possibly using the
2783 * other to generate missing data
2786 switch (sh->check_state) {
2787 case check_state_idle:
2788 /* start a new check operation if there are < 2 failures */
2789 if (s->failed == r6s->q_failed) {
2790 /* The only possible failed device holds Q, so it
2791 * makes sense to check P (If anything else were failed,
2792 * we would have used P to recreate it).
2794 sh->check_state = check_state_run;
2796 if (!r6s->q_failed && s->failed < 2) {
2797 /* Q is not failed, and we didn't use it to generate
2798 * anything, so it makes sense to check it
2800 if (sh->check_state == check_state_run)
2801 sh->check_state = check_state_run_pq;
2802 else
2803 sh->check_state = check_state_run_q;
2806 /* discard potentially stale zero_sum_result */
2807 sh->ops.zero_sum_result = 0;
2809 if (sh->check_state == check_state_run) {
2810 /* async_xor_zero_sum destroys the contents of P */
2811 clear_bit(R5_UPTODATE, &sh->dev[pd_idx].flags);
2812 s->uptodate--;
2814 if (sh->check_state >= check_state_run &&
2815 sh->check_state <= check_state_run_pq) {
2816 /* async_syndrome_zero_sum preserves P and Q, so
2817 * no need to mark them !uptodate here
2819 set_bit(STRIPE_OP_CHECK, &s->ops_request);
2820 break;
2823 /* we have 2-disk failure */
2824 BUG_ON(s->failed != 2);
2825 /* fall through */
2826 case check_state_compute_result:
2827 sh->check_state = check_state_idle;
2829 /* check that a write has not made the stripe insync */
2830 if (test_bit(STRIPE_INSYNC, &sh->state))
2831 break;
2833 /* now write out any block on a failed drive,
2834 * or P or Q if they were recomputed
2836 BUG_ON(s->uptodate < disks - 1); /* We don't need Q to recover */
2837 if (s->failed == 2) {
2838 dev = &sh->dev[r6s->failed_num[1]];
2839 s->locked++;
2840 set_bit(R5_LOCKED, &dev->flags);
2841 set_bit(R5_Wantwrite, &dev->flags);
2843 if (s->failed >= 1) {
2844 dev = &sh->dev[r6s->failed_num[0]];
2845 s->locked++;
2846 set_bit(R5_LOCKED, &dev->flags);
2847 set_bit(R5_Wantwrite, &dev->flags);
2849 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2850 dev = &sh->dev[pd_idx];
2851 s->locked++;
2852 set_bit(R5_LOCKED, &dev->flags);
2853 set_bit(R5_Wantwrite, &dev->flags);
2855 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2856 dev = &sh->dev[qd_idx];
2857 s->locked++;
2858 set_bit(R5_LOCKED, &dev->flags);
2859 set_bit(R5_Wantwrite, &dev->flags);
2861 clear_bit(STRIPE_DEGRADED, &sh->state);
2863 set_bit(STRIPE_INSYNC, &sh->state);
2864 break;
2865 case check_state_run:
2866 case check_state_run_q:
2867 case check_state_run_pq:
2868 break; /* we will be called again upon completion */
2869 case check_state_check_result:
2870 sh->check_state = check_state_idle;
2872 /* handle a successful check operation, if parity is correct
2873 * we are done. Otherwise update the mismatch count and repair
2874 * parity if !MD_RECOVERY_CHECK
2876 if (sh->ops.zero_sum_result == 0) {
2877 /* both parities are correct */
2878 if (!s->failed)
2879 set_bit(STRIPE_INSYNC, &sh->state);
2880 else {
2881 /* in contrast to the raid5 case we can validate
2882 * parity, but still have a failure to write
2883 * back
2885 sh->check_state = check_state_compute_result;
2886 /* Returning at this point means that we may go
2887 * off and bring p and/or q uptodate again so
2888 * we make sure to check zero_sum_result again
2889 * to verify if p or q need writeback
2892 } else {
2893 conf->mddev->resync_mismatches += STRIPE_SECTORS;
2894 if (test_bit(MD_RECOVERY_CHECK, &conf->mddev->recovery))
2895 /* don't try to repair!! */
2896 set_bit(STRIPE_INSYNC, &sh->state);
2897 else {
2898 int *target = &sh->ops.target;
2900 sh->ops.target = -1;
2901 sh->ops.target2 = -1;
2902 sh->check_state = check_state_compute_run;
2903 set_bit(STRIPE_COMPUTE_RUN, &sh->state);
2904 set_bit(STRIPE_OP_COMPUTE_BLK, &s->ops_request);
2905 if (sh->ops.zero_sum_result & SUM_CHECK_P_RESULT) {
2906 set_bit(R5_Wantcompute,
2907 &sh->dev[pd_idx].flags);
2908 *target = pd_idx;
2909 target = &sh->ops.target2;
2910 s->uptodate++;
2912 if (sh->ops.zero_sum_result & SUM_CHECK_Q_RESULT) {
2913 set_bit(R5_Wantcompute,
2914 &sh->dev[qd_idx].flags);
2915 *target = qd_idx;
2916 s->uptodate++;
2920 break;
2921 case check_state_compute_run:
2922 break;
2923 default:
2924 printk(KERN_ERR "%s: unknown check_state: %d sector: %llu\n",
2925 __func__, sh->check_state,
2926 (unsigned long long) sh->sector);
2927 BUG();
2931 static void handle_stripe_expansion(raid5_conf_t *conf, struct stripe_head *sh,
2932 struct r6_state *r6s)
2934 int i;
2936 /* We have read all the blocks in this stripe and now we need to
2937 * copy some of them into a target stripe for expand.
2939 struct dma_async_tx_descriptor *tx = NULL;
2940 clear_bit(STRIPE_EXPAND_SOURCE, &sh->state);
2941 for (i = 0; i < sh->disks; i++)
2942 if (i != sh->pd_idx && i != sh->qd_idx) {
2943 int dd_idx, j;
2944 struct stripe_head *sh2;
2945 struct async_submit_ctl submit;
2947 sector_t bn = compute_blocknr(sh, i, 1);
2948 sector_t s = raid5_compute_sector(conf, bn, 0,
2949 &dd_idx, NULL);
2950 sh2 = get_active_stripe(conf, s, 0, 1, 1);
2951 if (sh2 == NULL)
2952 /* so far only the early blocks of this stripe
2953 * have been requested. When later blocks
2954 * get requested, we will try again
2956 continue;
2957 if (!test_bit(STRIPE_EXPANDING, &sh2->state) ||
2958 test_bit(R5_Expanded, &sh2->dev[dd_idx].flags)) {
2959 /* must have already done this block */
2960 release_stripe(sh2);
2961 continue;
2964 /* place all the copies on one channel */
2965 init_async_submit(&submit, 0, tx, NULL, NULL, NULL);
2966 tx = async_memcpy(sh2->dev[dd_idx].page,
2967 sh->dev[i].page, 0, 0, STRIPE_SIZE,
2968 &submit);
2970 set_bit(R5_Expanded, &sh2->dev[dd_idx].flags);
2971 set_bit(R5_UPTODATE, &sh2->dev[dd_idx].flags);
2972 for (j = 0; j < conf->raid_disks; j++)
2973 if (j != sh2->pd_idx &&
2974 (!r6s || j != sh2->qd_idx) &&
2975 !test_bit(R5_Expanded, &sh2->dev[j].flags))
2976 break;
2977 if (j == conf->raid_disks) {
2978 set_bit(STRIPE_EXPAND_READY, &sh2->state);
2979 set_bit(STRIPE_HANDLE, &sh2->state);
2981 release_stripe(sh2);
2984 /* done submitting copies, wait for them to complete */
2985 if (tx) {
2986 async_tx_ack(tx);
2987 dma_wait_for_async_tx(tx);
2993 * handle_stripe - do things to a stripe.
2995 * We lock the stripe and then examine the state of various bits
2996 * to see what needs to be done.
2997 * Possible results:
2998 * return some read request which now have data
2999 * return some write requests which are safely on disc
3000 * schedule a read on some buffers
3001 * schedule a write of some buffers
3002 * return confirmation of parity correctness
3004 * buffers are taken off read_list or write_list, and bh_cache buffers
3005 * get BH_Lock set before the stripe lock is released.
3009 static void handle_stripe5(struct stripe_head *sh)
3011 raid5_conf_t *conf = sh->raid_conf;
3012 int disks = sh->disks, i;
3013 struct bio *return_bi = NULL;
3014 struct stripe_head_state s;
3015 struct r5dev *dev;
3016 mdk_rdev_t *blocked_rdev = NULL;
3017 int prexor;
3018 int dec_preread_active = 0;
3020 memset(&s, 0, sizeof(s));
3021 pr_debug("handling stripe %llu, state=%#lx cnt=%d, pd_idx=%d check:%d "
3022 "reconstruct:%d\n", (unsigned long long)sh->sector, sh->state,
3023 atomic_read(&sh->count), sh->pd_idx, sh->check_state,
3024 sh->reconstruct_state);
3026 spin_lock(&sh->lock);
3027 clear_bit(STRIPE_HANDLE, &sh->state);
3028 clear_bit(STRIPE_DELAYED, &sh->state);
3030 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3031 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3032 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3034 /* Now to look around and see what can be done */
3035 rcu_read_lock();
3036 for (i=disks; i--; ) {
3037 mdk_rdev_t *rdev;
3039 dev = &sh->dev[i];
3041 pr_debug("check %d: state 0x%lx toread %p read %p write %p "
3042 "written %p\n", i, dev->flags, dev->toread, dev->read,
3043 dev->towrite, dev->written);
3045 /* maybe we can request a biofill operation
3047 * new wantfill requests are only permitted while
3048 * ops_complete_biofill is guaranteed to be inactive
3050 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3051 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3052 set_bit(R5_Wantfill, &dev->flags);
3054 /* now count some things */
3055 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3056 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3057 if (test_bit(R5_Wantcompute, &dev->flags)) s.compute++;
3059 if (test_bit(R5_Wantfill, &dev->flags))
3060 s.to_fill++;
3061 else if (dev->toread)
3062 s.to_read++;
3063 if (dev->towrite) {
3064 s.to_write++;
3065 if (!test_bit(R5_OVERWRITE, &dev->flags))
3066 s.non_overwrite++;
3068 if (dev->written)
3069 s.written++;
3070 rdev = rcu_dereference(conf->disks[i].rdev);
3071 if (blocked_rdev == NULL &&
3072 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3073 blocked_rdev = rdev;
3074 atomic_inc(&rdev->nr_pending);
3076 clear_bit(R5_Insync, &dev->flags);
3077 if (!rdev)
3078 /* Not in-sync */;
3079 else if (test_bit(In_sync, &rdev->flags))
3080 set_bit(R5_Insync, &dev->flags);
3081 else if (!test_bit(Faulty, &rdev->flags)) {
3082 /* could be in-sync depending on recovery/reshape status */
3083 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3084 set_bit(R5_Insync, &dev->flags);
3086 if (!test_bit(R5_Insync, &dev->flags)) {
3087 /* The ReadError flag will just be confusing now */
3088 clear_bit(R5_ReadError, &dev->flags);
3089 clear_bit(R5_ReWrite, &dev->flags);
3091 if (test_bit(R5_ReadError, &dev->flags))
3092 clear_bit(R5_Insync, &dev->flags);
3093 if (!test_bit(R5_Insync, &dev->flags)) {
3094 s.failed++;
3095 s.failed_num = i;
3098 rcu_read_unlock();
3100 if (unlikely(blocked_rdev)) {
3101 if (s.syncing || s.expanding || s.expanded ||
3102 s.to_write || s.written) {
3103 set_bit(STRIPE_HANDLE, &sh->state);
3104 goto unlock;
3106 /* There is nothing for the blocked_rdev to block */
3107 rdev_dec_pending(blocked_rdev, conf->mddev);
3108 blocked_rdev = NULL;
3111 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3112 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3113 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3116 pr_debug("locked=%d uptodate=%d to_read=%d"
3117 " to_write=%d failed=%d failed_num=%d\n",
3118 s.locked, s.uptodate, s.to_read, s.to_write,
3119 s.failed, s.failed_num);
3120 /* check if the array has lost two devices and, if so, some requests might
3121 * need to be failed
3123 if (s.failed > 1) {
3124 sh->check_state = 0;
3125 sh->reconstruct_state = 0;
3126 if (s.to_read+s.to_write+s.written)
3127 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3128 if (s.syncing) {
3129 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3130 clear_bit(STRIPE_SYNCING, &sh->state);
3131 s.syncing = 0;
3135 /* might be able to return some write requests if the parity block
3136 * is safe, or on a failed drive
3138 dev = &sh->dev[sh->pd_idx];
3139 if ( s.written &&
3140 ((test_bit(R5_Insync, &dev->flags) &&
3141 !test_bit(R5_LOCKED, &dev->flags) &&
3142 test_bit(R5_UPTODATE, &dev->flags)) ||
3143 (s.failed == 1 && s.failed_num == sh->pd_idx)))
3144 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3146 /* Now we might consider reading some blocks, either to check/generate
3147 * parity, or to satisfy requests
3148 * or to load a block that is being partially written.
3150 if (s.to_read || s.non_overwrite ||
3151 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3152 handle_stripe_fill5(sh, &s, disks);
3154 /* Now we check to see if any write operations have recently
3155 * completed
3157 prexor = 0;
3158 if (sh->reconstruct_state == reconstruct_state_prexor_drain_result)
3159 prexor = 1;
3160 if (sh->reconstruct_state == reconstruct_state_drain_result ||
3161 sh->reconstruct_state == reconstruct_state_prexor_drain_result) {
3162 sh->reconstruct_state = reconstruct_state_idle;
3164 /* All the 'written' buffers and the parity block are ready to
3165 * be written back to disk
3167 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3168 for (i = disks; i--; ) {
3169 dev = &sh->dev[i];
3170 if (test_bit(R5_LOCKED, &dev->flags) &&
3171 (i == sh->pd_idx || dev->written)) {
3172 pr_debug("Writing block %d\n", i);
3173 set_bit(R5_Wantwrite, &dev->flags);
3174 if (prexor)
3175 continue;
3176 if (!test_bit(R5_Insync, &dev->flags) ||
3177 (i == sh->pd_idx && s.failed == 0))
3178 set_bit(STRIPE_INSYNC, &sh->state);
3181 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3182 dec_preread_active = 1;
3185 /* Now to consider new write requests and what else, if anything
3186 * should be read. We do not handle new writes when:
3187 * 1/ A 'write' operation (copy+xor) is already in flight.
3188 * 2/ A 'check' operation is in flight, as it may clobber the parity
3189 * block.
3191 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3192 handle_stripe_dirtying5(conf, sh, &s, disks);
3194 /* maybe we need to check and possibly fix the parity for this stripe
3195 * Any reads will already have been scheduled, so we just see if enough
3196 * data is available. The parity check is held off while parity
3197 * dependent operations are in flight.
3199 if (sh->check_state ||
3200 (s.syncing && s.locked == 0 &&
3201 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3202 !test_bit(STRIPE_INSYNC, &sh->state)))
3203 handle_parity_checks5(conf, sh, &s, disks);
3205 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3206 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3207 clear_bit(STRIPE_SYNCING, &sh->state);
3210 /* If the failed drive is just a ReadError, then we might need to progress
3211 * the repair/check process
3213 if (s.failed == 1 && !conf->mddev->ro &&
3214 test_bit(R5_ReadError, &sh->dev[s.failed_num].flags)
3215 && !test_bit(R5_LOCKED, &sh->dev[s.failed_num].flags)
3216 && test_bit(R5_UPTODATE, &sh->dev[s.failed_num].flags)
3218 dev = &sh->dev[s.failed_num];
3219 if (!test_bit(R5_ReWrite, &dev->flags)) {
3220 set_bit(R5_Wantwrite, &dev->flags);
3221 set_bit(R5_ReWrite, &dev->flags);
3222 set_bit(R5_LOCKED, &dev->flags);
3223 s.locked++;
3224 } else {
3225 /* let's read it back */
3226 set_bit(R5_Wantread, &dev->flags);
3227 set_bit(R5_LOCKED, &dev->flags);
3228 s.locked++;
3232 /* Finish reconstruct operations initiated by the expansion process */
3233 if (sh->reconstruct_state == reconstruct_state_result) {
3234 struct stripe_head *sh2
3235 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3236 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3237 /* sh cannot be written until sh2 has been read.
3238 * so arrange for sh to be delayed a little
3240 set_bit(STRIPE_DELAYED, &sh->state);
3241 set_bit(STRIPE_HANDLE, &sh->state);
3242 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3243 &sh2->state))
3244 atomic_inc(&conf->preread_active_stripes);
3245 release_stripe(sh2);
3246 goto unlock;
3248 if (sh2)
3249 release_stripe(sh2);
3251 sh->reconstruct_state = reconstruct_state_idle;
3252 clear_bit(STRIPE_EXPANDING, &sh->state);
3253 for (i = conf->raid_disks; i--; ) {
3254 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3255 set_bit(R5_LOCKED, &sh->dev[i].flags);
3256 s.locked++;
3260 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3261 !sh->reconstruct_state) {
3262 /* Need to write out all blocks after computing parity */
3263 sh->disks = conf->raid_disks;
3264 stripe_set_idx(sh->sector, conf, 0, sh);
3265 schedule_reconstruction(sh, &s, 1, 1);
3266 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3267 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3268 atomic_dec(&conf->reshape_stripes);
3269 wake_up(&conf->wait_for_overlap);
3270 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3273 if (s.expanding && s.locked == 0 &&
3274 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3275 handle_stripe_expansion(conf, sh, NULL);
3277 unlock:
3278 spin_unlock(&sh->lock);
3280 /* wait for this device to become unblocked */
3281 if (unlikely(blocked_rdev))
3282 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3284 if (s.ops_request)
3285 raid_run_ops(sh, s.ops_request);
3287 ops_run_io(sh, &s);
3289 if (dec_preread_active) {
3290 /* We delay this until after ops_run_io so that if make_request
3291 * is waiting on a flush, it won't continue until the writes
3292 * have actually been submitted.
3294 atomic_dec(&conf->preread_active_stripes);
3295 if (atomic_read(&conf->preread_active_stripes) <
3296 IO_THRESHOLD)
3297 md_wakeup_thread(conf->mddev->thread);
3299 return_io(return_bi);
3302 static void handle_stripe6(struct stripe_head *sh)
3304 raid5_conf_t *conf = sh->raid_conf;
3305 int disks = sh->disks;
3306 struct bio *return_bi = NULL;
3307 int i, pd_idx = sh->pd_idx, qd_idx = sh->qd_idx;
3308 struct stripe_head_state s;
3309 struct r6_state r6s;
3310 struct r5dev *dev, *pdev, *qdev;
3311 mdk_rdev_t *blocked_rdev = NULL;
3312 int dec_preread_active = 0;
3314 pr_debug("handling stripe %llu, state=%#lx cnt=%d, "
3315 "pd_idx=%d, qd_idx=%d\n, check:%d, reconstruct:%d\n",
3316 (unsigned long long)sh->sector, sh->state,
3317 atomic_read(&sh->count), pd_idx, qd_idx,
3318 sh->check_state, sh->reconstruct_state);
3319 memset(&s, 0, sizeof(s));
3321 spin_lock(&sh->lock);
3322 clear_bit(STRIPE_HANDLE, &sh->state);
3323 clear_bit(STRIPE_DELAYED, &sh->state);
3325 s.syncing = test_bit(STRIPE_SYNCING, &sh->state);
3326 s.expanding = test_bit(STRIPE_EXPAND_SOURCE, &sh->state);
3327 s.expanded = test_bit(STRIPE_EXPAND_READY, &sh->state);
3328 /* Now to look around and see what can be done */
3330 rcu_read_lock();
3331 for (i=disks; i--; ) {
3332 mdk_rdev_t *rdev;
3333 dev = &sh->dev[i];
3335 pr_debug("check %d: state 0x%lx read %p write %p written %p\n",
3336 i, dev->flags, dev->toread, dev->towrite, dev->written);
3337 /* maybe we can reply to a read
3339 * new wantfill requests are only permitted while
3340 * ops_complete_biofill is guaranteed to be inactive
3342 if (test_bit(R5_UPTODATE, &dev->flags) && dev->toread &&
3343 !test_bit(STRIPE_BIOFILL_RUN, &sh->state))
3344 set_bit(R5_Wantfill, &dev->flags);
3346 /* now count some things */
3347 if (test_bit(R5_LOCKED, &dev->flags)) s.locked++;
3348 if (test_bit(R5_UPTODATE, &dev->flags)) s.uptodate++;
3349 if (test_bit(R5_Wantcompute, &dev->flags)) {
3350 s.compute++;
3351 BUG_ON(s.compute > 2);
3354 if (test_bit(R5_Wantfill, &dev->flags)) {
3355 s.to_fill++;
3356 } else if (dev->toread)
3357 s.to_read++;
3358 if (dev->towrite) {
3359 s.to_write++;
3360 if (!test_bit(R5_OVERWRITE, &dev->flags))
3361 s.non_overwrite++;
3363 if (dev->written)
3364 s.written++;
3365 rdev = rcu_dereference(conf->disks[i].rdev);
3366 if (blocked_rdev == NULL &&
3367 rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
3368 blocked_rdev = rdev;
3369 atomic_inc(&rdev->nr_pending);
3371 clear_bit(R5_Insync, &dev->flags);
3372 if (!rdev)
3373 /* Not in-sync */;
3374 else if (test_bit(In_sync, &rdev->flags))
3375 set_bit(R5_Insync, &dev->flags);
3376 else if (!test_bit(Faulty, &rdev->flags)) {
3377 /* in sync if before recovery_offset */
3378 if (sh->sector + STRIPE_SECTORS <= rdev->recovery_offset)
3379 set_bit(R5_Insync, &dev->flags);
3381 if (!test_bit(R5_Insync, &dev->flags)) {
3382 /* The ReadError flag will just be confusing now */
3383 clear_bit(R5_ReadError, &dev->flags);
3384 clear_bit(R5_ReWrite, &dev->flags);
3386 if (test_bit(R5_ReadError, &dev->flags))
3387 clear_bit(R5_Insync, &dev->flags);
3388 if (!test_bit(R5_Insync, &dev->flags)) {
3389 if (s.failed < 2)
3390 r6s.failed_num[s.failed] = i;
3391 s.failed++;
3394 rcu_read_unlock();
3396 if (unlikely(blocked_rdev)) {
3397 if (s.syncing || s.expanding || s.expanded ||
3398 s.to_write || s.written) {
3399 set_bit(STRIPE_HANDLE, &sh->state);
3400 goto unlock;
3402 /* There is nothing for the blocked_rdev to block */
3403 rdev_dec_pending(blocked_rdev, conf->mddev);
3404 blocked_rdev = NULL;
3407 if (s.to_fill && !test_bit(STRIPE_BIOFILL_RUN, &sh->state)) {
3408 set_bit(STRIPE_OP_BIOFILL, &s.ops_request);
3409 set_bit(STRIPE_BIOFILL_RUN, &sh->state);
3412 pr_debug("locked=%d uptodate=%d to_read=%d"
3413 " to_write=%d failed=%d failed_num=%d,%d\n",
3414 s.locked, s.uptodate, s.to_read, s.to_write, s.failed,
3415 r6s.failed_num[0], r6s.failed_num[1]);
3416 /* check if the array has lost >2 devices and, if so, some requests
3417 * might need to be failed
3419 if (s.failed > 2) {
3420 sh->check_state = 0;
3421 sh->reconstruct_state = 0;
3422 if (s.to_read+s.to_write+s.written)
3423 handle_failed_stripe(conf, sh, &s, disks, &return_bi);
3424 if (s.syncing) {
3425 md_done_sync(conf->mddev, STRIPE_SECTORS,0);
3426 clear_bit(STRIPE_SYNCING, &sh->state);
3427 s.syncing = 0;
3432 * might be able to return some write requests if the parity blocks
3433 * are safe, or on a failed drive
3435 pdev = &sh->dev[pd_idx];
3436 r6s.p_failed = (s.failed >= 1 && r6s.failed_num[0] == pd_idx)
3437 || (s.failed >= 2 && r6s.failed_num[1] == pd_idx);
3438 qdev = &sh->dev[qd_idx];
3439 r6s.q_failed = (s.failed >= 1 && r6s.failed_num[0] == qd_idx)
3440 || (s.failed >= 2 && r6s.failed_num[1] == qd_idx);
3442 if ( s.written &&
3443 ( r6s.p_failed || ((test_bit(R5_Insync, &pdev->flags)
3444 && !test_bit(R5_LOCKED, &pdev->flags)
3445 && test_bit(R5_UPTODATE, &pdev->flags)))) &&
3446 ( r6s.q_failed || ((test_bit(R5_Insync, &qdev->flags)
3447 && !test_bit(R5_LOCKED, &qdev->flags)
3448 && test_bit(R5_UPTODATE, &qdev->flags)))))
3449 handle_stripe_clean_event(conf, sh, disks, &return_bi);
3451 /* Now we might consider reading some blocks, either to check/generate
3452 * parity, or to satisfy requests
3453 * or to load a block that is being partially written.
3455 if (s.to_read || s.non_overwrite || (s.to_write && s.failed) ||
3456 (s.syncing && (s.uptodate + s.compute < disks)) || s.expanding)
3457 handle_stripe_fill6(sh, &s, &r6s, disks);
3459 /* Now we check to see if any write operations have recently
3460 * completed
3462 if (sh->reconstruct_state == reconstruct_state_drain_result) {
3464 sh->reconstruct_state = reconstruct_state_idle;
3465 /* All the 'written' buffers and the parity blocks are ready to
3466 * be written back to disk
3468 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[sh->pd_idx].flags));
3469 BUG_ON(!test_bit(R5_UPTODATE, &sh->dev[qd_idx].flags));
3470 for (i = disks; i--; ) {
3471 dev = &sh->dev[i];
3472 if (test_bit(R5_LOCKED, &dev->flags) &&
3473 (i == sh->pd_idx || i == qd_idx ||
3474 dev->written)) {
3475 pr_debug("Writing block %d\n", i);
3476 BUG_ON(!test_bit(R5_UPTODATE, &dev->flags));
3477 set_bit(R5_Wantwrite, &dev->flags);
3478 if (!test_bit(R5_Insync, &dev->flags) ||
3479 ((i == sh->pd_idx || i == qd_idx) &&
3480 s.failed == 0))
3481 set_bit(STRIPE_INSYNC, &sh->state);
3484 if (test_and_clear_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3485 dec_preread_active = 1;
3488 /* Now to consider new write requests and what else, if anything
3489 * should be read. We do not handle new writes when:
3490 * 1/ A 'write' operation (copy+gen_syndrome) is already in flight.
3491 * 2/ A 'check' operation is in flight, as it may clobber the parity
3492 * block.
3494 if (s.to_write && !sh->reconstruct_state && !sh->check_state)
3495 handle_stripe_dirtying6(conf, sh, &s, &r6s, disks);
3497 /* maybe we need to check and possibly fix the parity for this stripe
3498 * Any reads will already have been scheduled, so we just see if enough
3499 * data is available. The parity check is held off while parity
3500 * dependent operations are in flight.
3502 if (sh->check_state ||
3503 (s.syncing && s.locked == 0 &&
3504 !test_bit(STRIPE_COMPUTE_RUN, &sh->state) &&
3505 !test_bit(STRIPE_INSYNC, &sh->state)))
3506 handle_parity_checks6(conf, sh, &s, &r6s, disks);
3508 if (s.syncing && s.locked == 0 && test_bit(STRIPE_INSYNC, &sh->state)) {
3509 md_done_sync(conf->mddev, STRIPE_SECTORS,1);
3510 clear_bit(STRIPE_SYNCING, &sh->state);
3513 /* If the failed drives are just a ReadError, then we might need
3514 * to progress the repair/check process
3516 if (s.failed <= 2 && !conf->mddev->ro)
3517 for (i = 0; i < s.failed; i++) {
3518 dev = &sh->dev[r6s.failed_num[i]];
3519 if (test_bit(R5_ReadError, &dev->flags)
3520 && !test_bit(R5_LOCKED, &dev->flags)
3521 && test_bit(R5_UPTODATE, &dev->flags)
3523 if (!test_bit(R5_ReWrite, &dev->flags)) {
3524 set_bit(R5_Wantwrite, &dev->flags);
3525 set_bit(R5_ReWrite, &dev->flags);
3526 set_bit(R5_LOCKED, &dev->flags);
3527 s.locked++;
3528 } else {
3529 /* let's read it back */
3530 set_bit(R5_Wantread, &dev->flags);
3531 set_bit(R5_LOCKED, &dev->flags);
3532 s.locked++;
3537 /* Finish reconstruct operations initiated by the expansion process */
3538 if (sh->reconstruct_state == reconstruct_state_result) {
3539 sh->reconstruct_state = reconstruct_state_idle;
3540 clear_bit(STRIPE_EXPANDING, &sh->state);
3541 for (i = conf->raid_disks; i--; ) {
3542 set_bit(R5_Wantwrite, &sh->dev[i].flags);
3543 set_bit(R5_LOCKED, &sh->dev[i].flags);
3544 s.locked++;
3548 if (s.expanded && test_bit(STRIPE_EXPANDING, &sh->state) &&
3549 !sh->reconstruct_state) {
3550 struct stripe_head *sh2
3551 = get_active_stripe(conf, sh->sector, 1, 1, 1);
3552 if (sh2 && test_bit(STRIPE_EXPAND_SOURCE, &sh2->state)) {
3553 /* sh cannot be written until sh2 has been read.
3554 * so arrange for sh to be delayed a little
3556 set_bit(STRIPE_DELAYED, &sh->state);
3557 set_bit(STRIPE_HANDLE, &sh->state);
3558 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE,
3559 &sh2->state))
3560 atomic_inc(&conf->preread_active_stripes);
3561 release_stripe(sh2);
3562 goto unlock;
3564 if (sh2)
3565 release_stripe(sh2);
3567 /* Need to write out all blocks after computing P&Q */
3568 sh->disks = conf->raid_disks;
3569 stripe_set_idx(sh->sector, conf, 0, sh);
3570 schedule_reconstruction(sh, &s, 1, 1);
3571 } else if (s.expanded && !sh->reconstruct_state && s.locked == 0) {
3572 clear_bit(STRIPE_EXPAND_READY, &sh->state);
3573 atomic_dec(&conf->reshape_stripes);
3574 wake_up(&conf->wait_for_overlap);
3575 md_done_sync(conf->mddev, STRIPE_SECTORS, 1);
3578 if (s.expanding && s.locked == 0 &&
3579 !test_bit(STRIPE_COMPUTE_RUN, &sh->state))
3580 handle_stripe_expansion(conf, sh, &r6s);
3582 unlock:
3583 spin_unlock(&sh->lock);
3585 /* wait for this device to become unblocked */
3586 if (unlikely(blocked_rdev))
3587 md_wait_for_blocked_rdev(blocked_rdev, conf->mddev);
3589 if (s.ops_request)
3590 raid_run_ops(sh, s.ops_request);
3592 ops_run_io(sh, &s);
3595 if (dec_preread_active) {
3596 /* We delay this until after ops_run_io so that if make_request
3597 * is waiting on a flush, it won't continue until the writes
3598 * have actually been submitted.
3600 atomic_dec(&conf->preread_active_stripes);
3601 if (atomic_read(&conf->preread_active_stripes) <
3602 IO_THRESHOLD)
3603 md_wakeup_thread(conf->mddev->thread);
3606 return_io(return_bi);
3609 static void handle_stripe(struct stripe_head *sh)
3611 if (sh->raid_conf->level == 6)
3612 handle_stripe6(sh);
3613 else
3614 handle_stripe5(sh);
3617 static void raid5_activate_delayed(raid5_conf_t *conf)
3619 if (atomic_read(&conf->preread_active_stripes) < IO_THRESHOLD) {
3620 while (!list_empty(&conf->delayed_list)) {
3621 struct list_head *l = conf->delayed_list.next;
3622 struct stripe_head *sh;
3623 sh = list_entry(l, struct stripe_head, lru);
3624 list_del_init(l);
3625 clear_bit(STRIPE_DELAYED, &sh->state);
3626 if (!test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
3627 atomic_inc(&conf->preread_active_stripes);
3628 list_add_tail(&sh->lru, &conf->hold_list);
3633 static void activate_bit_delay(raid5_conf_t *conf)
3635 /* device_lock is held */
3636 struct list_head head;
3637 list_add(&head, &conf->bitmap_list);
3638 list_del_init(&conf->bitmap_list);
3639 while (!list_empty(&head)) {
3640 struct stripe_head *sh = list_entry(head.next, struct stripe_head, lru);
3641 list_del_init(&sh->lru);
3642 atomic_inc(&sh->count);
3643 __release_stripe(conf, sh);
3647 int md_raid5_congested(mddev_t *mddev, int bits)
3649 raid5_conf_t *conf = mddev->private;
3651 /* No difference between reads and writes. Just check
3652 * how busy the stripe_cache is
3655 if (conf->inactive_blocked)
3656 return 1;
3657 if (conf->quiesce)
3658 return 1;
3659 if (list_empty_careful(&conf->inactive_list))
3660 return 1;
3662 return 0;
3664 EXPORT_SYMBOL_GPL(md_raid5_congested);
3666 static int raid5_congested(void *data, int bits)
3668 mddev_t *mddev = data;
3670 return mddev_congested(mddev, bits) ||
3671 md_raid5_congested(mddev, bits);
3674 /* We want read requests to align with chunks where possible,
3675 * but write requests don't need to.
3677 static int raid5_mergeable_bvec(struct request_queue *q,
3678 struct bvec_merge_data *bvm,
3679 struct bio_vec *biovec)
3681 mddev_t *mddev = q->queuedata;
3682 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
3683 int max;
3684 unsigned int chunk_sectors = mddev->chunk_sectors;
3685 unsigned int bio_sectors = bvm->bi_size >> 9;
3687 if ((bvm->bi_rw & 1) == WRITE)
3688 return biovec->bv_len; /* always allow writes to be mergeable */
3690 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3691 chunk_sectors = mddev->new_chunk_sectors;
3692 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
3693 if (max < 0) max = 0;
3694 if (max <= biovec->bv_len && bio_sectors == 0)
3695 return biovec->bv_len;
3696 else
3697 return max;
3701 static int in_chunk_boundary(mddev_t *mddev, struct bio *bio)
3703 sector_t sector = bio->bi_sector + get_start_sect(bio->bi_bdev);
3704 unsigned int chunk_sectors = mddev->chunk_sectors;
3705 unsigned int bio_sectors = bio->bi_size >> 9;
3707 if (mddev->new_chunk_sectors < mddev->chunk_sectors)
3708 chunk_sectors = mddev->new_chunk_sectors;
3709 return chunk_sectors >=
3710 ((sector & (chunk_sectors - 1)) + bio_sectors);
3714 * add bio to the retry LIFO ( in O(1) ... we are in interrupt )
3715 * later sampled by raid5d.
3717 static void add_bio_to_retry(struct bio *bi,raid5_conf_t *conf)
3719 unsigned long flags;
3721 spin_lock_irqsave(&conf->device_lock, flags);
3723 bi->bi_next = conf->retry_read_aligned_list;
3724 conf->retry_read_aligned_list = bi;
3726 spin_unlock_irqrestore(&conf->device_lock, flags);
3727 md_wakeup_thread(conf->mddev->thread);
3731 static struct bio *remove_bio_from_retry(raid5_conf_t *conf)
3733 struct bio *bi;
3735 bi = conf->retry_read_aligned;
3736 if (bi) {
3737 conf->retry_read_aligned = NULL;
3738 return bi;
3740 bi = conf->retry_read_aligned_list;
3741 if(bi) {
3742 conf->retry_read_aligned_list = bi->bi_next;
3743 bi->bi_next = NULL;
3745 * this sets the active strip count to 1 and the processed
3746 * strip count to zero (upper 8 bits)
3748 bi->bi_phys_segments = 1; /* biased count of active stripes */
3751 return bi;
3756 * The "raid5_align_endio" should check if the read succeeded and if it
3757 * did, call bio_endio on the original bio (having bio_put the new bio
3758 * first).
3759 * If the read failed..
3761 static void raid5_align_endio(struct bio *bi, int error)
3763 struct bio* raid_bi = bi->bi_private;
3764 mddev_t *mddev;
3765 raid5_conf_t *conf;
3766 int uptodate = test_bit(BIO_UPTODATE, &bi->bi_flags);
3767 mdk_rdev_t *rdev;
3769 bio_put(bi);
3771 rdev = (void*)raid_bi->bi_next;
3772 raid_bi->bi_next = NULL;
3773 mddev = rdev->mddev;
3774 conf = mddev->private;
3776 rdev_dec_pending(rdev, conf->mddev);
3778 if (!error && uptodate) {
3779 bio_endio(raid_bi, 0);
3780 if (atomic_dec_and_test(&conf->active_aligned_reads))
3781 wake_up(&conf->wait_for_stripe);
3782 return;
3786 pr_debug("raid5_align_endio : io error...handing IO for a retry\n");
3788 add_bio_to_retry(raid_bi, conf);
3791 static int bio_fits_rdev(struct bio *bi)
3793 struct request_queue *q = bdev_get_queue(bi->bi_bdev);
3795 if ((bi->bi_size>>9) > queue_max_sectors(q))
3796 return 0;
3797 blk_recount_segments(q, bi);
3798 if (bi->bi_phys_segments > queue_max_segments(q))
3799 return 0;
3801 if (q->merge_bvec_fn)
3802 /* it's too hard to apply the merge_bvec_fn at this stage,
3803 * just just give up
3805 return 0;
3807 return 1;
3811 static int chunk_aligned_read(mddev_t *mddev, struct bio * raid_bio)
3813 raid5_conf_t *conf = mddev->private;
3814 int dd_idx;
3815 struct bio* align_bi;
3816 mdk_rdev_t *rdev;
3818 if (!in_chunk_boundary(mddev, raid_bio)) {
3819 pr_debug("chunk_aligned_read : non aligned\n");
3820 return 0;
3823 * use bio_clone_mddev to make a copy of the bio
3825 align_bi = bio_clone_mddev(raid_bio, GFP_NOIO, mddev);
3826 if (!align_bi)
3827 return 0;
3829 * set bi_end_io to a new function, and set bi_private to the
3830 * original bio.
3832 align_bi->bi_end_io = raid5_align_endio;
3833 align_bi->bi_private = raid_bio;
3835 * compute position
3837 align_bi->bi_sector = raid5_compute_sector(conf, raid_bio->bi_sector,
3839 &dd_idx, NULL);
3841 rcu_read_lock();
3842 rdev = rcu_dereference(conf->disks[dd_idx].rdev);
3843 if (rdev && test_bit(In_sync, &rdev->flags)) {
3844 atomic_inc(&rdev->nr_pending);
3845 rcu_read_unlock();
3846 raid_bio->bi_next = (void*)rdev;
3847 align_bi->bi_bdev = rdev->bdev;
3848 align_bi->bi_flags &= ~(1 << BIO_SEG_VALID);
3849 align_bi->bi_sector += rdev->data_offset;
3851 if (!bio_fits_rdev(align_bi)) {
3852 /* too big in some way */
3853 bio_put(align_bi);
3854 rdev_dec_pending(rdev, mddev);
3855 return 0;
3858 spin_lock_irq(&conf->device_lock);
3859 wait_event_lock_irq(conf->wait_for_stripe,
3860 conf->quiesce == 0,
3861 conf->device_lock, /* nothing */);
3862 atomic_inc(&conf->active_aligned_reads);
3863 spin_unlock_irq(&conf->device_lock);
3865 generic_make_request(align_bi);
3866 return 1;
3867 } else {
3868 rcu_read_unlock();
3869 bio_put(align_bi);
3870 return 0;
3874 /* __get_priority_stripe - get the next stripe to process
3876 * Full stripe writes are allowed to pass preread active stripes up until
3877 * the bypass_threshold is exceeded. In general the bypass_count
3878 * increments when the handle_list is handled before the hold_list; however, it
3879 * will not be incremented when STRIPE_IO_STARTED is sampled set signifying a
3880 * stripe with in flight i/o. The bypass_count will be reset when the
3881 * head of the hold_list has changed, i.e. the head was promoted to the
3882 * handle_list.
3884 static struct stripe_head *__get_priority_stripe(raid5_conf_t *conf)
3886 struct stripe_head *sh;
3888 pr_debug("%s: handle: %s hold: %s full_writes: %d bypass_count: %d\n",
3889 __func__,
3890 list_empty(&conf->handle_list) ? "empty" : "busy",
3891 list_empty(&conf->hold_list) ? "empty" : "busy",
3892 atomic_read(&conf->pending_full_writes), conf->bypass_count);
3894 if (!list_empty(&conf->handle_list)) {
3895 sh = list_entry(conf->handle_list.next, typeof(*sh), lru);
3897 if (list_empty(&conf->hold_list))
3898 conf->bypass_count = 0;
3899 else if (!test_bit(STRIPE_IO_STARTED, &sh->state)) {
3900 if (conf->hold_list.next == conf->last_hold)
3901 conf->bypass_count++;
3902 else {
3903 conf->last_hold = conf->hold_list.next;
3904 conf->bypass_count -= conf->bypass_threshold;
3905 if (conf->bypass_count < 0)
3906 conf->bypass_count = 0;
3909 } else if (!list_empty(&conf->hold_list) &&
3910 ((conf->bypass_threshold &&
3911 conf->bypass_count > conf->bypass_threshold) ||
3912 atomic_read(&conf->pending_full_writes) == 0)) {
3913 sh = list_entry(conf->hold_list.next,
3914 typeof(*sh), lru);
3915 conf->bypass_count -= conf->bypass_threshold;
3916 if (conf->bypass_count < 0)
3917 conf->bypass_count = 0;
3918 } else
3919 return NULL;
3921 list_del_init(&sh->lru);
3922 atomic_inc(&sh->count);
3923 BUG_ON(atomic_read(&sh->count) != 1);
3924 return sh;
3927 static int make_request(mddev_t *mddev, struct bio * bi)
3929 raid5_conf_t *conf = mddev->private;
3930 int dd_idx;
3931 sector_t new_sector;
3932 sector_t logical_sector, last_sector;
3933 struct stripe_head *sh;
3934 const int rw = bio_data_dir(bi);
3935 int remaining;
3936 int plugged;
3938 if (unlikely(bi->bi_rw & REQ_FLUSH)) {
3939 md_flush_request(mddev, bi);
3940 return 0;
3943 md_write_start(mddev, bi);
3945 if (rw == READ &&
3946 mddev->reshape_position == MaxSector &&
3947 chunk_aligned_read(mddev,bi))
3948 return 0;
3950 logical_sector = bi->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
3951 last_sector = bi->bi_sector + (bi->bi_size>>9);
3952 bi->bi_next = NULL;
3953 bi->bi_phys_segments = 1; /* over-loaded to count active stripes */
3955 plugged = mddev_check_plugged(mddev);
3956 for (;logical_sector < last_sector; logical_sector += STRIPE_SECTORS) {
3957 DEFINE_WAIT(w);
3958 int disks, data_disks;
3959 int previous;
3961 retry:
3962 previous = 0;
3963 disks = conf->raid_disks;
3964 prepare_to_wait(&conf->wait_for_overlap, &w, TASK_UNINTERRUPTIBLE);
3965 if (unlikely(conf->reshape_progress != MaxSector)) {
3966 /* spinlock is needed as reshape_progress may be
3967 * 64bit on a 32bit platform, and so it might be
3968 * possible to see a half-updated value
3969 * Of course reshape_progress could change after
3970 * the lock is dropped, so once we get a reference
3971 * to the stripe that we think it is, we will have
3972 * to check again.
3974 spin_lock_irq(&conf->device_lock);
3975 if (mddev->delta_disks < 0
3976 ? logical_sector < conf->reshape_progress
3977 : logical_sector >= conf->reshape_progress) {
3978 disks = conf->previous_raid_disks;
3979 previous = 1;
3980 } else {
3981 if (mddev->delta_disks < 0
3982 ? logical_sector < conf->reshape_safe
3983 : logical_sector >= conf->reshape_safe) {
3984 spin_unlock_irq(&conf->device_lock);
3985 schedule();
3986 goto retry;
3989 spin_unlock_irq(&conf->device_lock);
3991 data_disks = disks - conf->max_degraded;
3993 new_sector = raid5_compute_sector(conf, logical_sector,
3994 previous,
3995 &dd_idx, NULL);
3996 pr_debug("raid456: make_request, sector %llu logical %llu\n",
3997 (unsigned long long)new_sector,
3998 (unsigned long long)logical_sector);
4000 sh = get_active_stripe(conf, new_sector, previous,
4001 (bi->bi_rw&RWA_MASK), 0);
4002 if (sh) {
4003 if (unlikely(previous)) {
4004 /* expansion might have moved on while waiting for a
4005 * stripe, so we must do the range check again.
4006 * Expansion could still move past after this
4007 * test, but as we are holding a reference to
4008 * 'sh', we know that if that happens,
4009 * STRIPE_EXPANDING will get set and the expansion
4010 * won't proceed until we finish with the stripe.
4012 int must_retry = 0;
4013 spin_lock_irq(&conf->device_lock);
4014 if (mddev->delta_disks < 0
4015 ? logical_sector >= conf->reshape_progress
4016 : logical_sector < conf->reshape_progress)
4017 /* mismatch, need to try again */
4018 must_retry = 1;
4019 spin_unlock_irq(&conf->device_lock);
4020 if (must_retry) {
4021 release_stripe(sh);
4022 schedule();
4023 goto retry;
4027 if (bio_data_dir(bi) == WRITE &&
4028 logical_sector >= mddev->suspend_lo &&
4029 logical_sector < mddev->suspend_hi) {
4030 release_stripe(sh);
4031 /* As the suspend_* range is controlled by
4032 * userspace, we want an interruptible
4033 * wait.
4035 flush_signals(current);
4036 prepare_to_wait(&conf->wait_for_overlap,
4037 &w, TASK_INTERRUPTIBLE);
4038 if (logical_sector >= mddev->suspend_lo &&
4039 logical_sector < mddev->suspend_hi)
4040 schedule();
4041 goto retry;
4044 if (test_bit(STRIPE_EXPANDING, &sh->state) ||
4045 !add_stripe_bio(sh, bi, dd_idx, (bi->bi_rw&RW_MASK))) {
4046 /* Stripe is busy expanding or
4047 * add failed due to overlap. Flush everything
4048 * and wait a while
4050 md_wakeup_thread(mddev->thread);
4051 release_stripe(sh);
4052 schedule();
4053 goto retry;
4055 finish_wait(&conf->wait_for_overlap, &w);
4056 set_bit(STRIPE_HANDLE, &sh->state);
4057 clear_bit(STRIPE_DELAYED, &sh->state);
4058 if ((bi->bi_rw & REQ_SYNC) &&
4059 !test_and_set_bit(STRIPE_PREREAD_ACTIVE, &sh->state))
4060 atomic_inc(&conf->preread_active_stripes);
4061 release_stripe(sh);
4062 } else {
4063 /* cannot get stripe for read-ahead, just give-up */
4064 clear_bit(BIO_UPTODATE, &bi->bi_flags);
4065 finish_wait(&conf->wait_for_overlap, &w);
4066 break;
4070 if (!plugged)
4071 md_wakeup_thread(mddev->thread);
4073 spin_lock_irq(&conf->device_lock);
4074 remaining = raid5_dec_bi_phys_segments(bi);
4075 spin_unlock_irq(&conf->device_lock);
4076 if (remaining == 0) {
4078 if ( rw == WRITE )
4079 md_write_end(mddev);
4081 bio_endio(bi, 0);
4084 return 0;
4087 static sector_t raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks);
4089 static sector_t reshape_request(mddev_t *mddev, sector_t sector_nr, int *skipped)
4091 /* reshaping is quite different to recovery/resync so it is
4092 * handled quite separately ... here.
4094 * On each call to sync_request, we gather one chunk worth of
4095 * destination stripes and flag them as expanding.
4096 * Then we find all the source stripes and request reads.
4097 * As the reads complete, handle_stripe will copy the data
4098 * into the destination stripe and release that stripe.
4100 raid5_conf_t *conf = mddev->private;
4101 struct stripe_head *sh;
4102 sector_t first_sector, last_sector;
4103 int raid_disks = conf->previous_raid_disks;
4104 int data_disks = raid_disks - conf->max_degraded;
4105 int new_data_disks = conf->raid_disks - conf->max_degraded;
4106 int i;
4107 int dd_idx;
4108 sector_t writepos, readpos, safepos;
4109 sector_t stripe_addr;
4110 int reshape_sectors;
4111 struct list_head stripes;
4113 if (sector_nr == 0) {
4114 /* If restarting in the middle, skip the initial sectors */
4115 if (mddev->delta_disks < 0 &&
4116 conf->reshape_progress < raid5_size(mddev, 0, 0)) {
4117 sector_nr = raid5_size(mddev, 0, 0)
4118 - conf->reshape_progress;
4119 } else if (mddev->delta_disks >= 0 &&
4120 conf->reshape_progress > 0)
4121 sector_nr = conf->reshape_progress;
4122 sector_div(sector_nr, new_data_disks);
4123 if (sector_nr) {
4124 mddev->curr_resync_completed = sector_nr;
4125 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4126 *skipped = 1;
4127 return sector_nr;
4131 /* We need to process a full chunk at a time.
4132 * If old and new chunk sizes differ, we need to process the
4133 * largest of these
4135 if (mddev->new_chunk_sectors > mddev->chunk_sectors)
4136 reshape_sectors = mddev->new_chunk_sectors;
4137 else
4138 reshape_sectors = mddev->chunk_sectors;
4140 /* we update the metadata when there is more than 3Meg
4141 * in the block range (that is rather arbitrary, should
4142 * probably be time based) or when the data about to be
4143 * copied would over-write the source of the data at
4144 * the front of the range.
4145 * i.e. one new_stripe along from reshape_progress new_maps
4146 * to after where reshape_safe old_maps to
4148 writepos = conf->reshape_progress;
4149 sector_div(writepos, new_data_disks);
4150 readpos = conf->reshape_progress;
4151 sector_div(readpos, data_disks);
4152 safepos = conf->reshape_safe;
4153 sector_div(safepos, data_disks);
4154 if (mddev->delta_disks < 0) {
4155 writepos -= min_t(sector_t, reshape_sectors, writepos);
4156 readpos += reshape_sectors;
4157 safepos += reshape_sectors;
4158 } else {
4159 writepos += reshape_sectors;
4160 readpos -= min_t(sector_t, reshape_sectors, readpos);
4161 safepos -= min_t(sector_t, reshape_sectors, safepos);
4164 /* 'writepos' is the most advanced device address we might write.
4165 * 'readpos' is the least advanced device address we might read.
4166 * 'safepos' is the least address recorded in the metadata as having
4167 * been reshaped.
4168 * If 'readpos' is behind 'writepos', then there is no way that we can
4169 * ensure safety in the face of a crash - that must be done by userspace
4170 * making a backup of the data. So in that case there is no particular
4171 * rush to update metadata.
4172 * Otherwise if 'safepos' is behind 'writepos', then we really need to
4173 * update the metadata to advance 'safepos' to match 'readpos' so that
4174 * we can be safe in the event of a crash.
4175 * So we insist on updating metadata if safepos is behind writepos and
4176 * readpos is beyond writepos.
4177 * In any case, update the metadata every 10 seconds.
4178 * Maybe that number should be configurable, but I'm not sure it is
4179 * worth it.... maybe it could be a multiple of safemode_delay???
4181 if ((mddev->delta_disks < 0
4182 ? (safepos > writepos && readpos < writepos)
4183 : (safepos < writepos && readpos > writepos)) ||
4184 time_after(jiffies, conf->reshape_checkpoint + 10*HZ)) {
4185 /* Cannot proceed until we've updated the superblock... */
4186 wait_event(conf->wait_for_overlap,
4187 atomic_read(&conf->reshape_stripes)==0);
4188 mddev->reshape_position = conf->reshape_progress;
4189 mddev->curr_resync_completed = sector_nr;
4190 conf->reshape_checkpoint = jiffies;
4191 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4192 md_wakeup_thread(mddev->thread);
4193 wait_event(mddev->sb_wait, mddev->flags == 0 ||
4194 kthread_should_stop());
4195 spin_lock_irq(&conf->device_lock);
4196 conf->reshape_safe = mddev->reshape_position;
4197 spin_unlock_irq(&conf->device_lock);
4198 wake_up(&conf->wait_for_overlap);
4199 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4202 if (mddev->delta_disks < 0) {
4203 BUG_ON(conf->reshape_progress == 0);
4204 stripe_addr = writepos;
4205 BUG_ON((mddev->dev_sectors &
4206 ~((sector_t)reshape_sectors - 1))
4207 - reshape_sectors - stripe_addr
4208 != sector_nr);
4209 } else {
4210 BUG_ON(writepos != sector_nr + reshape_sectors);
4211 stripe_addr = sector_nr;
4213 INIT_LIST_HEAD(&stripes);
4214 for (i = 0; i < reshape_sectors; i += STRIPE_SECTORS) {
4215 int j;
4216 int skipped_disk = 0;
4217 sh = get_active_stripe(conf, stripe_addr+i, 0, 0, 1);
4218 set_bit(STRIPE_EXPANDING, &sh->state);
4219 atomic_inc(&conf->reshape_stripes);
4220 /* If any of this stripe is beyond the end of the old
4221 * array, then we need to zero those blocks
4223 for (j=sh->disks; j--;) {
4224 sector_t s;
4225 if (j == sh->pd_idx)
4226 continue;
4227 if (conf->level == 6 &&
4228 j == sh->qd_idx)
4229 continue;
4230 s = compute_blocknr(sh, j, 0);
4231 if (s < raid5_size(mddev, 0, 0)) {
4232 skipped_disk = 1;
4233 continue;
4235 memset(page_address(sh->dev[j].page), 0, STRIPE_SIZE);
4236 set_bit(R5_Expanded, &sh->dev[j].flags);
4237 set_bit(R5_UPTODATE, &sh->dev[j].flags);
4239 if (!skipped_disk) {
4240 set_bit(STRIPE_EXPAND_READY, &sh->state);
4241 set_bit(STRIPE_HANDLE, &sh->state);
4243 list_add(&sh->lru, &stripes);
4245 spin_lock_irq(&conf->device_lock);
4246 if (mddev->delta_disks < 0)
4247 conf->reshape_progress -= reshape_sectors * new_data_disks;
4248 else
4249 conf->reshape_progress += reshape_sectors * new_data_disks;
4250 spin_unlock_irq(&conf->device_lock);
4251 /* Ok, those stripe are ready. We can start scheduling
4252 * reads on the source stripes.
4253 * The source stripes are determined by mapping the first and last
4254 * block on the destination stripes.
4256 first_sector =
4257 raid5_compute_sector(conf, stripe_addr*(new_data_disks),
4258 1, &dd_idx, NULL);
4259 last_sector =
4260 raid5_compute_sector(conf, ((stripe_addr+reshape_sectors)
4261 * new_data_disks - 1),
4262 1, &dd_idx, NULL);
4263 if (last_sector >= mddev->dev_sectors)
4264 last_sector = mddev->dev_sectors - 1;
4265 while (first_sector <= last_sector) {
4266 sh = get_active_stripe(conf, first_sector, 1, 0, 1);
4267 set_bit(STRIPE_EXPAND_SOURCE, &sh->state);
4268 set_bit(STRIPE_HANDLE, &sh->state);
4269 release_stripe(sh);
4270 first_sector += STRIPE_SECTORS;
4272 /* Now that the sources are clearly marked, we can release
4273 * the destination stripes
4275 while (!list_empty(&stripes)) {
4276 sh = list_entry(stripes.next, struct stripe_head, lru);
4277 list_del_init(&sh->lru);
4278 release_stripe(sh);
4280 /* If this takes us to the resync_max point where we have to pause,
4281 * then we need to write out the superblock.
4283 sector_nr += reshape_sectors;
4284 if ((sector_nr - mddev->curr_resync_completed) * 2
4285 >= mddev->resync_max - mddev->curr_resync_completed) {
4286 /* Cannot proceed until we've updated the superblock... */
4287 wait_event(conf->wait_for_overlap,
4288 atomic_read(&conf->reshape_stripes) == 0);
4289 mddev->reshape_position = conf->reshape_progress;
4290 mddev->curr_resync_completed = sector_nr;
4291 conf->reshape_checkpoint = jiffies;
4292 set_bit(MD_CHANGE_DEVS, &mddev->flags);
4293 md_wakeup_thread(mddev->thread);
4294 wait_event(mddev->sb_wait,
4295 !test_bit(MD_CHANGE_DEVS, &mddev->flags)
4296 || kthread_should_stop());
4297 spin_lock_irq(&conf->device_lock);
4298 conf->reshape_safe = mddev->reshape_position;
4299 spin_unlock_irq(&conf->device_lock);
4300 wake_up(&conf->wait_for_overlap);
4301 sysfs_notify(&mddev->kobj, NULL, "sync_completed");
4303 return reshape_sectors;
4306 /* FIXME go_faster isn't used */
4307 static inline sector_t sync_request(mddev_t *mddev, sector_t sector_nr, int *skipped, int go_faster)
4309 raid5_conf_t *conf = mddev->private;
4310 struct stripe_head *sh;
4311 sector_t max_sector = mddev->dev_sectors;
4312 sector_t sync_blocks;
4313 int still_degraded = 0;
4314 int i;
4316 if (sector_nr >= max_sector) {
4317 /* just being told to finish up .. nothing much to do */
4319 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery)) {
4320 end_reshape(conf);
4321 return 0;
4324 if (mddev->curr_resync < max_sector) /* aborted */
4325 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
4326 &sync_blocks, 1);
4327 else /* completed sync */
4328 conf->fullsync = 0;
4329 bitmap_close_sync(mddev->bitmap);
4331 return 0;
4334 /* Allow raid5_quiesce to complete */
4335 wait_event(conf->wait_for_overlap, conf->quiesce != 2);
4337 if (test_bit(MD_RECOVERY_RESHAPE, &mddev->recovery))
4338 return reshape_request(mddev, sector_nr, skipped);
4340 /* No need to check resync_max as we never do more than one
4341 * stripe, and as resync_max will always be on a chunk boundary,
4342 * if the check in md_do_sync didn't fire, there is no chance
4343 * of overstepping resync_max here
4346 /* if there is too many failed drives and we are trying
4347 * to resync, then assert that we are finished, because there is
4348 * nothing we can do.
4350 if (mddev->degraded >= conf->max_degraded &&
4351 test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
4352 sector_t rv = mddev->dev_sectors - sector_nr;
4353 *skipped = 1;
4354 return rv;
4356 if (!bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, 1) &&
4357 !test_bit(MD_RECOVERY_REQUESTED, &mddev->recovery) &&
4358 !conf->fullsync && sync_blocks >= STRIPE_SECTORS) {
4359 /* we can skip this block, and probably more */
4360 sync_blocks /= STRIPE_SECTORS;
4361 *skipped = 1;
4362 return sync_blocks * STRIPE_SECTORS; /* keep things rounded to whole stripes */
4366 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
4368 sh = get_active_stripe(conf, sector_nr, 0, 1, 0);
4369 if (sh == NULL) {
4370 sh = get_active_stripe(conf, sector_nr, 0, 0, 0);
4371 /* make sure we don't swamp the stripe cache if someone else
4372 * is trying to get access
4374 schedule_timeout_uninterruptible(1);
4376 /* Need to check if array will still be degraded after recovery/resync
4377 * We don't need to check the 'failed' flag as when that gets set,
4378 * recovery aborts.
4380 for (i = 0; i < conf->raid_disks; i++)
4381 if (conf->disks[i].rdev == NULL)
4382 still_degraded = 1;
4384 bitmap_start_sync(mddev->bitmap, sector_nr, &sync_blocks, still_degraded);
4386 spin_lock(&sh->lock);
4387 set_bit(STRIPE_SYNCING, &sh->state);
4388 clear_bit(STRIPE_INSYNC, &sh->state);
4389 spin_unlock(&sh->lock);
4391 handle_stripe(sh);
4392 release_stripe(sh);
4394 return STRIPE_SECTORS;
4397 static int retry_aligned_read(raid5_conf_t *conf, struct bio *raid_bio)
4399 /* We may not be able to submit a whole bio at once as there
4400 * may not be enough stripe_heads available.
4401 * We cannot pre-allocate enough stripe_heads as we may need
4402 * more than exist in the cache (if we allow ever large chunks).
4403 * So we do one stripe head at a time and record in
4404 * ->bi_hw_segments how many have been done.
4406 * We *know* that this entire raid_bio is in one chunk, so
4407 * it will be only one 'dd_idx' and only need one call to raid5_compute_sector.
4409 struct stripe_head *sh;
4410 int dd_idx;
4411 sector_t sector, logical_sector, last_sector;
4412 int scnt = 0;
4413 int remaining;
4414 int handled = 0;
4416 logical_sector = raid_bio->bi_sector & ~((sector_t)STRIPE_SECTORS-1);
4417 sector = raid5_compute_sector(conf, logical_sector,
4418 0, &dd_idx, NULL);
4419 last_sector = raid_bio->bi_sector + (raid_bio->bi_size>>9);
4421 for (; logical_sector < last_sector;
4422 logical_sector += STRIPE_SECTORS,
4423 sector += STRIPE_SECTORS,
4424 scnt++) {
4426 if (scnt < raid5_bi_hw_segments(raid_bio))
4427 /* already done this stripe */
4428 continue;
4430 sh = get_active_stripe(conf, sector, 0, 1, 0);
4432 if (!sh) {
4433 /* failed to get a stripe - must wait */
4434 raid5_set_bi_hw_segments(raid_bio, scnt);
4435 conf->retry_read_aligned = raid_bio;
4436 return handled;
4439 set_bit(R5_ReadError, &sh->dev[dd_idx].flags);
4440 if (!add_stripe_bio(sh, raid_bio, dd_idx, 0)) {
4441 release_stripe(sh);
4442 raid5_set_bi_hw_segments(raid_bio, scnt);
4443 conf->retry_read_aligned = raid_bio;
4444 return handled;
4447 handle_stripe(sh);
4448 release_stripe(sh);
4449 handled++;
4451 spin_lock_irq(&conf->device_lock);
4452 remaining = raid5_dec_bi_phys_segments(raid_bio);
4453 spin_unlock_irq(&conf->device_lock);
4454 if (remaining == 0)
4455 bio_endio(raid_bio, 0);
4456 if (atomic_dec_and_test(&conf->active_aligned_reads))
4457 wake_up(&conf->wait_for_stripe);
4458 return handled;
4463 * This is our raid5 kernel thread.
4465 * We scan the hash table for stripes which can be handled now.
4466 * During the scan, completed stripes are saved for us by the interrupt
4467 * handler, so that they will not have to wait for our next wakeup.
4469 static void raid5d(mddev_t *mddev)
4471 struct stripe_head *sh;
4472 raid5_conf_t *conf = mddev->private;
4473 int handled;
4474 struct blk_plug plug;
4476 pr_debug("+++ raid5d active\n");
4478 md_check_recovery(mddev);
4480 blk_start_plug(&plug);
4481 handled = 0;
4482 spin_lock_irq(&conf->device_lock);
4483 while (1) {
4484 struct bio *bio;
4486 if (atomic_read(&mddev->plug_cnt) == 0 &&
4487 !list_empty(&conf->bitmap_list)) {
4488 /* Now is a good time to flush some bitmap updates */
4489 conf->seq_flush++;
4490 spin_unlock_irq(&conf->device_lock);
4491 bitmap_unplug(mddev->bitmap);
4492 spin_lock_irq(&conf->device_lock);
4493 conf->seq_write = conf->seq_flush;
4494 activate_bit_delay(conf);
4496 if (atomic_read(&mddev->plug_cnt) == 0)
4497 raid5_activate_delayed(conf);
4499 while ((bio = remove_bio_from_retry(conf))) {
4500 int ok;
4501 spin_unlock_irq(&conf->device_lock);
4502 ok = retry_aligned_read(conf, bio);
4503 spin_lock_irq(&conf->device_lock);
4504 if (!ok)
4505 break;
4506 handled++;
4509 sh = __get_priority_stripe(conf);
4511 if (!sh)
4512 break;
4513 spin_unlock_irq(&conf->device_lock);
4515 handled++;
4516 handle_stripe(sh);
4517 release_stripe(sh);
4518 cond_resched();
4520 spin_lock_irq(&conf->device_lock);
4522 pr_debug("%d stripes handled\n", handled);
4524 spin_unlock_irq(&conf->device_lock);
4526 async_tx_issue_pending_all();
4527 blk_finish_plug(&plug);
4529 pr_debug("--- raid5d inactive\n");
4532 static ssize_t
4533 raid5_show_stripe_cache_size(mddev_t *mddev, char *page)
4535 raid5_conf_t *conf = mddev->private;
4536 if (conf)
4537 return sprintf(page, "%d\n", conf->max_nr_stripes);
4538 else
4539 return 0;
4543 raid5_set_cache_size(mddev_t *mddev, int size)
4545 raid5_conf_t *conf = mddev->private;
4546 int err;
4548 if (size <= 16 || size > 32768)
4549 return -EINVAL;
4550 while (size < conf->max_nr_stripes) {
4551 if (drop_one_stripe(conf))
4552 conf->max_nr_stripes--;
4553 else
4554 break;
4556 err = md_allow_write(mddev);
4557 if (err)
4558 return err;
4559 while (size > conf->max_nr_stripes) {
4560 if (grow_one_stripe(conf))
4561 conf->max_nr_stripes++;
4562 else break;
4564 return 0;
4566 EXPORT_SYMBOL(raid5_set_cache_size);
4568 static ssize_t
4569 raid5_store_stripe_cache_size(mddev_t *mddev, const char *page, size_t len)
4571 raid5_conf_t *conf = mddev->private;
4572 unsigned long new;
4573 int err;
4575 if (len >= PAGE_SIZE)
4576 return -EINVAL;
4577 if (!conf)
4578 return -ENODEV;
4580 if (strict_strtoul(page, 10, &new))
4581 return -EINVAL;
4582 err = raid5_set_cache_size(mddev, new);
4583 if (err)
4584 return err;
4585 return len;
4588 static struct md_sysfs_entry
4589 raid5_stripecache_size = __ATTR(stripe_cache_size, S_IRUGO | S_IWUSR,
4590 raid5_show_stripe_cache_size,
4591 raid5_store_stripe_cache_size);
4593 static ssize_t
4594 raid5_show_preread_threshold(mddev_t *mddev, char *page)
4596 raid5_conf_t *conf = mddev->private;
4597 if (conf)
4598 return sprintf(page, "%d\n", conf->bypass_threshold);
4599 else
4600 return 0;
4603 static ssize_t
4604 raid5_store_preread_threshold(mddev_t *mddev, const char *page, size_t len)
4606 raid5_conf_t *conf = mddev->private;
4607 unsigned long new;
4608 if (len >= PAGE_SIZE)
4609 return -EINVAL;
4610 if (!conf)
4611 return -ENODEV;
4613 if (strict_strtoul(page, 10, &new))
4614 return -EINVAL;
4615 if (new > conf->max_nr_stripes)
4616 return -EINVAL;
4617 conf->bypass_threshold = new;
4618 return len;
4621 static struct md_sysfs_entry
4622 raid5_preread_bypass_threshold = __ATTR(preread_bypass_threshold,
4623 S_IRUGO | S_IWUSR,
4624 raid5_show_preread_threshold,
4625 raid5_store_preread_threshold);
4627 static ssize_t
4628 stripe_cache_active_show(mddev_t *mddev, char *page)
4630 raid5_conf_t *conf = mddev->private;
4631 if (conf)
4632 return sprintf(page, "%d\n", atomic_read(&conf->active_stripes));
4633 else
4634 return 0;
4637 static struct md_sysfs_entry
4638 raid5_stripecache_active = __ATTR_RO(stripe_cache_active);
4640 static struct attribute *raid5_attrs[] = {
4641 &raid5_stripecache_size.attr,
4642 &raid5_stripecache_active.attr,
4643 &raid5_preread_bypass_threshold.attr,
4644 NULL,
4646 static struct attribute_group raid5_attrs_group = {
4647 .name = NULL,
4648 .attrs = raid5_attrs,
4651 static sector_t
4652 raid5_size(mddev_t *mddev, sector_t sectors, int raid_disks)
4654 raid5_conf_t *conf = mddev->private;
4656 if (!sectors)
4657 sectors = mddev->dev_sectors;
4658 if (!raid_disks)
4659 /* size is defined by the smallest of previous and new size */
4660 raid_disks = min(conf->raid_disks, conf->previous_raid_disks);
4662 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
4663 sectors &= ~((sector_t)mddev->new_chunk_sectors - 1);
4664 return sectors * (raid_disks - conf->max_degraded);
4667 static void raid5_free_percpu(raid5_conf_t *conf)
4669 struct raid5_percpu *percpu;
4670 unsigned long cpu;
4672 if (!conf->percpu)
4673 return;
4675 get_online_cpus();
4676 for_each_possible_cpu(cpu) {
4677 percpu = per_cpu_ptr(conf->percpu, cpu);
4678 safe_put_page(percpu->spare_page);
4679 kfree(percpu->scribble);
4681 #ifdef CONFIG_HOTPLUG_CPU
4682 unregister_cpu_notifier(&conf->cpu_notify);
4683 #endif
4684 put_online_cpus();
4686 free_percpu(conf->percpu);
4689 static void free_conf(raid5_conf_t *conf)
4691 shrink_stripes(conf);
4692 raid5_free_percpu(conf);
4693 kfree(conf->disks);
4694 kfree(conf->stripe_hashtbl);
4695 kfree(conf);
4698 #ifdef CONFIG_HOTPLUG_CPU
4699 static int raid456_cpu_notify(struct notifier_block *nfb, unsigned long action,
4700 void *hcpu)
4702 raid5_conf_t *conf = container_of(nfb, raid5_conf_t, cpu_notify);
4703 long cpu = (long)hcpu;
4704 struct raid5_percpu *percpu = per_cpu_ptr(conf->percpu, cpu);
4706 switch (action) {
4707 case CPU_UP_PREPARE:
4708 case CPU_UP_PREPARE_FROZEN:
4709 if (conf->level == 6 && !percpu->spare_page)
4710 percpu->spare_page = alloc_page(GFP_KERNEL);
4711 if (!percpu->scribble)
4712 percpu->scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4714 if (!percpu->scribble ||
4715 (conf->level == 6 && !percpu->spare_page)) {
4716 safe_put_page(percpu->spare_page);
4717 kfree(percpu->scribble);
4718 pr_err("%s: failed memory allocation for cpu%ld\n",
4719 __func__, cpu);
4720 return notifier_from_errno(-ENOMEM);
4722 break;
4723 case CPU_DEAD:
4724 case CPU_DEAD_FROZEN:
4725 safe_put_page(percpu->spare_page);
4726 kfree(percpu->scribble);
4727 percpu->spare_page = NULL;
4728 percpu->scribble = NULL;
4729 break;
4730 default:
4731 break;
4733 return NOTIFY_OK;
4735 #endif
4737 static int raid5_alloc_percpu(raid5_conf_t *conf)
4739 unsigned long cpu;
4740 struct page *spare_page;
4741 struct raid5_percpu __percpu *allcpus;
4742 void *scribble;
4743 int err;
4745 allcpus = alloc_percpu(struct raid5_percpu);
4746 if (!allcpus)
4747 return -ENOMEM;
4748 conf->percpu = allcpus;
4750 get_online_cpus();
4751 err = 0;
4752 for_each_present_cpu(cpu) {
4753 if (conf->level == 6) {
4754 spare_page = alloc_page(GFP_KERNEL);
4755 if (!spare_page) {
4756 err = -ENOMEM;
4757 break;
4759 per_cpu_ptr(conf->percpu, cpu)->spare_page = spare_page;
4761 scribble = kmalloc(conf->scribble_len, GFP_KERNEL);
4762 if (!scribble) {
4763 err = -ENOMEM;
4764 break;
4766 per_cpu_ptr(conf->percpu, cpu)->scribble = scribble;
4768 #ifdef CONFIG_HOTPLUG_CPU
4769 conf->cpu_notify.notifier_call = raid456_cpu_notify;
4770 conf->cpu_notify.priority = 0;
4771 if (err == 0)
4772 err = register_cpu_notifier(&conf->cpu_notify);
4773 #endif
4774 put_online_cpus();
4776 return err;
4779 static raid5_conf_t *setup_conf(mddev_t *mddev)
4781 raid5_conf_t *conf;
4782 int raid_disk, memory, max_disks;
4783 mdk_rdev_t *rdev;
4784 struct disk_info *disk;
4786 if (mddev->new_level != 5
4787 && mddev->new_level != 4
4788 && mddev->new_level != 6) {
4789 printk(KERN_ERR "md/raid:%s: raid level not set to 4/5/6 (%d)\n",
4790 mdname(mddev), mddev->new_level);
4791 return ERR_PTR(-EIO);
4793 if ((mddev->new_level == 5
4794 && !algorithm_valid_raid5(mddev->new_layout)) ||
4795 (mddev->new_level == 6
4796 && !algorithm_valid_raid6(mddev->new_layout))) {
4797 printk(KERN_ERR "md/raid:%s: layout %d not supported\n",
4798 mdname(mddev), mddev->new_layout);
4799 return ERR_PTR(-EIO);
4801 if (mddev->new_level == 6 && mddev->raid_disks < 4) {
4802 printk(KERN_ERR "md/raid:%s: not enough configured devices (%d, minimum 4)\n",
4803 mdname(mddev), mddev->raid_disks);
4804 return ERR_PTR(-EINVAL);
4807 if (!mddev->new_chunk_sectors ||
4808 (mddev->new_chunk_sectors << 9) % PAGE_SIZE ||
4809 !is_power_of_2(mddev->new_chunk_sectors)) {
4810 printk(KERN_ERR "md/raid:%s: invalid chunk size %d\n",
4811 mdname(mddev), mddev->new_chunk_sectors << 9);
4812 return ERR_PTR(-EINVAL);
4815 conf = kzalloc(sizeof(raid5_conf_t), GFP_KERNEL);
4816 if (conf == NULL)
4817 goto abort;
4818 spin_lock_init(&conf->device_lock);
4819 init_waitqueue_head(&conf->wait_for_stripe);
4820 init_waitqueue_head(&conf->wait_for_overlap);
4821 INIT_LIST_HEAD(&conf->handle_list);
4822 INIT_LIST_HEAD(&conf->hold_list);
4823 INIT_LIST_HEAD(&conf->delayed_list);
4824 INIT_LIST_HEAD(&conf->bitmap_list);
4825 INIT_LIST_HEAD(&conf->inactive_list);
4826 atomic_set(&conf->active_stripes, 0);
4827 atomic_set(&conf->preread_active_stripes, 0);
4828 atomic_set(&conf->active_aligned_reads, 0);
4829 conf->bypass_threshold = BYPASS_THRESHOLD;
4831 conf->raid_disks = mddev->raid_disks;
4832 if (mddev->reshape_position == MaxSector)
4833 conf->previous_raid_disks = mddev->raid_disks;
4834 else
4835 conf->previous_raid_disks = mddev->raid_disks - mddev->delta_disks;
4836 max_disks = max(conf->raid_disks, conf->previous_raid_disks);
4837 conf->scribble_len = scribble_len(max_disks);
4839 conf->disks = kzalloc(max_disks * sizeof(struct disk_info),
4840 GFP_KERNEL);
4841 if (!conf->disks)
4842 goto abort;
4844 conf->mddev = mddev;
4846 if ((conf->stripe_hashtbl = kzalloc(PAGE_SIZE, GFP_KERNEL)) == NULL)
4847 goto abort;
4849 conf->level = mddev->new_level;
4850 if (raid5_alloc_percpu(conf) != 0)
4851 goto abort;
4853 pr_debug("raid456: run(%s) called.\n", mdname(mddev));
4855 list_for_each_entry(rdev, &mddev->disks, same_set) {
4856 raid_disk = rdev->raid_disk;
4857 if (raid_disk >= max_disks
4858 || raid_disk < 0)
4859 continue;
4860 disk = conf->disks + raid_disk;
4862 disk->rdev = rdev;
4864 if (test_bit(In_sync, &rdev->flags)) {
4865 char b[BDEVNAME_SIZE];
4866 printk(KERN_INFO "md/raid:%s: device %s operational as raid"
4867 " disk %d\n",
4868 mdname(mddev), bdevname(rdev->bdev, b), raid_disk);
4869 } else if (rdev->saved_raid_disk != raid_disk)
4870 /* Cannot rely on bitmap to complete recovery */
4871 conf->fullsync = 1;
4874 conf->chunk_sectors = mddev->new_chunk_sectors;
4875 conf->level = mddev->new_level;
4876 if (conf->level == 6)
4877 conf->max_degraded = 2;
4878 else
4879 conf->max_degraded = 1;
4880 conf->algorithm = mddev->new_layout;
4881 conf->max_nr_stripes = NR_STRIPES;
4882 conf->reshape_progress = mddev->reshape_position;
4883 if (conf->reshape_progress != MaxSector) {
4884 conf->prev_chunk_sectors = mddev->chunk_sectors;
4885 conf->prev_algo = mddev->layout;
4888 memory = conf->max_nr_stripes * (sizeof(struct stripe_head) +
4889 max_disks * ((sizeof(struct bio) + PAGE_SIZE))) / 1024;
4890 if (grow_stripes(conf, conf->max_nr_stripes)) {
4891 printk(KERN_ERR
4892 "md/raid:%s: couldn't allocate %dkB for buffers\n",
4893 mdname(mddev), memory);
4894 goto abort;
4895 } else
4896 printk(KERN_INFO "md/raid:%s: allocated %dkB\n",
4897 mdname(mddev), memory);
4899 conf->thread = md_register_thread(raid5d, mddev, NULL);
4900 if (!conf->thread) {
4901 printk(KERN_ERR
4902 "md/raid:%s: couldn't allocate thread.\n",
4903 mdname(mddev));
4904 goto abort;
4907 return conf;
4909 abort:
4910 if (conf) {
4911 free_conf(conf);
4912 return ERR_PTR(-EIO);
4913 } else
4914 return ERR_PTR(-ENOMEM);
4918 static int only_parity(int raid_disk, int algo, int raid_disks, int max_degraded)
4920 switch (algo) {
4921 case ALGORITHM_PARITY_0:
4922 if (raid_disk < max_degraded)
4923 return 1;
4924 break;
4925 case ALGORITHM_PARITY_N:
4926 if (raid_disk >= raid_disks - max_degraded)
4927 return 1;
4928 break;
4929 case ALGORITHM_PARITY_0_6:
4930 if (raid_disk == 0 ||
4931 raid_disk == raid_disks - 1)
4932 return 1;
4933 break;
4934 case ALGORITHM_LEFT_ASYMMETRIC_6:
4935 case ALGORITHM_RIGHT_ASYMMETRIC_6:
4936 case ALGORITHM_LEFT_SYMMETRIC_6:
4937 case ALGORITHM_RIGHT_SYMMETRIC_6:
4938 if (raid_disk == raid_disks - 1)
4939 return 1;
4941 return 0;
4944 static int run(mddev_t *mddev)
4946 raid5_conf_t *conf;
4947 int working_disks = 0;
4948 int dirty_parity_disks = 0;
4949 mdk_rdev_t *rdev;
4950 sector_t reshape_offset = 0;
4952 if (mddev->recovery_cp != MaxSector)
4953 printk(KERN_NOTICE "md/raid:%s: not clean"
4954 " -- starting background reconstruction\n",
4955 mdname(mddev));
4956 if (mddev->reshape_position != MaxSector) {
4957 /* Check that we can continue the reshape.
4958 * Currently only disks can change, it must
4959 * increase, and we must be past the point where
4960 * a stripe over-writes itself
4962 sector_t here_new, here_old;
4963 int old_disks;
4964 int max_degraded = (mddev->level == 6 ? 2 : 1);
4966 if (mddev->new_level != mddev->level) {
4967 printk(KERN_ERR "md/raid:%s: unsupported reshape "
4968 "required - aborting.\n",
4969 mdname(mddev));
4970 return -EINVAL;
4972 old_disks = mddev->raid_disks - mddev->delta_disks;
4973 /* reshape_position must be on a new-stripe boundary, and one
4974 * further up in new geometry must map after here in old
4975 * geometry.
4977 here_new = mddev->reshape_position;
4978 if (sector_div(here_new, mddev->new_chunk_sectors *
4979 (mddev->raid_disks - max_degraded))) {
4980 printk(KERN_ERR "md/raid:%s: reshape_position not "
4981 "on a stripe boundary\n", mdname(mddev));
4982 return -EINVAL;
4984 reshape_offset = here_new * mddev->new_chunk_sectors;
4985 /* here_new is the stripe we will write to */
4986 here_old = mddev->reshape_position;
4987 sector_div(here_old, mddev->chunk_sectors *
4988 (old_disks-max_degraded));
4989 /* here_old is the first stripe that we might need to read
4990 * from */
4991 if (mddev->delta_disks == 0) {
4992 /* We cannot be sure it is safe to start an in-place
4993 * reshape. It is only safe if user-space if monitoring
4994 * and taking constant backups.
4995 * mdadm always starts a situation like this in
4996 * readonly mode so it can take control before
4997 * allowing any writes. So just check for that.
4999 if ((here_new * mddev->new_chunk_sectors !=
5000 here_old * mddev->chunk_sectors) ||
5001 mddev->ro == 0) {
5002 printk(KERN_ERR "md/raid:%s: in-place reshape must be started"
5003 " in read-only mode - aborting\n",
5004 mdname(mddev));
5005 return -EINVAL;
5007 } else if (mddev->delta_disks < 0
5008 ? (here_new * mddev->new_chunk_sectors <=
5009 here_old * mddev->chunk_sectors)
5010 : (here_new * mddev->new_chunk_sectors >=
5011 here_old * mddev->chunk_sectors)) {
5012 /* Reading from the same stripe as writing to - bad */
5013 printk(KERN_ERR "md/raid:%s: reshape_position too early for "
5014 "auto-recovery - aborting.\n",
5015 mdname(mddev));
5016 return -EINVAL;
5018 printk(KERN_INFO "md/raid:%s: reshape will continue\n",
5019 mdname(mddev));
5020 /* OK, we should be able to continue; */
5021 } else {
5022 BUG_ON(mddev->level != mddev->new_level);
5023 BUG_ON(mddev->layout != mddev->new_layout);
5024 BUG_ON(mddev->chunk_sectors != mddev->new_chunk_sectors);
5025 BUG_ON(mddev->delta_disks != 0);
5028 if (mddev->private == NULL)
5029 conf = setup_conf(mddev);
5030 else
5031 conf = mddev->private;
5033 if (IS_ERR(conf))
5034 return PTR_ERR(conf);
5036 mddev->thread = conf->thread;
5037 conf->thread = NULL;
5038 mddev->private = conf;
5041 * 0 for a fully functional array, 1 or 2 for a degraded array.
5043 list_for_each_entry(rdev, &mddev->disks, same_set) {
5044 if (rdev->raid_disk < 0)
5045 continue;
5046 if (test_bit(In_sync, &rdev->flags)) {
5047 working_disks++;
5048 continue;
5050 /* This disc is not fully in-sync. However if it
5051 * just stored parity (beyond the recovery_offset),
5052 * when we don't need to be concerned about the
5053 * array being dirty.
5054 * When reshape goes 'backwards', we never have
5055 * partially completed devices, so we only need
5056 * to worry about reshape going forwards.
5058 /* Hack because v0.91 doesn't store recovery_offset properly. */
5059 if (mddev->major_version == 0 &&
5060 mddev->minor_version > 90)
5061 rdev->recovery_offset = reshape_offset;
5063 if (rdev->recovery_offset < reshape_offset) {
5064 /* We need to check old and new layout */
5065 if (!only_parity(rdev->raid_disk,
5066 conf->algorithm,
5067 conf->raid_disks,
5068 conf->max_degraded))
5069 continue;
5071 if (!only_parity(rdev->raid_disk,
5072 conf->prev_algo,
5073 conf->previous_raid_disks,
5074 conf->max_degraded))
5075 continue;
5076 dirty_parity_disks++;
5079 mddev->degraded = (max(conf->raid_disks, conf->previous_raid_disks)
5080 - working_disks);
5082 if (has_failed(conf)) {
5083 printk(KERN_ERR "md/raid:%s: not enough operational devices"
5084 " (%d/%d failed)\n",
5085 mdname(mddev), mddev->degraded, conf->raid_disks);
5086 goto abort;
5089 /* device size must be a multiple of chunk size */
5090 mddev->dev_sectors &= ~(mddev->chunk_sectors - 1);
5091 mddev->resync_max_sectors = mddev->dev_sectors;
5093 if (mddev->degraded > dirty_parity_disks &&
5094 mddev->recovery_cp != MaxSector) {
5095 if (mddev->ok_start_degraded)
5096 printk(KERN_WARNING
5097 "md/raid:%s: starting dirty degraded array"
5098 " - data corruption possible.\n",
5099 mdname(mddev));
5100 else {
5101 printk(KERN_ERR
5102 "md/raid:%s: cannot start dirty degraded array.\n",
5103 mdname(mddev));
5104 goto abort;
5108 if (mddev->degraded == 0)
5109 printk(KERN_INFO "md/raid:%s: raid level %d active with %d out of %d"
5110 " devices, algorithm %d\n", mdname(mddev), conf->level,
5111 mddev->raid_disks-mddev->degraded, mddev->raid_disks,
5112 mddev->new_layout);
5113 else
5114 printk(KERN_ALERT "md/raid:%s: raid level %d active with %d"
5115 " out of %d devices, algorithm %d\n",
5116 mdname(mddev), conf->level,
5117 mddev->raid_disks - mddev->degraded,
5118 mddev->raid_disks, mddev->new_layout);
5120 print_raid5_conf(conf);
5122 if (conf->reshape_progress != MaxSector) {
5123 conf->reshape_safe = conf->reshape_progress;
5124 atomic_set(&conf->reshape_stripes, 0);
5125 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5126 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5127 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5128 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5129 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5130 "reshape");
5134 /* Ok, everything is just fine now */
5135 if (mddev->to_remove == &raid5_attrs_group)
5136 mddev->to_remove = NULL;
5137 else if (mddev->kobj.sd &&
5138 sysfs_create_group(&mddev->kobj, &raid5_attrs_group))
5139 printk(KERN_WARNING
5140 "raid5: failed to create sysfs attributes for %s\n",
5141 mdname(mddev));
5142 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5144 if (mddev->queue) {
5145 int chunk_size;
5146 /* read-ahead size must cover two whole stripes, which
5147 * is 2 * (datadisks) * chunksize where 'n' is the
5148 * number of raid devices
5150 int data_disks = conf->previous_raid_disks - conf->max_degraded;
5151 int stripe = data_disks *
5152 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
5153 if (mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5154 mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5156 blk_queue_merge_bvec(mddev->queue, raid5_mergeable_bvec);
5158 mddev->queue->backing_dev_info.congested_data = mddev;
5159 mddev->queue->backing_dev_info.congested_fn = raid5_congested;
5161 chunk_size = mddev->chunk_sectors << 9;
5162 blk_queue_io_min(mddev->queue, chunk_size);
5163 blk_queue_io_opt(mddev->queue, chunk_size *
5164 (conf->raid_disks - conf->max_degraded));
5166 list_for_each_entry(rdev, &mddev->disks, same_set)
5167 disk_stack_limits(mddev->gendisk, rdev->bdev,
5168 rdev->data_offset << 9);
5171 return 0;
5172 abort:
5173 md_unregister_thread(&mddev->thread);
5174 if (conf) {
5175 print_raid5_conf(conf);
5176 free_conf(conf);
5178 mddev->private = NULL;
5179 printk(KERN_ALERT "md/raid:%s: failed to run raid set.\n", mdname(mddev));
5180 return -EIO;
5183 static int stop(mddev_t *mddev)
5185 raid5_conf_t *conf = mddev->private;
5187 md_unregister_thread(&mddev->thread);
5188 if (mddev->queue)
5189 mddev->queue->backing_dev_info.congested_fn = NULL;
5190 free_conf(conf);
5191 mddev->private = NULL;
5192 mddev->to_remove = &raid5_attrs_group;
5193 return 0;
5196 #ifdef DEBUG
5197 static void print_sh(struct seq_file *seq, struct stripe_head *sh)
5199 int i;
5201 seq_printf(seq, "sh %llu, pd_idx %d, state %ld.\n",
5202 (unsigned long long)sh->sector, sh->pd_idx, sh->state);
5203 seq_printf(seq, "sh %llu, count %d.\n",
5204 (unsigned long long)sh->sector, atomic_read(&sh->count));
5205 seq_printf(seq, "sh %llu, ", (unsigned long long)sh->sector);
5206 for (i = 0; i < sh->disks; i++) {
5207 seq_printf(seq, "(cache%d: %p %ld) ",
5208 i, sh->dev[i].page, sh->dev[i].flags);
5210 seq_printf(seq, "\n");
5213 static void printall(struct seq_file *seq, raid5_conf_t *conf)
5215 struct stripe_head *sh;
5216 struct hlist_node *hn;
5217 int i;
5219 spin_lock_irq(&conf->device_lock);
5220 for (i = 0; i < NR_HASH; i++) {
5221 hlist_for_each_entry(sh, hn, &conf->stripe_hashtbl[i], hash) {
5222 if (sh->raid_conf != conf)
5223 continue;
5224 print_sh(seq, sh);
5227 spin_unlock_irq(&conf->device_lock);
5229 #endif
5231 static void status(struct seq_file *seq, mddev_t *mddev)
5233 raid5_conf_t *conf = mddev->private;
5234 int i;
5236 seq_printf(seq, " level %d, %dk chunk, algorithm %d", mddev->level,
5237 mddev->chunk_sectors / 2, mddev->layout);
5238 seq_printf (seq, " [%d/%d] [", conf->raid_disks, conf->raid_disks - mddev->degraded);
5239 for (i = 0; i < conf->raid_disks; i++)
5240 seq_printf (seq, "%s",
5241 conf->disks[i].rdev &&
5242 test_bit(In_sync, &conf->disks[i].rdev->flags) ? "U" : "_");
5243 seq_printf (seq, "]");
5244 #ifdef DEBUG
5245 seq_printf (seq, "\n");
5246 printall(seq, conf);
5247 #endif
5250 static void print_raid5_conf (raid5_conf_t *conf)
5252 int i;
5253 struct disk_info *tmp;
5255 printk(KERN_DEBUG "RAID conf printout:\n");
5256 if (!conf) {
5257 printk("(conf==NULL)\n");
5258 return;
5260 printk(KERN_DEBUG " --- level:%d rd:%d wd:%d\n", conf->level,
5261 conf->raid_disks,
5262 conf->raid_disks - conf->mddev->degraded);
5264 for (i = 0; i < conf->raid_disks; i++) {
5265 char b[BDEVNAME_SIZE];
5266 tmp = conf->disks + i;
5267 if (tmp->rdev)
5268 printk(KERN_DEBUG " disk %d, o:%d, dev:%s\n",
5269 i, !test_bit(Faulty, &tmp->rdev->flags),
5270 bdevname(tmp->rdev->bdev, b));
5274 static int raid5_spare_active(mddev_t *mddev)
5276 int i;
5277 raid5_conf_t *conf = mddev->private;
5278 struct disk_info *tmp;
5279 int count = 0;
5280 unsigned long flags;
5282 for (i = 0; i < conf->raid_disks; i++) {
5283 tmp = conf->disks + i;
5284 if (tmp->rdev
5285 && tmp->rdev->recovery_offset == MaxSector
5286 && !test_bit(Faulty, &tmp->rdev->flags)
5287 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
5288 count++;
5289 sysfs_notify_dirent_safe(tmp->rdev->sysfs_state);
5292 spin_lock_irqsave(&conf->device_lock, flags);
5293 mddev->degraded -= count;
5294 spin_unlock_irqrestore(&conf->device_lock, flags);
5295 print_raid5_conf(conf);
5296 return count;
5299 static int raid5_remove_disk(mddev_t *mddev, int number)
5301 raid5_conf_t *conf = mddev->private;
5302 int err = 0;
5303 mdk_rdev_t *rdev;
5304 struct disk_info *p = conf->disks + number;
5306 print_raid5_conf(conf);
5307 rdev = p->rdev;
5308 if (rdev) {
5309 if (number >= conf->raid_disks &&
5310 conf->reshape_progress == MaxSector)
5311 clear_bit(In_sync, &rdev->flags);
5313 if (test_bit(In_sync, &rdev->flags) ||
5314 atomic_read(&rdev->nr_pending)) {
5315 err = -EBUSY;
5316 goto abort;
5318 /* Only remove non-faulty devices if recovery
5319 * isn't possible.
5321 if (!test_bit(Faulty, &rdev->flags) &&
5322 !has_failed(conf) &&
5323 number < conf->raid_disks) {
5324 err = -EBUSY;
5325 goto abort;
5327 p->rdev = NULL;
5328 synchronize_rcu();
5329 if (atomic_read(&rdev->nr_pending)) {
5330 /* lost the race, try later */
5331 err = -EBUSY;
5332 p->rdev = rdev;
5335 abort:
5337 print_raid5_conf(conf);
5338 return err;
5341 static int raid5_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
5343 raid5_conf_t *conf = mddev->private;
5344 int err = -EEXIST;
5345 int disk;
5346 struct disk_info *p;
5347 int first = 0;
5348 int last = conf->raid_disks - 1;
5350 if (has_failed(conf))
5351 /* no point adding a device */
5352 return -EINVAL;
5354 if (rdev->raid_disk >= 0)
5355 first = last = rdev->raid_disk;
5358 * find the disk ... but prefer rdev->saved_raid_disk
5359 * if possible.
5361 if (rdev->saved_raid_disk >= 0 &&
5362 rdev->saved_raid_disk >= first &&
5363 conf->disks[rdev->saved_raid_disk].rdev == NULL)
5364 disk = rdev->saved_raid_disk;
5365 else
5366 disk = first;
5367 for ( ; disk <= last ; disk++)
5368 if ((p=conf->disks + disk)->rdev == NULL) {
5369 clear_bit(In_sync, &rdev->flags);
5370 rdev->raid_disk = disk;
5371 err = 0;
5372 if (rdev->saved_raid_disk != disk)
5373 conf->fullsync = 1;
5374 rcu_assign_pointer(p->rdev, rdev);
5375 break;
5377 print_raid5_conf(conf);
5378 return err;
5381 static int raid5_resize(mddev_t *mddev, sector_t sectors)
5383 /* no resync is happening, and there is enough space
5384 * on all devices, so we can resize.
5385 * We need to make sure resync covers any new space.
5386 * If the array is shrinking we should possibly wait until
5387 * any io in the removed space completes, but it hardly seems
5388 * worth it.
5390 sectors &= ~((sector_t)mddev->chunk_sectors - 1);
5391 md_set_array_sectors(mddev, raid5_size(mddev, sectors,
5392 mddev->raid_disks));
5393 if (mddev->array_sectors >
5394 raid5_size(mddev, sectors, mddev->raid_disks))
5395 return -EINVAL;
5396 set_capacity(mddev->gendisk, mddev->array_sectors);
5397 revalidate_disk(mddev->gendisk);
5398 if (sectors > mddev->dev_sectors &&
5399 mddev->recovery_cp > mddev->dev_sectors) {
5400 mddev->recovery_cp = mddev->dev_sectors;
5401 set_bit(MD_RECOVERY_NEEDED, &mddev->recovery);
5403 mddev->dev_sectors = sectors;
5404 mddev->resync_max_sectors = sectors;
5405 return 0;
5408 static int check_stripe_cache(mddev_t *mddev)
5410 /* Can only proceed if there are plenty of stripe_heads.
5411 * We need a minimum of one full stripe,, and for sensible progress
5412 * it is best to have about 4 times that.
5413 * If we require 4 times, then the default 256 4K stripe_heads will
5414 * allow for chunk sizes up to 256K, which is probably OK.
5415 * If the chunk size is greater, user-space should request more
5416 * stripe_heads first.
5418 raid5_conf_t *conf = mddev->private;
5419 if (((mddev->chunk_sectors << 9) / STRIPE_SIZE) * 4
5420 > conf->max_nr_stripes ||
5421 ((mddev->new_chunk_sectors << 9) / STRIPE_SIZE) * 4
5422 > conf->max_nr_stripes) {
5423 printk(KERN_WARNING "md/raid:%s: reshape: not enough stripes. Needed %lu\n",
5424 mdname(mddev),
5425 ((max(mddev->chunk_sectors, mddev->new_chunk_sectors) << 9)
5426 / STRIPE_SIZE)*4);
5427 return 0;
5429 return 1;
5432 static int check_reshape(mddev_t *mddev)
5434 raid5_conf_t *conf = mddev->private;
5436 if (mddev->delta_disks == 0 &&
5437 mddev->new_layout == mddev->layout &&
5438 mddev->new_chunk_sectors == mddev->chunk_sectors)
5439 return 0; /* nothing to do */
5440 if (mddev->bitmap)
5441 /* Cannot grow a bitmap yet */
5442 return -EBUSY;
5443 if (has_failed(conf))
5444 return -EINVAL;
5445 if (mddev->delta_disks < 0) {
5446 /* We might be able to shrink, but the devices must
5447 * be made bigger first.
5448 * For raid6, 4 is the minimum size.
5449 * Otherwise 2 is the minimum
5451 int min = 2;
5452 if (mddev->level == 6)
5453 min = 4;
5454 if (mddev->raid_disks + mddev->delta_disks < min)
5455 return -EINVAL;
5458 if (!check_stripe_cache(mddev))
5459 return -ENOSPC;
5461 return resize_stripes(conf, conf->raid_disks + mddev->delta_disks);
5464 static int raid5_start_reshape(mddev_t *mddev)
5466 raid5_conf_t *conf = mddev->private;
5467 mdk_rdev_t *rdev;
5468 int spares = 0;
5469 unsigned long flags;
5471 if (test_bit(MD_RECOVERY_RUNNING, &mddev->recovery))
5472 return -EBUSY;
5474 if (!check_stripe_cache(mddev))
5475 return -ENOSPC;
5477 list_for_each_entry(rdev, &mddev->disks, same_set)
5478 if (!test_bit(In_sync, &rdev->flags)
5479 && !test_bit(Faulty, &rdev->flags))
5480 spares++;
5482 if (spares - mddev->degraded < mddev->delta_disks - conf->max_degraded)
5483 /* Not enough devices even to make a degraded array
5484 * of that size
5486 return -EINVAL;
5488 /* Refuse to reduce size of the array. Any reductions in
5489 * array size must be through explicit setting of array_size
5490 * attribute.
5492 if (raid5_size(mddev, 0, conf->raid_disks + mddev->delta_disks)
5493 < mddev->array_sectors) {
5494 printk(KERN_ERR "md/raid:%s: array size must be reduced "
5495 "before number of disks\n", mdname(mddev));
5496 return -EINVAL;
5499 atomic_set(&conf->reshape_stripes, 0);
5500 spin_lock_irq(&conf->device_lock);
5501 conf->previous_raid_disks = conf->raid_disks;
5502 conf->raid_disks += mddev->delta_disks;
5503 conf->prev_chunk_sectors = conf->chunk_sectors;
5504 conf->chunk_sectors = mddev->new_chunk_sectors;
5505 conf->prev_algo = conf->algorithm;
5506 conf->algorithm = mddev->new_layout;
5507 if (mddev->delta_disks < 0)
5508 conf->reshape_progress = raid5_size(mddev, 0, 0);
5509 else
5510 conf->reshape_progress = 0;
5511 conf->reshape_safe = conf->reshape_progress;
5512 conf->generation++;
5513 spin_unlock_irq(&conf->device_lock);
5515 /* Add some new drives, as many as will fit.
5516 * We know there are enough to make the newly sized array work.
5517 * Don't add devices if we are reducing the number of
5518 * devices in the array. This is because it is not possible
5519 * to correctly record the "partially reconstructed" state of
5520 * such devices during the reshape and confusion could result.
5522 if (mddev->delta_disks >= 0) {
5523 int added_devices = 0;
5524 list_for_each_entry(rdev, &mddev->disks, same_set)
5525 if (rdev->raid_disk < 0 &&
5526 !test_bit(Faulty, &rdev->flags)) {
5527 if (raid5_add_disk(mddev, rdev) == 0) {
5528 char nm[20];
5529 if (rdev->raid_disk
5530 >= conf->previous_raid_disks) {
5531 set_bit(In_sync, &rdev->flags);
5532 added_devices++;
5533 } else
5534 rdev->recovery_offset = 0;
5535 sprintf(nm, "rd%d", rdev->raid_disk);
5536 if (sysfs_create_link(&mddev->kobj,
5537 &rdev->kobj, nm))
5538 /* Failure here is OK */;
5540 } else if (rdev->raid_disk >= conf->previous_raid_disks
5541 && !test_bit(Faulty, &rdev->flags)) {
5542 /* This is a spare that was manually added */
5543 set_bit(In_sync, &rdev->flags);
5544 added_devices++;
5547 /* When a reshape changes the number of devices,
5548 * ->degraded is measured against the larger of the
5549 * pre and post number of devices.
5551 spin_lock_irqsave(&conf->device_lock, flags);
5552 mddev->degraded += (conf->raid_disks - conf->previous_raid_disks)
5553 - added_devices;
5554 spin_unlock_irqrestore(&conf->device_lock, flags);
5556 mddev->raid_disks = conf->raid_disks;
5557 mddev->reshape_position = conf->reshape_progress;
5558 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5560 clear_bit(MD_RECOVERY_SYNC, &mddev->recovery);
5561 clear_bit(MD_RECOVERY_CHECK, &mddev->recovery);
5562 set_bit(MD_RECOVERY_RESHAPE, &mddev->recovery);
5563 set_bit(MD_RECOVERY_RUNNING, &mddev->recovery);
5564 mddev->sync_thread = md_register_thread(md_do_sync, mddev,
5565 "reshape");
5566 if (!mddev->sync_thread) {
5567 mddev->recovery = 0;
5568 spin_lock_irq(&conf->device_lock);
5569 mddev->raid_disks = conf->raid_disks = conf->previous_raid_disks;
5570 conf->reshape_progress = MaxSector;
5571 spin_unlock_irq(&conf->device_lock);
5572 return -EAGAIN;
5574 conf->reshape_checkpoint = jiffies;
5575 md_wakeup_thread(mddev->sync_thread);
5576 md_new_event(mddev);
5577 return 0;
5580 /* This is called from the reshape thread and should make any
5581 * changes needed in 'conf'
5583 static void end_reshape(raid5_conf_t *conf)
5586 if (!test_bit(MD_RECOVERY_INTR, &conf->mddev->recovery)) {
5588 spin_lock_irq(&conf->device_lock);
5589 conf->previous_raid_disks = conf->raid_disks;
5590 conf->reshape_progress = MaxSector;
5591 spin_unlock_irq(&conf->device_lock);
5592 wake_up(&conf->wait_for_overlap);
5594 /* read-ahead size must cover two whole stripes, which is
5595 * 2 * (datadisks) * chunksize where 'n' is the number of raid devices
5597 if (conf->mddev->queue) {
5598 int data_disks = conf->raid_disks - conf->max_degraded;
5599 int stripe = data_disks * ((conf->chunk_sectors << 9)
5600 / PAGE_SIZE);
5601 if (conf->mddev->queue->backing_dev_info.ra_pages < 2 * stripe)
5602 conf->mddev->queue->backing_dev_info.ra_pages = 2 * stripe;
5607 /* This is called from the raid5d thread with mddev_lock held.
5608 * It makes config changes to the device.
5610 static void raid5_finish_reshape(mddev_t *mddev)
5612 raid5_conf_t *conf = mddev->private;
5614 if (!test_bit(MD_RECOVERY_INTR, &mddev->recovery)) {
5616 if (mddev->delta_disks > 0) {
5617 md_set_array_sectors(mddev, raid5_size(mddev, 0, 0));
5618 set_capacity(mddev->gendisk, mddev->array_sectors);
5619 revalidate_disk(mddev->gendisk);
5620 } else {
5621 int d;
5622 mddev->degraded = conf->raid_disks;
5623 for (d = 0; d < conf->raid_disks ; d++)
5624 if (conf->disks[d].rdev &&
5625 test_bit(In_sync,
5626 &conf->disks[d].rdev->flags))
5627 mddev->degraded--;
5628 for (d = conf->raid_disks ;
5629 d < conf->raid_disks - mddev->delta_disks;
5630 d++) {
5631 mdk_rdev_t *rdev = conf->disks[d].rdev;
5632 if (rdev && raid5_remove_disk(mddev, d) == 0) {
5633 char nm[20];
5634 sprintf(nm, "rd%d", rdev->raid_disk);
5635 sysfs_remove_link(&mddev->kobj, nm);
5636 rdev->raid_disk = -1;
5640 mddev->layout = conf->algorithm;
5641 mddev->chunk_sectors = conf->chunk_sectors;
5642 mddev->reshape_position = MaxSector;
5643 mddev->delta_disks = 0;
5647 static void raid5_quiesce(mddev_t *mddev, int state)
5649 raid5_conf_t *conf = mddev->private;
5651 switch(state) {
5652 case 2: /* resume for a suspend */
5653 wake_up(&conf->wait_for_overlap);
5654 break;
5656 case 1: /* stop all writes */
5657 spin_lock_irq(&conf->device_lock);
5658 /* '2' tells resync/reshape to pause so that all
5659 * active stripes can drain
5661 conf->quiesce = 2;
5662 wait_event_lock_irq(conf->wait_for_stripe,
5663 atomic_read(&conf->active_stripes) == 0 &&
5664 atomic_read(&conf->active_aligned_reads) == 0,
5665 conf->device_lock, /* nothing */);
5666 conf->quiesce = 1;
5667 spin_unlock_irq(&conf->device_lock);
5668 /* allow reshape to continue */
5669 wake_up(&conf->wait_for_overlap);
5670 break;
5672 case 0: /* re-enable writes */
5673 spin_lock_irq(&conf->device_lock);
5674 conf->quiesce = 0;
5675 wake_up(&conf->wait_for_stripe);
5676 wake_up(&conf->wait_for_overlap);
5677 spin_unlock_irq(&conf->device_lock);
5678 break;
5683 static void *raid45_takeover_raid0(mddev_t *mddev, int level)
5685 struct raid0_private_data *raid0_priv = mddev->private;
5686 sector_t sectors;
5688 /* for raid0 takeover only one zone is supported */
5689 if (raid0_priv->nr_strip_zones > 1) {
5690 printk(KERN_ERR "md/raid:%s: cannot takeover raid0 with more than one zone.\n",
5691 mdname(mddev));
5692 return ERR_PTR(-EINVAL);
5695 sectors = raid0_priv->strip_zone[0].zone_end;
5696 sector_div(sectors, raid0_priv->strip_zone[0].nb_dev);
5697 mddev->dev_sectors = sectors;
5698 mddev->new_level = level;
5699 mddev->new_layout = ALGORITHM_PARITY_N;
5700 mddev->new_chunk_sectors = mddev->chunk_sectors;
5701 mddev->raid_disks += 1;
5702 mddev->delta_disks = 1;
5703 /* make sure it will be not marked as dirty */
5704 mddev->recovery_cp = MaxSector;
5706 return setup_conf(mddev);
5710 static void *raid5_takeover_raid1(mddev_t *mddev)
5712 int chunksect;
5714 if (mddev->raid_disks != 2 ||
5715 mddev->degraded > 1)
5716 return ERR_PTR(-EINVAL);
5718 /* Should check if there are write-behind devices? */
5720 chunksect = 64*2; /* 64K by default */
5722 /* The array must be an exact multiple of chunksize */
5723 while (chunksect && (mddev->array_sectors & (chunksect-1)))
5724 chunksect >>= 1;
5726 if ((chunksect<<9) < STRIPE_SIZE)
5727 /* array size does not allow a suitable chunk size */
5728 return ERR_PTR(-EINVAL);
5730 mddev->new_level = 5;
5731 mddev->new_layout = ALGORITHM_LEFT_SYMMETRIC;
5732 mddev->new_chunk_sectors = chunksect;
5734 return setup_conf(mddev);
5737 static void *raid5_takeover_raid6(mddev_t *mddev)
5739 int new_layout;
5741 switch (mddev->layout) {
5742 case ALGORITHM_LEFT_ASYMMETRIC_6:
5743 new_layout = ALGORITHM_LEFT_ASYMMETRIC;
5744 break;
5745 case ALGORITHM_RIGHT_ASYMMETRIC_6:
5746 new_layout = ALGORITHM_RIGHT_ASYMMETRIC;
5747 break;
5748 case ALGORITHM_LEFT_SYMMETRIC_6:
5749 new_layout = ALGORITHM_LEFT_SYMMETRIC;
5750 break;
5751 case ALGORITHM_RIGHT_SYMMETRIC_6:
5752 new_layout = ALGORITHM_RIGHT_SYMMETRIC;
5753 break;
5754 case ALGORITHM_PARITY_0_6:
5755 new_layout = ALGORITHM_PARITY_0;
5756 break;
5757 case ALGORITHM_PARITY_N:
5758 new_layout = ALGORITHM_PARITY_N;
5759 break;
5760 default:
5761 return ERR_PTR(-EINVAL);
5763 mddev->new_level = 5;
5764 mddev->new_layout = new_layout;
5765 mddev->delta_disks = -1;
5766 mddev->raid_disks -= 1;
5767 return setup_conf(mddev);
5771 static int raid5_check_reshape(mddev_t *mddev)
5773 /* For a 2-drive array, the layout and chunk size can be changed
5774 * immediately as not restriping is needed.
5775 * For larger arrays we record the new value - after validation
5776 * to be used by a reshape pass.
5778 raid5_conf_t *conf = mddev->private;
5779 int new_chunk = mddev->new_chunk_sectors;
5781 if (mddev->new_layout >= 0 && !algorithm_valid_raid5(mddev->new_layout))
5782 return -EINVAL;
5783 if (new_chunk > 0) {
5784 if (!is_power_of_2(new_chunk))
5785 return -EINVAL;
5786 if (new_chunk < (PAGE_SIZE>>9))
5787 return -EINVAL;
5788 if (mddev->array_sectors & (new_chunk-1))
5789 /* not factor of array size */
5790 return -EINVAL;
5793 /* They look valid */
5795 if (mddev->raid_disks == 2) {
5796 /* can make the change immediately */
5797 if (mddev->new_layout >= 0) {
5798 conf->algorithm = mddev->new_layout;
5799 mddev->layout = mddev->new_layout;
5801 if (new_chunk > 0) {
5802 conf->chunk_sectors = new_chunk ;
5803 mddev->chunk_sectors = new_chunk;
5805 set_bit(MD_CHANGE_DEVS, &mddev->flags);
5806 md_wakeup_thread(mddev->thread);
5808 return check_reshape(mddev);
5811 static int raid6_check_reshape(mddev_t *mddev)
5813 int new_chunk = mddev->new_chunk_sectors;
5815 if (mddev->new_layout >= 0 && !algorithm_valid_raid6(mddev->new_layout))
5816 return -EINVAL;
5817 if (new_chunk > 0) {
5818 if (!is_power_of_2(new_chunk))
5819 return -EINVAL;
5820 if (new_chunk < (PAGE_SIZE >> 9))
5821 return -EINVAL;
5822 if (mddev->array_sectors & (new_chunk-1))
5823 /* not factor of array size */
5824 return -EINVAL;
5827 /* They look valid */
5828 return check_reshape(mddev);
5831 static void *raid5_takeover(mddev_t *mddev)
5833 /* raid5 can take over:
5834 * raid0 - if there is only one strip zone - make it a raid4 layout
5835 * raid1 - if there are two drives. We need to know the chunk size
5836 * raid4 - trivial - just use a raid4 layout.
5837 * raid6 - Providing it is a *_6 layout
5839 if (mddev->level == 0)
5840 return raid45_takeover_raid0(mddev, 5);
5841 if (mddev->level == 1)
5842 return raid5_takeover_raid1(mddev);
5843 if (mddev->level == 4) {
5844 mddev->new_layout = ALGORITHM_PARITY_N;
5845 mddev->new_level = 5;
5846 return setup_conf(mddev);
5848 if (mddev->level == 6)
5849 return raid5_takeover_raid6(mddev);
5851 return ERR_PTR(-EINVAL);
5854 static void *raid4_takeover(mddev_t *mddev)
5856 /* raid4 can take over:
5857 * raid0 - if there is only one strip zone
5858 * raid5 - if layout is right
5860 if (mddev->level == 0)
5861 return raid45_takeover_raid0(mddev, 4);
5862 if (mddev->level == 5 &&
5863 mddev->layout == ALGORITHM_PARITY_N) {
5864 mddev->new_layout = 0;
5865 mddev->new_level = 4;
5866 return setup_conf(mddev);
5868 return ERR_PTR(-EINVAL);
5871 static struct mdk_personality raid5_personality;
5873 static void *raid6_takeover(mddev_t *mddev)
5875 /* Currently can only take over a raid5. We map the
5876 * personality to an equivalent raid6 personality
5877 * with the Q block at the end.
5879 int new_layout;
5881 if (mddev->pers != &raid5_personality)
5882 return ERR_PTR(-EINVAL);
5883 if (mddev->degraded > 1)
5884 return ERR_PTR(-EINVAL);
5885 if (mddev->raid_disks > 253)
5886 return ERR_PTR(-EINVAL);
5887 if (mddev->raid_disks < 3)
5888 return ERR_PTR(-EINVAL);
5890 switch (mddev->layout) {
5891 case ALGORITHM_LEFT_ASYMMETRIC:
5892 new_layout = ALGORITHM_LEFT_ASYMMETRIC_6;
5893 break;
5894 case ALGORITHM_RIGHT_ASYMMETRIC:
5895 new_layout = ALGORITHM_RIGHT_ASYMMETRIC_6;
5896 break;
5897 case ALGORITHM_LEFT_SYMMETRIC:
5898 new_layout = ALGORITHM_LEFT_SYMMETRIC_6;
5899 break;
5900 case ALGORITHM_RIGHT_SYMMETRIC:
5901 new_layout = ALGORITHM_RIGHT_SYMMETRIC_6;
5902 break;
5903 case ALGORITHM_PARITY_0:
5904 new_layout = ALGORITHM_PARITY_0_6;
5905 break;
5906 case ALGORITHM_PARITY_N:
5907 new_layout = ALGORITHM_PARITY_N;
5908 break;
5909 default:
5910 return ERR_PTR(-EINVAL);
5912 mddev->new_level = 6;
5913 mddev->new_layout = new_layout;
5914 mddev->delta_disks = 1;
5915 mddev->raid_disks += 1;
5916 return setup_conf(mddev);
5920 static struct mdk_personality raid6_personality =
5922 .name = "raid6",
5923 .level = 6,
5924 .owner = THIS_MODULE,
5925 .make_request = make_request,
5926 .run = run,
5927 .stop = stop,
5928 .status = status,
5929 .error_handler = error,
5930 .hot_add_disk = raid5_add_disk,
5931 .hot_remove_disk= raid5_remove_disk,
5932 .spare_active = raid5_spare_active,
5933 .sync_request = sync_request,
5934 .resize = raid5_resize,
5935 .size = raid5_size,
5936 .check_reshape = raid6_check_reshape,
5937 .start_reshape = raid5_start_reshape,
5938 .finish_reshape = raid5_finish_reshape,
5939 .quiesce = raid5_quiesce,
5940 .takeover = raid6_takeover,
5942 static struct mdk_personality raid5_personality =
5944 .name = "raid5",
5945 .level = 5,
5946 .owner = THIS_MODULE,
5947 .make_request = make_request,
5948 .run = run,
5949 .stop = stop,
5950 .status = status,
5951 .error_handler = error,
5952 .hot_add_disk = raid5_add_disk,
5953 .hot_remove_disk= raid5_remove_disk,
5954 .spare_active = raid5_spare_active,
5955 .sync_request = sync_request,
5956 .resize = raid5_resize,
5957 .size = raid5_size,
5958 .check_reshape = raid5_check_reshape,
5959 .start_reshape = raid5_start_reshape,
5960 .finish_reshape = raid5_finish_reshape,
5961 .quiesce = raid5_quiesce,
5962 .takeover = raid5_takeover,
5965 static struct mdk_personality raid4_personality =
5967 .name = "raid4",
5968 .level = 4,
5969 .owner = THIS_MODULE,
5970 .make_request = make_request,
5971 .run = run,
5972 .stop = stop,
5973 .status = status,
5974 .error_handler = error,
5975 .hot_add_disk = raid5_add_disk,
5976 .hot_remove_disk= raid5_remove_disk,
5977 .spare_active = raid5_spare_active,
5978 .sync_request = sync_request,
5979 .resize = raid5_resize,
5980 .size = raid5_size,
5981 .check_reshape = raid5_check_reshape,
5982 .start_reshape = raid5_start_reshape,
5983 .finish_reshape = raid5_finish_reshape,
5984 .quiesce = raid5_quiesce,
5985 .takeover = raid4_takeover,
5988 static int __init raid5_init(void)
5990 register_md_personality(&raid6_personality);
5991 register_md_personality(&raid5_personality);
5992 register_md_personality(&raid4_personality);
5993 return 0;
5996 static void raid5_exit(void)
5998 unregister_md_personality(&raid6_personality);
5999 unregister_md_personality(&raid5_personality);
6000 unregister_md_personality(&raid4_personality);
6003 module_init(raid5_init);
6004 module_exit(raid5_exit);
6005 MODULE_LICENSE("GPL");
6006 MODULE_DESCRIPTION("RAID4/5/6 (striping with parity) personality for MD");
6007 MODULE_ALIAS("md-personality-4"); /* RAID5 */
6008 MODULE_ALIAS("md-raid5");
6009 MODULE_ALIAS("md-raid4");
6010 MODULE_ALIAS("md-level-5");
6011 MODULE_ALIAS("md-level-4");
6012 MODULE_ALIAS("md-personality-8"); /* RAID6 */
6013 MODULE_ALIAS("md-raid6");
6014 MODULE_ALIAS("md-level-6");
6016 /* This used to be two separate modules, they were: */
6017 MODULE_ALIAS("raid5");
6018 MODULE_ALIAS("raid6");