usb: add USB_QUIRK_RESET_RESUME for M-Audio 88es
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / raid10.c
blob0d6c42f70a355287e426136921bf3d35191a0b45
1 /*
2 * raid10.c : Multiple Devices driver for Linux
4 * Copyright (C) 2000-2004 Neil Brown
6 * RAID-10 support for md.
8 * Base on code in raid1.c. See raid1.c for further copyright information.
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2, or (at your option)
14 * any later version.
16 * You should have received a copy of the GNU General Public License
17 * (for example /usr/src/linux/COPYING); if not, write to the Free
18 * Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
21 #include <linux/slab.h>
22 #include <linux/delay.h>
23 #include <linux/blkdev.h>
24 #include <linux/seq_file.h>
25 #include "md.h"
26 #include "raid10.h"
27 #include "raid0.h"
28 #include "bitmap.h"
31 * RAID10 provides a combination of RAID0 and RAID1 functionality.
32 * The layout of data is defined by
33 * chunk_size
34 * raid_disks
35 * near_copies (stored in low byte of layout)
36 * far_copies (stored in second byte of layout)
37 * far_offset (stored in bit 16 of layout )
39 * The data to be stored is divided into chunks using chunksize.
40 * Each device is divided into far_copies sections.
41 * In each section, chunks are laid out in a style similar to raid0, but
42 * near_copies copies of each chunk is stored (each on a different drive).
43 * The starting device for each section is offset near_copies from the starting
44 * device of the previous section.
45 * Thus they are (near_copies*far_copies) of each chunk, and each is on a different
46 * drive.
47 * near_copies and far_copies must be at least one, and their product is at most
48 * raid_disks.
50 * If far_offset is true, then the far_copies are handled a bit differently.
51 * The copies are still in different stripes, but instead of be very far apart
52 * on disk, there are adjacent stripes.
56 * Number of guaranteed r10bios in case of extreme VM load:
58 #define NR_RAID10_BIOS 256
60 static void allow_barrier(conf_t *conf);
61 static void lower_barrier(conf_t *conf);
63 static void * r10bio_pool_alloc(gfp_t gfp_flags, void *data)
65 conf_t *conf = data;
66 int size = offsetof(struct r10bio_s, devs[conf->copies]);
68 /* allocate a r10bio with room for raid_disks entries in the bios array */
69 return kzalloc(size, gfp_flags);
72 static void r10bio_pool_free(void *r10_bio, void *data)
74 kfree(r10_bio);
77 /* Maximum size of each resync request */
78 #define RESYNC_BLOCK_SIZE (64*1024)
79 #define RESYNC_PAGES ((RESYNC_BLOCK_SIZE + PAGE_SIZE-1) / PAGE_SIZE)
80 /* amount of memory to reserve for resync requests */
81 #define RESYNC_WINDOW (1024*1024)
82 /* maximum number of concurrent requests, memory permitting */
83 #define RESYNC_DEPTH (32*1024*1024/RESYNC_BLOCK_SIZE)
86 * When performing a resync, we need to read and compare, so
87 * we need as many pages are there are copies.
88 * When performing a recovery, we need 2 bios, one for read,
89 * one for write (we recover only one drive per r10buf)
92 static void * r10buf_pool_alloc(gfp_t gfp_flags, void *data)
94 conf_t *conf = data;
95 struct page *page;
96 r10bio_t *r10_bio;
97 struct bio *bio;
98 int i, j;
99 int nalloc;
101 r10_bio = r10bio_pool_alloc(gfp_flags, conf);
102 if (!r10_bio)
103 return NULL;
105 if (test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
106 nalloc = conf->copies; /* resync */
107 else
108 nalloc = 2; /* recovery */
111 * Allocate bios.
113 for (j = nalloc ; j-- ; ) {
114 bio = bio_kmalloc(gfp_flags, RESYNC_PAGES);
115 if (!bio)
116 goto out_free_bio;
117 r10_bio->devs[j].bio = bio;
120 * Allocate RESYNC_PAGES data pages and attach them
121 * where needed.
123 for (j = 0 ; j < nalloc; j++) {
124 bio = r10_bio->devs[j].bio;
125 for (i = 0; i < RESYNC_PAGES; i++) {
126 page = alloc_page(gfp_flags);
127 if (unlikely(!page))
128 goto out_free_pages;
130 bio->bi_io_vec[i].bv_page = page;
134 return r10_bio;
136 out_free_pages:
137 for ( ; i > 0 ; i--)
138 safe_put_page(bio->bi_io_vec[i-1].bv_page);
139 while (j--)
140 for (i = 0; i < RESYNC_PAGES ; i++)
141 safe_put_page(r10_bio->devs[j].bio->bi_io_vec[i].bv_page);
142 j = -1;
143 out_free_bio:
144 while ( ++j < nalloc )
145 bio_put(r10_bio->devs[j].bio);
146 r10bio_pool_free(r10_bio, conf);
147 return NULL;
150 static void r10buf_pool_free(void *__r10_bio, void *data)
152 int i;
153 conf_t *conf = data;
154 r10bio_t *r10bio = __r10_bio;
155 int j;
157 for (j=0; j < conf->copies; j++) {
158 struct bio *bio = r10bio->devs[j].bio;
159 if (bio) {
160 for (i = 0; i < RESYNC_PAGES; i++) {
161 safe_put_page(bio->bi_io_vec[i].bv_page);
162 bio->bi_io_vec[i].bv_page = NULL;
164 bio_put(bio);
167 r10bio_pool_free(r10bio, conf);
170 static void put_all_bios(conf_t *conf, r10bio_t *r10_bio)
172 int i;
174 for (i = 0; i < conf->copies; i++) {
175 struct bio **bio = & r10_bio->devs[i].bio;
176 if (*bio && *bio != IO_BLOCKED)
177 bio_put(*bio);
178 *bio = NULL;
182 static void free_r10bio(r10bio_t *r10_bio)
184 conf_t *conf = r10_bio->mddev->private;
187 * Wake up any possible resync thread that waits for the device
188 * to go idle.
190 allow_barrier(conf);
192 put_all_bios(conf, r10_bio);
193 mempool_free(r10_bio, conf->r10bio_pool);
196 static void put_buf(r10bio_t *r10_bio)
198 conf_t *conf = r10_bio->mddev->private;
200 mempool_free(r10_bio, conf->r10buf_pool);
202 lower_barrier(conf);
205 static void reschedule_retry(r10bio_t *r10_bio)
207 unsigned long flags;
208 mddev_t *mddev = r10_bio->mddev;
209 conf_t *conf = mddev->private;
211 spin_lock_irqsave(&conf->device_lock, flags);
212 list_add(&r10_bio->retry_list, &conf->retry_list);
213 conf->nr_queued ++;
214 spin_unlock_irqrestore(&conf->device_lock, flags);
216 /* wake up frozen array... */
217 wake_up(&conf->wait_barrier);
219 md_wakeup_thread(mddev->thread);
223 * raid_end_bio_io() is called when we have finished servicing a mirrored
224 * operation and are ready to return a success/failure code to the buffer
225 * cache layer.
227 static void raid_end_bio_io(r10bio_t *r10_bio)
229 struct bio *bio = r10_bio->master_bio;
231 bio_endio(bio,
232 test_bit(R10BIO_Uptodate, &r10_bio->state) ? 0 : -EIO);
233 free_r10bio(r10_bio);
237 * Update disk head position estimator based on IRQ completion info.
239 static inline void update_head_pos(int slot, r10bio_t *r10_bio)
241 conf_t *conf = r10_bio->mddev->private;
243 conf->mirrors[r10_bio->devs[slot].devnum].head_position =
244 r10_bio->devs[slot].addr + (r10_bio->sectors);
247 static void raid10_end_read_request(struct bio *bio, int error)
249 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
250 r10bio_t *r10_bio = bio->bi_private;
251 int slot, dev;
252 conf_t *conf = r10_bio->mddev->private;
255 slot = r10_bio->read_slot;
256 dev = r10_bio->devs[slot].devnum;
258 * this branch is our 'one mirror IO has finished' event handler:
260 update_head_pos(slot, r10_bio);
262 if (uptodate) {
264 * Set R10BIO_Uptodate in our master bio, so that
265 * we will return a good error code to the higher
266 * levels even if IO on some other mirrored buffer fails.
268 * The 'master' represents the composite IO operation to
269 * user-side. So if something waits for IO, then it will
270 * wait for the 'master' bio.
272 set_bit(R10BIO_Uptodate, &r10_bio->state);
273 raid_end_bio_io(r10_bio);
274 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
275 } else {
277 * oops, read error - keep the refcount on the rdev
279 char b[BDEVNAME_SIZE];
280 if (printk_ratelimit())
281 printk(KERN_ERR "md/raid10:%s: %s: rescheduling sector %llu\n",
282 mdname(conf->mddev),
283 bdevname(conf->mirrors[dev].rdev->bdev,b), (unsigned long long)r10_bio->sector);
284 reschedule_retry(r10_bio);
288 static void raid10_end_write_request(struct bio *bio, int error)
290 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
291 r10bio_t *r10_bio = bio->bi_private;
292 int slot, dev;
293 conf_t *conf = r10_bio->mddev->private;
295 for (slot = 0; slot < conf->copies; slot++)
296 if (r10_bio->devs[slot].bio == bio)
297 break;
298 dev = r10_bio->devs[slot].devnum;
301 * this branch is our 'one mirror IO has finished' event handler:
303 if (!uptodate) {
304 md_error(r10_bio->mddev, conf->mirrors[dev].rdev);
305 /* an I/O failed, we can't clear the bitmap */
306 set_bit(R10BIO_Degraded, &r10_bio->state);
307 } else
309 * Set R10BIO_Uptodate in our master bio, so that
310 * we will return a good error code for to the higher
311 * levels even if IO on some other mirrored buffer fails.
313 * The 'master' represents the composite IO operation to
314 * user-side. So if something waits for IO, then it will
315 * wait for the 'master' bio.
317 set_bit(R10BIO_Uptodate, &r10_bio->state);
319 update_head_pos(slot, r10_bio);
323 * Let's see if all mirrored write operations have finished
324 * already.
326 if (atomic_dec_and_test(&r10_bio->remaining)) {
327 /* clear the bitmap if all writes complete successfully */
328 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
329 r10_bio->sectors,
330 !test_bit(R10BIO_Degraded, &r10_bio->state),
332 md_write_end(r10_bio->mddev);
333 raid_end_bio_io(r10_bio);
336 rdev_dec_pending(conf->mirrors[dev].rdev, conf->mddev);
341 * RAID10 layout manager
342 * As well as the chunksize and raid_disks count, there are two
343 * parameters: near_copies and far_copies.
344 * near_copies * far_copies must be <= raid_disks.
345 * Normally one of these will be 1.
346 * If both are 1, we get raid0.
347 * If near_copies == raid_disks, we get raid1.
349 * Chunks are laid out in raid0 style with near_copies copies of the
350 * first chunk, followed by near_copies copies of the next chunk and
351 * so on.
352 * If far_copies > 1, then after 1/far_copies of the array has been assigned
353 * as described above, we start again with a device offset of near_copies.
354 * So we effectively have another copy of the whole array further down all
355 * the drives, but with blocks on different drives.
356 * With this layout, and block is never stored twice on the one device.
358 * raid10_find_phys finds the sector offset of a given virtual sector
359 * on each device that it is on.
361 * raid10_find_virt does the reverse mapping, from a device and a
362 * sector offset to a virtual address
365 static void raid10_find_phys(conf_t *conf, r10bio_t *r10bio)
367 int n,f;
368 sector_t sector;
369 sector_t chunk;
370 sector_t stripe;
371 int dev;
373 int slot = 0;
375 /* now calculate first sector/dev */
376 chunk = r10bio->sector >> conf->chunk_shift;
377 sector = r10bio->sector & conf->chunk_mask;
379 chunk *= conf->near_copies;
380 stripe = chunk;
381 dev = sector_div(stripe, conf->raid_disks);
382 if (conf->far_offset)
383 stripe *= conf->far_copies;
385 sector += stripe << conf->chunk_shift;
387 /* and calculate all the others */
388 for (n=0; n < conf->near_copies; n++) {
389 int d = dev;
390 sector_t s = sector;
391 r10bio->devs[slot].addr = sector;
392 r10bio->devs[slot].devnum = d;
393 slot++;
395 for (f = 1; f < conf->far_copies; f++) {
396 d += conf->near_copies;
397 if (d >= conf->raid_disks)
398 d -= conf->raid_disks;
399 s += conf->stride;
400 r10bio->devs[slot].devnum = d;
401 r10bio->devs[slot].addr = s;
402 slot++;
404 dev++;
405 if (dev >= conf->raid_disks) {
406 dev = 0;
407 sector += (conf->chunk_mask + 1);
410 BUG_ON(slot != conf->copies);
413 static sector_t raid10_find_virt(conf_t *conf, sector_t sector, int dev)
415 sector_t offset, chunk, vchunk;
417 offset = sector & conf->chunk_mask;
418 if (conf->far_offset) {
419 int fc;
420 chunk = sector >> conf->chunk_shift;
421 fc = sector_div(chunk, conf->far_copies);
422 dev -= fc * conf->near_copies;
423 if (dev < 0)
424 dev += conf->raid_disks;
425 } else {
426 while (sector >= conf->stride) {
427 sector -= conf->stride;
428 if (dev < conf->near_copies)
429 dev += conf->raid_disks - conf->near_copies;
430 else
431 dev -= conf->near_copies;
433 chunk = sector >> conf->chunk_shift;
435 vchunk = chunk * conf->raid_disks + dev;
436 sector_div(vchunk, conf->near_copies);
437 return (vchunk << conf->chunk_shift) + offset;
441 * raid10_mergeable_bvec -- tell bio layer if a two requests can be merged
442 * @q: request queue
443 * @bvm: properties of new bio
444 * @biovec: the request that could be merged to it.
446 * Return amount of bytes we can accept at this offset
447 * If near_copies == raid_disk, there are no striping issues,
448 * but in that case, the function isn't called at all.
450 static int raid10_mergeable_bvec(struct request_queue *q,
451 struct bvec_merge_data *bvm,
452 struct bio_vec *biovec)
454 mddev_t *mddev = q->queuedata;
455 sector_t sector = bvm->bi_sector + get_start_sect(bvm->bi_bdev);
456 int max;
457 unsigned int chunk_sectors = mddev->chunk_sectors;
458 unsigned int bio_sectors = bvm->bi_size >> 9;
460 max = (chunk_sectors - ((sector & (chunk_sectors - 1)) + bio_sectors)) << 9;
461 if (max < 0) max = 0; /* bio_add cannot handle a negative return */
462 if (max <= biovec->bv_len && bio_sectors == 0)
463 return biovec->bv_len;
464 else
465 return max;
469 * This routine returns the disk from which the requested read should
470 * be done. There is a per-array 'next expected sequential IO' sector
471 * number - if this matches on the next IO then we use the last disk.
472 * There is also a per-disk 'last know head position' sector that is
473 * maintained from IRQ contexts, both the normal and the resync IO
474 * completion handlers update this position correctly. If there is no
475 * perfect sequential match then we pick the disk whose head is closest.
477 * If there are 2 mirrors in the same 2 devices, performance degrades
478 * because position is mirror, not device based.
480 * The rdev for the device selected will have nr_pending incremented.
484 * FIXME: possibly should rethink readbalancing and do it differently
485 * depending on near_copies / far_copies geometry.
487 static int read_balance(conf_t *conf, r10bio_t *r10_bio)
489 const sector_t this_sector = r10_bio->sector;
490 int disk, slot;
491 const int sectors = r10_bio->sectors;
492 sector_t new_distance, best_dist;
493 mdk_rdev_t *rdev;
494 int do_balance;
495 int best_slot;
497 raid10_find_phys(conf, r10_bio);
498 rcu_read_lock();
499 retry:
500 best_slot = -1;
501 best_dist = MaxSector;
502 do_balance = 1;
504 * Check if we can balance. We can balance on the whole
505 * device if no resync is going on (recovery is ok), or below
506 * the resync window. We take the first readable disk when
507 * above the resync window.
509 if (conf->mddev->recovery_cp < MaxSector
510 && (this_sector + sectors >= conf->next_resync))
511 do_balance = 0;
513 for (slot = 0; slot < conf->copies ; slot++) {
514 if (r10_bio->devs[slot].bio == IO_BLOCKED)
515 continue;
516 disk = r10_bio->devs[slot].devnum;
517 rdev = rcu_dereference(conf->mirrors[disk].rdev);
518 if (rdev == NULL)
519 continue;
520 if (!test_bit(In_sync, &rdev->flags))
521 continue;
523 if (!do_balance)
524 break;
526 /* This optimisation is debatable, and completely destroys
527 * sequential read speed for 'far copies' arrays. So only
528 * keep it for 'near' arrays, and review those later.
530 if (conf->near_copies > 1 && !atomic_read(&rdev->nr_pending))
531 break;
533 /* for far > 1 always use the lowest address */
534 if (conf->far_copies > 1)
535 new_distance = r10_bio->devs[slot].addr;
536 else
537 new_distance = abs(r10_bio->devs[slot].addr -
538 conf->mirrors[disk].head_position);
539 if (new_distance < best_dist) {
540 best_dist = new_distance;
541 best_slot = slot;
544 if (slot == conf->copies)
545 slot = best_slot;
547 if (slot >= 0) {
548 disk = r10_bio->devs[slot].devnum;
549 rdev = rcu_dereference(conf->mirrors[disk].rdev);
550 if (!rdev)
551 goto retry;
552 atomic_inc(&rdev->nr_pending);
553 if (test_bit(Faulty, &rdev->flags)) {
554 /* Cannot risk returning a device that failed
555 * before we inc'ed nr_pending
557 rdev_dec_pending(rdev, conf->mddev);
558 goto retry;
560 r10_bio->read_slot = slot;
561 } else
562 disk = -1;
563 rcu_read_unlock();
565 return disk;
568 static int raid10_congested(void *data, int bits)
570 mddev_t *mddev = data;
571 conf_t *conf = mddev->private;
572 int i, ret = 0;
574 if (mddev_congested(mddev, bits))
575 return 1;
576 rcu_read_lock();
577 for (i = 0; i < conf->raid_disks && ret == 0; i++) {
578 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[i].rdev);
579 if (rdev && !test_bit(Faulty, &rdev->flags)) {
580 struct request_queue *q = bdev_get_queue(rdev->bdev);
582 ret |= bdi_congested(&q->backing_dev_info, bits);
585 rcu_read_unlock();
586 return ret;
589 static void flush_pending_writes(conf_t *conf)
591 /* Any writes that have been queued but are awaiting
592 * bitmap updates get flushed here.
594 spin_lock_irq(&conf->device_lock);
596 if (conf->pending_bio_list.head) {
597 struct bio *bio;
598 bio = bio_list_get(&conf->pending_bio_list);
599 spin_unlock_irq(&conf->device_lock);
600 /* flush any pending bitmap writes to disk
601 * before proceeding w/ I/O */
602 bitmap_unplug(conf->mddev->bitmap);
604 while (bio) { /* submit pending writes */
605 struct bio *next = bio->bi_next;
606 bio->bi_next = NULL;
607 generic_make_request(bio);
608 bio = next;
610 } else
611 spin_unlock_irq(&conf->device_lock);
614 /* Barriers....
615 * Sometimes we need to suspend IO while we do something else,
616 * either some resync/recovery, or reconfigure the array.
617 * To do this we raise a 'barrier'.
618 * The 'barrier' is a counter that can be raised multiple times
619 * to count how many activities are happening which preclude
620 * normal IO.
621 * We can only raise the barrier if there is no pending IO.
622 * i.e. if nr_pending == 0.
623 * We choose only to raise the barrier if no-one is waiting for the
624 * barrier to go down. This means that as soon as an IO request
625 * is ready, no other operations which require a barrier will start
626 * until the IO request has had a chance.
628 * So: regular IO calls 'wait_barrier'. When that returns there
629 * is no backgroup IO happening, It must arrange to call
630 * allow_barrier when it has finished its IO.
631 * backgroup IO calls must call raise_barrier. Once that returns
632 * there is no normal IO happeing. It must arrange to call
633 * lower_barrier when the particular background IO completes.
636 static void raise_barrier(conf_t *conf, int force)
638 BUG_ON(force && !conf->barrier);
639 spin_lock_irq(&conf->resync_lock);
641 /* Wait until no block IO is waiting (unless 'force') */
642 wait_event_lock_irq(conf->wait_barrier, force || !conf->nr_waiting,
643 conf->resync_lock, );
645 /* block any new IO from starting */
646 conf->barrier++;
648 /* Now wait for all pending IO to complete */
649 wait_event_lock_irq(conf->wait_barrier,
650 !conf->nr_pending && conf->barrier < RESYNC_DEPTH,
651 conf->resync_lock, );
653 spin_unlock_irq(&conf->resync_lock);
656 static void lower_barrier(conf_t *conf)
658 unsigned long flags;
659 spin_lock_irqsave(&conf->resync_lock, flags);
660 conf->barrier--;
661 spin_unlock_irqrestore(&conf->resync_lock, flags);
662 wake_up(&conf->wait_barrier);
665 static void wait_barrier(conf_t *conf)
667 spin_lock_irq(&conf->resync_lock);
668 if (conf->barrier) {
669 conf->nr_waiting++;
670 /* Wait for the barrier to drop.
671 * However if there are already pending
672 * requests (preventing the barrier from
673 * rising completely), and the
674 * pre-process bio queue isn't empty,
675 * then don't wait, as we need to empty
676 * that queue to get the nr_pending
677 * count down.
679 wait_event_lock_irq(conf->wait_barrier,
680 !conf->barrier ||
681 (conf->nr_pending &&
682 current->bio_list &&
683 !bio_list_empty(current->bio_list)),
684 conf->resync_lock,
686 conf->nr_waiting--;
688 conf->nr_pending++;
689 spin_unlock_irq(&conf->resync_lock);
692 static void allow_barrier(conf_t *conf)
694 unsigned long flags;
695 spin_lock_irqsave(&conf->resync_lock, flags);
696 conf->nr_pending--;
697 spin_unlock_irqrestore(&conf->resync_lock, flags);
698 wake_up(&conf->wait_barrier);
701 static void freeze_array(conf_t *conf)
703 /* stop syncio and normal IO and wait for everything to
704 * go quiet.
705 * We increment barrier and nr_waiting, and then
706 * wait until nr_pending match nr_queued+1
707 * This is called in the context of one normal IO request
708 * that has failed. Thus any sync request that might be pending
709 * will be blocked by nr_pending, and we need to wait for
710 * pending IO requests to complete or be queued for re-try.
711 * Thus the number queued (nr_queued) plus this request (1)
712 * must match the number of pending IOs (nr_pending) before
713 * we continue.
715 spin_lock_irq(&conf->resync_lock);
716 conf->barrier++;
717 conf->nr_waiting++;
718 wait_event_lock_irq(conf->wait_barrier,
719 conf->nr_pending == conf->nr_queued+1,
720 conf->resync_lock,
721 flush_pending_writes(conf));
723 spin_unlock_irq(&conf->resync_lock);
726 static void unfreeze_array(conf_t *conf)
728 /* reverse the effect of the freeze */
729 spin_lock_irq(&conf->resync_lock);
730 conf->barrier--;
731 conf->nr_waiting--;
732 wake_up(&conf->wait_barrier);
733 spin_unlock_irq(&conf->resync_lock);
736 static int make_request(mddev_t *mddev, struct bio * bio)
738 conf_t *conf = mddev->private;
739 mirror_info_t *mirror;
740 r10bio_t *r10_bio;
741 struct bio *read_bio;
742 int i;
743 int chunk_sects = conf->chunk_mask + 1;
744 const int rw = bio_data_dir(bio);
745 const unsigned long do_sync = (bio->bi_rw & REQ_SYNC);
746 const unsigned long do_fua = (bio->bi_rw & REQ_FUA);
747 unsigned long flags;
748 mdk_rdev_t *blocked_rdev;
749 int plugged;
751 if (unlikely(bio->bi_rw & REQ_FLUSH)) {
752 md_flush_request(mddev, bio);
753 return 0;
756 /* If this request crosses a chunk boundary, we need to
757 * split it. This will only happen for 1 PAGE (or less) requests.
759 if (unlikely( (bio->bi_sector & conf->chunk_mask) + (bio->bi_size >> 9)
760 > chunk_sects &&
761 conf->near_copies < conf->raid_disks)) {
762 struct bio_pair *bp;
763 /* Sanity check -- queue functions should prevent this happening */
764 if (bio->bi_vcnt != 1 ||
765 bio->bi_idx != 0)
766 goto bad_map;
767 /* This is a one page bio that upper layers
768 * refuse to split for us, so we need to split it.
770 bp = bio_split(bio,
771 chunk_sects - (bio->bi_sector & (chunk_sects - 1)) );
773 /* Each of these 'make_request' calls will call 'wait_barrier'.
774 * If the first succeeds but the second blocks due to the resync
775 * thread raising the barrier, we will deadlock because the
776 * IO to the underlying device will be queued in generic_make_request
777 * and will never complete, so will never reduce nr_pending.
778 * So increment nr_waiting here so no new raise_barriers will
779 * succeed, and so the second wait_barrier cannot block.
781 spin_lock_irq(&conf->resync_lock);
782 conf->nr_waiting++;
783 spin_unlock_irq(&conf->resync_lock);
785 if (make_request(mddev, &bp->bio1))
786 generic_make_request(&bp->bio1);
787 if (make_request(mddev, &bp->bio2))
788 generic_make_request(&bp->bio2);
790 spin_lock_irq(&conf->resync_lock);
791 conf->nr_waiting--;
792 wake_up(&conf->wait_barrier);
793 spin_unlock_irq(&conf->resync_lock);
795 bio_pair_release(bp);
796 return 0;
797 bad_map:
798 printk("md/raid10:%s: make_request bug: can't convert block across chunks"
799 " or bigger than %dk %llu %d\n", mdname(mddev), chunk_sects/2,
800 (unsigned long long)bio->bi_sector, bio->bi_size >> 10);
802 bio_io_error(bio);
803 return 0;
806 md_write_start(mddev, bio);
809 * Register the new request and wait if the reconstruction
810 * thread has put up a bar for new requests.
811 * Continue immediately if no resync is active currently.
813 wait_barrier(conf);
815 r10_bio = mempool_alloc(conf->r10bio_pool, GFP_NOIO);
817 r10_bio->master_bio = bio;
818 r10_bio->sectors = bio->bi_size >> 9;
820 r10_bio->mddev = mddev;
821 r10_bio->sector = bio->bi_sector;
822 r10_bio->state = 0;
824 if (rw == READ) {
826 * read balancing logic:
828 int disk = read_balance(conf, r10_bio);
829 int slot = r10_bio->read_slot;
830 if (disk < 0) {
831 raid_end_bio_io(r10_bio);
832 return 0;
834 mirror = conf->mirrors + disk;
836 read_bio = bio_clone_mddev(bio, GFP_NOIO, mddev);
838 r10_bio->devs[slot].bio = read_bio;
840 read_bio->bi_sector = r10_bio->devs[slot].addr +
841 mirror->rdev->data_offset;
842 read_bio->bi_bdev = mirror->rdev->bdev;
843 read_bio->bi_end_io = raid10_end_read_request;
844 read_bio->bi_rw = READ | do_sync;
845 read_bio->bi_private = r10_bio;
847 generic_make_request(read_bio);
848 return 0;
852 * WRITE:
854 /* first select target devices under rcu_lock and
855 * inc refcount on their rdev. Record them by setting
856 * bios[x] to bio
858 plugged = mddev_check_plugged(mddev);
860 raid10_find_phys(conf, r10_bio);
861 retry_write:
862 blocked_rdev = NULL;
863 rcu_read_lock();
864 for (i = 0; i < conf->copies; i++) {
865 int d = r10_bio->devs[i].devnum;
866 mdk_rdev_t *rdev = rcu_dereference(conf->mirrors[d].rdev);
867 if (rdev && unlikely(test_bit(Blocked, &rdev->flags))) {
868 atomic_inc(&rdev->nr_pending);
869 blocked_rdev = rdev;
870 break;
872 if (rdev && !test_bit(Faulty, &rdev->flags)) {
873 atomic_inc(&rdev->nr_pending);
874 r10_bio->devs[i].bio = bio;
875 } else {
876 r10_bio->devs[i].bio = NULL;
877 set_bit(R10BIO_Degraded, &r10_bio->state);
880 rcu_read_unlock();
882 if (unlikely(blocked_rdev)) {
883 /* Have to wait for this device to get unblocked, then retry */
884 int j;
885 int d;
887 for (j = 0; j < i; j++)
888 if (r10_bio->devs[j].bio) {
889 d = r10_bio->devs[j].devnum;
890 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
892 allow_barrier(conf);
893 md_wait_for_blocked_rdev(blocked_rdev, mddev);
894 wait_barrier(conf);
895 goto retry_write;
898 atomic_set(&r10_bio->remaining, 1);
899 bitmap_startwrite(mddev->bitmap, bio->bi_sector, r10_bio->sectors, 0);
901 for (i = 0; i < conf->copies; i++) {
902 struct bio *mbio;
903 int d = r10_bio->devs[i].devnum;
904 if (!r10_bio->devs[i].bio)
905 continue;
907 mbio = bio_clone_mddev(bio, GFP_NOIO, mddev);
908 r10_bio->devs[i].bio = mbio;
910 mbio->bi_sector = r10_bio->devs[i].addr+
911 conf->mirrors[d].rdev->data_offset;
912 mbio->bi_bdev = conf->mirrors[d].rdev->bdev;
913 mbio->bi_end_io = raid10_end_write_request;
914 mbio->bi_rw = WRITE | do_sync | do_fua;
915 mbio->bi_private = r10_bio;
917 atomic_inc(&r10_bio->remaining);
918 spin_lock_irqsave(&conf->device_lock, flags);
919 bio_list_add(&conf->pending_bio_list, mbio);
920 spin_unlock_irqrestore(&conf->device_lock, flags);
923 if (atomic_dec_and_test(&r10_bio->remaining)) {
924 /* This matches the end of raid10_end_write_request() */
925 bitmap_endwrite(r10_bio->mddev->bitmap, r10_bio->sector,
926 r10_bio->sectors,
927 !test_bit(R10BIO_Degraded, &r10_bio->state),
929 md_write_end(mddev);
930 raid_end_bio_io(r10_bio);
933 /* In case raid10d snuck in to freeze_array */
934 wake_up(&conf->wait_barrier);
936 if (do_sync || !mddev->bitmap || !plugged)
937 md_wakeup_thread(mddev->thread);
938 return 0;
941 static void status(struct seq_file *seq, mddev_t *mddev)
943 conf_t *conf = mddev->private;
944 int i;
946 if (conf->near_copies < conf->raid_disks)
947 seq_printf(seq, " %dK chunks", mddev->chunk_sectors / 2);
948 if (conf->near_copies > 1)
949 seq_printf(seq, " %d near-copies", conf->near_copies);
950 if (conf->far_copies > 1) {
951 if (conf->far_offset)
952 seq_printf(seq, " %d offset-copies", conf->far_copies);
953 else
954 seq_printf(seq, " %d far-copies", conf->far_copies);
956 seq_printf(seq, " [%d/%d] [", conf->raid_disks,
957 conf->raid_disks - mddev->degraded);
958 for (i = 0; i < conf->raid_disks; i++)
959 seq_printf(seq, "%s",
960 conf->mirrors[i].rdev &&
961 test_bit(In_sync, &conf->mirrors[i].rdev->flags) ? "U" : "_");
962 seq_printf(seq, "]");
965 static void error(mddev_t *mddev, mdk_rdev_t *rdev)
967 char b[BDEVNAME_SIZE];
968 conf_t *conf = mddev->private;
971 * If it is not operational, then we have already marked it as dead
972 * else if it is the last working disks, ignore the error, let the
973 * next level up know.
974 * else mark the drive as failed
976 if (test_bit(In_sync, &rdev->flags)
977 && conf->raid_disks-mddev->degraded == 1)
979 * Don't fail the drive, just return an IO error.
980 * The test should really be more sophisticated than
981 * "working_disks == 1", but it isn't critical, and
982 * can wait until we do more sophisticated "is the drive
983 * really dead" tests...
985 return;
986 if (test_and_clear_bit(In_sync, &rdev->flags)) {
987 unsigned long flags;
988 spin_lock_irqsave(&conf->device_lock, flags);
989 mddev->degraded++;
990 spin_unlock_irqrestore(&conf->device_lock, flags);
992 * if recovery is running, make sure it aborts.
994 set_bit(MD_RECOVERY_INTR, &mddev->recovery);
996 set_bit(Faulty, &rdev->flags);
997 set_bit(MD_CHANGE_DEVS, &mddev->flags);
998 printk(KERN_ALERT
999 "md/raid10:%s: Disk failure on %s, disabling device.\n"
1000 "md/raid10:%s: Operation continuing on %d devices.\n",
1001 mdname(mddev), bdevname(rdev->bdev, b),
1002 mdname(mddev), conf->raid_disks - mddev->degraded);
1005 static void print_conf(conf_t *conf)
1007 int i;
1008 mirror_info_t *tmp;
1010 printk(KERN_DEBUG "RAID10 conf printout:\n");
1011 if (!conf) {
1012 printk(KERN_DEBUG "(!conf)\n");
1013 return;
1015 printk(KERN_DEBUG " --- wd:%d rd:%d\n", conf->raid_disks - conf->mddev->degraded,
1016 conf->raid_disks);
1018 for (i = 0; i < conf->raid_disks; i++) {
1019 char b[BDEVNAME_SIZE];
1020 tmp = conf->mirrors + i;
1021 if (tmp->rdev)
1022 printk(KERN_DEBUG " disk %d, wo:%d, o:%d, dev:%s\n",
1023 i, !test_bit(In_sync, &tmp->rdev->flags),
1024 !test_bit(Faulty, &tmp->rdev->flags),
1025 bdevname(tmp->rdev->bdev,b));
1029 static void close_sync(conf_t *conf)
1031 wait_barrier(conf);
1032 allow_barrier(conf);
1034 mempool_destroy(conf->r10buf_pool);
1035 conf->r10buf_pool = NULL;
1038 /* check if there are enough drives for
1039 * every block to appear on atleast one
1041 static int enough(conf_t *conf)
1043 int first = 0;
1045 do {
1046 int n = conf->copies;
1047 int cnt = 0;
1048 while (n--) {
1049 if (conf->mirrors[first].rdev)
1050 cnt++;
1051 first = (first+1) % conf->raid_disks;
1053 if (cnt == 0)
1054 return 0;
1055 } while (first != 0);
1056 return 1;
1059 static int raid10_spare_active(mddev_t *mddev)
1061 int i;
1062 conf_t *conf = mddev->private;
1063 mirror_info_t *tmp;
1064 int count = 0;
1065 unsigned long flags;
1068 * Find all non-in_sync disks within the RAID10 configuration
1069 * and mark them in_sync
1071 for (i = 0; i < conf->raid_disks; i++) {
1072 tmp = conf->mirrors + i;
1073 if (tmp->rdev
1074 && !test_bit(Faulty, &tmp->rdev->flags)
1075 && !test_and_set_bit(In_sync, &tmp->rdev->flags)) {
1076 count++;
1077 sysfs_notify_dirent(tmp->rdev->sysfs_state);
1080 spin_lock_irqsave(&conf->device_lock, flags);
1081 mddev->degraded -= count;
1082 spin_unlock_irqrestore(&conf->device_lock, flags);
1084 print_conf(conf);
1085 return count;
1089 static int raid10_add_disk(mddev_t *mddev, mdk_rdev_t *rdev)
1091 conf_t *conf = mddev->private;
1092 int err = -EEXIST;
1093 int mirror;
1094 mirror_info_t *p;
1095 int first = 0;
1096 int last = conf->raid_disks - 1;
1098 if (mddev->recovery_cp < MaxSector)
1099 /* only hot-add to in-sync arrays, as recovery is
1100 * very different from resync
1102 return -EBUSY;
1103 if (!enough(conf))
1104 return -EINVAL;
1106 if (rdev->raid_disk >= 0)
1107 first = last = rdev->raid_disk;
1109 if (rdev->saved_raid_disk >= 0 &&
1110 rdev->saved_raid_disk >= first &&
1111 conf->mirrors[rdev->saved_raid_disk].rdev == NULL)
1112 mirror = rdev->saved_raid_disk;
1113 else
1114 mirror = first;
1115 for ( ; mirror <= last ; mirror++)
1116 if ( !(p=conf->mirrors+mirror)->rdev) {
1118 disk_stack_limits(mddev->gendisk, rdev->bdev,
1119 rdev->data_offset << 9);
1120 /* as we don't honour merge_bvec_fn, we must
1121 * never risk violating it, so limit
1122 * ->max_segments to one lying with a single
1123 * page, as a one page request is never in
1124 * violation.
1126 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
1127 blk_queue_max_segments(mddev->queue, 1);
1128 blk_queue_segment_boundary(mddev->queue,
1129 PAGE_CACHE_SIZE - 1);
1132 p->head_position = 0;
1133 rdev->raid_disk = mirror;
1134 err = 0;
1135 if (rdev->saved_raid_disk != mirror)
1136 conf->fullsync = 1;
1137 rcu_assign_pointer(p->rdev, rdev);
1138 break;
1141 md_integrity_add_rdev(rdev, mddev);
1142 print_conf(conf);
1143 return err;
1146 static int raid10_remove_disk(mddev_t *mddev, int number)
1148 conf_t *conf = mddev->private;
1149 int err = 0;
1150 mdk_rdev_t *rdev;
1151 mirror_info_t *p = conf->mirrors+ number;
1153 print_conf(conf);
1154 rdev = p->rdev;
1155 if (rdev) {
1156 if (test_bit(In_sync, &rdev->flags) ||
1157 atomic_read(&rdev->nr_pending)) {
1158 err = -EBUSY;
1159 goto abort;
1161 /* Only remove faulty devices in recovery
1162 * is not possible.
1164 if (!test_bit(Faulty, &rdev->flags) &&
1165 enough(conf)) {
1166 err = -EBUSY;
1167 goto abort;
1169 p->rdev = NULL;
1170 synchronize_rcu();
1171 if (atomic_read(&rdev->nr_pending)) {
1172 /* lost the race, try later */
1173 err = -EBUSY;
1174 p->rdev = rdev;
1175 goto abort;
1177 err = md_integrity_register(mddev);
1179 abort:
1181 print_conf(conf);
1182 return err;
1186 static void end_sync_read(struct bio *bio, int error)
1188 r10bio_t *r10_bio = bio->bi_private;
1189 conf_t *conf = r10_bio->mddev->private;
1190 int i,d;
1192 for (i=0; i<conf->copies; i++)
1193 if (r10_bio->devs[i].bio == bio)
1194 break;
1195 BUG_ON(i == conf->copies);
1196 update_head_pos(i, r10_bio);
1197 d = r10_bio->devs[i].devnum;
1199 if (test_bit(BIO_UPTODATE, &bio->bi_flags))
1200 set_bit(R10BIO_Uptodate, &r10_bio->state);
1201 else {
1202 atomic_add(r10_bio->sectors,
1203 &conf->mirrors[d].rdev->corrected_errors);
1204 if (!test_bit(MD_RECOVERY_SYNC, &conf->mddev->recovery))
1205 md_error(r10_bio->mddev,
1206 conf->mirrors[d].rdev);
1209 /* for reconstruct, we always reschedule after a read.
1210 * for resync, only after all reads
1212 rdev_dec_pending(conf->mirrors[d].rdev, conf->mddev);
1213 if (test_bit(R10BIO_IsRecover, &r10_bio->state) ||
1214 atomic_dec_and_test(&r10_bio->remaining)) {
1215 /* we have read all the blocks,
1216 * do the comparison in process context in raid10d
1218 reschedule_retry(r10_bio);
1222 static void end_sync_write(struct bio *bio, int error)
1224 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
1225 r10bio_t *r10_bio = bio->bi_private;
1226 mddev_t *mddev = r10_bio->mddev;
1227 conf_t *conf = mddev->private;
1228 int i,d;
1230 for (i = 0; i < conf->copies; i++)
1231 if (r10_bio->devs[i].bio == bio)
1232 break;
1233 d = r10_bio->devs[i].devnum;
1235 if (!uptodate)
1236 md_error(mddev, conf->mirrors[d].rdev);
1238 update_head_pos(i, r10_bio);
1240 rdev_dec_pending(conf->mirrors[d].rdev, mddev);
1241 while (atomic_dec_and_test(&r10_bio->remaining)) {
1242 if (r10_bio->master_bio == NULL) {
1243 /* the primary of several recovery bios */
1244 sector_t s = r10_bio->sectors;
1245 put_buf(r10_bio);
1246 md_done_sync(mddev, s, 1);
1247 break;
1248 } else {
1249 r10bio_t *r10_bio2 = (r10bio_t *)r10_bio->master_bio;
1250 put_buf(r10_bio);
1251 r10_bio = r10_bio2;
1257 * Note: sync and recover and handled very differently for raid10
1258 * This code is for resync.
1259 * For resync, we read through virtual addresses and read all blocks.
1260 * If there is any error, we schedule a write. The lowest numbered
1261 * drive is authoritative.
1262 * However requests come for physical address, so we need to map.
1263 * For every physical address there are raid_disks/copies virtual addresses,
1264 * which is always are least one, but is not necessarly an integer.
1265 * This means that a physical address can span multiple chunks, so we may
1266 * have to submit multiple io requests for a single sync request.
1269 * We check if all blocks are in-sync and only write to blocks that
1270 * aren't in sync
1272 static void sync_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1274 conf_t *conf = mddev->private;
1275 int i, first;
1276 struct bio *tbio, *fbio;
1278 atomic_set(&r10_bio->remaining, 1);
1280 /* find the first device with a block */
1281 for (i=0; i<conf->copies; i++)
1282 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags))
1283 break;
1285 if (i == conf->copies)
1286 goto done;
1288 first = i;
1289 fbio = r10_bio->devs[i].bio;
1291 /* now find blocks with errors */
1292 for (i=0 ; i < conf->copies ; i++) {
1293 int j, d;
1294 int vcnt = r10_bio->sectors >> (PAGE_SHIFT-9);
1296 tbio = r10_bio->devs[i].bio;
1298 if (tbio->bi_end_io != end_sync_read)
1299 continue;
1300 if (i == first)
1301 continue;
1302 if (test_bit(BIO_UPTODATE, &r10_bio->devs[i].bio->bi_flags)) {
1303 /* We know that the bi_io_vec layout is the same for
1304 * both 'first' and 'i', so we just compare them.
1305 * All vec entries are PAGE_SIZE;
1307 for (j = 0; j < vcnt; j++)
1308 if (memcmp(page_address(fbio->bi_io_vec[j].bv_page),
1309 page_address(tbio->bi_io_vec[j].bv_page),
1310 PAGE_SIZE))
1311 break;
1312 if (j == vcnt)
1313 continue;
1314 mddev->resync_mismatches += r10_bio->sectors;
1316 if (test_bit(MD_RECOVERY_CHECK, &mddev->recovery))
1317 /* Don't fix anything. */
1318 continue;
1319 /* Ok, we need to write this bio
1320 * First we need to fixup bv_offset, bv_len and
1321 * bi_vecs, as the read request might have corrupted these
1323 tbio->bi_vcnt = vcnt;
1324 tbio->bi_size = r10_bio->sectors << 9;
1325 tbio->bi_idx = 0;
1326 tbio->bi_phys_segments = 0;
1327 tbio->bi_flags &= ~(BIO_POOL_MASK - 1);
1328 tbio->bi_flags |= 1 << BIO_UPTODATE;
1329 tbio->bi_next = NULL;
1330 tbio->bi_rw = WRITE;
1331 tbio->bi_private = r10_bio;
1332 tbio->bi_sector = r10_bio->devs[i].addr;
1334 for (j=0; j < vcnt ; j++) {
1335 tbio->bi_io_vec[j].bv_offset = 0;
1336 tbio->bi_io_vec[j].bv_len = PAGE_SIZE;
1338 memcpy(page_address(tbio->bi_io_vec[j].bv_page),
1339 page_address(fbio->bi_io_vec[j].bv_page),
1340 PAGE_SIZE);
1342 tbio->bi_end_io = end_sync_write;
1344 d = r10_bio->devs[i].devnum;
1345 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1346 atomic_inc(&r10_bio->remaining);
1347 md_sync_acct(conf->mirrors[d].rdev->bdev, tbio->bi_size >> 9);
1349 tbio->bi_sector += conf->mirrors[d].rdev->data_offset;
1350 tbio->bi_bdev = conf->mirrors[d].rdev->bdev;
1351 generic_make_request(tbio);
1354 done:
1355 if (atomic_dec_and_test(&r10_bio->remaining)) {
1356 md_done_sync(mddev, r10_bio->sectors, 1);
1357 put_buf(r10_bio);
1362 * Now for the recovery code.
1363 * Recovery happens across physical sectors.
1364 * We recover all non-is_sync drives by finding the virtual address of
1365 * each, and then choose a working drive that also has that virt address.
1366 * There is a separate r10_bio for each non-in_sync drive.
1367 * Only the first two slots are in use. The first for reading,
1368 * The second for writing.
1372 static void recovery_request_write(mddev_t *mddev, r10bio_t *r10_bio)
1374 conf_t *conf = mddev->private;
1375 int i, d;
1376 struct bio *bio, *wbio;
1379 /* move the pages across to the second bio
1380 * and submit the write request
1382 bio = r10_bio->devs[0].bio;
1383 wbio = r10_bio->devs[1].bio;
1384 for (i=0; i < wbio->bi_vcnt; i++) {
1385 struct page *p = bio->bi_io_vec[i].bv_page;
1386 bio->bi_io_vec[i].bv_page = wbio->bi_io_vec[i].bv_page;
1387 wbio->bi_io_vec[i].bv_page = p;
1389 d = r10_bio->devs[1].devnum;
1391 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1392 md_sync_acct(conf->mirrors[d].rdev->bdev, wbio->bi_size >> 9);
1393 if (test_bit(R10BIO_Uptodate, &r10_bio->state))
1394 generic_make_request(wbio);
1395 else
1396 bio_endio(wbio, -EIO);
1401 * Used by fix_read_error() to decay the per rdev read_errors.
1402 * We halve the read error count for every hour that has elapsed
1403 * since the last recorded read error.
1406 static void check_decay_read_errors(mddev_t *mddev, mdk_rdev_t *rdev)
1408 struct timespec cur_time_mon;
1409 unsigned long hours_since_last;
1410 unsigned int read_errors = atomic_read(&rdev->read_errors);
1412 ktime_get_ts(&cur_time_mon);
1414 if (rdev->last_read_error.tv_sec == 0 &&
1415 rdev->last_read_error.tv_nsec == 0) {
1416 /* first time we've seen a read error */
1417 rdev->last_read_error = cur_time_mon;
1418 return;
1421 hours_since_last = (cur_time_mon.tv_sec -
1422 rdev->last_read_error.tv_sec) / 3600;
1424 rdev->last_read_error = cur_time_mon;
1427 * if hours_since_last is > the number of bits in read_errors
1428 * just set read errors to 0. We do this to avoid
1429 * overflowing the shift of read_errors by hours_since_last.
1431 if (hours_since_last >= 8 * sizeof(read_errors))
1432 atomic_set(&rdev->read_errors, 0);
1433 else
1434 atomic_set(&rdev->read_errors, read_errors >> hours_since_last);
1438 * This is a kernel thread which:
1440 * 1. Retries failed read operations on working mirrors.
1441 * 2. Updates the raid superblock when problems encounter.
1442 * 3. Performs writes following reads for array synchronising.
1445 static void fix_read_error(conf_t *conf, mddev_t *mddev, r10bio_t *r10_bio)
1447 int sect = 0; /* Offset from r10_bio->sector */
1448 int sectors = r10_bio->sectors;
1449 mdk_rdev_t*rdev;
1450 int max_read_errors = atomic_read(&mddev->max_corr_read_errors);
1451 int d = r10_bio->devs[r10_bio->read_slot].devnum;
1453 /* still own a reference to this rdev, so it cannot
1454 * have been cleared recently.
1456 rdev = conf->mirrors[d].rdev;
1458 if (test_bit(Faulty, &rdev->flags))
1459 /* drive has already been failed, just ignore any
1460 more fix_read_error() attempts */
1461 return;
1463 check_decay_read_errors(mddev, rdev);
1464 atomic_inc(&rdev->read_errors);
1465 if (atomic_read(&rdev->read_errors) > max_read_errors) {
1466 char b[BDEVNAME_SIZE];
1467 bdevname(rdev->bdev, b);
1469 printk(KERN_NOTICE
1470 "md/raid10:%s: %s: Raid device exceeded "
1471 "read_error threshold [cur %d:max %d]\n",
1472 mdname(mddev), b,
1473 atomic_read(&rdev->read_errors), max_read_errors);
1474 printk(KERN_NOTICE
1475 "md/raid10:%s: %s: Failing raid device\n",
1476 mdname(mddev), b);
1477 md_error(mddev, conf->mirrors[d].rdev);
1478 return;
1481 while(sectors) {
1482 int s = sectors;
1483 int sl = r10_bio->read_slot;
1484 int success = 0;
1485 int start;
1487 if (s > (PAGE_SIZE>>9))
1488 s = PAGE_SIZE >> 9;
1490 rcu_read_lock();
1491 do {
1492 d = r10_bio->devs[sl].devnum;
1493 rdev = rcu_dereference(conf->mirrors[d].rdev);
1494 if (rdev &&
1495 test_bit(In_sync, &rdev->flags)) {
1496 atomic_inc(&rdev->nr_pending);
1497 rcu_read_unlock();
1498 success = sync_page_io(rdev,
1499 r10_bio->devs[sl].addr +
1500 sect,
1501 s<<9,
1502 conf->tmppage, READ, false);
1503 rdev_dec_pending(rdev, mddev);
1504 rcu_read_lock();
1505 if (success)
1506 break;
1508 sl++;
1509 if (sl == conf->copies)
1510 sl = 0;
1511 } while (!success && sl != r10_bio->read_slot);
1512 rcu_read_unlock();
1514 if (!success) {
1515 /* Cannot read from anywhere -- bye bye array */
1516 int dn = r10_bio->devs[r10_bio->read_slot].devnum;
1517 md_error(mddev, conf->mirrors[dn].rdev);
1518 break;
1521 start = sl;
1522 /* write it back and re-read */
1523 rcu_read_lock();
1524 while (sl != r10_bio->read_slot) {
1525 char b[BDEVNAME_SIZE];
1527 if (sl==0)
1528 sl = conf->copies;
1529 sl--;
1530 d = r10_bio->devs[sl].devnum;
1531 rdev = rcu_dereference(conf->mirrors[d].rdev);
1532 if (rdev &&
1533 test_bit(In_sync, &rdev->flags)) {
1534 atomic_inc(&rdev->nr_pending);
1535 rcu_read_unlock();
1536 atomic_add(s, &rdev->corrected_errors);
1537 if (sync_page_io(rdev,
1538 r10_bio->devs[sl].addr +
1539 sect,
1540 s<<9, conf->tmppage, WRITE, false)
1541 == 0) {
1542 /* Well, this device is dead */
1543 printk(KERN_NOTICE
1544 "md/raid10:%s: read correction "
1545 "write failed"
1546 " (%d sectors at %llu on %s)\n",
1547 mdname(mddev), s,
1548 (unsigned long long)(
1549 sect + rdev->data_offset),
1550 bdevname(rdev->bdev, b));
1551 printk(KERN_NOTICE "md/raid10:%s: %s: failing "
1552 "drive\n",
1553 mdname(mddev),
1554 bdevname(rdev->bdev, b));
1555 md_error(mddev, rdev);
1557 rdev_dec_pending(rdev, mddev);
1558 rcu_read_lock();
1561 sl = start;
1562 while (sl != r10_bio->read_slot) {
1564 if (sl==0)
1565 sl = conf->copies;
1566 sl--;
1567 d = r10_bio->devs[sl].devnum;
1568 rdev = rcu_dereference(conf->mirrors[d].rdev);
1569 if (rdev &&
1570 test_bit(In_sync, &rdev->flags)) {
1571 char b[BDEVNAME_SIZE];
1572 atomic_inc(&rdev->nr_pending);
1573 rcu_read_unlock();
1574 if (sync_page_io(rdev,
1575 r10_bio->devs[sl].addr +
1576 sect,
1577 s<<9, conf->tmppage,
1578 READ, false) == 0) {
1579 /* Well, this device is dead */
1580 printk(KERN_NOTICE
1581 "md/raid10:%s: unable to read back "
1582 "corrected sectors"
1583 " (%d sectors at %llu on %s)\n",
1584 mdname(mddev), s,
1585 (unsigned long long)(
1586 sect + rdev->data_offset),
1587 bdevname(rdev->bdev, b));
1588 printk(KERN_NOTICE "md/raid10:%s: %s: failing drive\n",
1589 mdname(mddev),
1590 bdevname(rdev->bdev, b));
1592 md_error(mddev, rdev);
1593 } else {
1594 printk(KERN_INFO
1595 "md/raid10:%s: read error corrected"
1596 " (%d sectors at %llu on %s)\n",
1597 mdname(mddev), s,
1598 (unsigned long long)(
1599 sect + rdev->data_offset),
1600 bdevname(rdev->bdev, b));
1603 rdev_dec_pending(rdev, mddev);
1604 rcu_read_lock();
1607 rcu_read_unlock();
1609 sectors -= s;
1610 sect += s;
1614 static void raid10d(mddev_t *mddev)
1616 r10bio_t *r10_bio;
1617 struct bio *bio;
1618 unsigned long flags;
1619 conf_t *conf = mddev->private;
1620 struct list_head *head = &conf->retry_list;
1621 mdk_rdev_t *rdev;
1622 struct blk_plug plug;
1624 md_check_recovery(mddev);
1626 blk_start_plug(&plug);
1627 for (;;) {
1628 char b[BDEVNAME_SIZE];
1630 flush_pending_writes(conf);
1632 spin_lock_irqsave(&conf->device_lock, flags);
1633 if (list_empty(head)) {
1634 spin_unlock_irqrestore(&conf->device_lock, flags);
1635 break;
1637 r10_bio = list_entry(head->prev, r10bio_t, retry_list);
1638 list_del(head->prev);
1639 conf->nr_queued--;
1640 spin_unlock_irqrestore(&conf->device_lock, flags);
1642 mddev = r10_bio->mddev;
1643 conf = mddev->private;
1644 if (test_bit(R10BIO_IsSync, &r10_bio->state))
1645 sync_request_write(mddev, r10_bio);
1646 else if (test_bit(R10BIO_IsRecover, &r10_bio->state))
1647 recovery_request_write(mddev, r10_bio);
1648 else {
1649 int slot = r10_bio->read_slot;
1650 int mirror = r10_bio->devs[slot].devnum;
1651 /* we got a read error. Maybe the drive is bad. Maybe just
1652 * the block and we can fix it.
1653 * We freeze all other IO, and try reading the block from
1654 * other devices. When we find one, we re-write
1655 * and check it that fixes the read error.
1656 * This is all done synchronously while the array is
1657 * frozen.
1659 if (mddev->ro == 0) {
1660 freeze_array(conf);
1661 fix_read_error(conf, mddev, r10_bio);
1662 unfreeze_array(conf);
1664 rdev_dec_pending(conf->mirrors[mirror].rdev, mddev);
1666 bio = r10_bio->devs[slot].bio;
1667 r10_bio->devs[slot].bio =
1668 mddev->ro ? IO_BLOCKED : NULL;
1669 mirror = read_balance(conf, r10_bio);
1670 if (mirror == -1) {
1671 printk(KERN_ALERT "md/raid10:%s: %s: unrecoverable I/O"
1672 " read error for block %llu\n",
1673 mdname(mddev),
1674 bdevname(bio->bi_bdev,b),
1675 (unsigned long long)r10_bio->sector);
1676 raid_end_bio_io(r10_bio);
1677 bio_put(bio);
1678 } else {
1679 const unsigned long do_sync = (r10_bio->master_bio->bi_rw & REQ_SYNC);
1680 bio_put(bio);
1681 slot = r10_bio->read_slot;
1682 rdev = conf->mirrors[mirror].rdev;
1683 if (printk_ratelimit())
1684 printk(KERN_ERR "md/raid10:%s: %s: redirecting sector %llu to"
1685 " another mirror\n",
1686 mdname(mddev),
1687 bdevname(rdev->bdev,b),
1688 (unsigned long long)r10_bio->sector);
1689 bio = bio_clone_mddev(r10_bio->master_bio,
1690 GFP_NOIO, mddev);
1691 r10_bio->devs[slot].bio = bio;
1692 bio->bi_sector = r10_bio->devs[slot].addr
1693 + rdev->data_offset;
1694 bio->bi_bdev = rdev->bdev;
1695 bio->bi_rw = READ | do_sync;
1696 bio->bi_private = r10_bio;
1697 bio->bi_end_io = raid10_end_read_request;
1698 generic_make_request(bio);
1701 cond_resched();
1703 blk_finish_plug(&plug);
1707 static int init_resync(conf_t *conf)
1709 int buffs;
1711 buffs = RESYNC_WINDOW / RESYNC_BLOCK_SIZE;
1712 BUG_ON(conf->r10buf_pool);
1713 conf->r10buf_pool = mempool_create(buffs, r10buf_pool_alloc, r10buf_pool_free, conf);
1714 if (!conf->r10buf_pool)
1715 return -ENOMEM;
1716 conf->next_resync = 0;
1717 return 0;
1721 * perform a "sync" on one "block"
1723 * We need to make sure that no normal I/O request - particularly write
1724 * requests - conflict with active sync requests.
1726 * This is achieved by tracking pending requests and a 'barrier' concept
1727 * that can be installed to exclude normal IO requests.
1729 * Resync and recovery are handled very differently.
1730 * We differentiate by looking at MD_RECOVERY_SYNC in mddev->recovery.
1732 * For resync, we iterate over virtual addresses, read all copies,
1733 * and update if there are differences. If only one copy is live,
1734 * skip it.
1735 * For recovery, we iterate over physical addresses, read a good
1736 * value for each non-in_sync drive, and over-write.
1738 * So, for recovery we may have several outstanding complex requests for a
1739 * given address, one for each out-of-sync device. We model this by allocating
1740 * a number of r10_bio structures, one for each out-of-sync device.
1741 * As we setup these structures, we collect all bio's together into a list
1742 * which we then process collectively to add pages, and then process again
1743 * to pass to generic_make_request.
1745 * The r10_bio structures are linked using a borrowed master_bio pointer.
1746 * This link is counted in ->remaining. When the r10_bio that points to NULL
1747 * has its remaining count decremented to 0, the whole complex operation
1748 * is complete.
1752 static sector_t sync_request(mddev_t *mddev, sector_t sector_nr,
1753 int *skipped, int go_faster)
1755 conf_t *conf = mddev->private;
1756 r10bio_t *r10_bio;
1757 struct bio *biolist = NULL, *bio;
1758 sector_t max_sector, nr_sectors;
1759 int i;
1760 int max_sync;
1761 sector_t sync_blocks;
1763 sector_t sectors_skipped = 0;
1764 int chunks_skipped = 0;
1766 if (!conf->r10buf_pool)
1767 if (init_resync(conf))
1768 return 0;
1770 skipped:
1771 max_sector = mddev->dev_sectors;
1772 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1773 max_sector = mddev->resync_max_sectors;
1774 if (sector_nr >= max_sector) {
1775 /* If we aborted, we need to abort the
1776 * sync on the 'current' bitmap chucks (there can
1777 * be several when recovering multiple devices).
1778 * as we may have started syncing it but not finished.
1779 * We can find the current address in
1780 * mddev->curr_resync, but for recovery,
1781 * we need to convert that to several
1782 * virtual addresses.
1784 if (mddev->curr_resync < max_sector) { /* aborted */
1785 if (test_bit(MD_RECOVERY_SYNC, &mddev->recovery))
1786 bitmap_end_sync(mddev->bitmap, mddev->curr_resync,
1787 &sync_blocks, 1);
1788 else for (i=0; i<conf->raid_disks; i++) {
1789 sector_t sect =
1790 raid10_find_virt(conf, mddev->curr_resync, i);
1791 bitmap_end_sync(mddev->bitmap, sect,
1792 &sync_blocks, 1);
1794 } else /* completed sync */
1795 conf->fullsync = 0;
1797 bitmap_close_sync(mddev->bitmap);
1798 close_sync(conf);
1799 *skipped = 1;
1800 return sectors_skipped;
1802 if (chunks_skipped >= conf->raid_disks) {
1803 /* if there has been nothing to do on any drive,
1804 * then there is nothing to do at all..
1806 *skipped = 1;
1807 return (max_sector - sector_nr) + sectors_skipped;
1810 if (max_sector > mddev->resync_max)
1811 max_sector = mddev->resync_max; /* Don't do IO beyond here */
1813 /* make sure whole request will fit in a chunk - if chunks
1814 * are meaningful
1816 if (conf->near_copies < conf->raid_disks &&
1817 max_sector > (sector_nr | conf->chunk_mask))
1818 max_sector = (sector_nr | conf->chunk_mask) + 1;
1820 * If there is non-resync activity waiting for us then
1821 * put in a delay to throttle resync.
1823 if (!go_faster && conf->nr_waiting)
1824 msleep_interruptible(1000);
1826 /* Again, very different code for resync and recovery.
1827 * Both must result in an r10bio with a list of bios that
1828 * have bi_end_io, bi_sector, bi_bdev set,
1829 * and bi_private set to the r10bio.
1830 * For recovery, we may actually create several r10bios
1831 * with 2 bios in each, that correspond to the bios in the main one.
1832 * In this case, the subordinate r10bios link back through a
1833 * borrowed master_bio pointer, and the counter in the master
1834 * includes a ref from each subordinate.
1836 /* First, we decide what to do and set ->bi_end_io
1837 * To end_sync_read if we want to read, and
1838 * end_sync_write if we will want to write.
1841 max_sync = RESYNC_PAGES << (PAGE_SHIFT-9);
1842 if (!test_bit(MD_RECOVERY_SYNC, &mddev->recovery)) {
1843 /* recovery... the complicated one */
1844 int j, k;
1845 r10_bio = NULL;
1847 for (i=0 ; i<conf->raid_disks; i++) {
1848 int still_degraded;
1849 r10bio_t *rb2;
1850 sector_t sect;
1851 int must_sync;
1853 if (conf->mirrors[i].rdev == NULL ||
1854 test_bit(In_sync, &conf->mirrors[i].rdev->flags))
1855 continue;
1857 still_degraded = 0;
1858 /* want to reconstruct this device */
1859 rb2 = r10_bio;
1860 sect = raid10_find_virt(conf, sector_nr, i);
1861 /* Unless we are doing a full sync, we only need
1862 * to recover the block if it is set in the bitmap
1864 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1865 &sync_blocks, 1);
1866 if (sync_blocks < max_sync)
1867 max_sync = sync_blocks;
1868 if (!must_sync &&
1869 !conf->fullsync) {
1870 /* yep, skip the sync_blocks here, but don't assume
1871 * that there will never be anything to do here
1873 chunks_skipped = -1;
1874 continue;
1877 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1878 raise_barrier(conf, rb2 != NULL);
1879 atomic_set(&r10_bio->remaining, 0);
1881 r10_bio->master_bio = (struct bio*)rb2;
1882 if (rb2)
1883 atomic_inc(&rb2->remaining);
1884 r10_bio->mddev = mddev;
1885 set_bit(R10BIO_IsRecover, &r10_bio->state);
1886 r10_bio->sector = sect;
1888 raid10_find_phys(conf, r10_bio);
1890 /* Need to check if the array will still be
1891 * degraded
1893 for (j=0; j<conf->raid_disks; j++)
1894 if (conf->mirrors[j].rdev == NULL ||
1895 test_bit(Faulty, &conf->mirrors[j].rdev->flags)) {
1896 still_degraded = 1;
1897 break;
1900 must_sync = bitmap_start_sync(mddev->bitmap, sect,
1901 &sync_blocks, still_degraded);
1903 for (j=0; j<conf->copies;j++) {
1904 int d = r10_bio->devs[j].devnum;
1905 if (!conf->mirrors[d].rdev ||
1906 !test_bit(In_sync, &conf->mirrors[d].rdev->flags))
1907 continue;
1908 /* This is where we read from */
1909 bio = r10_bio->devs[0].bio;
1910 bio->bi_next = biolist;
1911 biolist = bio;
1912 bio->bi_private = r10_bio;
1913 bio->bi_end_io = end_sync_read;
1914 bio->bi_rw = READ;
1915 bio->bi_sector = r10_bio->devs[j].addr +
1916 conf->mirrors[d].rdev->data_offset;
1917 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
1918 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
1919 atomic_inc(&r10_bio->remaining);
1920 /* and we write to 'i' */
1922 for (k=0; k<conf->copies; k++)
1923 if (r10_bio->devs[k].devnum == i)
1924 break;
1925 BUG_ON(k == conf->copies);
1926 bio = r10_bio->devs[1].bio;
1927 bio->bi_next = biolist;
1928 biolist = bio;
1929 bio->bi_private = r10_bio;
1930 bio->bi_end_io = end_sync_write;
1931 bio->bi_rw = WRITE;
1932 bio->bi_sector = r10_bio->devs[k].addr +
1933 conf->mirrors[i].rdev->data_offset;
1934 bio->bi_bdev = conf->mirrors[i].rdev->bdev;
1936 r10_bio->devs[0].devnum = d;
1937 r10_bio->devs[1].devnum = i;
1939 break;
1941 if (j == conf->copies) {
1942 /* Cannot recover, so abort the recovery */
1943 put_buf(r10_bio);
1944 if (rb2)
1945 atomic_dec(&rb2->remaining);
1946 r10_bio = rb2;
1947 if (!test_and_set_bit(MD_RECOVERY_INTR,
1948 &mddev->recovery))
1949 printk(KERN_INFO "md/raid10:%s: insufficient "
1950 "working devices for recovery.\n",
1951 mdname(mddev));
1952 break;
1955 if (biolist == NULL) {
1956 while (r10_bio) {
1957 r10bio_t *rb2 = r10_bio;
1958 r10_bio = (r10bio_t*) rb2->master_bio;
1959 rb2->master_bio = NULL;
1960 put_buf(rb2);
1962 goto giveup;
1964 } else {
1965 /* resync. Schedule a read for every block at this virt offset */
1966 int count = 0;
1968 bitmap_cond_end_sync(mddev->bitmap, sector_nr);
1970 if (!bitmap_start_sync(mddev->bitmap, sector_nr,
1971 &sync_blocks, mddev->degraded) &&
1972 !conf->fullsync && !test_bit(MD_RECOVERY_REQUESTED,
1973 &mddev->recovery)) {
1974 /* We can skip this block */
1975 *skipped = 1;
1976 return sync_blocks + sectors_skipped;
1978 if (sync_blocks < max_sync)
1979 max_sync = sync_blocks;
1980 r10_bio = mempool_alloc(conf->r10buf_pool, GFP_NOIO);
1982 r10_bio->mddev = mddev;
1983 atomic_set(&r10_bio->remaining, 0);
1984 raise_barrier(conf, 0);
1985 conf->next_resync = sector_nr;
1987 r10_bio->master_bio = NULL;
1988 r10_bio->sector = sector_nr;
1989 set_bit(R10BIO_IsSync, &r10_bio->state);
1990 raid10_find_phys(conf, r10_bio);
1991 r10_bio->sectors = (sector_nr | conf->chunk_mask) - sector_nr +1;
1993 for (i=0; i<conf->copies; i++) {
1994 int d = r10_bio->devs[i].devnum;
1995 bio = r10_bio->devs[i].bio;
1996 bio->bi_end_io = NULL;
1997 clear_bit(BIO_UPTODATE, &bio->bi_flags);
1998 if (conf->mirrors[d].rdev == NULL ||
1999 test_bit(Faulty, &conf->mirrors[d].rdev->flags))
2000 continue;
2001 atomic_inc(&conf->mirrors[d].rdev->nr_pending);
2002 atomic_inc(&r10_bio->remaining);
2003 bio->bi_next = biolist;
2004 biolist = bio;
2005 bio->bi_private = r10_bio;
2006 bio->bi_end_io = end_sync_read;
2007 bio->bi_rw = READ;
2008 bio->bi_sector = r10_bio->devs[i].addr +
2009 conf->mirrors[d].rdev->data_offset;
2010 bio->bi_bdev = conf->mirrors[d].rdev->bdev;
2011 count++;
2014 if (count < 2) {
2015 for (i=0; i<conf->copies; i++) {
2016 int d = r10_bio->devs[i].devnum;
2017 if (r10_bio->devs[i].bio->bi_end_io)
2018 rdev_dec_pending(conf->mirrors[d].rdev,
2019 mddev);
2021 put_buf(r10_bio);
2022 biolist = NULL;
2023 goto giveup;
2027 for (bio = biolist; bio ; bio=bio->bi_next) {
2029 bio->bi_flags &= ~(BIO_POOL_MASK - 1);
2030 if (bio->bi_end_io)
2031 bio->bi_flags |= 1 << BIO_UPTODATE;
2032 bio->bi_vcnt = 0;
2033 bio->bi_idx = 0;
2034 bio->bi_phys_segments = 0;
2035 bio->bi_size = 0;
2038 nr_sectors = 0;
2039 if (sector_nr + max_sync < max_sector)
2040 max_sector = sector_nr + max_sync;
2041 do {
2042 struct page *page;
2043 int len = PAGE_SIZE;
2044 if (sector_nr + (len>>9) > max_sector)
2045 len = (max_sector - sector_nr) << 9;
2046 if (len == 0)
2047 break;
2048 for (bio= biolist ; bio ; bio=bio->bi_next) {
2049 struct bio *bio2;
2050 page = bio->bi_io_vec[bio->bi_vcnt].bv_page;
2051 if (bio_add_page(bio, page, len, 0))
2052 continue;
2054 /* stop here */
2055 bio->bi_io_vec[bio->bi_vcnt].bv_page = page;
2056 for (bio2 = biolist;
2057 bio2 && bio2 != bio;
2058 bio2 = bio2->bi_next) {
2059 /* remove last page from this bio */
2060 bio2->bi_vcnt--;
2061 bio2->bi_size -= len;
2062 bio2->bi_flags &= ~(1<< BIO_SEG_VALID);
2064 goto bio_full;
2066 nr_sectors += len>>9;
2067 sector_nr += len>>9;
2068 } while (biolist->bi_vcnt < RESYNC_PAGES);
2069 bio_full:
2070 r10_bio->sectors = nr_sectors;
2072 while (biolist) {
2073 bio = biolist;
2074 biolist = biolist->bi_next;
2076 bio->bi_next = NULL;
2077 r10_bio = bio->bi_private;
2078 r10_bio->sectors = nr_sectors;
2080 if (bio->bi_end_io == end_sync_read) {
2081 md_sync_acct(bio->bi_bdev, nr_sectors);
2082 generic_make_request(bio);
2086 if (sectors_skipped)
2087 /* pretend they weren't skipped, it makes
2088 * no important difference in this case
2090 md_done_sync(mddev, sectors_skipped, 1);
2092 return sectors_skipped + nr_sectors;
2093 giveup:
2094 /* There is nowhere to write, so all non-sync
2095 * drives must be failed, so try the next chunk...
2097 if (sector_nr + max_sync < max_sector)
2098 max_sector = sector_nr + max_sync;
2100 sectors_skipped += (max_sector - sector_nr);
2101 chunks_skipped ++;
2102 sector_nr = max_sector;
2103 goto skipped;
2106 static sector_t
2107 raid10_size(mddev_t *mddev, sector_t sectors, int raid_disks)
2109 sector_t size;
2110 conf_t *conf = mddev->private;
2112 if (!raid_disks)
2113 raid_disks = conf->raid_disks;
2114 if (!sectors)
2115 sectors = conf->dev_sectors;
2117 size = sectors >> conf->chunk_shift;
2118 sector_div(size, conf->far_copies);
2119 size = size * raid_disks;
2120 sector_div(size, conf->near_copies);
2122 return size << conf->chunk_shift;
2126 static conf_t *setup_conf(mddev_t *mddev)
2128 conf_t *conf = NULL;
2129 int nc, fc, fo;
2130 sector_t stride, size;
2131 int err = -EINVAL;
2133 if (mddev->new_chunk_sectors < (PAGE_SIZE >> 9) ||
2134 !is_power_of_2(mddev->new_chunk_sectors)) {
2135 printk(KERN_ERR "md/raid10:%s: chunk size must be "
2136 "at least PAGE_SIZE(%ld) and be a power of 2.\n",
2137 mdname(mddev), PAGE_SIZE);
2138 goto out;
2141 nc = mddev->new_layout & 255;
2142 fc = (mddev->new_layout >> 8) & 255;
2143 fo = mddev->new_layout & (1<<16);
2145 if ((nc*fc) <2 || (nc*fc) > mddev->raid_disks ||
2146 (mddev->new_layout >> 17)) {
2147 printk(KERN_ERR "md/raid10:%s: unsupported raid10 layout: 0x%8x\n",
2148 mdname(mddev), mddev->new_layout);
2149 goto out;
2152 err = -ENOMEM;
2153 conf = kzalloc(sizeof(conf_t), GFP_KERNEL);
2154 if (!conf)
2155 goto out;
2157 conf->mirrors = kzalloc(sizeof(struct mirror_info)*mddev->raid_disks,
2158 GFP_KERNEL);
2159 if (!conf->mirrors)
2160 goto out;
2162 conf->tmppage = alloc_page(GFP_KERNEL);
2163 if (!conf->tmppage)
2164 goto out;
2167 conf->raid_disks = mddev->raid_disks;
2168 conf->near_copies = nc;
2169 conf->far_copies = fc;
2170 conf->copies = nc*fc;
2171 conf->far_offset = fo;
2172 conf->chunk_mask = mddev->new_chunk_sectors - 1;
2173 conf->chunk_shift = ffz(~mddev->new_chunk_sectors);
2175 conf->r10bio_pool = mempool_create(NR_RAID10_BIOS, r10bio_pool_alloc,
2176 r10bio_pool_free, conf);
2177 if (!conf->r10bio_pool)
2178 goto out;
2180 size = mddev->dev_sectors >> conf->chunk_shift;
2181 sector_div(size, fc);
2182 size = size * conf->raid_disks;
2183 sector_div(size, nc);
2184 /* 'size' is now the number of chunks in the array */
2185 /* calculate "used chunks per device" in 'stride' */
2186 stride = size * conf->copies;
2188 /* We need to round up when dividing by raid_disks to
2189 * get the stride size.
2191 stride += conf->raid_disks - 1;
2192 sector_div(stride, conf->raid_disks);
2194 conf->dev_sectors = stride << conf->chunk_shift;
2196 if (fo)
2197 stride = 1;
2198 else
2199 sector_div(stride, fc);
2200 conf->stride = stride << conf->chunk_shift;
2203 spin_lock_init(&conf->device_lock);
2204 INIT_LIST_HEAD(&conf->retry_list);
2206 spin_lock_init(&conf->resync_lock);
2207 init_waitqueue_head(&conf->wait_barrier);
2209 conf->thread = md_register_thread(raid10d, mddev, NULL);
2210 if (!conf->thread)
2211 goto out;
2213 conf->mddev = mddev;
2214 return conf;
2216 out:
2217 printk(KERN_ERR "md/raid10:%s: couldn't allocate memory.\n",
2218 mdname(mddev));
2219 if (conf) {
2220 if (conf->r10bio_pool)
2221 mempool_destroy(conf->r10bio_pool);
2222 kfree(conf->mirrors);
2223 safe_put_page(conf->tmppage);
2224 kfree(conf);
2226 return ERR_PTR(err);
2229 static int run(mddev_t *mddev)
2231 conf_t *conf;
2232 int i, disk_idx, chunk_size;
2233 mirror_info_t *disk;
2234 mdk_rdev_t *rdev;
2235 sector_t size;
2238 * copy the already verified devices into our private RAID10
2239 * bookkeeping area. [whatever we allocate in run(),
2240 * should be freed in stop()]
2243 if (mddev->private == NULL) {
2244 conf = setup_conf(mddev);
2245 if (IS_ERR(conf))
2246 return PTR_ERR(conf);
2247 mddev->private = conf;
2249 conf = mddev->private;
2250 if (!conf)
2251 goto out;
2253 mddev->thread = conf->thread;
2254 conf->thread = NULL;
2256 chunk_size = mddev->chunk_sectors << 9;
2257 blk_queue_io_min(mddev->queue, chunk_size);
2258 if (conf->raid_disks % conf->near_copies)
2259 blk_queue_io_opt(mddev->queue, chunk_size * conf->raid_disks);
2260 else
2261 blk_queue_io_opt(mddev->queue, chunk_size *
2262 (conf->raid_disks / conf->near_copies));
2264 list_for_each_entry(rdev, &mddev->disks, same_set) {
2265 disk_idx = rdev->raid_disk;
2266 if (disk_idx >= conf->raid_disks
2267 || disk_idx < 0)
2268 continue;
2269 disk = conf->mirrors + disk_idx;
2271 disk->rdev = rdev;
2272 disk_stack_limits(mddev->gendisk, rdev->bdev,
2273 rdev->data_offset << 9);
2274 /* as we don't honour merge_bvec_fn, we must never risk
2275 * violating it, so limit max_segments to 1 lying
2276 * within a single page.
2278 if (rdev->bdev->bd_disk->queue->merge_bvec_fn) {
2279 blk_queue_max_segments(mddev->queue, 1);
2280 blk_queue_segment_boundary(mddev->queue,
2281 PAGE_CACHE_SIZE - 1);
2284 disk->head_position = 0;
2286 /* need to check that every block has at least one working mirror */
2287 if (!enough(conf)) {
2288 printk(KERN_ERR "md/raid10:%s: not enough operational mirrors.\n",
2289 mdname(mddev));
2290 goto out_free_conf;
2293 mddev->degraded = 0;
2294 for (i = 0; i < conf->raid_disks; i++) {
2296 disk = conf->mirrors + i;
2298 if (!disk->rdev ||
2299 !test_bit(In_sync, &disk->rdev->flags)) {
2300 disk->head_position = 0;
2301 mddev->degraded++;
2302 if (disk->rdev)
2303 conf->fullsync = 1;
2307 if (mddev->recovery_cp != MaxSector)
2308 printk(KERN_NOTICE "md/raid10:%s: not clean"
2309 " -- starting background reconstruction\n",
2310 mdname(mddev));
2311 printk(KERN_INFO
2312 "md/raid10:%s: active with %d out of %d devices\n",
2313 mdname(mddev), conf->raid_disks - mddev->degraded,
2314 conf->raid_disks);
2316 * Ok, everything is just fine now
2318 mddev->dev_sectors = conf->dev_sectors;
2319 size = raid10_size(mddev, 0, 0);
2320 md_set_array_sectors(mddev, size);
2321 mddev->resync_max_sectors = size;
2323 mddev->queue->backing_dev_info.congested_fn = raid10_congested;
2324 mddev->queue->backing_dev_info.congested_data = mddev;
2326 /* Calculate max read-ahead size.
2327 * We need to readahead at least twice a whole stripe....
2328 * maybe...
2331 int stripe = conf->raid_disks *
2332 ((mddev->chunk_sectors << 9) / PAGE_SIZE);
2333 stripe /= conf->near_copies;
2334 if (mddev->queue->backing_dev_info.ra_pages < 2* stripe)
2335 mddev->queue->backing_dev_info.ra_pages = 2* stripe;
2338 if (conf->near_copies < conf->raid_disks)
2339 blk_queue_merge_bvec(mddev->queue, raid10_mergeable_bvec);
2341 if (md_integrity_register(mddev))
2342 goto out_free_conf;
2344 return 0;
2346 out_free_conf:
2347 md_unregister_thread(&mddev->thread);
2348 if (conf->r10bio_pool)
2349 mempool_destroy(conf->r10bio_pool);
2350 safe_put_page(conf->tmppage);
2351 kfree(conf->mirrors);
2352 kfree(conf);
2353 mddev->private = NULL;
2354 out:
2355 return -EIO;
2358 static int stop(mddev_t *mddev)
2360 conf_t *conf = mddev->private;
2362 raise_barrier(conf, 0);
2363 lower_barrier(conf);
2365 md_unregister_thread(&mddev->thread);
2366 blk_sync_queue(mddev->queue); /* the unplug fn references 'conf'*/
2367 if (conf->r10bio_pool)
2368 mempool_destroy(conf->r10bio_pool);
2369 kfree(conf->mirrors);
2370 kfree(conf);
2371 mddev->private = NULL;
2372 return 0;
2375 static void raid10_quiesce(mddev_t *mddev, int state)
2377 conf_t *conf = mddev->private;
2379 switch(state) {
2380 case 1:
2381 raise_barrier(conf, 0);
2382 break;
2383 case 0:
2384 lower_barrier(conf);
2385 break;
2389 static void *raid10_takeover_raid0(mddev_t *mddev)
2391 mdk_rdev_t *rdev;
2392 conf_t *conf;
2394 if (mddev->degraded > 0) {
2395 printk(KERN_ERR "md/raid10:%s: Error: degraded raid0!\n",
2396 mdname(mddev));
2397 return ERR_PTR(-EINVAL);
2400 /* Set new parameters */
2401 mddev->new_level = 10;
2402 /* new layout: far_copies = 1, near_copies = 2 */
2403 mddev->new_layout = (1<<8) + 2;
2404 mddev->new_chunk_sectors = mddev->chunk_sectors;
2405 mddev->delta_disks = mddev->raid_disks;
2406 mddev->raid_disks *= 2;
2407 /* make sure it will be not marked as dirty */
2408 mddev->recovery_cp = MaxSector;
2410 conf = setup_conf(mddev);
2411 if (!IS_ERR(conf)) {
2412 list_for_each_entry(rdev, &mddev->disks, same_set)
2413 if (rdev->raid_disk >= 0)
2414 rdev->new_raid_disk = rdev->raid_disk * 2;
2415 conf->barrier = 1;
2418 return conf;
2421 static void *raid10_takeover(mddev_t *mddev)
2423 struct raid0_private_data *raid0_priv;
2425 /* raid10 can take over:
2426 * raid0 - providing it has only two drives
2428 if (mddev->level == 0) {
2429 /* for raid0 takeover only one zone is supported */
2430 raid0_priv = mddev->private;
2431 if (raid0_priv->nr_strip_zones > 1) {
2432 printk(KERN_ERR "md/raid10:%s: cannot takeover raid 0"
2433 " with more than one zone.\n",
2434 mdname(mddev));
2435 return ERR_PTR(-EINVAL);
2437 return raid10_takeover_raid0(mddev);
2439 return ERR_PTR(-EINVAL);
2442 static struct mdk_personality raid10_personality =
2444 .name = "raid10",
2445 .level = 10,
2446 .owner = THIS_MODULE,
2447 .make_request = make_request,
2448 .run = run,
2449 .stop = stop,
2450 .status = status,
2451 .error_handler = error,
2452 .hot_add_disk = raid10_add_disk,
2453 .hot_remove_disk= raid10_remove_disk,
2454 .spare_active = raid10_spare_active,
2455 .sync_request = sync_request,
2456 .quiesce = raid10_quiesce,
2457 .size = raid10_size,
2458 .takeover = raid10_takeover,
2461 static int __init raid_init(void)
2463 return register_md_personality(&raid10_personality);
2466 static void raid_exit(void)
2468 unregister_md_personality(&raid10_personality);
2471 module_init(raid_init);
2472 module_exit(raid_exit);
2473 MODULE_LICENSE("GPL");
2474 MODULE_DESCRIPTION("RAID10 (striped mirror) personality for MD");
2475 MODULE_ALIAS("md-personality-9"); /* RAID10 */
2476 MODULE_ALIAS("md-raid10");
2477 MODULE_ALIAS("md-level-10");