Merge branch 'perf-fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / drivers / vx / vx_mixer.c
blobc71b8d148d7fa82324a18863da0b98459488582a
1 /*
2 * Driver for Digigram VX soundcards
4 * Common mixer part
6 * Copyright (c) 2002 by Takashi Iwai <tiwai@suse.de>
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
23 #include <sound/core.h>
24 #include <sound/control.h>
25 #include <sound/tlv.h>
26 #include <sound/vx_core.h>
27 #include "vx_cmd.h"
31 * write a codec data (24bit)
33 static void vx_write_codec_reg(struct vx_core *chip, int codec, unsigned int data)
35 unsigned long flags;
37 if (snd_BUG_ON(!chip->ops->write_codec))
38 return;
40 if (chip->chip_status & VX_STAT_IS_STALE)
41 return;
43 spin_lock_irqsave(&chip->lock, flags);
44 chip->ops->write_codec(chip, codec, data);
45 spin_unlock_irqrestore(&chip->lock, flags);
49 * Data type used to access the Codec
51 union vx_codec_data {
52 u32 l;
53 #ifdef SNDRV_BIG_ENDIAN
54 struct w {
55 u16 h;
56 u16 l;
57 } w;
58 struct b {
59 u8 hh;
60 u8 mh;
61 u8 ml;
62 u8 ll;
63 } b;
64 #else /* LITTLE_ENDIAN */
65 struct w {
66 u16 l;
67 u16 h;
68 } w;
69 struct b {
70 u8 ll;
71 u8 ml;
72 u8 mh;
73 u8 hh;
74 } b;
75 #endif
78 #define SET_CDC_DATA_SEL(di,s) ((di).b.mh = (u8) (s))
79 #define SET_CDC_DATA_REG(di,r) ((di).b.ml = (u8) (r))
80 #define SET_CDC_DATA_VAL(di,d) ((di).b.ll = (u8) (d))
81 #define SET_CDC_DATA_INIT(di) ((di).l = 0L, SET_CDC_DATA_SEL(di,XX_CODEC_SELECTOR))
84 * set up codec register and write the value
85 * @codec: the codec id, 0 or 1
86 * @reg: register index
87 * @val: data value
89 static void vx_set_codec_reg(struct vx_core *chip, int codec, int reg, int val)
91 union vx_codec_data data;
92 /* DAC control register */
93 SET_CDC_DATA_INIT(data);
94 SET_CDC_DATA_REG(data, reg);
95 SET_CDC_DATA_VAL(data, val);
96 vx_write_codec_reg(chip, codec, data.l);
101 * vx_set_analog_output_level - set the output attenuation level
102 * @codec: the output codec, 0 or 1. (1 for VXP440 only)
103 * @left: left output level, 0 = mute
104 * @right: right output level
106 static void vx_set_analog_output_level(struct vx_core *chip, int codec, int left, int right)
108 left = chip->hw->output_level_max - left;
109 right = chip->hw->output_level_max - right;
111 if (chip->ops->akm_write) {
112 chip->ops->akm_write(chip, XX_CODEC_LEVEL_LEFT_REGISTER, left);
113 chip->ops->akm_write(chip, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
114 } else {
115 /* convert to attenuation level: 0 = 0dB (max), 0xe3 = -113.5 dB (min) */
116 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_LEFT_REGISTER, left);
117 vx_set_codec_reg(chip, codec, XX_CODEC_LEVEL_RIGHT_REGISTER, right);
123 * vx_toggle_dac_mute - mute/unmute DAC
124 * @mute: 0 = unmute, 1 = mute
127 #define DAC_ATTEN_MIN 0x08
128 #define DAC_ATTEN_MAX 0x38
130 void vx_toggle_dac_mute(struct vx_core *chip, int mute)
132 unsigned int i;
133 for (i = 0; i < chip->hw->num_codecs; i++) {
134 if (chip->ops->akm_write)
135 chip->ops->akm_write(chip, XX_CODEC_DAC_CONTROL_REGISTER, mute); /* XXX */
136 else
137 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER,
138 mute ? DAC_ATTEN_MAX : DAC_ATTEN_MIN);
143 * vx_reset_codec - reset and initialize the codecs
145 void vx_reset_codec(struct vx_core *chip, int cold_reset)
147 unsigned int i;
148 int port = chip->type >= VX_TYPE_VXPOCKET ? 0x75 : 0x65;
150 chip->ops->reset_codec(chip);
152 /* AKM codecs should be initialized in reset_codec callback */
153 if (! chip->ops->akm_write) {
154 /* initialize old codecs */
155 for (i = 0; i < chip->hw->num_codecs; i++) {
156 /* DAC control register (change level when zero crossing + mute) */
157 vx_set_codec_reg(chip, i, XX_CODEC_DAC_CONTROL_REGISTER, DAC_ATTEN_MAX);
158 /* ADC control register */
159 vx_set_codec_reg(chip, i, XX_CODEC_ADC_CONTROL_REGISTER, 0x00);
160 /* Port mode register */
161 vx_set_codec_reg(chip, i, XX_CODEC_PORT_MODE_REGISTER, port);
162 /* Clock control register */
163 vx_set_codec_reg(chip, i, XX_CODEC_CLOCK_CONTROL_REGISTER, 0x00);
167 /* mute analog output */
168 for (i = 0; i < chip->hw->num_codecs; i++) {
169 chip->output_level[i][0] = 0;
170 chip->output_level[i][1] = 0;
171 vx_set_analog_output_level(chip, i, 0, 0);
176 * change the audio input source
177 * @src: the target source (VX_AUDIO_SRC_XXX)
179 static void vx_change_audio_source(struct vx_core *chip, int src)
181 unsigned long flags;
183 if (chip->chip_status & VX_STAT_IS_STALE)
184 return;
186 spin_lock_irqsave(&chip->lock, flags);
187 chip->ops->change_audio_source(chip, src);
188 spin_unlock_irqrestore(&chip->lock, flags);
193 * change the audio source if necessary and possible
194 * returns 1 if the source is actually changed.
196 int vx_sync_audio_source(struct vx_core *chip)
198 if (chip->audio_source_target == chip->audio_source ||
199 chip->pcm_running)
200 return 0;
201 vx_change_audio_source(chip, chip->audio_source_target);
202 chip->audio_source = chip->audio_source_target;
203 return 1;
208 * audio level, mute, monitoring
210 struct vx_audio_level {
211 unsigned int has_level: 1;
212 unsigned int has_monitor_level: 1;
213 unsigned int has_mute: 1;
214 unsigned int has_monitor_mute: 1;
215 unsigned int mute;
216 unsigned int monitor_mute;
217 short level;
218 short monitor_level;
221 static int vx_adjust_audio_level(struct vx_core *chip, int audio, int capture,
222 struct vx_audio_level *info)
224 struct vx_rmh rmh;
226 if (chip->chip_status & VX_STAT_IS_STALE)
227 return -EBUSY;
229 vx_init_rmh(&rmh, CMD_AUDIO_LEVEL_ADJUST);
230 if (capture)
231 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
232 /* Add Audio IO mask */
233 rmh.Cmd[1] = 1 << audio;
234 rmh.Cmd[2] = 0;
235 if (info->has_level) {
236 rmh.Cmd[0] |= VALID_AUDIO_IO_DIGITAL_LEVEL;
237 rmh.Cmd[2] |= info->level;
239 if (info->has_monitor_level) {
240 rmh.Cmd[0] |= VALID_AUDIO_IO_MONITORING_LEVEL;
241 rmh.Cmd[2] |= ((unsigned int)info->monitor_level << 10);
243 if (info->has_mute) {
244 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_LEVEL;
245 if (info->mute)
246 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_LEVEL;
248 if (info->has_monitor_mute) {
249 /* validate flag for M2 at least to unmute it */
250 rmh.Cmd[0] |= VALID_AUDIO_IO_MUTE_MONITORING_1 | VALID_AUDIO_IO_MUTE_MONITORING_2;
251 if (info->monitor_mute)
252 rmh.Cmd[2] |= AUDIO_IO_HAS_MUTE_MONITORING_1;
255 return vx_send_msg(chip, &rmh);
259 #if 0 // not used
260 static int vx_read_audio_level(struct vx_core *chip, int audio, int capture,
261 struct vx_audio_level *info)
263 int err;
264 struct vx_rmh rmh;
266 memset(info, 0, sizeof(*info));
267 vx_init_rmh(&rmh, CMD_GET_AUDIO_LEVELS);
268 if (capture)
269 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
270 /* Add Audio IO mask */
271 rmh.Cmd[1] = 1 << audio;
272 err = vx_send_msg(chip, &rmh);
273 if (err < 0)
274 return err;
275 info.level = rmh.Stat[0] & MASK_DSP_WORD_LEVEL;
276 info.monitor_level = (rmh.Stat[0] >> 10) & MASK_DSP_WORD_LEVEL;
277 info.mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_LEVEL) ? 1 : 0;
278 info.monitor_mute = (rmh.Stat[i] & AUDIO_IO_HAS_MUTE_MONITORING_1) ? 1 : 0;
279 return 0;
281 #endif // not used
284 * set the monitoring level and mute state of the given audio
285 * no more static, because must be called from vx_pcm to demute monitoring
287 int vx_set_monitor_level(struct vx_core *chip, int audio, int level, int active)
289 struct vx_audio_level info;
291 memset(&info, 0, sizeof(info));
292 info.has_monitor_level = 1;
293 info.monitor_level = level;
294 info.has_monitor_mute = 1;
295 info.monitor_mute = !active;
296 chip->audio_monitor[audio] = level;
297 chip->audio_monitor_active[audio] = active;
298 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
303 * set the mute status of the given audio
305 static int vx_set_audio_switch(struct vx_core *chip, int audio, int active)
307 struct vx_audio_level info;
309 memset(&info, 0, sizeof(info));
310 info.has_mute = 1;
311 info.mute = !active;
312 chip->audio_active[audio] = active;
313 return vx_adjust_audio_level(chip, audio, 0, &info); /* playback only */
317 * set the mute status of the given audio
319 static int vx_set_audio_gain(struct vx_core *chip, int audio, int capture, int level)
321 struct vx_audio_level info;
323 memset(&info, 0, sizeof(info));
324 info.has_level = 1;
325 info.level = level;
326 chip->audio_gain[capture][audio] = level;
327 return vx_adjust_audio_level(chip, audio, capture, &info);
331 * reset all audio levels
333 static void vx_reset_audio_levels(struct vx_core *chip)
335 unsigned int i, c;
336 struct vx_audio_level info;
338 memset(chip->audio_gain, 0, sizeof(chip->audio_gain));
339 memset(chip->audio_active, 0, sizeof(chip->audio_active));
340 memset(chip->audio_monitor, 0, sizeof(chip->audio_monitor));
341 memset(chip->audio_monitor_active, 0, sizeof(chip->audio_monitor_active));
343 for (c = 0; c < 2; c++) {
344 for (i = 0; i < chip->hw->num_ins * 2; i++) {
345 memset(&info, 0, sizeof(info));
346 if (c == 0) {
347 info.has_monitor_level = 1;
348 info.has_mute = 1;
349 info.has_monitor_mute = 1;
351 info.has_level = 1;
352 info.level = CVAL_0DB; /* default: 0dB */
353 vx_adjust_audio_level(chip, i, c, &info);
354 chip->audio_gain[c][i] = CVAL_0DB;
355 chip->audio_monitor[i] = CVAL_0DB;
362 * VU, peak meter record
365 #define VU_METER_CHANNELS 2
367 struct vx_vu_meter {
368 int saturated;
369 int vu_level;
370 int peak_level;
374 * get the VU and peak meter values
375 * @audio: the audio index
376 * @capture: 0 = playback, 1 = capture operation
377 * @info: the array of vx_vu_meter records (size = 2).
379 static int vx_get_audio_vu_meter(struct vx_core *chip, int audio, int capture, struct vx_vu_meter *info)
381 struct vx_rmh rmh;
382 int i, err;
384 if (chip->chip_status & VX_STAT_IS_STALE)
385 return -EBUSY;
387 vx_init_rmh(&rmh, CMD_AUDIO_VU_PIC_METER);
388 rmh.LgStat += 2 * VU_METER_CHANNELS;
389 if (capture)
390 rmh.Cmd[0] |= COMMAND_RECORD_MASK;
392 /* Add Audio IO mask */
393 rmh.Cmd[1] = 0;
394 for (i = 0; i < VU_METER_CHANNELS; i++)
395 rmh.Cmd[1] |= 1 << (audio + i);
396 err = vx_send_msg(chip, &rmh);
397 if (err < 0)
398 return err;
399 /* Read response */
400 for (i = 0; i < 2 * VU_METER_CHANNELS; i +=2) {
401 info->saturated = (rmh.Stat[0] & (1 << (audio + i))) ? 1 : 0;
402 info->vu_level = rmh.Stat[i + 1];
403 info->peak_level = rmh.Stat[i + 2];
404 info++;
406 return 0;
411 * control API entries
415 * output level control
417 static int vx_output_level_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
419 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
420 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
421 uinfo->count = 2;
422 uinfo->value.integer.min = 0;
423 uinfo->value.integer.max = chip->hw->output_level_max;
424 return 0;
427 static int vx_output_level_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
429 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
430 int codec = kcontrol->id.index;
431 mutex_lock(&chip->mixer_mutex);
432 ucontrol->value.integer.value[0] = chip->output_level[codec][0];
433 ucontrol->value.integer.value[1] = chip->output_level[codec][1];
434 mutex_unlock(&chip->mixer_mutex);
435 return 0;
438 static int vx_output_level_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
440 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
441 int codec = kcontrol->id.index;
442 unsigned int val[2], vmax;
444 vmax = chip->hw->output_level_max;
445 val[0] = ucontrol->value.integer.value[0];
446 val[1] = ucontrol->value.integer.value[1];
447 if (val[0] > vmax || val[1] > vmax)
448 return -EINVAL;
449 mutex_lock(&chip->mixer_mutex);
450 if (val[0] != chip->output_level[codec][0] ||
451 val[1] != chip->output_level[codec][1]) {
452 vx_set_analog_output_level(chip, codec, val[0], val[1]);
453 chip->output_level[codec][0] = val[0];
454 chip->output_level[codec][1] = val[1];
455 mutex_unlock(&chip->mixer_mutex);
456 return 1;
458 mutex_unlock(&chip->mixer_mutex);
459 return 0;
462 static struct snd_kcontrol_new vx_control_output_level = {
463 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
464 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
465 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
466 .name = "Master Playback Volume",
467 .info = vx_output_level_info,
468 .get = vx_output_level_get,
469 .put = vx_output_level_put,
470 /* tlv will be filled later */
474 * audio source select
476 static int vx_audio_src_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
478 static char *texts_mic[3] = {
479 "Digital", "Line", "Mic"
481 static char *texts_vx2[2] = {
482 "Digital", "Analog"
484 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
486 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
487 uinfo->count = 1;
488 if (chip->type >= VX_TYPE_VXPOCKET) {
489 uinfo->value.enumerated.items = 3;
490 if (uinfo->value.enumerated.item > 2)
491 uinfo->value.enumerated.item = 2;
492 strcpy(uinfo->value.enumerated.name,
493 texts_mic[uinfo->value.enumerated.item]);
494 } else {
495 uinfo->value.enumerated.items = 2;
496 if (uinfo->value.enumerated.item > 1)
497 uinfo->value.enumerated.item = 1;
498 strcpy(uinfo->value.enumerated.name,
499 texts_vx2[uinfo->value.enumerated.item]);
501 return 0;
504 static int vx_audio_src_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
506 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
507 ucontrol->value.enumerated.item[0] = chip->audio_source_target;
508 return 0;
511 static int vx_audio_src_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
513 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
515 if (chip->type >= VX_TYPE_VXPOCKET) {
516 if (ucontrol->value.enumerated.item[0] > 2)
517 return -EINVAL;
518 } else {
519 if (ucontrol->value.enumerated.item[0] > 1)
520 return -EINVAL;
522 mutex_lock(&chip->mixer_mutex);
523 if (chip->audio_source_target != ucontrol->value.enumerated.item[0]) {
524 chip->audio_source_target = ucontrol->value.enumerated.item[0];
525 vx_sync_audio_source(chip);
526 mutex_unlock(&chip->mixer_mutex);
527 return 1;
529 mutex_unlock(&chip->mixer_mutex);
530 return 0;
533 static struct snd_kcontrol_new vx_control_audio_src = {
534 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
535 .name = "Capture Source",
536 .info = vx_audio_src_info,
537 .get = vx_audio_src_get,
538 .put = vx_audio_src_put,
542 * clock mode selection
544 static int vx_clock_mode_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
546 static char *texts[3] = {
547 "Auto", "Internal", "External"
550 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
551 uinfo->count = 1;
552 uinfo->value.enumerated.items = 3;
553 if (uinfo->value.enumerated.item > 2)
554 uinfo->value.enumerated.item = 2;
555 strcpy(uinfo->value.enumerated.name,
556 texts[uinfo->value.enumerated.item]);
557 return 0;
560 static int vx_clock_mode_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
562 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
563 ucontrol->value.enumerated.item[0] = chip->clock_mode;
564 return 0;
567 static int vx_clock_mode_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
569 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
571 if (ucontrol->value.enumerated.item[0] > 2)
572 return -EINVAL;
573 mutex_lock(&chip->mixer_mutex);
574 if (chip->clock_mode != ucontrol->value.enumerated.item[0]) {
575 chip->clock_mode = ucontrol->value.enumerated.item[0];
576 vx_set_clock(chip, chip->freq);
577 mutex_unlock(&chip->mixer_mutex);
578 return 1;
580 mutex_unlock(&chip->mixer_mutex);
581 return 0;
584 static struct snd_kcontrol_new vx_control_clock_mode = {
585 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
586 .name = "Clock Mode",
587 .info = vx_clock_mode_info,
588 .get = vx_clock_mode_get,
589 .put = vx_clock_mode_put,
593 * Audio Gain
595 static int vx_audio_gain_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
597 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
598 uinfo->count = 2;
599 uinfo->value.integer.min = 0;
600 uinfo->value.integer.max = CVAL_MAX;
601 return 0;
604 static int vx_audio_gain_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
606 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
607 int audio = kcontrol->private_value & 0xff;
608 int capture = (kcontrol->private_value >> 8) & 1;
610 mutex_lock(&chip->mixer_mutex);
611 ucontrol->value.integer.value[0] = chip->audio_gain[capture][audio];
612 ucontrol->value.integer.value[1] = chip->audio_gain[capture][audio+1];
613 mutex_unlock(&chip->mixer_mutex);
614 return 0;
617 static int vx_audio_gain_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
619 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
620 int audio = kcontrol->private_value & 0xff;
621 int capture = (kcontrol->private_value >> 8) & 1;
622 unsigned int val[2];
624 val[0] = ucontrol->value.integer.value[0];
625 val[1] = ucontrol->value.integer.value[1];
626 if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
627 return -EINVAL;
628 mutex_lock(&chip->mixer_mutex);
629 if (val[0] != chip->audio_gain[capture][audio] ||
630 val[1] != chip->audio_gain[capture][audio+1]) {
631 vx_set_audio_gain(chip, audio, capture, val[0]);
632 vx_set_audio_gain(chip, audio+1, capture, val[1]);
633 mutex_unlock(&chip->mixer_mutex);
634 return 1;
636 mutex_unlock(&chip->mixer_mutex);
637 return 0;
640 static int vx_audio_monitor_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
642 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
643 int audio = kcontrol->private_value & 0xff;
645 mutex_lock(&chip->mixer_mutex);
646 ucontrol->value.integer.value[0] = chip->audio_monitor[audio];
647 ucontrol->value.integer.value[1] = chip->audio_monitor[audio+1];
648 mutex_unlock(&chip->mixer_mutex);
649 return 0;
652 static int vx_audio_monitor_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
654 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
655 int audio = kcontrol->private_value & 0xff;
656 unsigned int val[2];
658 val[0] = ucontrol->value.integer.value[0];
659 val[1] = ucontrol->value.integer.value[1];
660 if (val[0] > CVAL_MAX || val[1] > CVAL_MAX)
661 return -EINVAL;
663 mutex_lock(&chip->mixer_mutex);
664 if (val[0] != chip->audio_monitor[audio] ||
665 val[1] != chip->audio_monitor[audio+1]) {
666 vx_set_monitor_level(chip, audio, val[0],
667 chip->audio_monitor_active[audio]);
668 vx_set_monitor_level(chip, audio+1, val[1],
669 chip->audio_monitor_active[audio+1]);
670 mutex_unlock(&chip->mixer_mutex);
671 return 1;
673 mutex_unlock(&chip->mixer_mutex);
674 return 0;
677 #define vx_audio_sw_info snd_ctl_boolean_stereo_info
679 static int vx_audio_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
681 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
682 int audio = kcontrol->private_value & 0xff;
684 mutex_lock(&chip->mixer_mutex);
685 ucontrol->value.integer.value[0] = chip->audio_active[audio];
686 ucontrol->value.integer.value[1] = chip->audio_active[audio+1];
687 mutex_unlock(&chip->mixer_mutex);
688 return 0;
691 static int vx_audio_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
693 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
694 int audio = kcontrol->private_value & 0xff;
696 mutex_lock(&chip->mixer_mutex);
697 if (ucontrol->value.integer.value[0] != chip->audio_active[audio] ||
698 ucontrol->value.integer.value[1] != chip->audio_active[audio+1]) {
699 vx_set_audio_switch(chip, audio,
700 !!ucontrol->value.integer.value[0]);
701 vx_set_audio_switch(chip, audio+1,
702 !!ucontrol->value.integer.value[1]);
703 mutex_unlock(&chip->mixer_mutex);
704 return 1;
706 mutex_unlock(&chip->mixer_mutex);
707 return 0;
710 static int vx_monitor_sw_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
712 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
713 int audio = kcontrol->private_value & 0xff;
715 mutex_lock(&chip->mixer_mutex);
716 ucontrol->value.integer.value[0] = chip->audio_monitor_active[audio];
717 ucontrol->value.integer.value[1] = chip->audio_monitor_active[audio+1];
718 mutex_unlock(&chip->mixer_mutex);
719 return 0;
722 static int vx_monitor_sw_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
724 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
725 int audio = kcontrol->private_value & 0xff;
727 mutex_lock(&chip->mixer_mutex);
728 if (ucontrol->value.integer.value[0] != chip->audio_monitor_active[audio] ||
729 ucontrol->value.integer.value[1] != chip->audio_monitor_active[audio+1]) {
730 vx_set_monitor_level(chip, audio, chip->audio_monitor[audio],
731 !!ucontrol->value.integer.value[0]);
732 vx_set_monitor_level(chip, audio+1, chip->audio_monitor[audio+1],
733 !!ucontrol->value.integer.value[1]);
734 mutex_unlock(&chip->mixer_mutex);
735 return 1;
737 mutex_unlock(&chip->mixer_mutex);
738 return 0;
741 static const DECLARE_TLV_DB_SCALE(db_scale_audio_gain, -10975, 25, 0);
743 static struct snd_kcontrol_new vx_control_audio_gain = {
744 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
745 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
746 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
747 /* name will be filled later */
748 .info = vx_audio_gain_info,
749 .get = vx_audio_gain_get,
750 .put = vx_audio_gain_put,
751 .tlv = { .p = db_scale_audio_gain },
753 static struct snd_kcontrol_new vx_control_output_switch = {
754 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
755 .name = "PCM Playback Switch",
756 .info = vx_audio_sw_info,
757 .get = vx_audio_sw_get,
758 .put = vx_audio_sw_put
760 static struct snd_kcontrol_new vx_control_monitor_gain = {
761 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
762 .name = "Monitoring Volume",
763 .access = (SNDRV_CTL_ELEM_ACCESS_READWRITE |
764 SNDRV_CTL_ELEM_ACCESS_TLV_READ),
765 .info = vx_audio_gain_info, /* shared */
766 .get = vx_audio_monitor_get,
767 .put = vx_audio_monitor_put,
768 .tlv = { .p = db_scale_audio_gain },
770 static struct snd_kcontrol_new vx_control_monitor_switch = {
771 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
772 .name = "Monitoring Switch",
773 .info = vx_audio_sw_info, /* shared */
774 .get = vx_monitor_sw_get,
775 .put = vx_monitor_sw_put
780 * IEC958 status bits
782 static int vx_iec958_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
784 uinfo->type = SNDRV_CTL_ELEM_TYPE_IEC958;
785 uinfo->count = 1;
786 return 0;
789 static int vx_iec958_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
791 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
793 mutex_lock(&chip->mixer_mutex);
794 ucontrol->value.iec958.status[0] = (chip->uer_bits >> 0) & 0xff;
795 ucontrol->value.iec958.status[1] = (chip->uer_bits >> 8) & 0xff;
796 ucontrol->value.iec958.status[2] = (chip->uer_bits >> 16) & 0xff;
797 ucontrol->value.iec958.status[3] = (chip->uer_bits >> 24) & 0xff;
798 mutex_unlock(&chip->mixer_mutex);
799 return 0;
802 static int vx_iec958_mask_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
804 ucontrol->value.iec958.status[0] = 0xff;
805 ucontrol->value.iec958.status[1] = 0xff;
806 ucontrol->value.iec958.status[2] = 0xff;
807 ucontrol->value.iec958.status[3] = 0xff;
808 return 0;
811 static int vx_iec958_put(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
813 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
814 unsigned int val;
816 val = (ucontrol->value.iec958.status[0] << 0) |
817 (ucontrol->value.iec958.status[1] << 8) |
818 (ucontrol->value.iec958.status[2] << 16) |
819 (ucontrol->value.iec958.status[3] << 24);
820 mutex_lock(&chip->mixer_mutex);
821 if (chip->uer_bits != val) {
822 chip->uer_bits = val;
823 vx_set_iec958_status(chip, val);
824 mutex_unlock(&chip->mixer_mutex);
825 return 1;
827 mutex_unlock(&chip->mixer_mutex);
828 return 0;
831 static struct snd_kcontrol_new vx_control_iec958_mask = {
832 .access = SNDRV_CTL_ELEM_ACCESS_READ,
833 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
834 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,MASK),
835 .info = vx_iec958_info, /* shared */
836 .get = vx_iec958_mask_get,
839 static struct snd_kcontrol_new vx_control_iec958 = {
840 .iface = SNDRV_CTL_ELEM_IFACE_PCM,
841 .name = SNDRV_CTL_NAME_IEC958("",PLAYBACK,DEFAULT),
842 .info = vx_iec958_info,
843 .get = vx_iec958_get,
844 .put = vx_iec958_put
849 * VU meter
852 #define METER_MAX 0xff
853 #define METER_SHIFT 16
855 static int vx_vu_meter_info(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_info *uinfo)
857 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
858 uinfo->count = 2;
859 uinfo->value.integer.min = 0;
860 uinfo->value.integer.max = METER_MAX;
861 return 0;
864 static int vx_vu_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
866 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
867 struct vx_vu_meter meter[2];
868 int audio = kcontrol->private_value & 0xff;
869 int capture = (kcontrol->private_value >> 8) & 1;
871 vx_get_audio_vu_meter(chip, audio, capture, meter);
872 ucontrol->value.integer.value[0] = meter[0].vu_level >> METER_SHIFT;
873 ucontrol->value.integer.value[1] = meter[1].vu_level >> METER_SHIFT;
874 return 0;
877 static int vx_peak_meter_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
879 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
880 struct vx_vu_meter meter[2];
881 int audio = kcontrol->private_value & 0xff;
882 int capture = (kcontrol->private_value >> 8) & 1;
884 vx_get_audio_vu_meter(chip, audio, capture, meter);
885 ucontrol->value.integer.value[0] = meter[0].peak_level >> METER_SHIFT;
886 ucontrol->value.integer.value[1] = meter[1].peak_level >> METER_SHIFT;
887 return 0;
890 #define vx_saturation_info snd_ctl_boolean_stereo_info
892 static int vx_saturation_get(struct snd_kcontrol *kcontrol, struct snd_ctl_elem_value *ucontrol)
894 struct vx_core *chip = snd_kcontrol_chip(kcontrol);
895 struct vx_vu_meter meter[2];
896 int audio = kcontrol->private_value & 0xff;
898 vx_get_audio_vu_meter(chip, audio, 1, meter); /* capture only */
899 ucontrol->value.integer.value[0] = meter[0].saturated;
900 ucontrol->value.integer.value[1] = meter[1].saturated;
901 return 0;
904 static struct snd_kcontrol_new vx_control_vu_meter = {
905 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
906 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
907 /* name will be filled later */
908 .info = vx_vu_meter_info,
909 .get = vx_vu_meter_get,
912 static struct snd_kcontrol_new vx_control_peak_meter = {
913 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
914 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
915 /* name will be filled later */
916 .info = vx_vu_meter_info, /* shared */
917 .get = vx_peak_meter_get,
920 static struct snd_kcontrol_new vx_control_saturation = {
921 .iface = SNDRV_CTL_ELEM_IFACE_MIXER,
922 .name = "Input Saturation",
923 .access = SNDRV_CTL_ELEM_ACCESS_READ | SNDRV_CTL_ELEM_ACCESS_VOLATILE,
924 .info = vx_saturation_info,
925 .get = vx_saturation_get,
934 int snd_vx_mixer_new(struct vx_core *chip)
936 unsigned int i, c;
937 int err;
938 struct snd_kcontrol_new temp;
939 struct snd_card *card = chip->card;
940 char name[32];
942 strcpy(card->mixername, card->driver);
944 /* output level controls */
945 for (i = 0; i < chip->hw->num_outs; i++) {
946 temp = vx_control_output_level;
947 temp.index = i;
948 temp.tlv.p = chip->hw->output_level_db_scale;
949 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
950 return err;
953 /* PCM volumes, switches, monitoring */
954 for (i = 0; i < chip->hw->num_outs; i++) {
955 int val = i * 2;
956 temp = vx_control_audio_gain;
957 temp.index = i;
958 temp.name = "PCM Playback Volume";
959 temp.private_value = val;
960 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
961 return err;
962 temp = vx_control_output_switch;
963 temp.index = i;
964 temp.private_value = val;
965 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
966 return err;
967 temp = vx_control_monitor_gain;
968 temp.index = i;
969 temp.private_value = val;
970 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
971 return err;
972 temp = vx_control_monitor_switch;
973 temp.index = i;
974 temp.private_value = val;
975 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
976 return err;
978 for (i = 0; i < chip->hw->num_outs; i++) {
979 temp = vx_control_audio_gain;
980 temp.index = i;
981 temp.name = "PCM Capture Volume";
982 temp.private_value = (i * 2) | (1 << 8);
983 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
984 return err;
987 /* Audio source */
988 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_audio_src, chip))) < 0)
989 return err;
990 /* clock mode */
991 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_clock_mode, chip))) < 0)
992 return err;
993 /* IEC958 controls */
994 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958_mask, chip))) < 0)
995 return err;
996 if ((err = snd_ctl_add(card, snd_ctl_new1(&vx_control_iec958, chip))) < 0)
997 return err;
998 /* VU, peak, saturation meters */
999 for (c = 0; c < 2; c++) {
1000 static char *dir[2] = { "Output", "Input" };
1001 for (i = 0; i < chip->hw->num_ins; i++) {
1002 int val = (i * 2) | (c << 8);
1003 if (c == 1) {
1004 temp = vx_control_saturation;
1005 temp.index = i;
1006 temp.private_value = val;
1007 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1008 return err;
1010 sprintf(name, "%s VU Meter", dir[c]);
1011 temp = vx_control_vu_meter;
1012 temp.index = i;
1013 temp.name = name;
1014 temp.private_value = val;
1015 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1016 return err;
1017 sprintf(name, "%s Peak Meter", dir[c]);
1018 temp = vx_control_peak_meter;
1019 temp.index = i;
1020 temp.name = name;
1021 temp.private_value = val;
1022 if ((err = snd_ctl_add(card, snd_ctl_new1(&temp, chip))) < 0)
1023 return err;
1026 vx_reset_audio_levels(chip);
1027 return 0;