cifs: sanitize length checking in coalesce_t2 (try #3)
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / bluetooth / hci_core.c
blobc83f618282f709e424bc30af470139e77586dd66
1 /*
2 BlueZ - Bluetooth protocol stack for Linux
3 Copyright (C) 2000-2001 Qualcomm Incorporated
5 Written 2000,2001 by Maxim Krasnyansky <maxk@qualcomm.com>
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License version 2 as
9 published by the Free Software Foundation;
11 THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
12 OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
13 FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OF THIRD PARTY RIGHTS.
14 IN NO EVENT SHALL THE COPYRIGHT HOLDER(S) AND AUTHOR(S) BE LIABLE FOR ANY
15 CLAIM, OR ANY SPECIAL INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES
16 WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
17 ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
18 OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
20 ALL LIABILITY, INCLUDING LIABILITY FOR INFRINGEMENT OF ANY PATENTS,
21 COPYRIGHTS, TRADEMARKS OR OTHER RIGHTS, RELATING TO USE OF THIS
22 SOFTWARE IS DISCLAIMED.
25 /* Bluetooth HCI core. */
27 #include <linux/jiffies.h>
28 #include <linux/module.h>
29 #include <linux/kmod.h>
31 #include <linux/types.h>
32 #include <linux/errno.h>
33 #include <linux/kernel.h>
34 #include <linux/sched.h>
35 #include <linux/slab.h>
36 #include <linux/poll.h>
37 #include <linux/fcntl.h>
38 #include <linux/init.h>
39 #include <linux/skbuff.h>
40 #include <linux/workqueue.h>
41 #include <linux/interrupt.h>
42 #include <linux/notifier.h>
43 #include <linux/rfkill.h>
44 #include <linux/timer.h>
45 #include <net/sock.h>
47 #include <asm/system.h>
48 #include <linux/uaccess.h>
49 #include <asm/unaligned.h>
51 #include <net/bluetooth/bluetooth.h>
52 #include <net/bluetooth/hci_core.h>
54 #define AUTO_OFF_TIMEOUT 2000
56 static void hci_cmd_task(unsigned long arg);
57 static void hci_rx_task(unsigned long arg);
58 static void hci_tx_task(unsigned long arg);
59 static void hci_notify(struct hci_dev *hdev, int event);
61 static DEFINE_RWLOCK(hci_task_lock);
63 /* HCI device list */
64 LIST_HEAD(hci_dev_list);
65 DEFINE_RWLOCK(hci_dev_list_lock);
67 /* HCI callback list */
68 LIST_HEAD(hci_cb_list);
69 DEFINE_RWLOCK(hci_cb_list_lock);
71 /* HCI protocols */
72 #define HCI_MAX_PROTO 2
73 struct hci_proto *hci_proto[HCI_MAX_PROTO];
75 /* HCI notifiers list */
76 static ATOMIC_NOTIFIER_HEAD(hci_notifier);
78 /* ---- HCI notifications ---- */
80 int hci_register_notifier(struct notifier_block *nb)
82 return atomic_notifier_chain_register(&hci_notifier, nb);
85 int hci_unregister_notifier(struct notifier_block *nb)
87 return atomic_notifier_chain_unregister(&hci_notifier, nb);
90 static void hci_notify(struct hci_dev *hdev, int event)
92 atomic_notifier_call_chain(&hci_notifier, event, hdev);
95 /* ---- HCI requests ---- */
97 void hci_req_complete(struct hci_dev *hdev, __u16 cmd, int result)
99 BT_DBG("%s command 0x%04x result 0x%2.2x", hdev->name, cmd, result);
101 /* If this is the init phase check if the completed command matches
102 * the last init command, and if not just return.
104 if (test_bit(HCI_INIT, &hdev->flags) && hdev->init_last_cmd != cmd)
105 return;
107 if (hdev->req_status == HCI_REQ_PEND) {
108 hdev->req_result = result;
109 hdev->req_status = HCI_REQ_DONE;
110 wake_up_interruptible(&hdev->req_wait_q);
114 static void hci_req_cancel(struct hci_dev *hdev, int err)
116 BT_DBG("%s err 0x%2.2x", hdev->name, err);
118 if (hdev->req_status == HCI_REQ_PEND) {
119 hdev->req_result = err;
120 hdev->req_status = HCI_REQ_CANCELED;
121 wake_up_interruptible(&hdev->req_wait_q);
125 /* Execute request and wait for completion. */
126 static int __hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
127 unsigned long opt, __u32 timeout)
129 DECLARE_WAITQUEUE(wait, current);
130 int err = 0;
132 BT_DBG("%s start", hdev->name);
134 hdev->req_status = HCI_REQ_PEND;
136 add_wait_queue(&hdev->req_wait_q, &wait);
137 set_current_state(TASK_INTERRUPTIBLE);
139 req(hdev, opt);
140 schedule_timeout(timeout);
142 remove_wait_queue(&hdev->req_wait_q, &wait);
144 if (signal_pending(current))
145 return -EINTR;
147 switch (hdev->req_status) {
148 case HCI_REQ_DONE:
149 err = -bt_err(hdev->req_result);
150 break;
152 case HCI_REQ_CANCELED:
153 err = -hdev->req_result;
154 break;
156 default:
157 err = -ETIMEDOUT;
158 break;
161 hdev->req_status = hdev->req_result = 0;
163 BT_DBG("%s end: err %d", hdev->name, err);
165 return err;
168 static inline int hci_request(struct hci_dev *hdev, void (*req)(struct hci_dev *hdev, unsigned long opt),
169 unsigned long opt, __u32 timeout)
171 int ret;
173 if (!test_bit(HCI_UP, &hdev->flags))
174 return -ENETDOWN;
176 /* Serialize all requests */
177 hci_req_lock(hdev);
178 ret = __hci_request(hdev, req, opt, timeout);
179 hci_req_unlock(hdev);
181 return ret;
184 static void hci_reset_req(struct hci_dev *hdev, unsigned long opt)
186 BT_DBG("%s %ld", hdev->name, opt);
188 /* Reset device */
189 set_bit(HCI_RESET, &hdev->flags);
190 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
193 static void hci_init_req(struct hci_dev *hdev, unsigned long opt)
195 struct hci_cp_delete_stored_link_key cp;
196 struct sk_buff *skb;
197 __le16 param;
198 __u8 flt_type;
200 BT_DBG("%s %ld", hdev->name, opt);
202 /* Driver initialization */
204 /* Special commands */
205 while ((skb = skb_dequeue(&hdev->driver_init))) {
206 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
207 skb->dev = (void *) hdev;
209 skb_queue_tail(&hdev->cmd_q, skb);
210 tasklet_schedule(&hdev->cmd_task);
212 skb_queue_purge(&hdev->driver_init);
214 /* Mandatory initialization */
216 /* Reset */
217 if (!test_bit(HCI_QUIRK_NO_RESET, &hdev->quirks)) {
218 set_bit(HCI_RESET, &hdev->flags);
219 hci_send_cmd(hdev, HCI_OP_RESET, 0, NULL);
222 /* Read Local Supported Features */
223 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_FEATURES, 0, NULL);
225 /* Read Local Version */
226 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_VERSION, 0, NULL);
228 /* Read Buffer Size (ACL mtu, max pkt, etc.) */
229 hci_send_cmd(hdev, HCI_OP_READ_BUFFER_SIZE, 0, NULL);
231 #if 0
232 /* Host buffer size */
234 struct hci_cp_host_buffer_size cp;
235 cp.acl_mtu = cpu_to_le16(HCI_MAX_ACL_SIZE);
236 cp.sco_mtu = HCI_MAX_SCO_SIZE;
237 cp.acl_max_pkt = cpu_to_le16(0xffff);
238 cp.sco_max_pkt = cpu_to_le16(0xffff);
239 hci_send_cmd(hdev, HCI_OP_HOST_BUFFER_SIZE, sizeof(cp), &cp);
241 #endif
243 /* Read BD Address */
244 hci_send_cmd(hdev, HCI_OP_READ_BD_ADDR, 0, NULL);
246 /* Read Class of Device */
247 hci_send_cmd(hdev, HCI_OP_READ_CLASS_OF_DEV, 0, NULL);
249 /* Read Local Name */
250 hci_send_cmd(hdev, HCI_OP_READ_LOCAL_NAME, 0, NULL);
252 /* Read Voice Setting */
253 hci_send_cmd(hdev, HCI_OP_READ_VOICE_SETTING, 0, NULL);
255 /* Optional initialization */
257 /* Clear Event Filters */
258 flt_type = HCI_FLT_CLEAR_ALL;
259 hci_send_cmd(hdev, HCI_OP_SET_EVENT_FLT, 1, &flt_type);
261 /* Connection accept timeout ~20 secs */
262 param = cpu_to_le16(0x7d00);
263 hci_send_cmd(hdev, HCI_OP_WRITE_CA_TIMEOUT, 2, &param);
265 bacpy(&cp.bdaddr, BDADDR_ANY);
266 cp.delete_all = 1;
267 hci_send_cmd(hdev, HCI_OP_DELETE_STORED_LINK_KEY, sizeof(cp), &cp);
270 static void hci_le_init_req(struct hci_dev *hdev, unsigned long opt)
272 BT_DBG("%s", hdev->name);
274 /* Read LE buffer size */
275 hci_send_cmd(hdev, HCI_OP_LE_READ_BUFFER_SIZE, 0, NULL);
278 static void hci_scan_req(struct hci_dev *hdev, unsigned long opt)
280 __u8 scan = opt;
282 BT_DBG("%s %x", hdev->name, scan);
284 /* Inquiry and Page scans */
285 hci_send_cmd(hdev, HCI_OP_WRITE_SCAN_ENABLE, 1, &scan);
288 static void hci_auth_req(struct hci_dev *hdev, unsigned long opt)
290 __u8 auth = opt;
292 BT_DBG("%s %x", hdev->name, auth);
294 /* Authentication */
295 hci_send_cmd(hdev, HCI_OP_WRITE_AUTH_ENABLE, 1, &auth);
298 static void hci_encrypt_req(struct hci_dev *hdev, unsigned long opt)
300 __u8 encrypt = opt;
302 BT_DBG("%s %x", hdev->name, encrypt);
304 /* Encryption */
305 hci_send_cmd(hdev, HCI_OP_WRITE_ENCRYPT_MODE, 1, &encrypt);
308 static void hci_linkpol_req(struct hci_dev *hdev, unsigned long opt)
310 __le16 policy = cpu_to_le16(opt);
312 BT_DBG("%s %x", hdev->name, policy);
314 /* Default link policy */
315 hci_send_cmd(hdev, HCI_OP_WRITE_DEF_LINK_POLICY, 2, &policy);
318 /* Get HCI device by index.
319 * Device is held on return. */
320 struct hci_dev *hci_dev_get(int index)
322 struct hci_dev *hdev = NULL;
323 struct list_head *p;
325 BT_DBG("%d", index);
327 if (index < 0)
328 return NULL;
330 read_lock(&hci_dev_list_lock);
331 list_for_each(p, &hci_dev_list) {
332 struct hci_dev *d = list_entry(p, struct hci_dev, list);
333 if (d->id == index) {
334 hdev = hci_dev_hold(d);
335 break;
338 read_unlock(&hci_dev_list_lock);
339 return hdev;
342 /* ---- Inquiry support ---- */
343 static void inquiry_cache_flush(struct hci_dev *hdev)
345 struct inquiry_cache *cache = &hdev->inq_cache;
346 struct inquiry_entry *next = cache->list, *e;
348 BT_DBG("cache %p", cache);
350 cache->list = NULL;
351 while ((e = next)) {
352 next = e->next;
353 kfree(e);
357 struct inquiry_entry *hci_inquiry_cache_lookup(struct hci_dev *hdev, bdaddr_t *bdaddr)
359 struct inquiry_cache *cache = &hdev->inq_cache;
360 struct inquiry_entry *e;
362 BT_DBG("cache %p, %s", cache, batostr(bdaddr));
364 for (e = cache->list; e; e = e->next)
365 if (!bacmp(&e->data.bdaddr, bdaddr))
366 break;
367 return e;
370 void hci_inquiry_cache_update(struct hci_dev *hdev, struct inquiry_data *data)
372 struct inquiry_cache *cache = &hdev->inq_cache;
373 struct inquiry_entry *ie;
375 BT_DBG("cache %p, %s", cache, batostr(&data->bdaddr));
377 ie = hci_inquiry_cache_lookup(hdev, &data->bdaddr);
378 if (!ie) {
379 /* Entry not in the cache. Add new one. */
380 ie = kzalloc(sizeof(struct inquiry_entry), GFP_ATOMIC);
381 if (!ie)
382 return;
384 ie->next = cache->list;
385 cache->list = ie;
388 memcpy(&ie->data, data, sizeof(*data));
389 ie->timestamp = jiffies;
390 cache->timestamp = jiffies;
393 static int inquiry_cache_dump(struct hci_dev *hdev, int num, __u8 *buf)
395 struct inquiry_cache *cache = &hdev->inq_cache;
396 struct inquiry_info *info = (struct inquiry_info *) buf;
397 struct inquiry_entry *e;
398 int copied = 0;
400 for (e = cache->list; e && copied < num; e = e->next, copied++) {
401 struct inquiry_data *data = &e->data;
402 bacpy(&info->bdaddr, &data->bdaddr);
403 info->pscan_rep_mode = data->pscan_rep_mode;
404 info->pscan_period_mode = data->pscan_period_mode;
405 info->pscan_mode = data->pscan_mode;
406 memcpy(info->dev_class, data->dev_class, 3);
407 info->clock_offset = data->clock_offset;
408 info++;
411 BT_DBG("cache %p, copied %d", cache, copied);
412 return copied;
415 static void hci_inq_req(struct hci_dev *hdev, unsigned long opt)
417 struct hci_inquiry_req *ir = (struct hci_inquiry_req *) opt;
418 struct hci_cp_inquiry cp;
420 BT_DBG("%s", hdev->name);
422 if (test_bit(HCI_INQUIRY, &hdev->flags))
423 return;
425 /* Start Inquiry */
426 memcpy(&cp.lap, &ir->lap, 3);
427 cp.length = ir->length;
428 cp.num_rsp = ir->num_rsp;
429 hci_send_cmd(hdev, HCI_OP_INQUIRY, sizeof(cp), &cp);
432 int hci_inquiry(void __user *arg)
434 __u8 __user *ptr = arg;
435 struct hci_inquiry_req ir;
436 struct hci_dev *hdev;
437 int err = 0, do_inquiry = 0, max_rsp;
438 long timeo;
439 __u8 *buf;
441 if (copy_from_user(&ir, ptr, sizeof(ir)))
442 return -EFAULT;
444 hdev = hci_dev_get(ir.dev_id);
445 if (!hdev)
446 return -ENODEV;
448 hci_dev_lock_bh(hdev);
449 if (inquiry_cache_age(hdev) > INQUIRY_CACHE_AGE_MAX ||
450 inquiry_cache_empty(hdev) ||
451 ir.flags & IREQ_CACHE_FLUSH) {
452 inquiry_cache_flush(hdev);
453 do_inquiry = 1;
455 hci_dev_unlock_bh(hdev);
457 timeo = ir.length * msecs_to_jiffies(2000);
459 if (do_inquiry) {
460 err = hci_request(hdev, hci_inq_req, (unsigned long)&ir, timeo);
461 if (err < 0)
462 goto done;
465 /* for unlimited number of responses we will use buffer with 255 entries */
466 max_rsp = (ir.num_rsp == 0) ? 255 : ir.num_rsp;
468 /* cache_dump can't sleep. Therefore we allocate temp buffer and then
469 * copy it to the user space.
471 buf = kmalloc(sizeof(struct inquiry_info) * max_rsp, GFP_KERNEL);
472 if (!buf) {
473 err = -ENOMEM;
474 goto done;
477 hci_dev_lock_bh(hdev);
478 ir.num_rsp = inquiry_cache_dump(hdev, max_rsp, buf);
479 hci_dev_unlock_bh(hdev);
481 BT_DBG("num_rsp %d", ir.num_rsp);
483 if (!copy_to_user(ptr, &ir, sizeof(ir))) {
484 ptr += sizeof(ir);
485 if (copy_to_user(ptr, buf, sizeof(struct inquiry_info) *
486 ir.num_rsp))
487 err = -EFAULT;
488 } else
489 err = -EFAULT;
491 kfree(buf);
493 done:
494 hci_dev_put(hdev);
495 return err;
498 /* ---- HCI ioctl helpers ---- */
500 int hci_dev_open(__u16 dev)
502 struct hci_dev *hdev;
503 int ret = 0;
505 hdev = hci_dev_get(dev);
506 if (!hdev)
507 return -ENODEV;
509 BT_DBG("%s %p", hdev->name, hdev);
511 hci_req_lock(hdev);
513 if (hdev->rfkill && rfkill_blocked(hdev->rfkill)) {
514 ret = -ERFKILL;
515 goto done;
518 if (test_bit(HCI_UP, &hdev->flags)) {
519 ret = -EALREADY;
520 goto done;
523 if (test_bit(HCI_QUIRK_RAW_DEVICE, &hdev->quirks))
524 set_bit(HCI_RAW, &hdev->flags);
526 /* Treat all non BR/EDR controllers as raw devices for now */
527 if (hdev->dev_type != HCI_BREDR)
528 set_bit(HCI_RAW, &hdev->flags);
530 if (hdev->open(hdev)) {
531 ret = -EIO;
532 goto done;
535 if (!test_bit(HCI_RAW, &hdev->flags)) {
536 atomic_set(&hdev->cmd_cnt, 1);
537 set_bit(HCI_INIT, &hdev->flags);
538 hdev->init_last_cmd = 0;
540 ret = __hci_request(hdev, hci_init_req, 0,
541 msecs_to_jiffies(HCI_INIT_TIMEOUT));
543 if (lmp_le_capable(hdev))
544 ret = __hci_request(hdev, hci_le_init_req, 0,
545 msecs_to_jiffies(HCI_INIT_TIMEOUT));
547 clear_bit(HCI_INIT, &hdev->flags);
550 if (!ret) {
551 hci_dev_hold(hdev);
552 set_bit(HCI_UP, &hdev->flags);
553 hci_notify(hdev, HCI_DEV_UP);
554 if (!test_bit(HCI_SETUP, &hdev->flags))
555 mgmt_powered(hdev->id, 1);
556 } else {
557 /* Init failed, cleanup */
558 tasklet_kill(&hdev->rx_task);
559 tasklet_kill(&hdev->tx_task);
560 tasklet_kill(&hdev->cmd_task);
562 skb_queue_purge(&hdev->cmd_q);
563 skb_queue_purge(&hdev->rx_q);
565 if (hdev->flush)
566 hdev->flush(hdev);
568 if (hdev->sent_cmd) {
569 kfree_skb(hdev->sent_cmd);
570 hdev->sent_cmd = NULL;
573 hdev->close(hdev);
574 hdev->flags = 0;
577 done:
578 hci_req_unlock(hdev);
579 hci_dev_put(hdev);
580 return ret;
583 static int hci_dev_do_close(struct hci_dev *hdev)
585 BT_DBG("%s %p", hdev->name, hdev);
587 hci_req_cancel(hdev, ENODEV);
588 hci_req_lock(hdev);
590 /* Stop timer, it might be running */
591 del_timer_sync(&hdev->cmd_timer);
593 if (!test_and_clear_bit(HCI_UP, &hdev->flags)) {
594 hci_req_unlock(hdev);
595 return 0;
598 /* Kill RX and TX tasks */
599 tasklet_kill(&hdev->rx_task);
600 tasklet_kill(&hdev->tx_task);
602 hci_dev_lock_bh(hdev);
603 inquiry_cache_flush(hdev);
604 hci_conn_hash_flush(hdev);
605 hci_dev_unlock_bh(hdev);
607 hci_notify(hdev, HCI_DEV_DOWN);
609 if (hdev->flush)
610 hdev->flush(hdev);
612 /* Reset device */
613 skb_queue_purge(&hdev->cmd_q);
614 atomic_set(&hdev->cmd_cnt, 1);
615 if (!test_bit(HCI_RAW, &hdev->flags)) {
616 set_bit(HCI_INIT, &hdev->flags);
617 __hci_request(hdev, hci_reset_req, 0,
618 msecs_to_jiffies(250));
619 clear_bit(HCI_INIT, &hdev->flags);
622 /* Kill cmd task */
623 tasklet_kill(&hdev->cmd_task);
625 /* Drop queues */
626 skb_queue_purge(&hdev->rx_q);
627 skb_queue_purge(&hdev->cmd_q);
628 skb_queue_purge(&hdev->raw_q);
630 /* Drop last sent command */
631 if (hdev->sent_cmd) {
632 kfree_skb(hdev->sent_cmd);
633 hdev->sent_cmd = NULL;
636 /* After this point our queues are empty
637 * and no tasks are scheduled. */
638 hdev->close(hdev);
640 mgmt_powered(hdev->id, 0);
642 /* Clear flags */
643 hdev->flags = 0;
645 hci_req_unlock(hdev);
647 hci_dev_put(hdev);
648 return 0;
651 int hci_dev_close(__u16 dev)
653 struct hci_dev *hdev;
654 int err;
656 hdev = hci_dev_get(dev);
657 if (!hdev)
658 return -ENODEV;
659 err = hci_dev_do_close(hdev);
660 hci_dev_put(hdev);
661 return err;
664 int hci_dev_reset(__u16 dev)
666 struct hci_dev *hdev;
667 int ret = 0;
669 hdev = hci_dev_get(dev);
670 if (!hdev)
671 return -ENODEV;
673 hci_req_lock(hdev);
674 tasklet_disable(&hdev->tx_task);
676 if (!test_bit(HCI_UP, &hdev->flags))
677 goto done;
679 /* Drop queues */
680 skb_queue_purge(&hdev->rx_q);
681 skb_queue_purge(&hdev->cmd_q);
683 hci_dev_lock_bh(hdev);
684 inquiry_cache_flush(hdev);
685 hci_conn_hash_flush(hdev);
686 hci_dev_unlock_bh(hdev);
688 if (hdev->flush)
689 hdev->flush(hdev);
691 atomic_set(&hdev->cmd_cnt, 1);
692 hdev->acl_cnt = 0; hdev->sco_cnt = 0; hdev->le_cnt = 0;
694 if (!test_bit(HCI_RAW, &hdev->flags))
695 ret = __hci_request(hdev, hci_reset_req, 0,
696 msecs_to_jiffies(HCI_INIT_TIMEOUT));
698 done:
699 tasklet_enable(&hdev->tx_task);
700 hci_req_unlock(hdev);
701 hci_dev_put(hdev);
702 return ret;
705 int hci_dev_reset_stat(__u16 dev)
707 struct hci_dev *hdev;
708 int ret = 0;
710 hdev = hci_dev_get(dev);
711 if (!hdev)
712 return -ENODEV;
714 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
716 hci_dev_put(hdev);
718 return ret;
721 int hci_dev_cmd(unsigned int cmd, void __user *arg)
723 struct hci_dev *hdev;
724 struct hci_dev_req dr;
725 int err = 0;
727 if (copy_from_user(&dr, arg, sizeof(dr)))
728 return -EFAULT;
730 hdev = hci_dev_get(dr.dev_id);
731 if (!hdev)
732 return -ENODEV;
734 switch (cmd) {
735 case HCISETAUTH:
736 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
737 msecs_to_jiffies(HCI_INIT_TIMEOUT));
738 break;
740 case HCISETENCRYPT:
741 if (!lmp_encrypt_capable(hdev)) {
742 err = -EOPNOTSUPP;
743 break;
746 if (!test_bit(HCI_AUTH, &hdev->flags)) {
747 /* Auth must be enabled first */
748 err = hci_request(hdev, hci_auth_req, dr.dev_opt,
749 msecs_to_jiffies(HCI_INIT_TIMEOUT));
750 if (err)
751 break;
754 err = hci_request(hdev, hci_encrypt_req, dr.dev_opt,
755 msecs_to_jiffies(HCI_INIT_TIMEOUT));
756 break;
758 case HCISETSCAN:
759 err = hci_request(hdev, hci_scan_req, dr.dev_opt,
760 msecs_to_jiffies(HCI_INIT_TIMEOUT));
761 break;
763 case HCISETLINKPOL:
764 err = hci_request(hdev, hci_linkpol_req, dr.dev_opt,
765 msecs_to_jiffies(HCI_INIT_TIMEOUT));
766 break;
768 case HCISETLINKMODE:
769 hdev->link_mode = ((__u16) dr.dev_opt) &
770 (HCI_LM_MASTER | HCI_LM_ACCEPT);
771 break;
773 case HCISETPTYPE:
774 hdev->pkt_type = (__u16) dr.dev_opt;
775 break;
777 case HCISETACLMTU:
778 hdev->acl_mtu = *((__u16 *) &dr.dev_opt + 1);
779 hdev->acl_pkts = *((__u16 *) &dr.dev_opt + 0);
780 break;
782 case HCISETSCOMTU:
783 hdev->sco_mtu = *((__u16 *) &dr.dev_opt + 1);
784 hdev->sco_pkts = *((__u16 *) &dr.dev_opt + 0);
785 break;
787 default:
788 err = -EINVAL;
789 break;
792 hci_dev_put(hdev);
793 return err;
796 int hci_get_dev_list(void __user *arg)
798 struct hci_dev_list_req *dl;
799 struct hci_dev_req *dr;
800 struct list_head *p;
801 int n = 0, size, err;
802 __u16 dev_num;
804 if (get_user(dev_num, (__u16 __user *) arg))
805 return -EFAULT;
807 if (!dev_num || dev_num > (PAGE_SIZE * 2) / sizeof(*dr))
808 return -EINVAL;
810 size = sizeof(*dl) + dev_num * sizeof(*dr);
812 dl = kzalloc(size, GFP_KERNEL);
813 if (!dl)
814 return -ENOMEM;
816 dr = dl->dev_req;
818 read_lock_bh(&hci_dev_list_lock);
819 list_for_each(p, &hci_dev_list) {
820 struct hci_dev *hdev;
822 hdev = list_entry(p, struct hci_dev, list);
824 hci_del_off_timer(hdev);
826 if (!test_bit(HCI_MGMT, &hdev->flags))
827 set_bit(HCI_PAIRABLE, &hdev->flags);
829 (dr + n)->dev_id = hdev->id;
830 (dr + n)->dev_opt = hdev->flags;
832 if (++n >= dev_num)
833 break;
835 read_unlock_bh(&hci_dev_list_lock);
837 dl->dev_num = n;
838 size = sizeof(*dl) + n * sizeof(*dr);
840 err = copy_to_user(arg, dl, size);
841 kfree(dl);
843 return err ? -EFAULT : 0;
846 int hci_get_dev_info(void __user *arg)
848 struct hci_dev *hdev;
849 struct hci_dev_info di;
850 int err = 0;
852 if (copy_from_user(&di, arg, sizeof(di)))
853 return -EFAULT;
855 hdev = hci_dev_get(di.dev_id);
856 if (!hdev)
857 return -ENODEV;
859 hci_del_off_timer(hdev);
861 if (!test_bit(HCI_MGMT, &hdev->flags))
862 set_bit(HCI_PAIRABLE, &hdev->flags);
864 strcpy(di.name, hdev->name);
865 di.bdaddr = hdev->bdaddr;
866 di.type = (hdev->bus & 0x0f) | (hdev->dev_type << 4);
867 di.flags = hdev->flags;
868 di.pkt_type = hdev->pkt_type;
869 di.acl_mtu = hdev->acl_mtu;
870 di.acl_pkts = hdev->acl_pkts;
871 di.sco_mtu = hdev->sco_mtu;
872 di.sco_pkts = hdev->sco_pkts;
873 di.link_policy = hdev->link_policy;
874 di.link_mode = hdev->link_mode;
876 memcpy(&di.stat, &hdev->stat, sizeof(di.stat));
877 memcpy(&di.features, &hdev->features, sizeof(di.features));
879 if (copy_to_user(arg, &di, sizeof(di)))
880 err = -EFAULT;
882 hci_dev_put(hdev);
884 return err;
887 /* ---- Interface to HCI drivers ---- */
889 static int hci_rfkill_set_block(void *data, bool blocked)
891 struct hci_dev *hdev = data;
893 BT_DBG("%p name %s blocked %d", hdev, hdev->name, blocked);
895 if (!blocked)
896 return 0;
898 hci_dev_do_close(hdev);
900 return 0;
903 static const struct rfkill_ops hci_rfkill_ops = {
904 .set_block = hci_rfkill_set_block,
907 /* Alloc HCI device */
908 struct hci_dev *hci_alloc_dev(void)
910 struct hci_dev *hdev;
912 hdev = kzalloc(sizeof(struct hci_dev), GFP_KERNEL);
913 if (!hdev)
914 return NULL;
916 skb_queue_head_init(&hdev->driver_init);
918 return hdev;
920 EXPORT_SYMBOL(hci_alloc_dev);
922 /* Free HCI device */
923 void hci_free_dev(struct hci_dev *hdev)
925 skb_queue_purge(&hdev->driver_init);
927 /* will free via device release */
928 put_device(&hdev->dev);
930 EXPORT_SYMBOL(hci_free_dev);
932 static void hci_power_on(struct work_struct *work)
934 struct hci_dev *hdev = container_of(work, struct hci_dev, power_on);
936 BT_DBG("%s", hdev->name);
938 if (hci_dev_open(hdev->id) < 0)
939 return;
941 if (test_bit(HCI_AUTO_OFF, &hdev->flags))
942 mod_timer(&hdev->off_timer,
943 jiffies + msecs_to_jiffies(AUTO_OFF_TIMEOUT));
945 if (test_and_clear_bit(HCI_SETUP, &hdev->flags))
946 mgmt_index_added(hdev->id);
949 static void hci_power_off(struct work_struct *work)
951 struct hci_dev *hdev = container_of(work, struct hci_dev, power_off);
953 BT_DBG("%s", hdev->name);
955 hci_dev_close(hdev->id);
958 static void hci_auto_off(unsigned long data)
960 struct hci_dev *hdev = (struct hci_dev *) data;
962 BT_DBG("%s", hdev->name);
964 clear_bit(HCI_AUTO_OFF, &hdev->flags);
966 queue_work(hdev->workqueue, &hdev->power_off);
969 void hci_del_off_timer(struct hci_dev *hdev)
971 BT_DBG("%s", hdev->name);
973 clear_bit(HCI_AUTO_OFF, &hdev->flags);
974 del_timer(&hdev->off_timer);
977 int hci_uuids_clear(struct hci_dev *hdev)
979 struct list_head *p, *n;
981 list_for_each_safe(p, n, &hdev->uuids) {
982 struct bt_uuid *uuid;
984 uuid = list_entry(p, struct bt_uuid, list);
986 list_del(p);
987 kfree(uuid);
990 return 0;
993 int hci_link_keys_clear(struct hci_dev *hdev)
995 struct list_head *p, *n;
997 list_for_each_safe(p, n, &hdev->link_keys) {
998 struct link_key *key;
1000 key = list_entry(p, struct link_key, list);
1002 list_del(p);
1003 kfree(key);
1006 return 0;
1009 struct link_key *hci_find_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1011 struct list_head *p;
1013 list_for_each(p, &hdev->link_keys) {
1014 struct link_key *k;
1016 k = list_entry(p, struct link_key, list);
1018 if (bacmp(bdaddr, &k->bdaddr) == 0)
1019 return k;
1022 return NULL;
1025 int hci_add_link_key(struct hci_dev *hdev, int new_key, bdaddr_t *bdaddr,
1026 u8 *val, u8 type, u8 pin_len)
1028 struct link_key *key, *old_key;
1029 u8 old_key_type;
1031 old_key = hci_find_link_key(hdev, bdaddr);
1032 if (old_key) {
1033 old_key_type = old_key->type;
1034 key = old_key;
1035 } else {
1036 old_key_type = 0xff;
1037 key = kzalloc(sizeof(*key), GFP_ATOMIC);
1038 if (!key)
1039 return -ENOMEM;
1040 list_add(&key->list, &hdev->link_keys);
1043 BT_DBG("%s key for %s type %u", hdev->name, batostr(bdaddr), type);
1045 bacpy(&key->bdaddr, bdaddr);
1046 memcpy(key->val, val, 16);
1047 key->type = type;
1048 key->pin_len = pin_len;
1050 if (new_key)
1051 mgmt_new_key(hdev->id, key, old_key_type);
1053 if (type == 0x06)
1054 key->type = old_key_type;
1056 return 0;
1059 int hci_remove_link_key(struct hci_dev *hdev, bdaddr_t *bdaddr)
1061 struct link_key *key;
1063 key = hci_find_link_key(hdev, bdaddr);
1064 if (!key)
1065 return -ENOENT;
1067 BT_DBG("%s removing %s", hdev->name, batostr(bdaddr));
1069 list_del(&key->list);
1070 kfree(key);
1072 return 0;
1075 /* HCI command timer function */
1076 static void hci_cmd_timer(unsigned long arg)
1078 struct hci_dev *hdev = (void *) arg;
1080 BT_ERR("%s command tx timeout", hdev->name);
1081 atomic_set(&hdev->cmd_cnt, 1);
1082 clear_bit(HCI_RESET, &hdev->flags);
1083 tasklet_schedule(&hdev->cmd_task);
1086 /* Register HCI device */
1087 int hci_register_dev(struct hci_dev *hdev)
1089 struct list_head *head = &hci_dev_list, *p;
1090 int i, id = 0;
1092 BT_DBG("%p name %s bus %d owner %p", hdev, hdev->name,
1093 hdev->bus, hdev->owner);
1095 if (!hdev->open || !hdev->close || !hdev->destruct)
1096 return -EINVAL;
1098 write_lock_bh(&hci_dev_list_lock);
1100 /* Find first available device id */
1101 list_for_each(p, &hci_dev_list) {
1102 if (list_entry(p, struct hci_dev, list)->id != id)
1103 break;
1104 head = p; id++;
1107 sprintf(hdev->name, "hci%d", id);
1108 hdev->id = id;
1109 list_add(&hdev->list, head);
1111 atomic_set(&hdev->refcnt, 1);
1112 spin_lock_init(&hdev->lock);
1114 hdev->flags = 0;
1115 hdev->pkt_type = (HCI_DM1 | HCI_DH1 | HCI_HV1);
1116 hdev->esco_type = (ESCO_HV1);
1117 hdev->link_mode = (HCI_LM_ACCEPT);
1118 hdev->io_capability = 0x03; /* No Input No Output */
1120 hdev->idle_timeout = 0;
1121 hdev->sniff_max_interval = 800;
1122 hdev->sniff_min_interval = 80;
1124 tasklet_init(&hdev->cmd_task, hci_cmd_task, (unsigned long) hdev);
1125 tasklet_init(&hdev->rx_task, hci_rx_task, (unsigned long) hdev);
1126 tasklet_init(&hdev->tx_task, hci_tx_task, (unsigned long) hdev);
1128 skb_queue_head_init(&hdev->rx_q);
1129 skb_queue_head_init(&hdev->cmd_q);
1130 skb_queue_head_init(&hdev->raw_q);
1132 setup_timer(&hdev->cmd_timer, hci_cmd_timer, (unsigned long) hdev);
1134 for (i = 0; i < NUM_REASSEMBLY; i++)
1135 hdev->reassembly[i] = NULL;
1137 init_waitqueue_head(&hdev->req_wait_q);
1138 mutex_init(&hdev->req_lock);
1140 inquiry_cache_init(hdev);
1142 hci_conn_hash_init(hdev);
1144 INIT_LIST_HEAD(&hdev->blacklist);
1146 INIT_LIST_HEAD(&hdev->uuids);
1148 INIT_LIST_HEAD(&hdev->link_keys);
1150 INIT_WORK(&hdev->power_on, hci_power_on);
1151 INIT_WORK(&hdev->power_off, hci_power_off);
1152 setup_timer(&hdev->off_timer, hci_auto_off, (unsigned long) hdev);
1154 memset(&hdev->stat, 0, sizeof(struct hci_dev_stats));
1156 atomic_set(&hdev->promisc, 0);
1158 write_unlock_bh(&hci_dev_list_lock);
1160 hdev->workqueue = create_singlethread_workqueue(hdev->name);
1161 if (!hdev->workqueue)
1162 goto nomem;
1164 hci_register_sysfs(hdev);
1166 hdev->rfkill = rfkill_alloc(hdev->name, &hdev->dev,
1167 RFKILL_TYPE_BLUETOOTH, &hci_rfkill_ops, hdev);
1168 if (hdev->rfkill) {
1169 if (rfkill_register(hdev->rfkill) < 0) {
1170 rfkill_destroy(hdev->rfkill);
1171 hdev->rfkill = NULL;
1175 set_bit(HCI_AUTO_OFF, &hdev->flags);
1176 set_bit(HCI_SETUP, &hdev->flags);
1177 queue_work(hdev->workqueue, &hdev->power_on);
1179 hci_notify(hdev, HCI_DEV_REG);
1181 return id;
1183 nomem:
1184 write_lock_bh(&hci_dev_list_lock);
1185 list_del(&hdev->list);
1186 write_unlock_bh(&hci_dev_list_lock);
1188 return -ENOMEM;
1190 EXPORT_SYMBOL(hci_register_dev);
1192 /* Unregister HCI device */
1193 int hci_unregister_dev(struct hci_dev *hdev)
1195 int i;
1197 BT_DBG("%p name %s bus %d", hdev, hdev->name, hdev->bus);
1199 write_lock_bh(&hci_dev_list_lock);
1200 list_del(&hdev->list);
1201 write_unlock_bh(&hci_dev_list_lock);
1203 hci_dev_do_close(hdev);
1205 for (i = 0; i < NUM_REASSEMBLY; i++)
1206 kfree_skb(hdev->reassembly[i]);
1208 if (!test_bit(HCI_INIT, &hdev->flags) &&
1209 !test_bit(HCI_SETUP, &hdev->flags))
1210 mgmt_index_removed(hdev->id);
1212 hci_notify(hdev, HCI_DEV_UNREG);
1214 if (hdev->rfkill) {
1215 rfkill_unregister(hdev->rfkill);
1216 rfkill_destroy(hdev->rfkill);
1219 hci_unregister_sysfs(hdev);
1221 hci_del_off_timer(hdev);
1223 destroy_workqueue(hdev->workqueue);
1225 hci_dev_lock_bh(hdev);
1226 hci_blacklist_clear(hdev);
1227 hci_uuids_clear(hdev);
1228 hci_link_keys_clear(hdev);
1229 hci_dev_unlock_bh(hdev);
1231 __hci_dev_put(hdev);
1233 return 0;
1235 EXPORT_SYMBOL(hci_unregister_dev);
1237 /* Suspend HCI device */
1238 int hci_suspend_dev(struct hci_dev *hdev)
1240 hci_notify(hdev, HCI_DEV_SUSPEND);
1241 return 0;
1243 EXPORT_SYMBOL(hci_suspend_dev);
1245 /* Resume HCI device */
1246 int hci_resume_dev(struct hci_dev *hdev)
1248 hci_notify(hdev, HCI_DEV_RESUME);
1249 return 0;
1251 EXPORT_SYMBOL(hci_resume_dev);
1253 /* Receive frame from HCI drivers */
1254 int hci_recv_frame(struct sk_buff *skb)
1256 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1257 if (!hdev || (!test_bit(HCI_UP, &hdev->flags)
1258 && !test_bit(HCI_INIT, &hdev->flags))) {
1259 kfree_skb(skb);
1260 return -ENXIO;
1263 /* Incomming skb */
1264 bt_cb(skb)->incoming = 1;
1266 /* Time stamp */
1267 __net_timestamp(skb);
1269 /* Queue frame for rx task */
1270 skb_queue_tail(&hdev->rx_q, skb);
1271 tasklet_schedule(&hdev->rx_task);
1273 return 0;
1275 EXPORT_SYMBOL(hci_recv_frame);
1277 static int hci_reassembly(struct hci_dev *hdev, int type, void *data,
1278 int count, __u8 index, gfp_t gfp_mask)
1280 int len = 0;
1281 int hlen = 0;
1282 int remain = count;
1283 struct sk_buff *skb;
1284 struct bt_skb_cb *scb;
1286 if ((type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT) ||
1287 index >= NUM_REASSEMBLY)
1288 return -EILSEQ;
1290 skb = hdev->reassembly[index];
1292 if (!skb) {
1293 switch (type) {
1294 case HCI_ACLDATA_PKT:
1295 len = HCI_MAX_FRAME_SIZE;
1296 hlen = HCI_ACL_HDR_SIZE;
1297 break;
1298 case HCI_EVENT_PKT:
1299 len = HCI_MAX_EVENT_SIZE;
1300 hlen = HCI_EVENT_HDR_SIZE;
1301 break;
1302 case HCI_SCODATA_PKT:
1303 len = HCI_MAX_SCO_SIZE;
1304 hlen = HCI_SCO_HDR_SIZE;
1305 break;
1308 skb = bt_skb_alloc(len, gfp_mask);
1309 if (!skb)
1310 return -ENOMEM;
1312 scb = (void *) skb->cb;
1313 scb->expect = hlen;
1314 scb->pkt_type = type;
1316 skb->dev = (void *) hdev;
1317 hdev->reassembly[index] = skb;
1320 while (count) {
1321 scb = (void *) skb->cb;
1322 len = min(scb->expect, (__u16)count);
1324 memcpy(skb_put(skb, len), data, len);
1326 count -= len;
1327 data += len;
1328 scb->expect -= len;
1329 remain = count;
1331 switch (type) {
1332 case HCI_EVENT_PKT:
1333 if (skb->len == HCI_EVENT_HDR_SIZE) {
1334 struct hci_event_hdr *h = hci_event_hdr(skb);
1335 scb->expect = h->plen;
1337 if (skb_tailroom(skb) < scb->expect) {
1338 kfree_skb(skb);
1339 hdev->reassembly[index] = NULL;
1340 return -ENOMEM;
1343 break;
1345 case HCI_ACLDATA_PKT:
1346 if (skb->len == HCI_ACL_HDR_SIZE) {
1347 struct hci_acl_hdr *h = hci_acl_hdr(skb);
1348 scb->expect = __le16_to_cpu(h->dlen);
1350 if (skb_tailroom(skb) < scb->expect) {
1351 kfree_skb(skb);
1352 hdev->reassembly[index] = NULL;
1353 return -ENOMEM;
1356 break;
1358 case HCI_SCODATA_PKT:
1359 if (skb->len == HCI_SCO_HDR_SIZE) {
1360 struct hci_sco_hdr *h = hci_sco_hdr(skb);
1361 scb->expect = h->dlen;
1363 if (skb_tailroom(skb) < scb->expect) {
1364 kfree_skb(skb);
1365 hdev->reassembly[index] = NULL;
1366 return -ENOMEM;
1369 break;
1372 if (scb->expect == 0) {
1373 /* Complete frame */
1375 bt_cb(skb)->pkt_type = type;
1376 hci_recv_frame(skb);
1378 hdev->reassembly[index] = NULL;
1379 return remain;
1383 return remain;
1386 int hci_recv_fragment(struct hci_dev *hdev, int type, void *data, int count)
1388 int rem = 0;
1390 if (type < HCI_ACLDATA_PKT || type > HCI_EVENT_PKT)
1391 return -EILSEQ;
1393 while (count) {
1394 rem = hci_reassembly(hdev, type, data, count,
1395 type - 1, GFP_ATOMIC);
1396 if (rem < 0)
1397 return rem;
1399 data += (count - rem);
1400 count = rem;
1403 return rem;
1405 EXPORT_SYMBOL(hci_recv_fragment);
1407 #define STREAM_REASSEMBLY 0
1409 int hci_recv_stream_fragment(struct hci_dev *hdev, void *data, int count)
1411 int type;
1412 int rem = 0;
1414 while (count) {
1415 struct sk_buff *skb = hdev->reassembly[STREAM_REASSEMBLY];
1417 if (!skb) {
1418 struct { char type; } *pkt;
1420 /* Start of the frame */
1421 pkt = data;
1422 type = pkt->type;
1424 data++;
1425 count--;
1426 } else
1427 type = bt_cb(skb)->pkt_type;
1429 rem = hci_reassembly(hdev, type, data,
1430 count, STREAM_REASSEMBLY, GFP_ATOMIC);
1431 if (rem < 0)
1432 return rem;
1434 data += (count - rem);
1435 count = rem;
1438 return rem;
1440 EXPORT_SYMBOL(hci_recv_stream_fragment);
1442 /* ---- Interface to upper protocols ---- */
1444 /* Register/Unregister protocols.
1445 * hci_task_lock is used to ensure that no tasks are running. */
1446 int hci_register_proto(struct hci_proto *hp)
1448 int err = 0;
1450 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1452 if (hp->id >= HCI_MAX_PROTO)
1453 return -EINVAL;
1455 write_lock_bh(&hci_task_lock);
1457 if (!hci_proto[hp->id])
1458 hci_proto[hp->id] = hp;
1459 else
1460 err = -EEXIST;
1462 write_unlock_bh(&hci_task_lock);
1464 return err;
1466 EXPORT_SYMBOL(hci_register_proto);
1468 int hci_unregister_proto(struct hci_proto *hp)
1470 int err = 0;
1472 BT_DBG("%p name %s id %d", hp, hp->name, hp->id);
1474 if (hp->id >= HCI_MAX_PROTO)
1475 return -EINVAL;
1477 write_lock_bh(&hci_task_lock);
1479 if (hci_proto[hp->id])
1480 hci_proto[hp->id] = NULL;
1481 else
1482 err = -ENOENT;
1484 write_unlock_bh(&hci_task_lock);
1486 return err;
1488 EXPORT_SYMBOL(hci_unregister_proto);
1490 int hci_register_cb(struct hci_cb *cb)
1492 BT_DBG("%p name %s", cb, cb->name);
1494 write_lock_bh(&hci_cb_list_lock);
1495 list_add(&cb->list, &hci_cb_list);
1496 write_unlock_bh(&hci_cb_list_lock);
1498 return 0;
1500 EXPORT_SYMBOL(hci_register_cb);
1502 int hci_unregister_cb(struct hci_cb *cb)
1504 BT_DBG("%p name %s", cb, cb->name);
1506 write_lock_bh(&hci_cb_list_lock);
1507 list_del(&cb->list);
1508 write_unlock_bh(&hci_cb_list_lock);
1510 return 0;
1512 EXPORT_SYMBOL(hci_unregister_cb);
1514 static int hci_send_frame(struct sk_buff *skb)
1516 struct hci_dev *hdev = (struct hci_dev *) skb->dev;
1518 if (!hdev) {
1519 kfree_skb(skb);
1520 return -ENODEV;
1523 BT_DBG("%s type %d len %d", hdev->name, bt_cb(skb)->pkt_type, skb->len);
1525 if (atomic_read(&hdev->promisc)) {
1526 /* Time stamp */
1527 __net_timestamp(skb);
1529 hci_send_to_sock(hdev, skb, NULL);
1532 /* Get rid of skb owner, prior to sending to the driver. */
1533 skb_orphan(skb);
1535 return hdev->send(skb);
1538 /* Send HCI command */
1539 int hci_send_cmd(struct hci_dev *hdev, __u16 opcode, __u32 plen, void *param)
1541 int len = HCI_COMMAND_HDR_SIZE + plen;
1542 struct hci_command_hdr *hdr;
1543 struct sk_buff *skb;
1545 BT_DBG("%s opcode 0x%x plen %d", hdev->name, opcode, plen);
1547 skb = bt_skb_alloc(len, GFP_ATOMIC);
1548 if (!skb) {
1549 BT_ERR("%s no memory for command", hdev->name);
1550 return -ENOMEM;
1553 hdr = (struct hci_command_hdr *) skb_put(skb, HCI_COMMAND_HDR_SIZE);
1554 hdr->opcode = cpu_to_le16(opcode);
1555 hdr->plen = plen;
1557 if (plen)
1558 memcpy(skb_put(skb, plen), param, plen);
1560 BT_DBG("skb len %d", skb->len);
1562 bt_cb(skb)->pkt_type = HCI_COMMAND_PKT;
1563 skb->dev = (void *) hdev;
1565 if (test_bit(HCI_INIT, &hdev->flags))
1566 hdev->init_last_cmd = opcode;
1568 skb_queue_tail(&hdev->cmd_q, skb);
1569 tasklet_schedule(&hdev->cmd_task);
1571 return 0;
1574 /* Get data from the previously sent command */
1575 void *hci_sent_cmd_data(struct hci_dev *hdev, __u16 opcode)
1577 struct hci_command_hdr *hdr;
1579 if (!hdev->sent_cmd)
1580 return NULL;
1582 hdr = (void *) hdev->sent_cmd->data;
1584 if (hdr->opcode != cpu_to_le16(opcode))
1585 return NULL;
1587 BT_DBG("%s opcode 0x%x", hdev->name, opcode);
1589 return hdev->sent_cmd->data + HCI_COMMAND_HDR_SIZE;
1592 /* Send ACL data */
1593 static void hci_add_acl_hdr(struct sk_buff *skb, __u16 handle, __u16 flags)
1595 struct hci_acl_hdr *hdr;
1596 int len = skb->len;
1598 skb_push(skb, HCI_ACL_HDR_SIZE);
1599 skb_reset_transport_header(skb);
1600 hdr = (struct hci_acl_hdr *)skb_transport_header(skb);
1601 hdr->handle = cpu_to_le16(hci_handle_pack(handle, flags));
1602 hdr->dlen = cpu_to_le16(len);
1605 void hci_send_acl(struct hci_conn *conn, struct sk_buff *skb, __u16 flags)
1607 struct hci_dev *hdev = conn->hdev;
1608 struct sk_buff *list;
1610 BT_DBG("%s conn %p flags 0x%x", hdev->name, conn, flags);
1612 skb->dev = (void *) hdev;
1613 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1614 hci_add_acl_hdr(skb, conn->handle, flags);
1616 list = skb_shinfo(skb)->frag_list;
1617 if (!list) {
1618 /* Non fragmented */
1619 BT_DBG("%s nonfrag skb %p len %d", hdev->name, skb, skb->len);
1621 skb_queue_tail(&conn->data_q, skb);
1622 } else {
1623 /* Fragmented */
1624 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1626 skb_shinfo(skb)->frag_list = NULL;
1628 /* Queue all fragments atomically */
1629 spin_lock_bh(&conn->data_q.lock);
1631 __skb_queue_tail(&conn->data_q, skb);
1633 flags &= ~ACL_START;
1634 flags |= ACL_CONT;
1635 do {
1636 skb = list; list = list->next;
1638 skb->dev = (void *) hdev;
1639 bt_cb(skb)->pkt_type = HCI_ACLDATA_PKT;
1640 hci_add_acl_hdr(skb, conn->handle, flags);
1642 BT_DBG("%s frag %p len %d", hdev->name, skb, skb->len);
1644 __skb_queue_tail(&conn->data_q, skb);
1645 } while (list);
1647 spin_unlock_bh(&conn->data_q.lock);
1650 tasklet_schedule(&hdev->tx_task);
1652 EXPORT_SYMBOL(hci_send_acl);
1654 /* Send SCO data */
1655 void hci_send_sco(struct hci_conn *conn, struct sk_buff *skb)
1657 struct hci_dev *hdev = conn->hdev;
1658 struct hci_sco_hdr hdr;
1660 BT_DBG("%s len %d", hdev->name, skb->len);
1662 hdr.handle = cpu_to_le16(conn->handle);
1663 hdr.dlen = skb->len;
1665 skb_push(skb, HCI_SCO_HDR_SIZE);
1666 skb_reset_transport_header(skb);
1667 memcpy(skb_transport_header(skb), &hdr, HCI_SCO_HDR_SIZE);
1669 skb->dev = (void *) hdev;
1670 bt_cb(skb)->pkt_type = HCI_SCODATA_PKT;
1672 skb_queue_tail(&conn->data_q, skb);
1673 tasklet_schedule(&hdev->tx_task);
1675 EXPORT_SYMBOL(hci_send_sco);
1677 /* ---- HCI TX task (outgoing data) ---- */
1679 /* HCI Connection scheduler */
1680 static inline struct hci_conn *hci_low_sent(struct hci_dev *hdev, __u8 type, int *quote)
1682 struct hci_conn_hash *h = &hdev->conn_hash;
1683 struct hci_conn *conn = NULL;
1684 int num = 0, min = ~0;
1685 struct list_head *p;
1687 /* We don't have to lock device here. Connections are always
1688 * added and removed with TX task disabled. */
1689 list_for_each(p, &h->list) {
1690 struct hci_conn *c;
1691 c = list_entry(p, struct hci_conn, list);
1693 if (c->type != type || skb_queue_empty(&c->data_q))
1694 continue;
1696 if (c->state != BT_CONNECTED && c->state != BT_CONFIG)
1697 continue;
1699 num++;
1701 if (c->sent < min) {
1702 min = c->sent;
1703 conn = c;
1707 if (conn) {
1708 int cnt, q;
1710 switch (conn->type) {
1711 case ACL_LINK:
1712 cnt = hdev->acl_cnt;
1713 break;
1714 case SCO_LINK:
1715 case ESCO_LINK:
1716 cnt = hdev->sco_cnt;
1717 break;
1718 case LE_LINK:
1719 cnt = hdev->le_mtu ? hdev->le_cnt : hdev->acl_cnt;
1720 break;
1721 default:
1722 cnt = 0;
1723 BT_ERR("Unknown link type");
1726 q = cnt / num;
1727 *quote = q ? q : 1;
1728 } else
1729 *quote = 0;
1731 BT_DBG("conn %p quote %d", conn, *quote);
1732 return conn;
1735 static inline void hci_link_tx_to(struct hci_dev *hdev, __u8 type)
1737 struct hci_conn_hash *h = &hdev->conn_hash;
1738 struct list_head *p;
1739 struct hci_conn *c;
1741 BT_ERR("%s link tx timeout", hdev->name);
1743 /* Kill stalled connections */
1744 list_for_each(p, &h->list) {
1745 c = list_entry(p, struct hci_conn, list);
1746 if (c->type == type && c->sent) {
1747 BT_ERR("%s killing stalled connection %s",
1748 hdev->name, batostr(&c->dst));
1749 hci_acl_disconn(c, 0x13);
1754 static inline void hci_sched_acl(struct hci_dev *hdev)
1756 struct hci_conn *conn;
1757 struct sk_buff *skb;
1758 int quote;
1760 BT_DBG("%s", hdev->name);
1762 if (!test_bit(HCI_RAW, &hdev->flags)) {
1763 /* ACL tx timeout must be longer than maximum
1764 * link supervision timeout (40.9 seconds) */
1765 if (!hdev->acl_cnt && time_after(jiffies, hdev->acl_last_tx + HZ * 45))
1766 hci_link_tx_to(hdev, ACL_LINK);
1769 while (hdev->acl_cnt && (conn = hci_low_sent(hdev, ACL_LINK, &quote))) {
1770 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1771 BT_DBG("skb %p len %d", skb, skb->len);
1773 hci_conn_enter_active_mode(conn);
1775 hci_send_frame(skb);
1776 hdev->acl_last_tx = jiffies;
1778 hdev->acl_cnt--;
1779 conn->sent++;
1784 /* Schedule SCO */
1785 static inline void hci_sched_sco(struct hci_dev *hdev)
1787 struct hci_conn *conn;
1788 struct sk_buff *skb;
1789 int quote;
1791 BT_DBG("%s", hdev->name);
1793 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, SCO_LINK, &quote))) {
1794 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1795 BT_DBG("skb %p len %d", skb, skb->len);
1796 hci_send_frame(skb);
1798 conn->sent++;
1799 if (conn->sent == ~0)
1800 conn->sent = 0;
1805 static inline void hci_sched_esco(struct hci_dev *hdev)
1807 struct hci_conn *conn;
1808 struct sk_buff *skb;
1809 int quote;
1811 BT_DBG("%s", hdev->name);
1813 while (hdev->sco_cnt && (conn = hci_low_sent(hdev, ESCO_LINK, &quote))) {
1814 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1815 BT_DBG("skb %p len %d", skb, skb->len);
1816 hci_send_frame(skb);
1818 conn->sent++;
1819 if (conn->sent == ~0)
1820 conn->sent = 0;
1825 static inline void hci_sched_le(struct hci_dev *hdev)
1827 struct hci_conn *conn;
1828 struct sk_buff *skb;
1829 int quote, cnt;
1831 BT_DBG("%s", hdev->name);
1833 if (!test_bit(HCI_RAW, &hdev->flags)) {
1834 /* LE tx timeout must be longer than maximum
1835 * link supervision timeout (40.9 seconds) */
1836 if (!hdev->le_cnt && hdev->le_pkts &&
1837 time_after(jiffies, hdev->le_last_tx + HZ * 45))
1838 hci_link_tx_to(hdev, LE_LINK);
1841 cnt = hdev->le_pkts ? hdev->le_cnt : hdev->acl_cnt;
1842 while (cnt && (conn = hci_low_sent(hdev, LE_LINK, &quote))) {
1843 while (quote-- && (skb = skb_dequeue(&conn->data_q))) {
1844 BT_DBG("skb %p len %d", skb, skb->len);
1846 hci_send_frame(skb);
1847 hdev->le_last_tx = jiffies;
1849 cnt--;
1850 conn->sent++;
1853 if (hdev->le_pkts)
1854 hdev->le_cnt = cnt;
1855 else
1856 hdev->acl_cnt = cnt;
1859 static void hci_tx_task(unsigned long arg)
1861 struct hci_dev *hdev = (struct hci_dev *) arg;
1862 struct sk_buff *skb;
1864 read_lock(&hci_task_lock);
1866 BT_DBG("%s acl %d sco %d le %d", hdev->name, hdev->acl_cnt,
1867 hdev->sco_cnt, hdev->le_cnt);
1869 /* Schedule queues and send stuff to HCI driver */
1871 hci_sched_acl(hdev);
1873 hci_sched_sco(hdev);
1875 hci_sched_esco(hdev);
1877 hci_sched_le(hdev);
1879 /* Send next queued raw (unknown type) packet */
1880 while ((skb = skb_dequeue(&hdev->raw_q)))
1881 hci_send_frame(skb);
1883 read_unlock(&hci_task_lock);
1886 /* ----- HCI RX task (incoming data processing) ----- */
1888 /* ACL data packet */
1889 static inline void hci_acldata_packet(struct hci_dev *hdev, struct sk_buff *skb)
1891 struct hci_acl_hdr *hdr = (void *) skb->data;
1892 struct hci_conn *conn;
1893 __u16 handle, flags;
1895 skb_pull(skb, HCI_ACL_HDR_SIZE);
1897 handle = __le16_to_cpu(hdr->handle);
1898 flags = hci_flags(handle);
1899 handle = hci_handle(handle);
1901 BT_DBG("%s len %d handle 0x%x flags 0x%x", hdev->name, skb->len, handle, flags);
1903 hdev->stat.acl_rx++;
1905 hci_dev_lock(hdev);
1906 conn = hci_conn_hash_lookup_handle(hdev, handle);
1907 hci_dev_unlock(hdev);
1909 if (conn) {
1910 register struct hci_proto *hp;
1912 hci_conn_enter_active_mode(conn);
1914 /* Send to upper protocol */
1915 hp = hci_proto[HCI_PROTO_L2CAP];
1916 if (hp && hp->recv_acldata) {
1917 hp->recv_acldata(conn, skb, flags);
1918 return;
1920 } else {
1921 BT_ERR("%s ACL packet for unknown connection handle %d",
1922 hdev->name, handle);
1925 kfree_skb(skb);
1928 /* SCO data packet */
1929 static inline void hci_scodata_packet(struct hci_dev *hdev, struct sk_buff *skb)
1931 struct hci_sco_hdr *hdr = (void *) skb->data;
1932 struct hci_conn *conn;
1933 __u16 handle;
1935 skb_pull(skb, HCI_SCO_HDR_SIZE);
1937 handle = __le16_to_cpu(hdr->handle);
1939 BT_DBG("%s len %d handle 0x%x", hdev->name, skb->len, handle);
1941 hdev->stat.sco_rx++;
1943 hci_dev_lock(hdev);
1944 conn = hci_conn_hash_lookup_handle(hdev, handle);
1945 hci_dev_unlock(hdev);
1947 if (conn) {
1948 register struct hci_proto *hp;
1950 /* Send to upper protocol */
1951 hp = hci_proto[HCI_PROTO_SCO];
1952 if (hp && hp->recv_scodata) {
1953 hp->recv_scodata(conn, skb);
1954 return;
1956 } else {
1957 BT_ERR("%s SCO packet for unknown connection handle %d",
1958 hdev->name, handle);
1961 kfree_skb(skb);
1964 static void hci_rx_task(unsigned long arg)
1966 struct hci_dev *hdev = (struct hci_dev *) arg;
1967 struct sk_buff *skb;
1969 BT_DBG("%s", hdev->name);
1971 read_lock(&hci_task_lock);
1973 while ((skb = skb_dequeue(&hdev->rx_q))) {
1974 if (atomic_read(&hdev->promisc)) {
1975 /* Send copy to the sockets */
1976 hci_send_to_sock(hdev, skb, NULL);
1979 if (test_bit(HCI_RAW, &hdev->flags)) {
1980 kfree_skb(skb);
1981 continue;
1984 if (test_bit(HCI_INIT, &hdev->flags)) {
1985 /* Don't process data packets in this states. */
1986 switch (bt_cb(skb)->pkt_type) {
1987 case HCI_ACLDATA_PKT:
1988 case HCI_SCODATA_PKT:
1989 kfree_skb(skb);
1990 continue;
1994 /* Process frame */
1995 switch (bt_cb(skb)->pkt_type) {
1996 case HCI_EVENT_PKT:
1997 hci_event_packet(hdev, skb);
1998 break;
2000 case HCI_ACLDATA_PKT:
2001 BT_DBG("%s ACL data packet", hdev->name);
2002 hci_acldata_packet(hdev, skb);
2003 break;
2005 case HCI_SCODATA_PKT:
2006 BT_DBG("%s SCO data packet", hdev->name);
2007 hci_scodata_packet(hdev, skb);
2008 break;
2010 default:
2011 kfree_skb(skb);
2012 break;
2016 read_unlock(&hci_task_lock);
2019 static void hci_cmd_task(unsigned long arg)
2021 struct hci_dev *hdev = (struct hci_dev *) arg;
2022 struct sk_buff *skb;
2024 BT_DBG("%s cmd %d", hdev->name, atomic_read(&hdev->cmd_cnt));
2026 /* Send queued commands */
2027 if (atomic_read(&hdev->cmd_cnt)) {
2028 skb = skb_dequeue(&hdev->cmd_q);
2029 if (!skb)
2030 return;
2032 kfree_skb(hdev->sent_cmd);
2034 hdev->sent_cmd = skb_clone(skb, GFP_ATOMIC);
2035 if (hdev->sent_cmd) {
2036 atomic_dec(&hdev->cmd_cnt);
2037 hci_send_frame(skb);
2038 mod_timer(&hdev->cmd_timer,
2039 jiffies + msecs_to_jiffies(HCI_CMD_TIMEOUT));
2040 } else {
2041 skb_queue_head(&hdev->cmd_q, skb);
2042 tasklet_schedule(&hdev->cmd_task);