crypto: Add userspace report for ablkcipher type algorithms
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / direct-io.c
blob44a360ca80464c78ace80bf547efe4b7b1f42d3a
1 /*
2 * fs/direct-io.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * O_DIRECT
8 * 04Jul2002 Andrew Morton
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 Andrew Morton
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/types.h>
25 #include <linux/fs.h>
26 #include <linux/mm.h>
27 #include <linux/slab.h>
28 #include <linux/highmem.h>
29 #include <linux/pagemap.h>
30 #include <linux/task_io_accounting_ops.h>
31 #include <linux/bio.h>
32 #include <linux/wait.h>
33 #include <linux/err.h>
34 #include <linux/blkdev.h>
35 #include <linux/buffer_head.h>
36 #include <linux/rwsem.h>
37 #include <linux/uio.h>
38 #include <linux/atomic.h>
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
44 #define DIO_PAGES 64
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
58 struct dio {
59 /* BIO submission state */
60 struct bio *bio; /* bio under assembly */
61 struct inode *inode;
62 int rw;
63 loff_t i_size; /* i_size when submitted */
64 int flags; /* doesn't change */
65 unsigned blkbits; /* doesn't change */
66 unsigned blkfactor; /* When we're using an alignment which
67 is finer than the filesystem's soft
68 blocksize, this specifies how much
69 finer. blkfactor=2 means 1/4-block
70 alignment. Does not change */
71 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
72 been performed at the start of a
73 write */
74 int pages_in_io; /* approximate total IO pages */
75 size_t size; /* total request size (doesn't change)*/
76 sector_t block_in_file; /* Current offset into the underlying
77 file in dio_block units. */
78 unsigned blocks_available; /* At block_in_file. changes */
79 sector_t final_block_in_request;/* doesn't change */
80 unsigned first_block_in_page; /* doesn't change, Used only once */
81 int boundary; /* prev block is at a boundary */
82 int reap_counter; /* rate limit reaping */
83 get_block_t *get_block; /* block mapping function */
84 dio_iodone_t *end_io; /* IO completion function */
85 dio_submit_t *submit_io; /* IO submition function */
86 loff_t logical_offset_in_bio; /* current first logical block in bio */
87 sector_t final_block_in_bio; /* current final block in bio + 1 */
88 sector_t next_block_for_io; /* next block to be put under IO,
89 in dio_blocks units */
90 struct buffer_head map_bh; /* last get_block() result */
93 * Deferred addition of a page to the dio. These variables are
94 * private to dio_send_cur_page(), submit_page_section() and
95 * dio_bio_add_page().
97 struct page *cur_page; /* The page */
98 unsigned cur_page_offset; /* Offset into it, in bytes */
99 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
100 sector_t cur_page_block; /* Where it starts */
101 loff_t cur_page_fs_offset; /* Offset in file */
103 /* BIO completion state */
104 spinlock_t bio_lock; /* protects BIO fields below */
105 unsigned long refcount; /* direct_io_worker() and bios */
106 struct bio *bio_list; /* singly linked via bi_private */
107 struct task_struct *waiter; /* waiting task (NULL if none) */
109 /* AIO related stuff */
110 struct kiocb *iocb; /* kiocb */
111 int is_async; /* is IO async ? */
112 int io_error; /* IO error in completion path */
113 ssize_t result; /* IO result */
116 * Page fetching state. These variables belong to dio_refill_pages().
118 int curr_page; /* changes */
119 int total_pages; /* doesn't change */
120 unsigned long curr_user_address;/* changes */
123 * Page queue. These variables belong to dio_refill_pages() and
124 * dio_get_page().
126 unsigned head; /* next page to process */
127 unsigned tail; /* last valid page + 1 */
128 int page_errors; /* errno from get_user_pages() */
131 * pages[] (and any fields placed after it) are not zeroed out at
132 * allocation time. Don't add new fields after pages[] unless you
133 * wish that they not be zeroed.
135 struct page *pages[DIO_PAGES]; /* page buffer */
138 static void __inode_dio_wait(struct inode *inode)
140 wait_queue_head_t *wq = bit_waitqueue(&inode->i_state, __I_DIO_WAKEUP);
141 DEFINE_WAIT_BIT(q, &inode->i_state, __I_DIO_WAKEUP);
143 do {
144 prepare_to_wait(wq, &q.wait, TASK_UNINTERRUPTIBLE);
145 if (atomic_read(&inode->i_dio_count))
146 schedule();
147 } while (atomic_read(&inode->i_dio_count));
148 finish_wait(wq, &q.wait);
152 * inode_dio_wait - wait for outstanding DIO requests to finish
153 * @inode: inode to wait for
155 * Waits for all pending direct I/O requests to finish so that we can
156 * proceed with a truncate or equivalent operation.
158 * Must be called under a lock that serializes taking new references
159 * to i_dio_count, usually by inode->i_mutex.
161 void inode_dio_wait(struct inode *inode)
163 if (atomic_read(&inode->i_dio_count))
164 __inode_dio_wait(inode);
166 EXPORT_SYMBOL_GPL(inode_dio_wait);
169 * inode_dio_done - signal finish of a direct I/O requests
170 * @inode: inode the direct I/O happens on
172 * This is called once we've finished processing a direct I/O request,
173 * and is used to wake up callers waiting for direct I/O to be quiesced.
175 void inode_dio_done(struct inode *inode)
177 if (atomic_dec_and_test(&inode->i_dio_count))
178 wake_up_bit(&inode->i_state, __I_DIO_WAKEUP);
180 EXPORT_SYMBOL_GPL(inode_dio_done);
183 * How many pages are in the queue?
185 static inline unsigned dio_pages_present(struct dio *dio)
187 return dio->tail - dio->head;
191 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
193 static int dio_refill_pages(struct dio *dio)
195 int ret;
196 int nr_pages;
198 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
199 ret = get_user_pages_fast(
200 dio->curr_user_address, /* Where from? */
201 nr_pages, /* How many pages? */
202 dio->rw == READ, /* Write to memory? */
203 &dio->pages[0]); /* Put results here */
205 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
206 struct page *page = ZERO_PAGE(0);
208 * A memory fault, but the filesystem has some outstanding
209 * mapped blocks. We need to use those blocks up to avoid
210 * leaking stale data in the file.
212 if (dio->page_errors == 0)
213 dio->page_errors = ret;
214 page_cache_get(page);
215 dio->pages[0] = page;
216 dio->head = 0;
217 dio->tail = 1;
218 ret = 0;
219 goto out;
222 if (ret >= 0) {
223 dio->curr_user_address += ret * PAGE_SIZE;
224 dio->curr_page += ret;
225 dio->head = 0;
226 dio->tail = ret;
227 ret = 0;
229 out:
230 return ret;
234 * Get another userspace page. Returns an ERR_PTR on error. Pages are
235 * buffered inside the dio so that we can call get_user_pages() against a
236 * decent number of pages, less frequently. To provide nicer use of the
237 * L1 cache.
239 static struct page *dio_get_page(struct dio *dio)
241 if (dio_pages_present(dio) == 0) {
242 int ret;
244 ret = dio_refill_pages(dio);
245 if (ret)
246 return ERR_PTR(ret);
247 BUG_ON(dio_pages_present(dio) == 0);
249 return dio->pages[dio->head++];
253 * dio_complete() - called when all DIO BIO I/O has been completed
254 * @offset: the byte offset in the file of the completed operation
256 * This releases locks as dictated by the locking type, lets interested parties
257 * know that a DIO operation has completed, and calculates the resulting return
258 * code for the operation.
260 * It lets the filesystem know if it registered an interest earlier via
261 * get_block. Pass the private field of the map buffer_head so that
262 * filesystems can use it to hold additional state between get_block calls and
263 * dio_complete.
265 static ssize_t dio_complete(struct dio *dio, loff_t offset, ssize_t ret, bool is_async)
267 ssize_t transferred = 0;
270 * AIO submission can race with bio completion to get here while
271 * expecting to have the last io completed by bio completion.
272 * In that case -EIOCBQUEUED is in fact not an error we want
273 * to preserve through this call.
275 if (ret == -EIOCBQUEUED)
276 ret = 0;
278 if (dio->result) {
279 transferred = dio->result;
281 /* Check for short read case */
282 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
283 transferred = dio->i_size - offset;
286 if (ret == 0)
287 ret = dio->page_errors;
288 if (ret == 0)
289 ret = dio->io_error;
290 if (ret == 0)
291 ret = transferred;
293 if (dio->end_io && dio->result) {
294 dio->end_io(dio->iocb, offset, transferred,
295 dio->map_bh.b_private, ret, is_async);
296 } else {
297 if (is_async)
298 aio_complete(dio->iocb, ret, 0);
299 inode_dio_done(dio->inode);
302 return ret;
305 static int dio_bio_complete(struct dio *dio, struct bio *bio);
307 * Asynchronous IO callback.
309 static void dio_bio_end_aio(struct bio *bio, int error)
311 struct dio *dio = bio->bi_private;
312 unsigned long remaining;
313 unsigned long flags;
315 /* cleanup the bio */
316 dio_bio_complete(dio, bio);
318 spin_lock_irqsave(&dio->bio_lock, flags);
319 remaining = --dio->refcount;
320 if (remaining == 1 && dio->waiter)
321 wake_up_process(dio->waiter);
322 spin_unlock_irqrestore(&dio->bio_lock, flags);
324 if (remaining == 0) {
325 dio_complete(dio, dio->iocb->ki_pos, 0, true);
326 kfree(dio);
331 * The BIO completion handler simply queues the BIO up for the process-context
332 * handler.
334 * During I/O bi_private points at the dio. After I/O, bi_private is used to
335 * implement a singly-linked list of completed BIOs, at dio->bio_list.
337 static void dio_bio_end_io(struct bio *bio, int error)
339 struct dio *dio = bio->bi_private;
340 unsigned long flags;
342 spin_lock_irqsave(&dio->bio_lock, flags);
343 bio->bi_private = dio->bio_list;
344 dio->bio_list = bio;
345 if (--dio->refcount == 1 && dio->waiter)
346 wake_up_process(dio->waiter);
347 spin_unlock_irqrestore(&dio->bio_lock, flags);
351 * dio_end_io - handle the end io action for the given bio
352 * @bio: The direct io bio thats being completed
353 * @error: Error if there was one
355 * This is meant to be called by any filesystem that uses their own dio_submit_t
356 * so that the DIO specific endio actions are dealt with after the filesystem
357 * has done it's completion work.
359 void dio_end_io(struct bio *bio, int error)
361 struct dio *dio = bio->bi_private;
363 if (dio->is_async)
364 dio_bio_end_aio(bio, error);
365 else
366 dio_bio_end_io(bio, error);
368 EXPORT_SYMBOL_GPL(dio_end_io);
370 static void
371 dio_bio_alloc(struct dio *dio, struct block_device *bdev,
372 sector_t first_sector, int nr_vecs)
374 struct bio *bio;
377 * bio_alloc() is guaranteed to return a bio when called with
378 * __GFP_WAIT and we request a valid number of vectors.
380 bio = bio_alloc(GFP_KERNEL, nr_vecs);
382 bio->bi_bdev = bdev;
383 bio->bi_sector = first_sector;
384 if (dio->is_async)
385 bio->bi_end_io = dio_bio_end_aio;
386 else
387 bio->bi_end_io = dio_bio_end_io;
389 dio->bio = bio;
390 dio->logical_offset_in_bio = dio->cur_page_fs_offset;
394 * In the AIO read case we speculatively dirty the pages before starting IO.
395 * During IO completion, any of these pages which happen to have been written
396 * back will be redirtied by bio_check_pages_dirty().
398 * bios hold a dio reference between submit_bio and ->end_io.
400 static void dio_bio_submit(struct dio *dio)
402 struct bio *bio = dio->bio;
403 unsigned long flags;
405 bio->bi_private = dio;
407 spin_lock_irqsave(&dio->bio_lock, flags);
408 dio->refcount++;
409 spin_unlock_irqrestore(&dio->bio_lock, flags);
411 if (dio->is_async && dio->rw == READ)
412 bio_set_pages_dirty(bio);
414 if (dio->submit_io)
415 dio->submit_io(dio->rw, bio, dio->inode,
416 dio->logical_offset_in_bio);
417 else
418 submit_bio(dio->rw, bio);
420 dio->bio = NULL;
421 dio->boundary = 0;
422 dio->logical_offset_in_bio = 0;
426 * Release any resources in case of a failure
428 static void dio_cleanup(struct dio *dio)
430 while (dio_pages_present(dio))
431 page_cache_release(dio_get_page(dio));
435 * Wait for the next BIO to complete. Remove it and return it. NULL is
436 * returned once all BIOs have been completed. This must only be called once
437 * all bios have been issued so that dio->refcount can only decrease. This
438 * requires that that the caller hold a reference on the dio.
440 static struct bio *dio_await_one(struct dio *dio)
442 unsigned long flags;
443 struct bio *bio = NULL;
445 spin_lock_irqsave(&dio->bio_lock, flags);
448 * Wait as long as the list is empty and there are bios in flight. bio
449 * completion drops the count, maybe adds to the list, and wakes while
450 * holding the bio_lock so we don't need set_current_state()'s barrier
451 * and can call it after testing our condition.
453 while (dio->refcount > 1 && dio->bio_list == NULL) {
454 __set_current_state(TASK_UNINTERRUPTIBLE);
455 dio->waiter = current;
456 spin_unlock_irqrestore(&dio->bio_lock, flags);
457 io_schedule();
458 /* wake up sets us TASK_RUNNING */
459 spin_lock_irqsave(&dio->bio_lock, flags);
460 dio->waiter = NULL;
462 if (dio->bio_list) {
463 bio = dio->bio_list;
464 dio->bio_list = bio->bi_private;
466 spin_unlock_irqrestore(&dio->bio_lock, flags);
467 return bio;
471 * Process one completed BIO. No locks are held.
473 static int dio_bio_complete(struct dio *dio, struct bio *bio)
475 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
476 struct bio_vec *bvec = bio->bi_io_vec;
477 int page_no;
479 if (!uptodate)
480 dio->io_error = -EIO;
482 if (dio->is_async && dio->rw == READ) {
483 bio_check_pages_dirty(bio); /* transfers ownership */
484 } else {
485 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
486 struct page *page = bvec[page_no].bv_page;
488 if (dio->rw == READ && !PageCompound(page))
489 set_page_dirty_lock(page);
490 page_cache_release(page);
492 bio_put(bio);
494 return uptodate ? 0 : -EIO;
498 * Wait on and process all in-flight BIOs. This must only be called once
499 * all bios have been issued so that the refcount can only decrease.
500 * This just waits for all bios to make it through dio_bio_complete. IO
501 * errors are propagated through dio->io_error and should be propagated via
502 * dio_complete().
504 static void dio_await_completion(struct dio *dio)
506 struct bio *bio;
507 do {
508 bio = dio_await_one(dio);
509 if (bio)
510 dio_bio_complete(dio, bio);
511 } while (bio);
515 * A really large O_DIRECT read or write can generate a lot of BIOs. So
516 * to keep the memory consumption sane we periodically reap any completed BIOs
517 * during the BIO generation phase.
519 * This also helps to limit the peak amount of pinned userspace memory.
521 static int dio_bio_reap(struct dio *dio)
523 int ret = 0;
525 if (dio->reap_counter++ >= 64) {
526 while (dio->bio_list) {
527 unsigned long flags;
528 struct bio *bio;
529 int ret2;
531 spin_lock_irqsave(&dio->bio_lock, flags);
532 bio = dio->bio_list;
533 dio->bio_list = bio->bi_private;
534 spin_unlock_irqrestore(&dio->bio_lock, flags);
535 ret2 = dio_bio_complete(dio, bio);
536 if (ret == 0)
537 ret = ret2;
539 dio->reap_counter = 0;
541 return ret;
545 * Call into the fs to map some more disk blocks. We record the current number
546 * of available blocks at dio->blocks_available. These are in units of the
547 * fs blocksize, (1 << inode->i_blkbits).
549 * The fs is allowed to map lots of blocks at once. If it wants to do that,
550 * it uses the passed inode-relative block number as the file offset, as usual.
552 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
553 * has remaining to do. The fs should not map more than this number of blocks.
555 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
556 * indicate how much contiguous disk space has been made available at
557 * bh->b_blocknr.
559 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
560 * This isn't very efficient...
562 * In the case of filesystem holes: the fs may return an arbitrarily-large
563 * hole by returning an appropriate value in b_size and by clearing
564 * buffer_mapped(). However the direct-io code will only process holes one
565 * block at a time - it will repeatedly call get_block() as it walks the hole.
567 static int get_more_blocks(struct dio *dio)
569 int ret;
570 struct buffer_head *map_bh = &dio->map_bh;
571 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
572 unsigned long fs_count; /* Number of filesystem-sized blocks */
573 unsigned long dio_count;/* Number of dio_block-sized blocks */
574 unsigned long blkmask;
575 int create;
578 * If there was a memory error and we've overwritten all the
579 * mapped blocks then we can now return that memory error
581 ret = dio->page_errors;
582 if (ret == 0) {
583 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
584 fs_startblk = dio->block_in_file >> dio->blkfactor;
585 dio_count = dio->final_block_in_request - dio->block_in_file;
586 fs_count = dio_count >> dio->blkfactor;
587 blkmask = (1 << dio->blkfactor) - 1;
588 if (dio_count & blkmask)
589 fs_count++;
591 map_bh->b_state = 0;
592 map_bh->b_size = fs_count << dio->inode->i_blkbits;
595 * For writes inside i_size on a DIO_SKIP_HOLES filesystem we
596 * forbid block creations: only overwrites are permitted.
597 * We will return early to the caller once we see an
598 * unmapped buffer head returned, and the caller will fall
599 * back to buffered I/O.
601 * Otherwise the decision is left to the get_blocks method,
602 * which may decide to handle it or also return an unmapped
603 * buffer head.
605 create = dio->rw & WRITE;
606 if (dio->flags & DIO_SKIP_HOLES) {
607 if (dio->block_in_file < (i_size_read(dio->inode) >>
608 dio->blkbits))
609 create = 0;
612 ret = (*dio->get_block)(dio->inode, fs_startblk,
613 map_bh, create);
615 return ret;
619 * There is no bio. Make one now.
621 static int dio_new_bio(struct dio *dio, sector_t start_sector)
623 sector_t sector;
624 int ret, nr_pages;
626 ret = dio_bio_reap(dio);
627 if (ret)
628 goto out;
629 sector = start_sector << (dio->blkbits - 9);
630 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
631 nr_pages = min(nr_pages, BIO_MAX_PAGES);
632 BUG_ON(nr_pages <= 0);
633 dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
634 dio->boundary = 0;
635 out:
636 return ret;
640 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
641 * that was successful then update final_block_in_bio and take a ref against
642 * the just-added page.
644 * Return zero on success. Non-zero means the caller needs to start a new BIO.
646 static int dio_bio_add_page(struct dio *dio)
648 int ret;
650 ret = bio_add_page(dio->bio, dio->cur_page,
651 dio->cur_page_len, dio->cur_page_offset);
652 if (ret == dio->cur_page_len) {
654 * Decrement count only, if we are done with this page
656 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
657 dio->pages_in_io--;
658 page_cache_get(dio->cur_page);
659 dio->final_block_in_bio = dio->cur_page_block +
660 (dio->cur_page_len >> dio->blkbits);
661 ret = 0;
662 } else {
663 ret = 1;
665 return ret;
669 * Put cur_page under IO. The section of cur_page which is described by
670 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
671 * starts on-disk at cur_page_block.
673 * We take a ref against the page here (on behalf of its presence in the bio).
675 * The caller of this function is responsible for removing cur_page from the
676 * dio, and for dropping the refcount which came from that presence.
678 static int dio_send_cur_page(struct dio *dio)
680 int ret = 0;
682 if (dio->bio) {
683 loff_t cur_offset = dio->cur_page_fs_offset;
684 loff_t bio_next_offset = dio->logical_offset_in_bio +
685 dio->bio->bi_size;
688 * See whether this new request is contiguous with the old.
690 * Btrfs cannot handle having logically non-contiguous requests
691 * submitted. For example if you have
693 * Logical: [0-4095][HOLE][8192-12287]
694 * Physical: [0-4095] [4096-8191]
696 * We cannot submit those pages together as one BIO. So if our
697 * current logical offset in the file does not equal what would
698 * be the next logical offset in the bio, submit the bio we
699 * have.
701 if (dio->final_block_in_bio != dio->cur_page_block ||
702 cur_offset != bio_next_offset)
703 dio_bio_submit(dio);
705 * Submit now if the underlying fs is about to perform a
706 * metadata read
708 else if (dio->boundary)
709 dio_bio_submit(dio);
712 if (dio->bio == NULL) {
713 ret = dio_new_bio(dio, dio->cur_page_block);
714 if (ret)
715 goto out;
718 if (dio_bio_add_page(dio) != 0) {
719 dio_bio_submit(dio);
720 ret = dio_new_bio(dio, dio->cur_page_block);
721 if (ret == 0) {
722 ret = dio_bio_add_page(dio);
723 BUG_ON(ret != 0);
726 out:
727 return ret;
731 * An autonomous function to put a chunk of a page under deferred IO.
733 * The caller doesn't actually know (or care) whether this piece of page is in
734 * a BIO, or is under IO or whatever. We just take care of all possible
735 * situations here. The separation between the logic of do_direct_IO() and
736 * that of submit_page_section() is important for clarity. Please don't break.
738 * The chunk of page starts on-disk at blocknr.
740 * We perform deferred IO, by recording the last-submitted page inside our
741 * private part of the dio structure. If possible, we just expand the IO
742 * across that page here.
744 * If that doesn't work out then we put the old page into the bio and add this
745 * page to the dio instead.
747 static int
748 submit_page_section(struct dio *dio, struct page *page,
749 unsigned offset, unsigned len, sector_t blocknr)
751 int ret = 0;
753 if (dio->rw & WRITE) {
755 * Read accounting is performed in submit_bio()
757 task_io_account_write(len);
761 * Can we just grow the current page's presence in the dio?
763 if ( (dio->cur_page == page) &&
764 (dio->cur_page_offset + dio->cur_page_len == offset) &&
765 (dio->cur_page_block +
766 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
767 dio->cur_page_len += len;
770 * If dio->boundary then we want to schedule the IO now to
771 * avoid metadata seeks.
773 if (dio->boundary) {
774 ret = dio_send_cur_page(dio);
775 page_cache_release(dio->cur_page);
776 dio->cur_page = NULL;
778 goto out;
782 * If there's a deferred page already there then send it.
784 if (dio->cur_page) {
785 ret = dio_send_cur_page(dio);
786 page_cache_release(dio->cur_page);
787 dio->cur_page = NULL;
788 if (ret)
789 goto out;
792 page_cache_get(page); /* It is in dio */
793 dio->cur_page = page;
794 dio->cur_page_offset = offset;
795 dio->cur_page_len = len;
796 dio->cur_page_block = blocknr;
797 dio->cur_page_fs_offset = dio->block_in_file << dio->blkbits;
798 out:
799 return ret;
803 * Clean any dirty buffers in the blockdev mapping which alias newly-created
804 * file blocks. Only called for S_ISREG files - blockdevs do not set
805 * buffer_new
807 static void clean_blockdev_aliases(struct dio *dio)
809 unsigned i;
810 unsigned nblocks;
812 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
814 for (i = 0; i < nblocks; i++) {
815 unmap_underlying_metadata(dio->map_bh.b_bdev,
816 dio->map_bh.b_blocknr + i);
821 * If we are not writing the entire block and get_block() allocated
822 * the block for us, we need to fill-in the unused portion of the
823 * block with zeros. This happens only if user-buffer, fileoffset or
824 * io length is not filesystem block-size multiple.
826 * `end' is zero if we're doing the start of the IO, 1 at the end of the
827 * IO.
829 static void dio_zero_block(struct dio *dio, int end)
831 unsigned dio_blocks_per_fs_block;
832 unsigned this_chunk_blocks; /* In dio_blocks */
833 unsigned this_chunk_bytes;
834 struct page *page;
836 dio->start_zero_done = 1;
837 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
838 return;
840 dio_blocks_per_fs_block = 1 << dio->blkfactor;
841 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
843 if (!this_chunk_blocks)
844 return;
847 * We need to zero out part of an fs block. It is either at the
848 * beginning or the end of the fs block.
850 if (end)
851 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
853 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
855 page = ZERO_PAGE(0);
856 if (submit_page_section(dio, page, 0, this_chunk_bytes,
857 dio->next_block_for_io))
858 return;
860 dio->next_block_for_io += this_chunk_blocks;
864 * Walk the user pages, and the file, mapping blocks to disk and generating
865 * a sequence of (page,offset,len,block) mappings. These mappings are injected
866 * into submit_page_section(), which takes care of the next stage of submission
868 * Direct IO against a blockdev is different from a file. Because we can
869 * happily perform page-sized but 512-byte aligned IOs. It is important that
870 * blockdev IO be able to have fine alignment and large sizes.
872 * So what we do is to permit the ->get_block function to populate bh.b_size
873 * with the size of IO which is permitted at this offset and this i_blkbits.
875 * For best results, the blockdev should be set up with 512-byte i_blkbits and
876 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
877 * fine alignment but still allows this function to work in PAGE_SIZE units.
879 static int do_direct_IO(struct dio *dio)
881 const unsigned blkbits = dio->blkbits;
882 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
883 struct page *page;
884 unsigned block_in_page;
885 struct buffer_head *map_bh = &dio->map_bh;
886 int ret = 0;
888 /* The I/O can start at any block offset within the first page */
889 block_in_page = dio->first_block_in_page;
891 while (dio->block_in_file < dio->final_block_in_request) {
892 page = dio_get_page(dio);
893 if (IS_ERR(page)) {
894 ret = PTR_ERR(page);
895 goto out;
898 while (block_in_page < blocks_per_page) {
899 unsigned offset_in_page = block_in_page << blkbits;
900 unsigned this_chunk_bytes; /* # of bytes mapped */
901 unsigned this_chunk_blocks; /* # of blocks */
902 unsigned u;
904 if (dio->blocks_available == 0) {
906 * Need to go and map some more disk
908 unsigned long blkmask;
909 unsigned long dio_remainder;
911 ret = get_more_blocks(dio);
912 if (ret) {
913 page_cache_release(page);
914 goto out;
916 if (!buffer_mapped(map_bh))
917 goto do_holes;
919 dio->blocks_available =
920 map_bh->b_size >> dio->blkbits;
921 dio->next_block_for_io =
922 map_bh->b_blocknr << dio->blkfactor;
923 if (buffer_new(map_bh))
924 clean_blockdev_aliases(dio);
926 if (!dio->blkfactor)
927 goto do_holes;
929 blkmask = (1 << dio->blkfactor) - 1;
930 dio_remainder = (dio->block_in_file & blkmask);
933 * If we are at the start of IO and that IO
934 * starts partway into a fs-block,
935 * dio_remainder will be non-zero. If the IO
936 * is a read then we can simply advance the IO
937 * cursor to the first block which is to be
938 * read. But if the IO is a write and the
939 * block was newly allocated we cannot do that;
940 * the start of the fs block must be zeroed out
941 * on-disk
943 if (!buffer_new(map_bh))
944 dio->next_block_for_io += dio_remainder;
945 dio->blocks_available -= dio_remainder;
947 do_holes:
948 /* Handle holes */
949 if (!buffer_mapped(map_bh)) {
950 loff_t i_size_aligned;
952 /* AKPM: eargh, -ENOTBLK is a hack */
953 if (dio->rw & WRITE) {
954 page_cache_release(page);
955 return -ENOTBLK;
959 * Be sure to account for a partial block as the
960 * last block in the file
962 i_size_aligned = ALIGN(i_size_read(dio->inode),
963 1 << blkbits);
964 if (dio->block_in_file >=
965 i_size_aligned >> blkbits) {
966 /* We hit eof */
967 page_cache_release(page);
968 goto out;
970 zero_user(page, block_in_page << blkbits,
971 1 << blkbits);
972 dio->block_in_file++;
973 block_in_page++;
974 goto next_block;
978 * If we're performing IO which has an alignment which
979 * is finer than the underlying fs, go check to see if
980 * we must zero out the start of this block.
982 if (unlikely(dio->blkfactor && !dio->start_zero_done))
983 dio_zero_block(dio, 0);
986 * Work out, in this_chunk_blocks, how much disk we
987 * can add to this page
989 this_chunk_blocks = dio->blocks_available;
990 u = (PAGE_SIZE - offset_in_page) >> blkbits;
991 if (this_chunk_blocks > u)
992 this_chunk_blocks = u;
993 u = dio->final_block_in_request - dio->block_in_file;
994 if (this_chunk_blocks > u)
995 this_chunk_blocks = u;
996 this_chunk_bytes = this_chunk_blocks << blkbits;
997 BUG_ON(this_chunk_bytes == 0);
999 dio->boundary = buffer_boundary(map_bh);
1000 ret = submit_page_section(dio, page, offset_in_page,
1001 this_chunk_bytes, dio->next_block_for_io);
1002 if (ret) {
1003 page_cache_release(page);
1004 goto out;
1006 dio->next_block_for_io += this_chunk_blocks;
1008 dio->block_in_file += this_chunk_blocks;
1009 block_in_page += this_chunk_blocks;
1010 dio->blocks_available -= this_chunk_blocks;
1011 next_block:
1012 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1013 if (dio->block_in_file == dio->final_block_in_request)
1014 break;
1017 /* Drop the ref which was taken in get_user_pages() */
1018 page_cache_release(page);
1019 block_in_page = 0;
1021 out:
1022 return ret;
1025 static ssize_t
1026 direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
1027 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1028 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1029 dio_submit_t submit_io, struct dio *dio)
1031 unsigned long user_addr;
1032 unsigned long flags;
1033 int seg;
1034 ssize_t ret = 0;
1035 ssize_t ret2;
1036 size_t bytes;
1038 dio->inode = inode;
1039 dio->rw = rw;
1040 dio->blkbits = blkbits;
1041 dio->blkfactor = inode->i_blkbits - blkbits;
1042 dio->block_in_file = offset >> blkbits;
1044 dio->get_block = get_block;
1045 dio->end_io = end_io;
1046 dio->submit_io = submit_io;
1047 dio->final_block_in_bio = -1;
1048 dio->next_block_for_io = -1;
1050 dio->iocb = iocb;
1051 dio->i_size = i_size_read(inode);
1053 spin_lock_init(&dio->bio_lock);
1054 dio->refcount = 1;
1057 * In case of non-aligned buffers, we may need 2 more
1058 * pages since we need to zero out first and last block.
1060 if (unlikely(dio->blkfactor))
1061 dio->pages_in_io = 2;
1063 for (seg = 0; seg < nr_segs; seg++) {
1064 user_addr = (unsigned long)iov[seg].iov_base;
1065 dio->pages_in_io +=
1066 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1067 - user_addr/PAGE_SIZE);
1070 for (seg = 0; seg < nr_segs; seg++) {
1071 user_addr = (unsigned long)iov[seg].iov_base;
1072 dio->size += bytes = iov[seg].iov_len;
1074 /* Index into the first page of the first block */
1075 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1076 dio->final_block_in_request = dio->block_in_file +
1077 (bytes >> blkbits);
1078 /* Page fetching state */
1079 dio->head = 0;
1080 dio->tail = 0;
1081 dio->curr_page = 0;
1083 dio->total_pages = 0;
1084 if (user_addr & (PAGE_SIZE-1)) {
1085 dio->total_pages++;
1086 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1088 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1089 dio->curr_user_address = user_addr;
1091 ret = do_direct_IO(dio);
1093 dio->result += iov[seg].iov_len -
1094 ((dio->final_block_in_request - dio->block_in_file) <<
1095 blkbits);
1097 if (ret) {
1098 dio_cleanup(dio);
1099 break;
1101 } /* end iovec loop */
1103 if (ret == -ENOTBLK) {
1105 * The remaining part of the request will be
1106 * be handled by buffered I/O when we return
1108 ret = 0;
1111 * There may be some unwritten disk at the end of a part-written
1112 * fs-block-sized block. Go zero that now.
1114 dio_zero_block(dio, 1);
1116 if (dio->cur_page) {
1117 ret2 = dio_send_cur_page(dio);
1118 if (ret == 0)
1119 ret = ret2;
1120 page_cache_release(dio->cur_page);
1121 dio->cur_page = NULL;
1123 if (dio->bio)
1124 dio_bio_submit(dio);
1127 * It is possible that, we return short IO due to end of file.
1128 * In that case, we need to release all the pages we got hold on.
1130 dio_cleanup(dio);
1133 * All block lookups have been performed. For READ requests
1134 * we can let i_mutex go now that its achieved its purpose
1135 * of protecting us from looking up uninitialized blocks.
1137 if (rw == READ && (dio->flags & DIO_LOCKING))
1138 mutex_unlock(&dio->inode->i_mutex);
1141 * The only time we want to leave bios in flight is when a successful
1142 * partial aio read or full aio write have been setup. In that case
1143 * bio completion will call aio_complete. The only time it's safe to
1144 * call aio_complete is when we return -EIOCBQUEUED, so we key on that.
1145 * This had *better* be the only place that raises -EIOCBQUEUED.
1147 BUG_ON(ret == -EIOCBQUEUED);
1148 if (dio->is_async && ret == 0 && dio->result &&
1149 ((rw & READ) || (dio->result == dio->size)))
1150 ret = -EIOCBQUEUED;
1152 if (ret != -EIOCBQUEUED)
1153 dio_await_completion(dio);
1156 * Sync will always be dropping the final ref and completing the
1157 * operation. AIO can if it was a broken operation described above or
1158 * in fact if all the bios race to complete before we get here. In
1159 * that case dio_complete() translates the EIOCBQUEUED into the proper
1160 * return code that the caller will hand to aio_complete().
1162 * This is managed by the bio_lock instead of being an atomic_t so that
1163 * completion paths can drop their ref and use the remaining count to
1164 * decide to wake the submission path atomically.
1166 spin_lock_irqsave(&dio->bio_lock, flags);
1167 ret2 = --dio->refcount;
1168 spin_unlock_irqrestore(&dio->bio_lock, flags);
1170 if (ret2 == 0) {
1171 ret = dio_complete(dio, offset, ret, false);
1172 kfree(dio);
1173 } else
1174 BUG_ON(ret != -EIOCBQUEUED);
1176 return ret;
1180 * This is a library function for use by filesystem drivers.
1182 * The locking rules are governed by the flags parameter:
1183 * - if the flags value contains DIO_LOCKING we use a fancy locking
1184 * scheme for dumb filesystems.
1185 * For writes this function is called under i_mutex and returns with
1186 * i_mutex held, for reads, i_mutex is not held on entry, but it is
1187 * taken and dropped again before returning.
1188 * - if the flags value does NOT contain DIO_LOCKING we don't use any
1189 * internal locking but rather rely on the filesystem to synchronize
1190 * direct I/O reads/writes versus each other and truncate.
1192 * To help with locking against truncate we incremented the i_dio_count
1193 * counter before starting direct I/O, and decrement it once we are done.
1194 * Truncate can wait for it to reach zero to provide exclusion. It is
1195 * expected that filesystem provide exclusion between new direct I/O
1196 * and truncates. For DIO_LOCKING filesystems this is done by i_mutex,
1197 * but other filesystems need to take care of this on their own.
1199 ssize_t
1200 __blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1201 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1202 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1203 dio_submit_t submit_io, int flags)
1205 int seg;
1206 size_t size;
1207 unsigned long addr;
1208 unsigned blkbits = inode->i_blkbits;
1209 unsigned bdev_blkbits = 0;
1210 unsigned blocksize_mask = (1 << blkbits) - 1;
1211 ssize_t retval = -EINVAL;
1212 loff_t end = offset;
1213 struct dio *dio;
1215 if (rw & WRITE)
1216 rw = WRITE_ODIRECT;
1218 if (bdev)
1219 bdev_blkbits = blksize_bits(bdev_logical_block_size(bdev));
1221 if (offset & blocksize_mask) {
1222 if (bdev)
1223 blkbits = bdev_blkbits;
1224 blocksize_mask = (1 << blkbits) - 1;
1225 if (offset & blocksize_mask)
1226 goto out;
1229 /* Check the memory alignment. Blocks cannot straddle pages */
1230 for (seg = 0; seg < nr_segs; seg++) {
1231 addr = (unsigned long)iov[seg].iov_base;
1232 size = iov[seg].iov_len;
1233 end += size;
1234 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1235 if (bdev)
1236 blkbits = bdev_blkbits;
1237 blocksize_mask = (1 << blkbits) - 1;
1238 if ((addr & blocksize_mask) || (size & blocksize_mask))
1239 goto out;
1243 /* watch out for a 0 len io from a tricksy fs */
1244 if (rw == READ && end == offset)
1245 return 0;
1247 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1248 retval = -ENOMEM;
1249 if (!dio)
1250 goto out;
1252 * Believe it or not, zeroing out the page array caused a .5%
1253 * performance regression in a database benchmark. So, we take
1254 * care to only zero out what's needed.
1256 memset(dio, 0, offsetof(struct dio, pages));
1258 dio->flags = flags;
1259 if (dio->flags & DIO_LOCKING) {
1260 if (rw == READ) {
1261 struct address_space *mapping =
1262 iocb->ki_filp->f_mapping;
1264 /* will be released by direct_io_worker */
1265 mutex_lock(&inode->i_mutex);
1267 retval = filemap_write_and_wait_range(mapping, offset,
1268 end - 1);
1269 if (retval) {
1270 mutex_unlock(&inode->i_mutex);
1271 kfree(dio);
1272 goto out;
1278 * Will be decremented at I/O completion time.
1280 atomic_inc(&inode->i_dio_count);
1283 * For file extending writes updating i_size before data
1284 * writeouts complete can expose uninitialized blocks. So
1285 * even for AIO, we need to wait for i/o to complete before
1286 * returning in this case.
1288 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1289 (end > i_size_read(inode)));
1291 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1292 nr_segs, blkbits, get_block, end_io,
1293 submit_io, dio);
1295 out:
1296 return retval;
1298 EXPORT_SYMBOL(__blockdev_direct_IO);