2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__
void ip_send_check(struct iphdr
*iph
)
91 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
93 EXPORT_SYMBOL(ip_send_check
);
95 int __ip_local_out(struct sk_buff
*skb
)
97 struct iphdr
*iph
= ip_hdr(skb
);
99 iph
->tot_len
= htons(skb
->len
);
101 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, skb
, NULL
,
102 skb_dst(skb
)->dev
, dst_output
);
105 int ip_local_out(struct sk_buff
*skb
)
109 err
= __ip_local_out(skb
);
110 if (likely(err
== 1))
111 err
= dst_output(skb
);
115 EXPORT_SYMBOL_GPL(ip_local_out
);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
120 skb_reset_mac_header(newskb
);
121 __skb_pull(newskb
, skb_network_offset(newskb
));
122 newskb
->pkt_type
= PACKET_LOOPBACK
;
123 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
124 WARN_ON(!skb_dst(newskb
));
129 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
131 int ttl
= inet
->uc_ttl
;
134 ttl
= ip4_dst_hoplimit(dst
);
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
143 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
145 struct inet_sock
*inet
= inet_sk(sk
);
146 struct rtable
*rt
= skb_rtable(skb
);
149 /* Build the IP header. */
150 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
151 skb_reset_network_header(skb
);
155 iph
->tos
= inet
->tos
;
156 if (ip_dont_fragment(sk
, &rt
->dst
))
157 iph
->frag_off
= htons(IP_DF
);
160 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
161 iph
->daddr
= rt
->rt_dst
;
162 iph
->saddr
= rt
->rt_src
;
163 iph
->protocol
= sk
->sk_protocol
;
164 ip_select_ident(iph
, &rt
->dst
, sk
);
166 if (opt
&& opt
->optlen
) {
167 iph
->ihl
+= opt
->optlen
>>2;
168 ip_options_build(skb
, opt
, daddr
, rt
, 0);
171 skb
->priority
= sk
->sk_priority
;
172 skb
->mark
= sk
->sk_mark
;
175 return ip_local_out(skb
);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
179 static inline int ip_finish_output2(struct sk_buff
*skb
)
181 struct dst_entry
*dst
= skb_dst(skb
);
182 struct rtable
*rt
= (struct rtable
*)dst
;
183 struct net_device
*dev
= dst
->dev
;
184 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
186 if (rt
->rt_type
== RTN_MULTICAST
) {
187 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
188 } else if (rt
->rt_type
== RTN_BROADCAST
)
189 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
193 struct sk_buff
*skb2
;
195 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
201 skb_set_owner_w(skb2
, skb
->sk
);
207 return neigh_hh_output(dst
->hh
, skb
);
208 else if (dst
->neighbour
)
209 return dst
->neighbour
->output(skb
);
212 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
217 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
219 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
221 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
222 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
225 static int ip_finish_output(struct sk_buff
*skb
)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb
)->xfrm
!= NULL
) {
230 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
231 return dst_output(skb
);
234 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
235 return ip_fragment(skb
, ip_finish_output2
);
237 return ip_finish_output2(skb
);
240 int ip_mc_output(struct sk_buff
*skb
)
242 struct sock
*sk
= skb
->sk
;
243 struct rtable
*rt
= skb_rtable(skb
);
244 struct net_device
*dev
= rt
->dst
.dev
;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
252 skb
->protocol
= htons(ETH_P_IP
);
255 * Multicasts are looped back for other local users
258 if (rt
->rt_flags
&RTCF_MULTICAST
) {
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt
->rt_flags
& RTCF_LOCAL
) ||
271 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
274 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
276 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
277 newskb
, NULL
, newskb
->dev
,
278 ip_dev_loopback_xmit
);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb
)->ttl
== 0) {
289 if (rt
->rt_flags
&RTCF_BROADCAST
) {
290 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
292 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, newskb
,
293 NULL
, newskb
->dev
, ip_dev_loopback_xmit
);
296 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
,
297 skb
->dev
, ip_finish_output
,
298 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
301 int ip_output(struct sk_buff
*skb
)
303 struct net_device
*dev
= skb_dst(skb
)->dev
;
305 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
308 skb
->protocol
= htons(ETH_P_IP
);
310 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
312 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
315 int ip_queue_xmit(struct sk_buff
*skb
)
317 struct sock
*sk
= skb
->sk
;
318 struct inet_sock
*inet
= inet_sk(sk
);
319 struct ip_options
*opt
= inet
->opt
;
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
328 rt
= skb_rtable(skb
);
332 /* Make sure we can route this packet. */
333 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
337 /* Use correct destination address if we have options. */
338 daddr
= inet
->inet_daddr
;
343 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
346 .fl4_src
= inet
->inet_saddr
,
347 .fl4_tos
= RT_CONN_FLAGS(sk
),
348 .proto
= sk
->sk_protocol
,
349 .flags
= inet_sk_flowi_flags(sk
),
350 .fl_ip_sport
= inet
->inet_sport
,
351 .fl_ip_dport
= inet
->inet_dport
};
353 /* If this fails, retransmit mechanism of transport layer will
354 * keep trying until route appears or the connection times
357 security_sk_classify_flow(sk
, &fl
);
358 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
, 0))
361 sk_setup_caps(sk
, &rt
->dst
);
363 skb_dst_set_noref(skb
, &rt
->dst
);
366 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
369 /* OK, we know where to send it, allocate and build IP header. */
370 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
371 skb_reset_network_header(skb
);
373 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
374 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->local_df
)
375 iph
->frag_off
= htons(IP_DF
);
378 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
379 iph
->protocol
= sk
->sk_protocol
;
380 iph
->saddr
= rt
->rt_src
;
381 iph
->daddr
= rt
->rt_dst
;
382 /* Transport layer set skb->h.foo itself. */
384 if (opt
&& opt
->optlen
) {
385 iph
->ihl
+= opt
->optlen
>> 2;
386 ip_options_build(skb
, opt
, inet
->inet_daddr
, rt
, 0);
389 ip_select_ident_more(iph
, &rt
->dst
, sk
,
390 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
392 skb
->priority
= sk
->sk_priority
;
393 skb
->mark
= sk
->sk_mark
;
395 res
= ip_local_out(skb
);
401 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
403 return -EHOSTUNREACH
;
405 EXPORT_SYMBOL(ip_queue_xmit
);
408 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
410 to
->pkt_type
= from
->pkt_type
;
411 to
->priority
= from
->priority
;
412 to
->protocol
= from
->protocol
;
414 skb_dst_copy(to
, from
);
416 to
->mark
= from
->mark
;
418 /* Copy the flags to each fragment. */
419 IPCB(to
)->flags
= IPCB(from
)->flags
;
421 #ifdef CONFIG_NET_SCHED
422 to
->tc_index
= from
->tc_index
;
425 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
426 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
427 to
->nf_trace
= from
->nf_trace
;
429 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
430 to
->ipvs_property
= from
->ipvs_property
;
432 skb_copy_secmark(to
, from
);
436 * This IP datagram is too large to be sent in one piece. Break it up into
437 * smaller pieces (each of size equal to IP header plus
438 * a block of the data of the original IP data part) that will yet fit in a
439 * single device frame, and queue such a frame for sending.
442 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
446 struct net_device
*dev
;
447 struct sk_buff
*skb2
;
448 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
450 __be16 not_last_frag
;
451 struct rtable
*rt
= skb_rtable(skb
);
457 * Point into the IP datagram header.
462 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
463 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
464 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
465 htonl(ip_skb_dst_mtu(skb
)));
471 * Setup starting values.
475 mtu
= dst_mtu(&rt
->dst
) - hlen
; /* Size of data space */
476 #ifdef CONFIG_BRIDGE_NETFILTER
478 mtu
-= nf_bridge_mtu_reduction(skb
);
480 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
482 /* When frag_list is given, use it. First, check its validity:
483 * some transformers could create wrong frag_list or break existing
484 * one, it is not prohibited. In this case fall back to copying.
486 * LATER: this step can be merged to real generation of fragments,
487 * we can switch to copy when see the first bad fragment.
489 if (skb_has_frag_list(skb
)) {
490 struct sk_buff
*frag
, *frag2
;
491 int first_len
= skb_pagelen(skb
);
493 if (first_len
- hlen
> mtu
||
494 ((first_len
- hlen
) & 7) ||
495 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
499 skb_walk_frags(skb
, frag
) {
500 /* Correct geometry. */
501 if (frag
->len
> mtu
||
502 ((frag
->len
& 7) && frag
->next
) ||
503 skb_headroom(frag
) < hlen
)
504 goto slow_path_clean
;
506 /* Partially cloned skb? */
507 if (skb_shared(frag
))
508 goto slow_path_clean
;
513 frag
->destructor
= sock_wfree
;
515 skb
->truesize
-= frag
->truesize
;
518 /* Everything is OK. Generate! */
522 frag
= skb_shinfo(skb
)->frag_list
;
523 skb_frag_list_init(skb
);
524 skb
->data_len
= first_len
- skb_headlen(skb
);
525 skb
->len
= first_len
;
526 iph
->tot_len
= htons(first_len
);
527 iph
->frag_off
= htons(IP_MF
);
531 /* Prepare header of the next frame,
532 * before previous one went down. */
534 frag
->ip_summed
= CHECKSUM_NONE
;
535 skb_reset_transport_header(frag
);
536 __skb_push(frag
, hlen
);
537 skb_reset_network_header(frag
);
538 memcpy(skb_network_header(frag
), iph
, hlen
);
540 iph
->tot_len
= htons(frag
->len
);
541 ip_copy_metadata(frag
, skb
);
543 ip_options_fragment(frag
);
544 offset
+= skb
->len
- hlen
;
545 iph
->frag_off
= htons(offset
>>3);
546 if (frag
->next
!= NULL
)
547 iph
->frag_off
|= htons(IP_MF
);
548 /* Ready, complete checksum */
555 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
565 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
574 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
578 skb_walk_frags(skb
, frag2
) {
582 frag2
->destructor
= NULL
;
583 skb
->truesize
+= frag2
->truesize
;
588 left
= skb
->len
- hlen
; /* Space per frame */
589 ptr
= hlen
; /* Where to start from */
591 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
592 * we need to make room for the encapsulating header
594 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->dst
.dev
, nf_bridge_pad(skb
));
597 * Fragment the datagram.
600 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
601 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
604 * Keep copying data until we run out.
609 /* IF: it doesn't fit, use 'mtu' - the data space left */
612 /* IF: we are not sending upto and including the packet end
613 then align the next start on an eight byte boundary */
621 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
622 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
628 * Set up data on packet
631 ip_copy_metadata(skb2
, skb
);
632 skb_reserve(skb2
, ll_rs
);
633 skb_put(skb2
, len
+ hlen
);
634 skb_reset_network_header(skb2
);
635 skb2
->transport_header
= skb2
->network_header
+ hlen
;
638 * Charge the memory for the fragment to any owner
643 skb_set_owner_w(skb2
, skb
->sk
);
646 * Copy the packet header into the new buffer.
649 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
652 * Copy a block of the IP datagram.
654 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
659 * Fill in the new header fields.
662 iph
->frag_off
= htons((offset
>> 3));
664 /* ANK: dirty, but effective trick. Upgrade options only if
665 * the segment to be fragmented was THE FIRST (otherwise,
666 * options are already fixed) and make it ONCE
667 * on the initial skb, so that all the following fragments
668 * will inherit fixed options.
671 ip_options_fragment(skb
);
674 * Added AC : If we are fragmenting a fragment that's not the
675 * last fragment then keep MF on each bit
677 if (left
> 0 || not_last_frag
)
678 iph
->frag_off
|= htons(IP_MF
);
683 * Put this fragment into the sending queue.
685 iph
->tot_len
= htons(len
+ hlen
);
693 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
696 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
701 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
704 EXPORT_SYMBOL(ip_fragment
);
707 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
709 struct iovec
*iov
= from
;
711 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
712 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
716 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
718 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
722 EXPORT_SYMBOL(ip_generic_getfrag
);
725 csum_page(struct page
*page
, int offset
, int copy
)
730 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
735 static inline int ip_ufo_append_data(struct sock
*sk
,
736 int getfrag(void *from
, char *to
, int offset
, int len
,
737 int odd
, struct sk_buff
*skb
),
738 void *from
, int length
, int hh_len
, int fragheaderlen
,
739 int transhdrlen
, int mtu
, unsigned int flags
)
744 /* There is support for UDP fragmentation offload by network
745 * device, so create one single skb packet containing complete
748 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
) {
749 skb
= sock_alloc_send_skb(sk
,
750 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
751 (flags
& MSG_DONTWAIT
), &err
);
756 /* reserve space for Hardware header */
757 skb_reserve(skb
, hh_len
);
759 /* create space for UDP/IP header */
760 skb_put(skb
, fragheaderlen
+ transhdrlen
);
762 /* initialize network header pointer */
763 skb_reset_network_header(skb
);
765 /* initialize protocol header pointer */
766 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
768 skb
->ip_summed
= CHECKSUM_PARTIAL
;
770 sk
->sk_sndmsg_off
= 0;
772 /* specify the length of each IP datagram fragment */
773 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
774 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
775 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
778 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
779 (length
- transhdrlen
));
783 * ip_append_data() and ip_append_page() can make one large IP datagram
784 * from many pieces of data. Each pieces will be holded on the socket
785 * until ip_push_pending_frames() is called. Each piece can be a page
788 * Not only UDP, other transport protocols - e.g. raw sockets - can use
789 * this interface potentially.
791 * LATER: length must be adjusted by pad at tail, when it is required.
793 int ip_append_data(struct sock
*sk
,
794 int getfrag(void *from
, char *to
, int offset
, int len
,
795 int odd
, struct sk_buff
*skb
),
796 void *from
, int length
, int transhdrlen
,
797 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
800 struct inet_sock
*inet
= inet_sk(sk
);
803 struct ip_options
*opt
= NULL
;
810 unsigned int maxfraglen
, fragheaderlen
;
811 int csummode
= CHECKSUM_NONE
;
817 if (skb_queue_empty(&sk
->sk_write_queue
)) {
823 if (inet
->cork
.opt
== NULL
) {
824 inet
->cork
.opt
= kmalloc(sizeof(struct ip_options
) + 40, sk
->sk_allocation
);
825 if (unlikely(inet
->cork
.opt
== NULL
))
828 memcpy(inet
->cork
.opt
, opt
, sizeof(struct ip_options
)+opt
->optlen
);
829 inet
->cork
.flags
|= IPCORK_OPT
;
830 inet
->cork
.addr
= ipc
->addr
;
836 * We steal reference to this route, caller should not release it
839 inet
->cork
.fragsize
= mtu
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
841 dst_mtu(rt
->dst
.path
);
842 inet
->cork
.dst
= &rt
->dst
;
843 inet
->cork
.length
= 0;
844 sk
->sk_sndmsg_page
= NULL
;
845 sk
->sk_sndmsg_off
= 0;
846 exthdrlen
= rt
->dst
.header_len
;
848 transhdrlen
+= exthdrlen
;
850 rt
= (struct rtable
*)inet
->cork
.dst
;
851 if (inet
->cork
.flags
& IPCORK_OPT
)
852 opt
= inet
->cork
.opt
;
856 mtu
= inet
->cork
.fragsize
;
858 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
860 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
861 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
863 if (inet
->cork
.length
+ length
> 0xFFFF - fragheaderlen
) {
864 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
,
870 * transhdrlen > 0 means that this is the first fragment and we wish
871 * it won't be fragmented in the future.
874 length
+ fragheaderlen
<= mtu
&&
875 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
877 csummode
= CHECKSUM_PARTIAL
;
879 skb
= skb_peek_tail(&sk
->sk_write_queue
);
881 inet
->cork
.length
+= length
;
882 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
883 (sk
->sk_protocol
== IPPROTO_UDP
) &&
884 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
885 err
= ip_ufo_append_data(sk
, getfrag
, from
, length
, hh_len
,
886 fragheaderlen
, transhdrlen
, mtu
,
893 /* So, what's going on in the loop below?
895 * We use calculated fragment length to generate chained skb,
896 * each of segments is IP fragment ready for sending to network after
897 * adding appropriate IP header.
904 /* Check if the remaining data fits into current packet. */
905 copy
= mtu
- skb
->len
;
907 copy
= maxfraglen
- skb
->len
;
910 unsigned int datalen
;
911 unsigned int fraglen
;
912 unsigned int fraggap
;
913 unsigned int alloclen
;
914 struct sk_buff
*skb_prev
;
918 fraggap
= skb_prev
->len
- maxfraglen
;
923 * If remaining data exceeds the mtu,
924 * we know we need more fragment(s).
926 datalen
= length
+ fraggap
;
927 if (datalen
> mtu
- fragheaderlen
)
928 datalen
= maxfraglen
- fragheaderlen
;
929 fraglen
= datalen
+ fragheaderlen
;
931 if ((flags
& MSG_MORE
) &&
932 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
937 /* The last fragment gets additional space at tail.
938 * Note, with MSG_MORE we overallocate on fragments,
939 * because we have no idea what fragment will be
942 if (datalen
== length
+ fraggap
) {
943 alloclen
+= rt
->dst
.trailer_len
;
944 /* make sure mtu is not reached */
945 if (datalen
> mtu
- fragheaderlen
- rt
->dst
.trailer_len
)
946 datalen
-= ALIGN(rt
->dst
.trailer_len
, 8);
949 skb
= sock_alloc_send_skb(sk
,
950 alloclen
+ hh_len
+ 15,
951 (flags
& MSG_DONTWAIT
), &err
);
954 if (atomic_read(&sk
->sk_wmem_alloc
) <=
956 skb
= sock_wmalloc(sk
,
957 alloclen
+ hh_len
+ 15, 1,
959 if (unlikely(skb
== NULL
))
962 /* only the initial fragment is
970 * Fill in the control structures
972 skb
->ip_summed
= csummode
;
974 skb_reserve(skb
, hh_len
);
975 skb_shinfo(skb
)->tx_flags
= ipc
->tx_flags
;
978 * Find where to start putting bytes.
980 data
= skb_put(skb
, fraglen
);
981 skb_set_network_header(skb
, exthdrlen
);
982 skb
->transport_header
= (skb
->network_header
+
984 data
+= fragheaderlen
;
987 skb
->csum
= skb_copy_and_csum_bits(
988 skb_prev
, maxfraglen
,
989 data
+ transhdrlen
, fraggap
, 0);
990 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
993 pskb_trim_unique(skb_prev
, maxfraglen
);
996 copy
= datalen
- transhdrlen
- fraggap
;
997 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
1004 length
-= datalen
- fraggap
;
1007 csummode
= CHECKSUM_NONE
;
1010 * Put the packet on the pending queue.
1012 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1019 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
1023 if (getfrag(from
, skb_put(skb
, copy
),
1024 offset
, copy
, off
, skb
) < 0) {
1025 __skb_trim(skb
, off
);
1030 int i
= skb_shinfo(skb
)->nr_frags
;
1031 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
1032 struct page
*page
= sk
->sk_sndmsg_page
;
1033 int off
= sk
->sk_sndmsg_off
;
1036 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
1039 if (page
!= frag
->page
) {
1040 if (i
== MAX_SKB_FRAGS
) {
1045 skb_fill_page_desc(skb
, i
, page
, sk
->sk_sndmsg_off
, 0);
1046 frag
= &skb_shinfo(skb
)->frags
[i
];
1048 } else if (i
< MAX_SKB_FRAGS
) {
1049 if (copy
> PAGE_SIZE
)
1051 page
= alloc_pages(sk
->sk_allocation
, 0);
1056 sk
->sk_sndmsg_page
= page
;
1057 sk
->sk_sndmsg_off
= 0;
1059 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1060 frag
= &skb_shinfo(skb
)->frags
[i
];
1065 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1069 sk
->sk_sndmsg_off
+= copy
;
1072 skb
->data_len
+= copy
;
1073 skb
->truesize
+= copy
;
1074 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1083 inet
->cork
.length
-= length
;
1084 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1088 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1089 int offset
, size_t size
, int flags
)
1091 struct inet_sock
*inet
= inet_sk(sk
);
1092 struct sk_buff
*skb
;
1094 struct ip_options
*opt
= NULL
;
1099 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1104 if (flags
&MSG_PROBE
)
1107 if (skb_queue_empty(&sk
->sk_write_queue
))
1110 rt
= (struct rtable
*)inet
->cork
.dst
;
1111 if (inet
->cork
.flags
& IPCORK_OPT
)
1112 opt
= inet
->cork
.opt
;
1114 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1117 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1118 mtu
= inet
->cork
.fragsize
;
1120 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1121 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1123 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1124 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
, mtu
);
1128 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1131 inet
->cork
.length
+= size
;
1132 if ((size
+ skb
->len
> mtu
) &&
1133 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1134 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1135 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1136 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1143 if (skb_is_gso(skb
))
1147 /* Check if the remaining data fits into current packet. */
1148 len
= mtu
- skb
->len
;
1150 len
= maxfraglen
- skb
->len
;
1153 struct sk_buff
*skb_prev
;
1157 fraggap
= skb_prev
->len
- maxfraglen
;
1159 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1160 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1161 if (unlikely(!skb
)) {
1167 * Fill in the control structures
1169 skb
->ip_summed
= CHECKSUM_NONE
;
1171 skb_reserve(skb
, hh_len
);
1174 * Find where to start putting bytes.
1176 skb_put(skb
, fragheaderlen
+ fraggap
);
1177 skb_reset_network_header(skb
);
1178 skb
->transport_header
= (skb
->network_header
+
1181 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1183 skb_transport_header(skb
),
1185 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1187 pskb_trim_unique(skb_prev
, maxfraglen
);
1191 * Put the packet on the pending queue.
1193 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1197 i
= skb_shinfo(skb
)->nr_frags
;
1200 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1201 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1202 } else if (i
< MAX_SKB_FRAGS
) {
1204 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1210 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1212 csum
= csum_page(page
, offset
, len
);
1213 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1217 skb
->data_len
+= len
;
1218 skb
->truesize
+= len
;
1219 atomic_add(len
, &sk
->sk_wmem_alloc
);
1226 inet
->cork
.length
-= size
;
1227 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1231 static void ip_cork_release(struct inet_sock
*inet
)
1233 inet
->cork
.flags
&= ~IPCORK_OPT
;
1234 kfree(inet
->cork
.opt
);
1235 inet
->cork
.opt
= NULL
;
1236 dst_release(inet
->cork
.dst
);
1237 inet
->cork
.dst
= NULL
;
1241 * Combined all pending IP fragments on the socket as one IP datagram
1242 * and push them out.
1244 int ip_push_pending_frames(struct sock
*sk
)
1246 struct sk_buff
*skb
, *tmp_skb
;
1247 struct sk_buff
**tail_skb
;
1248 struct inet_sock
*inet
= inet_sk(sk
);
1249 struct net
*net
= sock_net(sk
);
1250 struct ip_options
*opt
= NULL
;
1251 struct rtable
*rt
= (struct rtable
*)inet
->cork
.dst
;
1257 if ((skb
= __skb_dequeue(&sk
->sk_write_queue
)) == NULL
)
1259 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1261 /* move skb->data to ip header from ext header */
1262 if (skb
->data
< skb_network_header(skb
))
1263 __skb_pull(skb
, skb_network_offset(skb
));
1264 while ((tmp_skb
= __skb_dequeue(&sk
->sk_write_queue
)) != NULL
) {
1265 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1266 *tail_skb
= tmp_skb
;
1267 tail_skb
= &(tmp_skb
->next
);
1268 skb
->len
+= tmp_skb
->len
;
1269 skb
->data_len
+= tmp_skb
->len
;
1270 skb
->truesize
+= tmp_skb
->truesize
;
1271 tmp_skb
->destructor
= NULL
;
1275 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1276 * to fragment the frame generated here. No matter, what transforms
1277 * how transforms change size of the packet, it will come out.
1279 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1282 /* DF bit is set when we want to see DF on outgoing frames.
1283 * If local_df is set too, we still allow to fragment this frame
1285 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1286 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1287 ip_dont_fragment(sk
, &rt
->dst
)))
1290 if (inet
->cork
.flags
& IPCORK_OPT
)
1291 opt
= inet
->cork
.opt
;
1293 if (rt
->rt_type
== RTN_MULTICAST
)
1296 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1298 iph
= (struct iphdr
*)skb
->data
;
1302 iph
->ihl
+= opt
->optlen
>>2;
1303 ip_options_build(skb
, opt
, inet
->cork
.addr
, rt
, 0);
1305 iph
->tos
= inet
->tos
;
1307 ip_select_ident(iph
, &rt
->dst
, sk
);
1309 iph
->protocol
= sk
->sk_protocol
;
1310 iph
->saddr
= rt
->rt_src
;
1311 iph
->daddr
= rt
->rt_dst
;
1313 skb
->priority
= sk
->sk_priority
;
1314 skb
->mark
= sk
->sk_mark
;
1316 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1319 inet
->cork
.dst
= NULL
;
1320 skb_dst_set(skb
, &rt
->dst
);
1322 if (iph
->protocol
== IPPROTO_ICMP
)
1323 icmp_out_count(net
, ((struct icmphdr
*)
1324 skb_transport_header(skb
))->type
);
1326 /* Netfilter gets whole the not fragmented skb. */
1327 err
= ip_local_out(skb
);
1330 err
= net_xmit_errno(err
);
1336 ip_cork_release(inet
);
1340 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1345 * Throw away all pending data on the socket.
1347 void ip_flush_pending_frames(struct sock
*sk
)
1349 struct sk_buff
*skb
;
1351 while ((skb
= __skb_dequeue_tail(&sk
->sk_write_queue
)) != NULL
)
1354 ip_cork_release(inet_sk(sk
));
1359 * Fetch data from kernel space and fill in checksum if needed.
1361 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1362 int len
, int odd
, struct sk_buff
*skb
)
1366 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1367 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1372 * Generic function to send a packet as reply to another packet.
1373 * Used to send TCP resets so far. ICMP should use this function too.
1375 * Should run single threaded per socket because it uses the sock
1376 * structure to pass arguments.
1378 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1381 struct inet_sock
*inet
= inet_sk(sk
);
1383 struct ip_options opt
;
1386 struct ipcm_cookie ipc
;
1388 struct rtable
*rt
= skb_rtable(skb
);
1390 if (ip_options_echo(&replyopts
.opt
, skb
))
1393 daddr
= ipc
.addr
= rt
->rt_src
;
1397 if (replyopts
.opt
.optlen
) {
1398 ipc
.opt
= &replyopts
.opt
;
1401 daddr
= replyopts
.opt
.faddr
;
1405 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1407 .fl4_src
= rt
->rt_spec_dst
,
1408 .fl4_tos
= RT_TOS(ip_hdr(skb
)->tos
),
1409 .fl_ip_sport
= tcp_hdr(skb
)->dest
,
1410 .fl_ip_dport
= tcp_hdr(skb
)->source
,
1411 .proto
= sk
->sk_protocol
,
1412 .flags
= ip_reply_arg_flowi_flags(arg
) };
1413 security_skb_classify_flow(skb
, &fl
);
1414 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1418 /* And let IP do all the hard work.
1420 This chunk is not reenterable, hence spinlock.
1421 Note that it uses the fact, that this function is called
1422 with locally disabled BH and that sk cannot be already spinlocked.
1425 inet
->tos
= ip_hdr(skb
)->tos
;
1426 sk
->sk_priority
= skb
->priority
;
1427 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1428 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1429 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1430 &ipc
, &rt
, MSG_DONTWAIT
);
1431 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1432 if (arg
->csumoffset
>= 0)
1433 *((__sum16
*)skb_transport_header(skb
) +
1434 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1436 skb
->ip_summed
= CHECKSUM_NONE
;
1437 ip_push_pending_frames(sk
);
1445 void __init
ip_init(void)
1450 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1451 igmp_mc_proc_init();