e1000e: set flow control thresholds properly after enabling/disabling pause
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / namei.c
blobd11f404667e962ababa87f3678a52e78c50794dd
1 /*
2 * linux/fs/namei.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
7 /*
8 * Some corrections by tytso.
9 */
11 /* [Feb 1997 T. Schoebel-Theuer] Complete rewrite of the pathname
12 * lookup logic.
14 /* [Feb-Apr 2000, AV] Rewrite to the new namespace architecture.
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/slab.h>
20 #include <linux/fs.h>
21 #include <linux/namei.h>
22 #include <linux/quotaops.h>
23 #include <linux/pagemap.h>
24 #include <linux/fsnotify.h>
25 #include <linux/personality.h>
26 #include <linux/security.h>
27 #include <linux/ima.h>
28 #include <linux/syscalls.h>
29 #include <linux/mount.h>
30 #include <linux/audit.h>
31 #include <linux/capability.h>
32 #include <linux/file.h>
33 #include <linux/fcntl.h>
34 #include <linux/device_cgroup.h>
35 #include <linux/fs_struct.h>
36 #include <asm/uaccess.h>
38 #define ACC_MODE(x) ("\000\004\002\006"[(x)&O_ACCMODE])
40 /* [Feb-1997 T. Schoebel-Theuer]
41 * Fundamental changes in the pathname lookup mechanisms (namei)
42 * were necessary because of omirr. The reason is that omirr needs
43 * to know the _real_ pathname, not the user-supplied one, in case
44 * of symlinks (and also when transname replacements occur).
46 * The new code replaces the old recursive symlink resolution with
47 * an iterative one (in case of non-nested symlink chains). It does
48 * this with calls to <fs>_follow_link().
49 * As a side effect, dir_namei(), _namei() and follow_link() are now
50 * replaced with a single function lookup_dentry() that can handle all
51 * the special cases of the former code.
53 * With the new dcache, the pathname is stored at each inode, at least as
54 * long as the refcount of the inode is positive. As a side effect, the
55 * size of the dcache depends on the inode cache and thus is dynamic.
57 * [29-Apr-1998 C. Scott Ananian] Updated above description of symlink
58 * resolution to correspond with current state of the code.
60 * Note that the symlink resolution is not *completely* iterative.
61 * There is still a significant amount of tail- and mid- recursion in
62 * the algorithm. Also, note that <fs>_readlink() is not used in
63 * lookup_dentry(): lookup_dentry() on the result of <fs>_readlink()
64 * may return different results than <fs>_follow_link(). Many virtual
65 * filesystems (including /proc) exhibit this behavior.
68 /* [24-Feb-97 T. Schoebel-Theuer] Side effects caused by new implementation:
69 * New symlink semantics: when open() is called with flags O_CREAT | O_EXCL
70 * and the name already exists in form of a symlink, try to create the new
71 * name indicated by the symlink. The old code always complained that the
72 * name already exists, due to not following the symlink even if its target
73 * is nonexistent. The new semantics affects also mknod() and link() when
74 * the name is a symlink pointing to a non-existant name.
76 * I don't know which semantics is the right one, since I have no access
77 * to standards. But I found by trial that HP-UX 9.0 has the full "new"
78 * semantics implemented, while SunOS 4.1.1 and Solaris (SunOS 5.4) have the
79 * "old" one. Personally, I think the new semantics is much more logical.
80 * Note that "ln old new" where "new" is a symlink pointing to a non-existing
81 * file does succeed in both HP-UX and SunOs, but not in Solaris
82 * and in the old Linux semantics.
85 /* [16-Dec-97 Kevin Buhr] For security reasons, we change some symlink
86 * semantics. See the comments in "open_namei" and "do_link" below.
88 * [10-Sep-98 Alan Modra] Another symlink change.
91 /* [Feb-Apr 2000 AV] Complete rewrite. Rules for symlinks:
92 * inside the path - always follow.
93 * in the last component in creation/removal/renaming - never follow.
94 * if LOOKUP_FOLLOW passed - follow.
95 * if the pathname has trailing slashes - follow.
96 * otherwise - don't follow.
97 * (applied in that order).
99 * [Jun 2000 AV] Inconsistent behaviour of open() in case if flags==O_CREAT
100 * restored for 2.4. This is the last surviving part of old 4.2BSD bug.
101 * During the 2.4 we need to fix the userland stuff depending on it -
102 * hopefully we will be able to get rid of that wart in 2.5. So far only
103 * XEmacs seems to be relying on it...
106 * [Sep 2001 AV] Single-semaphore locking scheme (kudos to David Holland)
107 * implemented. Let's see if raised priority of ->s_vfs_rename_mutex gives
108 * any extra contention...
111 static int __link_path_walk(const char *name, struct nameidata *nd);
113 /* In order to reduce some races, while at the same time doing additional
114 * checking and hopefully speeding things up, we copy filenames to the
115 * kernel data space before using them..
117 * POSIX.1 2.4: an empty pathname is invalid (ENOENT).
118 * PATH_MAX includes the nul terminator --RR.
120 static int do_getname(const char __user *filename, char *page)
122 int retval;
123 unsigned long len = PATH_MAX;
125 if (!segment_eq(get_fs(), KERNEL_DS)) {
126 if ((unsigned long) filename >= TASK_SIZE)
127 return -EFAULT;
128 if (TASK_SIZE - (unsigned long) filename < PATH_MAX)
129 len = TASK_SIZE - (unsigned long) filename;
132 retval = strncpy_from_user(page, filename, len);
133 if (retval > 0) {
134 if (retval < len)
135 return 0;
136 return -ENAMETOOLONG;
137 } else if (!retval)
138 retval = -ENOENT;
139 return retval;
142 char * getname(const char __user * filename)
144 char *tmp, *result;
146 result = ERR_PTR(-ENOMEM);
147 tmp = __getname();
148 if (tmp) {
149 int retval = do_getname(filename, tmp);
151 result = tmp;
152 if (retval < 0) {
153 __putname(tmp);
154 result = ERR_PTR(retval);
157 audit_getname(result);
158 return result;
161 #ifdef CONFIG_AUDITSYSCALL
162 void putname(const char *name)
164 if (unlikely(!audit_dummy_context()))
165 audit_putname(name);
166 else
167 __putname(name);
169 EXPORT_SYMBOL(putname);
170 #endif
173 * This does basic POSIX ACL permission checking
175 static int acl_permission_check(struct inode *inode, int mask,
176 int (*check_acl)(struct inode *inode, int mask))
178 umode_t mode = inode->i_mode;
180 mask &= MAY_READ | MAY_WRITE | MAY_EXEC;
182 if (current_fsuid() == inode->i_uid)
183 mode >>= 6;
184 else {
185 if (IS_POSIXACL(inode) && (mode & S_IRWXG) && check_acl) {
186 int error = check_acl(inode, mask);
187 if (error != -EAGAIN)
188 return error;
191 if (in_group_p(inode->i_gid))
192 mode >>= 3;
196 * If the DACs are ok we don't need any capability check.
198 if ((mask & ~mode) == 0)
199 return 0;
200 return -EACCES;
204 * generic_permission - check for access rights on a Posix-like filesystem
205 * @inode: inode to check access rights for
206 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
207 * @check_acl: optional callback to check for Posix ACLs
209 * Used to check for read/write/execute permissions on a file.
210 * We use "fsuid" for this, letting us set arbitrary permissions
211 * for filesystem access without changing the "normal" uids which
212 * are used for other things..
214 int generic_permission(struct inode *inode, int mask,
215 int (*check_acl)(struct inode *inode, int mask))
217 int ret;
220 * Do the basic POSIX ACL permission checks.
222 ret = acl_permission_check(inode, mask, check_acl);
223 if (ret != -EACCES)
224 return ret;
227 * Read/write DACs are always overridable.
228 * Executable DACs are overridable if at least one exec bit is set.
230 if (!(mask & MAY_EXEC) || execute_ok(inode))
231 if (capable(CAP_DAC_OVERRIDE))
232 return 0;
235 * Searching includes executable on directories, else just read.
237 if (mask == MAY_READ || (S_ISDIR(inode->i_mode) && !(mask & MAY_WRITE)))
238 if (capable(CAP_DAC_READ_SEARCH))
239 return 0;
241 return -EACCES;
245 * inode_permission - check for access rights to a given inode
246 * @inode: inode to check permission on
247 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
249 * Used to check for read/write/execute permissions on an inode.
250 * We use "fsuid" for this, letting us set arbitrary permissions
251 * for filesystem access without changing the "normal" uids which
252 * are used for other things.
254 int inode_permission(struct inode *inode, int mask)
256 int retval;
258 if (mask & MAY_WRITE) {
259 umode_t mode = inode->i_mode;
262 * Nobody gets write access to a read-only fs.
264 if (IS_RDONLY(inode) &&
265 (S_ISREG(mode) || S_ISDIR(mode) || S_ISLNK(mode)))
266 return -EROFS;
269 * Nobody gets write access to an immutable file.
271 if (IS_IMMUTABLE(inode))
272 return -EACCES;
275 if (inode->i_op->permission)
276 retval = inode->i_op->permission(inode, mask);
277 else
278 retval = generic_permission(inode, mask, inode->i_op->check_acl);
280 if (retval)
281 return retval;
283 retval = devcgroup_inode_permission(inode, mask);
284 if (retval)
285 return retval;
287 return security_inode_permission(inode,
288 mask & (MAY_READ|MAY_WRITE|MAY_EXEC|MAY_APPEND));
292 * file_permission - check for additional access rights to a given file
293 * @file: file to check access rights for
294 * @mask: right to check for (%MAY_READ, %MAY_WRITE, %MAY_EXEC)
296 * Used to check for read/write/execute permissions on an already opened
297 * file.
299 * Note:
300 * Do not use this function in new code. All access checks should
301 * be done using inode_permission().
303 int file_permission(struct file *file, int mask)
305 return inode_permission(file->f_path.dentry->d_inode, mask);
309 * get_write_access() gets write permission for a file.
310 * put_write_access() releases this write permission.
311 * This is used for regular files.
312 * We cannot support write (and maybe mmap read-write shared) accesses and
313 * MAP_DENYWRITE mmappings simultaneously. The i_writecount field of an inode
314 * can have the following values:
315 * 0: no writers, no VM_DENYWRITE mappings
316 * < 0: (-i_writecount) vm_area_structs with VM_DENYWRITE set exist
317 * > 0: (i_writecount) users are writing to the file.
319 * Normally we operate on that counter with atomic_{inc,dec} and it's safe
320 * except for the cases where we don't hold i_writecount yet. Then we need to
321 * use {get,deny}_write_access() - these functions check the sign and refuse
322 * to do the change if sign is wrong. Exclusion between them is provided by
323 * the inode->i_lock spinlock.
326 int get_write_access(struct inode * inode)
328 spin_lock(&inode->i_lock);
329 if (atomic_read(&inode->i_writecount) < 0) {
330 spin_unlock(&inode->i_lock);
331 return -ETXTBSY;
333 atomic_inc(&inode->i_writecount);
334 spin_unlock(&inode->i_lock);
336 return 0;
339 int deny_write_access(struct file * file)
341 struct inode *inode = file->f_path.dentry->d_inode;
343 spin_lock(&inode->i_lock);
344 if (atomic_read(&inode->i_writecount) > 0) {
345 spin_unlock(&inode->i_lock);
346 return -ETXTBSY;
348 atomic_dec(&inode->i_writecount);
349 spin_unlock(&inode->i_lock);
351 return 0;
355 * path_get - get a reference to a path
356 * @path: path to get the reference to
358 * Given a path increment the reference count to the dentry and the vfsmount.
360 void path_get(struct path *path)
362 mntget(path->mnt);
363 dget(path->dentry);
365 EXPORT_SYMBOL(path_get);
368 * path_put - put a reference to a path
369 * @path: path to put the reference to
371 * Given a path decrement the reference count to the dentry and the vfsmount.
373 void path_put(struct path *path)
375 dput(path->dentry);
376 mntput(path->mnt);
378 EXPORT_SYMBOL(path_put);
381 * release_open_intent - free up open intent resources
382 * @nd: pointer to nameidata
384 void release_open_intent(struct nameidata *nd)
386 if (nd->intent.open.file->f_path.dentry == NULL)
387 put_filp(nd->intent.open.file);
388 else
389 fput(nd->intent.open.file);
392 static inline struct dentry *
393 do_revalidate(struct dentry *dentry, struct nameidata *nd)
395 int status = dentry->d_op->d_revalidate(dentry, nd);
396 if (unlikely(status <= 0)) {
398 * The dentry failed validation.
399 * If d_revalidate returned 0 attempt to invalidate
400 * the dentry otherwise d_revalidate is asking us
401 * to return a fail status.
403 if (!status) {
404 if (!d_invalidate(dentry)) {
405 dput(dentry);
406 dentry = NULL;
408 } else {
409 dput(dentry);
410 dentry = ERR_PTR(status);
413 return dentry;
417 * Internal lookup() using the new generic dcache.
418 * SMP-safe
420 static struct dentry * cached_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
422 struct dentry * dentry = __d_lookup(parent, name);
424 /* lockess __d_lookup may fail due to concurrent d_move()
425 * in some unrelated directory, so try with d_lookup
427 if (!dentry)
428 dentry = d_lookup(parent, name);
430 if (dentry && dentry->d_op && dentry->d_op->d_revalidate)
431 dentry = do_revalidate(dentry, nd);
433 return dentry;
437 * Short-cut version of permission(), for calling by
438 * path_walk(), when dcache lock is held. Combines parts
439 * of permission() and generic_permission(), and tests ONLY for
440 * MAY_EXEC permission.
442 * If appropriate, check DAC only. If not appropriate, or
443 * short-cut DAC fails, then call permission() to do more
444 * complete permission check.
446 static int exec_permission_lite(struct inode *inode)
448 int ret;
450 if (inode->i_op->permission) {
451 ret = inode->i_op->permission(inode, MAY_EXEC);
452 if (!ret)
453 goto ok;
454 return ret;
456 ret = acl_permission_check(inode, MAY_EXEC, inode->i_op->check_acl);
457 if (!ret)
458 goto ok;
460 if (capable(CAP_DAC_OVERRIDE) || capable(CAP_DAC_READ_SEARCH))
461 goto ok;
463 return ret;
465 return security_inode_permission(inode, MAY_EXEC);
469 * This is called when everything else fails, and we actually have
470 * to go to the low-level filesystem to find out what we should do..
472 * We get the directory semaphore, and after getting that we also
473 * make sure that nobody added the entry to the dcache in the meantime..
474 * SMP-safe
476 static struct dentry * real_lookup(struct dentry * parent, struct qstr * name, struct nameidata *nd)
478 struct dentry * result;
479 struct inode *dir = parent->d_inode;
481 mutex_lock(&dir->i_mutex);
483 * First re-do the cached lookup just in case it was created
484 * while we waited for the directory semaphore..
486 * FIXME! This could use version numbering or similar to
487 * avoid unnecessary cache lookups.
489 * The "dcache_lock" is purely to protect the RCU list walker
490 * from concurrent renames at this point (we mustn't get false
491 * negatives from the RCU list walk here, unlike the optimistic
492 * fast walk).
494 * so doing d_lookup() (with seqlock), instead of lockfree __d_lookup
496 result = d_lookup(parent, name);
497 if (!result) {
498 struct dentry *dentry;
500 /* Don't create child dentry for a dead directory. */
501 result = ERR_PTR(-ENOENT);
502 if (IS_DEADDIR(dir))
503 goto out_unlock;
505 dentry = d_alloc(parent, name);
506 result = ERR_PTR(-ENOMEM);
507 if (dentry) {
508 result = dir->i_op->lookup(dir, dentry, nd);
509 if (result)
510 dput(dentry);
511 else
512 result = dentry;
514 out_unlock:
515 mutex_unlock(&dir->i_mutex);
516 return result;
520 * Uhhuh! Nasty case: the cache was re-populated while
521 * we waited on the semaphore. Need to revalidate.
523 mutex_unlock(&dir->i_mutex);
524 if (result->d_op && result->d_op->d_revalidate) {
525 result = do_revalidate(result, nd);
526 if (!result)
527 result = ERR_PTR(-ENOENT);
529 return result;
533 * Wrapper to retry pathname resolution whenever the underlying
534 * file system returns an ESTALE.
536 * Retry the whole path once, forcing real lookup requests
537 * instead of relying on the dcache.
539 static __always_inline int link_path_walk(const char *name, struct nameidata *nd)
541 struct path save = nd->path;
542 int result;
544 /* make sure the stuff we saved doesn't go away */
545 path_get(&save);
547 result = __link_path_walk(name, nd);
548 if (result == -ESTALE) {
549 /* nd->path had been dropped */
550 nd->path = save;
551 path_get(&nd->path);
552 nd->flags |= LOOKUP_REVAL;
553 result = __link_path_walk(name, nd);
556 path_put(&save);
558 return result;
561 static __always_inline void set_root(struct nameidata *nd)
563 if (!nd->root.mnt) {
564 struct fs_struct *fs = current->fs;
565 read_lock(&fs->lock);
566 nd->root = fs->root;
567 path_get(&nd->root);
568 read_unlock(&fs->lock);
572 static __always_inline int __vfs_follow_link(struct nameidata *nd, const char *link)
574 int res = 0;
575 char *name;
576 if (IS_ERR(link))
577 goto fail;
579 if (*link == '/') {
580 set_root(nd);
581 path_put(&nd->path);
582 nd->path = nd->root;
583 path_get(&nd->root);
586 res = link_path_walk(link, nd);
587 if (nd->depth || res || nd->last_type!=LAST_NORM)
588 return res;
590 * If it is an iterative symlinks resolution in open_namei() we
591 * have to copy the last component. And all that crap because of
592 * bloody create() on broken symlinks. Furrfu...
594 name = __getname();
595 if (unlikely(!name)) {
596 path_put(&nd->path);
597 return -ENOMEM;
599 strcpy(name, nd->last.name);
600 nd->last.name = name;
601 return 0;
602 fail:
603 path_put(&nd->path);
604 return PTR_ERR(link);
607 static void path_put_conditional(struct path *path, struct nameidata *nd)
609 dput(path->dentry);
610 if (path->mnt != nd->path.mnt)
611 mntput(path->mnt);
614 static inline void path_to_nameidata(struct path *path, struct nameidata *nd)
616 dput(nd->path.dentry);
617 if (nd->path.mnt != path->mnt)
618 mntput(nd->path.mnt);
619 nd->path.mnt = path->mnt;
620 nd->path.dentry = path->dentry;
623 static __always_inline int __do_follow_link(struct path *path, struct nameidata *nd)
625 int error;
626 void *cookie;
627 struct dentry *dentry = path->dentry;
629 touch_atime(path->mnt, dentry);
630 nd_set_link(nd, NULL);
632 if (path->mnt != nd->path.mnt) {
633 path_to_nameidata(path, nd);
634 dget(dentry);
636 mntget(path->mnt);
637 cookie = dentry->d_inode->i_op->follow_link(dentry, nd);
638 error = PTR_ERR(cookie);
639 if (!IS_ERR(cookie)) {
640 char *s = nd_get_link(nd);
641 error = 0;
642 if (s)
643 error = __vfs_follow_link(nd, s);
644 if (dentry->d_inode->i_op->put_link)
645 dentry->d_inode->i_op->put_link(dentry, nd, cookie);
647 path_put(path);
649 return error;
653 * This limits recursive symlink follows to 8, while
654 * limiting consecutive symlinks to 40.
656 * Without that kind of total limit, nasty chains of consecutive
657 * symlinks can cause almost arbitrarily long lookups.
659 static inline int do_follow_link(struct path *path, struct nameidata *nd)
661 int err = -ELOOP;
662 if (current->link_count >= MAX_NESTED_LINKS)
663 goto loop;
664 if (current->total_link_count >= 40)
665 goto loop;
666 BUG_ON(nd->depth >= MAX_NESTED_LINKS);
667 cond_resched();
668 err = security_inode_follow_link(path->dentry, nd);
669 if (err)
670 goto loop;
671 current->link_count++;
672 current->total_link_count++;
673 nd->depth++;
674 err = __do_follow_link(path, nd);
675 current->link_count--;
676 nd->depth--;
677 return err;
678 loop:
679 path_put_conditional(path, nd);
680 path_put(&nd->path);
681 return err;
684 int follow_up(struct path *path)
686 struct vfsmount *parent;
687 struct dentry *mountpoint;
688 spin_lock(&vfsmount_lock);
689 parent = path->mnt->mnt_parent;
690 if (parent == path->mnt) {
691 spin_unlock(&vfsmount_lock);
692 return 0;
694 mntget(parent);
695 mountpoint = dget(path->mnt->mnt_mountpoint);
696 spin_unlock(&vfsmount_lock);
697 dput(path->dentry);
698 path->dentry = mountpoint;
699 mntput(path->mnt);
700 path->mnt = parent;
701 return 1;
704 /* no need for dcache_lock, as serialization is taken care in
705 * namespace.c
707 static int __follow_mount(struct path *path)
709 int res = 0;
710 while (d_mountpoint(path->dentry)) {
711 struct vfsmount *mounted = lookup_mnt(path);
712 if (!mounted)
713 break;
714 dput(path->dentry);
715 if (res)
716 mntput(path->mnt);
717 path->mnt = mounted;
718 path->dentry = dget(mounted->mnt_root);
719 res = 1;
721 return res;
724 static void follow_mount(struct path *path)
726 while (d_mountpoint(path->dentry)) {
727 struct vfsmount *mounted = lookup_mnt(path);
728 if (!mounted)
729 break;
730 dput(path->dentry);
731 mntput(path->mnt);
732 path->mnt = mounted;
733 path->dentry = dget(mounted->mnt_root);
737 /* no need for dcache_lock, as serialization is taken care in
738 * namespace.c
740 int follow_down(struct path *path)
742 struct vfsmount *mounted;
744 mounted = lookup_mnt(path);
745 if (mounted) {
746 dput(path->dentry);
747 mntput(path->mnt);
748 path->mnt = mounted;
749 path->dentry = dget(mounted->mnt_root);
750 return 1;
752 return 0;
755 static __always_inline void follow_dotdot(struct nameidata *nd)
757 set_root(nd);
759 while(1) {
760 struct vfsmount *parent;
761 struct dentry *old = nd->path.dentry;
763 if (nd->path.dentry == nd->root.dentry &&
764 nd->path.mnt == nd->root.mnt) {
765 break;
767 spin_lock(&dcache_lock);
768 if (nd->path.dentry != nd->path.mnt->mnt_root) {
769 nd->path.dentry = dget(nd->path.dentry->d_parent);
770 spin_unlock(&dcache_lock);
771 dput(old);
772 break;
774 spin_unlock(&dcache_lock);
775 spin_lock(&vfsmount_lock);
776 parent = nd->path.mnt->mnt_parent;
777 if (parent == nd->path.mnt) {
778 spin_unlock(&vfsmount_lock);
779 break;
781 mntget(parent);
782 nd->path.dentry = dget(nd->path.mnt->mnt_mountpoint);
783 spin_unlock(&vfsmount_lock);
784 dput(old);
785 mntput(nd->path.mnt);
786 nd->path.mnt = parent;
788 follow_mount(&nd->path);
792 * It's more convoluted than I'd like it to be, but... it's still fairly
793 * small and for now I'd prefer to have fast path as straight as possible.
794 * It _is_ time-critical.
796 static int do_lookup(struct nameidata *nd, struct qstr *name,
797 struct path *path)
799 struct vfsmount *mnt = nd->path.mnt;
800 struct dentry *dentry = __d_lookup(nd->path.dentry, name);
802 if (!dentry)
803 goto need_lookup;
804 if (dentry->d_op && dentry->d_op->d_revalidate)
805 goto need_revalidate;
806 done:
807 path->mnt = mnt;
808 path->dentry = dentry;
809 __follow_mount(path);
810 return 0;
812 need_lookup:
813 dentry = real_lookup(nd->path.dentry, name, nd);
814 if (IS_ERR(dentry))
815 goto fail;
816 goto done;
818 need_revalidate:
819 dentry = do_revalidate(dentry, nd);
820 if (!dentry)
821 goto need_lookup;
822 if (IS_ERR(dentry))
823 goto fail;
824 goto done;
826 fail:
827 return PTR_ERR(dentry);
831 * Name resolution.
832 * This is the basic name resolution function, turning a pathname into
833 * the final dentry. We expect 'base' to be positive and a directory.
835 * Returns 0 and nd will have valid dentry and mnt on success.
836 * Returns error and drops reference to input namei data on failure.
838 static int __link_path_walk(const char *name, struct nameidata *nd)
840 struct path next;
841 struct inode *inode;
842 int err;
843 unsigned int lookup_flags = nd->flags;
845 while (*name=='/')
846 name++;
847 if (!*name)
848 goto return_reval;
850 inode = nd->path.dentry->d_inode;
851 if (nd->depth)
852 lookup_flags = LOOKUP_FOLLOW | (nd->flags & LOOKUP_CONTINUE);
854 /* At this point we know we have a real path component. */
855 for(;;) {
856 unsigned long hash;
857 struct qstr this;
858 unsigned int c;
860 nd->flags |= LOOKUP_CONTINUE;
861 err = exec_permission_lite(inode);
862 if (err)
863 break;
865 this.name = name;
866 c = *(const unsigned char *)name;
868 hash = init_name_hash();
869 do {
870 name++;
871 hash = partial_name_hash(c, hash);
872 c = *(const unsigned char *)name;
873 } while (c && (c != '/'));
874 this.len = name - (const char *) this.name;
875 this.hash = end_name_hash(hash);
877 /* remove trailing slashes? */
878 if (!c)
879 goto last_component;
880 while (*++name == '/');
881 if (!*name)
882 goto last_with_slashes;
885 * "." and ".." are special - ".." especially so because it has
886 * to be able to know about the current root directory and
887 * parent relationships.
889 if (this.name[0] == '.') switch (this.len) {
890 default:
891 break;
892 case 2:
893 if (this.name[1] != '.')
894 break;
895 follow_dotdot(nd);
896 inode = nd->path.dentry->d_inode;
897 /* fallthrough */
898 case 1:
899 continue;
902 * See if the low-level filesystem might want
903 * to use its own hash..
905 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
906 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
907 &this);
908 if (err < 0)
909 break;
911 /* This does the actual lookups.. */
912 err = do_lookup(nd, &this, &next);
913 if (err)
914 break;
916 err = -ENOENT;
917 inode = next.dentry->d_inode;
918 if (!inode)
919 goto out_dput;
921 if (inode->i_op->follow_link) {
922 err = do_follow_link(&next, nd);
923 if (err)
924 goto return_err;
925 err = -ENOENT;
926 inode = nd->path.dentry->d_inode;
927 if (!inode)
928 break;
929 } else
930 path_to_nameidata(&next, nd);
931 err = -ENOTDIR;
932 if (!inode->i_op->lookup)
933 break;
934 continue;
935 /* here ends the main loop */
937 last_with_slashes:
938 lookup_flags |= LOOKUP_FOLLOW | LOOKUP_DIRECTORY;
939 last_component:
940 /* Clear LOOKUP_CONTINUE iff it was previously unset */
941 nd->flags &= lookup_flags | ~LOOKUP_CONTINUE;
942 if (lookup_flags & LOOKUP_PARENT)
943 goto lookup_parent;
944 if (this.name[0] == '.') switch (this.len) {
945 default:
946 break;
947 case 2:
948 if (this.name[1] != '.')
949 break;
950 follow_dotdot(nd);
951 inode = nd->path.dentry->d_inode;
952 /* fallthrough */
953 case 1:
954 goto return_reval;
956 if (nd->path.dentry->d_op && nd->path.dentry->d_op->d_hash) {
957 err = nd->path.dentry->d_op->d_hash(nd->path.dentry,
958 &this);
959 if (err < 0)
960 break;
962 err = do_lookup(nd, &this, &next);
963 if (err)
964 break;
965 inode = next.dentry->d_inode;
966 if ((lookup_flags & LOOKUP_FOLLOW)
967 && inode && inode->i_op->follow_link) {
968 err = do_follow_link(&next, nd);
969 if (err)
970 goto return_err;
971 inode = nd->path.dentry->d_inode;
972 } else
973 path_to_nameidata(&next, nd);
974 err = -ENOENT;
975 if (!inode)
976 break;
977 if (lookup_flags & LOOKUP_DIRECTORY) {
978 err = -ENOTDIR;
979 if (!inode->i_op->lookup)
980 break;
982 goto return_base;
983 lookup_parent:
984 nd->last = this;
985 nd->last_type = LAST_NORM;
986 if (this.name[0] != '.')
987 goto return_base;
988 if (this.len == 1)
989 nd->last_type = LAST_DOT;
990 else if (this.len == 2 && this.name[1] == '.')
991 nd->last_type = LAST_DOTDOT;
992 else
993 goto return_base;
994 return_reval:
996 * We bypassed the ordinary revalidation routines.
997 * We may need to check the cached dentry for staleness.
999 if (nd->path.dentry && nd->path.dentry->d_sb &&
1000 (nd->path.dentry->d_sb->s_type->fs_flags & FS_REVAL_DOT)) {
1001 err = -ESTALE;
1002 /* Note: we do not d_invalidate() */
1003 if (!nd->path.dentry->d_op->d_revalidate(
1004 nd->path.dentry, nd))
1005 break;
1007 return_base:
1008 return 0;
1009 out_dput:
1010 path_put_conditional(&next, nd);
1011 break;
1013 path_put(&nd->path);
1014 return_err:
1015 return err;
1018 static int path_walk(const char *name, struct nameidata *nd)
1020 current->total_link_count = 0;
1021 return link_path_walk(name, nd);
1024 static int path_init(int dfd, const char *name, unsigned int flags, struct nameidata *nd)
1026 int retval = 0;
1027 int fput_needed;
1028 struct file *file;
1030 nd->last_type = LAST_ROOT; /* if there are only slashes... */
1031 nd->flags = flags;
1032 nd->depth = 0;
1033 nd->root.mnt = NULL;
1035 if (*name=='/') {
1036 set_root(nd);
1037 nd->path = nd->root;
1038 path_get(&nd->root);
1039 } else if (dfd == AT_FDCWD) {
1040 struct fs_struct *fs = current->fs;
1041 read_lock(&fs->lock);
1042 nd->path = fs->pwd;
1043 path_get(&fs->pwd);
1044 read_unlock(&fs->lock);
1045 } else {
1046 struct dentry *dentry;
1048 file = fget_light(dfd, &fput_needed);
1049 retval = -EBADF;
1050 if (!file)
1051 goto out_fail;
1053 dentry = file->f_path.dentry;
1055 retval = -ENOTDIR;
1056 if (!S_ISDIR(dentry->d_inode->i_mode))
1057 goto fput_fail;
1059 retval = file_permission(file, MAY_EXEC);
1060 if (retval)
1061 goto fput_fail;
1063 nd->path = file->f_path;
1064 path_get(&file->f_path);
1066 fput_light(file, fput_needed);
1068 return 0;
1070 fput_fail:
1071 fput_light(file, fput_needed);
1072 out_fail:
1073 return retval;
1076 /* Returns 0 and nd will be valid on success; Retuns error, otherwise. */
1077 static int do_path_lookup(int dfd, const char *name,
1078 unsigned int flags, struct nameidata *nd)
1080 int retval = path_init(dfd, name, flags, nd);
1081 if (!retval)
1082 retval = path_walk(name, nd);
1083 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1084 nd->path.dentry->d_inode))
1085 audit_inode(name, nd->path.dentry);
1086 if (nd->root.mnt) {
1087 path_put(&nd->root);
1088 nd->root.mnt = NULL;
1090 return retval;
1093 int path_lookup(const char *name, unsigned int flags,
1094 struct nameidata *nd)
1096 return do_path_lookup(AT_FDCWD, name, flags, nd);
1099 int kern_path(const char *name, unsigned int flags, struct path *path)
1101 struct nameidata nd;
1102 int res = do_path_lookup(AT_FDCWD, name, flags, &nd);
1103 if (!res)
1104 *path = nd.path;
1105 return res;
1109 * vfs_path_lookup - lookup a file path relative to a dentry-vfsmount pair
1110 * @dentry: pointer to dentry of the base directory
1111 * @mnt: pointer to vfs mount of the base directory
1112 * @name: pointer to file name
1113 * @flags: lookup flags
1114 * @nd: pointer to nameidata
1116 int vfs_path_lookup(struct dentry *dentry, struct vfsmount *mnt,
1117 const char *name, unsigned int flags,
1118 struct nameidata *nd)
1120 int retval;
1122 /* same as do_path_lookup */
1123 nd->last_type = LAST_ROOT;
1124 nd->flags = flags;
1125 nd->depth = 0;
1127 nd->path.dentry = dentry;
1128 nd->path.mnt = mnt;
1129 path_get(&nd->path);
1130 nd->root = nd->path;
1131 path_get(&nd->root);
1133 retval = path_walk(name, nd);
1134 if (unlikely(!retval && !audit_dummy_context() && nd->path.dentry &&
1135 nd->path.dentry->d_inode))
1136 audit_inode(name, nd->path.dentry);
1138 path_put(&nd->root);
1139 nd->root.mnt = NULL;
1141 return retval;
1145 * path_lookup_open - lookup a file path with open intent
1146 * @dfd: the directory to use as base, or AT_FDCWD
1147 * @name: pointer to file name
1148 * @lookup_flags: lookup intent flags
1149 * @nd: pointer to nameidata
1150 * @open_flags: open intent flags
1152 static int path_lookup_open(int dfd, const char *name,
1153 unsigned int lookup_flags, struct nameidata *nd, int open_flags)
1155 struct file *filp = get_empty_filp();
1156 int err;
1158 if (filp == NULL)
1159 return -ENFILE;
1160 nd->intent.open.file = filp;
1161 nd->intent.open.flags = open_flags;
1162 nd->intent.open.create_mode = 0;
1163 err = do_path_lookup(dfd, name, lookup_flags|LOOKUP_OPEN, nd);
1164 if (IS_ERR(nd->intent.open.file)) {
1165 if (err == 0) {
1166 err = PTR_ERR(nd->intent.open.file);
1167 path_put(&nd->path);
1169 } else if (err != 0)
1170 release_open_intent(nd);
1171 return err;
1174 static struct dentry *__lookup_hash(struct qstr *name,
1175 struct dentry *base, struct nameidata *nd)
1177 struct dentry *dentry;
1178 struct inode *inode;
1179 int err;
1181 inode = base->d_inode;
1184 * See if the low-level filesystem might want
1185 * to use its own hash..
1187 if (base->d_op && base->d_op->d_hash) {
1188 err = base->d_op->d_hash(base, name);
1189 dentry = ERR_PTR(err);
1190 if (err < 0)
1191 goto out;
1194 dentry = cached_lookup(base, name, nd);
1195 if (!dentry) {
1196 struct dentry *new;
1198 /* Don't create child dentry for a dead directory. */
1199 dentry = ERR_PTR(-ENOENT);
1200 if (IS_DEADDIR(inode))
1201 goto out;
1203 new = d_alloc(base, name);
1204 dentry = ERR_PTR(-ENOMEM);
1205 if (!new)
1206 goto out;
1207 dentry = inode->i_op->lookup(inode, new, nd);
1208 if (!dentry)
1209 dentry = new;
1210 else
1211 dput(new);
1213 out:
1214 return dentry;
1218 * Restricted form of lookup. Doesn't follow links, single-component only,
1219 * needs parent already locked. Doesn't follow mounts.
1220 * SMP-safe.
1222 static struct dentry *lookup_hash(struct nameidata *nd)
1224 int err;
1226 err = inode_permission(nd->path.dentry->d_inode, MAY_EXEC);
1227 if (err)
1228 return ERR_PTR(err);
1229 return __lookup_hash(&nd->last, nd->path.dentry, nd);
1232 static int __lookup_one_len(const char *name, struct qstr *this,
1233 struct dentry *base, int len)
1235 unsigned long hash;
1236 unsigned int c;
1238 this->name = name;
1239 this->len = len;
1240 if (!len)
1241 return -EACCES;
1243 hash = init_name_hash();
1244 while (len--) {
1245 c = *(const unsigned char *)name++;
1246 if (c == '/' || c == '\0')
1247 return -EACCES;
1248 hash = partial_name_hash(c, hash);
1250 this->hash = end_name_hash(hash);
1251 return 0;
1255 * lookup_one_len - filesystem helper to lookup single pathname component
1256 * @name: pathname component to lookup
1257 * @base: base directory to lookup from
1258 * @len: maximum length @len should be interpreted to
1260 * Note that this routine is purely a helper for filesystem usage and should
1261 * not be called by generic code. Also note that by using this function the
1262 * nameidata argument is passed to the filesystem methods and a filesystem
1263 * using this helper needs to be prepared for that.
1265 struct dentry *lookup_one_len(const char *name, struct dentry *base, int len)
1267 int err;
1268 struct qstr this;
1270 WARN_ON_ONCE(!mutex_is_locked(&base->d_inode->i_mutex));
1272 err = __lookup_one_len(name, &this, base, len);
1273 if (err)
1274 return ERR_PTR(err);
1276 err = inode_permission(base->d_inode, MAY_EXEC);
1277 if (err)
1278 return ERR_PTR(err);
1279 return __lookup_hash(&this, base, NULL);
1283 * lookup_one_noperm - bad hack for sysfs
1284 * @name: pathname component to lookup
1285 * @base: base directory to lookup from
1287 * This is a variant of lookup_one_len that doesn't perform any permission
1288 * checks. It's a horrible hack to work around the braindead sysfs
1289 * architecture and should not be used anywhere else.
1291 * DON'T USE THIS FUNCTION EVER, thanks.
1293 struct dentry *lookup_one_noperm(const char *name, struct dentry *base)
1295 int err;
1296 struct qstr this;
1298 err = __lookup_one_len(name, &this, base, strlen(name));
1299 if (err)
1300 return ERR_PTR(err);
1301 return __lookup_hash(&this, base, NULL);
1304 int user_path_at(int dfd, const char __user *name, unsigned flags,
1305 struct path *path)
1307 struct nameidata nd;
1308 char *tmp = getname(name);
1309 int err = PTR_ERR(tmp);
1310 if (!IS_ERR(tmp)) {
1312 BUG_ON(flags & LOOKUP_PARENT);
1314 err = do_path_lookup(dfd, tmp, flags, &nd);
1315 putname(tmp);
1316 if (!err)
1317 *path = nd.path;
1319 return err;
1322 static int user_path_parent(int dfd, const char __user *path,
1323 struct nameidata *nd, char **name)
1325 char *s = getname(path);
1326 int error;
1328 if (IS_ERR(s))
1329 return PTR_ERR(s);
1331 error = do_path_lookup(dfd, s, LOOKUP_PARENT, nd);
1332 if (error)
1333 putname(s);
1334 else
1335 *name = s;
1337 return error;
1341 * It's inline, so penalty for filesystems that don't use sticky bit is
1342 * minimal.
1344 static inline int check_sticky(struct inode *dir, struct inode *inode)
1346 uid_t fsuid = current_fsuid();
1348 if (!(dir->i_mode & S_ISVTX))
1349 return 0;
1350 if (inode->i_uid == fsuid)
1351 return 0;
1352 if (dir->i_uid == fsuid)
1353 return 0;
1354 return !capable(CAP_FOWNER);
1358 * Check whether we can remove a link victim from directory dir, check
1359 * whether the type of victim is right.
1360 * 1. We can't do it if dir is read-only (done in permission())
1361 * 2. We should have write and exec permissions on dir
1362 * 3. We can't remove anything from append-only dir
1363 * 4. We can't do anything with immutable dir (done in permission())
1364 * 5. If the sticky bit on dir is set we should either
1365 * a. be owner of dir, or
1366 * b. be owner of victim, or
1367 * c. have CAP_FOWNER capability
1368 * 6. If the victim is append-only or immutable we can't do antyhing with
1369 * links pointing to it.
1370 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
1371 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
1372 * 9. We can't remove a root or mountpoint.
1373 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
1374 * nfs_async_unlink().
1376 static int may_delete(struct inode *dir,struct dentry *victim,int isdir)
1378 int error;
1380 if (!victim->d_inode)
1381 return -ENOENT;
1383 BUG_ON(victim->d_parent->d_inode != dir);
1384 audit_inode_child(victim->d_name.name, victim, dir);
1386 error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
1387 if (error)
1388 return error;
1389 if (IS_APPEND(dir))
1390 return -EPERM;
1391 if (check_sticky(dir, victim->d_inode)||IS_APPEND(victim->d_inode)||
1392 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
1393 return -EPERM;
1394 if (isdir) {
1395 if (!S_ISDIR(victim->d_inode->i_mode))
1396 return -ENOTDIR;
1397 if (IS_ROOT(victim))
1398 return -EBUSY;
1399 } else if (S_ISDIR(victim->d_inode->i_mode))
1400 return -EISDIR;
1401 if (IS_DEADDIR(dir))
1402 return -ENOENT;
1403 if (victim->d_flags & DCACHE_NFSFS_RENAMED)
1404 return -EBUSY;
1405 return 0;
1408 /* Check whether we can create an object with dentry child in directory
1409 * dir.
1410 * 1. We can't do it if child already exists (open has special treatment for
1411 * this case, but since we are inlined it's OK)
1412 * 2. We can't do it if dir is read-only (done in permission())
1413 * 3. We should have write and exec permissions on dir
1414 * 4. We can't do it if dir is immutable (done in permission())
1416 static inline int may_create(struct inode *dir, struct dentry *child)
1418 if (child->d_inode)
1419 return -EEXIST;
1420 if (IS_DEADDIR(dir))
1421 return -ENOENT;
1422 return inode_permission(dir, MAY_WRITE | MAY_EXEC);
1426 * O_DIRECTORY translates into forcing a directory lookup.
1428 static inline int lookup_flags(unsigned int f)
1430 unsigned long retval = LOOKUP_FOLLOW;
1432 if (f & O_NOFOLLOW)
1433 retval &= ~LOOKUP_FOLLOW;
1435 if (f & O_DIRECTORY)
1436 retval |= LOOKUP_DIRECTORY;
1438 return retval;
1442 * p1 and p2 should be directories on the same fs.
1444 struct dentry *lock_rename(struct dentry *p1, struct dentry *p2)
1446 struct dentry *p;
1448 if (p1 == p2) {
1449 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1450 return NULL;
1453 mutex_lock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1455 p = d_ancestor(p2, p1);
1456 if (p) {
1457 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_PARENT);
1458 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_CHILD);
1459 return p;
1462 p = d_ancestor(p1, p2);
1463 if (p) {
1464 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1465 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1466 return p;
1469 mutex_lock_nested(&p1->d_inode->i_mutex, I_MUTEX_PARENT);
1470 mutex_lock_nested(&p2->d_inode->i_mutex, I_MUTEX_CHILD);
1471 return NULL;
1474 void unlock_rename(struct dentry *p1, struct dentry *p2)
1476 mutex_unlock(&p1->d_inode->i_mutex);
1477 if (p1 != p2) {
1478 mutex_unlock(&p2->d_inode->i_mutex);
1479 mutex_unlock(&p1->d_inode->i_sb->s_vfs_rename_mutex);
1483 int vfs_create(struct inode *dir, struct dentry *dentry, int mode,
1484 struct nameidata *nd)
1486 int error = may_create(dir, dentry);
1488 if (error)
1489 return error;
1491 if (!dir->i_op->create)
1492 return -EACCES; /* shouldn't it be ENOSYS? */
1493 mode &= S_IALLUGO;
1494 mode |= S_IFREG;
1495 error = security_inode_create(dir, dentry, mode);
1496 if (error)
1497 return error;
1498 vfs_dq_init(dir);
1499 error = dir->i_op->create(dir, dentry, mode, nd);
1500 if (!error)
1501 fsnotify_create(dir, dentry);
1502 return error;
1505 int may_open(struct path *path, int acc_mode, int flag)
1507 struct dentry *dentry = path->dentry;
1508 struct inode *inode = dentry->d_inode;
1509 int error;
1511 if (!inode)
1512 return -ENOENT;
1514 switch (inode->i_mode & S_IFMT) {
1515 case S_IFLNK:
1516 return -ELOOP;
1517 case S_IFDIR:
1518 if (acc_mode & MAY_WRITE)
1519 return -EISDIR;
1520 break;
1521 case S_IFBLK:
1522 case S_IFCHR:
1523 if (path->mnt->mnt_flags & MNT_NODEV)
1524 return -EACCES;
1525 /*FALLTHRU*/
1526 case S_IFIFO:
1527 case S_IFSOCK:
1528 flag &= ~O_TRUNC;
1529 break;
1532 error = inode_permission(inode, acc_mode);
1533 if (error)
1534 return error;
1536 error = ima_path_check(path, acc_mode ?
1537 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1538 ACC_MODE(flag) & (MAY_READ | MAY_WRITE),
1539 IMA_COUNT_UPDATE);
1541 if (error)
1542 return error;
1544 * An append-only file must be opened in append mode for writing.
1546 if (IS_APPEND(inode)) {
1547 error = -EPERM;
1548 if ((flag & FMODE_WRITE) && !(flag & O_APPEND))
1549 goto err_out;
1550 if (flag & O_TRUNC)
1551 goto err_out;
1554 /* O_NOATIME can only be set by the owner or superuser */
1555 if (flag & O_NOATIME)
1556 if (!is_owner_or_cap(inode)) {
1557 error = -EPERM;
1558 goto err_out;
1562 * Ensure there are no outstanding leases on the file.
1564 error = break_lease(inode, flag);
1565 if (error)
1566 goto err_out;
1568 if (flag & O_TRUNC) {
1569 error = get_write_access(inode);
1570 if (error)
1571 goto err_out;
1574 * Refuse to truncate files with mandatory locks held on them.
1576 error = locks_verify_locked(inode);
1577 if (!error)
1578 error = security_path_truncate(path, 0,
1579 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN);
1580 if (!error) {
1581 vfs_dq_init(inode);
1583 error = do_truncate(dentry, 0,
1584 ATTR_MTIME|ATTR_CTIME|ATTR_OPEN,
1585 NULL);
1587 put_write_access(inode);
1588 if (error)
1589 goto err_out;
1590 } else
1591 if (flag & FMODE_WRITE)
1592 vfs_dq_init(inode);
1594 return 0;
1595 err_out:
1596 ima_counts_put(path, acc_mode ?
1597 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC) :
1598 ACC_MODE(flag) & (MAY_READ | MAY_WRITE));
1599 return error;
1603 * Be careful about ever adding any more callers of this
1604 * function. Its flags must be in the namei format, not
1605 * what get passed to sys_open().
1607 static int __open_namei_create(struct nameidata *nd, struct path *path,
1608 int flag, int mode)
1610 int error;
1611 struct dentry *dir = nd->path.dentry;
1613 if (!IS_POSIXACL(dir->d_inode))
1614 mode &= ~current_umask();
1615 error = security_path_mknod(&nd->path, path->dentry, mode, 0);
1616 if (error)
1617 goto out_unlock;
1618 error = vfs_create(dir->d_inode, path->dentry, mode, nd);
1619 out_unlock:
1620 mutex_unlock(&dir->d_inode->i_mutex);
1621 dput(nd->path.dentry);
1622 nd->path.dentry = path->dentry;
1623 if (error)
1624 return error;
1625 /* Don't check for write permission, don't truncate */
1626 return may_open(&nd->path, 0, flag & ~O_TRUNC);
1630 * Note that while the flag value (low two bits) for sys_open means:
1631 * 00 - read-only
1632 * 01 - write-only
1633 * 10 - read-write
1634 * 11 - special
1635 * it is changed into
1636 * 00 - no permissions needed
1637 * 01 - read-permission
1638 * 10 - write-permission
1639 * 11 - read-write
1640 * for the internal routines (ie open_namei()/follow_link() etc)
1641 * This is more logical, and also allows the 00 "no perm needed"
1642 * to be used for symlinks (where the permissions are checked
1643 * later).
1646 static inline int open_to_namei_flags(int flag)
1648 if ((flag+1) & O_ACCMODE)
1649 flag++;
1650 return flag;
1653 static int open_will_write_to_fs(int flag, struct inode *inode)
1656 * We'll never write to the fs underlying
1657 * a device file.
1659 if (special_file(inode->i_mode))
1660 return 0;
1661 return (flag & O_TRUNC);
1665 * Note that the low bits of the passed in "open_flag"
1666 * are not the same as in the local variable "flag". See
1667 * open_to_namei_flags() for more details.
1669 struct file *do_filp_open(int dfd, const char *pathname,
1670 int open_flag, int mode, int acc_mode)
1672 struct file *filp;
1673 struct nameidata nd;
1674 int error;
1675 struct path path;
1676 struct dentry *dir;
1677 int count = 0;
1678 int will_write;
1679 int flag = open_to_namei_flags(open_flag);
1681 if (!acc_mode)
1682 acc_mode = MAY_OPEN | ACC_MODE(flag);
1684 /* O_TRUNC implies we need access checks for write permissions */
1685 if (flag & O_TRUNC)
1686 acc_mode |= MAY_WRITE;
1688 /* Allow the LSM permission hook to distinguish append
1689 access from general write access. */
1690 if (flag & O_APPEND)
1691 acc_mode |= MAY_APPEND;
1694 * The simplest case - just a plain lookup.
1696 if (!(flag & O_CREAT)) {
1697 error = path_lookup_open(dfd, pathname, lookup_flags(flag),
1698 &nd, flag);
1699 if (error)
1700 return ERR_PTR(error);
1701 goto ok;
1705 * Create - we need to know the parent.
1707 error = path_init(dfd, pathname, LOOKUP_PARENT, &nd);
1708 if (error)
1709 return ERR_PTR(error);
1710 error = path_walk(pathname, &nd);
1711 if (error) {
1712 if (nd.root.mnt)
1713 path_put(&nd.root);
1714 return ERR_PTR(error);
1716 if (unlikely(!audit_dummy_context()))
1717 audit_inode(pathname, nd.path.dentry);
1720 * We have the parent and last component. First of all, check
1721 * that we are not asked to creat(2) an obvious directory - that
1722 * will not do.
1724 error = -EISDIR;
1725 if (nd.last_type != LAST_NORM || nd.last.name[nd.last.len])
1726 goto exit_parent;
1728 error = -ENFILE;
1729 filp = get_empty_filp();
1730 if (filp == NULL)
1731 goto exit_parent;
1732 nd.intent.open.file = filp;
1733 nd.intent.open.flags = flag;
1734 nd.intent.open.create_mode = mode;
1735 dir = nd.path.dentry;
1736 nd.flags &= ~LOOKUP_PARENT;
1737 nd.flags |= LOOKUP_CREATE | LOOKUP_OPEN;
1738 if (flag & O_EXCL)
1739 nd.flags |= LOOKUP_EXCL;
1740 mutex_lock(&dir->d_inode->i_mutex);
1741 path.dentry = lookup_hash(&nd);
1742 path.mnt = nd.path.mnt;
1744 do_last:
1745 error = PTR_ERR(path.dentry);
1746 if (IS_ERR(path.dentry)) {
1747 mutex_unlock(&dir->d_inode->i_mutex);
1748 goto exit;
1751 if (IS_ERR(nd.intent.open.file)) {
1752 error = PTR_ERR(nd.intent.open.file);
1753 goto exit_mutex_unlock;
1756 /* Negative dentry, just create the file */
1757 if (!path.dentry->d_inode) {
1759 * This write is needed to ensure that a
1760 * ro->rw transition does not occur between
1761 * the time when the file is created and when
1762 * a permanent write count is taken through
1763 * the 'struct file' in nameidata_to_filp().
1765 error = mnt_want_write(nd.path.mnt);
1766 if (error)
1767 goto exit_mutex_unlock;
1768 error = __open_namei_create(&nd, &path, flag, mode);
1769 if (error) {
1770 mnt_drop_write(nd.path.mnt);
1771 goto exit;
1773 filp = nameidata_to_filp(&nd, open_flag);
1774 if (IS_ERR(filp))
1775 ima_counts_put(&nd.path,
1776 acc_mode & (MAY_READ | MAY_WRITE |
1777 MAY_EXEC));
1778 mnt_drop_write(nd.path.mnt);
1779 if (nd.root.mnt)
1780 path_put(&nd.root);
1781 return filp;
1785 * It already exists.
1787 mutex_unlock(&dir->d_inode->i_mutex);
1788 audit_inode(pathname, path.dentry);
1790 error = -EEXIST;
1791 if (flag & O_EXCL)
1792 goto exit_dput;
1794 if (__follow_mount(&path)) {
1795 error = -ELOOP;
1796 if (flag & O_NOFOLLOW)
1797 goto exit_dput;
1800 error = -ENOENT;
1801 if (!path.dentry->d_inode)
1802 goto exit_dput;
1803 if (path.dentry->d_inode->i_op->follow_link)
1804 goto do_link;
1806 path_to_nameidata(&path, &nd);
1807 error = -EISDIR;
1808 if (path.dentry->d_inode && S_ISDIR(path.dentry->d_inode->i_mode))
1809 goto exit;
1812 * Consider:
1813 * 1. may_open() truncates a file
1814 * 2. a rw->ro mount transition occurs
1815 * 3. nameidata_to_filp() fails due to
1816 * the ro mount.
1817 * That would be inconsistent, and should
1818 * be avoided. Taking this mnt write here
1819 * ensures that (2) can not occur.
1821 will_write = open_will_write_to_fs(flag, nd.path.dentry->d_inode);
1822 if (will_write) {
1823 error = mnt_want_write(nd.path.mnt);
1824 if (error)
1825 goto exit;
1827 error = may_open(&nd.path, acc_mode, flag);
1828 if (error) {
1829 if (will_write)
1830 mnt_drop_write(nd.path.mnt);
1831 goto exit;
1833 filp = nameidata_to_filp(&nd, open_flag);
1834 if (IS_ERR(filp))
1835 ima_counts_put(&nd.path,
1836 acc_mode & (MAY_READ | MAY_WRITE | MAY_EXEC));
1838 * It is now safe to drop the mnt write
1839 * because the filp has had a write taken
1840 * on its behalf.
1842 if (will_write)
1843 mnt_drop_write(nd.path.mnt);
1844 if (nd.root.mnt)
1845 path_put(&nd.root);
1846 return filp;
1848 exit_mutex_unlock:
1849 mutex_unlock(&dir->d_inode->i_mutex);
1850 exit_dput:
1851 path_put_conditional(&path, &nd);
1852 exit:
1853 if (!IS_ERR(nd.intent.open.file))
1854 release_open_intent(&nd);
1855 exit_parent:
1856 if (nd.root.mnt)
1857 path_put(&nd.root);
1858 path_put(&nd.path);
1859 return ERR_PTR(error);
1861 do_link:
1862 error = -ELOOP;
1863 if (flag & O_NOFOLLOW)
1864 goto exit_dput;
1866 * This is subtle. Instead of calling do_follow_link() we do the
1867 * thing by hands. The reason is that this way we have zero link_count
1868 * and path_walk() (called from ->follow_link) honoring LOOKUP_PARENT.
1869 * After that we have the parent and last component, i.e.
1870 * we are in the same situation as after the first path_walk().
1871 * Well, almost - if the last component is normal we get its copy
1872 * stored in nd->last.name and we will have to putname() it when we
1873 * are done. Procfs-like symlinks just set LAST_BIND.
1875 nd.flags |= LOOKUP_PARENT;
1876 error = security_inode_follow_link(path.dentry, &nd);
1877 if (error)
1878 goto exit_dput;
1879 error = __do_follow_link(&path, &nd);
1880 if (error) {
1881 /* Does someone understand code flow here? Or it is only
1882 * me so stupid? Anathema to whoever designed this non-sense
1883 * with "intent.open".
1885 release_open_intent(&nd);
1886 if (nd.root.mnt)
1887 path_put(&nd.root);
1888 return ERR_PTR(error);
1890 nd.flags &= ~LOOKUP_PARENT;
1891 if (nd.last_type == LAST_BIND)
1892 goto ok;
1893 error = -EISDIR;
1894 if (nd.last_type != LAST_NORM)
1895 goto exit;
1896 if (nd.last.name[nd.last.len]) {
1897 __putname(nd.last.name);
1898 goto exit;
1900 error = -ELOOP;
1901 if (count++==32) {
1902 __putname(nd.last.name);
1903 goto exit;
1905 dir = nd.path.dentry;
1906 mutex_lock(&dir->d_inode->i_mutex);
1907 path.dentry = lookup_hash(&nd);
1908 path.mnt = nd.path.mnt;
1909 __putname(nd.last.name);
1910 goto do_last;
1914 * filp_open - open file and return file pointer
1916 * @filename: path to open
1917 * @flags: open flags as per the open(2) second argument
1918 * @mode: mode for the new file if O_CREAT is set, else ignored
1920 * This is the helper to open a file from kernelspace if you really
1921 * have to. But in generally you should not do this, so please move
1922 * along, nothing to see here..
1924 struct file *filp_open(const char *filename, int flags, int mode)
1926 return do_filp_open(AT_FDCWD, filename, flags, mode, 0);
1928 EXPORT_SYMBOL(filp_open);
1931 * lookup_create - lookup a dentry, creating it if it doesn't exist
1932 * @nd: nameidata info
1933 * @is_dir: directory flag
1935 * Simple function to lookup and return a dentry and create it
1936 * if it doesn't exist. Is SMP-safe.
1938 * Returns with nd->path.dentry->d_inode->i_mutex locked.
1940 struct dentry *lookup_create(struct nameidata *nd, int is_dir)
1942 struct dentry *dentry = ERR_PTR(-EEXIST);
1944 mutex_lock_nested(&nd->path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
1946 * Yucky last component or no last component at all?
1947 * (foo/., foo/.., /////)
1949 if (nd->last_type != LAST_NORM)
1950 goto fail;
1951 nd->flags &= ~LOOKUP_PARENT;
1952 nd->flags |= LOOKUP_CREATE | LOOKUP_EXCL;
1953 nd->intent.open.flags = O_EXCL;
1956 * Do the final lookup.
1958 dentry = lookup_hash(nd);
1959 if (IS_ERR(dentry))
1960 goto fail;
1962 if (dentry->d_inode)
1963 goto eexist;
1965 * Special case - lookup gave negative, but... we had foo/bar/
1966 * From the vfs_mknod() POV we just have a negative dentry -
1967 * all is fine. Let's be bastards - you had / on the end, you've
1968 * been asking for (non-existent) directory. -ENOENT for you.
1970 if (unlikely(!is_dir && nd->last.name[nd->last.len])) {
1971 dput(dentry);
1972 dentry = ERR_PTR(-ENOENT);
1974 return dentry;
1975 eexist:
1976 dput(dentry);
1977 dentry = ERR_PTR(-EEXIST);
1978 fail:
1979 return dentry;
1981 EXPORT_SYMBOL_GPL(lookup_create);
1983 int vfs_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
1985 int error = may_create(dir, dentry);
1987 if (error)
1988 return error;
1990 if ((S_ISCHR(mode) || S_ISBLK(mode)) && !capable(CAP_MKNOD))
1991 return -EPERM;
1993 if (!dir->i_op->mknod)
1994 return -EPERM;
1996 error = devcgroup_inode_mknod(mode, dev);
1997 if (error)
1998 return error;
2000 error = security_inode_mknod(dir, dentry, mode, dev);
2001 if (error)
2002 return error;
2004 vfs_dq_init(dir);
2005 error = dir->i_op->mknod(dir, dentry, mode, dev);
2006 if (!error)
2007 fsnotify_create(dir, dentry);
2008 return error;
2011 static int may_mknod(mode_t mode)
2013 switch (mode & S_IFMT) {
2014 case S_IFREG:
2015 case S_IFCHR:
2016 case S_IFBLK:
2017 case S_IFIFO:
2018 case S_IFSOCK:
2019 case 0: /* zero mode translates to S_IFREG */
2020 return 0;
2021 case S_IFDIR:
2022 return -EPERM;
2023 default:
2024 return -EINVAL;
2028 SYSCALL_DEFINE4(mknodat, int, dfd, const char __user *, filename, int, mode,
2029 unsigned, dev)
2031 int error;
2032 char *tmp;
2033 struct dentry *dentry;
2034 struct nameidata nd;
2036 if (S_ISDIR(mode))
2037 return -EPERM;
2039 error = user_path_parent(dfd, filename, &nd, &tmp);
2040 if (error)
2041 return error;
2043 dentry = lookup_create(&nd, 0);
2044 if (IS_ERR(dentry)) {
2045 error = PTR_ERR(dentry);
2046 goto out_unlock;
2048 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2049 mode &= ~current_umask();
2050 error = may_mknod(mode);
2051 if (error)
2052 goto out_dput;
2053 error = mnt_want_write(nd.path.mnt);
2054 if (error)
2055 goto out_dput;
2056 error = security_path_mknod(&nd.path, dentry, mode, dev);
2057 if (error)
2058 goto out_drop_write;
2059 switch (mode & S_IFMT) {
2060 case 0: case S_IFREG:
2061 error = vfs_create(nd.path.dentry->d_inode,dentry,mode,&nd);
2062 break;
2063 case S_IFCHR: case S_IFBLK:
2064 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,
2065 new_decode_dev(dev));
2066 break;
2067 case S_IFIFO: case S_IFSOCK:
2068 error = vfs_mknod(nd.path.dentry->d_inode,dentry,mode,0);
2069 break;
2071 out_drop_write:
2072 mnt_drop_write(nd.path.mnt);
2073 out_dput:
2074 dput(dentry);
2075 out_unlock:
2076 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2077 path_put(&nd.path);
2078 putname(tmp);
2080 return error;
2083 SYSCALL_DEFINE3(mknod, const char __user *, filename, int, mode, unsigned, dev)
2085 return sys_mknodat(AT_FDCWD, filename, mode, dev);
2088 int vfs_mkdir(struct inode *dir, struct dentry *dentry, int mode)
2090 int error = may_create(dir, dentry);
2092 if (error)
2093 return error;
2095 if (!dir->i_op->mkdir)
2096 return -EPERM;
2098 mode &= (S_IRWXUGO|S_ISVTX);
2099 error = security_inode_mkdir(dir, dentry, mode);
2100 if (error)
2101 return error;
2103 vfs_dq_init(dir);
2104 error = dir->i_op->mkdir(dir, dentry, mode);
2105 if (!error)
2106 fsnotify_mkdir(dir, dentry);
2107 return error;
2110 SYSCALL_DEFINE3(mkdirat, int, dfd, const char __user *, pathname, int, mode)
2112 int error = 0;
2113 char * tmp;
2114 struct dentry *dentry;
2115 struct nameidata nd;
2117 error = user_path_parent(dfd, pathname, &nd, &tmp);
2118 if (error)
2119 goto out_err;
2121 dentry = lookup_create(&nd, 1);
2122 error = PTR_ERR(dentry);
2123 if (IS_ERR(dentry))
2124 goto out_unlock;
2126 if (!IS_POSIXACL(nd.path.dentry->d_inode))
2127 mode &= ~current_umask();
2128 error = mnt_want_write(nd.path.mnt);
2129 if (error)
2130 goto out_dput;
2131 error = security_path_mkdir(&nd.path, dentry, mode);
2132 if (error)
2133 goto out_drop_write;
2134 error = vfs_mkdir(nd.path.dentry->d_inode, dentry, mode);
2135 out_drop_write:
2136 mnt_drop_write(nd.path.mnt);
2137 out_dput:
2138 dput(dentry);
2139 out_unlock:
2140 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2141 path_put(&nd.path);
2142 putname(tmp);
2143 out_err:
2144 return error;
2147 SYSCALL_DEFINE2(mkdir, const char __user *, pathname, int, mode)
2149 return sys_mkdirat(AT_FDCWD, pathname, mode);
2153 * We try to drop the dentry early: we should have
2154 * a usage count of 2 if we're the only user of this
2155 * dentry, and if that is true (possibly after pruning
2156 * the dcache), then we drop the dentry now.
2158 * A low-level filesystem can, if it choses, legally
2159 * do a
2161 * if (!d_unhashed(dentry))
2162 * return -EBUSY;
2164 * if it cannot handle the case of removing a directory
2165 * that is still in use by something else..
2167 void dentry_unhash(struct dentry *dentry)
2169 dget(dentry);
2170 shrink_dcache_parent(dentry);
2171 spin_lock(&dcache_lock);
2172 spin_lock(&dentry->d_lock);
2173 if (atomic_read(&dentry->d_count) == 2)
2174 __d_drop(dentry);
2175 spin_unlock(&dentry->d_lock);
2176 spin_unlock(&dcache_lock);
2179 int vfs_rmdir(struct inode *dir, struct dentry *dentry)
2181 int error = may_delete(dir, dentry, 1);
2183 if (error)
2184 return error;
2186 if (!dir->i_op->rmdir)
2187 return -EPERM;
2189 vfs_dq_init(dir);
2191 mutex_lock(&dentry->d_inode->i_mutex);
2192 dentry_unhash(dentry);
2193 if (d_mountpoint(dentry))
2194 error = -EBUSY;
2195 else {
2196 error = security_inode_rmdir(dir, dentry);
2197 if (!error) {
2198 error = dir->i_op->rmdir(dir, dentry);
2199 if (!error)
2200 dentry->d_inode->i_flags |= S_DEAD;
2203 mutex_unlock(&dentry->d_inode->i_mutex);
2204 if (!error) {
2205 d_delete(dentry);
2207 dput(dentry);
2209 return error;
2212 static long do_rmdir(int dfd, const char __user *pathname)
2214 int error = 0;
2215 char * name;
2216 struct dentry *dentry;
2217 struct nameidata nd;
2219 error = user_path_parent(dfd, pathname, &nd, &name);
2220 if (error)
2221 return error;
2223 switch(nd.last_type) {
2224 case LAST_DOTDOT:
2225 error = -ENOTEMPTY;
2226 goto exit1;
2227 case LAST_DOT:
2228 error = -EINVAL;
2229 goto exit1;
2230 case LAST_ROOT:
2231 error = -EBUSY;
2232 goto exit1;
2235 nd.flags &= ~LOOKUP_PARENT;
2237 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2238 dentry = lookup_hash(&nd);
2239 error = PTR_ERR(dentry);
2240 if (IS_ERR(dentry))
2241 goto exit2;
2242 error = mnt_want_write(nd.path.mnt);
2243 if (error)
2244 goto exit3;
2245 error = security_path_rmdir(&nd.path, dentry);
2246 if (error)
2247 goto exit4;
2248 error = vfs_rmdir(nd.path.dentry->d_inode, dentry);
2249 exit4:
2250 mnt_drop_write(nd.path.mnt);
2251 exit3:
2252 dput(dentry);
2253 exit2:
2254 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2255 exit1:
2256 path_put(&nd.path);
2257 putname(name);
2258 return error;
2261 SYSCALL_DEFINE1(rmdir, const char __user *, pathname)
2263 return do_rmdir(AT_FDCWD, pathname);
2266 int vfs_unlink(struct inode *dir, struct dentry *dentry)
2268 int error = may_delete(dir, dentry, 0);
2270 if (error)
2271 return error;
2273 if (!dir->i_op->unlink)
2274 return -EPERM;
2276 vfs_dq_init(dir);
2278 mutex_lock(&dentry->d_inode->i_mutex);
2279 if (d_mountpoint(dentry))
2280 error = -EBUSY;
2281 else {
2282 error = security_inode_unlink(dir, dentry);
2283 if (!error)
2284 error = dir->i_op->unlink(dir, dentry);
2286 mutex_unlock(&dentry->d_inode->i_mutex);
2288 /* We don't d_delete() NFS sillyrenamed files--they still exist. */
2289 if (!error && !(dentry->d_flags & DCACHE_NFSFS_RENAMED)) {
2290 fsnotify_link_count(dentry->d_inode);
2291 d_delete(dentry);
2294 return error;
2298 * Make sure that the actual truncation of the file will occur outside its
2299 * directory's i_mutex. Truncate can take a long time if there is a lot of
2300 * writeout happening, and we don't want to prevent access to the directory
2301 * while waiting on the I/O.
2303 static long do_unlinkat(int dfd, const char __user *pathname)
2305 int error;
2306 char *name;
2307 struct dentry *dentry;
2308 struct nameidata nd;
2309 struct inode *inode = NULL;
2311 error = user_path_parent(dfd, pathname, &nd, &name);
2312 if (error)
2313 return error;
2315 error = -EISDIR;
2316 if (nd.last_type != LAST_NORM)
2317 goto exit1;
2319 nd.flags &= ~LOOKUP_PARENT;
2321 mutex_lock_nested(&nd.path.dentry->d_inode->i_mutex, I_MUTEX_PARENT);
2322 dentry = lookup_hash(&nd);
2323 error = PTR_ERR(dentry);
2324 if (!IS_ERR(dentry)) {
2325 /* Why not before? Because we want correct error value */
2326 if (nd.last.name[nd.last.len])
2327 goto slashes;
2328 inode = dentry->d_inode;
2329 if (inode)
2330 atomic_inc(&inode->i_count);
2331 error = mnt_want_write(nd.path.mnt);
2332 if (error)
2333 goto exit2;
2334 error = security_path_unlink(&nd.path, dentry);
2335 if (error)
2336 goto exit3;
2337 error = vfs_unlink(nd.path.dentry->d_inode, dentry);
2338 exit3:
2339 mnt_drop_write(nd.path.mnt);
2340 exit2:
2341 dput(dentry);
2343 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2344 if (inode)
2345 iput(inode); /* truncate the inode here */
2346 exit1:
2347 path_put(&nd.path);
2348 putname(name);
2349 return error;
2351 slashes:
2352 error = !dentry->d_inode ? -ENOENT :
2353 S_ISDIR(dentry->d_inode->i_mode) ? -EISDIR : -ENOTDIR;
2354 goto exit2;
2357 SYSCALL_DEFINE3(unlinkat, int, dfd, const char __user *, pathname, int, flag)
2359 if ((flag & ~AT_REMOVEDIR) != 0)
2360 return -EINVAL;
2362 if (flag & AT_REMOVEDIR)
2363 return do_rmdir(dfd, pathname);
2365 return do_unlinkat(dfd, pathname);
2368 SYSCALL_DEFINE1(unlink, const char __user *, pathname)
2370 return do_unlinkat(AT_FDCWD, pathname);
2373 int vfs_symlink(struct inode *dir, struct dentry *dentry, const char *oldname)
2375 int error = may_create(dir, dentry);
2377 if (error)
2378 return error;
2380 if (!dir->i_op->symlink)
2381 return -EPERM;
2383 error = security_inode_symlink(dir, dentry, oldname);
2384 if (error)
2385 return error;
2387 vfs_dq_init(dir);
2388 error = dir->i_op->symlink(dir, dentry, oldname);
2389 if (!error)
2390 fsnotify_create(dir, dentry);
2391 return error;
2394 SYSCALL_DEFINE3(symlinkat, const char __user *, oldname,
2395 int, newdfd, const char __user *, newname)
2397 int error;
2398 char *from;
2399 char *to;
2400 struct dentry *dentry;
2401 struct nameidata nd;
2403 from = getname(oldname);
2404 if (IS_ERR(from))
2405 return PTR_ERR(from);
2407 error = user_path_parent(newdfd, newname, &nd, &to);
2408 if (error)
2409 goto out_putname;
2411 dentry = lookup_create(&nd, 0);
2412 error = PTR_ERR(dentry);
2413 if (IS_ERR(dentry))
2414 goto out_unlock;
2416 error = mnt_want_write(nd.path.mnt);
2417 if (error)
2418 goto out_dput;
2419 error = security_path_symlink(&nd.path, dentry, from);
2420 if (error)
2421 goto out_drop_write;
2422 error = vfs_symlink(nd.path.dentry->d_inode, dentry, from);
2423 out_drop_write:
2424 mnt_drop_write(nd.path.mnt);
2425 out_dput:
2426 dput(dentry);
2427 out_unlock:
2428 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2429 path_put(&nd.path);
2430 putname(to);
2431 out_putname:
2432 putname(from);
2433 return error;
2436 SYSCALL_DEFINE2(symlink, const char __user *, oldname, const char __user *, newname)
2438 return sys_symlinkat(oldname, AT_FDCWD, newname);
2441 int vfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *new_dentry)
2443 struct inode *inode = old_dentry->d_inode;
2444 int error;
2446 if (!inode)
2447 return -ENOENT;
2449 error = may_create(dir, new_dentry);
2450 if (error)
2451 return error;
2453 if (dir->i_sb != inode->i_sb)
2454 return -EXDEV;
2457 * A link to an append-only or immutable file cannot be created.
2459 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
2460 return -EPERM;
2461 if (!dir->i_op->link)
2462 return -EPERM;
2463 if (S_ISDIR(inode->i_mode))
2464 return -EPERM;
2466 error = security_inode_link(old_dentry, dir, new_dentry);
2467 if (error)
2468 return error;
2470 mutex_lock(&inode->i_mutex);
2471 vfs_dq_init(dir);
2472 error = dir->i_op->link(old_dentry, dir, new_dentry);
2473 mutex_unlock(&inode->i_mutex);
2474 if (!error)
2475 fsnotify_link(dir, inode, new_dentry);
2476 return error;
2480 * Hardlinks are often used in delicate situations. We avoid
2481 * security-related surprises by not following symlinks on the
2482 * newname. --KAB
2484 * We don't follow them on the oldname either to be compatible
2485 * with linux 2.0, and to avoid hard-linking to directories
2486 * and other special files. --ADM
2488 SYSCALL_DEFINE5(linkat, int, olddfd, const char __user *, oldname,
2489 int, newdfd, const char __user *, newname, int, flags)
2491 struct dentry *new_dentry;
2492 struct nameidata nd;
2493 struct path old_path;
2494 int error;
2495 char *to;
2497 if ((flags & ~AT_SYMLINK_FOLLOW) != 0)
2498 return -EINVAL;
2500 error = user_path_at(olddfd, oldname,
2501 flags & AT_SYMLINK_FOLLOW ? LOOKUP_FOLLOW : 0,
2502 &old_path);
2503 if (error)
2504 return error;
2506 error = user_path_parent(newdfd, newname, &nd, &to);
2507 if (error)
2508 goto out;
2509 error = -EXDEV;
2510 if (old_path.mnt != nd.path.mnt)
2511 goto out_release;
2512 new_dentry = lookup_create(&nd, 0);
2513 error = PTR_ERR(new_dentry);
2514 if (IS_ERR(new_dentry))
2515 goto out_unlock;
2516 error = mnt_want_write(nd.path.mnt);
2517 if (error)
2518 goto out_dput;
2519 error = security_path_link(old_path.dentry, &nd.path, new_dentry);
2520 if (error)
2521 goto out_drop_write;
2522 error = vfs_link(old_path.dentry, nd.path.dentry->d_inode, new_dentry);
2523 out_drop_write:
2524 mnt_drop_write(nd.path.mnt);
2525 out_dput:
2526 dput(new_dentry);
2527 out_unlock:
2528 mutex_unlock(&nd.path.dentry->d_inode->i_mutex);
2529 out_release:
2530 path_put(&nd.path);
2531 putname(to);
2532 out:
2533 path_put(&old_path);
2535 return error;
2538 SYSCALL_DEFINE2(link, const char __user *, oldname, const char __user *, newname)
2540 return sys_linkat(AT_FDCWD, oldname, AT_FDCWD, newname, 0);
2544 * The worst of all namespace operations - renaming directory. "Perverted"
2545 * doesn't even start to describe it. Somebody in UCB had a heck of a trip...
2546 * Problems:
2547 * a) we can get into loop creation. Check is done in is_subdir().
2548 * b) race potential - two innocent renames can create a loop together.
2549 * That's where 4.4 screws up. Current fix: serialization on
2550 * sb->s_vfs_rename_mutex. We might be more accurate, but that's another
2551 * story.
2552 * c) we have to lock _three_ objects - parents and victim (if it exists).
2553 * And that - after we got ->i_mutex on parents (until then we don't know
2554 * whether the target exists). Solution: try to be smart with locking
2555 * order for inodes. We rely on the fact that tree topology may change
2556 * only under ->s_vfs_rename_mutex _and_ that parent of the object we
2557 * move will be locked. Thus we can rank directories by the tree
2558 * (ancestors first) and rank all non-directories after them.
2559 * That works since everybody except rename does "lock parent, lookup,
2560 * lock child" and rename is under ->s_vfs_rename_mutex.
2561 * HOWEVER, it relies on the assumption that any object with ->lookup()
2562 * has no more than 1 dentry. If "hybrid" objects will ever appear,
2563 * we'd better make sure that there's no link(2) for them.
2564 * d) some filesystems don't support opened-but-unlinked directories,
2565 * either because of layout or because they are not ready to deal with
2566 * all cases correctly. The latter will be fixed (taking this sort of
2567 * stuff into VFS), but the former is not going away. Solution: the same
2568 * trick as in rmdir().
2569 * e) conversion from fhandle to dentry may come in the wrong moment - when
2570 * we are removing the target. Solution: we will have to grab ->i_mutex
2571 * in the fhandle_to_dentry code. [FIXME - current nfsfh.c relies on
2572 * ->i_mutex on parents, which works but leads to some truely excessive
2573 * locking].
2575 static int vfs_rename_dir(struct inode *old_dir, struct dentry *old_dentry,
2576 struct inode *new_dir, struct dentry *new_dentry)
2578 int error = 0;
2579 struct inode *target;
2582 * If we are going to change the parent - check write permissions,
2583 * we'll need to flip '..'.
2585 if (new_dir != old_dir) {
2586 error = inode_permission(old_dentry->d_inode, MAY_WRITE);
2587 if (error)
2588 return error;
2591 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2592 if (error)
2593 return error;
2595 target = new_dentry->d_inode;
2596 if (target) {
2597 mutex_lock(&target->i_mutex);
2598 dentry_unhash(new_dentry);
2600 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2601 error = -EBUSY;
2602 else
2603 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2604 if (target) {
2605 if (!error)
2606 target->i_flags |= S_DEAD;
2607 mutex_unlock(&target->i_mutex);
2608 if (d_unhashed(new_dentry))
2609 d_rehash(new_dentry);
2610 dput(new_dentry);
2612 if (!error)
2613 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2614 d_move(old_dentry,new_dentry);
2615 return error;
2618 static int vfs_rename_other(struct inode *old_dir, struct dentry *old_dentry,
2619 struct inode *new_dir, struct dentry *new_dentry)
2621 struct inode *target;
2622 int error;
2624 error = security_inode_rename(old_dir, old_dentry, new_dir, new_dentry);
2625 if (error)
2626 return error;
2628 dget(new_dentry);
2629 target = new_dentry->d_inode;
2630 if (target)
2631 mutex_lock(&target->i_mutex);
2632 if (d_mountpoint(old_dentry)||d_mountpoint(new_dentry))
2633 error = -EBUSY;
2634 else
2635 error = old_dir->i_op->rename(old_dir, old_dentry, new_dir, new_dentry);
2636 if (!error) {
2637 if (!(old_dir->i_sb->s_type->fs_flags & FS_RENAME_DOES_D_MOVE))
2638 d_move(old_dentry, new_dentry);
2640 if (target)
2641 mutex_unlock(&target->i_mutex);
2642 dput(new_dentry);
2643 return error;
2646 int vfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2647 struct inode *new_dir, struct dentry *new_dentry)
2649 int error;
2650 int is_dir = S_ISDIR(old_dentry->d_inode->i_mode);
2651 const char *old_name;
2653 if (old_dentry->d_inode == new_dentry->d_inode)
2654 return 0;
2656 error = may_delete(old_dir, old_dentry, is_dir);
2657 if (error)
2658 return error;
2660 if (!new_dentry->d_inode)
2661 error = may_create(new_dir, new_dentry);
2662 else
2663 error = may_delete(new_dir, new_dentry, is_dir);
2664 if (error)
2665 return error;
2667 if (!old_dir->i_op->rename)
2668 return -EPERM;
2670 vfs_dq_init(old_dir);
2671 vfs_dq_init(new_dir);
2673 old_name = fsnotify_oldname_init(old_dentry->d_name.name);
2675 if (is_dir)
2676 error = vfs_rename_dir(old_dir,old_dentry,new_dir,new_dentry);
2677 else
2678 error = vfs_rename_other(old_dir,old_dentry,new_dir,new_dentry);
2679 if (!error) {
2680 const char *new_name = old_dentry->d_name.name;
2681 fsnotify_move(old_dir, new_dir, old_name, new_name, is_dir,
2682 new_dentry->d_inode, old_dentry);
2684 fsnotify_oldname_free(old_name);
2686 return error;
2689 SYSCALL_DEFINE4(renameat, int, olddfd, const char __user *, oldname,
2690 int, newdfd, const char __user *, newname)
2692 struct dentry *old_dir, *new_dir;
2693 struct dentry *old_dentry, *new_dentry;
2694 struct dentry *trap;
2695 struct nameidata oldnd, newnd;
2696 char *from;
2697 char *to;
2698 int error;
2700 error = user_path_parent(olddfd, oldname, &oldnd, &from);
2701 if (error)
2702 goto exit;
2704 error = user_path_parent(newdfd, newname, &newnd, &to);
2705 if (error)
2706 goto exit1;
2708 error = -EXDEV;
2709 if (oldnd.path.mnt != newnd.path.mnt)
2710 goto exit2;
2712 old_dir = oldnd.path.dentry;
2713 error = -EBUSY;
2714 if (oldnd.last_type != LAST_NORM)
2715 goto exit2;
2717 new_dir = newnd.path.dentry;
2718 if (newnd.last_type != LAST_NORM)
2719 goto exit2;
2721 oldnd.flags &= ~LOOKUP_PARENT;
2722 newnd.flags &= ~LOOKUP_PARENT;
2723 newnd.flags |= LOOKUP_RENAME_TARGET;
2725 trap = lock_rename(new_dir, old_dir);
2727 old_dentry = lookup_hash(&oldnd);
2728 error = PTR_ERR(old_dentry);
2729 if (IS_ERR(old_dentry))
2730 goto exit3;
2731 /* source must exist */
2732 error = -ENOENT;
2733 if (!old_dentry->d_inode)
2734 goto exit4;
2735 /* unless the source is a directory trailing slashes give -ENOTDIR */
2736 if (!S_ISDIR(old_dentry->d_inode->i_mode)) {
2737 error = -ENOTDIR;
2738 if (oldnd.last.name[oldnd.last.len])
2739 goto exit4;
2740 if (newnd.last.name[newnd.last.len])
2741 goto exit4;
2743 /* source should not be ancestor of target */
2744 error = -EINVAL;
2745 if (old_dentry == trap)
2746 goto exit4;
2747 new_dentry = lookup_hash(&newnd);
2748 error = PTR_ERR(new_dentry);
2749 if (IS_ERR(new_dentry))
2750 goto exit4;
2751 /* target should not be an ancestor of source */
2752 error = -ENOTEMPTY;
2753 if (new_dentry == trap)
2754 goto exit5;
2756 error = mnt_want_write(oldnd.path.mnt);
2757 if (error)
2758 goto exit5;
2759 error = security_path_rename(&oldnd.path, old_dentry,
2760 &newnd.path, new_dentry);
2761 if (error)
2762 goto exit6;
2763 error = vfs_rename(old_dir->d_inode, old_dentry,
2764 new_dir->d_inode, new_dentry);
2765 exit6:
2766 mnt_drop_write(oldnd.path.mnt);
2767 exit5:
2768 dput(new_dentry);
2769 exit4:
2770 dput(old_dentry);
2771 exit3:
2772 unlock_rename(new_dir, old_dir);
2773 exit2:
2774 path_put(&newnd.path);
2775 putname(to);
2776 exit1:
2777 path_put(&oldnd.path);
2778 putname(from);
2779 exit:
2780 return error;
2783 SYSCALL_DEFINE2(rename, const char __user *, oldname, const char __user *, newname)
2785 return sys_renameat(AT_FDCWD, oldname, AT_FDCWD, newname);
2788 int vfs_readlink(struct dentry *dentry, char __user *buffer, int buflen, const char *link)
2790 int len;
2792 len = PTR_ERR(link);
2793 if (IS_ERR(link))
2794 goto out;
2796 len = strlen(link);
2797 if (len > (unsigned) buflen)
2798 len = buflen;
2799 if (copy_to_user(buffer, link, len))
2800 len = -EFAULT;
2801 out:
2802 return len;
2806 * A helper for ->readlink(). This should be used *ONLY* for symlinks that
2807 * have ->follow_link() touching nd only in nd_set_link(). Using (or not
2808 * using) it for any given inode is up to filesystem.
2810 int generic_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2812 struct nameidata nd;
2813 void *cookie;
2814 int res;
2816 nd.depth = 0;
2817 cookie = dentry->d_inode->i_op->follow_link(dentry, &nd);
2818 if (IS_ERR(cookie))
2819 return PTR_ERR(cookie);
2821 res = vfs_readlink(dentry, buffer, buflen, nd_get_link(&nd));
2822 if (dentry->d_inode->i_op->put_link)
2823 dentry->d_inode->i_op->put_link(dentry, &nd, cookie);
2824 return res;
2827 int vfs_follow_link(struct nameidata *nd, const char *link)
2829 return __vfs_follow_link(nd, link);
2832 /* get the link contents into pagecache */
2833 static char *page_getlink(struct dentry * dentry, struct page **ppage)
2835 char *kaddr;
2836 struct page *page;
2837 struct address_space *mapping = dentry->d_inode->i_mapping;
2838 page = read_mapping_page(mapping, 0, NULL);
2839 if (IS_ERR(page))
2840 return (char*)page;
2841 *ppage = page;
2842 kaddr = kmap(page);
2843 nd_terminate_link(kaddr, dentry->d_inode->i_size, PAGE_SIZE - 1);
2844 return kaddr;
2847 int page_readlink(struct dentry *dentry, char __user *buffer, int buflen)
2849 struct page *page = NULL;
2850 char *s = page_getlink(dentry, &page);
2851 int res = vfs_readlink(dentry,buffer,buflen,s);
2852 if (page) {
2853 kunmap(page);
2854 page_cache_release(page);
2856 return res;
2859 void *page_follow_link_light(struct dentry *dentry, struct nameidata *nd)
2861 struct page *page = NULL;
2862 nd_set_link(nd, page_getlink(dentry, &page));
2863 return page;
2866 void page_put_link(struct dentry *dentry, struct nameidata *nd, void *cookie)
2868 struct page *page = cookie;
2870 if (page) {
2871 kunmap(page);
2872 page_cache_release(page);
2877 * The nofs argument instructs pagecache_write_begin to pass AOP_FLAG_NOFS
2879 int __page_symlink(struct inode *inode, const char *symname, int len, int nofs)
2881 struct address_space *mapping = inode->i_mapping;
2882 struct page *page;
2883 void *fsdata;
2884 int err;
2885 char *kaddr;
2886 unsigned int flags = AOP_FLAG_UNINTERRUPTIBLE;
2887 if (nofs)
2888 flags |= AOP_FLAG_NOFS;
2890 retry:
2891 err = pagecache_write_begin(NULL, mapping, 0, len-1,
2892 flags, &page, &fsdata);
2893 if (err)
2894 goto fail;
2896 kaddr = kmap_atomic(page, KM_USER0);
2897 memcpy(kaddr, symname, len-1);
2898 kunmap_atomic(kaddr, KM_USER0);
2900 err = pagecache_write_end(NULL, mapping, 0, len-1, len-1,
2901 page, fsdata);
2902 if (err < 0)
2903 goto fail;
2904 if (err < len-1)
2905 goto retry;
2907 mark_inode_dirty(inode);
2908 return 0;
2909 fail:
2910 return err;
2913 int page_symlink(struct inode *inode, const char *symname, int len)
2915 return __page_symlink(inode, symname, len,
2916 !(mapping_gfp_mask(inode->i_mapping) & __GFP_FS));
2919 const struct inode_operations page_symlink_inode_operations = {
2920 .readlink = generic_readlink,
2921 .follow_link = page_follow_link_light,
2922 .put_link = page_put_link,
2925 EXPORT_SYMBOL(user_path_at);
2926 EXPORT_SYMBOL(follow_down);
2927 EXPORT_SYMBOL(follow_up);
2928 EXPORT_SYMBOL(get_write_access); /* binfmt_aout */
2929 EXPORT_SYMBOL(getname);
2930 EXPORT_SYMBOL(lock_rename);
2931 EXPORT_SYMBOL(lookup_one_len);
2932 EXPORT_SYMBOL(page_follow_link_light);
2933 EXPORT_SYMBOL(page_put_link);
2934 EXPORT_SYMBOL(page_readlink);
2935 EXPORT_SYMBOL(__page_symlink);
2936 EXPORT_SYMBOL(page_symlink);
2937 EXPORT_SYMBOL(page_symlink_inode_operations);
2938 EXPORT_SYMBOL(path_lookup);
2939 EXPORT_SYMBOL(kern_path);
2940 EXPORT_SYMBOL(vfs_path_lookup);
2941 EXPORT_SYMBOL(inode_permission);
2942 EXPORT_SYMBOL(file_permission);
2943 EXPORT_SYMBOL(unlock_rename);
2944 EXPORT_SYMBOL(vfs_create);
2945 EXPORT_SYMBOL(vfs_follow_link);
2946 EXPORT_SYMBOL(vfs_link);
2947 EXPORT_SYMBOL(vfs_mkdir);
2948 EXPORT_SYMBOL(vfs_mknod);
2949 EXPORT_SYMBOL(generic_permission);
2950 EXPORT_SYMBOL(vfs_readlink);
2951 EXPORT_SYMBOL(vfs_rename);
2952 EXPORT_SYMBOL(vfs_rmdir);
2953 EXPORT_SYMBOL(vfs_symlink);
2954 EXPORT_SYMBOL(vfs_unlink);
2955 EXPORT_SYMBOL(dentry_unhash);
2956 EXPORT_SYMBOL(generic_readlink);