ARM: 6299/1: errata: TLBIASIDIS and TLBIMVAIS operations can broadcast a faulty ASID
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / security / commoncap.c
blob4e015996dd4d6d316cbbef4c9fafb2c2e48c9e34
1 /* Common capabilities, needed by capability.o.
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2 of the License, or
6 * (at your option) any later version.
8 */
10 #include <linux/capability.h>
11 #include <linux/audit.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/kernel.h>
15 #include <linux/security.h>
16 #include <linux/file.h>
17 #include <linux/mm.h>
18 #include <linux/mman.h>
19 #include <linux/pagemap.h>
20 #include <linux/swap.h>
21 #include <linux/skbuff.h>
22 #include <linux/netlink.h>
23 #include <linux/ptrace.h>
24 #include <linux/xattr.h>
25 #include <linux/hugetlb.h>
26 #include <linux/mount.h>
27 #include <linux/sched.h>
28 #include <linux/prctl.h>
29 #include <linux/securebits.h>
30 #include <linux/syslog.h>
33 * If a non-root user executes a setuid-root binary in
34 * !secure(SECURE_NOROOT) mode, then we raise capabilities.
35 * However if fE is also set, then the intent is for only
36 * the file capabilities to be applied, and the setuid-root
37 * bit is left on either to change the uid (plausible) or
38 * to get full privilege on a kernel without file capabilities
39 * support. So in that case we do not raise capabilities.
41 * Warn if that happens, once per boot.
43 static void warn_setuid_and_fcaps_mixed(char *fname)
45 static int warned;
46 if (!warned) {
47 printk(KERN_INFO "warning: `%s' has both setuid-root and"
48 " effective capabilities. Therefore not raising all"
49 " capabilities.\n", fname);
50 warned = 1;
54 int cap_netlink_send(struct sock *sk, struct sk_buff *skb)
56 NETLINK_CB(skb).eff_cap = current_cap();
57 return 0;
60 int cap_netlink_recv(struct sk_buff *skb, int cap)
62 if (!cap_raised(NETLINK_CB(skb).eff_cap, cap))
63 return -EPERM;
64 return 0;
66 EXPORT_SYMBOL(cap_netlink_recv);
68 /**
69 * cap_capable - Determine whether a task has a particular effective capability
70 * @tsk: The task to query
71 * @cred: The credentials to use
72 * @cap: The capability to check for
73 * @audit: Whether to write an audit message or not
75 * Determine whether the nominated task has the specified capability amongst
76 * its effective set, returning 0 if it does, -ve if it does not.
78 * NOTE WELL: cap_has_capability() cannot be used like the kernel's capable()
79 * and has_capability() functions. That is, it has the reverse semantics:
80 * cap_has_capability() returns 0 when a task has a capability, but the
81 * kernel's capable() and has_capability() returns 1 for this case.
83 int cap_capable(struct task_struct *tsk, const struct cred *cred, int cap,
84 int audit)
86 return cap_raised(cred->cap_effective, cap) ? 0 : -EPERM;
89 /**
90 * cap_settime - Determine whether the current process may set the system clock
91 * @ts: The time to set
92 * @tz: The timezone to set
94 * Determine whether the current process may set the system clock and timezone
95 * information, returning 0 if permission granted, -ve if denied.
97 int cap_settime(struct timespec *ts, struct timezone *tz)
99 if (!capable(CAP_SYS_TIME))
100 return -EPERM;
101 return 0;
105 * cap_ptrace_access_check - Determine whether the current process may access
106 * another
107 * @child: The process to be accessed
108 * @mode: The mode of attachment.
110 * Determine whether a process may access another, returning 0 if permission
111 * granted, -ve if denied.
113 int cap_ptrace_access_check(struct task_struct *child, unsigned int mode)
115 int ret = 0;
117 rcu_read_lock();
118 if (!cap_issubset(__task_cred(child)->cap_permitted,
119 current_cred()->cap_permitted) &&
120 !capable(CAP_SYS_PTRACE))
121 ret = -EPERM;
122 rcu_read_unlock();
123 return ret;
127 * cap_ptrace_traceme - Determine whether another process may trace the current
128 * @parent: The task proposed to be the tracer
130 * Determine whether the nominated task is permitted to trace the current
131 * process, returning 0 if permission is granted, -ve if denied.
133 int cap_ptrace_traceme(struct task_struct *parent)
135 int ret = 0;
137 rcu_read_lock();
138 if (!cap_issubset(current_cred()->cap_permitted,
139 __task_cred(parent)->cap_permitted) &&
140 !has_capability(parent, CAP_SYS_PTRACE))
141 ret = -EPERM;
142 rcu_read_unlock();
143 return ret;
147 * cap_capget - Retrieve a task's capability sets
148 * @target: The task from which to retrieve the capability sets
149 * @effective: The place to record the effective set
150 * @inheritable: The place to record the inheritable set
151 * @permitted: The place to record the permitted set
153 * This function retrieves the capabilities of the nominated task and returns
154 * them to the caller.
156 int cap_capget(struct task_struct *target, kernel_cap_t *effective,
157 kernel_cap_t *inheritable, kernel_cap_t *permitted)
159 const struct cred *cred;
161 /* Derived from kernel/capability.c:sys_capget. */
162 rcu_read_lock();
163 cred = __task_cred(target);
164 *effective = cred->cap_effective;
165 *inheritable = cred->cap_inheritable;
166 *permitted = cred->cap_permitted;
167 rcu_read_unlock();
168 return 0;
172 * Determine whether the inheritable capabilities are limited to the old
173 * permitted set. Returns 1 if they are limited, 0 if they are not.
175 static inline int cap_inh_is_capped(void)
178 /* they are so limited unless the current task has the CAP_SETPCAP
179 * capability
181 if (cap_capable(current, current_cred(), CAP_SETPCAP,
182 SECURITY_CAP_AUDIT) == 0)
183 return 0;
184 return 1;
188 * cap_capset - Validate and apply proposed changes to current's capabilities
189 * @new: The proposed new credentials; alterations should be made here
190 * @old: The current task's current credentials
191 * @effective: A pointer to the proposed new effective capabilities set
192 * @inheritable: A pointer to the proposed new inheritable capabilities set
193 * @permitted: A pointer to the proposed new permitted capabilities set
195 * This function validates and applies a proposed mass change to the current
196 * process's capability sets. The changes are made to the proposed new
197 * credentials, and assuming no error, will be committed by the caller of LSM.
199 int cap_capset(struct cred *new,
200 const struct cred *old,
201 const kernel_cap_t *effective,
202 const kernel_cap_t *inheritable,
203 const kernel_cap_t *permitted)
205 if (cap_inh_is_capped() &&
206 !cap_issubset(*inheritable,
207 cap_combine(old->cap_inheritable,
208 old->cap_permitted)))
209 /* incapable of using this inheritable set */
210 return -EPERM;
212 if (!cap_issubset(*inheritable,
213 cap_combine(old->cap_inheritable,
214 old->cap_bset)))
215 /* no new pI capabilities outside bounding set */
216 return -EPERM;
218 /* verify restrictions on target's new Permitted set */
219 if (!cap_issubset(*permitted, old->cap_permitted))
220 return -EPERM;
222 /* verify the _new_Effective_ is a subset of the _new_Permitted_ */
223 if (!cap_issubset(*effective, *permitted))
224 return -EPERM;
226 new->cap_effective = *effective;
227 new->cap_inheritable = *inheritable;
228 new->cap_permitted = *permitted;
229 return 0;
233 * Clear proposed capability sets for execve().
235 static inline void bprm_clear_caps(struct linux_binprm *bprm)
237 cap_clear(bprm->cred->cap_permitted);
238 bprm->cap_effective = false;
242 * cap_inode_need_killpriv - Determine if inode change affects privileges
243 * @dentry: The inode/dentry in being changed with change marked ATTR_KILL_PRIV
245 * Determine if an inode having a change applied that's marked ATTR_KILL_PRIV
246 * affects the security markings on that inode, and if it is, should
247 * inode_killpriv() be invoked or the change rejected?
249 * Returns 0 if granted; +ve if granted, but inode_killpriv() is required; and
250 * -ve to deny the change.
252 int cap_inode_need_killpriv(struct dentry *dentry)
254 struct inode *inode = dentry->d_inode;
255 int error;
257 if (!inode->i_op->getxattr)
258 return 0;
260 error = inode->i_op->getxattr(dentry, XATTR_NAME_CAPS, NULL, 0);
261 if (error <= 0)
262 return 0;
263 return 1;
267 * cap_inode_killpriv - Erase the security markings on an inode
268 * @dentry: The inode/dentry to alter
270 * Erase the privilege-enhancing security markings on an inode.
272 * Returns 0 if successful, -ve on error.
274 int cap_inode_killpriv(struct dentry *dentry)
276 struct inode *inode = dentry->d_inode;
278 if (!inode->i_op->removexattr)
279 return 0;
281 return inode->i_op->removexattr(dentry, XATTR_NAME_CAPS);
285 * Calculate the new process capability sets from the capability sets attached
286 * to a file.
288 static inline int bprm_caps_from_vfs_caps(struct cpu_vfs_cap_data *caps,
289 struct linux_binprm *bprm,
290 bool *effective)
292 struct cred *new = bprm->cred;
293 unsigned i;
294 int ret = 0;
296 if (caps->magic_etc & VFS_CAP_FLAGS_EFFECTIVE)
297 *effective = true;
299 CAP_FOR_EACH_U32(i) {
300 __u32 permitted = caps->permitted.cap[i];
301 __u32 inheritable = caps->inheritable.cap[i];
304 * pP' = (X & fP) | (pI & fI)
306 new->cap_permitted.cap[i] =
307 (new->cap_bset.cap[i] & permitted) |
308 (new->cap_inheritable.cap[i] & inheritable);
310 if (permitted & ~new->cap_permitted.cap[i])
311 /* insufficient to execute correctly */
312 ret = -EPERM;
316 * For legacy apps, with no internal support for recognizing they
317 * do not have enough capabilities, we return an error if they are
318 * missing some "forced" (aka file-permitted) capabilities.
320 return *effective ? ret : 0;
324 * Extract the on-exec-apply capability sets for an executable file.
326 int get_vfs_caps_from_disk(const struct dentry *dentry, struct cpu_vfs_cap_data *cpu_caps)
328 struct inode *inode = dentry->d_inode;
329 __u32 magic_etc;
330 unsigned tocopy, i;
331 int size;
332 struct vfs_cap_data caps;
334 memset(cpu_caps, 0, sizeof(struct cpu_vfs_cap_data));
336 if (!inode || !inode->i_op->getxattr)
337 return -ENODATA;
339 size = inode->i_op->getxattr((struct dentry *)dentry, XATTR_NAME_CAPS, &caps,
340 XATTR_CAPS_SZ);
341 if (size == -ENODATA || size == -EOPNOTSUPP)
342 /* no data, that's ok */
343 return -ENODATA;
344 if (size < 0)
345 return size;
347 if (size < sizeof(magic_etc))
348 return -EINVAL;
350 cpu_caps->magic_etc = magic_etc = le32_to_cpu(caps.magic_etc);
352 switch (magic_etc & VFS_CAP_REVISION_MASK) {
353 case VFS_CAP_REVISION_1:
354 if (size != XATTR_CAPS_SZ_1)
355 return -EINVAL;
356 tocopy = VFS_CAP_U32_1;
357 break;
358 case VFS_CAP_REVISION_2:
359 if (size != XATTR_CAPS_SZ_2)
360 return -EINVAL;
361 tocopy = VFS_CAP_U32_2;
362 break;
363 default:
364 return -EINVAL;
367 CAP_FOR_EACH_U32(i) {
368 if (i >= tocopy)
369 break;
370 cpu_caps->permitted.cap[i] = le32_to_cpu(caps.data[i].permitted);
371 cpu_caps->inheritable.cap[i] = le32_to_cpu(caps.data[i].inheritable);
374 return 0;
378 * Attempt to get the on-exec apply capability sets for an executable file from
379 * its xattrs and, if present, apply them to the proposed credentials being
380 * constructed by execve().
382 static int get_file_caps(struct linux_binprm *bprm, bool *effective)
384 struct dentry *dentry;
385 int rc = 0;
386 struct cpu_vfs_cap_data vcaps;
388 bprm_clear_caps(bprm);
390 if (!file_caps_enabled)
391 return 0;
393 if (bprm->file->f_vfsmnt->mnt_flags & MNT_NOSUID)
394 return 0;
396 dentry = dget(bprm->file->f_dentry);
398 rc = get_vfs_caps_from_disk(dentry, &vcaps);
399 if (rc < 0) {
400 if (rc == -EINVAL)
401 printk(KERN_NOTICE "%s: get_vfs_caps_from_disk returned %d for %s\n",
402 __func__, rc, bprm->filename);
403 else if (rc == -ENODATA)
404 rc = 0;
405 goto out;
408 rc = bprm_caps_from_vfs_caps(&vcaps, bprm, effective);
409 if (rc == -EINVAL)
410 printk(KERN_NOTICE "%s: cap_from_disk returned %d for %s\n",
411 __func__, rc, bprm->filename);
413 out:
414 dput(dentry);
415 if (rc)
416 bprm_clear_caps(bprm);
418 return rc;
422 * cap_bprm_set_creds - Set up the proposed credentials for execve().
423 * @bprm: The execution parameters, including the proposed creds
425 * Set up the proposed credentials for a new execution context being
426 * constructed by execve(). The proposed creds in @bprm->cred is altered,
427 * which won't take effect immediately. Returns 0 if successful, -ve on error.
429 int cap_bprm_set_creds(struct linux_binprm *bprm)
431 const struct cred *old = current_cred();
432 struct cred *new = bprm->cred;
433 bool effective;
434 int ret;
436 effective = false;
437 ret = get_file_caps(bprm, &effective);
438 if (ret < 0)
439 return ret;
441 if (!issecure(SECURE_NOROOT)) {
443 * If the legacy file capability is set, then don't set privs
444 * for a setuid root binary run by a non-root user. Do set it
445 * for a root user just to cause least surprise to an admin.
447 if (effective && new->uid != 0 && new->euid == 0) {
448 warn_setuid_and_fcaps_mixed(bprm->filename);
449 goto skip;
452 * To support inheritance of root-permissions and suid-root
453 * executables under compatibility mode, we override the
454 * capability sets for the file.
456 * If only the real uid is 0, we do not set the effective bit.
458 if (new->euid == 0 || new->uid == 0) {
459 /* pP' = (cap_bset & ~0) | (pI & ~0) */
460 new->cap_permitted = cap_combine(old->cap_bset,
461 old->cap_inheritable);
463 if (new->euid == 0)
464 effective = true;
466 skip:
468 /* Don't let someone trace a set[ug]id/setpcap binary with the revised
469 * credentials unless they have the appropriate permit
471 if ((new->euid != old->uid ||
472 new->egid != old->gid ||
473 !cap_issubset(new->cap_permitted, old->cap_permitted)) &&
474 bprm->unsafe & ~LSM_UNSAFE_PTRACE_CAP) {
475 /* downgrade; they get no more than they had, and maybe less */
476 if (!capable(CAP_SETUID)) {
477 new->euid = new->uid;
478 new->egid = new->gid;
480 new->cap_permitted = cap_intersect(new->cap_permitted,
481 old->cap_permitted);
484 new->suid = new->fsuid = new->euid;
485 new->sgid = new->fsgid = new->egid;
487 /* For init, we want to retain the capabilities set in the initial
488 * task. Thus we skip the usual capability rules
490 if (!is_global_init(current)) {
491 if (effective)
492 new->cap_effective = new->cap_permitted;
493 else
494 cap_clear(new->cap_effective);
496 bprm->cap_effective = effective;
499 * Audit candidate if current->cap_effective is set
501 * We do not bother to audit if 3 things are true:
502 * 1) cap_effective has all caps
503 * 2) we are root
504 * 3) root is supposed to have all caps (SECURE_NOROOT)
505 * Since this is just a normal root execing a process.
507 * Number 1 above might fail if you don't have a full bset, but I think
508 * that is interesting information to audit.
510 if (!cap_isclear(new->cap_effective)) {
511 if (!cap_issubset(CAP_FULL_SET, new->cap_effective) ||
512 new->euid != 0 || new->uid != 0 ||
513 issecure(SECURE_NOROOT)) {
514 ret = audit_log_bprm_fcaps(bprm, new, old);
515 if (ret < 0)
516 return ret;
520 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
521 return 0;
525 * cap_bprm_secureexec - Determine whether a secure execution is required
526 * @bprm: The execution parameters
528 * Determine whether a secure execution is required, return 1 if it is, and 0
529 * if it is not.
531 * The credentials have been committed by this point, and so are no longer
532 * available through @bprm->cred.
534 int cap_bprm_secureexec(struct linux_binprm *bprm)
536 const struct cred *cred = current_cred();
538 if (cred->uid != 0) {
539 if (bprm->cap_effective)
540 return 1;
541 if (!cap_isclear(cred->cap_permitted))
542 return 1;
545 return (cred->euid != cred->uid ||
546 cred->egid != cred->gid);
550 * cap_inode_setxattr - Determine whether an xattr may be altered
551 * @dentry: The inode/dentry being altered
552 * @name: The name of the xattr to be changed
553 * @value: The value that the xattr will be changed to
554 * @size: The size of value
555 * @flags: The replacement flag
557 * Determine whether an xattr may be altered or set on an inode, returning 0 if
558 * permission is granted, -ve if denied.
560 * This is used to make sure security xattrs don't get updated or set by those
561 * who aren't privileged to do so.
563 int cap_inode_setxattr(struct dentry *dentry, const char *name,
564 const void *value, size_t size, int flags)
566 if (!strcmp(name, XATTR_NAME_CAPS)) {
567 if (!capable(CAP_SETFCAP))
568 return -EPERM;
569 return 0;
572 if (!strncmp(name, XATTR_SECURITY_PREFIX,
573 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
574 !capable(CAP_SYS_ADMIN))
575 return -EPERM;
576 return 0;
580 * cap_inode_removexattr - Determine whether an xattr may be removed
581 * @dentry: The inode/dentry being altered
582 * @name: The name of the xattr to be changed
584 * Determine whether an xattr may be removed from an inode, returning 0 if
585 * permission is granted, -ve if denied.
587 * This is used to make sure security xattrs don't get removed by those who
588 * aren't privileged to remove them.
590 int cap_inode_removexattr(struct dentry *dentry, const char *name)
592 if (!strcmp(name, XATTR_NAME_CAPS)) {
593 if (!capable(CAP_SETFCAP))
594 return -EPERM;
595 return 0;
598 if (!strncmp(name, XATTR_SECURITY_PREFIX,
599 sizeof(XATTR_SECURITY_PREFIX) - 1) &&
600 !capable(CAP_SYS_ADMIN))
601 return -EPERM;
602 return 0;
606 * cap_emulate_setxuid() fixes the effective / permitted capabilities of
607 * a process after a call to setuid, setreuid, or setresuid.
609 * 1) When set*uiding _from_ one of {r,e,s}uid == 0 _to_ all of
610 * {r,e,s}uid != 0, the permitted and effective capabilities are
611 * cleared.
613 * 2) When set*uiding _from_ euid == 0 _to_ euid != 0, the effective
614 * capabilities of the process are cleared.
616 * 3) When set*uiding _from_ euid != 0 _to_ euid == 0, the effective
617 * capabilities are set to the permitted capabilities.
619 * fsuid is handled elsewhere. fsuid == 0 and {r,e,s}uid!= 0 should
620 * never happen.
622 * -astor
624 * cevans - New behaviour, Oct '99
625 * A process may, via prctl(), elect to keep its capabilities when it
626 * calls setuid() and switches away from uid==0. Both permitted and
627 * effective sets will be retained.
628 * Without this change, it was impossible for a daemon to drop only some
629 * of its privilege. The call to setuid(!=0) would drop all privileges!
630 * Keeping uid 0 is not an option because uid 0 owns too many vital
631 * files..
632 * Thanks to Olaf Kirch and Peter Benie for spotting this.
634 static inline void cap_emulate_setxuid(struct cred *new, const struct cred *old)
636 if ((old->uid == 0 || old->euid == 0 || old->suid == 0) &&
637 (new->uid != 0 && new->euid != 0 && new->suid != 0) &&
638 !issecure(SECURE_KEEP_CAPS)) {
639 cap_clear(new->cap_permitted);
640 cap_clear(new->cap_effective);
642 if (old->euid == 0 && new->euid != 0)
643 cap_clear(new->cap_effective);
644 if (old->euid != 0 && new->euid == 0)
645 new->cap_effective = new->cap_permitted;
649 * cap_task_fix_setuid - Fix up the results of setuid() call
650 * @new: The proposed credentials
651 * @old: The current task's current credentials
652 * @flags: Indications of what has changed
654 * Fix up the results of setuid() call before the credential changes are
655 * actually applied, returning 0 to grant the changes, -ve to deny them.
657 int cap_task_fix_setuid(struct cred *new, const struct cred *old, int flags)
659 switch (flags) {
660 case LSM_SETID_RE:
661 case LSM_SETID_ID:
662 case LSM_SETID_RES:
663 /* juggle the capabilities to follow [RES]UID changes unless
664 * otherwise suppressed */
665 if (!issecure(SECURE_NO_SETUID_FIXUP))
666 cap_emulate_setxuid(new, old);
667 break;
669 case LSM_SETID_FS:
670 /* juggle the capabilties to follow FSUID changes, unless
671 * otherwise suppressed
673 * FIXME - is fsuser used for all CAP_FS_MASK capabilities?
674 * if not, we might be a bit too harsh here.
676 if (!issecure(SECURE_NO_SETUID_FIXUP)) {
677 if (old->fsuid == 0 && new->fsuid != 0)
678 new->cap_effective =
679 cap_drop_fs_set(new->cap_effective);
681 if (old->fsuid != 0 && new->fsuid == 0)
682 new->cap_effective =
683 cap_raise_fs_set(new->cap_effective,
684 new->cap_permitted);
686 break;
688 default:
689 return -EINVAL;
692 return 0;
696 * Rationale: code calling task_setscheduler, task_setioprio, and
697 * task_setnice, assumes that
698 * . if capable(cap_sys_nice), then those actions should be allowed
699 * . if not capable(cap_sys_nice), but acting on your own processes,
700 * then those actions should be allowed
701 * This is insufficient now since you can call code without suid, but
702 * yet with increased caps.
703 * So we check for increased caps on the target process.
705 static int cap_safe_nice(struct task_struct *p)
707 int is_subset;
709 rcu_read_lock();
710 is_subset = cap_issubset(__task_cred(p)->cap_permitted,
711 current_cred()->cap_permitted);
712 rcu_read_unlock();
714 if (!is_subset && !capable(CAP_SYS_NICE))
715 return -EPERM;
716 return 0;
720 * cap_task_setscheduler - Detemine if scheduler policy change is permitted
721 * @p: The task to affect
722 * @policy: The policy to effect
723 * @lp: The parameters to the scheduling policy
725 * Detemine if the requested scheduler policy change is permitted for the
726 * specified task, returning 0 if permission is granted, -ve if denied.
728 int cap_task_setscheduler(struct task_struct *p, int policy,
729 struct sched_param *lp)
731 return cap_safe_nice(p);
735 * cap_task_ioprio - Detemine if I/O priority change is permitted
736 * @p: The task to affect
737 * @ioprio: The I/O priority to set
739 * Detemine if the requested I/O priority change is permitted for the specified
740 * task, returning 0 if permission is granted, -ve if denied.
742 int cap_task_setioprio(struct task_struct *p, int ioprio)
744 return cap_safe_nice(p);
748 * cap_task_ioprio - Detemine if task priority change is permitted
749 * @p: The task to affect
750 * @nice: The nice value to set
752 * Detemine if the requested task priority change is permitted for the
753 * specified task, returning 0 if permission is granted, -ve if denied.
755 int cap_task_setnice(struct task_struct *p, int nice)
757 return cap_safe_nice(p);
761 * Implement PR_CAPBSET_DROP. Attempt to remove the specified capability from
762 * the current task's bounding set. Returns 0 on success, -ve on error.
764 static long cap_prctl_drop(struct cred *new, unsigned long cap)
766 if (!capable(CAP_SETPCAP))
767 return -EPERM;
768 if (!cap_valid(cap))
769 return -EINVAL;
771 cap_lower(new->cap_bset, cap);
772 return 0;
776 * cap_task_prctl - Implement process control functions for this security module
777 * @option: The process control function requested
778 * @arg2, @arg3, @arg4, @arg5: The argument data for this function
780 * Allow process control functions (sys_prctl()) to alter capabilities; may
781 * also deny access to other functions not otherwise implemented here.
783 * Returns 0 or +ve on success, -ENOSYS if this function is not implemented
784 * here, other -ve on error. If -ENOSYS is returned, sys_prctl() and other LSM
785 * modules will consider performing the function.
787 int cap_task_prctl(int option, unsigned long arg2, unsigned long arg3,
788 unsigned long arg4, unsigned long arg5)
790 struct cred *new;
791 long error = 0;
793 new = prepare_creds();
794 if (!new)
795 return -ENOMEM;
797 switch (option) {
798 case PR_CAPBSET_READ:
799 error = -EINVAL;
800 if (!cap_valid(arg2))
801 goto error;
802 error = !!cap_raised(new->cap_bset, arg2);
803 goto no_change;
805 case PR_CAPBSET_DROP:
806 error = cap_prctl_drop(new, arg2);
807 if (error < 0)
808 goto error;
809 goto changed;
812 * The next four prctl's remain to assist with transitioning a
813 * system from legacy UID=0 based privilege (when filesystem
814 * capabilities are not in use) to a system using filesystem
815 * capabilities only - as the POSIX.1e draft intended.
817 * Note:
819 * PR_SET_SECUREBITS =
820 * issecure_mask(SECURE_KEEP_CAPS_LOCKED)
821 * | issecure_mask(SECURE_NOROOT)
822 * | issecure_mask(SECURE_NOROOT_LOCKED)
823 * | issecure_mask(SECURE_NO_SETUID_FIXUP)
824 * | issecure_mask(SECURE_NO_SETUID_FIXUP_LOCKED)
826 * will ensure that the current process and all of its
827 * children will be locked into a pure
828 * capability-based-privilege environment.
830 case PR_SET_SECUREBITS:
831 error = -EPERM;
832 if ((((new->securebits & SECURE_ALL_LOCKS) >> 1)
833 & (new->securebits ^ arg2)) /*[1]*/
834 || ((new->securebits & SECURE_ALL_LOCKS & ~arg2)) /*[2]*/
835 || (arg2 & ~(SECURE_ALL_LOCKS | SECURE_ALL_BITS)) /*[3]*/
836 || (cap_capable(current, current_cred(), CAP_SETPCAP,
837 SECURITY_CAP_AUDIT) != 0) /*[4]*/
839 * [1] no changing of bits that are locked
840 * [2] no unlocking of locks
841 * [3] no setting of unsupported bits
842 * [4] doing anything requires privilege (go read about
843 * the "sendmail capabilities bug")
846 /* cannot change a locked bit */
847 goto error;
848 new->securebits = arg2;
849 goto changed;
851 case PR_GET_SECUREBITS:
852 error = new->securebits;
853 goto no_change;
855 case PR_GET_KEEPCAPS:
856 if (issecure(SECURE_KEEP_CAPS))
857 error = 1;
858 goto no_change;
860 case PR_SET_KEEPCAPS:
861 error = -EINVAL;
862 if (arg2 > 1) /* Note, we rely on arg2 being unsigned here */
863 goto error;
864 error = -EPERM;
865 if (issecure(SECURE_KEEP_CAPS_LOCKED))
866 goto error;
867 if (arg2)
868 new->securebits |= issecure_mask(SECURE_KEEP_CAPS);
869 else
870 new->securebits &= ~issecure_mask(SECURE_KEEP_CAPS);
871 goto changed;
873 default:
874 /* No functionality available - continue with default */
875 error = -ENOSYS;
876 goto error;
879 /* Functionality provided */
880 changed:
881 return commit_creds(new);
883 no_change:
884 error:
885 abort_creds(new);
886 return error;
890 * cap_syslog - Determine whether syslog function is permitted
891 * @type: Function requested
892 * @from_file: Whether this request came from an open file (i.e. /proc)
894 * Determine whether the current process is permitted to use a particular
895 * syslog function, returning 0 if permission is granted, -ve if not.
897 int cap_syslog(int type, bool from_file)
899 if (type != SYSLOG_ACTION_OPEN && from_file)
900 return 0;
901 if ((type != SYSLOG_ACTION_READ_ALL &&
902 type != SYSLOG_ACTION_SIZE_BUFFER) && !capable(CAP_SYS_ADMIN))
903 return -EPERM;
904 return 0;
908 * cap_vm_enough_memory - Determine whether a new virtual mapping is permitted
909 * @mm: The VM space in which the new mapping is to be made
910 * @pages: The size of the mapping
912 * Determine whether the allocation of a new virtual mapping by the current
913 * task is permitted, returning 0 if permission is granted, -ve if not.
915 int cap_vm_enough_memory(struct mm_struct *mm, long pages)
917 int cap_sys_admin = 0;
919 if (cap_capable(current, current_cred(), CAP_SYS_ADMIN,
920 SECURITY_CAP_NOAUDIT) == 0)
921 cap_sys_admin = 1;
922 return __vm_enough_memory(mm, pages, cap_sys_admin);
926 * cap_file_mmap - check if able to map given addr
927 * @file: unused
928 * @reqprot: unused
929 * @prot: unused
930 * @flags: unused
931 * @addr: address attempting to be mapped
932 * @addr_only: unused
934 * If the process is attempting to map memory below dac_mmap_min_addr they need
935 * CAP_SYS_RAWIO. The other parameters to this function are unused by the
936 * capability security module. Returns 0 if this mapping should be allowed
937 * -EPERM if not.
939 int cap_file_mmap(struct file *file, unsigned long reqprot,
940 unsigned long prot, unsigned long flags,
941 unsigned long addr, unsigned long addr_only)
943 int ret = 0;
945 if (addr < dac_mmap_min_addr) {
946 ret = cap_capable(current, current_cred(), CAP_SYS_RAWIO,
947 SECURITY_CAP_AUDIT);
948 /* set PF_SUPERPRIV if it turns out we allow the low mmap */
949 if (ret == 0)
950 current->flags |= PF_SUPERPRIV;
952 return ret;