2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
19 #include <linux/init.h>
20 #include <linux/module.h>
21 #include <linux/device.h>
22 #include <linux/ioport.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/spi/spi.h>
28 #include <linux/workqueue.h>
29 #include <linux/errno.h>
30 #include <linux/delay.h>
34 #include <asm/hardware.h>
35 #include <asm/delay.h>
38 #include <asm/arch/hardware.h>
39 #include <asm/arch/pxa-regs.h>
40 #include <asm/arch/pxa2xx_spi.h>
42 MODULE_AUTHOR("Stephen Street");
43 MODULE_DESCRIPTION("PXA2xx SSP SPI Contoller");
44 MODULE_LICENSE("GPL");
48 #define DMA_INT_MASK (DCSR_ENDINTR | DCSR_STARTINTR | DCSR_BUSERR)
49 #define RESET_DMA_CHANNEL (DCSR_NODESC | DMA_INT_MASK)
50 #define IS_DMA_ALIGNED(x) (((u32)(x)&0x07)==0)
52 /* for testing SSCR1 changes that require SSP restart, basically
53 * everything except the service and interrupt enables */
54 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_EBCEI | SSCR1_SCFR \
55 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 | SSCR1_RWOT | SSCR1_TRAIL | SSCR1_PINTE \
57 | SSCR1_STRF | SSCR1_EFWR |SSCR1_RFT \
58 | SSCR1_TFT | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 #define DEFINE_SSP_REG(reg, off) \
61 static inline u32 read_##reg(void *p) { return __raw_readl(p + (off)); } \
62 static inline void write_##reg(u32 v, void *p) { __raw_writel(v, p + (off)); }
64 DEFINE_SSP_REG(SSCR0
, 0x00)
65 DEFINE_SSP_REG(SSCR1
, 0x04)
66 DEFINE_SSP_REG(SSSR
, 0x08)
67 DEFINE_SSP_REG(SSITR
, 0x0c)
68 DEFINE_SSP_REG(SSDR
, 0x10)
69 DEFINE_SSP_REG(SSTO
, 0x28)
70 DEFINE_SSP_REG(SSPSP
, 0x2c)
72 #define START_STATE ((void*)0)
73 #define RUNNING_STATE ((void*)1)
74 #define DONE_STATE ((void*)2)
75 #define ERROR_STATE ((void*)-1)
77 #define QUEUE_RUNNING 0
78 #define QUEUE_STOPPED 1
81 /* Driver model hookup */
82 struct platform_device
*pdev
;
84 /* SPI framework hookup */
85 enum pxa_ssp_type ssp_type
;
86 struct spi_master
*master
;
89 struct pxa2xx_spi_master
*master_info
;
96 /* SSP register addresses */
106 /* Driver message queue */
107 struct workqueue_struct
*workqueue
;
108 struct work_struct pump_messages
;
110 struct list_head queue
;
114 /* Message Transfer pump */
115 struct tasklet_struct pump_transfers
;
117 /* Current message transfer state info */
118 struct spi_message
* cur_msg
;
119 struct spi_transfer
* cur_transfer
;
120 struct chip_data
*cur_chip
;
134 int (*write
)(struct driver_data
*drv_data
);
135 int (*read
)(struct driver_data
*drv_data
);
136 irqreturn_t (*transfer_handler
)(struct driver_data
*drv_data
);
137 void (*cs_control
)(u32 command
);
153 int (*write
)(struct driver_data
*drv_data
);
154 int (*read
)(struct driver_data
*drv_data
);
155 void (*cs_control
)(u32 command
);
158 static void pump_messages(struct work_struct
*work
);
160 static int flush(struct driver_data
*drv_data
)
162 unsigned long limit
= loops_per_jiffy
<< 1;
164 void *reg
= drv_data
->ioaddr
;
167 while (read_SSSR(reg
) & SSSR_RNE
) {
170 } while ((read_SSSR(reg
) & SSSR_BSY
) && limit
--);
171 write_SSSR(SSSR_ROR
, reg
);
176 static void null_cs_control(u32 command
)
180 static int null_writer(struct driver_data
*drv_data
)
182 void *reg
= drv_data
->ioaddr
;
183 u8 n_bytes
= drv_data
->n_bytes
;
185 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
186 || (drv_data
->tx
== drv_data
->tx_end
))
190 drv_data
->tx
+= n_bytes
;
195 static int null_reader(struct driver_data
*drv_data
)
197 void *reg
= drv_data
->ioaddr
;
198 u8 n_bytes
= drv_data
->n_bytes
;
200 while ((read_SSSR(reg
) & SSSR_RNE
)
201 && (drv_data
->rx
< drv_data
->rx_end
)) {
203 drv_data
->rx
+= n_bytes
;
206 return drv_data
->rx
== drv_data
->rx_end
;
209 static int u8_writer(struct driver_data
*drv_data
)
211 void *reg
= drv_data
->ioaddr
;
213 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
214 || (drv_data
->tx
== drv_data
->tx_end
))
217 write_SSDR(*(u8
*)(drv_data
->tx
), reg
);
223 static int u8_reader(struct driver_data
*drv_data
)
225 void *reg
= drv_data
->ioaddr
;
227 while ((read_SSSR(reg
) & SSSR_RNE
)
228 && (drv_data
->rx
< drv_data
->rx_end
)) {
229 *(u8
*)(drv_data
->rx
) = read_SSDR(reg
);
233 return drv_data
->rx
== drv_data
->rx_end
;
236 static int u16_writer(struct driver_data
*drv_data
)
238 void *reg
= drv_data
->ioaddr
;
240 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
241 || (drv_data
->tx
== drv_data
->tx_end
))
244 write_SSDR(*(u16
*)(drv_data
->tx
), reg
);
250 static int u16_reader(struct driver_data
*drv_data
)
252 void *reg
= drv_data
->ioaddr
;
254 while ((read_SSSR(reg
) & SSSR_RNE
)
255 && (drv_data
->rx
< drv_data
->rx_end
)) {
256 *(u16
*)(drv_data
->rx
) = read_SSDR(reg
);
260 return drv_data
->rx
== drv_data
->rx_end
;
263 static int u32_writer(struct driver_data
*drv_data
)
265 void *reg
= drv_data
->ioaddr
;
267 if (((read_SSSR(reg
) & 0x00000f00) == 0x00000f00)
268 || (drv_data
->tx
== drv_data
->tx_end
))
271 write_SSDR(*(u32
*)(drv_data
->tx
), reg
);
277 static int u32_reader(struct driver_data
*drv_data
)
279 void *reg
= drv_data
->ioaddr
;
281 while ((read_SSSR(reg
) & SSSR_RNE
)
282 && (drv_data
->rx
< drv_data
->rx_end
)) {
283 *(u32
*)(drv_data
->rx
) = read_SSDR(reg
);
287 return drv_data
->rx
== drv_data
->rx_end
;
290 static void *next_transfer(struct driver_data
*drv_data
)
292 struct spi_message
*msg
= drv_data
->cur_msg
;
293 struct spi_transfer
*trans
= drv_data
->cur_transfer
;
295 /* Move to next transfer */
296 if (trans
->transfer_list
.next
!= &msg
->transfers
) {
297 drv_data
->cur_transfer
=
298 list_entry(trans
->transfer_list
.next
,
301 return RUNNING_STATE
;
306 static int map_dma_buffers(struct driver_data
*drv_data
)
308 struct spi_message
*msg
= drv_data
->cur_msg
;
309 struct device
*dev
= &msg
->spi
->dev
;
311 if (!drv_data
->cur_chip
->enable_dma
)
314 if (msg
->is_dma_mapped
)
315 return drv_data
->rx_dma
&& drv_data
->tx_dma
;
317 if (!IS_DMA_ALIGNED(drv_data
->rx
) || !IS_DMA_ALIGNED(drv_data
->tx
))
320 /* Modify setup if rx buffer is null */
321 if (drv_data
->rx
== NULL
) {
322 *drv_data
->null_dma_buf
= 0;
323 drv_data
->rx
= drv_data
->null_dma_buf
;
324 drv_data
->rx_map_len
= 4;
326 drv_data
->rx_map_len
= drv_data
->len
;
329 /* Modify setup if tx buffer is null */
330 if (drv_data
->tx
== NULL
) {
331 *drv_data
->null_dma_buf
= 0;
332 drv_data
->tx
= drv_data
->null_dma_buf
;
333 drv_data
->tx_map_len
= 4;
335 drv_data
->tx_map_len
= drv_data
->len
;
337 /* Stream map the rx buffer */
338 drv_data
->rx_dma
= dma_map_single(dev
, drv_data
->rx
,
339 drv_data
->rx_map_len
,
341 if (dma_mapping_error(drv_data
->rx_dma
))
344 /* Stream map the tx buffer */
345 drv_data
->tx_dma
= dma_map_single(dev
, drv_data
->tx
,
346 drv_data
->tx_map_len
,
349 if (dma_mapping_error(drv_data
->tx_dma
)) {
350 dma_unmap_single(dev
, drv_data
->rx_dma
,
351 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
358 static void unmap_dma_buffers(struct driver_data
*drv_data
)
362 if (!drv_data
->dma_mapped
)
365 if (!drv_data
->cur_msg
->is_dma_mapped
) {
366 dev
= &drv_data
->cur_msg
->spi
->dev
;
367 dma_unmap_single(dev
, drv_data
->rx_dma
,
368 drv_data
->rx_map_len
, DMA_FROM_DEVICE
);
369 dma_unmap_single(dev
, drv_data
->tx_dma
,
370 drv_data
->tx_map_len
, DMA_TO_DEVICE
);
373 drv_data
->dma_mapped
= 0;
376 /* caller already set message->status; dma and pio irqs are blocked */
377 static void giveback(struct driver_data
*drv_data
)
379 struct spi_transfer
* last_transfer
;
381 struct spi_message
*msg
;
383 spin_lock_irqsave(&drv_data
->lock
, flags
);
384 msg
= drv_data
->cur_msg
;
385 drv_data
->cur_msg
= NULL
;
386 drv_data
->cur_transfer
= NULL
;
387 drv_data
->cur_chip
= NULL
;
388 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
389 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
391 last_transfer
= list_entry(msg
->transfers
.prev
,
395 if (!last_transfer
->cs_change
)
396 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
400 msg
->complete(msg
->context
);
403 static int wait_ssp_rx_stall(void *ioaddr
)
405 unsigned long limit
= loops_per_jiffy
<< 1;
407 while ((read_SSSR(ioaddr
) & SSSR_BSY
) && limit
--)
413 static int wait_dma_channel_stop(int channel
)
415 unsigned long limit
= loops_per_jiffy
<< 1;
417 while (!(DCSR(channel
) & DCSR_STOPSTATE
) && limit
--)
423 void dma_error_stop(struct driver_data
*drv_data
, const char *msg
)
425 void *reg
= drv_data
->ioaddr
;
428 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
429 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
430 write_SSSR(drv_data
->clear_sr
, reg
);
431 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
432 if (drv_data
->ssp_type
!= PXA25x_SSP
)
435 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
437 unmap_dma_buffers(drv_data
);
439 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
441 drv_data
->cur_msg
->state
= ERROR_STATE
;
442 tasklet_schedule(&drv_data
->pump_transfers
);
445 static void dma_transfer_complete(struct driver_data
*drv_data
)
447 void *reg
= drv_data
->ioaddr
;
448 struct spi_message
*msg
= drv_data
->cur_msg
;
450 /* Clear and disable interrupts on SSP and DMA channels*/
451 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->dma_cr1
, reg
);
452 write_SSSR(drv_data
->clear_sr
, reg
);
453 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
454 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
456 if (wait_dma_channel_stop(drv_data
->rx_channel
) == 0)
457 dev_err(&drv_data
->pdev
->dev
,
458 "dma_handler: dma rx channel stop failed\n");
460 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
461 dev_err(&drv_data
->pdev
->dev
,
462 "dma_transfer: ssp rx stall failed\n");
464 unmap_dma_buffers(drv_data
);
466 /* update the buffer pointer for the amount completed in dma */
467 drv_data
->rx
+= drv_data
->len
-
468 (DCMD(drv_data
->rx_channel
) & DCMD_LENGTH
);
470 /* read trailing data from fifo, it does not matter how many
471 * bytes are in the fifo just read until buffer is full
472 * or fifo is empty, which ever occurs first */
473 drv_data
->read(drv_data
);
475 /* return count of what was actually read */
476 msg
->actual_length
+= drv_data
->len
-
477 (drv_data
->rx_end
- drv_data
->rx
);
479 /* Release chip select if requested, transfer delays are
480 * handled in pump_transfers */
481 if (drv_data
->cs_change
)
482 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
484 /* Move to next transfer */
485 msg
->state
= next_transfer(drv_data
);
487 /* Schedule transfer tasklet */
488 tasklet_schedule(&drv_data
->pump_transfers
);
491 static void dma_handler(int channel
, void *data
)
493 struct driver_data
*drv_data
= data
;
494 u32 irq_status
= DCSR(channel
) & DMA_INT_MASK
;
496 if (irq_status
& DCSR_BUSERR
) {
498 if (channel
== drv_data
->tx_channel
)
499 dma_error_stop(drv_data
,
501 "bad bus address on tx channel");
503 dma_error_stop(drv_data
,
505 "bad bus address on rx channel");
509 /* PXA255x_SSP has no timeout interrupt, wait for tailing bytes */
510 if ((channel
== drv_data
->tx_channel
)
511 && (irq_status
& DCSR_ENDINTR
)
512 && (drv_data
->ssp_type
== PXA25x_SSP
)) {
514 /* Wait for rx to stall */
515 if (wait_ssp_rx_stall(drv_data
->ioaddr
) == 0)
516 dev_err(&drv_data
->pdev
->dev
,
517 "dma_handler: ssp rx stall failed\n");
519 /* finish this transfer, start the next */
520 dma_transfer_complete(drv_data
);
524 static irqreturn_t
dma_transfer(struct driver_data
*drv_data
)
527 void *reg
= drv_data
->ioaddr
;
529 irq_status
= read_SSSR(reg
) & drv_data
->mask_sr
;
530 if (irq_status
& SSSR_ROR
) {
531 dma_error_stop(drv_data
, "dma_transfer: fifo overrun");
535 /* Check for false positive timeout */
536 if ((irq_status
& SSSR_TINT
)
537 && (DCSR(drv_data
->tx_channel
) & DCSR_RUN
)) {
538 write_SSSR(SSSR_TINT
, reg
);
542 if (irq_status
& SSSR_TINT
|| drv_data
->rx
== drv_data
->rx_end
) {
544 /* Clear and disable timeout interrupt, do the rest in
545 * dma_transfer_complete */
546 if (drv_data
->ssp_type
!= PXA25x_SSP
)
549 /* finish this transfer, start the next */
550 dma_transfer_complete(drv_data
);
555 /* Opps problem detected */
559 static void int_error_stop(struct driver_data
*drv_data
, const char* msg
)
561 void *reg
= drv_data
->ioaddr
;
563 /* Stop and reset SSP */
564 write_SSSR(drv_data
->clear_sr
, reg
);
565 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
566 if (drv_data
->ssp_type
!= PXA25x_SSP
)
569 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
571 dev_err(&drv_data
->pdev
->dev
, "%s\n", msg
);
573 drv_data
->cur_msg
->state
= ERROR_STATE
;
574 tasklet_schedule(&drv_data
->pump_transfers
);
577 static void int_transfer_complete(struct driver_data
*drv_data
)
579 void *reg
= drv_data
->ioaddr
;
582 write_SSSR(drv_data
->clear_sr
, reg
);
583 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
584 if (drv_data
->ssp_type
!= PXA25x_SSP
)
587 /* Update total byte transfered return count actual bytes read */
588 drv_data
->cur_msg
->actual_length
+= drv_data
->len
-
589 (drv_data
->rx_end
- drv_data
->rx
);
591 /* Release chip select if requested, transfer delays are
592 * handled in pump_transfers */
593 if (drv_data
->cs_change
)
594 drv_data
->cs_control(PXA2XX_CS_DEASSERT
);
596 /* Move to next transfer */
597 drv_data
->cur_msg
->state
= next_transfer(drv_data
);
599 /* Schedule transfer tasklet */
600 tasklet_schedule(&drv_data
->pump_transfers
);
603 static irqreturn_t
interrupt_transfer(struct driver_data
*drv_data
)
605 void *reg
= drv_data
->ioaddr
;
607 u32 irq_mask
= (read_SSCR1(reg
) & SSCR1_TIE
) ?
608 drv_data
->mask_sr
: drv_data
->mask_sr
& ~SSSR_TFS
;
610 u32 irq_status
= read_SSSR(reg
) & irq_mask
;
612 if (irq_status
& SSSR_ROR
) {
613 int_error_stop(drv_data
, "interrupt_transfer: fifo overrun");
617 if (irq_status
& SSSR_TINT
) {
618 write_SSSR(SSSR_TINT
, reg
);
619 if (drv_data
->read(drv_data
)) {
620 int_transfer_complete(drv_data
);
625 /* Drain rx fifo, Fill tx fifo and prevent overruns */
627 if (drv_data
->read(drv_data
)) {
628 int_transfer_complete(drv_data
);
631 } while (drv_data
->write(drv_data
));
633 if (drv_data
->read(drv_data
)) {
634 int_transfer_complete(drv_data
);
638 if (drv_data
->tx
== drv_data
->tx_end
) {
639 write_SSCR1(read_SSCR1(reg
) & ~SSCR1_TIE
, reg
);
640 /* PXA25x_SSP has no timeout, read trailing bytes */
641 if (drv_data
->ssp_type
== PXA25x_SSP
) {
642 if (!wait_ssp_rx_stall(reg
))
644 int_error_stop(drv_data
, "interrupt_transfer: "
648 if (!drv_data
->read(drv_data
))
650 int_error_stop(drv_data
,
651 "interrupt_transfer: "
652 "trailing byte read failed");
655 int_transfer_complete(drv_data
);
659 /* We did something */
663 static irqreturn_t
ssp_int(int irq
, void *dev_id
)
665 struct driver_data
*drv_data
= dev_id
;
666 void *reg
= drv_data
->ioaddr
;
668 if (!drv_data
->cur_msg
) {
670 write_SSCR0(read_SSCR0(reg
) & ~SSCR0_SSE
, reg
);
671 write_SSCR1(read_SSCR1(reg
) & ~drv_data
->int_cr1
, reg
);
672 if (drv_data
->ssp_type
!= PXA25x_SSP
)
674 write_SSSR(drv_data
->clear_sr
, reg
);
676 dev_err(&drv_data
->pdev
->dev
, "bad message state "
677 "in interrupt handler\n");
683 return drv_data
->transfer_handler(drv_data
);
686 int set_dma_burst_and_threshold(struct chip_data
*chip
, struct spi_device
*spi
,
687 u8 bits_per_word
, u32
*burst_code
,
690 struct pxa2xx_spi_chip
*chip_info
=
691 (struct pxa2xx_spi_chip
*)spi
->controller_data
;
698 /* Set the threshold (in registers) to equal the same amount of data
699 * as represented by burst size (in bytes). The computation below
700 * is (burst_size rounded up to nearest 8 byte, word or long word)
701 * divided by (bytes/register); the tx threshold is the inverse of
702 * the rx, so that there will always be enough data in the rx fifo
703 * to satisfy a burst, and there will always be enough space in the
704 * tx fifo to accept a burst (a tx burst will overwrite the fifo if
705 * there is not enough space), there must always remain enough empty
706 * space in the rx fifo for any data loaded to the tx fifo.
707 * Whenever burst_size (in bytes) equals bits/word, the fifo threshold
708 * will be 8, or half the fifo;
709 * The threshold can only be set to 2, 4 or 8, but not 16, because
710 * to burst 16 to the tx fifo, the fifo would have to be empty;
711 * however, the minimum fifo trigger level is 1, and the tx will
712 * request service when the fifo is at this level, with only 15 spaces.
715 /* find bytes/word */
716 if (bits_per_word
<= 8)
718 else if (bits_per_word
<= 16)
723 /* use struct pxa2xx_spi_chip->dma_burst_size if available */
725 req_burst_size
= chip_info
->dma_burst_size
;
727 switch (chip
->dma_burst_size
) {
729 /* if the default burst size is not set,
731 chip
->dma_burst_size
= DCMD_BURST8
;
743 if (req_burst_size
<= 8) {
744 *burst_code
= DCMD_BURST8
;
746 } else if (req_burst_size
<= 16) {
747 if (bytes_per_word
== 1) {
748 /* don't burst more than 1/2 the fifo */
749 *burst_code
= DCMD_BURST8
;
753 *burst_code
= DCMD_BURST16
;
757 if (bytes_per_word
== 1) {
758 /* don't burst more than 1/2 the fifo */
759 *burst_code
= DCMD_BURST8
;
762 } else if (bytes_per_word
== 2) {
763 /* don't burst more than 1/2 the fifo */
764 *burst_code
= DCMD_BURST16
;
768 *burst_code
= DCMD_BURST32
;
773 thresh_words
= burst_bytes
/ bytes_per_word
;
775 /* thresh_words will be between 2 and 8 */
776 *threshold
= (SSCR1_RxTresh(thresh_words
) & SSCR1_RFT
)
777 | (SSCR1_TxTresh(16-thresh_words
) & SSCR1_TFT
);
782 static void pump_transfers(unsigned long data
)
784 struct driver_data
*drv_data
= (struct driver_data
*)data
;
785 struct spi_message
*message
= NULL
;
786 struct spi_transfer
*transfer
= NULL
;
787 struct spi_transfer
*previous
= NULL
;
788 struct chip_data
*chip
= NULL
;
789 void *reg
= drv_data
->ioaddr
;
795 u32 dma_thresh
= drv_data
->cur_chip
->dma_threshold
;
796 u32 dma_burst
= drv_data
->cur_chip
->dma_burst_size
;
798 /* Get current state information */
799 message
= drv_data
->cur_msg
;
800 transfer
= drv_data
->cur_transfer
;
801 chip
= drv_data
->cur_chip
;
803 /* Handle for abort */
804 if (message
->state
== ERROR_STATE
) {
805 message
->status
= -EIO
;
810 /* Handle end of message */
811 if (message
->state
== DONE_STATE
) {
817 /* Delay if requested at end of transfer*/
818 if (message
->state
== RUNNING_STATE
) {
819 previous
= list_entry(transfer
->transfer_list
.prev
,
822 if (previous
->delay_usecs
)
823 udelay(previous
->delay_usecs
);
826 /* Check transfer length */
827 if (transfer
->len
> 8191)
829 dev_warn(&drv_data
->pdev
->dev
, "pump_transfers: transfer "
830 "length greater than 8191\n");
831 message
->status
= -EINVAL
;
836 /* Setup the transfer state based on the type of transfer */
837 if (flush(drv_data
) == 0) {
838 dev_err(&drv_data
->pdev
->dev
, "pump_transfers: flush failed\n");
839 message
->status
= -EIO
;
843 drv_data
->n_bytes
= chip
->n_bytes
;
844 drv_data
->dma_width
= chip
->dma_width
;
845 drv_data
->cs_control
= chip
->cs_control
;
846 drv_data
->tx
= (void *)transfer
->tx_buf
;
847 drv_data
->tx_end
= drv_data
->tx
+ transfer
->len
;
848 drv_data
->rx
= transfer
->rx_buf
;
849 drv_data
->rx_end
= drv_data
->rx
+ transfer
->len
;
850 drv_data
->rx_dma
= transfer
->rx_dma
;
851 drv_data
->tx_dma
= transfer
->tx_dma
;
852 drv_data
->len
= transfer
->len
& DCMD_LENGTH
;
853 drv_data
->write
= drv_data
->tx
? chip
->write
: null_writer
;
854 drv_data
->read
= drv_data
->rx
? chip
->read
: null_reader
;
855 drv_data
->cs_change
= transfer
->cs_change
;
857 /* Change speed and bit per word on a per transfer */
859 if (transfer
->speed_hz
|| transfer
->bits_per_word
) {
861 bits
= chip
->bits_per_word
;
862 speed
= chip
->speed_hz
;
864 if (transfer
->speed_hz
)
865 speed
= transfer
->speed_hz
;
867 if (transfer
->bits_per_word
)
868 bits
= transfer
->bits_per_word
;
870 if (reg
== SSP1_VIRT
)
871 clk_div
= SSP1_SerClkDiv(speed
);
872 else if (reg
== SSP2_VIRT
)
873 clk_div
= SSP2_SerClkDiv(speed
);
874 else if (reg
== SSP3_VIRT
)
875 clk_div
= SSP3_SerClkDiv(speed
);
878 drv_data
->n_bytes
= 1;
879 drv_data
->dma_width
= DCMD_WIDTH1
;
880 drv_data
->read
= drv_data
->read
!= null_reader
?
881 u8_reader
: null_reader
;
882 drv_data
->write
= drv_data
->write
!= null_writer
?
883 u8_writer
: null_writer
;
884 } else if (bits
<= 16) {
885 drv_data
->n_bytes
= 2;
886 drv_data
->dma_width
= DCMD_WIDTH2
;
887 drv_data
->read
= drv_data
->read
!= null_reader
?
888 u16_reader
: null_reader
;
889 drv_data
->write
= drv_data
->write
!= null_writer
?
890 u16_writer
: null_writer
;
891 } else if (bits
<= 32) {
892 drv_data
->n_bytes
= 4;
893 drv_data
->dma_width
= DCMD_WIDTH4
;
894 drv_data
->read
= drv_data
->read
!= null_reader
?
895 u32_reader
: null_reader
;
896 drv_data
->write
= drv_data
->write
!= null_writer
?
897 u32_writer
: null_writer
;
899 /* if bits/word is changed in dma mode, then must check the
900 * thresholds and burst also */
901 if (chip
->enable_dma
) {
902 if (set_dma_burst_and_threshold(chip
, message
->spi
,
905 if (printk_ratelimit())
906 dev_warn(&message
->spi
->dev
,
908 "DMA burst size reduced to "
909 "match bits_per_word\n");
914 | SSCR0_DataSize(bits
> 16 ? bits
- 16 : bits
)
916 | (bits
> 16 ? SSCR0_EDSS
: 0);
919 message
->state
= RUNNING_STATE
;
921 /* Try to map dma buffer and do a dma transfer if successful */
922 if ((drv_data
->dma_mapped
= map_dma_buffers(drv_data
))) {
924 /* Ensure we have the correct interrupt handler */
925 drv_data
->transfer_handler
= dma_transfer
;
927 /* Setup rx DMA Channel */
928 DCSR(drv_data
->rx_channel
) = RESET_DMA_CHANNEL
;
929 DSADR(drv_data
->rx_channel
) = drv_data
->ssdr_physical
;
930 DTADR(drv_data
->rx_channel
) = drv_data
->rx_dma
;
931 if (drv_data
->rx
== drv_data
->null_dma_buf
)
932 /* No target address increment */
933 DCMD(drv_data
->rx_channel
) = DCMD_FLOWSRC
934 | drv_data
->dma_width
938 DCMD(drv_data
->rx_channel
) = DCMD_INCTRGADDR
940 | drv_data
->dma_width
944 /* Setup tx DMA Channel */
945 DCSR(drv_data
->tx_channel
) = RESET_DMA_CHANNEL
;
946 DSADR(drv_data
->tx_channel
) = drv_data
->tx_dma
;
947 DTADR(drv_data
->tx_channel
) = drv_data
->ssdr_physical
;
948 if (drv_data
->tx
== drv_data
->null_dma_buf
)
949 /* No source address increment */
950 DCMD(drv_data
->tx_channel
) = DCMD_FLOWTRG
951 | drv_data
->dma_width
955 DCMD(drv_data
->tx_channel
) = DCMD_INCSRCADDR
957 | drv_data
->dma_width
961 /* Enable dma end irqs on SSP to detect end of transfer */
962 if (drv_data
->ssp_type
== PXA25x_SSP
)
963 DCMD(drv_data
->tx_channel
) |= DCMD_ENDIRQEN
;
965 /* Fix me, need to handle cs polarity */
966 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
968 /* Clear status and start DMA engine */
969 cr1
= chip
->cr1
| dma_thresh
| drv_data
->dma_cr1
;
970 write_SSSR(drv_data
->clear_sr
, reg
);
971 DCSR(drv_data
->rx_channel
) |= DCSR_RUN
;
972 DCSR(drv_data
->tx_channel
) |= DCSR_RUN
;
974 /* Ensure we have the correct interrupt handler */
975 drv_data
->transfer_handler
= interrupt_transfer
;
977 /* Fix me, need to handle cs polarity */
978 drv_data
->cs_control(PXA2XX_CS_ASSERT
);
981 cr1
= chip
->cr1
| chip
->threshold
| drv_data
->int_cr1
;
982 write_SSSR(drv_data
->clear_sr
, reg
);
985 /* see if we need to reload the config registers */
986 if ((read_SSCR0(reg
) != cr0
)
987 || (read_SSCR1(reg
) & SSCR1_CHANGE_MASK
) !=
988 (cr1
& SSCR1_CHANGE_MASK
)) {
990 write_SSCR0(cr0
& ~SSCR0_SSE
, reg
);
991 if (drv_data
->ssp_type
!= PXA25x_SSP
)
992 write_SSTO(chip
->timeout
, reg
);
993 write_SSCR1(cr1
, reg
);
994 write_SSCR0(cr0
, reg
);
996 if (drv_data
->ssp_type
!= PXA25x_SSP
)
997 write_SSTO(chip
->timeout
, reg
);
998 write_SSCR1(cr1
, reg
);
1002 static void pump_messages(struct work_struct
*work
)
1004 struct driver_data
*drv_data
=
1005 container_of(work
, struct driver_data
, pump_messages
);
1006 unsigned long flags
;
1008 /* Lock queue and check for queue work */
1009 spin_lock_irqsave(&drv_data
->lock
, flags
);
1010 if (list_empty(&drv_data
->queue
) || drv_data
->run
== QUEUE_STOPPED
) {
1012 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1016 /* Make sure we are not already running a message */
1017 if (drv_data
->cur_msg
) {
1018 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1022 /* Extract head of queue */
1023 drv_data
->cur_msg
= list_entry(drv_data
->queue
.next
,
1024 struct spi_message
, queue
);
1025 list_del_init(&drv_data
->cur_msg
->queue
);
1027 /* Initial message state*/
1028 drv_data
->cur_msg
->state
= START_STATE
;
1029 drv_data
->cur_transfer
= list_entry(drv_data
->cur_msg
->transfers
.next
,
1030 struct spi_transfer
,
1033 /* prepare to setup the SSP, in pump_transfers, using the per
1034 * chip configuration */
1035 drv_data
->cur_chip
= spi_get_ctldata(drv_data
->cur_msg
->spi
);
1037 /* Mark as busy and launch transfers */
1038 tasklet_schedule(&drv_data
->pump_transfers
);
1041 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1044 static int transfer(struct spi_device
*spi
, struct spi_message
*msg
)
1046 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1047 unsigned long flags
;
1049 spin_lock_irqsave(&drv_data
->lock
, flags
);
1051 if (drv_data
->run
== QUEUE_STOPPED
) {
1052 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1056 msg
->actual_length
= 0;
1057 msg
->status
= -EINPROGRESS
;
1058 msg
->state
= START_STATE
;
1060 list_add_tail(&msg
->queue
, &drv_data
->queue
);
1062 if (drv_data
->run
== QUEUE_RUNNING
&& !drv_data
->busy
)
1063 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1065 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1070 static int setup(struct spi_device
*spi
)
1072 struct pxa2xx_spi_chip
*chip_info
= NULL
;
1073 struct chip_data
*chip
;
1074 struct driver_data
*drv_data
= spi_master_get_devdata(spi
->master
);
1075 unsigned int clk_div
;
1077 if (!spi
->bits_per_word
)
1078 spi
->bits_per_word
= 8;
1080 if (drv_data
->ssp_type
!= PXA25x_SSP
1081 && (spi
->bits_per_word
< 4 || spi
->bits_per_word
> 32)) {
1082 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1083 "b/w not 4-32 for type non-PXA25x_SSP\n",
1084 drv_data
->ssp_type
, spi
->bits_per_word
);
1087 else if (drv_data
->ssp_type
== PXA25x_SSP
1088 && (spi
->bits_per_word
< 4
1089 || spi
->bits_per_word
> 16)) {
1090 dev_err(&spi
->dev
, "failed setup: ssp_type=%d, bits/wrd=%d "
1091 "b/w not 4-16 for type PXA25x_SSP\n",
1092 drv_data
->ssp_type
, spi
->bits_per_word
);
1096 /* Only alloc on first setup */
1097 chip
= spi_get_ctldata(spi
);
1099 chip
= kzalloc(sizeof(struct chip_data
), GFP_KERNEL
);
1102 "failed setup: can't allocate chip data\n");
1106 chip
->cs_control
= null_cs_control
;
1107 chip
->enable_dma
= 0;
1108 chip
->timeout
= 1000;
1109 chip
->threshold
= SSCR1_RxTresh(1) | SSCR1_TxTresh(1);
1110 chip
->dma_burst_size
= drv_data
->master_info
->enable_dma
?
1114 /* protocol drivers may change the chip settings, so...
1115 * if chip_info exists, use it */
1116 chip_info
= spi
->controller_data
;
1118 /* chip_info isn't always needed */
1121 if (chip_info
->cs_control
)
1122 chip
->cs_control
= chip_info
->cs_control
;
1124 chip
->timeout
= chip_info
->timeout
;
1126 chip
->threshold
= (SSCR1_RxTresh(chip_info
->rx_threshold
) &
1128 (SSCR1_TxTresh(chip_info
->tx_threshold
) &
1131 chip
->enable_dma
= chip_info
->dma_burst_size
!= 0
1132 && drv_data
->master_info
->enable_dma
;
1133 chip
->dma_threshold
= 0;
1135 if (chip_info
->enable_loopback
)
1136 chip
->cr1
= SSCR1_LBM
;
1139 /* set dma burst and threshold outside of chip_info path so that if
1140 * chip_info goes away after setting chip->enable_dma, the
1141 * burst and threshold can still respond to changes in bits_per_word */
1142 if (chip
->enable_dma
) {
1143 /* set up legal burst and threshold for dma */
1144 if (set_dma_burst_and_threshold(chip
, spi
, spi
->bits_per_word
,
1145 &chip
->dma_burst_size
,
1146 &chip
->dma_threshold
)) {
1147 dev_warn(&spi
->dev
, "in setup: DMA burst size reduced "
1148 "to match bits_per_word\n");
1152 if (drv_data
->ioaddr
== SSP1_VIRT
)
1153 clk_div
= SSP1_SerClkDiv(spi
->max_speed_hz
);
1154 else if (drv_data
->ioaddr
== SSP2_VIRT
)
1155 clk_div
= SSP2_SerClkDiv(spi
->max_speed_hz
);
1156 else if (drv_data
->ioaddr
== SSP3_VIRT
)
1157 clk_div
= SSP3_SerClkDiv(spi
->max_speed_hz
);
1160 dev_err(&spi
->dev
, "failed setup: unknown IO address=0x%p\n",
1164 chip
->speed_hz
= spi
->max_speed_hz
;
1168 | SSCR0_DataSize(spi
->bits_per_word
> 16 ?
1169 spi
->bits_per_word
- 16 : spi
->bits_per_word
)
1171 | (spi
->bits_per_word
> 16 ? SSCR0_EDSS
: 0);
1172 chip
->cr1
&= ~(SSCR1_SPO
| SSCR1_SPH
);
1173 chip
->cr1
|= (((spi
->mode
& SPI_CPHA
) != 0) ? SSCR1_SPH
: 0)
1174 | (((spi
->mode
& SPI_CPOL
) != 0) ? SSCR1_SPO
: 0);
1176 /* NOTE: PXA25x_SSP _could_ use external clocking ... */
1177 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1178 dev_dbg(&spi
->dev
, "%d bits/word, %d Hz, mode %d\n",
1181 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1184 dev_dbg(&spi
->dev
, "%d bits/word, %d Hz, mode %d\n",
1187 / (1 + ((chip
->cr0
& SSCR0_SCR
) >> 8)),
1190 if (spi
->bits_per_word
<= 8) {
1192 chip
->dma_width
= DCMD_WIDTH1
;
1193 chip
->read
= u8_reader
;
1194 chip
->write
= u8_writer
;
1195 } else if (spi
->bits_per_word
<= 16) {
1197 chip
->dma_width
= DCMD_WIDTH2
;
1198 chip
->read
= u16_reader
;
1199 chip
->write
= u16_writer
;
1200 } else if (spi
->bits_per_word
<= 32) {
1201 chip
->cr0
|= SSCR0_EDSS
;
1203 chip
->dma_width
= DCMD_WIDTH4
;
1204 chip
->read
= u32_reader
;
1205 chip
->write
= u32_writer
;
1207 dev_err(&spi
->dev
, "invalid wordsize\n");
1210 chip
->bits_per_word
= spi
->bits_per_word
;
1212 spi_set_ctldata(spi
, chip
);
1217 static void cleanup(const struct spi_device
*spi
)
1219 struct chip_data
*chip
= spi_get_ctldata((struct spi_device
*)spi
);
1224 static int init_queue(struct driver_data
*drv_data
)
1226 INIT_LIST_HEAD(&drv_data
->queue
);
1227 spin_lock_init(&drv_data
->lock
);
1229 drv_data
->run
= QUEUE_STOPPED
;
1232 tasklet_init(&drv_data
->pump_transfers
,
1233 pump_transfers
, (unsigned long)drv_data
);
1235 INIT_WORK(&drv_data
->pump_messages
, pump_messages
);
1236 drv_data
->workqueue
= create_singlethread_workqueue(
1237 drv_data
->master
->dev
.parent
->bus_id
);
1238 if (drv_data
->workqueue
== NULL
)
1244 static int start_queue(struct driver_data
*drv_data
)
1246 unsigned long flags
;
1248 spin_lock_irqsave(&drv_data
->lock
, flags
);
1250 if (drv_data
->run
== QUEUE_RUNNING
|| drv_data
->busy
) {
1251 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1255 drv_data
->run
= QUEUE_RUNNING
;
1256 drv_data
->cur_msg
= NULL
;
1257 drv_data
->cur_transfer
= NULL
;
1258 drv_data
->cur_chip
= NULL
;
1259 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1261 queue_work(drv_data
->workqueue
, &drv_data
->pump_messages
);
1266 static int stop_queue(struct driver_data
*drv_data
)
1268 unsigned long flags
;
1269 unsigned limit
= 500;
1272 spin_lock_irqsave(&drv_data
->lock
, flags
);
1274 /* This is a bit lame, but is optimized for the common execution path.
1275 * A wait_queue on the drv_data->busy could be used, but then the common
1276 * execution path (pump_messages) would be required to call wake_up or
1277 * friends on every SPI message. Do this instead */
1278 drv_data
->run
= QUEUE_STOPPED
;
1279 while (!list_empty(&drv_data
->queue
) && drv_data
->busy
&& limit
--) {
1280 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1282 spin_lock_irqsave(&drv_data
->lock
, flags
);
1285 if (!list_empty(&drv_data
->queue
) || drv_data
->busy
)
1288 spin_unlock_irqrestore(&drv_data
->lock
, flags
);
1293 static int destroy_queue(struct driver_data
*drv_data
)
1297 status
= stop_queue(drv_data
);
1298 /* we are unloading the module or failing to load (only two calls
1299 * to this routine), and neither call can handle a return value.
1300 * However, destroy_workqueue calls flush_workqueue, and that will
1301 * block until all work is done. If the reason that stop_queue
1302 * timed out is that the work will never finish, then it does no
1303 * good to call destroy_workqueue, so return anyway. */
1307 destroy_workqueue(drv_data
->workqueue
);
1312 static int pxa2xx_spi_probe(struct platform_device
*pdev
)
1314 struct device
*dev
= &pdev
->dev
;
1315 struct pxa2xx_spi_master
*platform_info
;
1316 struct spi_master
*master
;
1317 struct driver_data
*drv_data
= 0;
1318 struct resource
*memory_resource
;
1322 platform_info
= dev
->platform_data
;
1324 if (platform_info
->ssp_type
== SSP_UNDEFINED
) {
1325 dev_err(&pdev
->dev
, "undefined SSP\n");
1329 /* Allocate master with space for drv_data and null dma buffer */
1330 master
= spi_alloc_master(dev
, sizeof(struct driver_data
) + 16);
1332 dev_err(&pdev
->dev
, "can not alloc spi_master\n");
1335 drv_data
= spi_master_get_devdata(master
);
1336 drv_data
->master
= master
;
1337 drv_data
->master_info
= platform_info
;
1338 drv_data
->pdev
= pdev
;
1340 master
->bus_num
= pdev
->id
;
1341 master
->num_chipselect
= platform_info
->num_chipselect
;
1342 master
->cleanup
= cleanup
;
1343 master
->setup
= setup
;
1344 master
->transfer
= transfer
;
1346 drv_data
->ssp_type
= platform_info
->ssp_type
;
1347 drv_data
->null_dma_buf
= (u32
*)ALIGN((u32
)(drv_data
+
1348 sizeof(struct driver_data
)), 8);
1350 /* Setup register addresses */
1351 memory_resource
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1352 if (!memory_resource
) {
1353 dev_err(&pdev
->dev
, "memory resources not defined\n");
1355 goto out_error_master_alloc
;
1358 drv_data
->ioaddr
= (void *)io_p2v((unsigned long)(memory_resource
->start
));
1359 drv_data
->ssdr_physical
= memory_resource
->start
+ 0x00000010;
1360 if (platform_info
->ssp_type
== PXA25x_SSP
) {
1361 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
;
1362 drv_data
->dma_cr1
= 0;
1363 drv_data
->clear_sr
= SSSR_ROR
;
1364 drv_data
->mask_sr
= SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1366 drv_data
->int_cr1
= SSCR1_TIE
| SSCR1_RIE
| SSCR1_TINTE
;
1367 drv_data
->dma_cr1
= SSCR1_TSRE
| SSCR1_RSRE
| SSCR1_TINTE
;
1368 drv_data
->clear_sr
= SSSR_ROR
| SSSR_TINT
;
1369 drv_data
->mask_sr
= SSSR_TINT
| SSSR_RFS
| SSSR_TFS
| SSSR_ROR
;
1373 irq
= platform_get_irq(pdev
, 0);
1375 dev_err(&pdev
->dev
, "irq resource not defined\n");
1377 goto out_error_master_alloc
;
1380 status
= request_irq(irq
, ssp_int
, 0, dev
->bus_id
, drv_data
);
1382 dev_err(&pdev
->dev
, "can not get IRQ\n");
1383 goto out_error_master_alloc
;
1386 /* Setup DMA if requested */
1387 drv_data
->tx_channel
= -1;
1388 drv_data
->rx_channel
= -1;
1389 if (platform_info
->enable_dma
) {
1391 /* Get two DMA channels (rx and tx) */
1392 drv_data
->rx_channel
= pxa_request_dma("pxa2xx_spi_ssp_rx",
1396 if (drv_data
->rx_channel
< 0) {
1397 dev_err(dev
, "problem (%d) requesting rx channel\n",
1398 drv_data
->rx_channel
);
1400 goto out_error_irq_alloc
;
1402 drv_data
->tx_channel
= pxa_request_dma("pxa2xx_spi_ssp_tx",
1406 if (drv_data
->tx_channel
< 0) {
1407 dev_err(dev
, "problem (%d) requesting tx channel\n",
1408 drv_data
->tx_channel
);
1410 goto out_error_dma_alloc
;
1413 if (drv_data
->ioaddr
== SSP1_VIRT
) {
1414 DRCMRRXSSDR
= DRCMR_MAPVLD
1415 | drv_data
->rx_channel
;
1416 DRCMRTXSSDR
= DRCMR_MAPVLD
1417 | drv_data
->tx_channel
;
1418 } else if (drv_data
->ioaddr
== SSP2_VIRT
) {
1419 DRCMRRXSS2DR
= DRCMR_MAPVLD
1420 | drv_data
->rx_channel
;
1421 DRCMRTXSS2DR
= DRCMR_MAPVLD
1422 | drv_data
->tx_channel
;
1423 } else if (drv_data
->ioaddr
== SSP3_VIRT
) {
1424 DRCMRRXSS3DR
= DRCMR_MAPVLD
1425 | drv_data
->rx_channel
;
1426 DRCMRTXSS3DR
= DRCMR_MAPVLD
1427 | drv_data
->tx_channel
;
1429 dev_err(dev
, "bad SSP type\n");
1430 goto out_error_dma_alloc
;
1434 /* Enable SOC clock */
1435 pxa_set_cken(platform_info
->clock_enable
, 1);
1437 /* Load default SSP configuration */
1438 write_SSCR0(0, drv_data
->ioaddr
);
1439 write_SSCR1(SSCR1_RxTresh(4) | SSCR1_TxTresh(12), drv_data
->ioaddr
);
1440 write_SSCR0(SSCR0_SerClkDiv(2)
1442 | SSCR0_DataSize(8),
1444 if (drv_data
->ssp_type
!= PXA25x_SSP
)
1445 write_SSTO(0, drv_data
->ioaddr
);
1446 write_SSPSP(0, drv_data
->ioaddr
);
1448 /* Initial and start queue */
1449 status
= init_queue(drv_data
);
1451 dev_err(&pdev
->dev
, "problem initializing queue\n");
1452 goto out_error_clock_enabled
;
1454 status
= start_queue(drv_data
);
1456 dev_err(&pdev
->dev
, "problem starting queue\n");
1457 goto out_error_clock_enabled
;
1460 /* Register with the SPI framework */
1461 platform_set_drvdata(pdev
, drv_data
);
1462 status
= spi_register_master(master
);
1464 dev_err(&pdev
->dev
, "problem registering spi master\n");
1465 goto out_error_queue_alloc
;
1470 out_error_queue_alloc
:
1471 destroy_queue(drv_data
);
1473 out_error_clock_enabled
:
1474 pxa_set_cken(platform_info
->clock_enable
, 0);
1476 out_error_dma_alloc
:
1477 if (drv_data
->tx_channel
!= -1)
1478 pxa_free_dma(drv_data
->tx_channel
);
1479 if (drv_data
->rx_channel
!= -1)
1480 pxa_free_dma(drv_data
->rx_channel
);
1482 out_error_irq_alloc
:
1483 free_irq(irq
, drv_data
);
1485 out_error_master_alloc
:
1486 spi_master_put(master
);
1490 static int pxa2xx_spi_remove(struct platform_device
*pdev
)
1492 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1499 /* Remove the queue */
1500 status
= destroy_queue(drv_data
);
1502 /* the kernel does not check the return status of this
1503 * this routine (mod->exit, within the kernel). Therefore
1504 * nothing is gained by returning from here, the module is
1505 * going away regardless, and we should not leave any more
1506 * resources allocated than necessary. We cannot free the
1507 * message memory in drv_data->queue, but we can release the
1508 * resources below. I think the kernel should honor -EBUSY
1510 dev_err(&pdev
->dev
, "pxa2xx_spi_remove: workqueue will not "
1511 "complete, message memory not freed\n");
1513 /* Disable the SSP at the peripheral and SOC level */
1514 write_SSCR0(0, drv_data
->ioaddr
);
1515 pxa_set_cken(drv_data
->master_info
->clock_enable
, 0);
1518 if (drv_data
->master_info
->enable_dma
) {
1519 if (drv_data
->ioaddr
== SSP1_VIRT
) {
1522 } else if (drv_data
->ioaddr
== SSP2_VIRT
) {
1525 } else if (drv_data
->ioaddr
== SSP3_VIRT
) {
1529 pxa_free_dma(drv_data
->tx_channel
);
1530 pxa_free_dma(drv_data
->rx_channel
);
1534 irq
= platform_get_irq(pdev
, 0);
1536 free_irq(irq
, drv_data
);
1538 /* Disconnect from the SPI framework */
1539 spi_unregister_master(drv_data
->master
);
1541 /* Prevent double remove */
1542 platform_set_drvdata(pdev
, NULL
);
1547 static void pxa2xx_spi_shutdown(struct platform_device
*pdev
)
1551 if ((status
= pxa2xx_spi_remove(pdev
)) != 0)
1552 dev_err(&pdev
->dev
, "shutdown failed with %d\n", status
);
1556 static int suspend_devices(struct device
*dev
, void *pm_message
)
1558 pm_message_t
*state
= pm_message
;
1560 if (dev
->power
.power_state
.event
!= state
->event
) {
1561 dev_warn(dev
, "pm state does not match request\n");
1568 static int pxa2xx_spi_suspend(struct platform_device
*pdev
, pm_message_t state
)
1570 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1573 /* Check all childern for current power state */
1574 if (device_for_each_child(&pdev
->dev
, &state
, suspend_devices
) != 0) {
1575 dev_warn(&pdev
->dev
, "suspend aborted\n");
1579 status
= stop_queue(drv_data
);
1582 write_SSCR0(0, drv_data
->ioaddr
);
1583 pxa_set_cken(drv_data
->master_info
->clock_enable
, 0);
1588 static int pxa2xx_spi_resume(struct platform_device
*pdev
)
1590 struct driver_data
*drv_data
= platform_get_drvdata(pdev
);
1593 /* Enable the SSP clock */
1594 pxa_set_cken(drv_data
->master_info
->clock_enable
, 1);
1596 /* Start the queue running */
1597 status
= start_queue(drv_data
);
1599 dev_err(&pdev
->dev
, "problem starting queue (%d)\n", status
);
1606 #define pxa2xx_spi_suspend NULL
1607 #define pxa2xx_spi_resume NULL
1608 #endif /* CONFIG_PM */
1610 static struct platform_driver driver
= {
1612 .name
= "pxa2xx-spi",
1613 .bus
= &platform_bus_type
,
1614 .owner
= THIS_MODULE
,
1616 .probe
= pxa2xx_spi_probe
,
1617 .remove
= __devexit_p(pxa2xx_spi_remove
),
1618 .shutdown
= pxa2xx_spi_shutdown
,
1619 .suspend
= pxa2xx_spi_suspend
,
1620 .resume
= pxa2xx_spi_resume
,
1623 static int __init
pxa2xx_spi_init(void)
1625 platform_driver_register(&driver
);
1629 module_init(pxa2xx_spi_init
);
1631 static void __exit
pxa2xx_spi_exit(void)
1633 platform_driver_unregister(&driver
);
1635 module_exit(pxa2xx_spi_exit
);