splice: remove i_mutex locking in splice_from_pipe()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / super.c
blob786fe7d72790ac5646197224fc2af88222dade0a
1 /*
2 * linux/fs/super.c
4 * Copyright (C) 1991, 1992 Linus Torvalds
6 * super.c contains code to handle: - mount structures
7 * - super-block tables
8 * - filesystem drivers list
9 * - mount system call
10 * - umount system call
11 * - ustat system call
13 * GK 2/5/95 - Changed to support mounting the root fs via NFS
15 * Added kerneld support: Jacques Gelinas and Bjorn Ekwall
16 * Added change_root: Werner Almesberger & Hans Lermen, Feb '96
17 * Added options to /proc/mounts:
18 * Torbjörn Lindh (torbjorn.lindh@gopta.se), April 14, 1996.
19 * Added devfs support: Richard Gooch <rgooch@atnf.csiro.au>, 13-JAN-1998
20 * Heavily rewritten for 'one fs - one tree' dcache architecture. AV, Mar 2000
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/smp_lock.h>
27 #include <linux/acct.h>
28 #include <linux/blkdev.h>
29 #include <linux/quotaops.h>
30 #include <linux/namei.h>
31 #include <linux/buffer_head.h> /* for fsync_super() */
32 #include <linux/mount.h>
33 #include <linux/security.h>
34 #include <linux/syscalls.h>
35 #include <linux/vfs.h>
36 #include <linux/writeback.h> /* for the emergency remount stuff */
37 #include <linux/idr.h>
38 #include <linux/kobject.h>
39 #include <linux/mutex.h>
40 #include <linux/file.h>
41 #include <linux/async.h>
42 #include <asm/uaccess.h>
43 #include "internal.h"
46 LIST_HEAD(super_blocks);
47 DEFINE_SPINLOCK(sb_lock);
49 /**
50 * alloc_super - create new superblock
51 * @type: filesystem type superblock should belong to
53 * Allocates and initializes a new &struct super_block. alloc_super()
54 * returns a pointer new superblock or %NULL if allocation had failed.
56 static struct super_block *alloc_super(struct file_system_type *type)
58 struct super_block *s = kzalloc(sizeof(struct super_block), GFP_USER);
59 static struct super_operations default_op;
61 if (s) {
62 if (security_sb_alloc(s)) {
63 kfree(s);
64 s = NULL;
65 goto out;
67 INIT_LIST_HEAD(&s->s_dirty);
68 INIT_LIST_HEAD(&s->s_io);
69 INIT_LIST_HEAD(&s->s_more_io);
70 INIT_LIST_HEAD(&s->s_files);
71 INIT_LIST_HEAD(&s->s_instances);
72 INIT_HLIST_HEAD(&s->s_anon);
73 INIT_LIST_HEAD(&s->s_inodes);
74 INIT_LIST_HEAD(&s->s_dentry_lru);
75 INIT_LIST_HEAD(&s->s_async_list);
76 init_rwsem(&s->s_umount);
77 mutex_init(&s->s_lock);
78 lockdep_set_class(&s->s_umount, &type->s_umount_key);
80 * The locking rules for s_lock are up to the
81 * filesystem. For example ext3fs has different
82 * lock ordering than usbfs:
84 lockdep_set_class(&s->s_lock, &type->s_lock_key);
86 * sget() can have s_umount recursion.
88 * When it cannot find a suitable sb, it allocates a new
89 * one (this one), and tries again to find a suitable old
90 * one.
92 * In case that succeeds, it will acquire the s_umount
93 * lock of the old one. Since these are clearly distrinct
94 * locks, and this object isn't exposed yet, there's no
95 * risk of deadlocks.
97 * Annotate this by putting this lock in a different
98 * subclass.
100 down_write_nested(&s->s_umount, SINGLE_DEPTH_NESTING);
101 s->s_count = S_BIAS;
102 atomic_set(&s->s_active, 1);
103 mutex_init(&s->s_vfs_rename_mutex);
104 mutex_init(&s->s_dquot.dqio_mutex);
105 mutex_init(&s->s_dquot.dqonoff_mutex);
106 init_rwsem(&s->s_dquot.dqptr_sem);
107 init_waitqueue_head(&s->s_wait_unfrozen);
108 s->s_maxbytes = MAX_NON_LFS;
109 s->dq_op = sb_dquot_ops;
110 s->s_qcop = sb_quotactl_ops;
111 s->s_op = &default_op;
112 s->s_time_gran = 1000000000;
114 out:
115 return s;
119 * destroy_super - frees a superblock
120 * @s: superblock to free
122 * Frees a superblock.
124 static inline void destroy_super(struct super_block *s)
126 security_sb_free(s);
127 kfree(s->s_subtype);
128 kfree(s->s_options);
129 kfree(s);
132 /* Superblock refcounting */
135 * Drop a superblock's refcount. Returns non-zero if the superblock was
136 * destroyed. The caller must hold sb_lock.
138 static int __put_super(struct super_block *sb)
140 int ret = 0;
142 if (!--sb->s_count) {
143 destroy_super(sb);
144 ret = 1;
146 return ret;
150 * Drop a superblock's refcount.
151 * Returns non-zero if the superblock is about to be destroyed and
152 * at least is already removed from super_blocks list, so if we are
153 * making a loop through super blocks then we need to restart.
154 * The caller must hold sb_lock.
156 int __put_super_and_need_restart(struct super_block *sb)
158 /* check for race with generic_shutdown_super() */
159 if (list_empty(&sb->s_list)) {
160 /* super block is removed, need to restart... */
161 __put_super(sb);
162 return 1;
164 /* can't be the last, since s_list is still in use */
165 sb->s_count--;
166 BUG_ON(sb->s_count == 0);
167 return 0;
171 * put_super - drop a temporary reference to superblock
172 * @sb: superblock in question
174 * Drops a temporary reference, frees superblock if there's no
175 * references left.
177 static void put_super(struct super_block *sb)
179 spin_lock(&sb_lock);
180 __put_super(sb);
181 spin_unlock(&sb_lock);
186 * deactivate_super - drop an active reference to superblock
187 * @s: superblock to deactivate
189 * Drops an active reference to superblock, acquiring a temprory one if
190 * there is no active references left. In that case we lock superblock,
191 * tell fs driver to shut it down and drop the temporary reference we
192 * had just acquired.
194 void deactivate_super(struct super_block *s)
196 struct file_system_type *fs = s->s_type;
197 if (atomic_dec_and_lock(&s->s_active, &sb_lock)) {
198 s->s_count -= S_BIAS-1;
199 spin_unlock(&sb_lock);
200 vfs_dq_off(s, 0);
201 down_write(&s->s_umount);
202 fs->kill_sb(s);
203 put_filesystem(fs);
204 put_super(s);
208 EXPORT_SYMBOL(deactivate_super);
211 * grab_super - acquire an active reference
212 * @s: reference we are trying to make active
214 * Tries to acquire an active reference. grab_super() is used when we
215 * had just found a superblock in super_blocks or fs_type->fs_supers
216 * and want to turn it into a full-blown active reference. grab_super()
217 * is called with sb_lock held and drops it. Returns 1 in case of
218 * success, 0 if we had failed (superblock contents was already dead or
219 * dying when grab_super() had been called).
221 static int grab_super(struct super_block *s) __releases(sb_lock)
223 s->s_count++;
224 spin_unlock(&sb_lock);
225 down_write(&s->s_umount);
226 if (s->s_root) {
227 spin_lock(&sb_lock);
228 if (s->s_count > S_BIAS) {
229 atomic_inc(&s->s_active);
230 s->s_count--;
231 spin_unlock(&sb_lock);
232 return 1;
234 spin_unlock(&sb_lock);
236 up_write(&s->s_umount);
237 put_super(s);
238 yield();
239 return 0;
243 * Superblock locking. We really ought to get rid of these two.
245 void lock_super(struct super_block * sb)
247 get_fs_excl();
248 mutex_lock(&sb->s_lock);
251 void unlock_super(struct super_block * sb)
253 put_fs_excl();
254 mutex_unlock(&sb->s_lock);
257 EXPORT_SYMBOL(lock_super);
258 EXPORT_SYMBOL(unlock_super);
261 * Write out and wait upon all dirty data associated with this
262 * superblock. Filesystem data as well as the underlying block
263 * device. Takes the superblock lock. Requires a second blkdev
264 * flush by the caller to complete the operation.
266 void __fsync_super(struct super_block *sb)
268 sync_inodes_sb(sb, 0);
269 vfs_dq_sync(sb);
270 lock_super(sb);
271 if (sb->s_dirt && sb->s_op->write_super)
272 sb->s_op->write_super(sb);
273 unlock_super(sb);
274 if (sb->s_op->sync_fs)
275 sb->s_op->sync_fs(sb, 1);
276 sync_blockdev(sb->s_bdev);
277 sync_inodes_sb(sb, 1);
281 * Write out and wait upon all dirty data associated with this
282 * superblock. Filesystem data as well as the underlying block
283 * device. Takes the superblock lock.
285 int fsync_super(struct super_block *sb)
287 __fsync_super(sb);
288 return sync_blockdev(sb->s_bdev);
290 EXPORT_SYMBOL_GPL(fsync_super);
293 * generic_shutdown_super - common helper for ->kill_sb()
294 * @sb: superblock to kill
296 * generic_shutdown_super() does all fs-independent work on superblock
297 * shutdown. Typical ->kill_sb() should pick all fs-specific objects
298 * that need destruction out of superblock, call generic_shutdown_super()
299 * and release aforementioned objects. Note: dentries and inodes _are_
300 * taken care of and do not need specific handling.
302 * Upon calling this function, the filesystem may no longer alter or
303 * rearrange the set of dentries belonging to this super_block, nor may it
304 * change the attachments of dentries to inodes.
306 void generic_shutdown_super(struct super_block *sb)
308 const struct super_operations *sop = sb->s_op;
311 if (sb->s_root) {
312 shrink_dcache_for_umount(sb);
313 fsync_super(sb);
314 lock_super(sb);
315 sb->s_flags &= ~MS_ACTIVE;
318 * wait for asynchronous fs operations to finish before going further
320 async_synchronize_full_domain(&sb->s_async_list);
322 /* bad name - it should be evict_inodes() */
323 invalidate_inodes(sb);
324 lock_kernel();
326 if (sop->write_super && sb->s_dirt)
327 sop->write_super(sb);
328 if (sop->put_super)
329 sop->put_super(sb);
331 /* Forget any remaining inodes */
332 if (invalidate_inodes(sb)) {
333 printk("VFS: Busy inodes after unmount of %s. "
334 "Self-destruct in 5 seconds. Have a nice day...\n",
335 sb->s_id);
338 unlock_kernel();
339 unlock_super(sb);
341 spin_lock(&sb_lock);
342 /* should be initialized for __put_super_and_need_restart() */
343 list_del_init(&sb->s_list);
344 list_del(&sb->s_instances);
345 spin_unlock(&sb_lock);
346 up_write(&sb->s_umount);
349 EXPORT_SYMBOL(generic_shutdown_super);
352 * sget - find or create a superblock
353 * @type: filesystem type superblock should belong to
354 * @test: comparison callback
355 * @set: setup callback
356 * @data: argument to each of them
358 struct super_block *sget(struct file_system_type *type,
359 int (*test)(struct super_block *,void *),
360 int (*set)(struct super_block *,void *),
361 void *data)
363 struct super_block *s = NULL;
364 struct super_block *old;
365 int err;
367 retry:
368 spin_lock(&sb_lock);
369 if (test) {
370 list_for_each_entry(old, &type->fs_supers, s_instances) {
371 if (!test(old, data))
372 continue;
373 if (!grab_super(old))
374 goto retry;
375 if (s) {
376 up_write(&s->s_umount);
377 destroy_super(s);
379 return old;
382 if (!s) {
383 spin_unlock(&sb_lock);
384 s = alloc_super(type);
385 if (!s)
386 return ERR_PTR(-ENOMEM);
387 goto retry;
390 err = set(s, data);
391 if (err) {
392 spin_unlock(&sb_lock);
393 up_write(&s->s_umount);
394 destroy_super(s);
395 return ERR_PTR(err);
397 s->s_type = type;
398 strlcpy(s->s_id, type->name, sizeof(s->s_id));
399 list_add_tail(&s->s_list, &super_blocks);
400 list_add(&s->s_instances, &type->fs_supers);
401 spin_unlock(&sb_lock);
402 get_filesystem(type);
403 return s;
406 EXPORT_SYMBOL(sget);
408 void drop_super(struct super_block *sb)
410 up_read(&sb->s_umount);
411 put_super(sb);
414 EXPORT_SYMBOL(drop_super);
416 static inline void write_super(struct super_block *sb)
418 lock_super(sb);
419 if (sb->s_root && sb->s_dirt)
420 if (sb->s_op->write_super)
421 sb->s_op->write_super(sb);
422 unlock_super(sb);
426 * Note: check the dirty flag before waiting, so we don't
427 * hold up the sync while mounting a device. (The newly
428 * mounted device won't need syncing.)
430 void sync_supers(void)
432 struct super_block *sb;
434 spin_lock(&sb_lock);
435 restart:
436 list_for_each_entry(sb, &super_blocks, s_list) {
437 if (sb->s_dirt) {
438 sb->s_count++;
439 spin_unlock(&sb_lock);
440 down_read(&sb->s_umount);
441 write_super(sb);
442 up_read(&sb->s_umount);
443 spin_lock(&sb_lock);
444 if (__put_super_and_need_restart(sb))
445 goto restart;
448 spin_unlock(&sb_lock);
452 * Call the ->sync_fs super_op against all filesystems which are r/w and
453 * which implement it.
455 * This operation is careful to avoid the livelock which could easily happen
456 * if two or more filesystems are being continuously dirtied. s_need_sync_fs
457 * is used only here. We set it against all filesystems and then clear it as
458 * we sync them. So redirtied filesystems are skipped.
460 * But if process A is currently running sync_filesystems and then process B
461 * calls sync_filesystems as well, process B will set all the s_need_sync_fs
462 * flags again, which will cause process A to resync everything. Fix that with
463 * a local mutex.
465 * (Fabian) Avoid sync_fs with clean fs & wait mode 0
467 void sync_filesystems(int wait)
469 struct super_block *sb;
470 static DEFINE_MUTEX(mutex);
472 mutex_lock(&mutex); /* Could be down_interruptible */
473 spin_lock(&sb_lock);
474 list_for_each_entry(sb, &super_blocks, s_list) {
475 if (!sb->s_op->sync_fs)
476 continue;
477 if (sb->s_flags & MS_RDONLY)
478 continue;
479 sb->s_need_sync_fs = 1;
482 restart:
483 list_for_each_entry(sb, &super_blocks, s_list) {
484 if (!sb->s_need_sync_fs)
485 continue;
486 sb->s_need_sync_fs = 0;
487 if (sb->s_flags & MS_RDONLY)
488 continue; /* hm. Was remounted r/o meanwhile */
489 sb->s_count++;
490 spin_unlock(&sb_lock);
491 down_read(&sb->s_umount);
492 async_synchronize_full_domain(&sb->s_async_list);
493 if (sb->s_root && (wait || sb->s_dirt))
494 sb->s_op->sync_fs(sb, wait);
495 up_read(&sb->s_umount);
496 /* restart only when sb is no longer on the list */
497 spin_lock(&sb_lock);
498 if (__put_super_and_need_restart(sb))
499 goto restart;
501 spin_unlock(&sb_lock);
502 mutex_unlock(&mutex);
506 * get_super - get the superblock of a device
507 * @bdev: device to get the superblock for
509 * Scans the superblock list and finds the superblock of the file system
510 * mounted on the device given. %NULL is returned if no match is found.
513 struct super_block * get_super(struct block_device *bdev)
515 struct super_block *sb;
517 if (!bdev)
518 return NULL;
520 spin_lock(&sb_lock);
521 rescan:
522 list_for_each_entry(sb, &super_blocks, s_list) {
523 if (sb->s_bdev == bdev) {
524 sb->s_count++;
525 spin_unlock(&sb_lock);
526 down_read(&sb->s_umount);
527 if (sb->s_root)
528 return sb;
529 up_read(&sb->s_umount);
530 /* restart only when sb is no longer on the list */
531 spin_lock(&sb_lock);
532 if (__put_super_and_need_restart(sb))
533 goto rescan;
536 spin_unlock(&sb_lock);
537 return NULL;
540 EXPORT_SYMBOL(get_super);
542 struct super_block * user_get_super(dev_t dev)
544 struct super_block *sb;
546 spin_lock(&sb_lock);
547 rescan:
548 list_for_each_entry(sb, &super_blocks, s_list) {
549 if (sb->s_dev == dev) {
550 sb->s_count++;
551 spin_unlock(&sb_lock);
552 down_read(&sb->s_umount);
553 if (sb->s_root)
554 return sb;
555 up_read(&sb->s_umount);
556 /* restart only when sb is no longer on the list */
557 spin_lock(&sb_lock);
558 if (__put_super_and_need_restart(sb))
559 goto rescan;
562 spin_unlock(&sb_lock);
563 return NULL;
566 SYSCALL_DEFINE2(ustat, unsigned, dev, struct ustat __user *, ubuf)
568 struct super_block *s;
569 struct ustat tmp;
570 struct kstatfs sbuf;
571 int err = -EINVAL;
573 s = user_get_super(new_decode_dev(dev));
574 if (s == NULL)
575 goto out;
576 err = vfs_statfs(s->s_root, &sbuf);
577 drop_super(s);
578 if (err)
579 goto out;
581 memset(&tmp,0,sizeof(struct ustat));
582 tmp.f_tfree = sbuf.f_bfree;
583 tmp.f_tinode = sbuf.f_ffree;
585 err = copy_to_user(ubuf,&tmp,sizeof(struct ustat)) ? -EFAULT : 0;
586 out:
587 return err;
591 * mark_files_ro - mark all files read-only
592 * @sb: superblock in question
594 * All files are marked read-only. We don't care about pending
595 * delete files so this should be used in 'force' mode only.
598 static void mark_files_ro(struct super_block *sb)
600 struct file *f;
602 retry:
603 file_list_lock();
604 list_for_each_entry(f, &sb->s_files, f_u.fu_list) {
605 struct vfsmount *mnt;
606 if (!S_ISREG(f->f_path.dentry->d_inode->i_mode))
607 continue;
608 if (!file_count(f))
609 continue;
610 if (!(f->f_mode & FMODE_WRITE))
611 continue;
612 f->f_mode &= ~FMODE_WRITE;
613 if (file_check_writeable(f) != 0)
614 continue;
615 file_release_write(f);
616 mnt = mntget(f->f_path.mnt);
617 file_list_unlock();
619 * This can sleep, so we can't hold
620 * the file_list_lock() spinlock.
622 mnt_drop_write(mnt);
623 mntput(mnt);
624 goto retry;
626 file_list_unlock();
630 * do_remount_sb - asks filesystem to change mount options.
631 * @sb: superblock in question
632 * @flags: numeric part of options
633 * @data: the rest of options
634 * @force: whether or not to force the change
636 * Alters the mount options of a mounted file system.
638 int do_remount_sb(struct super_block *sb, int flags, void *data, int force)
640 int retval;
641 int remount_rw;
643 #ifdef CONFIG_BLOCK
644 if (!(flags & MS_RDONLY) && bdev_read_only(sb->s_bdev))
645 return -EACCES;
646 #endif
647 if (flags & MS_RDONLY)
648 acct_auto_close(sb);
649 shrink_dcache_sb(sb);
650 fsync_super(sb);
652 /* If we are remounting RDONLY and current sb is read/write,
653 make sure there are no rw files opened */
654 if ((flags & MS_RDONLY) && !(sb->s_flags & MS_RDONLY)) {
655 if (force)
656 mark_files_ro(sb);
657 else if (!fs_may_remount_ro(sb))
658 return -EBUSY;
659 retval = vfs_dq_off(sb, 1);
660 if (retval < 0 && retval != -ENOSYS)
661 return -EBUSY;
663 remount_rw = !(flags & MS_RDONLY) && (sb->s_flags & MS_RDONLY);
665 if (sb->s_op->remount_fs) {
666 lock_super(sb);
667 retval = sb->s_op->remount_fs(sb, &flags, data);
668 unlock_super(sb);
669 if (retval)
670 return retval;
672 sb->s_flags = (sb->s_flags & ~MS_RMT_MASK) | (flags & MS_RMT_MASK);
673 if (remount_rw)
674 vfs_dq_quota_on_remount(sb);
675 return 0;
678 static void do_emergency_remount(struct work_struct *work)
680 struct super_block *sb;
682 spin_lock(&sb_lock);
683 list_for_each_entry(sb, &super_blocks, s_list) {
684 sb->s_count++;
685 spin_unlock(&sb_lock);
686 down_read(&sb->s_umount);
687 if (sb->s_root && sb->s_bdev && !(sb->s_flags & MS_RDONLY)) {
689 * ->remount_fs needs lock_kernel().
691 * What lock protects sb->s_flags??
693 lock_kernel();
694 do_remount_sb(sb, MS_RDONLY, NULL, 1);
695 unlock_kernel();
697 drop_super(sb);
698 spin_lock(&sb_lock);
700 spin_unlock(&sb_lock);
701 kfree(work);
702 printk("Emergency Remount complete\n");
705 void emergency_remount(void)
707 struct work_struct *work;
709 work = kmalloc(sizeof(*work), GFP_ATOMIC);
710 if (work) {
711 INIT_WORK(work, do_emergency_remount);
712 schedule_work(work);
717 * Unnamed block devices are dummy devices used by virtual
718 * filesystems which don't use real block-devices. -- jrs
721 static DEFINE_IDA(unnamed_dev_ida);
722 static DEFINE_SPINLOCK(unnamed_dev_lock);/* protects the above */
724 int set_anon_super(struct super_block *s, void *data)
726 int dev;
727 int error;
729 retry:
730 if (ida_pre_get(&unnamed_dev_ida, GFP_ATOMIC) == 0)
731 return -ENOMEM;
732 spin_lock(&unnamed_dev_lock);
733 error = ida_get_new(&unnamed_dev_ida, &dev);
734 spin_unlock(&unnamed_dev_lock);
735 if (error == -EAGAIN)
736 /* We raced and lost with another CPU. */
737 goto retry;
738 else if (error)
739 return -EAGAIN;
741 if ((dev & MAX_ID_MASK) == (1 << MINORBITS)) {
742 spin_lock(&unnamed_dev_lock);
743 ida_remove(&unnamed_dev_ida, dev);
744 spin_unlock(&unnamed_dev_lock);
745 return -EMFILE;
747 s->s_dev = MKDEV(0, dev & MINORMASK);
748 return 0;
751 EXPORT_SYMBOL(set_anon_super);
753 void kill_anon_super(struct super_block *sb)
755 int slot = MINOR(sb->s_dev);
757 generic_shutdown_super(sb);
758 spin_lock(&unnamed_dev_lock);
759 ida_remove(&unnamed_dev_ida, slot);
760 spin_unlock(&unnamed_dev_lock);
763 EXPORT_SYMBOL(kill_anon_super);
765 void kill_litter_super(struct super_block *sb)
767 if (sb->s_root)
768 d_genocide(sb->s_root);
769 kill_anon_super(sb);
772 EXPORT_SYMBOL(kill_litter_super);
774 static int ns_test_super(struct super_block *sb, void *data)
776 return sb->s_fs_info == data;
779 static int ns_set_super(struct super_block *sb, void *data)
781 sb->s_fs_info = data;
782 return set_anon_super(sb, NULL);
785 int get_sb_ns(struct file_system_type *fs_type, int flags, void *data,
786 int (*fill_super)(struct super_block *, void *, int),
787 struct vfsmount *mnt)
789 struct super_block *sb;
791 sb = sget(fs_type, ns_test_super, ns_set_super, data);
792 if (IS_ERR(sb))
793 return PTR_ERR(sb);
795 if (!sb->s_root) {
796 int err;
797 sb->s_flags = flags;
798 err = fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
799 if (err) {
800 up_write(&sb->s_umount);
801 deactivate_super(sb);
802 return err;
805 sb->s_flags |= MS_ACTIVE;
808 simple_set_mnt(mnt, sb);
809 return 0;
812 EXPORT_SYMBOL(get_sb_ns);
814 #ifdef CONFIG_BLOCK
815 static int set_bdev_super(struct super_block *s, void *data)
817 s->s_bdev = data;
818 s->s_dev = s->s_bdev->bd_dev;
819 return 0;
822 static int test_bdev_super(struct super_block *s, void *data)
824 return (void *)s->s_bdev == data;
827 int get_sb_bdev(struct file_system_type *fs_type,
828 int flags, const char *dev_name, void *data,
829 int (*fill_super)(struct super_block *, void *, int),
830 struct vfsmount *mnt)
832 struct block_device *bdev;
833 struct super_block *s;
834 fmode_t mode = FMODE_READ;
835 int error = 0;
837 if (!(flags & MS_RDONLY))
838 mode |= FMODE_WRITE;
840 bdev = open_bdev_exclusive(dev_name, mode, fs_type);
841 if (IS_ERR(bdev))
842 return PTR_ERR(bdev);
845 * once the super is inserted into the list by sget, s_umount
846 * will protect the lockfs code from trying to start a snapshot
847 * while we are mounting
849 down(&bdev->bd_mount_sem);
850 s = sget(fs_type, test_bdev_super, set_bdev_super, bdev);
851 up(&bdev->bd_mount_sem);
852 if (IS_ERR(s))
853 goto error_s;
855 if (s->s_root) {
856 if ((flags ^ s->s_flags) & MS_RDONLY) {
857 up_write(&s->s_umount);
858 deactivate_super(s);
859 error = -EBUSY;
860 goto error_bdev;
863 close_bdev_exclusive(bdev, mode);
864 } else {
865 char b[BDEVNAME_SIZE];
867 s->s_flags = flags;
868 s->s_mode = mode;
869 strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
870 sb_set_blocksize(s, block_size(bdev));
871 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
872 if (error) {
873 up_write(&s->s_umount);
874 deactivate_super(s);
875 goto error;
878 s->s_flags |= MS_ACTIVE;
879 bdev->bd_super = s;
882 simple_set_mnt(mnt, s);
883 return 0;
885 error_s:
886 error = PTR_ERR(s);
887 error_bdev:
888 close_bdev_exclusive(bdev, mode);
889 error:
890 return error;
893 EXPORT_SYMBOL(get_sb_bdev);
895 void kill_block_super(struct super_block *sb)
897 struct block_device *bdev = sb->s_bdev;
898 fmode_t mode = sb->s_mode;
900 bdev->bd_super = 0;
901 generic_shutdown_super(sb);
902 sync_blockdev(bdev);
903 close_bdev_exclusive(bdev, mode);
906 EXPORT_SYMBOL(kill_block_super);
907 #endif
909 int get_sb_nodev(struct file_system_type *fs_type,
910 int flags, void *data,
911 int (*fill_super)(struct super_block *, void *, int),
912 struct vfsmount *mnt)
914 int error;
915 struct super_block *s = sget(fs_type, NULL, set_anon_super, NULL);
917 if (IS_ERR(s))
918 return PTR_ERR(s);
920 s->s_flags = flags;
922 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
923 if (error) {
924 up_write(&s->s_umount);
925 deactivate_super(s);
926 return error;
928 s->s_flags |= MS_ACTIVE;
929 simple_set_mnt(mnt, s);
930 return 0;
933 EXPORT_SYMBOL(get_sb_nodev);
935 static int compare_single(struct super_block *s, void *p)
937 return 1;
940 int get_sb_single(struct file_system_type *fs_type,
941 int flags, void *data,
942 int (*fill_super)(struct super_block *, void *, int),
943 struct vfsmount *mnt)
945 struct super_block *s;
946 int error;
948 s = sget(fs_type, compare_single, set_anon_super, NULL);
949 if (IS_ERR(s))
950 return PTR_ERR(s);
951 if (!s->s_root) {
952 s->s_flags = flags;
953 error = fill_super(s, data, flags & MS_SILENT ? 1 : 0);
954 if (error) {
955 up_write(&s->s_umount);
956 deactivate_super(s);
957 return error;
959 s->s_flags |= MS_ACTIVE;
961 do_remount_sb(s, flags, data, 0);
962 simple_set_mnt(mnt, s);
963 return 0;
966 EXPORT_SYMBOL(get_sb_single);
968 struct vfsmount *
969 vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
971 struct vfsmount *mnt;
972 char *secdata = NULL;
973 int error;
975 if (!type)
976 return ERR_PTR(-ENODEV);
978 error = -ENOMEM;
979 mnt = alloc_vfsmnt(name);
980 if (!mnt)
981 goto out;
983 if (data && !(type->fs_flags & FS_BINARY_MOUNTDATA)) {
984 secdata = alloc_secdata();
985 if (!secdata)
986 goto out_mnt;
988 error = security_sb_copy_data(data, secdata);
989 if (error)
990 goto out_free_secdata;
993 error = type->get_sb(type, flags, name, data, mnt);
994 if (error < 0)
995 goto out_free_secdata;
996 BUG_ON(!mnt->mnt_sb);
998 error = security_sb_kern_mount(mnt->mnt_sb, flags, secdata);
999 if (error)
1000 goto out_sb;
1002 mnt->mnt_mountpoint = mnt->mnt_root;
1003 mnt->mnt_parent = mnt;
1004 up_write(&mnt->mnt_sb->s_umount);
1005 free_secdata(secdata);
1006 return mnt;
1007 out_sb:
1008 dput(mnt->mnt_root);
1009 up_write(&mnt->mnt_sb->s_umount);
1010 deactivate_super(mnt->mnt_sb);
1011 out_free_secdata:
1012 free_secdata(secdata);
1013 out_mnt:
1014 free_vfsmnt(mnt);
1015 out:
1016 return ERR_PTR(error);
1019 EXPORT_SYMBOL_GPL(vfs_kern_mount);
1021 static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1023 int err;
1024 const char *subtype = strchr(fstype, '.');
1025 if (subtype) {
1026 subtype++;
1027 err = -EINVAL;
1028 if (!subtype[0])
1029 goto err;
1030 } else
1031 subtype = "";
1033 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1034 err = -ENOMEM;
1035 if (!mnt->mnt_sb->s_subtype)
1036 goto err;
1037 return mnt;
1039 err:
1040 mntput(mnt);
1041 return ERR_PTR(err);
1044 struct vfsmount *
1045 do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1047 struct file_system_type *type = get_fs_type(fstype);
1048 struct vfsmount *mnt;
1049 if (!type)
1050 return ERR_PTR(-ENODEV);
1051 mnt = vfs_kern_mount(type, flags, name, data);
1052 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1053 !mnt->mnt_sb->s_subtype)
1054 mnt = fs_set_subtype(mnt, fstype);
1055 put_filesystem(type);
1056 return mnt;
1058 EXPORT_SYMBOL_GPL(do_kern_mount);
1060 struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
1062 return vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
1065 EXPORT_SYMBOL_GPL(kern_mount_data);