[MTD] NAND: add subpage write support
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / mtd / nand / nand_base.c
blobeed3271b99cc2e7ccfc81b091011194089b8fb00
1 /*
2 * drivers/mtd/nand.c
4 * Overview:
5 * This is the generic MTD driver for NAND flash devices. It should be
6 * capable of working with almost all NAND chips currently available.
7 * Basic support for AG-AND chips is provided.
9 * Additional technical information is available on
10 * http://www.linux-mtd.infradead.org/tech/nand.html
12 * Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
13 * 2002-2006 Thomas Gleixner (tglx@linutronix.de)
15 * Credits:
16 * David Woodhouse for adding multichip support
18 * Aleph One Ltd. and Toby Churchill Ltd. for supporting the
19 * rework for 2K page size chips
21 * TODO:
22 * Enable cached programming for 2k page size chips
23 * Check, if mtd->ecctype should be set to MTD_ECC_HW
24 * if we have HW ecc support.
25 * The AG-AND chips have nice features for speed improvement,
26 * which are not supported yet. Read / program 4 pages in one go.
28 * This program is free software; you can redistribute it and/or modify
29 * it under the terms of the GNU General Public License version 2 as
30 * published by the Free Software Foundation.
34 #include <linux/module.h>
35 #include <linux/delay.h>
36 #include <linux/errno.h>
37 #include <linux/err.h>
38 #include <linux/sched.h>
39 #include <linux/slab.h>
40 #include <linux/types.h>
41 #include <linux/mtd/mtd.h>
42 #include <linux/mtd/nand.h>
43 #include <linux/mtd/nand_ecc.h>
44 #include <linux/mtd/compatmac.h>
45 #include <linux/interrupt.h>
46 #include <linux/bitops.h>
47 #include <linux/leds.h>
48 #include <asm/io.h>
50 #ifdef CONFIG_MTD_PARTITIONS
51 #include <linux/mtd/partitions.h>
52 #endif
54 /* Define default oob placement schemes for large and small page devices */
55 static struct nand_ecclayout nand_oob_8 = {
56 .eccbytes = 3,
57 .eccpos = {0, 1, 2},
58 .oobfree = {
59 {.offset = 3,
60 .length = 2},
61 {.offset = 6,
62 .length = 2}}
65 static struct nand_ecclayout nand_oob_16 = {
66 .eccbytes = 6,
67 .eccpos = {0, 1, 2, 3, 6, 7},
68 .oobfree = {
69 {.offset = 8,
70 . length = 8}}
73 static struct nand_ecclayout nand_oob_64 = {
74 .eccbytes = 24,
75 .eccpos = {
76 40, 41, 42, 43, 44, 45, 46, 47,
77 48, 49, 50, 51, 52, 53, 54, 55,
78 56, 57, 58, 59, 60, 61, 62, 63},
79 .oobfree = {
80 {.offset = 2,
81 .length = 38}}
84 static int nand_get_device(struct nand_chip *chip, struct mtd_info *mtd,
85 int new_state);
87 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
88 struct mtd_oob_ops *ops);
91 * For devices which display every fart in the system on a seperate LED. Is
92 * compiled away when LED support is disabled.
94 DEFINE_LED_TRIGGER(nand_led_trigger);
96 /**
97 * nand_release_device - [GENERIC] release chip
98 * @mtd: MTD device structure
100 * Deselect, release chip lock and wake up anyone waiting on the device
102 static void nand_release_device(struct mtd_info *mtd)
104 struct nand_chip *chip = mtd->priv;
106 /* De-select the NAND device */
107 chip->select_chip(mtd, -1);
109 /* Release the controller and the chip */
110 spin_lock(&chip->controller->lock);
111 chip->controller->active = NULL;
112 chip->state = FL_READY;
113 wake_up(&chip->controller->wq);
114 spin_unlock(&chip->controller->lock);
118 * nand_read_byte - [DEFAULT] read one byte from the chip
119 * @mtd: MTD device structure
121 * Default read function for 8bit buswith
123 static uint8_t nand_read_byte(struct mtd_info *mtd)
125 struct nand_chip *chip = mtd->priv;
126 return readb(chip->IO_ADDR_R);
130 * nand_read_byte16 - [DEFAULT] read one byte endianess aware from the chip
131 * @mtd: MTD device structure
133 * Default read function for 16bit buswith with
134 * endianess conversion
136 static uint8_t nand_read_byte16(struct mtd_info *mtd)
138 struct nand_chip *chip = mtd->priv;
139 return (uint8_t) cpu_to_le16(readw(chip->IO_ADDR_R));
143 * nand_read_word - [DEFAULT] read one word from the chip
144 * @mtd: MTD device structure
146 * Default read function for 16bit buswith without
147 * endianess conversion
149 static u16 nand_read_word(struct mtd_info *mtd)
151 struct nand_chip *chip = mtd->priv;
152 return readw(chip->IO_ADDR_R);
156 * nand_select_chip - [DEFAULT] control CE line
157 * @mtd: MTD device structure
158 * @chipnr: chipnumber to select, -1 for deselect
160 * Default select function for 1 chip devices.
162 static void nand_select_chip(struct mtd_info *mtd, int chipnr)
164 struct nand_chip *chip = mtd->priv;
166 switch (chipnr) {
167 case -1:
168 chip->cmd_ctrl(mtd, NAND_CMD_NONE, 0 | NAND_CTRL_CHANGE);
169 break;
170 case 0:
171 break;
173 default:
174 BUG();
179 * nand_write_buf - [DEFAULT] write buffer to chip
180 * @mtd: MTD device structure
181 * @buf: data buffer
182 * @len: number of bytes to write
184 * Default write function for 8bit buswith
186 static void nand_write_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
188 int i;
189 struct nand_chip *chip = mtd->priv;
191 for (i = 0; i < len; i++)
192 writeb(buf[i], chip->IO_ADDR_W);
196 * nand_read_buf - [DEFAULT] read chip data into buffer
197 * @mtd: MTD device structure
198 * @buf: buffer to store date
199 * @len: number of bytes to read
201 * Default read function for 8bit buswith
203 static void nand_read_buf(struct mtd_info *mtd, uint8_t *buf, int len)
205 int i;
206 struct nand_chip *chip = mtd->priv;
208 for (i = 0; i < len; i++)
209 buf[i] = readb(chip->IO_ADDR_R);
213 * nand_verify_buf - [DEFAULT] Verify chip data against buffer
214 * @mtd: MTD device structure
215 * @buf: buffer containing the data to compare
216 * @len: number of bytes to compare
218 * Default verify function for 8bit buswith
220 static int nand_verify_buf(struct mtd_info *mtd, const uint8_t *buf, int len)
222 int i;
223 struct nand_chip *chip = mtd->priv;
225 for (i = 0; i < len; i++)
226 if (buf[i] != readb(chip->IO_ADDR_R))
227 return -EFAULT;
228 return 0;
232 * nand_write_buf16 - [DEFAULT] write buffer to chip
233 * @mtd: MTD device structure
234 * @buf: data buffer
235 * @len: number of bytes to write
237 * Default write function for 16bit buswith
239 static void nand_write_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
241 int i;
242 struct nand_chip *chip = mtd->priv;
243 u16 *p = (u16 *) buf;
244 len >>= 1;
246 for (i = 0; i < len; i++)
247 writew(p[i], chip->IO_ADDR_W);
252 * nand_read_buf16 - [DEFAULT] read chip data into buffer
253 * @mtd: MTD device structure
254 * @buf: buffer to store date
255 * @len: number of bytes to read
257 * Default read function for 16bit buswith
259 static void nand_read_buf16(struct mtd_info *mtd, uint8_t *buf, int len)
261 int i;
262 struct nand_chip *chip = mtd->priv;
263 u16 *p = (u16 *) buf;
264 len >>= 1;
266 for (i = 0; i < len; i++)
267 p[i] = readw(chip->IO_ADDR_R);
271 * nand_verify_buf16 - [DEFAULT] Verify chip data against buffer
272 * @mtd: MTD device structure
273 * @buf: buffer containing the data to compare
274 * @len: number of bytes to compare
276 * Default verify function for 16bit buswith
278 static int nand_verify_buf16(struct mtd_info *mtd, const uint8_t *buf, int len)
280 int i;
281 struct nand_chip *chip = mtd->priv;
282 u16 *p = (u16 *) buf;
283 len >>= 1;
285 for (i = 0; i < len; i++)
286 if (p[i] != readw(chip->IO_ADDR_R))
287 return -EFAULT;
289 return 0;
293 * nand_block_bad - [DEFAULT] Read bad block marker from the chip
294 * @mtd: MTD device structure
295 * @ofs: offset from device start
296 * @getchip: 0, if the chip is already selected
298 * Check, if the block is bad.
300 static int nand_block_bad(struct mtd_info *mtd, loff_t ofs, int getchip)
302 int page, chipnr, res = 0;
303 struct nand_chip *chip = mtd->priv;
304 u16 bad;
306 if (getchip) {
307 page = (int)(ofs >> chip->page_shift);
308 chipnr = (int)(ofs >> chip->chip_shift);
310 nand_get_device(chip, mtd, FL_READING);
312 /* Select the NAND device */
313 chip->select_chip(mtd, chipnr);
314 } else
315 page = (int)ofs;
317 if (chip->options & NAND_BUSWIDTH_16) {
318 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos & 0xFE,
319 page & chip->pagemask);
320 bad = cpu_to_le16(chip->read_word(mtd));
321 if (chip->badblockpos & 0x1)
322 bad >>= 8;
323 if ((bad & 0xFF) != 0xff)
324 res = 1;
325 } else {
326 chip->cmdfunc(mtd, NAND_CMD_READOOB, chip->badblockpos,
327 page & chip->pagemask);
328 if (chip->read_byte(mtd) != 0xff)
329 res = 1;
332 if (getchip)
333 nand_release_device(mtd);
335 return res;
339 * nand_default_block_markbad - [DEFAULT] mark a block bad
340 * @mtd: MTD device structure
341 * @ofs: offset from device start
343 * This is the default implementation, which can be overridden by
344 * a hardware specific driver.
346 static int nand_default_block_markbad(struct mtd_info *mtd, loff_t ofs)
348 struct nand_chip *chip = mtd->priv;
349 uint8_t buf[2] = { 0, 0 };
350 int block, ret;
352 /* Get block number */
353 block = ((int)ofs) >> chip->bbt_erase_shift;
354 if (chip->bbt)
355 chip->bbt[block >> 2] |= 0x01 << ((block & 0x03) << 1);
357 /* Do we have a flash based bad block table ? */
358 if (chip->options & NAND_USE_FLASH_BBT)
359 ret = nand_update_bbt(mtd, ofs);
360 else {
361 /* We write two bytes, so we dont have to mess with 16 bit
362 * access
364 ofs += mtd->oobsize;
365 chip->ops.len = chip->ops.ooblen = 2;
366 chip->ops.datbuf = NULL;
367 chip->ops.oobbuf = buf;
368 chip->ops.ooboffs = chip->badblockpos & ~0x01;
370 ret = nand_do_write_oob(mtd, ofs, &chip->ops);
372 if (!ret)
373 mtd->ecc_stats.badblocks++;
374 return ret;
378 * nand_check_wp - [GENERIC] check if the chip is write protected
379 * @mtd: MTD device structure
380 * Check, if the device is write protected
382 * The function expects, that the device is already selected
384 static int nand_check_wp(struct mtd_info *mtd)
386 struct nand_chip *chip = mtd->priv;
387 /* Check the WP bit */
388 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
389 return (chip->read_byte(mtd) & NAND_STATUS_WP) ? 0 : 1;
393 * nand_block_checkbad - [GENERIC] Check if a block is marked bad
394 * @mtd: MTD device structure
395 * @ofs: offset from device start
396 * @getchip: 0, if the chip is already selected
397 * @allowbbt: 1, if its allowed to access the bbt area
399 * Check, if the block is bad. Either by reading the bad block table or
400 * calling of the scan function.
402 static int nand_block_checkbad(struct mtd_info *mtd, loff_t ofs, int getchip,
403 int allowbbt)
405 struct nand_chip *chip = mtd->priv;
407 if (!chip->bbt)
408 return chip->block_bad(mtd, ofs, getchip);
410 /* Return info from the table */
411 return nand_isbad_bbt(mtd, ofs, allowbbt);
415 * Wait for the ready pin, after a command
416 * The timeout is catched later.
418 void nand_wait_ready(struct mtd_info *mtd)
420 struct nand_chip *chip = mtd->priv;
421 unsigned long timeo = jiffies + 2;
423 led_trigger_event(nand_led_trigger, LED_FULL);
424 /* wait until command is processed or timeout occures */
425 do {
426 if (chip->dev_ready(mtd))
427 break;
428 touch_softlockup_watchdog();
429 } while (time_before(jiffies, timeo));
430 led_trigger_event(nand_led_trigger, LED_OFF);
432 EXPORT_SYMBOL_GPL(nand_wait_ready);
435 * nand_command - [DEFAULT] Send command to NAND device
436 * @mtd: MTD device structure
437 * @command: the command to be sent
438 * @column: the column address for this command, -1 if none
439 * @page_addr: the page address for this command, -1 if none
441 * Send command to NAND device. This function is used for small page
442 * devices (256/512 Bytes per page)
444 static void nand_command(struct mtd_info *mtd, unsigned int command,
445 int column, int page_addr)
447 register struct nand_chip *chip = mtd->priv;
448 int ctrl = NAND_CTRL_CLE | NAND_CTRL_CHANGE;
451 * Write out the command to the device.
453 if (command == NAND_CMD_SEQIN) {
454 int readcmd;
456 if (column >= mtd->writesize) {
457 /* OOB area */
458 column -= mtd->writesize;
459 readcmd = NAND_CMD_READOOB;
460 } else if (column < 256) {
461 /* First 256 bytes --> READ0 */
462 readcmd = NAND_CMD_READ0;
463 } else {
464 column -= 256;
465 readcmd = NAND_CMD_READ1;
467 chip->cmd_ctrl(mtd, readcmd, ctrl);
468 ctrl &= ~NAND_CTRL_CHANGE;
470 chip->cmd_ctrl(mtd, command, ctrl);
473 * Address cycle, when necessary
475 ctrl = NAND_CTRL_ALE | NAND_CTRL_CHANGE;
476 /* Serially input address */
477 if (column != -1) {
478 /* Adjust columns for 16 bit buswidth */
479 if (chip->options & NAND_BUSWIDTH_16)
480 column >>= 1;
481 chip->cmd_ctrl(mtd, column, ctrl);
482 ctrl &= ~NAND_CTRL_CHANGE;
484 if (page_addr != -1) {
485 chip->cmd_ctrl(mtd, page_addr, ctrl);
486 ctrl &= ~NAND_CTRL_CHANGE;
487 chip->cmd_ctrl(mtd, page_addr >> 8, ctrl);
488 /* One more address cycle for devices > 32MiB */
489 if (chip->chipsize > (32 << 20))
490 chip->cmd_ctrl(mtd, page_addr >> 16, ctrl);
492 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
495 * program and erase have their own busy handlers
496 * status and sequential in needs no delay
498 switch (command) {
500 case NAND_CMD_PAGEPROG:
501 case NAND_CMD_ERASE1:
502 case NAND_CMD_ERASE2:
503 case NAND_CMD_SEQIN:
504 case NAND_CMD_STATUS:
505 return;
507 case NAND_CMD_RESET:
508 if (chip->dev_ready)
509 break;
510 udelay(chip->chip_delay);
511 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
512 NAND_CTRL_CLE | NAND_CTRL_CHANGE);
513 chip->cmd_ctrl(mtd,
514 NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
515 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
516 return;
518 /* This applies to read commands */
519 default:
521 * If we don't have access to the busy pin, we apply the given
522 * command delay
524 if (!chip->dev_ready) {
525 udelay(chip->chip_delay);
526 return;
529 /* Apply this short delay always to ensure that we do wait tWB in
530 * any case on any machine. */
531 ndelay(100);
533 nand_wait_ready(mtd);
537 * nand_command_lp - [DEFAULT] Send command to NAND large page device
538 * @mtd: MTD device structure
539 * @command: the command to be sent
540 * @column: the column address for this command, -1 if none
541 * @page_addr: the page address for this command, -1 if none
543 * Send command to NAND device. This is the version for the new large page
544 * devices We dont have the separate regions as we have in the small page
545 * devices. We must emulate NAND_CMD_READOOB to keep the code compatible.
547 static void nand_command_lp(struct mtd_info *mtd, unsigned int command,
548 int column, int page_addr)
550 register struct nand_chip *chip = mtd->priv;
552 /* Emulate NAND_CMD_READOOB */
553 if (command == NAND_CMD_READOOB) {
554 column += mtd->writesize;
555 command = NAND_CMD_READ0;
558 /* Command latch cycle */
559 chip->cmd_ctrl(mtd, command & 0xff,
560 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
562 if (column != -1 || page_addr != -1) {
563 int ctrl = NAND_CTRL_CHANGE | NAND_NCE | NAND_ALE;
565 /* Serially input address */
566 if (column != -1) {
567 /* Adjust columns for 16 bit buswidth */
568 if (chip->options & NAND_BUSWIDTH_16)
569 column >>= 1;
570 chip->cmd_ctrl(mtd, column, ctrl);
571 ctrl &= ~NAND_CTRL_CHANGE;
572 chip->cmd_ctrl(mtd, column >> 8, ctrl);
574 if (page_addr != -1) {
575 chip->cmd_ctrl(mtd, page_addr, ctrl);
576 chip->cmd_ctrl(mtd, page_addr >> 8,
577 NAND_NCE | NAND_ALE);
578 /* One more address cycle for devices > 128MiB */
579 if (chip->chipsize > (128 << 20))
580 chip->cmd_ctrl(mtd, page_addr >> 16,
581 NAND_NCE | NAND_ALE);
584 chip->cmd_ctrl(mtd, NAND_CMD_NONE, NAND_NCE | NAND_CTRL_CHANGE);
587 * program and erase have their own busy handlers
588 * status, sequential in, and deplete1 need no delay
590 switch (command) {
592 case NAND_CMD_CACHEDPROG:
593 case NAND_CMD_PAGEPROG:
594 case NAND_CMD_ERASE1:
595 case NAND_CMD_ERASE2:
596 case NAND_CMD_SEQIN:
597 case NAND_CMD_RNDIN:
598 case NAND_CMD_STATUS:
599 case NAND_CMD_DEPLETE1:
600 return;
603 * read error status commands require only a short delay
605 case NAND_CMD_STATUS_ERROR:
606 case NAND_CMD_STATUS_ERROR0:
607 case NAND_CMD_STATUS_ERROR1:
608 case NAND_CMD_STATUS_ERROR2:
609 case NAND_CMD_STATUS_ERROR3:
610 udelay(chip->chip_delay);
611 return;
613 case NAND_CMD_RESET:
614 if (chip->dev_ready)
615 break;
616 udelay(chip->chip_delay);
617 chip->cmd_ctrl(mtd, NAND_CMD_STATUS,
618 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
619 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
620 NAND_NCE | NAND_CTRL_CHANGE);
621 while (!(chip->read_byte(mtd) & NAND_STATUS_READY)) ;
622 return;
624 case NAND_CMD_RNDOUT:
625 /* No ready / busy check necessary */
626 chip->cmd_ctrl(mtd, NAND_CMD_RNDOUTSTART,
627 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
628 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
629 NAND_NCE | NAND_CTRL_CHANGE);
630 return;
632 case NAND_CMD_READ0:
633 chip->cmd_ctrl(mtd, NAND_CMD_READSTART,
634 NAND_NCE | NAND_CLE | NAND_CTRL_CHANGE);
635 chip->cmd_ctrl(mtd, NAND_CMD_NONE,
636 NAND_NCE | NAND_CTRL_CHANGE);
638 /* This applies to read commands */
639 default:
641 * If we don't have access to the busy pin, we apply the given
642 * command delay
644 if (!chip->dev_ready) {
645 udelay(chip->chip_delay);
646 return;
650 /* Apply this short delay always to ensure that we do wait tWB in
651 * any case on any machine. */
652 ndelay(100);
654 nand_wait_ready(mtd);
658 * nand_get_device - [GENERIC] Get chip for selected access
659 * @chip: the nand chip descriptor
660 * @mtd: MTD device structure
661 * @new_state: the state which is requested
663 * Get the device and lock it for exclusive access
665 static int
666 nand_get_device(struct nand_chip *chip, struct mtd_info *mtd, int new_state)
668 spinlock_t *lock = &chip->controller->lock;
669 wait_queue_head_t *wq = &chip->controller->wq;
670 DECLARE_WAITQUEUE(wait, current);
671 retry:
672 spin_lock(lock);
674 /* Hardware controller shared among independend devices */
675 /* Hardware controller shared among independend devices */
676 if (!chip->controller->active)
677 chip->controller->active = chip;
679 if (chip->controller->active == chip && chip->state == FL_READY) {
680 chip->state = new_state;
681 spin_unlock(lock);
682 return 0;
684 if (new_state == FL_PM_SUSPENDED) {
685 spin_unlock(lock);
686 return (chip->state == FL_PM_SUSPENDED) ? 0 : -EAGAIN;
688 set_current_state(TASK_UNINTERRUPTIBLE);
689 add_wait_queue(wq, &wait);
690 spin_unlock(lock);
691 schedule();
692 remove_wait_queue(wq, &wait);
693 goto retry;
697 * nand_wait - [DEFAULT] wait until the command is done
698 * @mtd: MTD device structure
699 * @chip: NAND chip structure
701 * Wait for command done. This applies to erase and program only
702 * Erase can take up to 400ms and program up to 20ms according to
703 * general NAND and SmartMedia specs
705 static int nand_wait(struct mtd_info *mtd, struct nand_chip *chip)
708 unsigned long timeo = jiffies;
709 int status, state = chip->state;
711 if (state == FL_ERASING)
712 timeo += (HZ * 400) / 1000;
713 else
714 timeo += (HZ * 20) / 1000;
716 led_trigger_event(nand_led_trigger, LED_FULL);
718 /* Apply this short delay always to ensure that we do wait tWB in
719 * any case on any machine. */
720 ndelay(100);
722 if ((state == FL_ERASING) && (chip->options & NAND_IS_AND))
723 chip->cmdfunc(mtd, NAND_CMD_STATUS_MULTI, -1, -1);
724 else
725 chip->cmdfunc(mtd, NAND_CMD_STATUS, -1, -1);
727 while (time_before(jiffies, timeo)) {
728 if (chip->dev_ready) {
729 if (chip->dev_ready(mtd))
730 break;
731 } else {
732 if (chip->read_byte(mtd) & NAND_STATUS_READY)
733 break;
735 cond_resched();
737 led_trigger_event(nand_led_trigger, LED_OFF);
739 status = (int)chip->read_byte(mtd);
740 return status;
744 * nand_read_page_raw - [Intern] read raw page data without ecc
745 * @mtd: mtd info structure
746 * @chip: nand chip info structure
747 * @buf: buffer to store read data
749 static int nand_read_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
750 uint8_t *buf)
752 chip->read_buf(mtd, buf, mtd->writesize);
753 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
754 return 0;
758 * nand_read_page_swecc - [REPLACABLE] software ecc based page read function
759 * @mtd: mtd info structure
760 * @chip: nand chip info structure
761 * @buf: buffer to store read data
763 static int nand_read_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
764 uint8_t *buf)
766 int i, eccsize = chip->ecc.size;
767 int eccbytes = chip->ecc.bytes;
768 int eccsteps = chip->ecc.steps;
769 uint8_t *p = buf;
770 uint8_t *ecc_calc = chip->buffers->ecccalc;
771 uint8_t *ecc_code = chip->buffers->ecccode;
772 int *eccpos = chip->ecc.layout->eccpos;
774 nand_read_page_raw(mtd, chip, buf);
776 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
777 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
779 for (i = 0; i < chip->ecc.total; i++)
780 ecc_code[i] = chip->oob_poi[eccpos[i]];
782 eccsteps = chip->ecc.steps;
783 p = buf;
785 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
786 int stat;
788 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
789 if (stat == -1)
790 mtd->ecc_stats.failed++;
791 else
792 mtd->ecc_stats.corrected += stat;
794 return 0;
798 * nand_read_page_hwecc - [REPLACABLE] hardware ecc based page read function
799 * @mtd: mtd info structure
800 * @chip: nand chip info structure
801 * @buf: buffer to store read data
803 * Not for syndrome calculating ecc controllers which need a special oob layout
805 static int nand_read_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
806 uint8_t *buf)
808 int i, eccsize = chip->ecc.size;
809 int eccbytes = chip->ecc.bytes;
810 int eccsteps = chip->ecc.steps;
811 uint8_t *p = buf;
812 uint8_t *ecc_calc = chip->buffers->ecccalc;
813 uint8_t *ecc_code = chip->buffers->ecccode;
814 int *eccpos = chip->ecc.layout->eccpos;
816 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
817 chip->ecc.hwctl(mtd, NAND_ECC_READ);
818 chip->read_buf(mtd, p, eccsize);
819 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
821 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
823 for (i = 0; i < chip->ecc.total; i++)
824 ecc_code[i] = chip->oob_poi[eccpos[i]];
826 eccsteps = chip->ecc.steps;
827 p = buf;
829 for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
830 int stat;
832 stat = chip->ecc.correct(mtd, p, &ecc_code[i], &ecc_calc[i]);
833 if (stat == -1)
834 mtd->ecc_stats.failed++;
835 else
836 mtd->ecc_stats.corrected += stat;
838 return 0;
842 * nand_read_page_syndrome - [REPLACABLE] hardware ecc syndrom based page read
843 * @mtd: mtd info structure
844 * @chip: nand chip info structure
845 * @buf: buffer to store read data
847 * The hw generator calculates the error syndrome automatically. Therefor
848 * we need a special oob layout and handling.
850 static int nand_read_page_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
851 uint8_t *buf)
853 int i, eccsize = chip->ecc.size;
854 int eccbytes = chip->ecc.bytes;
855 int eccsteps = chip->ecc.steps;
856 uint8_t *p = buf;
857 uint8_t *oob = chip->oob_poi;
859 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
860 int stat;
862 chip->ecc.hwctl(mtd, NAND_ECC_READ);
863 chip->read_buf(mtd, p, eccsize);
865 if (chip->ecc.prepad) {
866 chip->read_buf(mtd, oob, chip->ecc.prepad);
867 oob += chip->ecc.prepad;
870 chip->ecc.hwctl(mtd, NAND_ECC_READSYN);
871 chip->read_buf(mtd, oob, eccbytes);
872 stat = chip->ecc.correct(mtd, p, oob, NULL);
874 if (stat == -1)
875 mtd->ecc_stats.failed++;
876 else
877 mtd->ecc_stats.corrected += stat;
879 oob += eccbytes;
881 if (chip->ecc.postpad) {
882 chip->read_buf(mtd, oob, chip->ecc.postpad);
883 oob += chip->ecc.postpad;
887 /* Calculate remaining oob bytes */
888 i = mtd->oobsize - (oob - chip->oob_poi);
889 if (i)
890 chip->read_buf(mtd, oob, i);
892 return 0;
896 * nand_transfer_oob - [Internal] Transfer oob to client buffer
897 * @chip: nand chip structure
898 * @oob: oob destination address
899 * @ops: oob ops structure
900 * @len: size of oob to transfer
902 static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
903 struct mtd_oob_ops *ops, size_t len)
905 switch(ops->mode) {
907 case MTD_OOB_PLACE:
908 case MTD_OOB_RAW:
909 memcpy(oob, chip->oob_poi + ops->ooboffs, len);
910 return oob + len;
912 case MTD_OOB_AUTO: {
913 struct nand_oobfree *free = chip->ecc.layout->oobfree;
914 uint32_t boffs = 0, roffs = ops->ooboffs;
915 size_t bytes = 0;
917 for(; free->length && len; free++, len -= bytes) {
918 /* Read request not from offset 0 ? */
919 if (unlikely(roffs)) {
920 if (roffs >= free->length) {
921 roffs -= free->length;
922 continue;
924 boffs = free->offset + roffs;
925 bytes = min_t(size_t, len,
926 (free->length - roffs));
927 roffs = 0;
928 } else {
929 bytes = min_t(size_t, len, free->length);
930 boffs = free->offset;
932 memcpy(oob, chip->oob_poi + boffs, bytes);
933 oob += bytes;
935 return oob;
937 default:
938 BUG();
940 return NULL;
944 * nand_do_read_ops - [Internal] Read data with ECC
946 * @mtd: MTD device structure
947 * @from: offset to read from
948 * @ops: oob ops structure
950 * Internal function. Called with chip held.
952 static int nand_do_read_ops(struct mtd_info *mtd, loff_t from,
953 struct mtd_oob_ops *ops)
955 int chipnr, page, realpage, col, bytes, aligned;
956 struct nand_chip *chip = mtd->priv;
957 struct mtd_ecc_stats stats;
958 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
959 int sndcmd = 1;
960 int ret = 0;
961 uint32_t readlen = ops->len;
962 uint32_t oobreadlen = ops->ooblen;
963 uint8_t *bufpoi, *oob, *buf;
965 stats = mtd->ecc_stats;
967 chipnr = (int)(from >> chip->chip_shift);
968 chip->select_chip(mtd, chipnr);
970 realpage = (int)(from >> chip->page_shift);
971 page = realpage & chip->pagemask;
973 col = (int)(from & (mtd->writesize - 1));
975 buf = ops->datbuf;
976 oob = ops->oobbuf;
978 while(1) {
979 bytes = min(mtd->writesize - col, readlen);
980 aligned = (bytes == mtd->writesize);
982 /* Is the current page in the buffer ? */
983 if (realpage != chip->pagebuf || oob) {
984 bufpoi = aligned ? buf : chip->buffers->databuf;
986 if (likely(sndcmd)) {
987 chip->cmdfunc(mtd, NAND_CMD_READ0, 0x00, page);
988 sndcmd = 0;
991 /* Now read the page into the buffer */
992 if (unlikely(ops->mode == MTD_OOB_RAW))
993 ret = chip->ecc.read_page_raw(mtd, chip, bufpoi);
994 else
995 ret = chip->ecc.read_page(mtd, chip, bufpoi);
996 if (ret < 0)
997 break;
999 /* Transfer not aligned data */
1000 if (!aligned) {
1001 chip->pagebuf = realpage;
1002 memcpy(buf, chip->buffers->databuf + col, bytes);
1005 buf += bytes;
1007 if (unlikely(oob)) {
1008 /* Raw mode does data:oob:data:oob */
1009 if (ops->mode != MTD_OOB_RAW) {
1010 int toread = min(oobreadlen,
1011 chip->ecc.layout->oobavail);
1012 if (toread) {
1013 oob = nand_transfer_oob(chip,
1014 oob, ops, toread);
1015 oobreadlen -= toread;
1017 } else
1018 buf = nand_transfer_oob(chip,
1019 buf, ops, mtd->oobsize);
1022 if (!(chip->options & NAND_NO_READRDY)) {
1024 * Apply delay or wait for ready/busy pin. Do
1025 * this before the AUTOINCR check, so no
1026 * problems arise if a chip which does auto
1027 * increment is marked as NOAUTOINCR by the
1028 * board driver.
1030 if (!chip->dev_ready)
1031 udelay(chip->chip_delay);
1032 else
1033 nand_wait_ready(mtd);
1035 } else {
1036 memcpy(buf, chip->buffers->databuf + col, bytes);
1037 buf += bytes;
1040 readlen -= bytes;
1042 if (!readlen)
1043 break;
1045 /* For subsequent reads align to page boundary. */
1046 col = 0;
1047 /* Increment page address */
1048 realpage++;
1050 page = realpage & chip->pagemask;
1051 /* Check, if we cross a chip boundary */
1052 if (!page) {
1053 chipnr++;
1054 chip->select_chip(mtd, -1);
1055 chip->select_chip(mtd, chipnr);
1058 /* Check, if the chip supports auto page increment
1059 * or if we have hit a block boundary.
1061 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1062 sndcmd = 1;
1065 ops->retlen = ops->len - (size_t) readlen;
1066 if (oob)
1067 ops->oobretlen = ops->ooblen - oobreadlen;
1069 if (ret)
1070 return ret;
1072 if (mtd->ecc_stats.failed - stats.failed)
1073 return -EBADMSG;
1075 return mtd->ecc_stats.corrected - stats.corrected ? -EUCLEAN : 0;
1079 * nand_read - [MTD Interface] MTD compability function for nand_do_read_ecc
1080 * @mtd: MTD device structure
1081 * @from: offset to read from
1082 * @len: number of bytes to read
1083 * @retlen: pointer to variable to store the number of read bytes
1084 * @buf: the databuffer to put data
1086 * Get hold of the chip and call nand_do_read
1088 static int nand_read(struct mtd_info *mtd, loff_t from, size_t len,
1089 size_t *retlen, uint8_t *buf)
1091 struct nand_chip *chip = mtd->priv;
1092 int ret;
1094 /* Do not allow reads past end of device */
1095 if ((from + len) > mtd->size)
1096 return -EINVAL;
1097 if (!len)
1098 return 0;
1100 nand_get_device(chip, mtd, FL_READING);
1102 chip->ops.len = len;
1103 chip->ops.datbuf = buf;
1104 chip->ops.oobbuf = NULL;
1106 ret = nand_do_read_ops(mtd, from, &chip->ops);
1108 *retlen = chip->ops.retlen;
1110 nand_release_device(mtd);
1112 return ret;
1116 * nand_read_oob_std - [REPLACABLE] the most common OOB data read function
1117 * @mtd: mtd info structure
1118 * @chip: nand chip info structure
1119 * @page: page number to read
1120 * @sndcmd: flag whether to issue read command or not
1122 static int nand_read_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1123 int page, int sndcmd)
1125 if (sndcmd) {
1126 chip->cmdfunc(mtd, NAND_CMD_READOOB, 0, page);
1127 sndcmd = 0;
1129 chip->read_buf(mtd, chip->oob_poi, mtd->oobsize);
1130 return sndcmd;
1134 * nand_read_oob_syndrome - [REPLACABLE] OOB data read function for HW ECC
1135 * with syndromes
1136 * @mtd: mtd info structure
1137 * @chip: nand chip info structure
1138 * @page: page number to read
1139 * @sndcmd: flag whether to issue read command or not
1141 static int nand_read_oob_syndrome(struct mtd_info *mtd, struct nand_chip *chip,
1142 int page, int sndcmd)
1144 uint8_t *buf = chip->oob_poi;
1145 int length = mtd->oobsize;
1146 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1147 int eccsize = chip->ecc.size;
1148 uint8_t *bufpoi = buf;
1149 int i, toread, sndrnd = 0, pos;
1151 chip->cmdfunc(mtd, NAND_CMD_READ0, chip->ecc.size, page);
1152 for (i = 0; i < chip->ecc.steps; i++) {
1153 if (sndrnd) {
1154 pos = eccsize + i * (eccsize + chunk);
1155 if (mtd->writesize > 512)
1156 chip->cmdfunc(mtd, NAND_CMD_RNDOUT, pos, -1);
1157 else
1158 chip->cmdfunc(mtd, NAND_CMD_READ0, pos, page);
1159 } else
1160 sndrnd = 1;
1161 toread = min_t(int, length, chunk);
1162 chip->read_buf(mtd, bufpoi, toread);
1163 bufpoi += toread;
1164 length -= toread;
1166 if (length > 0)
1167 chip->read_buf(mtd, bufpoi, length);
1169 return 1;
1173 * nand_write_oob_std - [REPLACABLE] the most common OOB data write function
1174 * @mtd: mtd info structure
1175 * @chip: nand chip info structure
1176 * @page: page number to write
1178 static int nand_write_oob_std(struct mtd_info *mtd, struct nand_chip *chip,
1179 int page)
1181 int status = 0;
1182 const uint8_t *buf = chip->oob_poi;
1183 int length = mtd->oobsize;
1185 chip->cmdfunc(mtd, NAND_CMD_SEQIN, mtd->writesize, page);
1186 chip->write_buf(mtd, buf, length);
1187 /* Send command to program the OOB data */
1188 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1190 status = chip->waitfunc(mtd, chip);
1192 return status & NAND_STATUS_FAIL ? -EIO : 0;
1196 * nand_write_oob_syndrome - [REPLACABLE] OOB data write function for HW ECC
1197 * with syndrome - only for large page flash !
1198 * @mtd: mtd info structure
1199 * @chip: nand chip info structure
1200 * @page: page number to write
1202 static int nand_write_oob_syndrome(struct mtd_info *mtd,
1203 struct nand_chip *chip, int page)
1205 int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
1206 int eccsize = chip->ecc.size, length = mtd->oobsize;
1207 int i, len, pos, status = 0, sndcmd = 0, steps = chip->ecc.steps;
1208 const uint8_t *bufpoi = chip->oob_poi;
1211 * data-ecc-data-ecc ... ecc-oob
1212 * or
1213 * data-pad-ecc-pad-data-pad .... ecc-pad-oob
1215 if (!chip->ecc.prepad && !chip->ecc.postpad) {
1216 pos = steps * (eccsize + chunk);
1217 steps = 0;
1218 } else
1219 pos = eccsize;
1221 chip->cmdfunc(mtd, NAND_CMD_SEQIN, pos, page);
1222 for (i = 0; i < steps; i++) {
1223 if (sndcmd) {
1224 if (mtd->writesize <= 512) {
1225 uint32_t fill = 0xFFFFFFFF;
1227 len = eccsize;
1228 while (len > 0) {
1229 int num = min_t(int, len, 4);
1230 chip->write_buf(mtd, (uint8_t *)&fill,
1231 num);
1232 len -= num;
1234 } else {
1235 pos = eccsize + i * (eccsize + chunk);
1236 chip->cmdfunc(mtd, NAND_CMD_RNDIN, pos, -1);
1238 } else
1239 sndcmd = 1;
1240 len = min_t(int, length, chunk);
1241 chip->write_buf(mtd, bufpoi, len);
1242 bufpoi += len;
1243 length -= len;
1245 if (length > 0)
1246 chip->write_buf(mtd, bufpoi, length);
1248 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1249 status = chip->waitfunc(mtd, chip);
1251 return status & NAND_STATUS_FAIL ? -EIO : 0;
1255 * nand_do_read_oob - [Intern] NAND read out-of-band
1256 * @mtd: MTD device structure
1257 * @from: offset to read from
1258 * @ops: oob operations description structure
1260 * NAND read out-of-band data from the spare area
1262 static int nand_do_read_oob(struct mtd_info *mtd, loff_t from,
1263 struct mtd_oob_ops *ops)
1265 int page, realpage, chipnr, sndcmd = 1;
1266 struct nand_chip *chip = mtd->priv;
1267 int blkcheck = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1268 int readlen = ops->ooblen;
1269 int len;
1270 uint8_t *buf = ops->oobbuf;
1272 DEBUG(MTD_DEBUG_LEVEL3, "nand_read_oob: from = 0x%08Lx, len = %i\n",
1273 (unsigned long long)from, readlen);
1275 if (ops->mode == MTD_OOB_RAW)
1276 len = mtd->oobsize;
1277 else
1278 len = chip->ecc.layout->oobavail;
1280 chipnr = (int)(from >> chip->chip_shift);
1281 chip->select_chip(mtd, chipnr);
1283 /* Shift to get page */
1284 realpage = (int)(from >> chip->page_shift);
1285 page = realpage & chip->pagemask;
1287 while(1) {
1288 sndcmd = chip->ecc.read_oob(mtd, chip, page, sndcmd);
1290 len = min(len, readlen);
1291 buf = nand_transfer_oob(chip, buf, ops, len);
1293 if (!(chip->options & NAND_NO_READRDY)) {
1295 * Apply delay or wait for ready/busy pin. Do this
1296 * before the AUTOINCR check, so no problems arise if a
1297 * chip which does auto increment is marked as
1298 * NOAUTOINCR by the board driver.
1300 if (!chip->dev_ready)
1301 udelay(chip->chip_delay);
1302 else
1303 nand_wait_ready(mtd);
1306 readlen -= len;
1307 if (!readlen)
1308 break;
1310 /* Increment page address */
1311 realpage++;
1313 page = realpage & chip->pagemask;
1314 /* Check, if we cross a chip boundary */
1315 if (!page) {
1316 chipnr++;
1317 chip->select_chip(mtd, -1);
1318 chip->select_chip(mtd, chipnr);
1321 /* Check, if the chip supports auto page increment
1322 * or if we have hit a block boundary.
1324 if (!NAND_CANAUTOINCR(chip) || !(page & blkcheck))
1325 sndcmd = 1;
1328 ops->oobretlen = ops->ooblen;
1329 return 0;
1333 * nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
1334 * @mtd: MTD device structure
1335 * @from: offset to read from
1336 * @ops: oob operation description structure
1338 * NAND read data and/or out-of-band data
1340 static int nand_read_oob(struct mtd_info *mtd, loff_t from,
1341 struct mtd_oob_ops *ops)
1343 struct nand_chip *chip = mtd->priv;
1344 int ret = -ENOTSUPP;
1346 ops->retlen = 0;
1348 /* Do not allow reads past end of device */
1349 if (ops->datbuf && (from + ops->len) > mtd->size) {
1350 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1351 "Attempt read beyond end of device\n");
1352 return -EINVAL;
1355 nand_get_device(chip, mtd, FL_READING);
1357 switch(ops->mode) {
1358 case MTD_OOB_PLACE:
1359 case MTD_OOB_AUTO:
1360 case MTD_OOB_RAW:
1361 break;
1363 default:
1364 goto out;
1367 if (!ops->datbuf)
1368 ret = nand_do_read_oob(mtd, from, ops);
1369 else
1370 ret = nand_do_read_ops(mtd, from, ops);
1372 out:
1373 nand_release_device(mtd);
1374 return ret;
1379 * nand_write_page_raw - [Intern] raw page write function
1380 * @mtd: mtd info structure
1381 * @chip: nand chip info structure
1382 * @buf: data buffer
1384 static void nand_write_page_raw(struct mtd_info *mtd, struct nand_chip *chip,
1385 const uint8_t *buf)
1387 chip->write_buf(mtd, buf, mtd->writesize);
1388 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1392 * nand_write_page_swecc - [REPLACABLE] software ecc based page write function
1393 * @mtd: mtd info structure
1394 * @chip: nand chip info structure
1395 * @buf: data buffer
1397 static void nand_write_page_swecc(struct mtd_info *mtd, struct nand_chip *chip,
1398 const uint8_t *buf)
1400 int i, eccsize = chip->ecc.size;
1401 int eccbytes = chip->ecc.bytes;
1402 int eccsteps = chip->ecc.steps;
1403 uint8_t *ecc_calc = chip->buffers->ecccalc;
1404 const uint8_t *p = buf;
1405 int *eccpos = chip->ecc.layout->eccpos;
1407 /* Software ecc calculation */
1408 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
1409 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1411 for (i = 0; i < chip->ecc.total; i++)
1412 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1414 nand_write_page_raw(mtd, chip, buf);
1418 * nand_write_page_hwecc - [REPLACABLE] hardware ecc based page write function
1419 * @mtd: mtd info structure
1420 * @chip: nand chip info structure
1421 * @buf: data buffer
1423 static void nand_write_page_hwecc(struct mtd_info *mtd, struct nand_chip *chip,
1424 const uint8_t *buf)
1426 int i, eccsize = chip->ecc.size;
1427 int eccbytes = chip->ecc.bytes;
1428 int eccsteps = chip->ecc.steps;
1429 uint8_t *ecc_calc = chip->buffers->ecccalc;
1430 const uint8_t *p = buf;
1431 int *eccpos = chip->ecc.layout->eccpos;
1433 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1434 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1435 chip->write_buf(mtd, p, eccsize);
1436 chip->ecc.calculate(mtd, p, &ecc_calc[i]);
1439 for (i = 0; i < chip->ecc.total; i++)
1440 chip->oob_poi[eccpos[i]] = ecc_calc[i];
1442 chip->write_buf(mtd, chip->oob_poi, mtd->oobsize);
1446 * nand_write_page_syndrome - [REPLACABLE] hardware ecc syndrom based page write
1447 * @mtd: mtd info structure
1448 * @chip: nand chip info structure
1449 * @buf: data buffer
1451 * The hw generator calculates the error syndrome automatically. Therefor
1452 * we need a special oob layout and handling.
1454 static void nand_write_page_syndrome(struct mtd_info *mtd,
1455 struct nand_chip *chip, const uint8_t *buf)
1457 int i, eccsize = chip->ecc.size;
1458 int eccbytes = chip->ecc.bytes;
1459 int eccsteps = chip->ecc.steps;
1460 const uint8_t *p = buf;
1461 uint8_t *oob = chip->oob_poi;
1463 for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
1465 chip->ecc.hwctl(mtd, NAND_ECC_WRITE);
1466 chip->write_buf(mtd, p, eccsize);
1468 if (chip->ecc.prepad) {
1469 chip->write_buf(mtd, oob, chip->ecc.prepad);
1470 oob += chip->ecc.prepad;
1473 chip->ecc.calculate(mtd, p, oob);
1474 chip->write_buf(mtd, oob, eccbytes);
1475 oob += eccbytes;
1477 if (chip->ecc.postpad) {
1478 chip->write_buf(mtd, oob, chip->ecc.postpad);
1479 oob += chip->ecc.postpad;
1483 /* Calculate remaining oob bytes */
1484 i = mtd->oobsize - (oob - chip->oob_poi);
1485 if (i)
1486 chip->write_buf(mtd, oob, i);
1490 * nand_write_page - [REPLACEABLE] write one page
1491 * @mtd: MTD device structure
1492 * @chip: NAND chip descriptor
1493 * @buf: the data to write
1494 * @page: page number to write
1495 * @cached: cached programming
1497 static int nand_write_page(struct mtd_info *mtd, struct nand_chip *chip,
1498 const uint8_t *buf, int page, int cached, int raw)
1500 int status;
1502 chip->cmdfunc(mtd, NAND_CMD_SEQIN, 0x00, page);
1504 if (unlikely(raw))
1505 chip->ecc.write_page_raw(mtd, chip, buf);
1506 else
1507 chip->ecc.write_page(mtd, chip, buf);
1510 * Cached progamming disabled for now, Not sure if its worth the
1511 * trouble. The speed gain is not very impressive. (2.3->2.6Mib/s)
1513 cached = 0;
1515 if (!cached || !(chip->options & NAND_CACHEPRG)) {
1517 chip->cmdfunc(mtd, NAND_CMD_PAGEPROG, -1, -1);
1518 status = chip->waitfunc(mtd, chip);
1520 * See if operation failed and additional status checks are
1521 * available
1523 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1524 status = chip->errstat(mtd, chip, FL_WRITING, status,
1525 page);
1527 if (status & NAND_STATUS_FAIL)
1528 return -EIO;
1529 } else {
1530 chip->cmdfunc(mtd, NAND_CMD_CACHEDPROG, -1, -1);
1531 status = chip->waitfunc(mtd, chip);
1534 #ifdef CONFIG_MTD_NAND_VERIFY_WRITE
1535 /* Send command to read back the data */
1536 chip->cmdfunc(mtd, NAND_CMD_READ0, 0, page);
1538 if (chip->verify_buf(mtd, buf, mtd->writesize))
1539 return -EIO;
1540 #endif
1541 return 0;
1545 * nand_fill_oob - [Internal] Transfer client buffer to oob
1546 * @chip: nand chip structure
1547 * @oob: oob data buffer
1548 * @ops: oob ops structure
1550 static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob,
1551 struct mtd_oob_ops *ops)
1553 size_t len = ops->ooblen;
1555 switch(ops->mode) {
1557 case MTD_OOB_PLACE:
1558 case MTD_OOB_RAW:
1559 memcpy(chip->oob_poi + ops->ooboffs, oob, len);
1560 return oob + len;
1562 case MTD_OOB_AUTO: {
1563 struct nand_oobfree *free = chip->ecc.layout->oobfree;
1564 uint32_t boffs = 0, woffs = ops->ooboffs;
1565 size_t bytes = 0;
1567 for(; free->length && len; free++, len -= bytes) {
1568 /* Write request not from offset 0 ? */
1569 if (unlikely(woffs)) {
1570 if (woffs >= free->length) {
1571 woffs -= free->length;
1572 continue;
1574 boffs = free->offset + woffs;
1575 bytes = min_t(size_t, len,
1576 (free->length - woffs));
1577 woffs = 0;
1578 } else {
1579 bytes = min_t(size_t, len, free->length);
1580 boffs = free->offset;
1582 memcpy(chip->oob_poi + boffs, oob, bytes);
1583 oob += bytes;
1585 return oob;
1587 default:
1588 BUG();
1590 return NULL;
1593 #define NOTALIGNED(x) (x & (chip->subpagesize - 1)) != 0
1596 * nand_do_write_ops - [Internal] NAND write with ECC
1597 * @mtd: MTD device structure
1598 * @to: offset to write to
1599 * @ops: oob operations description structure
1601 * NAND write with ECC
1603 static int nand_do_write_ops(struct mtd_info *mtd, loff_t to,
1604 struct mtd_oob_ops *ops)
1606 int chipnr, realpage, page, blockmask, column;
1607 struct nand_chip *chip = mtd->priv;
1608 uint32_t writelen = ops->len;
1609 uint8_t *oob = ops->oobbuf;
1610 uint8_t *buf = ops->datbuf;
1611 int ret, subpage;
1613 ops->retlen = 0;
1614 if (!writelen)
1615 return 0;
1617 /* reject writes, which are not page aligned */
1618 if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
1619 printk(KERN_NOTICE "nand_write: "
1620 "Attempt to write not page aligned data\n");
1621 return -EINVAL;
1624 column = to & (mtd->writesize - 1);
1625 subpage = column || (writelen & (mtd->writesize - 1));
1627 if (subpage && oob)
1628 return -EINVAL;
1630 chipnr = (int)(to >> chip->chip_shift);
1631 chip->select_chip(mtd, chipnr);
1633 /* Check, if it is write protected */
1634 if (nand_check_wp(mtd))
1635 return -EIO;
1637 realpage = (int)(to >> chip->page_shift);
1638 page = realpage & chip->pagemask;
1639 blockmask = (1 << (chip->phys_erase_shift - chip->page_shift)) - 1;
1641 /* Invalidate the page cache, when we write to the cached page */
1642 if (to <= (chip->pagebuf << chip->page_shift) &&
1643 (chip->pagebuf << chip->page_shift) < (to + ops->len))
1644 chip->pagebuf = -1;
1646 /* If we're not given explicit OOB data, let it be 0xFF */
1647 if (likely(!oob))
1648 memset(chip->oob_poi, 0xff, mtd->oobsize);
1650 while(1) {
1651 int bytes = mtd->writesize;
1652 int cached = writelen > bytes && page != blockmask;
1653 uint8_t *wbuf = buf;
1655 /* Partial page write ? */
1656 if (unlikely(column || writelen < (mtd->writesize - 1))) {
1657 cached = 0;
1658 bytes = min_t(int, bytes - column, (int) writelen);
1659 chip->pagebuf = -1;
1660 memset(chip->buffers->databuf, 0xff, mtd->writesize);
1661 memcpy(&chip->buffers->databuf[column], buf, bytes);
1662 wbuf = chip->buffers->databuf;
1665 if (unlikely(oob))
1666 oob = nand_fill_oob(chip, oob, ops);
1668 ret = chip->write_page(mtd, chip, wbuf, page, cached,
1669 (ops->mode == MTD_OOB_RAW));
1670 if (ret)
1671 break;
1673 writelen -= bytes;
1674 if (!writelen)
1675 break;
1677 column = 0;
1678 buf += bytes;
1679 realpage++;
1681 page = realpage & chip->pagemask;
1682 /* Check, if we cross a chip boundary */
1683 if (!page) {
1684 chipnr++;
1685 chip->select_chip(mtd, -1);
1686 chip->select_chip(mtd, chipnr);
1690 ops->retlen = ops->len - writelen;
1691 if (unlikely(oob))
1692 ops->oobretlen = ops->ooblen;
1693 return ret;
1697 * nand_write - [MTD Interface] NAND write with ECC
1698 * @mtd: MTD device structure
1699 * @to: offset to write to
1700 * @len: number of bytes to write
1701 * @retlen: pointer to variable to store the number of written bytes
1702 * @buf: the data to write
1704 * NAND write with ECC
1706 static int nand_write(struct mtd_info *mtd, loff_t to, size_t len,
1707 size_t *retlen, const uint8_t *buf)
1709 struct nand_chip *chip = mtd->priv;
1710 int ret;
1712 /* Do not allow reads past end of device */
1713 if ((to + len) > mtd->size)
1714 return -EINVAL;
1715 if (!len)
1716 return 0;
1718 nand_get_device(chip, mtd, FL_WRITING);
1720 chip->ops.len = len;
1721 chip->ops.datbuf = (uint8_t *)buf;
1722 chip->ops.oobbuf = NULL;
1724 ret = nand_do_write_ops(mtd, to, &chip->ops);
1726 *retlen = chip->ops.retlen;
1728 nand_release_device(mtd);
1730 return ret;
1734 * nand_do_write_oob - [MTD Interface] NAND write out-of-band
1735 * @mtd: MTD device structure
1736 * @to: offset to write to
1737 * @ops: oob operation description structure
1739 * NAND write out-of-band
1741 static int nand_do_write_oob(struct mtd_info *mtd, loff_t to,
1742 struct mtd_oob_ops *ops)
1744 int chipnr, page, status;
1745 struct nand_chip *chip = mtd->priv;
1747 DEBUG(MTD_DEBUG_LEVEL3, "nand_write_oob: to = 0x%08x, len = %i\n",
1748 (unsigned int)to, (int)ops->ooblen);
1750 /* Do not allow write past end of page */
1751 if ((ops->ooboffs + ops->ooblen) > mtd->oobsize) {
1752 DEBUG(MTD_DEBUG_LEVEL0, "nand_write_oob: "
1753 "Attempt to write past end of page\n");
1754 return -EINVAL;
1757 chipnr = (int)(to >> chip->chip_shift);
1758 chip->select_chip(mtd, chipnr);
1760 /* Shift to get page */
1761 page = (int)(to >> chip->page_shift);
1764 * Reset the chip. Some chips (like the Toshiba TC5832DC found in one
1765 * of my DiskOnChip 2000 test units) will clear the whole data page too
1766 * if we don't do this. I have no clue why, but I seem to have 'fixed'
1767 * it in the doc2000 driver in August 1999. dwmw2.
1769 chip->cmdfunc(mtd, NAND_CMD_RESET, -1, -1);
1771 /* Check, if it is write protected */
1772 if (nand_check_wp(mtd))
1773 return -EROFS;
1775 /* Invalidate the page cache, if we write to the cached page */
1776 if (page == chip->pagebuf)
1777 chip->pagebuf = -1;
1779 memset(chip->oob_poi, 0xff, mtd->oobsize);
1780 nand_fill_oob(chip, ops->oobbuf, ops);
1781 status = chip->ecc.write_oob(mtd, chip, page & chip->pagemask);
1782 memset(chip->oob_poi, 0xff, mtd->oobsize);
1784 if (status)
1785 return status;
1787 ops->oobretlen = ops->ooblen;
1789 return 0;
1793 * nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
1794 * @mtd: MTD device structure
1795 * @to: offset to write to
1796 * @ops: oob operation description structure
1798 static int nand_write_oob(struct mtd_info *mtd, loff_t to,
1799 struct mtd_oob_ops *ops)
1801 struct nand_chip *chip = mtd->priv;
1802 int ret = -ENOTSUPP;
1804 ops->retlen = 0;
1806 /* Do not allow writes past end of device */
1807 if (ops->datbuf && (to + ops->len) > mtd->size) {
1808 DEBUG(MTD_DEBUG_LEVEL0, "nand_read_oob: "
1809 "Attempt read beyond end of device\n");
1810 return -EINVAL;
1813 nand_get_device(chip, mtd, FL_WRITING);
1815 switch(ops->mode) {
1816 case MTD_OOB_PLACE:
1817 case MTD_OOB_AUTO:
1818 case MTD_OOB_RAW:
1819 break;
1821 default:
1822 goto out;
1825 if (!ops->datbuf)
1826 ret = nand_do_write_oob(mtd, to, ops);
1827 else
1828 ret = nand_do_write_ops(mtd, to, ops);
1830 out:
1831 nand_release_device(mtd);
1832 return ret;
1836 * single_erease_cmd - [GENERIC] NAND standard block erase command function
1837 * @mtd: MTD device structure
1838 * @page: the page address of the block which will be erased
1840 * Standard erase command for NAND chips
1842 static void single_erase_cmd(struct mtd_info *mtd, int page)
1844 struct nand_chip *chip = mtd->priv;
1845 /* Send commands to erase a block */
1846 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1847 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1851 * multi_erease_cmd - [GENERIC] AND specific block erase command function
1852 * @mtd: MTD device structure
1853 * @page: the page address of the block which will be erased
1855 * AND multi block erase command function
1856 * Erase 4 consecutive blocks
1858 static void multi_erase_cmd(struct mtd_info *mtd, int page)
1860 struct nand_chip *chip = mtd->priv;
1861 /* Send commands to erase a block */
1862 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1863 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1864 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page++);
1865 chip->cmdfunc(mtd, NAND_CMD_ERASE1, -1, page);
1866 chip->cmdfunc(mtd, NAND_CMD_ERASE2, -1, -1);
1870 * nand_erase - [MTD Interface] erase block(s)
1871 * @mtd: MTD device structure
1872 * @instr: erase instruction
1874 * Erase one ore more blocks
1876 static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
1878 return nand_erase_nand(mtd, instr, 0);
1881 #define BBT_PAGE_MASK 0xffffff3f
1883 * nand_erase_nand - [Internal] erase block(s)
1884 * @mtd: MTD device structure
1885 * @instr: erase instruction
1886 * @allowbbt: allow erasing the bbt area
1888 * Erase one ore more blocks
1890 int nand_erase_nand(struct mtd_info *mtd, struct erase_info *instr,
1891 int allowbbt)
1893 int page, len, status, pages_per_block, ret, chipnr;
1894 struct nand_chip *chip = mtd->priv;
1895 int rewrite_bbt[NAND_MAX_CHIPS]={0};
1896 unsigned int bbt_masked_page = 0xffffffff;
1898 DEBUG(MTD_DEBUG_LEVEL3, "nand_erase: start = 0x%08x, len = %i\n",
1899 (unsigned int)instr->addr, (unsigned int)instr->len);
1901 /* Start address must align on block boundary */
1902 if (instr->addr & ((1 << chip->phys_erase_shift) - 1)) {
1903 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: Unaligned address\n");
1904 return -EINVAL;
1907 /* Length must align on block boundary */
1908 if (instr->len & ((1 << chip->phys_erase_shift) - 1)) {
1909 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1910 "Length not block aligned\n");
1911 return -EINVAL;
1914 /* Do not allow erase past end of device */
1915 if ((instr->len + instr->addr) > mtd->size) {
1916 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1917 "Erase past end of device\n");
1918 return -EINVAL;
1921 instr->fail_addr = 0xffffffff;
1923 /* Grab the lock and see if the device is available */
1924 nand_get_device(chip, mtd, FL_ERASING);
1926 /* Shift to get first page */
1927 page = (int)(instr->addr >> chip->page_shift);
1928 chipnr = (int)(instr->addr >> chip->chip_shift);
1930 /* Calculate pages in each block */
1931 pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
1933 /* Select the NAND device */
1934 chip->select_chip(mtd, chipnr);
1936 /* Check, if it is write protected */
1937 if (nand_check_wp(mtd)) {
1938 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1939 "Device is write protected!!!\n");
1940 instr->state = MTD_ERASE_FAILED;
1941 goto erase_exit;
1945 * If BBT requires refresh, set the BBT page mask to see if the BBT
1946 * should be rewritten. Otherwise the mask is set to 0xffffffff which
1947 * can not be matched. This is also done when the bbt is actually
1948 * erased to avoid recusrsive updates
1950 if (chip->options & BBT_AUTO_REFRESH && !allowbbt)
1951 bbt_masked_page = chip->bbt_td->pages[chipnr] & BBT_PAGE_MASK;
1953 /* Loop through the pages */
1954 len = instr->len;
1956 instr->state = MTD_ERASING;
1958 while (len) {
1960 * heck if we have a bad block, we do not erase bad blocks !
1962 if (nand_block_checkbad(mtd, ((loff_t) page) <<
1963 chip->page_shift, 0, allowbbt)) {
1964 printk(KERN_WARNING "nand_erase: attempt to erase a "
1965 "bad block at page 0x%08x\n", page);
1966 instr->state = MTD_ERASE_FAILED;
1967 goto erase_exit;
1971 * Invalidate the page cache, if we erase the block which
1972 * contains the current cached page
1974 if (page <= chip->pagebuf && chip->pagebuf <
1975 (page + pages_per_block))
1976 chip->pagebuf = -1;
1978 chip->erase_cmd(mtd, page & chip->pagemask);
1980 status = chip->waitfunc(mtd, chip);
1983 * See if operation failed and additional status checks are
1984 * available
1986 if ((status & NAND_STATUS_FAIL) && (chip->errstat))
1987 status = chip->errstat(mtd, chip, FL_ERASING,
1988 status, page);
1990 /* See if block erase succeeded */
1991 if (status & NAND_STATUS_FAIL) {
1992 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase: "
1993 "Failed erase, page 0x%08x\n", page);
1994 instr->state = MTD_ERASE_FAILED;
1995 instr->fail_addr = (page << chip->page_shift);
1996 goto erase_exit;
2000 * If BBT requires refresh, set the BBT rewrite flag to the
2001 * page being erased
2003 if (bbt_masked_page != 0xffffffff &&
2004 (page & BBT_PAGE_MASK) == bbt_masked_page)
2005 rewrite_bbt[chipnr] = (page << chip->page_shift);
2007 /* Increment page address and decrement length */
2008 len -= (1 << chip->phys_erase_shift);
2009 page += pages_per_block;
2011 /* Check, if we cross a chip boundary */
2012 if (len && !(page & chip->pagemask)) {
2013 chipnr++;
2014 chip->select_chip(mtd, -1);
2015 chip->select_chip(mtd, chipnr);
2018 * If BBT requires refresh and BBT-PERCHIP, set the BBT
2019 * page mask to see if this BBT should be rewritten
2021 if (bbt_masked_page != 0xffffffff &&
2022 (chip->bbt_td->options & NAND_BBT_PERCHIP))
2023 bbt_masked_page = chip->bbt_td->pages[chipnr] &
2024 BBT_PAGE_MASK;
2027 instr->state = MTD_ERASE_DONE;
2029 erase_exit:
2031 ret = instr->state == MTD_ERASE_DONE ? 0 : -EIO;
2032 /* Do call back function */
2033 if (!ret)
2034 mtd_erase_callback(instr);
2036 /* Deselect and wake up anyone waiting on the device */
2037 nand_release_device(mtd);
2040 * If BBT requires refresh and erase was successful, rewrite any
2041 * selected bad block tables
2043 if (bbt_masked_page == 0xffffffff || ret)
2044 return ret;
2046 for (chipnr = 0; chipnr < chip->numchips; chipnr++) {
2047 if (!rewrite_bbt[chipnr])
2048 continue;
2049 /* update the BBT for chip */
2050 DEBUG(MTD_DEBUG_LEVEL0, "nand_erase_nand: nand_update_bbt "
2051 "(%d:0x%0x 0x%0x)\n", chipnr, rewrite_bbt[chipnr],
2052 chip->bbt_td->pages[chipnr]);
2053 nand_update_bbt(mtd, rewrite_bbt[chipnr]);
2056 /* Return more or less happy */
2057 return ret;
2061 * nand_sync - [MTD Interface] sync
2062 * @mtd: MTD device structure
2064 * Sync is actually a wait for chip ready function
2066 static void nand_sync(struct mtd_info *mtd)
2068 struct nand_chip *chip = mtd->priv;
2070 DEBUG(MTD_DEBUG_LEVEL3, "nand_sync: called\n");
2072 /* Grab the lock and see if the device is available */
2073 nand_get_device(chip, mtd, FL_SYNCING);
2074 /* Release it and go back */
2075 nand_release_device(mtd);
2079 * nand_block_isbad - [MTD Interface] Check if block at offset is bad
2080 * @mtd: MTD device structure
2081 * @offs: offset relative to mtd start
2083 static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
2085 /* Check for invalid offset */
2086 if (offs > mtd->size)
2087 return -EINVAL;
2089 return nand_block_checkbad(mtd, offs, 1, 0);
2093 * nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
2094 * @mtd: MTD device structure
2095 * @ofs: offset relative to mtd start
2097 static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
2099 struct nand_chip *chip = mtd->priv;
2100 int ret;
2102 if ((ret = nand_block_isbad(mtd, ofs))) {
2103 /* If it was bad already, return success and do nothing. */
2104 if (ret > 0)
2105 return 0;
2106 return ret;
2109 return chip->block_markbad(mtd, ofs);
2113 * nand_suspend - [MTD Interface] Suspend the NAND flash
2114 * @mtd: MTD device structure
2116 static int nand_suspend(struct mtd_info *mtd)
2118 struct nand_chip *chip = mtd->priv;
2120 return nand_get_device(chip, mtd, FL_PM_SUSPENDED);
2124 * nand_resume - [MTD Interface] Resume the NAND flash
2125 * @mtd: MTD device structure
2127 static void nand_resume(struct mtd_info *mtd)
2129 struct nand_chip *chip = mtd->priv;
2131 if (chip->state == FL_PM_SUSPENDED)
2132 nand_release_device(mtd);
2133 else
2134 printk(KERN_ERR "nand_resume() called for a chip which is not "
2135 "in suspended state\n");
2139 * Set default functions
2141 static void nand_set_defaults(struct nand_chip *chip, int busw)
2143 /* check for proper chip_delay setup, set 20us if not */
2144 if (!chip->chip_delay)
2145 chip->chip_delay = 20;
2147 /* check, if a user supplied command function given */
2148 if (chip->cmdfunc == NULL)
2149 chip->cmdfunc = nand_command;
2151 /* check, if a user supplied wait function given */
2152 if (chip->waitfunc == NULL)
2153 chip->waitfunc = nand_wait;
2155 if (!chip->select_chip)
2156 chip->select_chip = nand_select_chip;
2157 if (!chip->read_byte)
2158 chip->read_byte = busw ? nand_read_byte16 : nand_read_byte;
2159 if (!chip->read_word)
2160 chip->read_word = nand_read_word;
2161 if (!chip->block_bad)
2162 chip->block_bad = nand_block_bad;
2163 if (!chip->block_markbad)
2164 chip->block_markbad = nand_default_block_markbad;
2165 if (!chip->write_buf)
2166 chip->write_buf = busw ? nand_write_buf16 : nand_write_buf;
2167 if (!chip->read_buf)
2168 chip->read_buf = busw ? nand_read_buf16 : nand_read_buf;
2169 if (!chip->verify_buf)
2170 chip->verify_buf = busw ? nand_verify_buf16 : nand_verify_buf;
2171 if (!chip->scan_bbt)
2172 chip->scan_bbt = nand_default_bbt;
2174 if (!chip->controller) {
2175 chip->controller = &chip->hwcontrol;
2176 spin_lock_init(&chip->controller->lock);
2177 init_waitqueue_head(&chip->controller->wq);
2183 * Get the flash and manufacturer id and lookup if the type is supported
2185 static struct nand_flash_dev *nand_get_flash_type(struct mtd_info *mtd,
2186 struct nand_chip *chip,
2187 int busw, int *maf_id)
2189 struct nand_flash_dev *type = NULL;
2190 int i, dev_id, maf_idx;
2192 /* Select the device */
2193 chip->select_chip(mtd, 0);
2195 /* Send the command for reading device ID */
2196 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2198 /* Read manufacturer and device IDs */
2199 *maf_id = chip->read_byte(mtd);
2200 dev_id = chip->read_byte(mtd);
2202 /* Lookup the flash id */
2203 for (i = 0; nand_flash_ids[i].name != NULL; i++) {
2204 if (dev_id == nand_flash_ids[i].id) {
2205 type = &nand_flash_ids[i];
2206 break;
2210 if (!type)
2211 return ERR_PTR(-ENODEV);
2213 if (!mtd->name)
2214 mtd->name = type->name;
2216 chip->chipsize = type->chipsize << 20;
2218 /* Newer devices have all the information in additional id bytes */
2219 if (!type->pagesize) {
2220 int extid;
2221 /* The 3rd id byte holds MLC / multichip data */
2222 chip->cellinfo = chip->read_byte(mtd);
2223 /* The 4th id byte is the important one */
2224 extid = chip->read_byte(mtd);
2225 /* Calc pagesize */
2226 mtd->writesize = 1024 << (extid & 0x3);
2227 extid >>= 2;
2228 /* Calc oobsize */
2229 mtd->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
2230 extid >>= 2;
2231 /* Calc blocksize. Blocksize is multiples of 64KiB */
2232 mtd->erasesize = (64 * 1024) << (extid & 0x03);
2233 extid >>= 2;
2234 /* Get buswidth information */
2235 busw = (extid & 0x01) ? NAND_BUSWIDTH_16 : 0;
2237 } else {
2239 * Old devices have chip data hardcoded in the device id table
2241 mtd->erasesize = type->erasesize;
2242 mtd->writesize = type->pagesize;
2243 mtd->oobsize = mtd->writesize / 32;
2244 busw = type->options & NAND_BUSWIDTH_16;
2247 /* Try to identify manufacturer */
2248 for (maf_idx = 0; nand_manuf_ids[maf_idx].id != 0x0; maf_idx++) {
2249 if (nand_manuf_ids[maf_idx].id == *maf_id)
2250 break;
2254 * Check, if buswidth is correct. Hardware drivers should set
2255 * chip correct !
2257 if (busw != (chip->options & NAND_BUSWIDTH_16)) {
2258 printk(KERN_INFO "NAND device: Manufacturer ID:"
2259 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id,
2260 dev_id, nand_manuf_ids[maf_idx].name, mtd->name);
2261 printk(KERN_WARNING "NAND bus width %d instead %d bit\n",
2262 (chip->options & NAND_BUSWIDTH_16) ? 16 : 8,
2263 busw ? 16 : 8);
2264 return ERR_PTR(-EINVAL);
2267 /* Calculate the address shift from the page size */
2268 chip->page_shift = ffs(mtd->writesize) - 1;
2269 /* Convert chipsize to number of pages per chip -1. */
2270 chip->pagemask = (chip->chipsize >> chip->page_shift) - 1;
2272 chip->bbt_erase_shift = chip->phys_erase_shift =
2273 ffs(mtd->erasesize) - 1;
2274 chip->chip_shift = ffs(chip->chipsize) - 1;
2276 /* Set the bad block position */
2277 chip->badblockpos = mtd->writesize > 512 ?
2278 NAND_LARGE_BADBLOCK_POS : NAND_SMALL_BADBLOCK_POS;
2280 /* Get chip options, preserve non chip based options */
2281 chip->options &= ~NAND_CHIPOPTIONS_MSK;
2282 chip->options |= type->options & NAND_CHIPOPTIONS_MSK;
2285 * Set chip as a default. Board drivers can override it, if necessary
2287 chip->options |= NAND_NO_AUTOINCR;
2289 /* Check if chip is a not a samsung device. Do not clear the
2290 * options for chips which are not having an extended id.
2292 if (*maf_id != NAND_MFR_SAMSUNG && !type->pagesize)
2293 chip->options &= ~NAND_SAMSUNG_LP_OPTIONS;
2295 /* Check for AND chips with 4 page planes */
2296 if (chip->options & NAND_4PAGE_ARRAY)
2297 chip->erase_cmd = multi_erase_cmd;
2298 else
2299 chip->erase_cmd = single_erase_cmd;
2301 /* Do not replace user supplied command function ! */
2302 if (mtd->writesize > 512 && chip->cmdfunc == nand_command)
2303 chip->cmdfunc = nand_command_lp;
2305 printk(KERN_INFO "NAND device: Manufacturer ID:"
2306 " 0x%02x, Chip ID: 0x%02x (%s %s)\n", *maf_id, dev_id,
2307 nand_manuf_ids[maf_idx].name, type->name);
2309 return type;
2313 * nand_scan_ident - [NAND Interface] Scan for the NAND device
2314 * @mtd: MTD device structure
2315 * @maxchips: Number of chips to scan for
2317 * This is the first phase of the normal nand_scan() function. It
2318 * reads the flash ID and sets up MTD fields accordingly.
2320 * The mtd->owner field must be set to the module of the caller.
2322 int nand_scan_ident(struct mtd_info *mtd, int maxchips)
2324 int i, busw, nand_maf_id;
2325 struct nand_chip *chip = mtd->priv;
2326 struct nand_flash_dev *type;
2328 /* Get buswidth to select the correct functions */
2329 busw = chip->options & NAND_BUSWIDTH_16;
2330 /* Set the default functions */
2331 nand_set_defaults(chip, busw);
2333 /* Read the flash type */
2334 type = nand_get_flash_type(mtd, chip, busw, &nand_maf_id);
2336 if (IS_ERR(type)) {
2337 printk(KERN_WARNING "No NAND device found!!!\n");
2338 chip->select_chip(mtd, -1);
2339 return PTR_ERR(type);
2342 /* Check for a chip array */
2343 for (i = 1; i < maxchips; i++) {
2344 chip->select_chip(mtd, i);
2345 /* Send the command for reading device ID */
2346 chip->cmdfunc(mtd, NAND_CMD_READID, 0x00, -1);
2347 /* Read manufacturer and device IDs */
2348 if (nand_maf_id != chip->read_byte(mtd) ||
2349 type->id != chip->read_byte(mtd))
2350 break;
2352 if (i > 1)
2353 printk(KERN_INFO "%d NAND chips detected\n", i);
2355 /* Store the number of chips and calc total size for mtd */
2356 chip->numchips = i;
2357 mtd->size = i * chip->chipsize;
2359 return 0;
2364 * nand_scan_tail - [NAND Interface] Scan for the NAND device
2365 * @mtd: MTD device structure
2366 * @maxchips: Number of chips to scan for
2368 * This is the second phase of the normal nand_scan() function. It
2369 * fills out all the uninitialized function pointers with the defaults
2370 * and scans for a bad block table if appropriate.
2372 int nand_scan_tail(struct mtd_info *mtd)
2374 int i;
2375 struct nand_chip *chip = mtd->priv;
2377 if (!(chip->options & NAND_OWN_BUFFERS))
2378 chip->buffers = kmalloc(sizeof(*chip->buffers), GFP_KERNEL);
2379 if (!chip->buffers)
2380 return -ENOMEM;
2382 /* Set the internal oob buffer location, just after the page data */
2383 chip->oob_poi = chip->buffers->databuf + mtd->writesize;
2386 * If no default placement scheme is given, select an appropriate one
2388 if (!chip->ecc.layout) {
2389 switch (mtd->oobsize) {
2390 case 8:
2391 chip->ecc.layout = &nand_oob_8;
2392 break;
2393 case 16:
2394 chip->ecc.layout = &nand_oob_16;
2395 break;
2396 case 64:
2397 chip->ecc.layout = &nand_oob_64;
2398 break;
2399 default:
2400 printk(KERN_WARNING "No oob scheme defined for "
2401 "oobsize %d\n", mtd->oobsize);
2402 BUG();
2406 if (!chip->write_page)
2407 chip->write_page = nand_write_page;
2410 * check ECC mode, default to software if 3byte/512byte hardware ECC is
2411 * selected and we have 256 byte pagesize fallback to software ECC
2413 if (!chip->ecc.read_page_raw)
2414 chip->ecc.read_page_raw = nand_read_page_raw;
2415 if (!chip->ecc.write_page_raw)
2416 chip->ecc.write_page_raw = nand_write_page_raw;
2418 switch (chip->ecc.mode) {
2419 case NAND_ECC_HW:
2420 /* Use standard hwecc read page function ? */
2421 if (!chip->ecc.read_page)
2422 chip->ecc.read_page = nand_read_page_hwecc;
2423 if (!chip->ecc.write_page)
2424 chip->ecc.write_page = nand_write_page_hwecc;
2425 if (!chip->ecc.read_oob)
2426 chip->ecc.read_oob = nand_read_oob_std;
2427 if (!chip->ecc.write_oob)
2428 chip->ecc.write_oob = nand_write_oob_std;
2430 case NAND_ECC_HW_SYNDROME:
2431 if (!chip->ecc.calculate || !chip->ecc.correct ||
2432 !chip->ecc.hwctl) {
2433 printk(KERN_WARNING "No ECC functions supplied, "
2434 "Hardware ECC not possible\n");
2435 BUG();
2437 /* Use standard syndrome read/write page function ? */
2438 if (!chip->ecc.read_page)
2439 chip->ecc.read_page = nand_read_page_syndrome;
2440 if (!chip->ecc.write_page)
2441 chip->ecc.write_page = nand_write_page_syndrome;
2442 if (!chip->ecc.read_oob)
2443 chip->ecc.read_oob = nand_read_oob_syndrome;
2444 if (!chip->ecc.write_oob)
2445 chip->ecc.write_oob = nand_write_oob_syndrome;
2447 if (mtd->writesize >= chip->ecc.size)
2448 break;
2449 printk(KERN_WARNING "%d byte HW ECC not possible on "
2450 "%d byte page size, fallback to SW ECC\n",
2451 chip->ecc.size, mtd->writesize);
2452 chip->ecc.mode = NAND_ECC_SOFT;
2454 case NAND_ECC_SOFT:
2455 chip->ecc.calculate = nand_calculate_ecc;
2456 chip->ecc.correct = nand_correct_data;
2457 chip->ecc.read_page = nand_read_page_swecc;
2458 chip->ecc.write_page = nand_write_page_swecc;
2459 chip->ecc.read_oob = nand_read_oob_std;
2460 chip->ecc.write_oob = nand_write_oob_std;
2461 chip->ecc.size = 256;
2462 chip->ecc.bytes = 3;
2463 break;
2465 case NAND_ECC_NONE:
2466 printk(KERN_WARNING "NAND_ECC_NONE selected by board driver. "
2467 "This is not recommended !!\n");
2468 chip->ecc.read_page = nand_read_page_raw;
2469 chip->ecc.write_page = nand_write_page_raw;
2470 chip->ecc.read_oob = nand_read_oob_std;
2471 chip->ecc.write_oob = nand_write_oob_std;
2472 chip->ecc.size = mtd->writesize;
2473 chip->ecc.bytes = 0;
2474 break;
2476 default:
2477 printk(KERN_WARNING "Invalid NAND_ECC_MODE %d\n",
2478 chip->ecc.mode);
2479 BUG();
2483 * The number of bytes available for a client to place data into
2484 * the out of band area
2486 chip->ecc.layout->oobavail = 0;
2487 for (i = 0; chip->ecc.layout->oobfree[i].length; i++)
2488 chip->ecc.layout->oobavail +=
2489 chip->ecc.layout->oobfree[i].length;
2492 * Set the number of read / write steps for one page depending on ECC
2493 * mode
2495 chip->ecc.steps = mtd->writesize / chip->ecc.size;
2496 if(chip->ecc.steps * chip->ecc.size != mtd->writesize) {
2497 printk(KERN_WARNING "Invalid ecc parameters\n");
2498 BUG();
2500 chip->ecc.total = chip->ecc.steps * chip->ecc.bytes;
2503 * Allow subpage writes up to ecc.steps. Not possible for MLC
2504 * FLASH.
2506 if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
2507 !(chip->cellinfo & NAND_CI_CELLTYPE_MSK)) {
2508 switch(chip->ecc.steps) {
2509 case 2:
2510 mtd->subpage_sft = 1;
2511 break;
2512 case 4:
2513 case 8:
2514 mtd->subpage_sft = 2;
2515 break;
2518 chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
2520 /* Initialize state */
2521 chip->state = FL_READY;
2523 /* De-select the device */
2524 chip->select_chip(mtd, -1);
2526 /* Invalidate the pagebuffer reference */
2527 chip->pagebuf = -1;
2529 /* Fill in remaining MTD driver data */
2530 mtd->type = MTD_NANDFLASH;
2531 mtd->flags = MTD_CAP_NANDFLASH;
2532 mtd->ecctype = MTD_ECC_SW;
2533 mtd->erase = nand_erase;
2534 mtd->point = NULL;
2535 mtd->unpoint = NULL;
2536 mtd->read = nand_read;
2537 mtd->write = nand_write;
2538 mtd->read_oob = nand_read_oob;
2539 mtd->write_oob = nand_write_oob;
2540 mtd->sync = nand_sync;
2541 mtd->lock = NULL;
2542 mtd->unlock = NULL;
2543 mtd->suspend = nand_suspend;
2544 mtd->resume = nand_resume;
2545 mtd->block_isbad = nand_block_isbad;
2546 mtd->block_markbad = nand_block_markbad;
2548 /* propagate ecc.layout to mtd_info */
2549 mtd->ecclayout = chip->ecc.layout;
2551 /* Check, if we should skip the bad block table scan */
2552 if (chip->options & NAND_SKIP_BBTSCAN)
2553 return 0;
2555 /* Build bad block table */
2556 return chip->scan_bbt(mtd);
2559 /* module_text_address() isn't exported, and it's mostly a pointless
2560 test if this is a module _anyway_ -- they'd have to try _really_ hard
2561 to call us from in-kernel code if the core NAND support is modular. */
2562 #ifdef MODULE
2563 #define caller_is_module() (1)
2564 #else
2565 #define caller_is_module() \
2566 module_text_address((unsigned long)__builtin_return_address(0))
2567 #endif
2570 * nand_scan - [NAND Interface] Scan for the NAND device
2571 * @mtd: MTD device structure
2572 * @maxchips: Number of chips to scan for
2574 * This fills out all the uninitialized function pointers
2575 * with the defaults.
2576 * The flash ID is read and the mtd/chip structures are
2577 * filled with the appropriate values.
2578 * The mtd->owner field must be set to the module of the caller
2581 int nand_scan(struct mtd_info *mtd, int maxchips)
2583 int ret;
2585 /* Many callers got this wrong, so check for it for a while... */
2586 if (!mtd->owner && caller_is_module()) {
2587 printk(KERN_CRIT "nand_scan() called with NULL mtd->owner!\n");
2588 BUG();
2591 ret = nand_scan_ident(mtd, maxchips);
2592 if (!ret)
2593 ret = nand_scan_tail(mtd);
2594 return ret;
2598 * nand_release - [NAND Interface] Free resources held by the NAND device
2599 * @mtd: MTD device structure
2601 void nand_release(struct mtd_info *mtd)
2603 struct nand_chip *chip = mtd->priv;
2605 #ifdef CONFIG_MTD_PARTITIONS
2606 /* Deregister partitions */
2607 del_mtd_partitions(mtd);
2608 #endif
2609 /* Deregister the device */
2610 del_mtd_device(mtd);
2612 /* Free bad block table memory */
2613 kfree(chip->bbt);
2614 if (!(chip->options & NAND_OWN_BUFFERS))
2615 kfree(chip->buffers);
2618 EXPORT_SYMBOL_GPL(nand_scan);
2619 EXPORT_SYMBOL_GPL(nand_scan_ident);
2620 EXPORT_SYMBOL_GPL(nand_scan_tail);
2621 EXPORT_SYMBOL_GPL(nand_release);
2623 static int __init nand_base_init(void)
2625 led_trigger_register_simple("nand-disk", &nand_led_trigger);
2626 return 0;
2629 static void __exit nand_base_exit(void)
2631 led_trigger_unregister_simple(nand_led_trigger);
2634 module_init(nand_base_init);
2635 module_exit(nand_base_exit);
2637 MODULE_LICENSE("GPL");
2638 MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>, Thomas Gleixner <tglx@linutronix.de>");
2639 MODULE_DESCRIPTION("Generic NAND flash driver code");