2 * Linux-DVB Driver for DiBcom's DiB0090 base-band RF Tuner.
4 * Copyright (C) 2005-9 DiBcom (http://www.dibcom.fr/)
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License as
8 * published by the Free Software Foundation; either version 2 of the
9 * License, or (at your option) any later version.
11 * This program is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU General Public License for more details.
17 * You should have received a copy of the GNU General Public License
18 * along with this program; if not, write to the Free Software
19 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
22 * This code is more or less generated from another driver, please
23 * excuse some codingstyle oddities.
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/i2c.h>
31 #include "dvb_frontend.h"
34 #include "dibx000_common.h"
37 module_param(debug
, int, 0644);
38 MODULE_PARM_DESC(debug
, "turn on debugging (default: 0)");
40 #define dprintk(args...) do { \
42 printk(KERN_DEBUG "DiB0090: "); \
48 #define CONFIG_SYS_DVBT
49 #define CONFIG_SYS_ISDBT
50 #define CONFIG_BAND_CBAND
51 #define CONFIG_BAND_VHF
52 #define CONFIG_BAND_UHF
53 #define CONFIG_DIB0090_USE_PWM_AGC
55 #define EN_LNA0 0x8000
56 #define EN_LNA1 0x4000
57 #define EN_LNA2 0x2000
58 #define EN_LNA3 0x1000
59 #define EN_MIX0 0x0800
60 #define EN_MIX1 0x0400
61 #define EN_MIX2 0x0200
62 #define EN_MIX3 0x0100
63 #define EN_IQADC 0x0040
68 #define EN_BIAS 0x0001
70 #define EN_IQANA 0x0002
71 #define EN_DIGCLK 0x0080 /* not in the 0x24 reg, only in 0x1b */
72 #define EN_CRYSTAL 0x0002
80 /* Calibration defines */
84 #define CAPTRIM_CAL 0x8
86 #define KROSUS_PLL_LOCKED 0x800
89 /* Use those defines to identify SOC version */
91 #define SOC_7090_P1G_11R1 0x82
92 #define SOC_7090_P1G_21R1 0x8a
93 #define SOC_8090_P1G_11R1 0x86
94 #define SOC_8090_P1G_21R1 0x8e
96 /* else use thos ones to check */
103 #define MP001 0x1 /* Single 9090/8096 */
104 #define MP005 0x4 /* Single Sband */
105 #define MP008 0x6 /* Dual diversity VHF-UHF-LBAND */
106 #define MP009 0x7 /* Dual diversity 29098 CBAND-UHF-LBAND-SBAND */
108 #define pgm_read_word(w) (*w)
110 struct dc_calibration
;
112 struct dib0090_tuning
{
113 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
124 u32 max_freq
; /* for every frequency less than or equal to that field: this information is correct */
131 struct dib0090_identity
{
138 struct dib0090_state
{
139 struct i2c_adapter
*i2c
;
140 struct dvb_frontend
*fe
;
141 const struct dib0090_config
*config
;
144 enum frontend_tune_state tune_state
;
148 s16 wbd_target
; /* in dB */
150 s16 rf_gain_limit
; /* take-over-point: where to split between bb and rf gain */
151 s16 current_gain
; /* keeps the currently programmed gain */
152 u8 agc_step
; /* new binary search */
154 u16 gain
[2]; /* for channel monitoring */
159 /* for the software AGC ramps */
164 /* for the captrim/dc-offset search */
172 const struct dc_calibration
*dc
;
175 const struct dib0090_tuning
*current_tune_table_index
;
176 const struct dib0090_pll
*current_pll_table_index
;
181 struct dib0090_identity identity
;
191 u8 wbd_calibration_gain
;
192 const struct dib0090_wbd_slope
*current_wbd_table
;
196 struct dib0090_fw_state
{
197 struct i2c_adapter
*i2c
;
198 struct dvb_frontend
*fe
;
199 struct dib0090_identity identity
;
200 const struct dib0090_config
*config
;
203 static u16
dib0090_read_reg(struct dib0090_state
*state
, u8 reg
)
206 struct i2c_msg msg
[2] = {
207 {.addr
= state
->config
->i2c_address
,.flags
= 0,.buf
= ®
,.len
= 1},
208 {.addr
= state
->config
->i2c_address
,.flags
= I2C_M_RD
,.buf
= b
,.len
= 2},
210 if (i2c_transfer(state
->i2c
, msg
, 2) != 2) {
211 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
214 return (b
[0] << 8) | b
[1];
217 static int dib0090_write_reg(struct dib0090_state
*state
, u32 reg
, u16 val
)
219 u8 b
[3] = { reg
& 0xff, val
>> 8, val
& 0xff };
220 struct i2c_msg msg
= {.addr
= state
->config
->i2c_address
,.flags
= 0,.buf
= b
,.len
= 3 };
221 if (i2c_transfer(state
->i2c
, &msg
, 1) != 1) {
222 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
228 static u16
dib0090_fw_read_reg(struct dib0090_fw_state
*state
, u8 reg
)
231 struct i2c_msg msg
= {.addr
= reg
,.flags
= I2C_M_RD
,.buf
= b
,.len
= 2 };
232 if (i2c_transfer(state
->i2c
, &msg
, 1) != 1) {
233 printk(KERN_WARNING
"DiB0090 I2C read failed\n");
236 return (b
[0] << 8) | b
[1];
239 static int dib0090_fw_write_reg(struct dib0090_fw_state
*state
, u8 reg
, u16 val
)
241 u8 b
[2] = { val
>> 8, val
& 0xff };
242 struct i2c_msg msg
= {.addr
= reg
,.flags
= 0,.buf
= b
,.len
= 2 };
243 if (i2c_transfer(state
->i2c
, &msg
, 1) != 1) {
244 printk(KERN_WARNING
"DiB0090 I2C write failed\n");
250 #define HARD_RESET(state) do { if (cfg->reset) { if (cfg->sleep) cfg->sleep(fe, 0); msleep(10); cfg->reset(fe, 1); msleep(10); cfg->reset(fe, 0); msleep(10); } } while (0)
251 #define ADC_TARGET -220
255 static void dib0090_write_regs(struct dib0090_state
*state
, u8 r
, const u16
* b
, u8 c
)
258 dib0090_write_reg(state
, r
++, *b
++);
262 static int dib0090_identify(struct dvb_frontend
*fe
)
264 struct dib0090_state
*state
= fe
->tuner_priv
;
266 struct dib0090_identity
*identity
= &state
->identity
;
268 v
= dib0090_read_reg(state
, 0x1a);
271 identity
->in_soc
= 0;
273 dprintk("Tuner identification (Version = 0x%04x)", v
);
275 /* without PLL lock info */
276 v
&= ~KROSUS_PLL_LOCKED
;
278 identity
->version
= v
& 0xff;
279 identity
->product
= (v
>> 8) & 0xf;
281 if (identity
->product
!= KROSUS
)
282 goto identification_error
;
284 if ((identity
->version
& 0x3) == SOC
) {
285 identity
->in_soc
= 1;
286 switch (identity
->version
) {
287 case SOC_8090_P1G_11R1
:
288 dprintk("SOC 8090 P1-G11R1 Has been detected");
291 case SOC_8090_P1G_21R1
:
292 dprintk("SOC 8090 P1-G21R1 Has been detected");
295 case SOC_7090_P1G_11R1
:
296 dprintk("SOC 7090 P1-G11R1 Has been detected");
299 case SOC_7090_P1G_21R1
:
300 dprintk("SOC 7090 P1-G21R1 Has been detected");
304 goto identification_error
;
307 switch ((identity
->version
>> 5) & 0x7) {
309 dprintk("MP001 : 9090/8096");
312 dprintk("MP005 : Single Sband");
315 dprintk("MP008 : diversity VHF-UHF-LBAND");
318 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
321 goto identification_error
;
324 switch (identity
->version
& 0x1f) {
326 dprintk("P1G_21R2 detected");
330 dprintk("P1G detected");
334 dprintk("P1D/E/F detected");
337 dprintk("P1C detected");
340 dprintk("P1-A/B detected: driver is deactivated - not available");
341 goto identification_error
;
344 goto identification_error
;
350 identification_error
:
354 static int dib0090_fw_identify(struct dvb_frontend
*fe
)
356 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
357 struct dib0090_identity
*identity
= &state
->identity
;
359 u16 v
= dib0090_fw_read_reg(state
, 0x1a);
361 identity
->in_soc
= 0;
363 dprintk("FE: Tuner identification (Version = 0x%04x)", v
);
365 /* without PLL lock info */
366 v
&= ~KROSUS_PLL_LOCKED
;
368 identity
->version
= v
& 0xff;
369 identity
->product
= (v
>> 8) & 0xf;
371 if (identity
->product
!= KROSUS
)
372 goto identification_error
;
374 //From the SOC the version definition has changed
376 if ((identity
->version
& 0x3) == SOC
) {
377 identity
->in_soc
= 1;
378 switch (identity
->version
) {
379 case SOC_8090_P1G_11R1
:
380 dprintk("SOC 8090 P1-G11R1 Has been detected");
383 case SOC_8090_P1G_21R1
:
384 dprintk("SOC 8090 P1-G21R1 Has been detected");
387 case SOC_7090_P1G_11R1
:
388 dprintk("SOC 7090 P1-G11R1 Has been detected");
391 case SOC_7090_P1G_21R1
:
392 dprintk("SOC 7090 P1-G21R1 Has been detected");
396 goto identification_error
;
399 switch ((identity
->version
>> 5) & 0x7) {
401 dprintk("MP001 : 9090/8096");
404 dprintk("MP005 : Single Sband");
407 dprintk("MP008 : diversity VHF-UHF-LBAND");
410 dprintk("MP009 : diversity 29098 CBAND-UHF-LBAND-SBAND");
413 goto identification_error
;
416 switch (identity
->version
& 0x1f) {
418 dprintk("P1G_21R2 detected");
422 dprintk("P1G detected");
426 dprintk("P1D/E/F detected");
429 dprintk("P1C detected");
432 dprintk("P1-A/B detected: driver is deactivated - not available");
433 goto identification_error
;
436 goto identification_error
;
442 identification_error
:
446 static void dib0090_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
448 struct dib0090_state
*state
= fe
->tuner_priv
;
453 dib0090_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
454 dib0090_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
457 /* adcClkOutRatio=8->7, release reset */
458 dib0090_write_reg(state
, 0x20, ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (0 << 4) | 0);
459 if (cfg
->clkoutdrive
!= 0)
460 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
461 | (cfg
->clkoutdrive
<< 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
463 dib0090_write_reg(state
, 0x23, (0 << 15) | ((!cfg
->analog_output
) << 14) | (2 << 10) | (1 << 9) | (0 << 8)
464 | (7 << 5) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0));
467 /* Read Pll current config * */
468 PllCfg
= dib0090_read_reg(state
, 0x21);
470 /** Reconfigure PLL if current setting is different from default setting **/
471 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && (!cfg
->in_soc
)
472 && !cfg
->io
.pll_bypass
) {
474 /* Set Bypass mode */
476 dib0090_write_reg(state
, 0x21, PllCfg
);
479 PllCfg
&= ~(1 << 13);
480 dib0090_write_reg(state
, 0x21, PllCfg
);
482 /*** Set new Pll configuration in bypass and reset state ***/
483 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
484 dib0090_write_reg(state
, 0x21, PllCfg
);
486 /* Remove Reset Pll */
488 dib0090_write_reg(state
, 0x21, PllCfg
);
490 /*** Wait for PLL lock ***/
493 v
= !!(dib0090_read_reg(state
, 0x1a) & 0x800);
499 dprintk("Pll: Unable to lock Pll");
503 /* Finally Remove Bypass mode */
504 PllCfg
&= ~(1 << 15);
505 dib0090_write_reg(state
, 0x21, PllCfg
);
508 if (cfg
->io
.pll_bypass
) {
509 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
510 dib0090_write_reg(state
, 0x21, PllCfg
);
514 static int dib0090_fw_reset_digital(struct dvb_frontend
*fe
, const struct dib0090_config
*cfg
)
516 struct dib0090_fw_state
*state
= fe
->tuner_priv
;
521 dprintk("fw reset digital");
524 dib0090_fw_write_reg(state
, 0x24, EN_PLL
| EN_CRYSTAL
);
525 dib0090_fw_write_reg(state
, 0x1b, EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
); /* PLL, DIG_CLK and CRYSTAL remain */
527 dib0090_fw_write_reg(state
, 0x20,
528 ((cfg
->io
.adc_clock_ratio
- 1) << 11) | (0 << 10) | (1 << 9) | (1 << 8) | (cfg
->data_tx_drv
<< 4) | cfg
->ls_cfg_pad_drv
);
530 v
= (0 << 15) | ((!cfg
->analog_output
) << 14) | (1 << 9) | (0 << 8) | (cfg
->clkouttobamse
<< 4) | (0 << 2) | (0);
531 if (cfg
->clkoutdrive
!= 0)
532 v
|= cfg
->clkoutdrive
<< 5;
537 dib0090_fw_write_reg(state
, 0x23, v
);
539 /* Read Pll current config * */
540 PllCfg
= dib0090_fw_read_reg(state
, 0x21);
542 /** Reconfigure PLL if current setting is different from default setting **/
543 if ((PllCfg
& 0x1FFF) != ((cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
)) && !cfg
->io
.pll_bypass
) {
545 /* Set Bypass mode */
547 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
550 PllCfg
&= ~(1 << 13);
551 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
553 /*** Set new Pll configuration in bypass and reset state ***/
554 PllCfg
= (1 << 15) | (0 << 13) | (cfg
->io
.pll_range
<< 12) | (cfg
->io
.pll_loopdiv
<< 6) | (cfg
->io
.pll_prediv
);
555 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
557 /* Remove Reset Pll */
559 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
561 /*** Wait for PLL lock ***/
564 v
= !!(dib0090_fw_read_reg(state
, 0x1a) & 0x800);
570 dprintk("Pll: Unable to lock Pll");
574 /* Finally Remove Bypass mode */
575 PllCfg
&= ~(1 << 15);
576 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
579 if (cfg
->io
.pll_bypass
) {
580 PllCfg
|= (cfg
->io
.pll_bypass
<< 15);
581 dib0090_fw_write_reg(state
, 0x21, PllCfg
);
584 return dib0090_fw_identify(fe
);
587 static int dib0090_wakeup(struct dvb_frontend
*fe
)
589 struct dib0090_state
*state
= fe
->tuner_priv
;
590 if (state
->config
->sleep
)
591 state
->config
->sleep(fe
, 0);
593 /* enable dataTX in case we have been restarted in the wrong moment */
594 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
598 static int dib0090_sleep(struct dvb_frontend
*fe
)
600 struct dib0090_state
*state
= fe
->tuner_priv
;
601 if (state
->config
->sleep
)
602 state
->config
->sleep(fe
, 1);
606 void dib0090_dcc_freq(struct dvb_frontend
*fe
, u8 fast
)
608 struct dib0090_state
*state
= fe
->tuner_priv
;
610 dib0090_write_reg(state
, 0x04, 0);
612 dib0090_write_reg(state
, 0x04, 1);
615 EXPORT_SYMBOL(dib0090_dcc_freq
);
617 static const u16 bb_ramp_pwm_normal_socs
[] = {
618 550, /* max BB gain in 10th of dB */
619 (1 << 9) | 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> BB_RAMP2 */
621 (4 << 9) | 0, /* BB_RAMP3 = 26dB */
622 (0 << 9) | 208, /* BB_RAMP4 */
623 (4 << 9) | 208, /* BB_RAMP5 = 29dB */
624 (0 << 9) | 440, /* BB_RAMP6 */
627 static const u16 rf_ramp_pwm_cband_7090
[] = {
628 280, /* max RF gain in 10th of dB */
629 18, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
630 504, /* ramp_max = maximum X used on the ramp */
631 (29 << 10) | 364, /* RF_RAMP5, LNA 1 = 8dB */
632 (0 << 10) | 504, /* RF_RAMP6, LNA 1 */
633 (60 << 10) | 228, /* RF_RAMP7, LNA 2 = 7.7dB */
634 (0 << 10) | 364, /* RF_RAMP8, LNA 2 */
635 (34 << 10) | 109, /* GAIN_4_1, LNA 3 = 6.8dB */
636 (0 << 10) | 228, /* GAIN_4_2, LNA 3 */
637 (37 << 10) | 0, /* RF_RAMP3, LNA 4 = 6.2dB */
638 (0 << 10) | 109, /* RF_RAMP4, LNA 4 */
641 static const u16 rf_ramp_pwm_cband_8090
[] = {
642 345, /* max RF gain in 10th of dB */
643 29, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
644 1000, /* ramp_max = maximum X used on the ramp */
645 (35 << 10) | 772, /* RF_RAMP3, LNA 1 = 8dB */
646 (0 << 10) | 1000, /* RF_RAMP4, LNA 1 */
647 (58 << 10) | 496, /* RF_RAMP5, LNA 2 = 9.5dB */
648 (0 << 10) | 772, /* RF_RAMP6, LNA 2 */
649 (27 << 10) | 200, /* RF_RAMP7, LNA 3 = 10.5dB */
650 (0 << 10) | 496, /* RF_RAMP8, LNA 3 */
651 (40 << 10) | 0, /* GAIN_4_1, LNA 4 = 7dB */
652 (0 << 10) | 200, /* GAIN_4_2, LNA 4 */
655 static const u16 rf_ramp_pwm_uhf_7090
[] = {
656 407, /* max RF gain in 10th of dB */
657 13, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
658 529, /* ramp_max = maximum X used on the ramp */
659 (23 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
660 (0 << 10) | 176, /* RF_RAMP4, LNA 1 */
661 (63 << 10) | 400, /* RF_RAMP5, LNA 2 = 8dB */
662 (0 << 10) | 529, /* RF_RAMP6, LNA 2 */
663 (48 << 10) | 316, /* RF_RAMP7, LNA 3 = 6.8dB */
664 (0 << 10) | 400, /* RF_RAMP8, LNA 3 */
665 (29 << 10) | 176, /* GAIN_4_1, LNA 4 = 11.5dB */
666 (0 << 10) | 316, /* GAIN_4_2, LNA 4 */
669 static const u16 rf_ramp_pwm_uhf_8090
[] = {
670 388, /* max RF gain in 10th of dB */
671 26, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> RF_RAMP2 */
672 1008, /* ramp_max = maximum X used on the ramp */
673 (11 << 10) | 0, /* RF_RAMP3, LNA 1 = 14.7dB */
674 (0 << 10) | 369, /* RF_RAMP4, LNA 1 */
675 (41 << 10) | 809, /* RF_RAMP5, LNA 2 = 8dB */
676 (0 << 10) | 1008, /* RF_RAMP6, LNA 2 */
677 (27 << 10) | 659, /* RF_RAMP7, LNA 3 = 6dB */
678 (0 << 10) | 809, /* RF_RAMP8, LNA 3 */
679 (14 << 10) | 369, /* GAIN_4_1, LNA 4 = 11.5dB */
680 (0 << 10) | 659, /* GAIN_4_2, LNA 4 */
683 static const u16 rf_ramp_pwm_cband
[] = {
684 0, /* max RF gain in 10th of dB */
685 0, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
686 0, /* ramp_max = maximum X used on the ramp */
687 (0 << 10) | 0, /* 0x2c, LNA 1 = 0dB */
688 (0 << 10) | 0, /* 0x2d, LNA 1 */
689 (0 << 10) | 0, /* 0x2e, LNA 2 = 0dB */
690 (0 << 10) | 0, /* 0x2f, LNA 2 */
691 (0 << 10) | 0, /* 0x30, LNA 3 = 0dB */
692 (0 << 10) | 0, /* 0x31, LNA 3 */
693 (0 << 10) | 0, /* GAIN_4_1, LNA 4 = 0dB */
694 (0 << 10) | 0, /* GAIN_4_2, LNA 4 */
697 static const u16 rf_ramp_vhf
[] = {
698 412, /* max RF gain in 10th of dB */
699 132, 307, 127, /* LNA1, 13.2dB */
700 105, 412, 255, /* LNA2, 10.5dB */
701 50, 50, 127, /* LNA3, 5dB */
702 125, 175, 127, /* LNA4, 12.5dB */
703 0, 0, 127, /* CBAND, 0dB */
706 static const u16 rf_ramp_uhf
[] = {
707 412, /* max RF gain in 10th of dB */
708 132, 307, 127, /* LNA1 : total gain = 13.2dB, point on the ramp where this amp is full gain, value to write to get full gain */
709 105, 412, 255, /* LNA2 : 10.5 dB */
710 50, 50, 127, /* LNA3 : 5.0 dB */
711 125, 175, 127, /* LNA4 : 12.5 dB */
712 0, 0, 127, /* CBAND : 0.0 dB */
715 static const u16 rf_ramp_cband_broadmatching
[] = /* for p1G only */
717 314, /* Calibrated at 200MHz order has been changed g4-g3-g2-g1 */
718 84, 314, 127, /* LNA1 */
719 80, 230, 255, /* LNA2 */
720 80, 150, 127, /* LNA3 It was measured 12dB, do not lock if 120 */
721 70, 70, 127, /* LNA4 */
722 0, 0, 127, /* CBAND */
725 static const u16 rf_ramp_cband
[] = {
726 332, /* max RF gain in 10th of dB */
727 132, 252, 127, /* LNA1, dB */
728 80, 332, 255, /* LNA2, dB */
729 0, 0, 127, /* LNA3, dB */
730 0, 0, 127, /* LNA4, dB */
731 120, 120, 127, /* LT1 CBAND */
734 static const u16 rf_ramp_pwm_vhf
[] = {
735 404, /* max RF gain in 10th of dB */
736 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
737 1011, /* ramp_max = maximum X used on the ramp */
738 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
739 (0 << 10) | 756, /* 0x2d, LNA 1 */
740 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
741 (0 << 10) | 1011, /* 0x2f, LNA 2 */
742 (16 << 10) | 290, /* 0x30, LNA 3 = 5dB */
743 (0 << 10) | 417, /* 0x31, LNA 3 */
744 (7 << 10) | 0, /* GAIN_4_1, LNA 4 = 12.5dB */
745 (0 << 10) | 290, /* GAIN_4_2, LNA 4 */
748 static const u16 rf_ramp_pwm_uhf
[] = {
749 404, /* max RF gain in 10th of dB */
750 25, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x2b */
751 1011, /* ramp_max = maximum X used on the ramp */
752 (6 << 10) | 417, /* 0x2c, LNA 1 = 13.2dB */
753 (0 << 10) | 756, /* 0x2d, LNA 1 */
754 (16 << 10) | 756, /* 0x2e, LNA 2 = 10.5dB */
755 (0 << 10) | 1011, /* 0x2f, LNA 2 */
756 (16 << 10) | 0, /* 0x30, LNA 3 = 5dB */
757 (0 << 10) | 127, /* 0x31, LNA 3 */
758 (7 << 10) | 127, /* GAIN_4_1, LNA 4 = 12.5dB */
759 (0 << 10) | 417, /* GAIN_4_2, LNA 4 */
762 static const u16 bb_ramp_boost
[] = {
763 550, /* max BB gain in 10th of dB */
764 260, 260, 26, /* BB1, 26dB */
765 290, 550, 29, /* BB2, 29dB */
768 static const u16 bb_ramp_pwm_normal
[] = {
769 500, /* max RF gain in 10th of dB */
770 8, /* ramp_slope = 1dB of gain -> clock_ticks_per_db = clk_khz / ramp_slope -> 0x34 */
772 (2 << 9) | 0, /* 0x35 = 21dB */
773 (0 << 9) | 168, /* 0x36 */
774 (2 << 9) | 168, /* 0x37 = 29dB */
775 (0 << 9) | 400, /* 0x38 */
782 static u16
slopes_to_scale(const struct slope
*slopes
, u8 num
, s16 val
)
787 for (i
= 0; i
< num
; i
++) {
788 if (val
> slopes
[i
].range
)
789 rest
= slopes
[i
].range
;
792 ret
+= (rest
* slopes
[i
].slope
) / slopes
[i
].range
;
798 static const struct slope dib0090_wbd_slopes
[3] = {
799 {66, 120}, /* -64,-52: offset - 65 */
800 {600, 170}, /* -52,-35: 65 - 665 */
801 {170, 250}, /* -45,-10: 665 - 835 */
804 static s16
dib0090_wbd_to_db(struct dib0090_state
*state
, u16 wbd
)
807 if (wbd
< state
->wbd_offset
)
810 wbd
-= state
->wbd_offset
;
811 /* -64dB is the floor */
812 return -640 + (s16
) slopes_to_scale(dib0090_wbd_slopes
, ARRAY_SIZE(dib0090_wbd_slopes
), wbd
);
815 static void dib0090_wbd_target(struct dib0090_state
*state
, u32 rf
)
819 /* TODO : DAB digital N+/-1 interferer perfs : offset = 10 */
821 if (state
->current_band
== BAND_VHF
)
823 #ifndef FIRMWARE_FIREFLY
824 if (state
->current_band
== BAND_VHF
)
825 offset
= state
->config
->wbd_vhf_offset
;
826 if (state
->current_band
== BAND_CBAND
)
827 offset
= state
->config
->wbd_cband_offset
;
830 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ offset
);
831 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
834 static const int gain_reg_addr
[4] = {
835 0x08, 0x0a, 0x0f, 0x01
838 static void dib0090_gain_apply(struct dib0090_state
*state
, s16 gain_delta
, s16 top_delta
, u8 force
)
841 u16 i
, v
, gain_reg
[4] = { 0 }, gain
;
844 if (top_delta
< -511)
850 top_delta
*= (1 << WBD_ALPHA
);
851 gain_delta
*= (1 << GAIN_ALPHA
);
854 if (top_delta
>= ((s16
) (state
->rf_ramp
[0] << WBD_ALPHA
) - state
->rf_gain_limit
)) /* overflow */
855 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
857 state
->rf_gain_limit
+= top_delta
;
859 if (state
->rf_gain_limit
< 0) /*underflow */
860 state
->rf_gain_limit
= 0;
862 /* use gain as a temporary variable and correct current_gain */
863 gain
= ((state
->rf_gain_limit
>> WBD_ALPHA
) + state
->bb_ramp
[0]) << GAIN_ALPHA
;
864 if (gain_delta
>= ((s16
) gain
- state
->current_gain
)) /* overflow */
865 state
->current_gain
= gain
;
867 state
->current_gain
+= gain_delta
;
868 /* cannot be less than 0 (only if gain_delta is less than 0 we can have current_gain < 0) */
869 if (state
->current_gain
< 0)
870 state
->current_gain
= 0;
872 /* now split total gain to rf and bb gain */
873 gain
= state
->current_gain
>> GAIN_ALPHA
;
875 /* requested gain is bigger than rf gain limit - ACI/WBD adjustment */
876 if (gain
> (state
->rf_gain_limit
>> WBD_ALPHA
)) {
877 rf
= state
->rf_gain_limit
>> WBD_ALPHA
;
879 if (bb
> state
->bb_ramp
[0])
880 bb
= state
->bb_ramp
[0];
881 } else { /* high signal level -> all gains put on RF */
890 /* Start with RF gains */
891 g
= state
->rf_ramp
+ 1; /* point on RF LNA1 max gain */
893 for (i
= 0; i
< 7; i
++) { /* Go over all amplifiers => 5RF amps + 2 BB amps = 7 amps */
894 if (g
[0] == 0 || ref
< (g
[1] - g
[0])) /* if total gain of the current amp is null or this amp is not concerned because it starts to work from an higher gain value */
895 v
= 0; /* force the gain to write for the current amp to be null */
896 else if (ref
>= g
[1]) /* Gain to set is higher than the high working point of this amp */
897 v
= g
[2]; /* force this amp to be full gain */
898 else /* compute the value to set to this amp because we are somewhere in his range */
899 v
= ((ref
- (g
[1] - g
[0])) * g
[2]) / g
[0];
901 if (i
== 0) /* LNA 1 reg mapping */
903 else if (i
== 1) /* LNA 2 reg mapping */
904 gain_reg
[0] |= v
<< 7;
905 else if (i
== 2) /* LNA 3 reg mapping */
907 else if (i
== 3) /* LNA 4 reg mapping */
908 gain_reg
[1] |= v
<< 7;
909 else if (i
== 4) /* CBAND LNA reg mapping */
910 gain_reg
[2] = v
| state
->rf_lt_def
;
911 else if (i
== 5) /* BB gain 1 reg mapping */
912 gain_reg
[3] = v
<< 3;
913 else if (i
== 6) /* BB gain 2 reg mapping */
914 gain_reg
[3] |= v
<< 8;
916 g
+= 3; /* go to next gain bloc */
918 /* When RF is finished, start with BB */
920 g
= state
->bb_ramp
+ 1; /* point on BB gain 1 max gain */
924 gain_reg
[3] |= state
->bb_1_def
;
925 gain_reg
[3] |= ((bb
% 10) * 100) / 125;
928 dprintk("GA CALC: DB: %3d(rf) + %3d(bb) = %3d gain_reg[0]=%04x gain_reg[1]=%04x gain_reg[2]=%04x gain_reg[0]=%04x", rf
, bb
, rf
+ bb
,
929 gain_reg
[0], gain_reg
[1], gain_reg
[2], gain_reg
[3]);
932 /* Write the amplifier regs */
933 for (i
= 0; i
< 4; i
++) {
935 if (force
|| state
->gain_reg
[i
] != v
) {
936 state
->gain_reg
[i
] = v
;
937 dib0090_write_reg(state
, gain_reg_addr
[i
], v
);
942 static void dib0090_set_boost(struct dib0090_state
*state
, int onoff
)
944 state
->bb_1_def
&= 0xdfff;
945 state
->bb_1_def
|= onoff
<< 13;
948 static void dib0090_set_rframp(struct dib0090_state
*state
, const u16
* cfg
)
950 state
->rf_ramp
= cfg
;
953 static void dib0090_set_rframp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
955 state
->rf_ramp
= cfg
;
957 dib0090_write_reg(state
, 0x2a, 0xffff);
959 dprintk("total RF gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x2a));
961 dib0090_write_regs(state
, 0x2c, cfg
+ 3, 6);
962 dib0090_write_regs(state
, 0x3e, cfg
+ 9, 2);
965 static void dib0090_set_bbramp(struct dib0090_state
*state
, const u16
* cfg
)
967 state
->bb_ramp
= cfg
;
968 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
971 static void dib0090_set_bbramp_pwm(struct dib0090_state
*state
, const u16
* cfg
)
973 state
->bb_ramp
= cfg
;
975 dib0090_set_boost(state
, cfg
[0] > 500); /* we want the boost if the gain is higher that 50dB */
977 dib0090_write_reg(state
, 0x33, 0xffff);
978 dprintk("total BB gain: %ddB, step: %d", (u32
) cfg
[0], dib0090_read_reg(state
, 0x33));
979 dib0090_write_regs(state
, 0x35, cfg
+ 3, 4);
982 void dib0090_pwm_gain_reset(struct dvb_frontend
*fe
)
984 struct dib0090_state
*state
= fe
->tuner_priv
;
987 if (state
->config
->use_pwm_agc
) {
988 #ifdef CONFIG_BAND_SBAND
989 if (state
->current_band
== BAND_SBAND
) {
990 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_sband
);
991 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_boost
);
994 #ifdef CONFIG_BAND_CBAND
995 if (state
->current_band
== BAND_CBAND
) {
996 if (state
->identity
.in_soc
) {
997 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
998 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
999 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_8090
);
1000 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1001 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband_7090
);
1003 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_cband
);
1004 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1008 #ifdef CONFIG_BAND_VHF
1009 if (state
->current_band
== BAND_VHF
) {
1010 if (state
->identity
.in_soc
) {
1011 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1012 //dib0090_set_rframp_pwm(state, rf_ramp_pwm_vhf_socs); /* TODO */
1014 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_vhf
);
1015 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1020 if (state
->identity
.in_soc
) {
1021 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1022 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_8090
);
1023 else if (state
->identity
.version
== SOC_7090_P1G_11R1
|| state
->identity
.version
== SOC_7090_P1G_21R1
)
1024 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf_7090
);
1025 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal_socs
);
1027 dib0090_set_rframp_pwm(state
, rf_ramp_pwm_uhf
);
1028 dib0090_set_bbramp_pwm(state
, bb_ramp_pwm_normal
);
1032 if (state
->rf_ramp
[0] != 0)
1033 dib0090_write_reg(state
, 0x32, (3 << 11));
1035 dib0090_write_reg(state
, 0x32, (0 << 11));
1037 dib0090_write_reg(state
, 0x04, 0x01);
1038 dib0090_write_reg(state
, 0x39, (1 << 10));
1042 EXPORT_SYMBOL(dib0090_pwm_gain_reset
);
1044 static u32
dib0090_get_slow_adc_val(struct dib0090_state
*state
)
1046 u16 adc_val
= dib0090_read_reg(state
, 0x1d);
1047 if (state
->identity
.in_soc
) {
1053 int dib0090_gain_control(struct dvb_frontend
*fe
)
1055 struct dib0090_state
*state
= fe
->tuner_priv
;
1056 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
1060 u8 apply_gain_immediatly
= 1;
1061 s16 wbd_error
= 0, adc_error
= 0;
1063 if (*tune_state
== CT_AGC_START
) {
1064 state
->agc_freeze
= 0;
1065 dib0090_write_reg(state
, 0x04, 0x0);
1067 #ifdef CONFIG_BAND_SBAND
1068 if (state
->current_band
== BAND_SBAND
) {
1069 dib0090_set_rframp(state
, rf_ramp_sband
);
1070 dib0090_set_bbramp(state
, bb_ramp_boost
);
1073 #ifdef CONFIG_BAND_VHF
1074 if (state
->current_band
== BAND_VHF
&& !state
->identity
.p1g
) {
1075 dib0090_set_rframp(state
, rf_ramp_vhf
);
1076 dib0090_set_bbramp(state
, bb_ramp_boost
);
1079 #ifdef CONFIG_BAND_CBAND
1080 if (state
->current_band
== BAND_CBAND
&& !state
->identity
.p1g
) {
1081 dib0090_set_rframp(state
, rf_ramp_cband
);
1082 dib0090_set_bbramp(state
, bb_ramp_boost
);
1085 if ((state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) && state
->identity
.p1g
) {
1086 dib0090_set_rframp(state
, rf_ramp_cband_broadmatching
);
1087 dib0090_set_bbramp(state
, bb_ramp_boost
);
1089 dib0090_set_rframp(state
, rf_ramp_uhf
);
1090 dib0090_set_bbramp(state
, bb_ramp_boost
);
1093 dib0090_write_reg(state
, 0x32, 0);
1094 dib0090_write_reg(state
, 0x39, 0);
1096 dib0090_wbd_target(state
, state
->current_rf
);
1098 state
->rf_gain_limit
= state
->rf_ramp
[0] << WBD_ALPHA
;
1099 state
->current_gain
= ((state
->rf_ramp
[0] + state
->bb_ramp
[0]) / 2) << GAIN_ALPHA
;
1101 *tune_state
= CT_AGC_STEP_0
;
1102 } else if (!state
->agc_freeze
) {
1103 s16 wbd
= 0, i
, cnt
;
1106 wbd_val
= dib0090_get_slow_adc_val(state
);
1108 if (*tune_state
== CT_AGC_STEP_0
)
1113 for (i
= 0; i
< cnt
; i
++) {
1114 wbd_val
= dib0090_get_slow_adc_val(state
);
1115 wbd
+= dib0090_wbd_to_db(state
, wbd_val
);
1118 wbd_error
= state
->wbd_target
- wbd
;
1120 if (*tune_state
== CT_AGC_STEP_0
) {
1121 if (wbd_error
< 0 && state
->rf_gain_limit
> 0 && !state
->identity
.p1g
) {
1122 #ifdef CONFIG_BAND_CBAND
1123 /* in case of CBAND tune reduce first the lt_gain2 before adjusting the RF gain */
1124 u8 ltg2
= (state
->rf_lt_def
>> 10) & 0x7;
1125 if (state
->current_band
== BAND_CBAND
&& ltg2
) {
1127 state
->rf_lt_def
&= ltg2
<< 10; /* reduce in 3 steps from 7 to 0 */
1131 state
->agc_step
= 0;
1132 *tune_state
= CT_AGC_STEP_1
;
1135 /* calc the adc power */
1136 adc
= state
->config
->get_adc_power(fe
);
1137 adc
= (adc
* ((s32
) 355774) + (((s32
) 1) << 20)) >> 21; /* included in [0:-700] */
1139 adc_error
= (s16
) (((s32
) ADC_TARGET
) - adc
);
1140 #ifdef CONFIG_STANDARD_DAB
1141 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
)
1144 #ifdef CONFIG_STANDARD_DVBT
1145 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DVBT
&&
1146 (state
->fe
->dtv_property_cache
.modulation
== QAM_64
|| state
->fe
->dtv_property_cache
.modulation
== QAM_16
))
1149 #ifdef CONFIG_SYS_ISDBT
1150 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
) && (((state
->fe
->dtv_property_cache
.layer
[0].segment_count
>
1153 ((state
->fe
->dtv_property_cache
.layer
[0].modulation
==
1155 || (state
->fe
->dtv_property_cache
.
1156 layer
[0].modulation
== QAM_16
)))
1158 ((state
->fe
->dtv_property_cache
.layer
[1].segment_count
>
1161 ((state
->fe
->dtv_property_cache
.layer
[1].modulation
==
1163 || (state
->fe
->dtv_property_cache
.
1164 layer
[1].modulation
== QAM_16
)))
1166 ((state
->fe
->dtv_property_cache
.layer
[2].segment_count
>
1169 ((state
->fe
->dtv_property_cache
.layer
[2].modulation
==
1171 || (state
->fe
->dtv_property_cache
.
1172 layer
[2].modulation
== QAM_16
)))
1178 if (*tune_state
== CT_AGC_STEP_1
) { /* quickly go to the correct range of the ADC power */
1179 if (ABS(adc_error
) < 50 || state
->agc_step
++ > 5) {
1181 #ifdef CONFIG_STANDARD_DAB
1182 if (state
->fe
->dtv_property_cache
.delivery_system
== STANDARD_DAB
) {
1183 dib0090_write_reg(state
, 0x02, (1 << 15) | (15 << 11) | (31 << 6) | (63)); /* cap value = 63 : narrow BB filter : Fc = 1.8MHz */
1184 dib0090_write_reg(state
, 0x04, 0x0);
1188 dib0090_write_reg(state
, 0x02, (1 << 15) | (3 << 11) | (6 << 6) | (32));
1189 dib0090_write_reg(state
, 0x04, 0x01); /*0 = 1KHz ; 1 = 150Hz ; 2 = 50Hz ; 3 = 50KHz ; 4 = servo fast */
1192 *tune_state
= CT_AGC_STOP
;
1195 /* everything higher than or equal to CT_AGC_STOP means tracking */
1196 ret
= 100; /* 10ms interval */
1197 apply_gain_immediatly
= 0;
1202 ("tune state %d, ADC = %3ddB (ADC err %3d) WBD %3ddB (WBD err %3d, WBD val SADC: %4d), RFGainLimit (TOP): %3d, signal: %3ddBm",
1203 (u32
) * tune_state
, (u32
) adc
, (u32
) adc_error
, (u32
) wbd
, (u32
) wbd_error
, (u32
) wbd_val
,
1204 (u32
) state
->rf_gain_limit
>> WBD_ALPHA
, (s32
) 200 + adc
- (state
->current_gain
>> GAIN_ALPHA
));
1209 if (!state
->agc_freeze
)
1210 dib0090_gain_apply(state
, adc_error
, wbd_error
, apply_gain_immediatly
);
1214 EXPORT_SYMBOL(dib0090_gain_control
);
1216 void dib0090_get_current_gain(struct dvb_frontend
*fe
, u16
* rf
, u16
* bb
, u16
* rf_gain_limit
, u16
* rflt
)
1218 struct dib0090_state
*state
= fe
->tuner_priv
;
1220 *rf
= state
->gain
[0];
1222 *bb
= state
->gain
[1];
1224 *rf_gain_limit
= state
->rf_gain_limit
;
1226 *rflt
= (state
->rf_lt_def
>> 10) & 0x7;
1229 EXPORT_SYMBOL(dib0090_get_current_gain
);
1231 u16
dib0090_get_wbd_offset(struct dvb_frontend
*fe
)
1233 struct dib0090_state
*state
= fe
->tuner_priv
;
1234 u32 f_MHz
= state
->fe
->dtv_property_cache
.frequency
/ 1000000;
1235 s32 current_temp
= state
->temperature
;
1236 s32 wbd_thot
, wbd_tcold
;
1237 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1239 while (f_MHz
> wbd
->max_freq
)
1242 dprintk("using wbd-table-entry with max freq %d", wbd
->max_freq
);
1244 if (current_temp
< 0)
1246 if (current_temp
> 128)
1249 //What Wbd gain to apply for this range of frequency
1250 state
->wbdmux
&= ~(7 << 13);
1251 if (wbd
->wbd_gain
!= 0)
1252 state
->wbdmux
|= (wbd
->wbd_gain
<< 13);
1254 state
->wbdmux
|= (4 << 13); // 4 is the default WBD gain
1256 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
1258 //All the curves are linear with slope*f/64+offset
1259 wbd_thot
= wbd
->offset_hot
- (((u32
) wbd
->slope_hot
* f_MHz
) >> 6);
1260 wbd_tcold
= wbd
->offset_cold
- (((u32
) wbd
->slope_cold
* f_MHz
) >> 6);
1262 // Iet assumes that thot-tcold = 130 equiv 128, current temperature ref is -30deg
1264 wbd_tcold
+= ((wbd_thot
- wbd_tcold
) * current_temp
) >> 7;
1266 //for (offset = 0; offset < 1000; offset += 4)
1267 // dbgp("offset = %d -> %d\n", offset, dib0090_wbd_to_db(state, offset));
1268 state
->wbd_target
= dib0090_wbd_to_db(state
, state
->wbd_offset
+ wbd_tcold
); // get the value in dBm from the offset
1269 dprintk("wbd-target: %d dB", (u32
) state
->wbd_target
);
1270 dprintk("wbd offset applied is %d", wbd_tcold
);
1272 return state
->wbd_offset
+ wbd_tcold
;
1275 EXPORT_SYMBOL(dib0090_get_wbd_offset
);
1277 static const u16 dib0090_defaults
[] = {
1317 EN_UHF
| EN_CRYSTAL
,
1325 static const u16 dib0090_p1g_additionnal_defaults
[] = {
1326 // additionnal INITIALISATION for p1g to be written after dib0090_defaults
1341 static void dib0090_set_default_config(struct dib0090_state
*state
, const u16
* n
)
1345 l
= pgm_read_word(n
++);
1347 r
= pgm_read_word(n
++);
1349 dib0090_write_reg(state
, r
, pgm_read_word(n
++));
1352 l
= pgm_read_word(n
++);
1356 #define CAP_VALUE_MIN (u8) 9
1357 #define CAP_VALUE_MAX (u8) 40
1358 #define HR_MIN (u8) 25
1359 #define HR_MAX (u8) 40
1360 #define POLY_MIN (u8) 0
1361 #define POLY_MAX (u8) 8
1363 void dib0090_set_EFUSE(struct dib0090_state
*state
)
1369 e2
=dib0090_read_reg(state
,0x26);
1370 e4
=dib0090_read_reg(state
,0x28);
1372 if ((state
->identity
.version
== P1D_E_F
) || // All P1F uses the internal calibration
1373 (state
->identity
.version
== P1G
) || (e2
== 0xffff)) { //W0090G11R1 and W0090G11R1-D : We will find the calibration Value of the Baseband
1375 dib0090_write_reg(state
,0x22,0x10); //Start the Calib
1376 cal
= (dib0090_read_reg(state
,0x22)>>6) & 0x3ff;
1378 if ((cal
<670) || (cal
==1023)) //Cal at 800 would give too high value for the n
1379 cal
=850; //Recenter the n to 32
1380 n
= 165 - ((cal
* 10)>>6) ;
1381 e2
= e4
= (3<<12) | (34<<6) | (n
);
1385 e2
&= e4
; /* Remove the redundancy */
1390 n
= (e2
>> 12) & 0xf;
1391 h
= (e2
>> 6) & 0x3f;
1393 if ((c
>= CAP_VALUE_MAX
) || (c
<= CAP_VALUE_MIN
))
1395 if ((h
>= HR_MAX
) || (h
<= HR_MIN
))
1397 if ((n
>= POLY_MAX
) || (n
<= POLY_MIN
))
1400 dib0090_write_reg(state
,0x13, (h
<< 10)) ;
1401 e2
= (n
<<11) | ((h
>>2)<<6) | (c
);
1402 dib0090_write_reg(state
,0x2, e2
) ; /* Load the BB_2 */
1406 static int dib0090_reset(struct dvb_frontend
*fe
)
1408 struct dib0090_state
*state
= fe
->tuner_priv
;
1410 dib0090_reset_digital(fe
, state
->config
);
1411 if (dib0090_identify(fe
) < 0)
1414 #ifdef CONFIG_TUNER_DIB0090_P1B_SUPPORT
1415 if (!(state
->identity
.version
& 0x1)) /* it is P1B - reset is already done */
1419 if (!state
->identity
.in_soc
) {
1420 if ((dib0090_read_reg(state
, 0x1a) >> 5) & 0x2)
1421 dib0090_write_reg(state
, 0x1b, (EN_IQADC
| EN_BB
| EN_BIAS
| EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1423 dib0090_write_reg(state
, 0x1b, (EN_DIGCLK
| EN_PLL
| EN_CRYSTAL
));
1426 dib0090_set_default_config(state
, dib0090_defaults
);
1428 if (state
->identity
.in_soc
)
1429 dib0090_write_reg(state
, 0x18, 0x2910); /* charge pump current = 0 */
1431 if (state
->identity
.p1g
)
1432 dib0090_set_default_config(state
, dib0090_p1g_additionnal_defaults
);
1434 if (((state
->identity
.version
& 0x1f) >= P1D_E_F
) || (state
->identity
.in_soc
)) /* Update the efuse : Only available for KROSUS > P1C and SOC as well*/
1435 dib0090_set_EFUSE(state
);
1437 /* Congigure in function of the crystal */
1438 if (state
->config
->io
.clock_khz
>= 24000)
1439 dib0090_write_reg(state
, 0x14, 1);
1441 dib0090_write_reg(state
, 0x14, 2);
1442 dprintk("Pll lock : %d", (dib0090_read_reg(state
, 0x1a) >> 11) & 0x1);
1444 state
->calibrate
= DC_CAL
| WBD_CAL
| TEMP_CAL
; /* enable iq-offset-calibration and wbd-calibration when tuning next time */
1449 #define steps(u) (((u) > 15) ? ((u)-16) : (u))
1450 #define INTERN_WAIT 10
1451 static int dib0090_get_offset(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1453 int ret
= INTERN_WAIT
* 10;
1455 switch (*tune_state
) {
1456 case CT_TUNER_STEP_2
:
1457 /* Turns to positive */
1458 dib0090_write_reg(state
, 0x1f, 0x7);
1459 *tune_state
= CT_TUNER_STEP_3
;
1462 case CT_TUNER_STEP_3
:
1463 state
->adc_diff
= dib0090_read_reg(state
, 0x1d);
1465 /* Turns to negative */
1466 dib0090_write_reg(state
, 0x1f, 0x4);
1467 *tune_state
= CT_TUNER_STEP_4
;
1470 case CT_TUNER_STEP_4
:
1471 state
->adc_diff
-= dib0090_read_reg(state
, 0x1d);
1472 *tune_state
= CT_TUNER_STEP_5
;
1483 struct dc_calibration
{
1491 static const struct dc_calibration dc_table
[] = {
1492 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1493 {0x06, 5, 1, (1 << 13) | (0 << 8) | (26 << 3), 1},
1494 {0x07, 11, 1, (1 << 13) | (0 << 8) | (26 << 3), 0},
1495 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1496 {0x06, 0, 0, (1 << 13) | (29 << 8) | (26 << 3), 1},
1497 {0x06, 10, 0, (1 << 13) | (29 << 8) | (26 << 3), 0},
1501 static const struct dc_calibration dc_p1g_table
[] = {
1502 /* Step1 BB gain1= 26 with boost 1, gain 2 = 0 */
1503 /* addr ; trim reg offset ; pga ; CTRL_BB1 value ; i or q */
1504 {0x06, 5, 1, (1 << 13) | (0 << 8) | (15 << 3), 1}, // offset_trim2_i_chann 0 0 5 0 0 1 6 9 5
1505 {0x07, 11, 1, (1 << 13) | (0 << 8) | (15 << 3), 0}, // offset_trim2_q_chann 0 0 5 0 0 1 7 15 11
1506 /* Step 2 BB gain 1 = 26 with boost = 1 & gain 2 = 29 */
1507 {0x06, 0, 0, (1 << 13) | (29 << 8) | (15 << 3), 1}, // offset_trim1_i_chann 0 0 5 0 0 1 6 4 0
1508 {0x06, 10, 0, (1 << 13) | (29 << 8) | (15 << 3), 0}, // offset_trim1_q_chann 0 0 5 0 0 1 6 14 10
1512 static void dib0090_set_trim(struct dib0090_state
*state
)
1516 if (state
->dc
->addr
== 0x07)
1521 *val
&= ~(0x1f << state
->dc
->offset
);
1522 *val
|= state
->step
<< state
->dc
->offset
;
1524 dib0090_write_reg(state
, state
->dc
->addr
, *val
);
1527 static int dib0090_dc_offset_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1532 switch (*tune_state
) {
1533 case CT_TUNER_START
:
1534 dprintk("Start DC offset calibration");
1536 /* force vcm2 = 0.8V */
1538 state
->bb7
= 0x040d;
1540 /* the LNA AND LO are off */
1541 reg
= dib0090_read_reg(state
, 0x24) & 0x0ffb; /* shutdown lna and lo */
1542 dib0090_write_reg(state
, 0x24, reg
);
1544 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
1545 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x7 << 3) | 0x3); // connect BB, disable WDB enable*
1546 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14)); //Discard the DataTX
1548 state
->dc
= dc_table
;
1550 if (state
->identity
.p1g
)
1551 state
->dc
= dc_p1g_table
;
1552 *tune_state
= CT_TUNER_STEP_0
;
1556 case CT_TUNER_STEP_0
:
1557 dprintk("Sart/continue DC calibration for %s path", (state
->dc
->i
== 1) ? "I" : "Q");
1558 dib0090_write_reg(state
, 0x01, state
->dc
->bb1
);
1559 dib0090_write_reg(state
, 0x07, state
->bb7
| (state
->dc
->i
<< 7));
1562 state
->min_adc_diff
= 1023;
1563 *tune_state
= CT_TUNER_STEP_1
;
1567 case CT_TUNER_STEP_1
:
1568 dib0090_set_trim(state
);
1569 *tune_state
= CT_TUNER_STEP_2
;
1572 case CT_TUNER_STEP_2
:
1573 case CT_TUNER_STEP_3
:
1574 case CT_TUNER_STEP_4
:
1575 ret
= dib0090_get_offset(state
, tune_state
);
1578 case CT_TUNER_STEP_5
: /* found an offset */
1579 dprintk("adc_diff = %d, current step= %d", (u32
) state
->adc_diff
, state
->step
);
1580 if (state
->step
== 0 && state
->adc_diff
< 0) {
1581 state
->min_adc_diff
= -1023;
1582 dprintk("Change of sign of the minimum adc diff");
1585 dprintk("adc_diff = %d, min_adc_diff = %d current_step = %d", state
->adc_diff
, state
->min_adc_diff
, state
->step
);
1587 /* first turn for this frequency */
1588 if (state
->step
== 0) {
1589 if (state
->dc
->pga
&& state
->adc_diff
< 0)
1591 if (state
->dc
->pga
== 0 && state
->adc_diff
> 0)
1595 /* Look for a change of Sign in the Adc_diff.min_adc_diff is used to STORE the setp N-1 */
1596 if ((state
->adc_diff
& 0x8000) == (state
->min_adc_diff
& 0x8000) && steps(state
->step
) < 15) {
1597 /* stop search when the delta the sign is changing and Steps =15 and Step=0 is force for continuance */
1599 state
->min_adc_diff
= state
->adc_diff
; //min is used as N-1
1600 *tune_state
= CT_TUNER_STEP_1
;
1602 /* the minimum was what we have seen in the step before */
1603 if (ABS(state
->adc_diff
) > ABS(state
->min_adc_diff
)) { //Come back to the previous state since the delta was better
1604 dprintk("Since adc_diff N = %d > adc_diff step N-1 = %d, Come back one step", state
->adc_diff
, state
->min_adc_diff
);
1608 dib0090_set_trim(state
);
1609 dprintk("BB Offset Cal, BBreg=%hd,Offset=%hd,Value Set=%hd", state
->dc
->addr
, state
->adc_diff
, state
->step
);
1612 if (state
->dc
->addr
== 0) /* done */
1613 *tune_state
= CT_TUNER_STEP_6
;
1615 *tune_state
= CT_TUNER_STEP_0
;
1620 case CT_TUNER_STEP_6
:
1621 dib0090_write_reg(state
, 0x07, state
->bb7
& ~0x0008); //Force the test bus to be off
1622 dib0090_write_reg(state
, 0x1f, 0x7);
1623 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1624 state
->calibrate
&= ~DC_CAL
;
1631 static int dib0090_wbd_calibration(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1634 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
1636 switch (*tune_state
) {
1637 case CT_TUNER_START
:
1638 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
1640 if (wbd
->wbd_gain
!= 0)
1641 wbd_gain
= wbd
->wbd_gain
;
1644 #if defined(CONFIG_BAND_LBAND) || defined(CONFIG_BAND_SBAND)
1645 if ((state
->current_band
== BAND_LBAND
) || (state
->current_band
== BAND_SBAND
))
1650 if (wbd_gain
== state
->wbd_calibration_gain
) { /* the WBD calibration has already been done */
1651 *tune_state
= CT_TUNER_START
;
1652 state
->calibrate
&= ~WBD_CAL
;
1656 dib0090_write_reg(state
, 0x10, 0x1b81 | (1 << 10) | (wbd_gain
<< 13) | (1 << 3)); // Force: WBD enable,gain to 4, mux to WBD
1658 dib0090_write_reg(state
, 0x24, ((EN_UHF
& 0x0fff) | (1 << 1))); //Discard all LNA but crystal !!!
1659 *tune_state
= CT_TUNER_STEP_0
;
1660 state
->wbd_calibration_gain
= wbd_gain
;
1661 return 90; /* wait for the WBDMUX to switch and for the ADC to sample */
1663 case CT_TUNER_STEP_0
:
1664 state
->wbd_offset
= dib0090_get_slow_adc_val(state
);
1665 dprintk("WBD calibration offset = %d", state
->wbd_offset
);
1666 *tune_state
= CT_TUNER_START
; /* reset done -> real tuning can now begin */
1667 state
->calibrate
&= ~WBD_CAL
;
1676 static void dib0090_set_bandwidth(struct dib0090_state
*state
)
1680 if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 5000)
1682 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 6000)
1684 else if (state
->fe
->dtv_property_cache
.bandwidth_hz
/ 1000 <= 7000)
1689 state
->bb_1_def
&= 0x3fff;
1690 state
->bb_1_def
|= tmp
;
1692 dib0090_write_reg(state
, 0x01, state
->bb_1_def
); /* be sure that we have the right bb-filter */
1694 dib0090_write_reg(state
, 0x03, 0x6008); /* = 0x6008 : vcm3_trim = 1 ; filter2_gm1_trim = 8 ; filter2_cutoff_freq = 0 */
1695 dib0090_write_reg(state
, 0x04, 0x1); /* 0 = 1KHz ; 1 = 50Hz ; 2 = 150Hz ; 3 = 50KHz ; 4 = servo fast */
1696 if (state
->identity
.in_soc
) {
1697 dib0090_write_reg(state
, 0x05, 0x9bcf); /* attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 1 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 15 */
1699 dib0090_write_reg(state
, 0x02, (5 << 11) | (8 << 6) | (22 & 0x3f)); /* 22 = cap_value */
1700 dib0090_write_reg(state
, 0x05, 0xabcd); /* = 0xabcd : attenuator_ibias_tri = 2 ; input_stage_ibias_tr = 2 ; nc = 11 ; ext_gm_trim = 1 ; obuf_ibias_trim = 4 ; filter13_gm2_ibias_t = 13 */
1704 static const struct dib0090_pll dib0090_pll_table
[] = {
1705 #ifdef CONFIG_BAND_CBAND
1706 {56000, 0, 9, 48, 6},
1707 {70000, 1, 9, 48, 6},
1708 {87000, 0, 8, 32, 4},
1709 {105000, 1, 8, 32, 4},
1710 {115000, 0, 7, 24, 6},
1711 {140000, 1, 7, 24, 6},
1712 {170000, 0, 6, 16, 4},
1714 #ifdef CONFIG_BAND_VHF
1715 {200000, 1, 6, 16, 4},
1716 {230000, 0, 5, 12, 6},
1717 {280000, 1, 5, 12, 6},
1718 {340000, 0, 4, 8, 4},
1719 {380000, 1, 4, 8, 4},
1720 {450000, 0, 3, 6, 6},
1722 #ifdef CONFIG_BAND_UHF
1723 {580000, 1, 3, 6, 6},
1724 {700000, 0, 2, 4, 4},
1725 {860000, 1, 2, 4, 4},
1727 #ifdef CONFIG_BAND_LBAND
1728 {1800000, 1, 0, 2, 4},
1730 #ifdef CONFIG_BAND_SBAND
1731 {2900000, 0, 14, 1, 4},
1735 static const struct dib0090_tuning dib0090_tuning_table_fm_vhf_on_cband
[] = {
1737 #ifdef CONFIG_BAND_CBAND
1738 {184000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1739 {227000, 4, 3, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1740 {380000, 4, 7, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1742 #ifdef CONFIG_BAND_UHF
1743 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1744 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1745 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1746 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1747 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1748 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1750 #ifdef CONFIG_BAND_LBAND
1751 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1752 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1753 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1755 #ifdef CONFIG_BAND_SBAND
1756 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1757 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1761 static const struct dib0090_tuning dib0090_tuning_table
[] = {
1763 #ifdef CONFIG_BAND_CBAND
1764 {170000, 4, 1, 15, 0x280, 0x2912, 0xb94e, EN_CAB
},
1766 #ifdef CONFIG_BAND_VHF
1767 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1768 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1769 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
},
1771 #ifdef CONFIG_BAND_UHF
1772 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1773 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1774 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1775 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1776 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1777 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
},
1779 #ifdef CONFIG_BAND_LBAND
1780 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1781 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1782 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
},
1784 #ifdef CONFIG_BAND_SBAND
1785 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
},
1786 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
},
1790 static const struct dib0090_tuning dib0090_p1g_tuning_table
[] = {
1791 //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
1792 #ifdef CONFIG_BAND_CBAND
1793 {170000, 4, 1, 0x820f, 0x300, 0x2d22, 0x82cb, EN_CAB
}, // FM EN_CAB
1795 #ifdef CONFIG_BAND_VHF
1796 {184000, 1, 1, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
}, // VHF EN_VHF
1797 {227000, 1, 3, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
}, // VHF EN_VHF
1798 {380000, 1, 7, 15, 0x300, 0x4d12, 0xb94e, EN_VHF
}, // VHF EN_VHF
1800 #ifdef CONFIG_BAND_UHF
1801 {510000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1802 {540000, 2, 1, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1803 {600000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1804 {630000, 2, 4, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1805 {680000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1806 {720000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1807 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1809 #ifdef CONFIG_BAND_LBAND
1810 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1811 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1812 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1814 #ifdef CONFIG_BAND_SBAND
1815 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
}, // SBD EN_SBD
1816 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
}, // SBD EN_SBD
1820 static const struct dib0090_pll dib0090_p1g_pll_table
[] = {
1821 #ifdef CONFIG_BAND_CBAND
1822 {57000, 0, 11, 48, 6}, // CAB
1823 {70000, 1, 11, 48, 6}, // CAB
1824 {86000, 0, 10, 32, 4}, // CAB
1825 {105000, 1, 10, 32, 4}, // FM
1826 {115000, 0, 9, 24, 6}, // FM
1827 {140000, 1, 9, 24, 6}, // MID FM VHF
1828 {170000, 0, 8, 16, 4}, // MID FM VHF
1830 #ifdef CONFIG_BAND_VHF
1831 {200000, 1, 8, 16, 4}, // VHF
1832 {230000, 0, 7, 12, 6}, // VHF
1833 {280000, 1, 7, 12, 6}, // MID VHF UHF
1834 {340000, 0, 6, 8, 4}, // MID VHF UHF
1835 {380000, 1, 6, 8, 4}, // MID VHF UHF
1836 {455000, 0, 5, 6, 6}, // MID VHF UHF
1838 #ifdef CONFIG_BAND_UHF
1839 {580000, 1, 5, 6, 6}, // UHF
1840 {680000, 0, 4, 4, 4}, // UHF
1841 {860000, 1, 4, 4, 4}, // UHF
1843 #ifdef CONFIG_BAND_LBAND
1844 {1800000, 1, 2, 2, 4}, // LBD
1846 #ifdef CONFIG_BAND_SBAND
1847 {2900000, 0, 1, 1, 6}, // SBD
1851 static const struct dib0090_tuning dib0090_p1g_tuning_table_fm_vhf_on_cband
[] = {
1852 //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
1853 #ifdef CONFIG_BAND_CBAND
1854 {184000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
}, // FM EN_CAB // 0x8190 Good perf but higher current //0x4187 Low current
1855 {227000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
}, // FM EN_CAB
1856 {380000, 4, 3, 0x4187, 0x2c0, 0x2d22, 0x81cb, EN_CAB
}, // FM EN_CAB
1858 #ifdef CONFIG_BAND_UHF
1859 {520000, 2, 0, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1860 {550000, 2, 2, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1861 {650000, 2, 3, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1862 {750000, 2, 5, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1863 {850000, 2, 6, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1864 {900000, 2, 7, 15, 0x300, 0x1d12, 0xb9ce, EN_UHF
}, // UHF
1866 #ifdef CONFIG_BAND_LBAND
1867 {1500000, 4, 0, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1868 {1600000, 4, 1, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1869 {1800000, 4, 3, 20, 0x300, 0x1912, 0x82c9, EN_LBD
}, // LBD EN_LBD
1871 #ifdef CONFIG_BAND_SBAND
1872 {2300000, 1, 4, 20, 0x300, 0x2d2A, 0x82c7, EN_SBD
}, // SBD EN_SBD
1873 {2900000, 1, 7, 20, 0x280, 0x2deb, 0x8347, EN_SBD
}, // SBD EN_SBD
1877 static const struct dib0090_tuning dib0090_tuning_table_cband_7090
[] = {
1878 //max_freq, switch_trim, lna_tune, lna_bias, v2i, mix, load, tuner_enable;
1879 #ifdef CONFIG_BAND_CBAND
1880 //{ 184000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB }, // 0x81ce 0x8190 Good perf but higher current //0x4187 Low current
1881 {300000, 4, 3, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1882 {380000, 4, 10, 0x018F, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
}, //0x4187
1883 {570000, 4, 10, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1884 {858000, 4, 5, 0x8190, 0x2c0, 0x2d22, 0xb9ce, EN_CAB
},
1888 static int dib0090_captrim_search(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
1896 u8 force_soft_search
= 0;
1898 if (state
->identity
.version
== SOC_8090_P1G_11R1
|| state
->identity
.version
== SOC_8090_P1G_21R1
)
1899 force_soft_search
= 1;
1901 if (*tune_state
== CT_TUNER_START
) {
1902 dprintk("Start Captrim search : %s", (force_soft_search
== 1) ? "FORCE SOFT SEARCH" : "AUTO");
1903 dib0090_write_reg(state
, 0x10, 0x2B1);
1904 dib0090_write_reg(state
, 0x1e, 0x0032);
1906 if (!state
->tuner_is_tuned
) {
1907 /* prepare a complete captrim */
1908 if (!state
->identity
.p1g
|| force_soft_search
)
1909 state
->step
= state
->captrim
= state
->fcaptrim
= 64;
1911 state
->current_rf
= state
->rf_request
;
1912 } else { /* we are already tuned to this frequency - the configuration is correct */
1913 if (!state
->identity
.p1g
|| force_soft_search
) {
1914 /* do a minimal captrim even if the frequency has not changed */
1916 state
->captrim
= state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7f;
1919 state
->adc_diff
= 3000; // start with a unreachable high number : only set for KROSUS < P1G */
1920 *tune_state
= CT_TUNER_STEP_0
;
1922 } else if (*tune_state
== CT_TUNER_STEP_0
) {
1923 if (state
->identity
.p1g
&& !force_soft_search
) {
1924 // 30MHz => Code 15 for the ration => 128us to lock. Giving approximately
1925 u8 ratio
= 31; // (state->config->io.clock_khz / 1024 + 1) & 0x1f;
1927 dib0090_write_reg(state
, 0x40, (3 << 7) | (ratio
<< 2) | (1 << 1) | 1);
1928 dib0090_read_reg(state
, 0x40);
1929 //dib0090_write_reg(state, 0x40, (3<<7) | ((((state->config->io.clock_khz >> 11)+1) & 0x1f)<<2) | (1<<1) | 1);
1933 dib0090_write_reg(state
, 0x18, lo4
| state
->captrim
);
1935 if (state
->identity
.in_soc
)
1938 *tune_state
= CT_TUNER_STEP_1
;
1940 } else if (*tune_state
== CT_TUNER_STEP_1
) {
1941 if (state
->identity
.p1g
&& !force_soft_search
) {
1942 dib0090_write_reg(state
, 0x40, 0x18c | (0 << 1) | 0);
1943 dib0090_read_reg(state
, 0x40);
1945 state
->fcaptrim
= dib0090_read_reg(state
, 0x18) & 0x7F;
1946 dprintk("***Final Captrim= 0x%x", state
->fcaptrim
);
1947 *tune_state
= CT_TUNER_STEP_3
;
1950 /* MERGE for all krosus before P1G */
1951 adc
= dib0090_get_slow_adc_val(state
);
1952 dprintk("CAPTRIM=%d; ADC = %d (ADC) & %dmV", (u32
) state
->captrim
, (u32
) adc
, (u32
) (adc
) * (u32
) 1800 / (u32
) 1024);
1954 if (state
->rest
== 0 || state
->identity
.in_soc
) { /* Just for 8090P SOCS where auto captrim HW bug : TO CHECK IN ACI for SOCS !!! if 400 for 8090p SOC => tune issue !!! */
1959 if (adc
>= adc_target
) {
1963 adc
= adc_target
- adc
;
1967 if (adc
< state
->adc_diff
) {
1968 dprintk("CAPTRIM=%d is closer to target (%d/%d)", (u32
) state
->captrim
, (u32
) adc
, (u32
) state
->adc_diff
);
1969 state
->adc_diff
= adc
;
1970 state
->fcaptrim
= state
->captrim
;
1971 //we could break here, to save time, if we reached a close-enough value
1972 //e.g.: if (state->adc_diff < 20)
1976 state
->captrim
+= step_sign
* state
->step
;
1977 if (state
->step
>= 1)
1978 *tune_state
= CT_TUNER_STEP_0
;
1980 *tune_state
= CT_TUNER_STEP_2
;
1982 ret
= 25; //LOLO changed from 15
1984 } else if (*tune_state
== CT_TUNER_STEP_2
) { /* this step is only used by krosus < P1G */
1985 /*write the final cptrim config */
1986 dib0090_write_reg(state
, 0x18, lo4
| state
->fcaptrim
);
1988 *tune_state
= CT_TUNER_STEP_3
;
1990 } else if (*tune_state
== CT_TUNER_STEP_3
) {
1991 state
->calibrate
&= ~CAPTRIM_CAL
;
1992 *tune_state
= CT_TUNER_STEP_0
;
1998 static int dib0090_get_temperature(struct dib0090_state
*state
, enum frontend_tune_state
*tune_state
)
2003 //The assumption is that the AGC is not active
2004 switch (*tune_state
) {
2005 case CT_TUNER_START
:
2006 state
->wbdmux
= dib0090_read_reg(state
, 0x10);
2007 dib0090_write_reg(state
, 0x10, (state
->wbdmux
& ~(0xff << 3)) | (0x8 << 3)); //Move to the bias and clear the wbd enable
2009 state
->bias
= dib0090_read_reg(state
, 0x13);
2010 dib0090_write_reg(state
, 0x13, state
->bias
| (0x3 << 8)); //Move to the Ref
2012 *tune_state
= CT_TUNER_STEP_0
;
2013 /* wait for the WBDMUX to switch and for the ADC to sample */
2016 case CT_TUNER_STEP_0
:
2017 state
->adc_diff
= dib0090_get_slow_adc_val(state
); // Get the value for the Ref
2018 dib0090_write_reg(state
, 0x13, (state
->bias
& ~(0x3 << 8)) | (0x2 << 8)); //Move to the Ptat
2019 *tune_state
= CT_TUNER_STEP_1
;
2022 case CT_TUNER_STEP_1
:
2023 val
= dib0090_get_slow_adc_val(state
); // Get the value for the Ptat
2024 state
->temperature
= ((s16
) ((val
- state
->adc_diff
) * 180) >> 8) + 55; // +55 is defined as = -30deg
2026 dprintk("temperature: %d C", state
->temperature
- 30);
2028 *tune_state
= CT_TUNER_STEP_2
;
2031 case CT_TUNER_STEP_2
:
2032 //Reload the start values.
2033 dib0090_write_reg(state
, 0x13, state
->bias
);
2034 dib0090_write_reg(state
, 0x10, state
->wbdmux
); /* write back original WBDMUX */
2036 *tune_state
= CT_TUNER_START
;
2037 state
->calibrate
&= ~TEMP_CAL
;
2038 if (state
->config
->analog_output
== 0)
2039 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14)); //Set the DataTX
2050 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2051 static int dib0090_tune(struct dvb_frontend
*fe
)
2053 struct dib0090_state
*state
= fe
->tuner_priv
;
2054 const struct dib0090_tuning
*tune
= state
->current_tune_table_index
;
2055 const struct dib0090_pll
*pll
= state
->current_pll_table_index
;
2056 enum frontend_tune_state
*tune_state
= &state
->tune_state
;
2058 u16 lo5
, lo6
, Den
, tmp
;
2059 u32 FBDiv
, Rest
, FREF
, VCOF_kHz
= 0;
2060 int ret
= 10; /* 1ms is the default delay most of the time */
2063 /************************* VCO ***************************/
2064 /* Default values for FG */
2065 /* from these are needed : */
2066 /* Cp,HFdiv,VCOband,SD,Num,Den,FB and REFDiv */
2068 /* in any case we first need to do a calibration if needed */
2069 if (*tune_state
== CT_TUNER_START
) {
2070 /* deactivate DataTX before some calibrations */
2071 if (state
->calibrate
& (DC_CAL
| TEMP_CAL
| WBD_CAL
))
2072 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) & ~(1 << 14));
2073 else /* Activate DataTX in case a calibration has been done before */ if (state
->config
->analog_output
== 0)
2074 dib0090_write_reg(state
, 0x23, dib0090_read_reg(state
, 0x23) | (1 << 14));
2077 if (state
->calibrate
& DC_CAL
)
2078 return dib0090_dc_offset_calibration(state
, tune_state
);
2079 else if (state
->calibrate
& WBD_CAL
) {
2080 if (state
->current_rf
== 0) {
2081 state
->current_rf
= state
->fe
->dtv_property_cache
.frequency
/ 1000;
2083 return dib0090_wbd_calibration(state
, tune_state
);
2084 } else if (state
->calibrate
& TEMP_CAL
)
2085 return dib0090_get_temperature(state
, tune_state
);
2086 else if (state
->calibrate
& CAPTRIM_CAL
)
2087 return dib0090_captrim_search(state
, tune_state
);
2089 if (*tune_state
== CT_TUNER_START
) {
2090 /* if soc and AGC pwm control, disengage mux to be able to R/W access to 0x01 register to set the right filter (cutoff_freq_select) during the tune sequence, otherwise, SOC SERPAR error when accessing to 0x01 */
2091 if (state
->config
->use_pwm_agc
&& state
->identity
.in_soc
) {
2092 tmp
= dib0090_read_reg(state
, 0x39);
2093 if ((tmp
>> 10) & 0x1)
2094 dib0090_write_reg(state
, 0x39, tmp
& ~(1 << 10)); // disengage mux : en_mux_bb1 = 0
2097 state
->current_band
= (u8
) BAND_OF_FREQUENCY(state
->fe
->dtv_property_cache
.frequency
/ 1000);
2099 state
->fe
->dtv_property_cache
.frequency
/ 1000 + (state
->current_band
==
2100 BAND_UHF
? state
->config
->freq_offset_khz_uhf
: state
->config
->
2101 freq_offset_khz_vhf
);
2103 /* in ISDB-T 1seg we shift tuning frequency */
2104 if ((state
->fe
->dtv_property_cache
.delivery_system
== SYS_ISDBT
&& state
->fe
->dtv_property_cache
.isdbt_sb_mode
== 1
2105 && state
->fe
->dtv_property_cache
.isdbt_partial_reception
== 0)) {
2106 const struct dib0090_low_if_offset_table
*LUT_offset
= state
->config
->low_if
;
2107 u8 found_offset
= 0;
2108 u32 margin_khz
= 100;
2110 if (LUT_offset
!= NULL
) {
2111 while (LUT_offset
->RF_freq
!= 0xffff) {
2112 if (((state
->rf_request
> (LUT_offset
->RF_freq
- margin_khz
))
2113 && (state
->rf_request
< (LUT_offset
->RF_freq
+ margin_khz
)))
2114 && LUT_offset
->std
== state
->fe
->dtv_property_cache
.delivery_system
) {
2115 state
->rf_request
+= LUT_offset
->offset_khz
;
2123 if (found_offset
== 0)
2124 state
->rf_request
+= 400;
2126 if (state
->current_rf
!= state
->rf_request
|| (state
->current_standard
!= state
->fe
->dtv_property_cache
.delivery_system
)) {
2127 state
->tuner_is_tuned
= 0;
2128 state
->current_rf
= 0;
2129 state
->current_standard
= 0;
2131 tune
= dib0090_tuning_table
;
2132 if (state
->identity
.p1g
)
2133 tune
= dib0090_p1g_tuning_table
;
2135 tmp
= (state
->identity
.version
>> 5) & 0x7;
2137 if (state
->identity
.in_soc
) {
2138 if (state
->config
->force_cband_input
) { /* Use the CBAND input for all band */
2139 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
2140 || state
->current_band
& BAND_UHF
) {
2141 state
->current_band
= BAND_CBAND
;
2142 tune
= dib0090_tuning_table_cband_7090
;
2144 } else { /* Use the CBAND input for all band under UHF */
2145 if (state
->current_band
& BAND_CBAND
|| state
->current_band
& BAND_FM
|| state
->current_band
& BAND_VHF
) {
2146 state
->current_band
= BAND_CBAND
;
2147 tune
= dib0090_tuning_table_cband_7090
;
2151 if (tmp
== 0x4 || tmp
== 0x7) {
2152 /* CBAND tuner version for VHF */
2153 if (state
->current_band
== BAND_FM
|| state
->current_band
== BAND_CBAND
|| state
->current_band
== BAND_VHF
) {
2154 state
->current_band
= BAND_CBAND
; /* Force CBAND */
2156 tune
= dib0090_tuning_table_fm_vhf_on_cband
;
2157 if (state
->identity
.p1g
)
2158 tune
= dib0090_p1g_tuning_table_fm_vhf_on_cband
;
2162 pll
= dib0090_pll_table
;
2163 if (state
->identity
.p1g
)
2164 pll
= dib0090_p1g_pll_table
;
2166 /* Look for the interval */
2167 while (state
->rf_request
> tune
->max_freq
)
2169 while (state
->rf_request
> pll
->max_freq
)
2172 state
->current_tune_table_index
= tune
;
2173 state
->current_pll_table_index
= pll
;
2175 // select internal switch
2176 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->switch_trim
));
2178 // Find the VCO frequency in MHz
2179 VCOF_kHz
= (pll
->hfdiv
* state
->rf_request
) * 2;
2181 FREF
= state
->config
->io
.clock_khz
; // REFDIV is 1FREF Has to be as Close as possible to 10MHz
2182 if (state
->config
->fref_clock_ratio
!= 0)
2183 FREF
/= state
->config
->fref_clock_ratio
;
2185 // Determine the FB divider
2186 // The reference is 10MHz, Therefore the FBdivider is on the first digits
2187 FBDiv
= (VCOF_kHz
/ pll
->topresc
/ FREF
);
2188 Rest
= (VCOF_kHz
/ pll
->topresc
) - FBDiv
* FREF
; //in kHz
2190 // Avoid Spurs in the loopfilter bandwidth
2193 else if (Rest
< 2 * LPF
)
2195 else if (Rest
> (FREF
- LPF
)) {
2198 } //Go to the next FB
2199 else if (Rest
> (FREF
- 2 * LPF
))
2200 Rest
= FREF
- 2 * LPF
;
2201 Rest
= (Rest
* 6528) / (FREF
/ 10);
2204 /* external loop filter, otherwise:
2205 * lo5 = (0 << 15) | (0 << 12) | (0 << 11) | (3 << 9) | (4 << 6) | (3 << 4) | 4;
2211 //else if (state->config->analog_output)
2218 else if (state
->config
->analog_output
)
2224 if (state
->identity
.p1g
) { /* Bias is done automatically in P1G */
2225 if (state
->identity
.in_soc
) {
2226 if (state
->identity
.version
== SOC_8090_P1G_11R1
)
2231 lo5
= 0x42c; //BIAS Lo set to 4 by default in case of the Captrim search does not take care of the VCO Bias
2234 lo5
|= (pll
->hfdiv_code
<< 11) | (pll
->vco_band
<< 7); /* bit 15 is the split to the slave, we do not do it here */
2236 //Internal loop filter set...
2237 if (!state
->config
->io
.pll_int_loop_filt
) {
2238 if (state
->identity
.in_soc
)
2240 else if (state
->identity
.p1g
|| (Rest
== 0))
2245 lo6
= (state
->config
->io
.pll_int_loop_filt
<< 3); // take the loop filter value given by the layout
2246 //dprintk("lo6 = 0x%04x", (u32)lo6);
2251 if (state
->config
->analog_output
)
2252 lo6
|= (1 << 2) | 2; //SigmaDelta and Dither
2254 if (state
->identity
.in_soc
)
2255 lo6
|= (1 << 2) | 2; //SigmaDelta and Dither
2257 lo6
|= (1 << 2) | 2; //SigmaDelta and Dither
2261 // Now we have to define the Num and Denum
2262 // LO1 gets the FBdiv
2263 dib0090_write_reg(state
, 0x15, (u16
) FBDiv
);
2264 // LO2 gets the REFDiv
2265 if (state
->config
->fref_clock_ratio
!= 0)
2266 dib0090_write_reg(state
, 0x16, (Den
<< 8) | state
->config
->fref_clock_ratio
);
2268 dib0090_write_reg(state
, 0x16, (Den
<< 8) | 1);
2269 // LO3 for the Numerator
2270 dib0090_write_reg(state
, 0x17, (u16
) Rest
);
2272 dib0090_write_reg(state
, 0x19, lo5
);
2274 dib0090_write_reg(state
, 0x1c, lo6
);
2276 // Check if the 0090 is analogged configured
2277 //Disable ADC and DigPLL =0xFF9F, 0xffbf for test purposes.
2278 //Enable The Outputs of the BB on DATA_Tx
2279 lo6
= tune
->tuner_enable
;
2280 if (state
->config
->analog_output
)
2281 lo6
= (lo6
& 0xff9f) | 0x2;
2283 dib0090_write_reg(state
, 0x24, lo6
| EN_LO
| state
->config
->use_pwm_agc
* EN_CRYSTAL
);
2287 state
->current_rf
= state
->rf_request
;
2288 state
->current_standard
= state
->fe
->dtv_property_cache
.delivery_system
;
2291 state
->calibrate
= CAPTRIM_CAL
; /* captrim serach now */
2294 else if (*tune_state
== CT_TUNER_STEP_0
) { /* Warning : because of captrim cal, if you change this step, change it also in _cal.c file because it is the step following captrim cal state machine */
2295 const struct dib0090_wbd_slope
*wbd
= state
->current_wbd_table
;
2297 // if(!state->identity.p1g) {
2298 while (state
->current_rf
/ 1000 > wbd
->max_freq
)
2302 dib0090_write_reg(state
, 0x1e, 0x07ff);
2303 dprintk("Final Captrim: %d", (u32
) state
->fcaptrim
);
2304 dprintk("HFDIV code: %d", (u32
) pll
->hfdiv_code
);
2305 dprintk("VCO = %d", (u32
) pll
->vco_band
);
2306 dprintk("VCOF in kHz: %d ((%d*%d) << 1))", (u32
) ((pll
->hfdiv
* state
->rf_request
) * 2), (u32
) pll
->hfdiv
, (u32
) state
->rf_request
);
2307 dprintk("REFDIV: %d, FREF: %d", (u32
) 1, (u32
) state
->config
->io
.clock_khz
);
2308 dprintk("FBDIV: %d, Rest: %d", (u32
) dib0090_read_reg(state
, 0x15), (u32
) dib0090_read_reg(state
, 0x17));
2309 dprintk("Num: %d, Den: %d, SD: %d", (u32
) dib0090_read_reg(state
, 0x17), (u32
) (dib0090_read_reg(state
, 0x16) >> 8),
2310 (u32
) dib0090_read_reg(state
, 0x1c) & 0x3);
2312 #define WBD 0x781 /* 1 1 1 1 0000 0 0 1 */
2314 i
= 3; //wbdmux_bias
2316 if (wbd
->wbd_gain
!= 0) //&& !state->identity.p1g)
2319 //Store wideband mux register.
2320 state
->wbdmux
= (c
<< 13) | (i
<< 11) | (WBD
| (state
->config
->use_pwm_agc
<< 1));
2321 dib0090_write_reg(state
, 0x10, state
->wbdmux
);
2323 if ((tune
->tuner_enable
== EN_CAB
) && state
->identity
.p1g
) {
2324 dprintk("P1G : The cable band is selected and lna_tune = %d", tune
->lna_tune
);
2325 dib0090_write_reg(state
, 0x09, tune
->lna_bias
);
2326 dib0090_write_reg(state
, 0x0b, 0xb800 | (tune
->lna_tune
<< 6) | (tune
->switch_trim
));
2328 dib0090_write_reg(state
, 0x09, (tune
->lna_tune
<< 5) | tune
->lna_bias
);
2330 dib0090_write_reg(state
, 0x0c, tune
->v2i
);
2331 dib0090_write_reg(state
, 0x0d, tune
->mix
);
2332 dib0090_write_reg(state
, 0x0e, tune
->load
);
2333 *tune_state
= CT_TUNER_STEP_1
;
2335 } else if (*tune_state
== CT_TUNER_STEP_1
) {
2336 /* initialize the lt gain register */
2337 state
->rf_lt_def
= 0x7c00;
2338 // dib0090_write_reg(state, 0x0f, state->rf_lt_def);
2340 dib0090_set_bandwidth(state
);
2341 state
->tuner_is_tuned
= 1;
2343 // if(!state->identity.p1g)
2344 state
->calibrate
|= WBD_CAL
; // TODO: only do the WBD calibration for new tune
2346 state
->calibrate
|= TEMP_CAL
; // Force the Temperature to be remesured at next TUNE.
2347 *tune_state
= CT_TUNER_STOP
;
2349 ret
= FE_CALLBACK_TIME_NEVER
;
2353 static int dib0090_release(struct dvb_frontend
*fe
)
2355 kfree(fe
->tuner_priv
);
2356 fe
->tuner_priv
= NULL
;
2360 enum frontend_tune_state
dib0090_get_tune_state(struct dvb_frontend
*fe
)
2362 struct dib0090_state
*state
= fe
->tuner_priv
;
2364 return state
->tune_state
;
2367 EXPORT_SYMBOL(dib0090_get_tune_state
);
2369 int dib0090_set_tune_state(struct dvb_frontend
*fe
, enum frontend_tune_state tune_state
)
2371 struct dib0090_state
*state
= fe
->tuner_priv
;
2373 state
->tune_state
= tune_state
;
2377 EXPORT_SYMBOL(dib0090_set_tune_state
);
2379 static int dib0090_get_frequency(struct dvb_frontend
*fe
, u32
* frequency
)
2381 struct dib0090_state
*state
= fe
->tuner_priv
;
2383 *frequency
= 1000 * state
->current_rf
;
2387 static int dib0090_set_params(struct dvb_frontend
*fe
, struct dvb_frontend_parameters
*p
)
2389 struct dib0090_state
*state
= fe
->tuner_priv
;
2392 state
->tune_state
= CT_TUNER_START
;
2395 ret
= dib0090_tune(fe
);
2396 if (ret
!= FE_CALLBACK_TIME_NEVER
)
2400 } while (state
->tune_state
!= CT_TUNER_STOP
);
2405 static const struct dvb_tuner_ops dib0090_ops
= {
2407 .name
= "DiBcom DiB0090",
2408 .frequency_min
= 45000000,
2409 .frequency_max
= 860000000,
2410 .frequency_step
= 1000,
2412 .release
= dib0090_release
,
2414 .init
= dib0090_wakeup
,
2415 .sleep
= dib0090_sleep
,
2416 .set_params
= dib0090_set_params
,
2417 .get_frequency
= dib0090_get_frequency
,
2420 static const struct dvb_tuner_ops dib0090_fw_ops
= {
2422 .name
= "DiBcom DiB0090",
2423 .frequency_min
= 45000000,
2424 .frequency_max
= 860000000,
2425 .frequency_step
= 1000,
2427 .release
= dib0090_release
,
2432 .get_frequency
= NULL
,
2435 static const struct dib0090_wbd_slope dib0090_wbd_table_default
[] = {
2436 {470, 0, 250, 0, 100, 4},
2437 {860, 51, 866, 21, 375, 4},
2438 {1700, 0, 800, 0, 850, 4}, //LBAND Predefinition , to calibrate
2439 {2900, 0, 250, 0, 100, 6}, //SBAND Predefinition , NOT tested Yet
2440 {0xFFFF, 0, 0, 0, 0, 0},
2443 struct dvb_frontend
*dib0090_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2445 struct dib0090_state
*st
= kzalloc(sizeof(struct dib0090_state
), GFP_KERNEL
);
2449 st
->config
= config
;
2452 fe
->tuner_priv
= st
;
2454 if (config
->wbd
== NULL
)
2455 st
->current_wbd_table
= dib0090_wbd_table_default
;
2457 st
->current_wbd_table
= config
->wbd
;
2459 if (dib0090_reset(fe
) != 0)
2462 printk(KERN_INFO
"DiB0090: successfully identified\n");
2463 memcpy(&fe
->ops
.tuner_ops
, &dib0090_ops
, sizeof(struct dvb_tuner_ops
));
2468 fe
->tuner_priv
= NULL
;
2472 EXPORT_SYMBOL(dib0090_register
);
2474 struct dvb_frontend
*dib0090_fw_register(struct dvb_frontend
*fe
, struct i2c_adapter
*i2c
, const struct dib0090_config
*config
)
2476 struct dib0090_fw_state
*st
= kzalloc(sizeof(struct dib0090_fw_state
), GFP_KERNEL
);
2480 st
->config
= config
;
2483 fe
->tuner_priv
= st
;
2485 if (dib0090_fw_reset_digital(fe
, st
->config
) != 0)
2488 dprintk("DiB0090 FW: successfully identified");
2489 memcpy(&fe
->ops
.tuner_ops
, &dib0090_fw_ops
, sizeof(struct dvb_tuner_ops
));
2494 fe
->tuner_priv
= NULL
;
2498 EXPORT_SYMBOL(dib0090_fw_register
);
2500 MODULE_AUTHOR("Patrick Boettcher <pboettcher@dibcom.fr>");
2501 MODULE_AUTHOR("Olivier Grenie <olivier.grenie@dibcom.fr>");
2502 MODULE_DESCRIPTION("Driver for the DiBcom 0090 base-band RF Tuner");
2503 MODULE_LICENSE("GPL");