drm/i915: Don't update the render-clock for every bo.
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / gpu / drm / i915 / intel_display.c
blob267adc6fbfc1c38a397d9a526fa45def38e8bc37
1 /*
2 * Copyright © 2006-2007 Intel Corporation
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21 * DEALINGS IN THE SOFTWARE.
23 * Authors:
24 * Eric Anholt <eric@anholt.net>
27 #include <linux/module.h>
28 #include <linux/input.h>
29 #include <linux/i2c.h>
30 #include <linux/kernel.h>
31 #include "drmP.h"
32 #include "intel_drv.h"
33 #include "i915_drm.h"
34 #include "i915_drv.h"
35 #include "intel_dp.h"
37 #include "drm_crtc_helper.h"
39 #define HAS_eDP (intel_pipe_has_type(crtc, INTEL_OUTPUT_EDP))
41 bool intel_pipe_has_type (struct drm_crtc *crtc, int type);
42 static void intel_update_watermarks(struct drm_device *dev);
43 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule);
45 typedef struct {
46 /* given values */
47 int n;
48 int m1, m2;
49 int p1, p2;
50 /* derived values */
51 int dot;
52 int vco;
53 int m;
54 int p;
55 } intel_clock_t;
57 typedef struct {
58 int min, max;
59 } intel_range_t;
61 typedef struct {
62 int dot_limit;
63 int p2_slow, p2_fast;
64 } intel_p2_t;
66 #define INTEL_P2_NUM 2
67 typedef struct intel_limit intel_limit_t;
68 struct intel_limit {
69 intel_range_t dot, vco, n, m, m1, m2, p, p1;
70 intel_p2_t p2;
71 bool (* find_pll)(const intel_limit_t *, struct drm_crtc *,
72 int, int, intel_clock_t *);
73 bool (* find_reduced_pll)(const intel_limit_t *, struct drm_crtc *,
74 int, int, intel_clock_t *);
77 #define I8XX_DOT_MIN 25000
78 #define I8XX_DOT_MAX 350000
79 #define I8XX_VCO_MIN 930000
80 #define I8XX_VCO_MAX 1400000
81 #define I8XX_N_MIN 3
82 #define I8XX_N_MAX 16
83 #define I8XX_M_MIN 96
84 #define I8XX_M_MAX 140
85 #define I8XX_M1_MIN 18
86 #define I8XX_M1_MAX 26
87 #define I8XX_M2_MIN 6
88 #define I8XX_M2_MAX 16
89 #define I8XX_P_MIN 4
90 #define I8XX_P_MAX 128
91 #define I8XX_P1_MIN 2
92 #define I8XX_P1_MAX 33
93 #define I8XX_P1_LVDS_MIN 1
94 #define I8XX_P1_LVDS_MAX 6
95 #define I8XX_P2_SLOW 4
96 #define I8XX_P2_FAST 2
97 #define I8XX_P2_LVDS_SLOW 14
98 #define I8XX_P2_LVDS_FAST 7
99 #define I8XX_P2_SLOW_LIMIT 165000
101 #define I9XX_DOT_MIN 20000
102 #define I9XX_DOT_MAX 400000
103 #define I9XX_VCO_MIN 1400000
104 #define I9XX_VCO_MAX 2800000
105 #define IGD_VCO_MIN 1700000
106 #define IGD_VCO_MAX 3500000
107 #define I9XX_N_MIN 1
108 #define I9XX_N_MAX 6
109 /* IGD's Ncounter is a ring counter */
110 #define IGD_N_MIN 3
111 #define IGD_N_MAX 6
112 #define I9XX_M_MIN 70
113 #define I9XX_M_MAX 120
114 #define IGD_M_MIN 2
115 #define IGD_M_MAX 256
116 #define I9XX_M1_MIN 10
117 #define I9XX_M1_MAX 22
118 #define I9XX_M2_MIN 5
119 #define I9XX_M2_MAX 9
120 /* IGD M1 is reserved, and must be 0 */
121 #define IGD_M1_MIN 0
122 #define IGD_M1_MAX 0
123 #define IGD_M2_MIN 0
124 #define IGD_M2_MAX 254
125 #define I9XX_P_SDVO_DAC_MIN 5
126 #define I9XX_P_SDVO_DAC_MAX 80
127 #define I9XX_P_LVDS_MIN 7
128 #define I9XX_P_LVDS_MAX 98
129 #define IGD_P_LVDS_MIN 7
130 #define IGD_P_LVDS_MAX 112
131 #define I9XX_P1_MIN 1
132 #define I9XX_P1_MAX 8
133 #define I9XX_P2_SDVO_DAC_SLOW 10
134 #define I9XX_P2_SDVO_DAC_FAST 5
135 #define I9XX_P2_SDVO_DAC_SLOW_LIMIT 200000
136 #define I9XX_P2_LVDS_SLOW 14
137 #define I9XX_P2_LVDS_FAST 7
138 #define I9XX_P2_LVDS_SLOW_LIMIT 112000
140 /*The parameter is for SDVO on G4x platform*/
141 #define G4X_DOT_SDVO_MIN 25000
142 #define G4X_DOT_SDVO_MAX 270000
143 #define G4X_VCO_MIN 1750000
144 #define G4X_VCO_MAX 3500000
145 #define G4X_N_SDVO_MIN 1
146 #define G4X_N_SDVO_MAX 4
147 #define G4X_M_SDVO_MIN 104
148 #define G4X_M_SDVO_MAX 138
149 #define G4X_M1_SDVO_MIN 17
150 #define G4X_M1_SDVO_MAX 23
151 #define G4X_M2_SDVO_MIN 5
152 #define G4X_M2_SDVO_MAX 11
153 #define G4X_P_SDVO_MIN 10
154 #define G4X_P_SDVO_MAX 30
155 #define G4X_P1_SDVO_MIN 1
156 #define G4X_P1_SDVO_MAX 3
157 #define G4X_P2_SDVO_SLOW 10
158 #define G4X_P2_SDVO_FAST 10
159 #define G4X_P2_SDVO_LIMIT 270000
161 /*The parameter is for HDMI_DAC on G4x platform*/
162 #define G4X_DOT_HDMI_DAC_MIN 22000
163 #define G4X_DOT_HDMI_DAC_MAX 400000
164 #define G4X_N_HDMI_DAC_MIN 1
165 #define G4X_N_HDMI_DAC_MAX 4
166 #define G4X_M_HDMI_DAC_MIN 104
167 #define G4X_M_HDMI_DAC_MAX 138
168 #define G4X_M1_HDMI_DAC_MIN 16
169 #define G4X_M1_HDMI_DAC_MAX 23
170 #define G4X_M2_HDMI_DAC_MIN 5
171 #define G4X_M2_HDMI_DAC_MAX 11
172 #define G4X_P_HDMI_DAC_MIN 5
173 #define G4X_P_HDMI_DAC_MAX 80
174 #define G4X_P1_HDMI_DAC_MIN 1
175 #define G4X_P1_HDMI_DAC_MAX 8
176 #define G4X_P2_HDMI_DAC_SLOW 10
177 #define G4X_P2_HDMI_DAC_FAST 5
178 #define G4X_P2_HDMI_DAC_LIMIT 165000
180 /*The parameter is for SINGLE_CHANNEL_LVDS on G4x platform*/
181 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MIN 20000
182 #define G4X_DOT_SINGLE_CHANNEL_LVDS_MAX 115000
183 #define G4X_N_SINGLE_CHANNEL_LVDS_MIN 1
184 #define G4X_N_SINGLE_CHANNEL_LVDS_MAX 3
185 #define G4X_M_SINGLE_CHANNEL_LVDS_MIN 104
186 #define G4X_M_SINGLE_CHANNEL_LVDS_MAX 138
187 #define G4X_M1_SINGLE_CHANNEL_LVDS_MIN 17
188 #define G4X_M1_SINGLE_CHANNEL_LVDS_MAX 23
189 #define G4X_M2_SINGLE_CHANNEL_LVDS_MIN 5
190 #define G4X_M2_SINGLE_CHANNEL_LVDS_MAX 11
191 #define G4X_P_SINGLE_CHANNEL_LVDS_MIN 28
192 #define G4X_P_SINGLE_CHANNEL_LVDS_MAX 112
193 #define G4X_P1_SINGLE_CHANNEL_LVDS_MIN 2
194 #define G4X_P1_SINGLE_CHANNEL_LVDS_MAX 8
195 #define G4X_P2_SINGLE_CHANNEL_LVDS_SLOW 14
196 #define G4X_P2_SINGLE_CHANNEL_LVDS_FAST 14
197 #define G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT 0
199 /*The parameter is for DUAL_CHANNEL_LVDS on G4x platform*/
200 #define G4X_DOT_DUAL_CHANNEL_LVDS_MIN 80000
201 #define G4X_DOT_DUAL_CHANNEL_LVDS_MAX 224000
202 #define G4X_N_DUAL_CHANNEL_LVDS_MIN 1
203 #define G4X_N_DUAL_CHANNEL_LVDS_MAX 3
204 #define G4X_M_DUAL_CHANNEL_LVDS_MIN 104
205 #define G4X_M_DUAL_CHANNEL_LVDS_MAX 138
206 #define G4X_M1_DUAL_CHANNEL_LVDS_MIN 17
207 #define G4X_M1_DUAL_CHANNEL_LVDS_MAX 23
208 #define G4X_M2_DUAL_CHANNEL_LVDS_MIN 5
209 #define G4X_M2_DUAL_CHANNEL_LVDS_MAX 11
210 #define G4X_P_DUAL_CHANNEL_LVDS_MIN 14
211 #define G4X_P_DUAL_CHANNEL_LVDS_MAX 42
212 #define G4X_P1_DUAL_CHANNEL_LVDS_MIN 2
213 #define G4X_P1_DUAL_CHANNEL_LVDS_MAX 6
214 #define G4X_P2_DUAL_CHANNEL_LVDS_SLOW 7
215 #define G4X_P2_DUAL_CHANNEL_LVDS_FAST 7
216 #define G4X_P2_DUAL_CHANNEL_LVDS_LIMIT 0
218 /*The parameter is for DISPLAY PORT on G4x platform*/
219 #define G4X_DOT_DISPLAY_PORT_MIN 161670
220 #define G4X_DOT_DISPLAY_PORT_MAX 227000
221 #define G4X_N_DISPLAY_PORT_MIN 1
222 #define G4X_N_DISPLAY_PORT_MAX 2
223 #define G4X_M_DISPLAY_PORT_MIN 97
224 #define G4X_M_DISPLAY_PORT_MAX 108
225 #define G4X_M1_DISPLAY_PORT_MIN 0x10
226 #define G4X_M1_DISPLAY_PORT_MAX 0x12
227 #define G4X_M2_DISPLAY_PORT_MIN 0x05
228 #define G4X_M2_DISPLAY_PORT_MAX 0x06
229 #define G4X_P_DISPLAY_PORT_MIN 10
230 #define G4X_P_DISPLAY_PORT_MAX 20
231 #define G4X_P1_DISPLAY_PORT_MIN 1
232 #define G4X_P1_DISPLAY_PORT_MAX 2
233 #define G4X_P2_DISPLAY_PORT_SLOW 10
234 #define G4X_P2_DISPLAY_PORT_FAST 10
235 #define G4X_P2_DISPLAY_PORT_LIMIT 0
237 /* IGDNG */
238 /* as we calculate clock using (register_value + 2) for
239 N/M1/M2, so here the range value for them is (actual_value-2).
241 #define IGDNG_DOT_MIN 25000
242 #define IGDNG_DOT_MAX 350000
243 #define IGDNG_VCO_MIN 1760000
244 #define IGDNG_VCO_MAX 3510000
245 #define IGDNG_N_MIN 1
246 #define IGDNG_N_MAX 5
247 #define IGDNG_M_MIN 79
248 #define IGDNG_M_MAX 118
249 #define IGDNG_M1_MIN 12
250 #define IGDNG_M1_MAX 23
251 #define IGDNG_M2_MIN 5
252 #define IGDNG_M2_MAX 9
253 #define IGDNG_P_SDVO_DAC_MIN 5
254 #define IGDNG_P_SDVO_DAC_MAX 80
255 #define IGDNG_P_LVDS_MIN 28
256 #define IGDNG_P_LVDS_MAX 112
257 #define IGDNG_P1_MIN 1
258 #define IGDNG_P1_MAX 8
259 #define IGDNG_P2_SDVO_DAC_SLOW 10
260 #define IGDNG_P2_SDVO_DAC_FAST 5
261 #define IGDNG_P2_LVDS_SLOW 14 /* single channel */
262 #define IGDNG_P2_LVDS_FAST 7 /* double channel */
263 #define IGDNG_P2_DOT_LIMIT 225000 /* 225Mhz */
265 static bool
266 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
267 int target, int refclk, intel_clock_t *best_clock);
268 static bool
269 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
270 int target, int refclk, intel_clock_t *best_clock);
271 static bool
272 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
273 int target, int refclk, intel_clock_t *best_clock);
274 static bool
275 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
276 int target, int refclk, intel_clock_t *best_clock);
278 static bool
279 intel_find_pll_g4x_dp(const intel_limit_t *, struct drm_crtc *crtc,
280 int target, int refclk, intel_clock_t *best_clock);
281 static bool
282 intel_find_pll_igdng_dp(const intel_limit_t *, struct drm_crtc *crtc,
283 int target, int refclk, intel_clock_t *best_clock);
285 static const intel_limit_t intel_limits_i8xx_dvo = {
286 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
287 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
288 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
289 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
290 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
291 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
292 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
293 .p1 = { .min = I8XX_P1_MIN, .max = I8XX_P1_MAX },
294 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
295 .p2_slow = I8XX_P2_SLOW, .p2_fast = I8XX_P2_FAST },
296 .find_pll = intel_find_best_PLL,
297 .find_reduced_pll = intel_find_best_reduced_PLL,
300 static const intel_limit_t intel_limits_i8xx_lvds = {
301 .dot = { .min = I8XX_DOT_MIN, .max = I8XX_DOT_MAX },
302 .vco = { .min = I8XX_VCO_MIN, .max = I8XX_VCO_MAX },
303 .n = { .min = I8XX_N_MIN, .max = I8XX_N_MAX },
304 .m = { .min = I8XX_M_MIN, .max = I8XX_M_MAX },
305 .m1 = { .min = I8XX_M1_MIN, .max = I8XX_M1_MAX },
306 .m2 = { .min = I8XX_M2_MIN, .max = I8XX_M2_MAX },
307 .p = { .min = I8XX_P_MIN, .max = I8XX_P_MAX },
308 .p1 = { .min = I8XX_P1_LVDS_MIN, .max = I8XX_P1_LVDS_MAX },
309 .p2 = { .dot_limit = I8XX_P2_SLOW_LIMIT,
310 .p2_slow = I8XX_P2_LVDS_SLOW, .p2_fast = I8XX_P2_LVDS_FAST },
311 .find_pll = intel_find_best_PLL,
312 .find_reduced_pll = intel_find_best_reduced_PLL,
315 static const intel_limit_t intel_limits_i9xx_sdvo = {
316 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
317 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
318 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
319 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
320 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
321 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
322 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
323 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
324 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
325 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
326 .find_pll = intel_find_best_PLL,
327 .find_reduced_pll = intel_find_best_reduced_PLL,
330 static const intel_limit_t intel_limits_i9xx_lvds = {
331 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
332 .vco = { .min = I9XX_VCO_MIN, .max = I9XX_VCO_MAX },
333 .n = { .min = I9XX_N_MIN, .max = I9XX_N_MAX },
334 .m = { .min = I9XX_M_MIN, .max = I9XX_M_MAX },
335 .m1 = { .min = I9XX_M1_MIN, .max = I9XX_M1_MAX },
336 .m2 = { .min = I9XX_M2_MIN, .max = I9XX_M2_MAX },
337 .p = { .min = I9XX_P_LVDS_MIN, .max = I9XX_P_LVDS_MAX },
338 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
339 /* The single-channel range is 25-112Mhz, and dual-channel
340 * is 80-224Mhz. Prefer single channel as much as possible.
342 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
343 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_FAST },
344 .find_pll = intel_find_best_PLL,
345 .find_reduced_pll = intel_find_best_reduced_PLL,
348 /* below parameter and function is for G4X Chipset Family*/
349 static const intel_limit_t intel_limits_g4x_sdvo = {
350 .dot = { .min = G4X_DOT_SDVO_MIN, .max = G4X_DOT_SDVO_MAX },
351 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
352 .n = { .min = G4X_N_SDVO_MIN, .max = G4X_N_SDVO_MAX },
353 .m = { .min = G4X_M_SDVO_MIN, .max = G4X_M_SDVO_MAX },
354 .m1 = { .min = G4X_M1_SDVO_MIN, .max = G4X_M1_SDVO_MAX },
355 .m2 = { .min = G4X_M2_SDVO_MIN, .max = G4X_M2_SDVO_MAX },
356 .p = { .min = G4X_P_SDVO_MIN, .max = G4X_P_SDVO_MAX },
357 .p1 = { .min = G4X_P1_SDVO_MIN, .max = G4X_P1_SDVO_MAX},
358 .p2 = { .dot_limit = G4X_P2_SDVO_LIMIT,
359 .p2_slow = G4X_P2_SDVO_SLOW,
360 .p2_fast = G4X_P2_SDVO_FAST
362 .find_pll = intel_g4x_find_best_PLL,
363 .find_reduced_pll = intel_g4x_find_best_PLL,
366 static const intel_limit_t intel_limits_g4x_hdmi = {
367 .dot = { .min = G4X_DOT_HDMI_DAC_MIN, .max = G4X_DOT_HDMI_DAC_MAX },
368 .vco = { .min = G4X_VCO_MIN, .max = G4X_VCO_MAX},
369 .n = { .min = G4X_N_HDMI_DAC_MIN, .max = G4X_N_HDMI_DAC_MAX },
370 .m = { .min = G4X_M_HDMI_DAC_MIN, .max = G4X_M_HDMI_DAC_MAX },
371 .m1 = { .min = G4X_M1_HDMI_DAC_MIN, .max = G4X_M1_HDMI_DAC_MAX },
372 .m2 = { .min = G4X_M2_HDMI_DAC_MIN, .max = G4X_M2_HDMI_DAC_MAX },
373 .p = { .min = G4X_P_HDMI_DAC_MIN, .max = G4X_P_HDMI_DAC_MAX },
374 .p1 = { .min = G4X_P1_HDMI_DAC_MIN, .max = G4X_P1_HDMI_DAC_MAX},
375 .p2 = { .dot_limit = G4X_P2_HDMI_DAC_LIMIT,
376 .p2_slow = G4X_P2_HDMI_DAC_SLOW,
377 .p2_fast = G4X_P2_HDMI_DAC_FAST
379 .find_pll = intel_g4x_find_best_PLL,
380 .find_reduced_pll = intel_g4x_find_best_PLL,
383 static const intel_limit_t intel_limits_g4x_single_channel_lvds = {
384 .dot = { .min = G4X_DOT_SINGLE_CHANNEL_LVDS_MIN,
385 .max = G4X_DOT_SINGLE_CHANNEL_LVDS_MAX },
386 .vco = { .min = G4X_VCO_MIN,
387 .max = G4X_VCO_MAX },
388 .n = { .min = G4X_N_SINGLE_CHANNEL_LVDS_MIN,
389 .max = G4X_N_SINGLE_CHANNEL_LVDS_MAX },
390 .m = { .min = G4X_M_SINGLE_CHANNEL_LVDS_MIN,
391 .max = G4X_M_SINGLE_CHANNEL_LVDS_MAX },
392 .m1 = { .min = G4X_M1_SINGLE_CHANNEL_LVDS_MIN,
393 .max = G4X_M1_SINGLE_CHANNEL_LVDS_MAX },
394 .m2 = { .min = G4X_M2_SINGLE_CHANNEL_LVDS_MIN,
395 .max = G4X_M2_SINGLE_CHANNEL_LVDS_MAX },
396 .p = { .min = G4X_P_SINGLE_CHANNEL_LVDS_MIN,
397 .max = G4X_P_SINGLE_CHANNEL_LVDS_MAX },
398 .p1 = { .min = G4X_P1_SINGLE_CHANNEL_LVDS_MIN,
399 .max = G4X_P1_SINGLE_CHANNEL_LVDS_MAX },
400 .p2 = { .dot_limit = G4X_P2_SINGLE_CHANNEL_LVDS_LIMIT,
401 .p2_slow = G4X_P2_SINGLE_CHANNEL_LVDS_SLOW,
402 .p2_fast = G4X_P2_SINGLE_CHANNEL_LVDS_FAST
404 .find_pll = intel_g4x_find_best_PLL,
405 .find_reduced_pll = intel_g4x_find_best_PLL,
408 static const intel_limit_t intel_limits_g4x_dual_channel_lvds = {
409 .dot = { .min = G4X_DOT_DUAL_CHANNEL_LVDS_MIN,
410 .max = G4X_DOT_DUAL_CHANNEL_LVDS_MAX },
411 .vco = { .min = G4X_VCO_MIN,
412 .max = G4X_VCO_MAX },
413 .n = { .min = G4X_N_DUAL_CHANNEL_LVDS_MIN,
414 .max = G4X_N_DUAL_CHANNEL_LVDS_MAX },
415 .m = { .min = G4X_M_DUAL_CHANNEL_LVDS_MIN,
416 .max = G4X_M_DUAL_CHANNEL_LVDS_MAX },
417 .m1 = { .min = G4X_M1_DUAL_CHANNEL_LVDS_MIN,
418 .max = G4X_M1_DUAL_CHANNEL_LVDS_MAX },
419 .m2 = { .min = G4X_M2_DUAL_CHANNEL_LVDS_MIN,
420 .max = G4X_M2_DUAL_CHANNEL_LVDS_MAX },
421 .p = { .min = G4X_P_DUAL_CHANNEL_LVDS_MIN,
422 .max = G4X_P_DUAL_CHANNEL_LVDS_MAX },
423 .p1 = { .min = G4X_P1_DUAL_CHANNEL_LVDS_MIN,
424 .max = G4X_P1_DUAL_CHANNEL_LVDS_MAX },
425 .p2 = { .dot_limit = G4X_P2_DUAL_CHANNEL_LVDS_LIMIT,
426 .p2_slow = G4X_P2_DUAL_CHANNEL_LVDS_SLOW,
427 .p2_fast = G4X_P2_DUAL_CHANNEL_LVDS_FAST
429 .find_pll = intel_g4x_find_best_PLL,
430 .find_reduced_pll = intel_g4x_find_best_PLL,
433 static const intel_limit_t intel_limits_g4x_display_port = {
434 .dot = { .min = G4X_DOT_DISPLAY_PORT_MIN,
435 .max = G4X_DOT_DISPLAY_PORT_MAX },
436 .vco = { .min = G4X_VCO_MIN,
437 .max = G4X_VCO_MAX},
438 .n = { .min = G4X_N_DISPLAY_PORT_MIN,
439 .max = G4X_N_DISPLAY_PORT_MAX },
440 .m = { .min = G4X_M_DISPLAY_PORT_MIN,
441 .max = G4X_M_DISPLAY_PORT_MAX },
442 .m1 = { .min = G4X_M1_DISPLAY_PORT_MIN,
443 .max = G4X_M1_DISPLAY_PORT_MAX },
444 .m2 = { .min = G4X_M2_DISPLAY_PORT_MIN,
445 .max = G4X_M2_DISPLAY_PORT_MAX },
446 .p = { .min = G4X_P_DISPLAY_PORT_MIN,
447 .max = G4X_P_DISPLAY_PORT_MAX },
448 .p1 = { .min = G4X_P1_DISPLAY_PORT_MIN,
449 .max = G4X_P1_DISPLAY_PORT_MAX},
450 .p2 = { .dot_limit = G4X_P2_DISPLAY_PORT_LIMIT,
451 .p2_slow = G4X_P2_DISPLAY_PORT_SLOW,
452 .p2_fast = G4X_P2_DISPLAY_PORT_FAST },
453 .find_pll = intel_find_pll_g4x_dp,
456 static const intel_limit_t intel_limits_igd_sdvo = {
457 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX},
458 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
459 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
460 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
461 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
462 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
463 .p = { .min = I9XX_P_SDVO_DAC_MIN, .max = I9XX_P_SDVO_DAC_MAX },
464 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
465 .p2 = { .dot_limit = I9XX_P2_SDVO_DAC_SLOW_LIMIT,
466 .p2_slow = I9XX_P2_SDVO_DAC_SLOW, .p2_fast = I9XX_P2_SDVO_DAC_FAST },
467 .find_pll = intel_find_best_PLL,
468 .find_reduced_pll = intel_find_best_reduced_PLL,
471 static const intel_limit_t intel_limits_igd_lvds = {
472 .dot = { .min = I9XX_DOT_MIN, .max = I9XX_DOT_MAX },
473 .vco = { .min = IGD_VCO_MIN, .max = IGD_VCO_MAX },
474 .n = { .min = IGD_N_MIN, .max = IGD_N_MAX },
475 .m = { .min = IGD_M_MIN, .max = IGD_M_MAX },
476 .m1 = { .min = IGD_M1_MIN, .max = IGD_M1_MAX },
477 .m2 = { .min = IGD_M2_MIN, .max = IGD_M2_MAX },
478 .p = { .min = IGD_P_LVDS_MIN, .max = IGD_P_LVDS_MAX },
479 .p1 = { .min = I9XX_P1_MIN, .max = I9XX_P1_MAX },
480 /* IGD only supports single-channel mode. */
481 .p2 = { .dot_limit = I9XX_P2_LVDS_SLOW_LIMIT,
482 .p2_slow = I9XX_P2_LVDS_SLOW, .p2_fast = I9XX_P2_LVDS_SLOW },
483 .find_pll = intel_find_best_PLL,
484 .find_reduced_pll = intel_find_best_reduced_PLL,
487 static const intel_limit_t intel_limits_igdng_sdvo = {
488 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
489 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
490 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
491 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
492 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
493 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
494 .p = { .min = IGDNG_P_SDVO_DAC_MIN, .max = IGDNG_P_SDVO_DAC_MAX },
495 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
496 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
497 .p2_slow = IGDNG_P2_SDVO_DAC_SLOW,
498 .p2_fast = IGDNG_P2_SDVO_DAC_FAST },
499 .find_pll = intel_igdng_find_best_PLL,
502 static const intel_limit_t intel_limits_igdng_lvds = {
503 .dot = { .min = IGDNG_DOT_MIN, .max = IGDNG_DOT_MAX },
504 .vco = { .min = IGDNG_VCO_MIN, .max = IGDNG_VCO_MAX },
505 .n = { .min = IGDNG_N_MIN, .max = IGDNG_N_MAX },
506 .m = { .min = IGDNG_M_MIN, .max = IGDNG_M_MAX },
507 .m1 = { .min = IGDNG_M1_MIN, .max = IGDNG_M1_MAX },
508 .m2 = { .min = IGDNG_M2_MIN, .max = IGDNG_M2_MAX },
509 .p = { .min = IGDNG_P_LVDS_MIN, .max = IGDNG_P_LVDS_MAX },
510 .p1 = { .min = IGDNG_P1_MIN, .max = IGDNG_P1_MAX },
511 .p2 = { .dot_limit = IGDNG_P2_DOT_LIMIT,
512 .p2_slow = IGDNG_P2_LVDS_SLOW,
513 .p2_fast = IGDNG_P2_LVDS_FAST },
514 .find_pll = intel_igdng_find_best_PLL,
517 static const intel_limit_t *intel_igdng_limit(struct drm_crtc *crtc)
519 const intel_limit_t *limit;
520 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
521 limit = &intel_limits_igdng_lvds;
522 else
523 limit = &intel_limits_igdng_sdvo;
525 return limit;
528 static const intel_limit_t *intel_g4x_limit(struct drm_crtc *crtc)
530 struct drm_device *dev = crtc->dev;
531 struct drm_i915_private *dev_priv = dev->dev_private;
532 const intel_limit_t *limit;
534 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
535 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
536 LVDS_CLKB_POWER_UP)
537 /* LVDS with dual channel */
538 limit = &intel_limits_g4x_dual_channel_lvds;
539 else
540 /* LVDS with dual channel */
541 limit = &intel_limits_g4x_single_channel_lvds;
542 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_HDMI) ||
543 intel_pipe_has_type(crtc, INTEL_OUTPUT_ANALOG)) {
544 limit = &intel_limits_g4x_hdmi;
545 } else if (intel_pipe_has_type(crtc, INTEL_OUTPUT_SDVO)) {
546 limit = &intel_limits_g4x_sdvo;
547 } else if (intel_pipe_has_type (crtc, INTEL_OUTPUT_DISPLAYPORT)) {
548 limit = &intel_limits_g4x_display_port;
549 } else /* The option is for other outputs */
550 limit = &intel_limits_i9xx_sdvo;
552 return limit;
555 static const intel_limit_t *intel_limit(struct drm_crtc *crtc)
557 struct drm_device *dev = crtc->dev;
558 const intel_limit_t *limit;
560 if (IS_IGDNG(dev))
561 limit = intel_igdng_limit(crtc);
562 else if (IS_G4X(dev)) {
563 limit = intel_g4x_limit(crtc);
564 } else if (IS_I9XX(dev) && !IS_IGD(dev)) {
565 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
566 limit = &intel_limits_i9xx_lvds;
567 else
568 limit = &intel_limits_i9xx_sdvo;
569 } else if (IS_IGD(dev)) {
570 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
571 limit = &intel_limits_igd_lvds;
572 else
573 limit = &intel_limits_igd_sdvo;
574 } else {
575 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS))
576 limit = &intel_limits_i8xx_lvds;
577 else
578 limit = &intel_limits_i8xx_dvo;
580 return limit;
583 /* m1 is reserved as 0 in IGD, n is a ring counter */
584 static void igd_clock(int refclk, intel_clock_t *clock)
586 clock->m = clock->m2 + 2;
587 clock->p = clock->p1 * clock->p2;
588 clock->vco = refclk * clock->m / clock->n;
589 clock->dot = clock->vco / clock->p;
592 static void intel_clock(struct drm_device *dev, int refclk, intel_clock_t *clock)
594 if (IS_IGD(dev)) {
595 igd_clock(refclk, clock);
596 return;
598 clock->m = 5 * (clock->m1 + 2) + (clock->m2 + 2);
599 clock->p = clock->p1 * clock->p2;
600 clock->vco = refclk * clock->m / (clock->n + 2);
601 clock->dot = clock->vco / clock->p;
605 * Returns whether any output on the specified pipe is of the specified type
607 bool intel_pipe_has_type (struct drm_crtc *crtc, int type)
609 struct drm_device *dev = crtc->dev;
610 struct drm_mode_config *mode_config = &dev->mode_config;
611 struct drm_connector *l_entry;
613 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
614 if (l_entry->encoder &&
615 l_entry->encoder->crtc == crtc) {
616 struct intel_output *intel_output = to_intel_output(l_entry);
617 if (intel_output->type == type)
618 return true;
621 return false;
624 struct drm_connector *
625 intel_pipe_get_output (struct drm_crtc *crtc)
627 struct drm_device *dev = crtc->dev;
628 struct drm_mode_config *mode_config = &dev->mode_config;
629 struct drm_connector *l_entry, *ret = NULL;
631 list_for_each_entry(l_entry, &mode_config->connector_list, head) {
632 if (l_entry->encoder &&
633 l_entry->encoder->crtc == crtc) {
634 ret = l_entry;
635 break;
638 return ret;
641 #define INTELPllInvalid(s) do { /* DRM_DEBUG(s); */ return false; } while (0)
643 * Returns whether the given set of divisors are valid for a given refclk with
644 * the given connectors.
647 static bool intel_PLL_is_valid(struct drm_crtc *crtc, intel_clock_t *clock)
649 const intel_limit_t *limit = intel_limit (crtc);
650 struct drm_device *dev = crtc->dev;
652 if (clock->p1 < limit->p1.min || limit->p1.max < clock->p1)
653 INTELPllInvalid ("p1 out of range\n");
654 if (clock->p < limit->p.min || limit->p.max < clock->p)
655 INTELPllInvalid ("p out of range\n");
656 if (clock->m2 < limit->m2.min || limit->m2.max < clock->m2)
657 INTELPllInvalid ("m2 out of range\n");
658 if (clock->m1 < limit->m1.min || limit->m1.max < clock->m1)
659 INTELPllInvalid ("m1 out of range\n");
660 if (clock->m1 <= clock->m2 && !IS_IGD(dev))
661 INTELPllInvalid ("m1 <= m2\n");
662 if (clock->m < limit->m.min || limit->m.max < clock->m)
663 INTELPllInvalid ("m out of range\n");
664 if (clock->n < limit->n.min || limit->n.max < clock->n)
665 INTELPllInvalid ("n out of range\n");
666 if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
667 INTELPllInvalid ("vco out of range\n");
668 /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
669 * connector, etc., rather than just a single range.
671 if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
672 INTELPllInvalid ("dot out of range\n");
674 return true;
677 static bool
678 intel_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
679 int target, int refclk, intel_clock_t *best_clock)
682 struct drm_device *dev = crtc->dev;
683 struct drm_i915_private *dev_priv = dev->dev_private;
684 intel_clock_t clock;
685 int err = target;
687 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS) &&
688 (I915_READ(LVDS)) != 0) {
690 * For LVDS, if the panel is on, just rely on its current
691 * settings for dual-channel. We haven't figured out how to
692 * reliably set up different single/dual channel state, if we
693 * even can.
695 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
696 LVDS_CLKB_POWER_UP)
697 clock.p2 = limit->p2.p2_fast;
698 else
699 clock.p2 = limit->p2.p2_slow;
700 } else {
701 if (target < limit->p2.dot_limit)
702 clock.p2 = limit->p2.p2_slow;
703 else
704 clock.p2 = limit->p2.p2_fast;
707 memset (best_clock, 0, sizeof (*best_clock));
709 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
710 clock.m1++) {
711 for (clock.m2 = limit->m2.min;
712 clock.m2 <= limit->m2.max; clock.m2++) {
713 /* m1 is always 0 in IGD */
714 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
715 break;
716 for (clock.n = limit->n.min;
717 clock.n <= limit->n.max; clock.n++) {
718 for (clock.p1 = limit->p1.min;
719 clock.p1 <= limit->p1.max; clock.p1++) {
720 int this_err;
722 intel_clock(dev, refclk, &clock);
724 if (!intel_PLL_is_valid(crtc, &clock))
725 continue;
727 this_err = abs(clock.dot - target);
728 if (this_err < err) {
729 *best_clock = clock;
730 err = this_err;
737 return (err != target);
741 static bool
742 intel_find_best_reduced_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
743 int target, int refclk, intel_clock_t *best_clock)
746 struct drm_device *dev = crtc->dev;
747 intel_clock_t clock;
748 int err = target;
749 bool found = false;
751 memcpy(&clock, best_clock, sizeof(intel_clock_t));
753 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
754 for (clock.m2 = limit->m2.min; clock.m2 <= limit->m2.max; clock.m2++) {
755 /* m1 is always 0 in IGD */
756 if (clock.m2 >= clock.m1 && !IS_IGD(dev))
757 break;
758 for (clock.n = limit->n.min; clock.n <= limit->n.max;
759 clock.n++) {
760 int this_err;
762 intel_clock(dev, refclk, &clock);
764 if (!intel_PLL_is_valid(crtc, &clock))
765 continue;
767 this_err = abs(clock.dot - target);
768 if (this_err < err) {
769 *best_clock = clock;
770 err = this_err;
771 found = true;
777 return found;
780 static bool
781 intel_g4x_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
782 int target, int refclk, intel_clock_t *best_clock)
784 struct drm_device *dev = crtc->dev;
785 struct drm_i915_private *dev_priv = dev->dev_private;
786 intel_clock_t clock;
787 int max_n;
788 bool found;
789 /* approximately equals target * 0.00488 */
790 int err_most = (target >> 8) + (target >> 10);
791 found = false;
793 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
794 if ((I915_READ(LVDS) & LVDS_CLKB_POWER_MASK) ==
795 LVDS_CLKB_POWER_UP)
796 clock.p2 = limit->p2.p2_fast;
797 else
798 clock.p2 = limit->p2.p2_slow;
799 } else {
800 if (target < limit->p2.dot_limit)
801 clock.p2 = limit->p2.p2_slow;
802 else
803 clock.p2 = limit->p2.p2_fast;
806 memset(best_clock, 0, sizeof(*best_clock));
807 max_n = limit->n.max;
808 /* based on hardware requriment prefer smaller n to precision */
809 for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
810 /* based on hardware requirment prefere larger m1,m2 */
811 for (clock.m1 = limit->m1.max;
812 clock.m1 >= limit->m1.min; clock.m1--) {
813 for (clock.m2 = limit->m2.max;
814 clock.m2 >= limit->m2.min; clock.m2--) {
815 for (clock.p1 = limit->p1.max;
816 clock.p1 >= limit->p1.min; clock.p1--) {
817 int this_err;
819 intel_clock(dev, refclk, &clock);
820 if (!intel_PLL_is_valid(crtc, &clock))
821 continue;
822 this_err = abs(clock.dot - target) ;
823 if (this_err < err_most) {
824 *best_clock = clock;
825 err_most = this_err;
826 max_n = clock.n;
827 found = true;
833 return found;
836 static bool
837 intel_find_pll_igdng_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
838 int target, int refclk, intel_clock_t *best_clock)
840 struct drm_device *dev = crtc->dev;
841 intel_clock_t clock;
842 if (target < 200000) {
843 clock.n = 1;
844 clock.p1 = 2;
845 clock.p2 = 10;
846 clock.m1 = 12;
847 clock.m2 = 9;
848 } else {
849 clock.n = 2;
850 clock.p1 = 1;
851 clock.p2 = 10;
852 clock.m1 = 14;
853 clock.m2 = 8;
855 intel_clock(dev, refclk, &clock);
856 memcpy(best_clock, &clock, sizeof(intel_clock_t));
857 return true;
860 static bool
861 intel_igdng_find_best_PLL(const intel_limit_t *limit, struct drm_crtc *crtc,
862 int target, int refclk, intel_clock_t *best_clock)
864 struct drm_device *dev = crtc->dev;
865 struct drm_i915_private *dev_priv = dev->dev_private;
866 intel_clock_t clock;
867 int err_most = 47;
868 int err_min = 10000;
870 /* eDP has only 2 clock choice, no n/m/p setting */
871 if (HAS_eDP)
872 return true;
874 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_DISPLAYPORT))
875 return intel_find_pll_igdng_dp(limit, crtc, target,
876 refclk, best_clock);
878 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
879 if ((I915_READ(PCH_LVDS) & LVDS_CLKB_POWER_MASK) ==
880 LVDS_CLKB_POWER_UP)
881 clock.p2 = limit->p2.p2_fast;
882 else
883 clock.p2 = limit->p2.p2_slow;
884 } else {
885 if (target < limit->p2.dot_limit)
886 clock.p2 = limit->p2.p2_slow;
887 else
888 clock.p2 = limit->p2.p2_fast;
891 memset(best_clock, 0, sizeof(*best_clock));
892 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
893 /* based on hardware requriment prefer smaller n to precision */
894 for (clock.n = limit->n.min; clock.n <= limit->n.max; clock.n++) {
895 /* based on hardware requirment prefere larger m1,m2 */
896 for (clock.m1 = limit->m1.max;
897 clock.m1 >= limit->m1.min; clock.m1--) {
898 for (clock.m2 = limit->m2.max;
899 clock.m2 >= limit->m2.min; clock.m2--) {
900 int this_err;
902 intel_clock(dev, refclk, &clock);
903 if (!intel_PLL_is_valid(crtc, &clock))
904 continue;
905 this_err = abs((10000 - (target*10000/clock.dot)));
906 if (this_err < err_most) {
907 *best_clock = clock;
908 /* found on first matching */
909 goto out;
910 } else if (this_err < err_min) {
911 *best_clock = clock;
912 err_min = this_err;
918 out:
919 return true;
922 /* DisplayPort has only two frequencies, 162MHz and 270MHz */
923 static bool
924 intel_find_pll_g4x_dp(const intel_limit_t *limit, struct drm_crtc *crtc,
925 int target, int refclk, intel_clock_t *best_clock)
927 intel_clock_t clock;
928 if (target < 200000) {
929 clock.p1 = 2;
930 clock.p2 = 10;
931 clock.n = 2;
932 clock.m1 = 23;
933 clock.m2 = 8;
934 } else {
935 clock.p1 = 1;
936 clock.p2 = 10;
937 clock.n = 1;
938 clock.m1 = 14;
939 clock.m2 = 2;
941 clock.m = 5 * (clock.m1 + 2) + (clock.m2 + 2);
942 clock.p = (clock.p1 * clock.p2);
943 clock.dot = 96000 * clock.m / (clock.n + 2) / clock.p;
944 clock.vco = 0;
945 memcpy(best_clock, &clock, sizeof(intel_clock_t));
946 return true;
949 void
950 intel_wait_for_vblank(struct drm_device *dev)
952 /* Wait for 20ms, i.e. one cycle at 50hz. */
953 msleep(20);
956 /* Parameters have changed, update FBC info */
957 static void i8xx_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
959 struct drm_device *dev = crtc->dev;
960 struct drm_i915_private *dev_priv = dev->dev_private;
961 struct drm_framebuffer *fb = crtc->fb;
962 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
963 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
964 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
965 int plane, i;
966 u32 fbc_ctl, fbc_ctl2;
968 dev_priv->cfb_pitch = dev_priv->cfb_size / FBC_LL_SIZE;
970 if (fb->pitch < dev_priv->cfb_pitch)
971 dev_priv->cfb_pitch = fb->pitch;
973 /* FBC_CTL wants 64B units */
974 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
975 dev_priv->cfb_fence = obj_priv->fence_reg;
976 dev_priv->cfb_plane = intel_crtc->plane;
977 plane = dev_priv->cfb_plane == 0 ? FBC_CTL_PLANEA : FBC_CTL_PLANEB;
979 /* Clear old tags */
980 for (i = 0; i < (FBC_LL_SIZE / 32) + 1; i++)
981 I915_WRITE(FBC_TAG + (i * 4), 0);
983 /* Set it up... */
984 fbc_ctl2 = FBC_CTL_FENCE_DBL | FBC_CTL_IDLE_IMM | plane;
985 if (obj_priv->tiling_mode != I915_TILING_NONE)
986 fbc_ctl2 |= FBC_CTL_CPU_FENCE;
987 I915_WRITE(FBC_CONTROL2, fbc_ctl2);
988 I915_WRITE(FBC_FENCE_OFF, crtc->y);
990 /* enable it... */
991 fbc_ctl = FBC_CTL_EN | FBC_CTL_PERIODIC;
992 fbc_ctl |= (dev_priv->cfb_pitch & 0xff) << FBC_CTL_STRIDE_SHIFT;
993 fbc_ctl |= (interval & 0x2fff) << FBC_CTL_INTERVAL_SHIFT;
994 if (obj_priv->tiling_mode != I915_TILING_NONE)
995 fbc_ctl |= dev_priv->cfb_fence;
996 I915_WRITE(FBC_CONTROL, fbc_ctl);
998 DRM_DEBUG_KMS("enabled FBC, pitch %ld, yoff %d, plane %d, ",
999 dev_priv->cfb_pitch, crtc->y, dev_priv->cfb_plane);
1002 void i8xx_disable_fbc(struct drm_device *dev)
1004 struct drm_i915_private *dev_priv = dev->dev_private;
1005 u32 fbc_ctl;
1007 if (!I915_HAS_FBC(dev))
1008 return;
1010 /* Disable compression */
1011 fbc_ctl = I915_READ(FBC_CONTROL);
1012 fbc_ctl &= ~FBC_CTL_EN;
1013 I915_WRITE(FBC_CONTROL, fbc_ctl);
1015 /* Wait for compressing bit to clear */
1016 while (I915_READ(FBC_STATUS) & FBC_STAT_COMPRESSING)
1017 ; /* nothing */
1019 intel_wait_for_vblank(dev);
1021 DRM_DEBUG_KMS("disabled FBC\n");
1024 static bool i8xx_fbc_enabled(struct drm_crtc *crtc)
1026 struct drm_device *dev = crtc->dev;
1027 struct drm_i915_private *dev_priv = dev->dev_private;
1029 return I915_READ(FBC_CONTROL) & FBC_CTL_EN;
1032 static void g4x_enable_fbc(struct drm_crtc *crtc, unsigned long interval)
1034 struct drm_device *dev = crtc->dev;
1035 struct drm_i915_private *dev_priv = dev->dev_private;
1036 struct drm_framebuffer *fb = crtc->fb;
1037 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
1038 struct drm_i915_gem_object *obj_priv = intel_fb->obj->driver_private;
1039 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1040 int plane = (intel_crtc->plane == 0 ? DPFC_CTL_PLANEA :
1041 DPFC_CTL_PLANEB);
1042 unsigned long stall_watermark = 200;
1043 u32 dpfc_ctl;
1045 dev_priv->cfb_pitch = (dev_priv->cfb_pitch / 64) - 1;
1046 dev_priv->cfb_fence = obj_priv->fence_reg;
1047 dev_priv->cfb_plane = intel_crtc->plane;
1049 dpfc_ctl = plane | DPFC_SR_EN | DPFC_CTL_LIMIT_1X;
1050 if (obj_priv->tiling_mode != I915_TILING_NONE) {
1051 dpfc_ctl |= DPFC_CTL_FENCE_EN | dev_priv->cfb_fence;
1052 I915_WRITE(DPFC_CHICKEN, DPFC_HT_MODIFY);
1053 } else {
1054 I915_WRITE(DPFC_CHICKEN, ~DPFC_HT_MODIFY);
1057 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1058 I915_WRITE(DPFC_RECOMP_CTL, DPFC_RECOMP_STALL_EN |
1059 (stall_watermark << DPFC_RECOMP_STALL_WM_SHIFT) |
1060 (interval << DPFC_RECOMP_TIMER_COUNT_SHIFT));
1061 I915_WRITE(DPFC_FENCE_YOFF, crtc->y);
1063 /* enable it... */
1064 I915_WRITE(DPFC_CONTROL, I915_READ(DPFC_CONTROL) | DPFC_CTL_EN);
1066 DRM_DEBUG_KMS("enabled fbc on plane %d\n", intel_crtc->plane);
1069 void g4x_disable_fbc(struct drm_device *dev)
1071 struct drm_i915_private *dev_priv = dev->dev_private;
1072 u32 dpfc_ctl;
1074 /* Disable compression */
1075 dpfc_ctl = I915_READ(DPFC_CONTROL);
1076 dpfc_ctl &= ~DPFC_CTL_EN;
1077 I915_WRITE(DPFC_CONTROL, dpfc_ctl);
1078 intel_wait_for_vblank(dev);
1080 DRM_DEBUG_KMS("disabled FBC\n");
1083 static bool g4x_fbc_enabled(struct drm_crtc *crtc)
1085 struct drm_device *dev = crtc->dev;
1086 struct drm_i915_private *dev_priv = dev->dev_private;
1088 return I915_READ(DPFC_CONTROL) & DPFC_CTL_EN;
1092 * intel_update_fbc - enable/disable FBC as needed
1093 * @crtc: CRTC to point the compressor at
1094 * @mode: mode in use
1096 * Set up the framebuffer compression hardware at mode set time. We
1097 * enable it if possible:
1098 * - plane A only (on pre-965)
1099 * - no pixel mulitply/line duplication
1100 * - no alpha buffer discard
1101 * - no dual wide
1102 * - framebuffer <= 2048 in width, 1536 in height
1104 * We can't assume that any compression will take place (worst case),
1105 * so the compressed buffer has to be the same size as the uncompressed
1106 * one. It also must reside (along with the line length buffer) in
1107 * stolen memory.
1109 * We need to enable/disable FBC on a global basis.
1111 static void intel_update_fbc(struct drm_crtc *crtc,
1112 struct drm_display_mode *mode)
1114 struct drm_device *dev = crtc->dev;
1115 struct drm_i915_private *dev_priv = dev->dev_private;
1116 struct drm_framebuffer *fb = crtc->fb;
1117 struct intel_framebuffer *intel_fb;
1118 struct drm_i915_gem_object *obj_priv;
1119 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1120 int plane = intel_crtc->plane;
1122 if (!i915_powersave)
1123 return;
1125 if (!dev_priv->display.fbc_enabled ||
1126 !dev_priv->display.enable_fbc ||
1127 !dev_priv->display.disable_fbc)
1128 return;
1130 if (!crtc->fb)
1131 return;
1133 intel_fb = to_intel_framebuffer(fb);
1134 obj_priv = intel_fb->obj->driver_private;
1137 * If FBC is already on, we just have to verify that we can
1138 * keep it that way...
1139 * Need to disable if:
1140 * - changing FBC params (stride, fence, mode)
1141 * - new fb is too large to fit in compressed buffer
1142 * - going to an unsupported config (interlace, pixel multiply, etc.)
1144 if (intel_fb->obj->size > dev_priv->cfb_size) {
1145 DRM_DEBUG_KMS("framebuffer too large, disabling "
1146 "compression\n");
1147 goto out_disable;
1149 if ((mode->flags & DRM_MODE_FLAG_INTERLACE) ||
1150 (mode->flags & DRM_MODE_FLAG_DBLSCAN)) {
1151 DRM_DEBUG_KMS("mode incompatible with compression, "
1152 "disabling\n");
1153 goto out_disable;
1155 if ((mode->hdisplay > 2048) ||
1156 (mode->vdisplay > 1536)) {
1157 DRM_DEBUG_KMS("mode too large for compression, disabling\n");
1158 goto out_disable;
1160 if ((IS_I915GM(dev) || IS_I945GM(dev)) && plane != 0) {
1161 DRM_DEBUG_KMS("plane not 0, disabling compression\n");
1162 goto out_disable;
1164 if (obj_priv->tiling_mode != I915_TILING_X) {
1165 DRM_DEBUG_KMS("framebuffer not tiled, disabling compression\n");
1166 goto out_disable;
1169 if (dev_priv->display.fbc_enabled(crtc)) {
1170 /* We can re-enable it in this case, but need to update pitch */
1171 if (fb->pitch > dev_priv->cfb_pitch)
1172 dev_priv->display.disable_fbc(dev);
1173 if (obj_priv->fence_reg != dev_priv->cfb_fence)
1174 dev_priv->display.disable_fbc(dev);
1175 if (plane != dev_priv->cfb_plane)
1176 dev_priv->display.disable_fbc(dev);
1179 if (!dev_priv->display.fbc_enabled(crtc)) {
1180 /* Now try to turn it back on if possible */
1181 dev_priv->display.enable_fbc(crtc, 500);
1184 return;
1186 out_disable:
1187 DRM_DEBUG_KMS("unsupported config, disabling FBC\n");
1188 /* Multiple disables should be harmless */
1189 if (dev_priv->display.fbc_enabled(crtc))
1190 dev_priv->display.disable_fbc(dev);
1193 static int
1194 intel_pin_and_fence_fb_obj(struct drm_device *dev, struct drm_gem_object *obj)
1196 struct drm_i915_gem_object *obj_priv = obj->driver_private;
1197 u32 alignment;
1198 int ret;
1200 switch (obj_priv->tiling_mode) {
1201 case I915_TILING_NONE:
1202 alignment = 64 * 1024;
1203 break;
1204 case I915_TILING_X:
1205 /* pin() will align the object as required by fence */
1206 alignment = 0;
1207 break;
1208 case I915_TILING_Y:
1209 /* FIXME: Is this true? */
1210 DRM_ERROR("Y tiled not allowed for scan out buffers\n");
1211 return -EINVAL;
1212 default:
1213 BUG();
1216 alignment = 256 * 1024;
1217 ret = i915_gem_object_pin(obj, alignment);
1218 if (ret != 0)
1219 return ret;
1221 /* Install a fence for tiled scan-out. Pre-i965 always needs a
1222 * fence, whereas 965+ only requires a fence if using
1223 * framebuffer compression. For simplicity, we always install
1224 * a fence as the cost is not that onerous.
1226 if (obj_priv->fence_reg == I915_FENCE_REG_NONE &&
1227 obj_priv->tiling_mode != I915_TILING_NONE) {
1228 ret = i915_gem_object_get_fence_reg(obj);
1229 if (ret != 0) {
1230 i915_gem_object_unpin(obj);
1231 return ret;
1235 return 0;
1238 static int
1239 intel_pipe_set_base(struct drm_crtc *crtc, int x, int y,
1240 struct drm_framebuffer *old_fb)
1242 struct drm_device *dev = crtc->dev;
1243 struct drm_i915_private *dev_priv = dev->dev_private;
1244 struct drm_i915_master_private *master_priv;
1245 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1246 struct intel_framebuffer *intel_fb;
1247 struct drm_i915_gem_object *obj_priv;
1248 struct drm_gem_object *obj;
1249 int pipe = intel_crtc->pipe;
1250 int plane = intel_crtc->plane;
1251 unsigned long Start, Offset;
1252 int dspbase = (plane == 0 ? DSPAADDR : DSPBADDR);
1253 int dspsurf = (plane == 0 ? DSPASURF : DSPBSURF);
1254 int dspstride = (plane == 0) ? DSPASTRIDE : DSPBSTRIDE;
1255 int dsptileoff = (plane == 0 ? DSPATILEOFF : DSPBTILEOFF);
1256 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1257 u32 dspcntr;
1258 int ret;
1260 /* no fb bound */
1261 if (!crtc->fb) {
1262 DRM_DEBUG_KMS("No FB bound\n");
1263 return 0;
1266 switch (plane) {
1267 case 0:
1268 case 1:
1269 break;
1270 default:
1271 DRM_ERROR("Can't update plane %d in SAREA\n", plane);
1272 return -EINVAL;
1275 intel_fb = to_intel_framebuffer(crtc->fb);
1276 obj = intel_fb->obj;
1277 obj_priv = obj->driver_private;
1279 mutex_lock(&dev->struct_mutex);
1280 ret = intel_pin_and_fence_fb_obj(dev, obj);
1281 if (ret != 0) {
1282 mutex_unlock(&dev->struct_mutex);
1283 return ret;
1286 ret = i915_gem_object_set_to_gtt_domain(obj, 1);
1287 if (ret != 0) {
1288 i915_gem_object_unpin(obj);
1289 mutex_unlock(&dev->struct_mutex);
1290 return ret;
1293 dspcntr = I915_READ(dspcntr_reg);
1294 /* Mask out pixel format bits in case we change it */
1295 dspcntr &= ~DISPPLANE_PIXFORMAT_MASK;
1296 switch (crtc->fb->bits_per_pixel) {
1297 case 8:
1298 dspcntr |= DISPPLANE_8BPP;
1299 break;
1300 case 16:
1301 if (crtc->fb->depth == 15)
1302 dspcntr |= DISPPLANE_15_16BPP;
1303 else
1304 dspcntr |= DISPPLANE_16BPP;
1305 break;
1306 case 24:
1307 case 32:
1308 if (crtc->fb->depth == 30)
1309 dspcntr |= DISPPLANE_32BPP_30BIT_NO_ALPHA;
1310 else
1311 dspcntr |= DISPPLANE_32BPP_NO_ALPHA;
1312 break;
1313 default:
1314 DRM_ERROR("Unknown color depth\n");
1315 i915_gem_object_unpin(obj);
1316 mutex_unlock(&dev->struct_mutex);
1317 return -EINVAL;
1319 if (IS_I965G(dev)) {
1320 if (obj_priv->tiling_mode != I915_TILING_NONE)
1321 dspcntr |= DISPPLANE_TILED;
1322 else
1323 dspcntr &= ~DISPPLANE_TILED;
1326 if (IS_IGDNG(dev))
1327 /* must disable */
1328 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
1330 I915_WRITE(dspcntr_reg, dspcntr);
1332 Start = obj_priv->gtt_offset;
1333 Offset = y * crtc->fb->pitch + x * (crtc->fb->bits_per_pixel / 8);
1335 DRM_DEBUG_KMS("Writing base %08lX %08lX %d %d\n", Start, Offset, x, y);
1336 I915_WRITE(dspstride, crtc->fb->pitch);
1337 if (IS_I965G(dev)) {
1338 I915_WRITE(dspbase, Offset);
1339 I915_READ(dspbase);
1340 I915_WRITE(dspsurf, Start);
1341 I915_READ(dspsurf);
1342 I915_WRITE(dsptileoff, (y << 16) | x);
1343 } else {
1344 I915_WRITE(dspbase, Start + Offset);
1345 I915_READ(dspbase);
1348 if ((IS_I965G(dev) || plane == 0))
1349 intel_update_fbc(crtc, &crtc->mode);
1351 intel_wait_for_vblank(dev);
1353 if (old_fb) {
1354 intel_fb = to_intel_framebuffer(old_fb);
1355 obj_priv = intel_fb->obj->driver_private;
1356 i915_gem_object_unpin(intel_fb->obj);
1358 intel_increase_pllclock(crtc, true);
1360 mutex_unlock(&dev->struct_mutex);
1362 if (!dev->primary->master)
1363 return 0;
1365 master_priv = dev->primary->master->driver_priv;
1366 if (!master_priv->sarea_priv)
1367 return 0;
1369 if (pipe) {
1370 master_priv->sarea_priv->pipeB_x = x;
1371 master_priv->sarea_priv->pipeB_y = y;
1372 } else {
1373 master_priv->sarea_priv->pipeA_x = x;
1374 master_priv->sarea_priv->pipeA_y = y;
1377 return 0;
1380 /* Disable the VGA plane that we never use */
1381 static void i915_disable_vga (struct drm_device *dev)
1383 struct drm_i915_private *dev_priv = dev->dev_private;
1384 u8 sr1;
1385 u32 vga_reg;
1387 if (IS_IGDNG(dev))
1388 vga_reg = CPU_VGACNTRL;
1389 else
1390 vga_reg = VGACNTRL;
1392 if (I915_READ(vga_reg) & VGA_DISP_DISABLE)
1393 return;
1395 I915_WRITE8(VGA_SR_INDEX, 1);
1396 sr1 = I915_READ8(VGA_SR_DATA);
1397 I915_WRITE8(VGA_SR_DATA, sr1 | (1 << 5));
1398 udelay(100);
1400 I915_WRITE(vga_reg, VGA_DISP_DISABLE);
1403 static void igdng_disable_pll_edp (struct drm_crtc *crtc)
1405 struct drm_device *dev = crtc->dev;
1406 struct drm_i915_private *dev_priv = dev->dev_private;
1407 u32 dpa_ctl;
1409 DRM_DEBUG_KMS("\n");
1410 dpa_ctl = I915_READ(DP_A);
1411 dpa_ctl &= ~DP_PLL_ENABLE;
1412 I915_WRITE(DP_A, dpa_ctl);
1415 static void igdng_enable_pll_edp (struct drm_crtc *crtc)
1417 struct drm_device *dev = crtc->dev;
1418 struct drm_i915_private *dev_priv = dev->dev_private;
1419 u32 dpa_ctl;
1421 dpa_ctl = I915_READ(DP_A);
1422 dpa_ctl |= DP_PLL_ENABLE;
1423 I915_WRITE(DP_A, dpa_ctl);
1424 udelay(200);
1428 static void igdng_set_pll_edp (struct drm_crtc *crtc, int clock)
1430 struct drm_device *dev = crtc->dev;
1431 struct drm_i915_private *dev_priv = dev->dev_private;
1432 u32 dpa_ctl;
1434 DRM_DEBUG_KMS("eDP PLL enable for clock %d\n", clock);
1435 dpa_ctl = I915_READ(DP_A);
1436 dpa_ctl &= ~DP_PLL_FREQ_MASK;
1438 if (clock < 200000) {
1439 u32 temp;
1440 dpa_ctl |= DP_PLL_FREQ_160MHZ;
1441 /* workaround for 160Mhz:
1442 1) program 0x4600c bits 15:0 = 0x8124
1443 2) program 0x46010 bit 0 = 1
1444 3) program 0x46034 bit 24 = 1
1445 4) program 0x64000 bit 14 = 1
1447 temp = I915_READ(0x4600c);
1448 temp &= 0xffff0000;
1449 I915_WRITE(0x4600c, temp | 0x8124);
1451 temp = I915_READ(0x46010);
1452 I915_WRITE(0x46010, temp | 1);
1454 temp = I915_READ(0x46034);
1455 I915_WRITE(0x46034, temp | (1 << 24));
1456 } else {
1457 dpa_ctl |= DP_PLL_FREQ_270MHZ;
1459 I915_WRITE(DP_A, dpa_ctl);
1461 udelay(500);
1464 static void igdng_crtc_dpms(struct drm_crtc *crtc, int mode)
1466 struct drm_device *dev = crtc->dev;
1467 struct drm_i915_private *dev_priv = dev->dev_private;
1468 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1469 int pipe = intel_crtc->pipe;
1470 int plane = intel_crtc->plane;
1471 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
1472 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1473 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1474 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1475 int fdi_tx_reg = (pipe == 0) ? FDI_TXA_CTL : FDI_TXB_CTL;
1476 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
1477 int fdi_rx_iir_reg = (pipe == 0) ? FDI_RXA_IIR : FDI_RXB_IIR;
1478 int fdi_rx_imr_reg = (pipe == 0) ? FDI_RXA_IMR : FDI_RXB_IMR;
1479 int transconf_reg = (pipe == 0) ? TRANSACONF : TRANSBCONF;
1480 int pf_ctl_reg = (pipe == 0) ? PFA_CTL_1 : PFB_CTL_1;
1481 int pf_win_size = (pipe == 0) ? PFA_WIN_SZ : PFB_WIN_SZ;
1482 int pf_win_pos = (pipe == 0) ? PFA_WIN_POS : PFB_WIN_POS;
1483 int cpu_htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
1484 int cpu_hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
1485 int cpu_hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
1486 int cpu_vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
1487 int cpu_vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
1488 int cpu_vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
1489 int trans_htot_reg = (pipe == 0) ? TRANS_HTOTAL_A : TRANS_HTOTAL_B;
1490 int trans_hblank_reg = (pipe == 0) ? TRANS_HBLANK_A : TRANS_HBLANK_B;
1491 int trans_hsync_reg = (pipe == 0) ? TRANS_HSYNC_A : TRANS_HSYNC_B;
1492 int trans_vtot_reg = (pipe == 0) ? TRANS_VTOTAL_A : TRANS_VTOTAL_B;
1493 int trans_vblank_reg = (pipe == 0) ? TRANS_VBLANK_A : TRANS_VBLANK_B;
1494 int trans_vsync_reg = (pipe == 0) ? TRANS_VSYNC_A : TRANS_VSYNC_B;
1495 u32 temp;
1496 int tries = 5, j, n;
1498 /* XXX: When our outputs are all unaware of DPMS modes other than off
1499 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1501 switch (mode) {
1502 case DRM_MODE_DPMS_ON:
1503 case DRM_MODE_DPMS_STANDBY:
1504 case DRM_MODE_DPMS_SUSPEND:
1505 DRM_DEBUG_KMS("crtc %d dpms on\n", pipe);
1507 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1508 temp = I915_READ(PCH_LVDS);
1509 if ((temp & LVDS_PORT_EN) == 0) {
1510 I915_WRITE(PCH_LVDS, temp | LVDS_PORT_EN);
1511 POSTING_READ(PCH_LVDS);
1515 if (HAS_eDP) {
1516 /* enable eDP PLL */
1517 igdng_enable_pll_edp(crtc);
1518 } else {
1519 /* enable PCH DPLL */
1520 temp = I915_READ(pch_dpll_reg);
1521 if ((temp & DPLL_VCO_ENABLE) == 0) {
1522 I915_WRITE(pch_dpll_reg, temp | DPLL_VCO_ENABLE);
1523 I915_READ(pch_dpll_reg);
1526 /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
1527 temp = I915_READ(fdi_rx_reg);
1528 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE |
1529 FDI_SEL_PCDCLK |
1530 FDI_DP_PORT_WIDTH_X4); /* default 4 lanes */
1531 I915_READ(fdi_rx_reg);
1532 udelay(200);
1534 /* Enable CPU FDI TX PLL, always on for IGDNG */
1535 temp = I915_READ(fdi_tx_reg);
1536 if ((temp & FDI_TX_PLL_ENABLE) == 0) {
1537 I915_WRITE(fdi_tx_reg, temp | FDI_TX_PLL_ENABLE);
1538 I915_READ(fdi_tx_reg);
1539 udelay(100);
1543 /* Enable panel fitting for LVDS */
1544 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1545 temp = I915_READ(pf_ctl_reg);
1546 I915_WRITE(pf_ctl_reg, temp | PF_ENABLE | PF_FILTER_MED_3x3);
1548 /* currently full aspect */
1549 I915_WRITE(pf_win_pos, 0);
1551 I915_WRITE(pf_win_size,
1552 (dev_priv->panel_fixed_mode->hdisplay << 16) |
1553 (dev_priv->panel_fixed_mode->vdisplay));
1556 /* Enable CPU pipe */
1557 temp = I915_READ(pipeconf_reg);
1558 if ((temp & PIPEACONF_ENABLE) == 0) {
1559 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1560 I915_READ(pipeconf_reg);
1561 udelay(100);
1564 /* configure and enable CPU plane */
1565 temp = I915_READ(dspcntr_reg);
1566 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1567 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1568 /* Flush the plane changes */
1569 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1572 if (!HAS_eDP) {
1573 /* enable CPU FDI TX and PCH FDI RX */
1574 temp = I915_READ(fdi_tx_reg);
1575 temp |= FDI_TX_ENABLE;
1576 temp |= FDI_DP_PORT_WIDTH_X4; /* default */
1577 temp &= ~FDI_LINK_TRAIN_NONE;
1578 temp |= FDI_LINK_TRAIN_PATTERN_1;
1579 I915_WRITE(fdi_tx_reg, temp);
1580 I915_READ(fdi_tx_reg);
1582 temp = I915_READ(fdi_rx_reg);
1583 temp &= ~FDI_LINK_TRAIN_NONE;
1584 temp |= FDI_LINK_TRAIN_PATTERN_1;
1585 I915_WRITE(fdi_rx_reg, temp | FDI_RX_ENABLE);
1586 I915_READ(fdi_rx_reg);
1588 udelay(150);
1590 /* Train FDI. */
1591 /* umask FDI RX Interrupt symbol_lock and bit_lock bit
1592 for train result */
1593 temp = I915_READ(fdi_rx_imr_reg);
1594 temp &= ~FDI_RX_SYMBOL_LOCK;
1595 temp &= ~FDI_RX_BIT_LOCK;
1596 I915_WRITE(fdi_rx_imr_reg, temp);
1597 I915_READ(fdi_rx_imr_reg);
1598 udelay(150);
1600 temp = I915_READ(fdi_rx_iir_reg);
1601 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1603 if ((temp & FDI_RX_BIT_LOCK) == 0) {
1604 for (j = 0; j < tries; j++) {
1605 temp = I915_READ(fdi_rx_iir_reg);
1606 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1607 temp);
1608 if (temp & FDI_RX_BIT_LOCK)
1609 break;
1610 udelay(200);
1612 if (j != tries)
1613 I915_WRITE(fdi_rx_iir_reg,
1614 temp | FDI_RX_BIT_LOCK);
1615 else
1616 DRM_DEBUG_KMS("train 1 fail\n");
1617 } else {
1618 I915_WRITE(fdi_rx_iir_reg,
1619 temp | FDI_RX_BIT_LOCK);
1620 DRM_DEBUG_KMS("train 1 ok 2!\n");
1622 temp = I915_READ(fdi_tx_reg);
1623 temp &= ~FDI_LINK_TRAIN_NONE;
1624 temp |= FDI_LINK_TRAIN_PATTERN_2;
1625 I915_WRITE(fdi_tx_reg, temp);
1627 temp = I915_READ(fdi_rx_reg);
1628 temp &= ~FDI_LINK_TRAIN_NONE;
1629 temp |= FDI_LINK_TRAIN_PATTERN_2;
1630 I915_WRITE(fdi_rx_reg, temp);
1632 udelay(150);
1634 temp = I915_READ(fdi_rx_iir_reg);
1635 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
1637 if ((temp & FDI_RX_SYMBOL_LOCK) == 0) {
1638 for (j = 0; j < tries; j++) {
1639 temp = I915_READ(fdi_rx_iir_reg);
1640 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n",
1641 temp);
1642 if (temp & FDI_RX_SYMBOL_LOCK)
1643 break;
1644 udelay(200);
1646 if (j != tries) {
1647 I915_WRITE(fdi_rx_iir_reg,
1648 temp | FDI_RX_SYMBOL_LOCK);
1649 DRM_DEBUG_KMS("train 2 ok 1!\n");
1650 } else
1651 DRM_DEBUG_KMS("train 2 fail\n");
1652 } else {
1653 I915_WRITE(fdi_rx_iir_reg,
1654 temp | FDI_RX_SYMBOL_LOCK);
1655 DRM_DEBUG_KMS("train 2 ok 2!\n");
1657 DRM_DEBUG_KMS("train done\n");
1659 /* set transcoder timing */
1660 I915_WRITE(trans_htot_reg, I915_READ(cpu_htot_reg));
1661 I915_WRITE(trans_hblank_reg, I915_READ(cpu_hblank_reg));
1662 I915_WRITE(trans_hsync_reg, I915_READ(cpu_hsync_reg));
1664 I915_WRITE(trans_vtot_reg, I915_READ(cpu_vtot_reg));
1665 I915_WRITE(trans_vblank_reg, I915_READ(cpu_vblank_reg));
1666 I915_WRITE(trans_vsync_reg, I915_READ(cpu_vsync_reg));
1668 /* enable PCH transcoder */
1669 temp = I915_READ(transconf_reg);
1670 I915_WRITE(transconf_reg, temp | TRANS_ENABLE);
1671 I915_READ(transconf_reg);
1673 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) == 0)
1676 /* enable normal */
1678 temp = I915_READ(fdi_tx_reg);
1679 temp &= ~FDI_LINK_TRAIN_NONE;
1680 I915_WRITE(fdi_tx_reg, temp | FDI_LINK_TRAIN_NONE |
1681 FDI_TX_ENHANCE_FRAME_ENABLE);
1682 I915_READ(fdi_tx_reg);
1684 temp = I915_READ(fdi_rx_reg);
1685 temp &= ~FDI_LINK_TRAIN_NONE;
1686 I915_WRITE(fdi_rx_reg, temp | FDI_LINK_TRAIN_NONE |
1687 FDI_RX_ENHANCE_FRAME_ENABLE);
1688 I915_READ(fdi_rx_reg);
1690 /* wait one idle pattern time */
1691 udelay(100);
1695 intel_crtc_load_lut(crtc);
1697 break;
1698 case DRM_MODE_DPMS_OFF:
1699 DRM_DEBUG_KMS("crtc %d dpms off\n", pipe);
1701 /* Disable display plane */
1702 temp = I915_READ(dspcntr_reg);
1703 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1704 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1705 /* Flush the plane changes */
1706 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1707 I915_READ(dspbase_reg);
1710 i915_disable_vga(dev);
1712 /* disable cpu pipe, disable after all planes disabled */
1713 temp = I915_READ(pipeconf_reg);
1714 if ((temp & PIPEACONF_ENABLE) != 0) {
1715 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1716 I915_READ(pipeconf_reg);
1717 n = 0;
1718 /* wait for cpu pipe off, pipe state */
1719 while ((I915_READ(pipeconf_reg) & I965_PIPECONF_ACTIVE) != 0) {
1720 n++;
1721 if (n < 60) {
1722 udelay(500);
1723 continue;
1724 } else {
1725 DRM_DEBUG_KMS("pipe %d off delay\n",
1726 pipe);
1727 break;
1730 } else
1731 DRM_DEBUG_KMS("crtc %d is disabled\n", pipe);
1733 udelay(100);
1735 /* Disable PF */
1736 temp = I915_READ(pf_ctl_reg);
1737 if ((temp & PF_ENABLE) != 0) {
1738 I915_WRITE(pf_ctl_reg, temp & ~PF_ENABLE);
1739 I915_READ(pf_ctl_reg);
1741 I915_WRITE(pf_win_size, 0);
1743 /* disable CPU FDI tx and PCH FDI rx */
1744 temp = I915_READ(fdi_tx_reg);
1745 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_ENABLE);
1746 I915_READ(fdi_tx_reg);
1748 temp = I915_READ(fdi_rx_reg);
1749 I915_WRITE(fdi_rx_reg, temp & ~FDI_RX_ENABLE);
1750 I915_READ(fdi_rx_reg);
1752 udelay(100);
1754 /* still set train pattern 1 */
1755 temp = I915_READ(fdi_tx_reg);
1756 temp &= ~FDI_LINK_TRAIN_NONE;
1757 temp |= FDI_LINK_TRAIN_PATTERN_1;
1758 I915_WRITE(fdi_tx_reg, temp);
1760 temp = I915_READ(fdi_rx_reg);
1761 temp &= ~FDI_LINK_TRAIN_NONE;
1762 temp |= FDI_LINK_TRAIN_PATTERN_1;
1763 I915_WRITE(fdi_rx_reg, temp);
1765 udelay(100);
1767 if (intel_pipe_has_type(crtc, INTEL_OUTPUT_LVDS)) {
1768 temp = I915_READ(PCH_LVDS);
1769 I915_WRITE(PCH_LVDS, temp & ~LVDS_PORT_EN);
1770 I915_READ(PCH_LVDS);
1771 udelay(100);
1774 /* disable PCH transcoder */
1775 temp = I915_READ(transconf_reg);
1776 if ((temp & TRANS_ENABLE) != 0) {
1777 I915_WRITE(transconf_reg, temp & ~TRANS_ENABLE);
1778 I915_READ(transconf_reg);
1779 n = 0;
1780 /* wait for PCH transcoder off, transcoder state */
1781 while ((I915_READ(transconf_reg) & TRANS_STATE_ENABLE) != 0) {
1782 n++;
1783 if (n < 60) {
1784 udelay(500);
1785 continue;
1786 } else {
1787 DRM_DEBUG_KMS("transcoder %d off "
1788 "delay\n", pipe);
1789 break;
1794 udelay(100);
1796 /* disable PCH DPLL */
1797 temp = I915_READ(pch_dpll_reg);
1798 if ((temp & DPLL_VCO_ENABLE) != 0) {
1799 I915_WRITE(pch_dpll_reg, temp & ~DPLL_VCO_ENABLE);
1800 I915_READ(pch_dpll_reg);
1803 if (HAS_eDP) {
1804 igdng_disable_pll_edp(crtc);
1807 temp = I915_READ(fdi_rx_reg);
1808 temp &= ~FDI_SEL_PCDCLK;
1809 I915_WRITE(fdi_rx_reg, temp);
1810 I915_READ(fdi_rx_reg);
1812 temp = I915_READ(fdi_rx_reg);
1813 temp &= ~FDI_RX_PLL_ENABLE;
1814 I915_WRITE(fdi_rx_reg, temp);
1815 I915_READ(fdi_rx_reg);
1817 /* Disable CPU FDI TX PLL */
1818 temp = I915_READ(fdi_tx_reg);
1819 if ((temp & FDI_TX_PLL_ENABLE) != 0) {
1820 I915_WRITE(fdi_tx_reg, temp & ~FDI_TX_PLL_ENABLE);
1821 I915_READ(fdi_tx_reg);
1822 udelay(100);
1825 /* Wait for the clocks to turn off. */
1826 udelay(100);
1827 break;
1831 static void intel_crtc_dpms_overlay(struct intel_crtc *intel_crtc, bool enable)
1833 struct intel_overlay *overlay;
1834 int ret;
1836 if (!enable && intel_crtc->overlay) {
1837 overlay = intel_crtc->overlay;
1838 mutex_lock(&overlay->dev->struct_mutex);
1839 for (;;) {
1840 ret = intel_overlay_switch_off(overlay);
1841 if (ret == 0)
1842 break;
1844 ret = intel_overlay_recover_from_interrupt(overlay, 0);
1845 if (ret != 0) {
1846 /* overlay doesn't react anymore. Usually
1847 * results in a black screen and an unkillable
1848 * X server. */
1849 BUG();
1850 overlay->hw_wedged = HW_WEDGED;
1851 break;
1854 mutex_unlock(&overlay->dev->struct_mutex);
1856 /* Let userspace switch the overlay on again. In most cases userspace
1857 * has to recompute where to put it anyway. */
1859 return;
1862 static void i9xx_crtc_dpms(struct drm_crtc *crtc, int mode)
1864 struct drm_device *dev = crtc->dev;
1865 struct drm_i915_private *dev_priv = dev->dev_private;
1866 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1867 int pipe = intel_crtc->pipe;
1868 int plane = intel_crtc->plane;
1869 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
1870 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
1871 int dspbase_reg = (plane == 0) ? DSPAADDR : DSPBADDR;
1872 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
1873 u32 temp;
1875 /* XXX: When our outputs are all unaware of DPMS modes other than off
1876 * and on, we should map those modes to DRM_MODE_DPMS_OFF in the CRTC.
1878 switch (mode) {
1879 case DRM_MODE_DPMS_ON:
1880 case DRM_MODE_DPMS_STANDBY:
1881 case DRM_MODE_DPMS_SUSPEND:
1882 intel_update_watermarks(dev);
1884 /* Enable the DPLL */
1885 temp = I915_READ(dpll_reg);
1886 if ((temp & DPLL_VCO_ENABLE) == 0) {
1887 I915_WRITE(dpll_reg, temp);
1888 I915_READ(dpll_reg);
1889 /* Wait for the clocks to stabilize. */
1890 udelay(150);
1891 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1892 I915_READ(dpll_reg);
1893 /* Wait for the clocks to stabilize. */
1894 udelay(150);
1895 I915_WRITE(dpll_reg, temp | DPLL_VCO_ENABLE);
1896 I915_READ(dpll_reg);
1897 /* Wait for the clocks to stabilize. */
1898 udelay(150);
1901 /* Enable the pipe */
1902 temp = I915_READ(pipeconf_reg);
1903 if ((temp & PIPEACONF_ENABLE) == 0)
1904 I915_WRITE(pipeconf_reg, temp | PIPEACONF_ENABLE);
1906 /* Enable the plane */
1907 temp = I915_READ(dspcntr_reg);
1908 if ((temp & DISPLAY_PLANE_ENABLE) == 0) {
1909 I915_WRITE(dspcntr_reg, temp | DISPLAY_PLANE_ENABLE);
1910 /* Flush the plane changes */
1911 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1914 intel_crtc_load_lut(crtc);
1916 if ((IS_I965G(dev) || plane == 0))
1917 intel_update_fbc(crtc, &crtc->mode);
1919 /* Give the overlay scaler a chance to enable if it's on this pipe */
1920 intel_crtc_dpms_overlay(intel_crtc, true);
1921 break;
1922 case DRM_MODE_DPMS_OFF:
1923 intel_update_watermarks(dev);
1925 /* Give the overlay scaler a chance to disable if it's on this pipe */
1926 intel_crtc_dpms_overlay(intel_crtc, false);
1928 if (dev_priv->cfb_plane == plane &&
1929 dev_priv->display.disable_fbc)
1930 dev_priv->display.disable_fbc(dev);
1932 /* Disable the VGA plane that we never use */
1933 i915_disable_vga(dev);
1935 /* Disable display plane */
1936 temp = I915_READ(dspcntr_reg);
1937 if ((temp & DISPLAY_PLANE_ENABLE) != 0) {
1938 I915_WRITE(dspcntr_reg, temp & ~DISPLAY_PLANE_ENABLE);
1939 /* Flush the plane changes */
1940 I915_WRITE(dspbase_reg, I915_READ(dspbase_reg));
1941 I915_READ(dspbase_reg);
1944 if (!IS_I9XX(dev)) {
1945 /* Wait for vblank for the disable to take effect */
1946 intel_wait_for_vblank(dev);
1949 /* Next, disable display pipes */
1950 temp = I915_READ(pipeconf_reg);
1951 if ((temp & PIPEACONF_ENABLE) != 0) {
1952 I915_WRITE(pipeconf_reg, temp & ~PIPEACONF_ENABLE);
1953 I915_READ(pipeconf_reg);
1956 /* Wait for vblank for the disable to take effect. */
1957 intel_wait_for_vblank(dev);
1959 temp = I915_READ(dpll_reg);
1960 if ((temp & DPLL_VCO_ENABLE) != 0) {
1961 I915_WRITE(dpll_reg, temp & ~DPLL_VCO_ENABLE);
1962 I915_READ(dpll_reg);
1965 /* Wait for the clocks to turn off. */
1966 udelay(150);
1967 break;
1972 * Sets the power management mode of the pipe and plane.
1974 * This code should probably grow support for turning the cursor off and back
1975 * on appropriately at the same time as we're turning the pipe off/on.
1977 static void intel_crtc_dpms(struct drm_crtc *crtc, int mode)
1979 struct drm_device *dev = crtc->dev;
1980 struct drm_i915_private *dev_priv = dev->dev_private;
1981 struct drm_i915_master_private *master_priv;
1982 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1983 int pipe = intel_crtc->pipe;
1984 bool enabled;
1986 dev_priv->display.dpms(crtc, mode);
1988 intel_crtc->dpms_mode = mode;
1990 if (!dev->primary->master)
1991 return;
1993 master_priv = dev->primary->master->driver_priv;
1994 if (!master_priv->sarea_priv)
1995 return;
1997 enabled = crtc->enabled && mode != DRM_MODE_DPMS_OFF;
1999 switch (pipe) {
2000 case 0:
2001 master_priv->sarea_priv->pipeA_w = enabled ? crtc->mode.hdisplay : 0;
2002 master_priv->sarea_priv->pipeA_h = enabled ? crtc->mode.vdisplay : 0;
2003 break;
2004 case 1:
2005 master_priv->sarea_priv->pipeB_w = enabled ? crtc->mode.hdisplay : 0;
2006 master_priv->sarea_priv->pipeB_h = enabled ? crtc->mode.vdisplay : 0;
2007 break;
2008 default:
2009 DRM_ERROR("Can't update pipe %d in SAREA\n", pipe);
2010 break;
2014 static void intel_crtc_prepare (struct drm_crtc *crtc)
2016 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2017 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_OFF);
2020 static void intel_crtc_commit (struct drm_crtc *crtc)
2022 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
2023 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
2026 void intel_encoder_prepare (struct drm_encoder *encoder)
2028 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2029 /* lvds has its own version of prepare see intel_lvds_prepare */
2030 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_OFF);
2033 void intel_encoder_commit (struct drm_encoder *encoder)
2035 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
2036 /* lvds has its own version of commit see intel_lvds_commit */
2037 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
2040 static bool intel_crtc_mode_fixup(struct drm_crtc *crtc,
2041 struct drm_display_mode *mode,
2042 struct drm_display_mode *adjusted_mode)
2044 struct drm_device *dev = crtc->dev;
2045 if (IS_IGDNG(dev)) {
2046 /* FDI link clock is fixed at 2.7G */
2047 if (mode->clock * 3 > 27000 * 4)
2048 return MODE_CLOCK_HIGH;
2050 return true;
2053 static int i945_get_display_clock_speed(struct drm_device *dev)
2055 return 400000;
2058 static int i915_get_display_clock_speed(struct drm_device *dev)
2060 return 333000;
2063 static int i9xx_misc_get_display_clock_speed(struct drm_device *dev)
2065 return 200000;
2068 static int i915gm_get_display_clock_speed(struct drm_device *dev)
2070 u16 gcfgc = 0;
2072 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
2074 if (gcfgc & GC_LOW_FREQUENCY_ENABLE)
2075 return 133000;
2076 else {
2077 switch (gcfgc & GC_DISPLAY_CLOCK_MASK) {
2078 case GC_DISPLAY_CLOCK_333_MHZ:
2079 return 333000;
2080 default:
2081 case GC_DISPLAY_CLOCK_190_200_MHZ:
2082 return 190000;
2087 static int i865_get_display_clock_speed(struct drm_device *dev)
2089 return 266000;
2092 static int i855_get_display_clock_speed(struct drm_device *dev)
2094 u16 hpllcc = 0;
2095 /* Assume that the hardware is in the high speed state. This
2096 * should be the default.
2098 switch (hpllcc & GC_CLOCK_CONTROL_MASK) {
2099 case GC_CLOCK_133_200:
2100 case GC_CLOCK_100_200:
2101 return 200000;
2102 case GC_CLOCK_166_250:
2103 return 250000;
2104 case GC_CLOCK_100_133:
2105 return 133000;
2108 /* Shouldn't happen */
2109 return 0;
2112 static int i830_get_display_clock_speed(struct drm_device *dev)
2114 return 133000;
2118 * Return the pipe currently connected to the panel fitter,
2119 * or -1 if the panel fitter is not present or not in use
2121 int intel_panel_fitter_pipe (struct drm_device *dev)
2123 struct drm_i915_private *dev_priv = dev->dev_private;
2124 u32 pfit_control;
2126 /* i830 doesn't have a panel fitter */
2127 if (IS_I830(dev))
2128 return -1;
2130 pfit_control = I915_READ(PFIT_CONTROL);
2132 /* See if the panel fitter is in use */
2133 if ((pfit_control & PFIT_ENABLE) == 0)
2134 return -1;
2136 /* 965 can place panel fitter on either pipe */
2137 if (IS_I965G(dev))
2138 return (pfit_control >> 29) & 0x3;
2140 /* older chips can only use pipe 1 */
2141 return 1;
2144 struct fdi_m_n {
2145 u32 tu;
2146 u32 gmch_m;
2147 u32 gmch_n;
2148 u32 link_m;
2149 u32 link_n;
2152 static void
2153 fdi_reduce_ratio(u32 *num, u32 *den)
2155 while (*num > 0xffffff || *den > 0xffffff) {
2156 *num >>= 1;
2157 *den >>= 1;
2161 #define DATA_N 0x800000
2162 #define LINK_N 0x80000
2164 static void
2165 igdng_compute_m_n(int bits_per_pixel, int nlanes,
2166 int pixel_clock, int link_clock,
2167 struct fdi_m_n *m_n)
2169 u64 temp;
2171 m_n->tu = 64; /* default size */
2173 temp = (u64) DATA_N * pixel_clock;
2174 temp = div_u64(temp, link_clock);
2175 m_n->gmch_m = div_u64(temp * bits_per_pixel, nlanes);
2176 m_n->gmch_m >>= 3; /* convert to bytes_per_pixel */
2177 m_n->gmch_n = DATA_N;
2178 fdi_reduce_ratio(&m_n->gmch_m, &m_n->gmch_n);
2180 temp = (u64) LINK_N * pixel_clock;
2181 m_n->link_m = div_u64(temp, link_clock);
2182 m_n->link_n = LINK_N;
2183 fdi_reduce_ratio(&m_n->link_m, &m_n->link_n);
2187 struct intel_watermark_params {
2188 unsigned long fifo_size;
2189 unsigned long max_wm;
2190 unsigned long default_wm;
2191 unsigned long guard_size;
2192 unsigned long cacheline_size;
2195 /* IGD has different values for various configs */
2196 static struct intel_watermark_params igd_display_wm = {
2197 IGD_DISPLAY_FIFO,
2198 IGD_MAX_WM,
2199 IGD_DFT_WM,
2200 IGD_GUARD_WM,
2201 IGD_FIFO_LINE_SIZE
2203 static struct intel_watermark_params igd_display_hplloff_wm = {
2204 IGD_DISPLAY_FIFO,
2205 IGD_MAX_WM,
2206 IGD_DFT_HPLLOFF_WM,
2207 IGD_GUARD_WM,
2208 IGD_FIFO_LINE_SIZE
2210 static struct intel_watermark_params igd_cursor_wm = {
2211 IGD_CURSOR_FIFO,
2212 IGD_CURSOR_MAX_WM,
2213 IGD_CURSOR_DFT_WM,
2214 IGD_CURSOR_GUARD_WM,
2215 IGD_FIFO_LINE_SIZE,
2217 static struct intel_watermark_params igd_cursor_hplloff_wm = {
2218 IGD_CURSOR_FIFO,
2219 IGD_CURSOR_MAX_WM,
2220 IGD_CURSOR_DFT_WM,
2221 IGD_CURSOR_GUARD_WM,
2222 IGD_FIFO_LINE_SIZE
2224 static struct intel_watermark_params g4x_wm_info = {
2225 G4X_FIFO_SIZE,
2226 G4X_MAX_WM,
2227 G4X_MAX_WM,
2229 G4X_FIFO_LINE_SIZE,
2231 static struct intel_watermark_params i945_wm_info = {
2232 I945_FIFO_SIZE,
2233 I915_MAX_WM,
2236 I915_FIFO_LINE_SIZE
2238 static struct intel_watermark_params i915_wm_info = {
2239 I915_FIFO_SIZE,
2240 I915_MAX_WM,
2243 I915_FIFO_LINE_SIZE
2245 static struct intel_watermark_params i855_wm_info = {
2246 I855GM_FIFO_SIZE,
2247 I915_MAX_WM,
2250 I830_FIFO_LINE_SIZE
2252 static struct intel_watermark_params i830_wm_info = {
2253 I830_FIFO_SIZE,
2254 I915_MAX_WM,
2257 I830_FIFO_LINE_SIZE
2261 * intel_calculate_wm - calculate watermark level
2262 * @clock_in_khz: pixel clock
2263 * @wm: chip FIFO params
2264 * @pixel_size: display pixel size
2265 * @latency_ns: memory latency for the platform
2267 * Calculate the watermark level (the level at which the display plane will
2268 * start fetching from memory again). Each chip has a different display
2269 * FIFO size and allocation, so the caller needs to figure that out and pass
2270 * in the correct intel_watermark_params structure.
2272 * As the pixel clock runs, the FIFO will be drained at a rate that depends
2273 * on the pixel size. When it reaches the watermark level, it'll start
2274 * fetching FIFO line sized based chunks from memory until the FIFO fills
2275 * past the watermark point. If the FIFO drains completely, a FIFO underrun
2276 * will occur, and a display engine hang could result.
2278 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
2279 struct intel_watermark_params *wm,
2280 int pixel_size,
2281 unsigned long latency_ns)
2283 long entries_required, wm_size;
2286 * Note: we need to make sure we don't overflow for various clock &
2287 * latency values.
2288 * clocks go from a few thousand to several hundred thousand.
2289 * latency is usually a few thousand
2291 entries_required = ((clock_in_khz / 1000) * pixel_size * latency_ns) /
2292 1000;
2293 entries_required /= wm->cacheline_size;
2295 DRM_DEBUG_KMS("FIFO entries required for mode: %d\n", entries_required);
2297 wm_size = wm->fifo_size - (entries_required + wm->guard_size);
2299 DRM_DEBUG_KMS("FIFO watermark level: %d\n", wm_size);
2301 /* Don't promote wm_size to unsigned... */
2302 if (wm_size > (long)wm->max_wm)
2303 wm_size = wm->max_wm;
2304 if (wm_size <= 0)
2305 wm_size = wm->default_wm;
2306 return wm_size;
2309 struct cxsr_latency {
2310 int is_desktop;
2311 unsigned long fsb_freq;
2312 unsigned long mem_freq;
2313 unsigned long display_sr;
2314 unsigned long display_hpll_disable;
2315 unsigned long cursor_sr;
2316 unsigned long cursor_hpll_disable;
2319 static struct cxsr_latency cxsr_latency_table[] = {
2320 {1, 800, 400, 3382, 33382, 3983, 33983}, /* DDR2-400 SC */
2321 {1, 800, 667, 3354, 33354, 3807, 33807}, /* DDR2-667 SC */
2322 {1, 800, 800, 3347, 33347, 3763, 33763}, /* DDR2-800 SC */
2324 {1, 667, 400, 3400, 33400, 4021, 34021}, /* DDR2-400 SC */
2325 {1, 667, 667, 3372, 33372, 3845, 33845}, /* DDR2-667 SC */
2326 {1, 667, 800, 3386, 33386, 3822, 33822}, /* DDR2-800 SC */
2328 {1, 400, 400, 3472, 33472, 4173, 34173}, /* DDR2-400 SC */
2329 {1, 400, 667, 3443, 33443, 3996, 33996}, /* DDR2-667 SC */
2330 {1, 400, 800, 3430, 33430, 3946, 33946}, /* DDR2-800 SC */
2332 {0, 800, 400, 3438, 33438, 4065, 34065}, /* DDR2-400 SC */
2333 {0, 800, 667, 3410, 33410, 3889, 33889}, /* DDR2-667 SC */
2334 {0, 800, 800, 3403, 33403, 3845, 33845}, /* DDR2-800 SC */
2336 {0, 667, 400, 3456, 33456, 4103, 34106}, /* DDR2-400 SC */
2337 {0, 667, 667, 3428, 33428, 3927, 33927}, /* DDR2-667 SC */
2338 {0, 667, 800, 3443, 33443, 3905, 33905}, /* DDR2-800 SC */
2340 {0, 400, 400, 3528, 33528, 4255, 34255}, /* DDR2-400 SC */
2341 {0, 400, 667, 3500, 33500, 4079, 34079}, /* DDR2-667 SC */
2342 {0, 400, 800, 3487, 33487, 4029, 34029}, /* DDR2-800 SC */
2345 static struct cxsr_latency *intel_get_cxsr_latency(int is_desktop, int fsb,
2346 int mem)
2348 int i;
2349 struct cxsr_latency *latency;
2351 if (fsb == 0 || mem == 0)
2352 return NULL;
2354 for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
2355 latency = &cxsr_latency_table[i];
2356 if (is_desktop == latency->is_desktop &&
2357 fsb == latency->fsb_freq && mem == latency->mem_freq)
2358 return latency;
2361 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2363 return NULL;
2366 static void igd_disable_cxsr(struct drm_device *dev)
2368 struct drm_i915_private *dev_priv = dev->dev_private;
2369 u32 reg;
2371 /* deactivate cxsr */
2372 reg = I915_READ(DSPFW3);
2373 reg &= ~(IGD_SELF_REFRESH_EN);
2374 I915_WRITE(DSPFW3, reg);
2375 DRM_INFO("Big FIFO is disabled\n");
2378 static void igd_enable_cxsr(struct drm_device *dev, unsigned long clock,
2379 int pixel_size)
2381 struct drm_i915_private *dev_priv = dev->dev_private;
2382 u32 reg;
2383 unsigned long wm;
2384 struct cxsr_latency *latency;
2386 latency = intel_get_cxsr_latency(IS_IGDG(dev), dev_priv->fsb_freq,
2387 dev_priv->mem_freq);
2388 if (!latency) {
2389 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
2390 igd_disable_cxsr(dev);
2391 return;
2394 /* Display SR */
2395 wm = intel_calculate_wm(clock, &igd_display_wm, pixel_size,
2396 latency->display_sr);
2397 reg = I915_READ(DSPFW1);
2398 reg &= 0x7fffff;
2399 reg |= wm << 23;
2400 I915_WRITE(DSPFW1, reg);
2401 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
2403 /* cursor SR */
2404 wm = intel_calculate_wm(clock, &igd_cursor_wm, pixel_size,
2405 latency->cursor_sr);
2406 reg = I915_READ(DSPFW3);
2407 reg &= ~(0x3f << 24);
2408 reg |= (wm & 0x3f) << 24;
2409 I915_WRITE(DSPFW3, reg);
2411 /* Display HPLL off SR */
2412 wm = intel_calculate_wm(clock, &igd_display_hplloff_wm,
2413 latency->display_hpll_disable, I915_FIFO_LINE_SIZE);
2414 reg = I915_READ(DSPFW3);
2415 reg &= 0xfffffe00;
2416 reg |= wm & 0x1ff;
2417 I915_WRITE(DSPFW3, reg);
2419 /* cursor HPLL off SR */
2420 wm = intel_calculate_wm(clock, &igd_cursor_hplloff_wm, pixel_size,
2421 latency->cursor_hpll_disable);
2422 reg = I915_READ(DSPFW3);
2423 reg &= ~(0x3f << 16);
2424 reg |= (wm & 0x3f) << 16;
2425 I915_WRITE(DSPFW3, reg);
2426 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
2428 /* activate cxsr */
2429 reg = I915_READ(DSPFW3);
2430 reg |= IGD_SELF_REFRESH_EN;
2431 I915_WRITE(DSPFW3, reg);
2433 DRM_INFO("Big FIFO is enabled\n");
2435 return;
2439 * Latency for FIFO fetches is dependent on several factors:
2440 * - memory configuration (speed, channels)
2441 * - chipset
2442 * - current MCH state
2443 * It can be fairly high in some situations, so here we assume a fairly
2444 * pessimal value. It's a tradeoff between extra memory fetches (if we
2445 * set this value too high, the FIFO will fetch frequently to stay full)
2446 * and power consumption (set it too low to save power and we might see
2447 * FIFO underruns and display "flicker").
2449 * A value of 5us seems to be a good balance; safe for very low end
2450 * platforms but not overly aggressive on lower latency configs.
2452 const static int latency_ns = 5000;
2454 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
2456 struct drm_i915_private *dev_priv = dev->dev_private;
2457 uint32_t dsparb = I915_READ(DSPARB);
2458 int size;
2460 if (plane == 0)
2461 size = dsparb & 0x7f;
2462 else
2463 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) -
2464 (dsparb & 0x7f);
2466 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2467 plane ? "B" : "A", size);
2469 return size;
2472 static int i85x_get_fifo_size(struct drm_device *dev, int plane)
2474 struct drm_i915_private *dev_priv = dev->dev_private;
2475 uint32_t dsparb = I915_READ(DSPARB);
2476 int size;
2478 if (plane == 0)
2479 size = dsparb & 0x1ff;
2480 else
2481 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) -
2482 (dsparb & 0x1ff);
2483 size >>= 1; /* Convert to cachelines */
2485 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2486 plane ? "B" : "A", size);
2488 return size;
2491 static int i845_get_fifo_size(struct drm_device *dev, int plane)
2493 struct drm_i915_private *dev_priv = dev->dev_private;
2494 uint32_t dsparb = I915_READ(DSPARB);
2495 int size;
2497 size = dsparb & 0x7f;
2498 size >>= 2; /* Convert to cachelines */
2500 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2501 plane ? "B" : "A",
2502 size);
2504 return size;
2507 static int i830_get_fifo_size(struct drm_device *dev, int plane)
2509 struct drm_i915_private *dev_priv = dev->dev_private;
2510 uint32_t dsparb = I915_READ(DSPARB);
2511 int size;
2513 size = dsparb & 0x7f;
2514 size >>= 1; /* Convert to cachelines */
2516 DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
2517 plane ? "B" : "A", size);
2519 return size;
2522 static void g4x_update_wm(struct drm_device *dev, int planea_clock,
2523 int planeb_clock, int sr_hdisplay, int pixel_size)
2525 struct drm_i915_private *dev_priv = dev->dev_private;
2526 int total_size, cacheline_size;
2527 int planea_wm, planeb_wm, cursora_wm, cursorb_wm, cursor_sr;
2528 struct intel_watermark_params planea_params, planeb_params;
2529 unsigned long line_time_us;
2530 int sr_clock, sr_entries = 0, entries_required;
2532 /* Create copies of the base settings for each pipe */
2533 planea_params = planeb_params = g4x_wm_info;
2535 /* Grab a couple of global values before we overwrite them */
2536 total_size = planea_params.fifo_size;
2537 cacheline_size = planea_params.cacheline_size;
2540 * Note: we need to make sure we don't overflow for various clock &
2541 * latency values.
2542 * clocks go from a few thousand to several hundred thousand.
2543 * latency is usually a few thousand
2545 entries_required = ((planea_clock / 1000) * pixel_size * latency_ns) /
2546 1000;
2547 entries_required /= G4X_FIFO_LINE_SIZE;
2548 planea_wm = entries_required + planea_params.guard_size;
2550 entries_required = ((planeb_clock / 1000) * pixel_size * latency_ns) /
2551 1000;
2552 entries_required /= G4X_FIFO_LINE_SIZE;
2553 planeb_wm = entries_required + planeb_params.guard_size;
2555 cursora_wm = cursorb_wm = 16;
2556 cursor_sr = 32;
2558 DRM_DEBUG("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2560 /* Calc sr entries for one plane configs */
2561 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2562 /* self-refresh has much higher latency */
2563 const static int sr_latency_ns = 12000;
2565 sr_clock = planea_clock ? planea_clock : planeb_clock;
2566 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2568 /* Use ns/us then divide to preserve precision */
2569 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2570 pixel_size * sr_hdisplay) / 1000;
2571 sr_entries = roundup(sr_entries / cacheline_size, 1);
2572 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2573 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2576 DRM_DEBUG("Setting FIFO watermarks - A: %d, B: %d, SR %d\n",
2577 planea_wm, planeb_wm, sr_entries);
2579 planea_wm &= 0x3f;
2580 planeb_wm &= 0x3f;
2582 I915_WRITE(DSPFW1, (sr_entries << DSPFW_SR_SHIFT) |
2583 (cursorb_wm << DSPFW_CURSORB_SHIFT) |
2584 (planeb_wm << DSPFW_PLANEB_SHIFT) | planea_wm);
2585 I915_WRITE(DSPFW2, (I915_READ(DSPFW2) & DSPFW_CURSORA_MASK) |
2586 (cursora_wm << DSPFW_CURSORA_SHIFT));
2587 /* HPLL off in SR has some issues on G4x... disable it */
2588 I915_WRITE(DSPFW3, (I915_READ(DSPFW3) & ~DSPFW_HPLL_SR_EN) |
2589 (cursor_sr << DSPFW_CURSOR_SR_SHIFT));
2592 static void i965_update_wm(struct drm_device *dev, int planea_clock,
2593 int planeb_clock, int sr_hdisplay, int pixel_size)
2595 struct drm_i915_private *dev_priv = dev->dev_private;
2596 unsigned long line_time_us;
2597 int sr_clock, sr_entries, srwm = 1;
2599 /* Calc sr entries for one plane configs */
2600 if (sr_hdisplay && (!planea_clock || !planeb_clock)) {
2601 /* self-refresh has much higher latency */
2602 const static int sr_latency_ns = 12000;
2604 sr_clock = planea_clock ? planea_clock : planeb_clock;
2605 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2607 /* Use ns/us then divide to preserve precision */
2608 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2609 pixel_size * sr_hdisplay) / 1000;
2610 sr_entries = roundup(sr_entries / I915_FIFO_LINE_SIZE, 1);
2611 DRM_DEBUG("self-refresh entries: %d\n", sr_entries);
2612 srwm = I945_FIFO_SIZE - sr_entries;
2613 if (srwm < 0)
2614 srwm = 1;
2615 srwm &= 0x3f;
2616 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN);
2619 DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
2620 srwm);
2622 /* 965 has limitations... */
2623 I915_WRITE(DSPFW1, (srwm << DSPFW_SR_SHIFT) | (8 << 16) | (8 << 8) |
2624 (8 << 0));
2625 I915_WRITE(DSPFW2, (8 << 8) | (8 << 0));
2628 static void i9xx_update_wm(struct drm_device *dev, int planea_clock,
2629 int planeb_clock, int sr_hdisplay, int pixel_size)
2631 struct drm_i915_private *dev_priv = dev->dev_private;
2632 uint32_t fwater_lo;
2633 uint32_t fwater_hi;
2634 int total_size, cacheline_size, cwm, srwm = 1;
2635 int planea_wm, planeb_wm;
2636 struct intel_watermark_params planea_params, planeb_params;
2637 unsigned long line_time_us;
2638 int sr_clock, sr_entries = 0;
2640 /* Create copies of the base settings for each pipe */
2641 if (IS_I965GM(dev) || IS_I945GM(dev))
2642 planea_params = planeb_params = i945_wm_info;
2643 else if (IS_I9XX(dev))
2644 planea_params = planeb_params = i915_wm_info;
2645 else
2646 planea_params = planeb_params = i855_wm_info;
2648 /* Grab a couple of global values before we overwrite them */
2649 total_size = planea_params.fifo_size;
2650 cacheline_size = planea_params.cacheline_size;
2652 /* Update per-plane FIFO sizes */
2653 planea_params.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2654 planeb_params.fifo_size = dev_priv->display.get_fifo_size(dev, 1);
2656 planea_wm = intel_calculate_wm(planea_clock, &planea_params,
2657 pixel_size, latency_ns);
2658 planeb_wm = intel_calculate_wm(planeb_clock, &planeb_params,
2659 pixel_size, latency_ns);
2660 DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
2663 * Overlay gets an aggressive default since video jitter is bad.
2665 cwm = 2;
2667 /* Calc sr entries for one plane configs */
2668 if (HAS_FW_BLC(dev) && sr_hdisplay &&
2669 (!planea_clock || !planeb_clock)) {
2670 /* self-refresh has much higher latency */
2671 const static int sr_latency_ns = 6000;
2673 sr_clock = planea_clock ? planea_clock : planeb_clock;
2674 line_time_us = ((sr_hdisplay * 1000) / sr_clock);
2676 /* Use ns/us then divide to preserve precision */
2677 sr_entries = (((sr_latency_ns / line_time_us) + 1) *
2678 pixel_size * sr_hdisplay) / 1000;
2679 sr_entries = roundup(sr_entries / cacheline_size, 1);
2680 DRM_DEBUG_KMS("self-refresh entries: %d\n", sr_entries);
2681 srwm = total_size - sr_entries;
2682 if (srwm < 0)
2683 srwm = 1;
2684 I915_WRITE(FW_BLC_SELF, FW_BLC_SELF_EN | (srwm & 0x3f));
2687 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
2688 planea_wm, planeb_wm, cwm, srwm);
2690 fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
2691 fwater_hi = (cwm & 0x1f);
2693 /* Set request length to 8 cachelines per fetch */
2694 fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
2695 fwater_hi = fwater_hi | (1 << 8);
2697 I915_WRITE(FW_BLC, fwater_lo);
2698 I915_WRITE(FW_BLC2, fwater_hi);
2701 static void i830_update_wm(struct drm_device *dev, int planea_clock, int unused,
2702 int unused2, int pixel_size)
2704 struct drm_i915_private *dev_priv = dev->dev_private;
2705 uint32_t fwater_lo = I915_READ(FW_BLC) & ~0xfff;
2706 int planea_wm;
2708 i830_wm_info.fifo_size = dev_priv->display.get_fifo_size(dev, 0);
2710 planea_wm = intel_calculate_wm(planea_clock, &i830_wm_info,
2711 pixel_size, latency_ns);
2712 fwater_lo |= (3<<8) | planea_wm;
2714 DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
2716 I915_WRITE(FW_BLC, fwater_lo);
2720 * intel_update_watermarks - update FIFO watermark values based on current modes
2722 * Calculate watermark values for the various WM regs based on current mode
2723 * and plane configuration.
2725 * There are several cases to deal with here:
2726 * - normal (i.e. non-self-refresh)
2727 * - self-refresh (SR) mode
2728 * - lines are large relative to FIFO size (buffer can hold up to 2)
2729 * - lines are small relative to FIFO size (buffer can hold more than 2
2730 * lines), so need to account for TLB latency
2732 * The normal calculation is:
2733 * watermark = dotclock * bytes per pixel * latency
2734 * where latency is platform & configuration dependent (we assume pessimal
2735 * values here).
2737 * The SR calculation is:
2738 * watermark = (trunc(latency/line time)+1) * surface width *
2739 * bytes per pixel
2740 * where
2741 * line time = htotal / dotclock
2742 * and latency is assumed to be high, as above.
2744 * The final value programmed to the register should always be rounded up,
2745 * and include an extra 2 entries to account for clock crossings.
2747 * We don't use the sprite, so we can ignore that. And on Crestline we have
2748 * to set the non-SR watermarks to 8.
2750 static void intel_update_watermarks(struct drm_device *dev)
2752 struct drm_i915_private *dev_priv = dev->dev_private;
2753 struct drm_crtc *crtc;
2754 struct intel_crtc *intel_crtc;
2755 int sr_hdisplay = 0;
2756 unsigned long planea_clock = 0, planeb_clock = 0, sr_clock = 0;
2757 int enabled = 0, pixel_size = 0;
2759 if (!dev_priv->display.update_wm)
2760 return;
2762 /* Get the clock config from both planes */
2763 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
2764 intel_crtc = to_intel_crtc(crtc);
2765 if (crtc->enabled) {
2766 enabled++;
2767 if (intel_crtc->plane == 0) {
2768 DRM_DEBUG_KMS("plane A (pipe %d) clock: %d\n",
2769 intel_crtc->pipe, crtc->mode.clock);
2770 planea_clock = crtc->mode.clock;
2771 } else {
2772 DRM_DEBUG_KMS("plane B (pipe %d) clock: %d\n",
2773 intel_crtc->pipe, crtc->mode.clock);
2774 planeb_clock = crtc->mode.clock;
2776 sr_hdisplay = crtc->mode.hdisplay;
2777 sr_clock = crtc->mode.clock;
2778 if (crtc->fb)
2779 pixel_size = crtc->fb->bits_per_pixel / 8;
2780 else
2781 pixel_size = 4; /* by default */
2785 if (enabled <= 0)
2786 return;
2788 /* Single plane configs can enable self refresh */
2789 if (enabled == 1 && IS_IGD(dev))
2790 igd_enable_cxsr(dev, sr_clock, pixel_size);
2791 else if (IS_IGD(dev))
2792 igd_disable_cxsr(dev);
2794 dev_priv->display.update_wm(dev, planea_clock, planeb_clock,
2795 sr_hdisplay, pixel_size);
2798 static int intel_crtc_mode_set(struct drm_crtc *crtc,
2799 struct drm_display_mode *mode,
2800 struct drm_display_mode *adjusted_mode,
2801 int x, int y,
2802 struct drm_framebuffer *old_fb)
2804 struct drm_device *dev = crtc->dev;
2805 struct drm_i915_private *dev_priv = dev->dev_private;
2806 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
2807 int pipe = intel_crtc->pipe;
2808 int plane = intel_crtc->plane;
2809 int fp_reg = (pipe == 0) ? FPA0 : FPB0;
2810 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
2811 int dpll_md_reg = (intel_crtc->pipe == 0) ? DPLL_A_MD : DPLL_B_MD;
2812 int dspcntr_reg = (plane == 0) ? DSPACNTR : DSPBCNTR;
2813 int pipeconf_reg = (pipe == 0) ? PIPEACONF : PIPEBCONF;
2814 int htot_reg = (pipe == 0) ? HTOTAL_A : HTOTAL_B;
2815 int hblank_reg = (pipe == 0) ? HBLANK_A : HBLANK_B;
2816 int hsync_reg = (pipe == 0) ? HSYNC_A : HSYNC_B;
2817 int vtot_reg = (pipe == 0) ? VTOTAL_A : VTOTAL_B;
2818 int vblank_reg = (pipe == 0) ? VBLANK_A : VBLANK_B;
2819 int vsync_reg = (pipe == 0) ? VSYNC_A : VSYNC_B;
2820 int dspsize_reg = (plane == 0) ? DSPASIZE : DSPBSIZE;
2821 int dsppos_reg = (plane == 0) ? DSPAPOS : DSPBPOS;
2822 int pipesrc_reg = (pipe == 0) ? PIPEASRC : PIPEBSRC;
2823 int refclk, num_outputs = 0;
2824 intel_clock_t clock, reduced_clock;
2825 u32 dpll = 0, fp = 0, fp2 = 0, dspcntr, pipeconf;
2826 bool ok, has_reduced_clock = false, is_sdvo = false, is_dvo = false;
2827 bool is_crt = false, is_lvds = false, is_tv = false, is_dp = false;
2828 bool is_edp = false;
2829 struct drm_mode_config *mode_config = &dev->mode_config;
2830 struct drm_connector *connector;
2831 const intel_limit_t *limit;
2832 int ret;
2833 struct fdi_m_n m_n = {0};
2834 int data_m1_reg = (pipe == 0) ? PIPEA_DATA_M1 : PIPEB_DATA_M1;
2835 int data_n1_reg = (pipe == 0) ? PIPEA_DATA_N1 : PIPEB_DATA_N1;
2836 int link_m1_reg = (pipe == 0) ? PIPEA_LINK_M1 : PIPEB_LINK_M1;
2837 int link_n1_reg = (pipe == 0) ? PIPEA_LINK_N1 : PIPEB_LINK_N1;
2838 int pch_fp_reg = (pipe == 0) ? PCH_FPA0 : PCH_FPB0;
2839 int pch_dpll_reg = (pipe == 0) ? PCH_DPLL_A : PCH_DPLL_B;
2840 int fdi_rx_reg = (pipe == 0) ? FDI_RXA_CTL : FDI_RXB_CTL;
2841 int lvds_reg = LVDS;
2842 u32 temp;
2843 int sdvo_pixel_multiply;
2844 int target_clock;
2846 drm_vblank_pre_modeset(dev, pipe);
2848 list_for_each_entry(connector, &mode_config->connector_list, head) {
2849 struct intel_output *intel_output = to_intel_output(connector);
2851 if (!connector->encoder || connector->encoder->crtc != crtc)
2852 continue;
2854 switch (intel_output->type) {
2855 case INTEL_OUTPUT_LVDS:
2856 is_lvds = true;
2857 break;
2858 case INTEL_OUTPUT_SDVO:
2859 case INTEL_OUTPUT_HDMI:
2860 is_sdvo = true;
2861 if (intel_output->needs_tv_clock)
2862 is_tv = true;
2863 break;
2864 case INTEL_OUTPUT_DVO:
2865 is_dvo = true;
2866 break;
2867 case INTEL_OUTPUT_TVOUT:
2868 is_tv = true;
2869 break;
2870 case INTEL_OUTPUT_ANALOG:
2871 is_crt = true;
2872 break;
2873 case INTEL_OUTPUT_DISPLAYPORT:
2874 is_dp = true;
2875 break;
2876 case INTEL_OUTPUT_EDP:
2877 is_edp = true;
2878 break;
2881 num_outputs++;
2884 if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2) {
2885 refclk = dev_priv->lvds_ssc_freq * 1000;
2886 DRM_DEBUG_KMS("using SSC reference clock of %d MHz\n",
2887 refclk / 1000);
2888 } else if (IS_I9XX(dev)) {
2889 refclk = 96000;
2890 if (IS_IGDNG(dev))
2891 refclk = 120000; /* 120Mhz refclk */
2892 } else {
2893 refclk = 48000;
2898 * Returns a set of divisors for the desired target clock with the given
2899 * refclk, or FALSE. The returned values represent the clock equation:
2900 * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
2902 limit = intel_limit(crtc);
2903 ok = limit->find_pll(limit, crtc, adjusted_mode->clock, refclk, &clock);
2904 if (!ok) {
2905 DRM_ERROR("Couldn't find PLL settings for mode!\n");
2906 drm_vblank_post_modeset(dev, pipe);
2907 return -EINVAL;
2910 if (is_lvds && limit->find_reduced_pll &&
2911 dev_priv->lvds_downclock_avail) {
2912 memcpy(&reduced_clock, &clock, sizeof(intel_clock_t));
2913 has_reduced_clock = limit->find_reduced_pll(limit, crtc,
2914 dev_priv->lvds_downclock,
2915 refclk,
2916 &reduced_clock);
2917 if (has_reduced_clock && (clock.p != reduced_clock.p)) {
2919 * If the different P is found, it means that we can't
2920 * switch the display clock by using the FP0/FP1.
2921 * In such case we will disable the LVDS downclock
2922 * feature.
2924 DRM_DEBUG_KMS("Different P is found for "
2925 "LVDS clock/downclock\n");
2926 has_reduced_clock = 0;
2929 /* SDVO TV has fixed PLL values depend on its clock range,
2930 this mirrors vbios setting. */
2931 if (is_sdvo && is_tv) {
2932 if (adjusted_mode->clock >= 100000
2933 && adjusted_mode->clock < 140500) {
2934 clock.p1 = 2;
2935 clock.p2 = 10;
2936 clock.n = 3;
2937 clock.m1 = 16;
2938 clock.m2 = 8;
2939 } else if (adjusted_mode->clock >= 140500
2940 && adjusted_mode->clock <= 200000) {
2941 clock.p1 = 1;
2942 clock.p2 = 10;
2943 clock.n = 6;
2944 clock.m1 = 12;
2945 clock.m2 = 8;
2949 /* FDI link */
2950 if (IS_IGDNG(dev)) {
2951 int lane, link_bw, bpp;
2952 /* eDP doesn't require FDI link, so just set DP M/N
2953 according to current link config */
2954 if (is_edp) {
2955 struct drm_connector *edp;
2956 target_clock = mode->clock;
2957 edp = intel_pipe_get_output(crtc);
2958 intel_edp_link_config(to_intel_output(edp),
2959 &lane, &link_bw);
2960 } else {
2961 /* DP over FDI requires target mode clock
2962 instead of link clock */
2963 if (is_dp)
2964 target_clock = mode->clock;
2965 else
2966 target_clock = adjusted_mode->clock;
2967 lane = 4;
2968 link_bw = 270000;
2971 /* determine panel color depth */
2972 temp = I915_READ(pipeconf_reg);
2974 switch (temp & PIPE_BPC_MASK) {
2975 case PIPE_8BPC:
2976 bpp = 24;
2977 break;
2978 case PIPE_10BPC:
2979 bpp = 30;
2980 break;
2981 case PIPE_6BPC:
2982 bpp = 18;
2983 break;
2984 case PIPE_12BPC:
2985 bpp = 36;
2986 break;
2987 default:
2988 DRM_ERROR("unknown pipe bpc value\n");
2989 bpp = 24;
2992 igdng_compute_m_n(bpp, lane, target_clock,
2993 link_bw, &m_n);
2996 /* Ironlake: try to setup display ref clock before DPLL
2997 * enabling. This is only under driver's control after
2998 * PCH B stepping, previous chipset stepping should be
2999 * ignoring this setting.
3001 if (IS_IGDNG(dev)) {
3002 temp = I915_READ(PCH_DREF_CONTROL);
3003 /* Always enable nonspread source */
3004 temp &= ~DREF_NONSPREAD_SOURCE_MASK;
3005 temp |= DREF_NONSPREAD_SOURCE_ENABLE;
3006 I915_WRITE(PCH_DREF_CONTROL, temp);
3007 POSTING_READ(PCH_DREF_CONTROL);
3009 temp &= ~DREF_SSC_SOURCE_MASK;
3010 temp |= DREF_SSC_SOURCE_ENABLE;
3011 I915_WRITE(PCH_DREF_CONTROL, temp);
3012 POSTING_READ(PCH_DREF_CONTROL);
3014 udelay(200);
3016 if (is_edp) {
3017 if (dev_priv->lvds_use_ssc) {
3018 temp |= DREF_SSC1_ENABLE;
3019 I915_WRITE(PCH_DREF_CONTROL, temp);
3020 POSTING_READ(PCH_DREF_CONTROL);
3022 udelay(200);
3024 temp &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
3025 temp |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
3026 I915_WRITE(PCH_DREF_CONTROL, temp);
3027 POSTING_READ(PCH_DREF_CONTROL);
3028 } else {
3029 temp |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
3030 I915_WRITE(PCH_DREF_CONTROL, temp);
3031 POSTING_READ(PCH_DREF_CONTROL);
3036 if (IS_IGD(dev)) {
3037 fp = (1 << clock.n) << 16 | clock.m1 << 8 | clock.m2;
3038 if (has_reduced_clock)
3039 fp2 = (1 << reduced_clock.n) << 16 |
3040 reduced_clock.m1 << 8 | reduced_clock.m2;
3041 } else {
3042 fp = clock.n << 16 | clock.m1 << 8 | clock.m2;
3043 if (has_reduced_clock)
3044 fp2 = reduced_clock.n << 16 | reduced_clock.m1 << 8 |
3045 reduced_clock.m2;
3048 if (!IS_IGDNG(dev))
3049 dpll = DPLL_VGA_MODE_DIS;
3051 if (IS_I9XX(dev)) {
3052 if (is_lvds)
3053 dpll |= DPLLB_MODE_LVDS;
3054 else
3055 dpll |= DPLLB_MODE_DAC_SERIAL;
3056 if (is_sdvo) {
3057 dpll |= DPLL_DVO_HIGH_SPEED;
3058 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3059 if (IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
3060 dpll |= (sdvo_pixel_multiply - 1) << SDVO_MULTIPLIER_SHIFT_HIRES;
3061 else if (IS_IGDNG(dev))
3062 dpll |= (sdvo_pixel_multiply - 1) << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
3064 if (is_dp)
3065 dpll |= DPLL_DVO_HIGH_SPEED;
3067 /* compute bitmask from p1 value */
3068 if (IS_IGD(dev))
3069 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_IGD;
3070 else {
3071 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3072 /* also FPA1 */
3073 if (IS_IGDNG(dev))
3074 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3075 if (IS_G4X(dev) && has_reduced_clock)
3076 dpll |= (1 << (reduced_clock.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
3078 switch (clock.p2) {
3079 case 5:
3080 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
3081 break;
3082 case 7:
3083 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
3084 break;
3085 case 10:
3086 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
3087 break;
3088 case 14:
3089 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
3090 break;
3092 if (IS_I965G(dev) && !IS_IGDNG(dev))
3093 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
3094 } else {
3095 if (is_lvds) {
3096 dpll |= (1 << (clock.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3097 } else {
3098 if (clock.p1 == 2)
3099 dpll |= PLL_P1_DIVIDE_BY_TWO;
3100 else
3101 dpll |= (clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
3102 if (clock.p2 == 4)
3103 dpll |= PLL_P2_DIVIDE_BY_4;
3107 if (is_sdvo && is_tv)
3108 dpll |= PLL_REF_INPUT_TVCLKINBC;
3109 else if (is_tv)
3110 /* XXX: just matching BIOS for now */
3111 /* dpll |= PLL_REF_INPUT_TVCLKINBC; */
3112 dpll |= 3;
3113 else if (is_lvds && dev_priv->lvds_use_ssc && num_outputs < 2)
3114 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
3115 else
3116 dpll |= PLL_REF_INPUT_DREFCLK;
3118 /* setup pipeconf */
3119 pipeconf = I915_READ(pipeconf_reg);
3121 /* Set up the display plane register */
3122 dspcntr = DISPPLANE_GAMMA_ENABLE;
3124 /* IGDNG's plane is forced to pipe, bit 24 is to
3125 enable color space conversion */
3126 if (!IS_IGDNG(dev)) {
3127 if (pipe == 0)
3128 dspcntr &= ~DISPPLANE_SEL_PIPE_MASK;
3129 else
3130 dspcntr |= DISPPLANE_SEL_PIPE_B;
3133 if (pipe == 0 && !IS_I965G(dev)) {
3134 /* Enable pixel doubling when the dot clock is > 90% of the (display)
3135 * core speed.
3137 * XXX: No double-wide on 915GM pipe B. Is that the only reason for the
3138 * pipe == 0 check?
3140 if (mode->clock >
3141 dev_priv->display.get_display_clock_speed(dev) * 9 / 10)
3142 pipeconf |= PIPEACONF_DOUBLE_WIDE;
3143 else
3144 pipeconf &= ~PIPEACONF_DOUBLE_WIDE;
3147 dspcntr |= DISPLAY_PLANE_ENABLE;
3148 pipeconf |= PIPEACONF_ENABLE;
3149 dpll |= DPLL_VCO_ENABLE;
3152 /* Disable the panel fitter if it was on our pipe */
3153 if (!IS_IGDNG(dev) && intel_panel_fitter_pipe(dev) == pipe)
3154 I915_WRITE(PFIT_CONTROL, 0);
3156 DRM_DEBUG_KMS("Mode for pipe %c:\n", pipe == 0 ? 'A' : 'B');
3157 drm_mode_debug_printmodeline(mode);
3159 /* assign to IGDNG registers */
3160 if (IS_IGDNG(dev)) {
3161 fp_reg = pch_fp_reg;
3162 dpll_reg = pch_dpll_reg;
3165 if (is_edp) {
3166 igdng_disable_pll_edp(crtc);
3167 } else if ((dpll & DPLL_VCO_ENABLE)) {
3168 I915_WRITE(fp_reg, fp);
3169 I915_WRITE(dpll_reg, dpll & ~DPLL_VCO_ENABLE);
3170 I915_READ(dpll_reg);
3171 udelay(150);
3174 /* The LVDS pin pair needs to be on before the DPLLs are enabled.
3175 * This is an exception to the general rule that mode_set doesn't turn
3176 * things on.
3178 if (is_lvds) {
3179 u32 lvds;
3181 if (IS_IGDNG(dev))
3182 lvds_reg = PCH_LVDS;
3184 lvds = I915_READ(lvds_reg);
3185 lvds |= LVDS_PORT_EN | LVDS_A0A2_CLKA_POWER_UP | LVDS_PIPEB_SELECT;
3186 /* set the corresponsding LVDS_BORDER bit */
3187 lvds |= dev_priv->lvds_border_bits;
3188 /* Set the B0-B3 data pairs corresponding to whether we're going to
3189 * set the DPLLs for dual-channel mode or not.
3191 if (clock.p2 == 7)
3192 lvds |= LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP;
3193 else
3194 lvds &= ~(LVDS_B0B3_POWER_UP | LVDS_CLKB_POWER_UP);
3196 /* It would be nice to set 24 vs 18-bit mode (LVDS_A3_POWER_UP)
3197 * appropriately here, but we need to look more thoroughly into how
3198 * panels behave in the two modes.
3201 I915_WRITE(lvds_reg, lvds);
3202 I915_READ(lvds_reg);
3204 if (is_dp)
3205 intel_dp_set_m_n(crtc, mode, adjusted_mode);
3207 if (!is_edp) {
3208 I915_WRITE(fp_reg, fp);
3209 I915_WRITE(dpll_reg, dpll);
3210 I915_READ(dpll_reg);
3211 /* Wait for the clocks to stabilize. */
3212 udelay(150);
3214 if (IS_I965G(dev) && !IS_IGDNG(dev)) {
3215 if (is_sdvo) {
3216 sdvo_pixel_multiply = adjusted_mode->clock / mode->clock;
3217 I915_WRITE(dpll_md_reg, (0 << DPLL_MD_UDI_DIVIDER_SHIFT) |
3218 ((sdvo_pixel_multiply - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT));
3219 } else
3220 I915_WRITE(dpll_md_reg, 0);
3221 } else {
3222 /* write it again -- the BIOS does, after all */
3223 I915_WRITE(dpll_reg, dpll);
3225 I915_READ(dpll_reg);
3226 /* Wait for the clocks to stabilize. */
3227 udelay(150);
3230 if (is_lvds && has_reduced_clock && i915_powersave) {
3231 I915_WRITE(fp_reg + 4, fp2);
3232 intel_crtc->lowfreq_avail = true;
3233 if (HAS_PIPE_CXSR(dev)) {
3234 DRM_DEBUG_KMS("enabling CxSR downclocking\n");
3235 pipeconf |= PIPECONF_CXSR_DOWNCLOCK;
3237 } else {
3238 I915_WRITE(fp_reg + 4, fp);
3239 intel_crtc->lowfreq_avail = false;
3240 if (HAS_PIPE_CXSR(dev)) {
3241 DRM_DEBUG_KMS("disabling CxSR downclocking\n");
3242 pipeconf &= ~PIPECONF_CXSR_DOWNCLOCK;
3246 I915_WRITE(htot_reg, (adjusted_mode->crtc_hdisplay - 1) |
3247 ((adjusted_mode->crtc_htotal - 1) << 16));
3248 I915_WRITE(hblank_reg, (adjusted_mode->crtc_hblank_start - 1) |
3249 ((adjusted_mode->crtc_hblank_end - 1) << 16));
3250 I915_WRITE(hsync_reg, (adjusted_mode->crtc_hsync_start - 1) |
3251 ((adjusted_mode->crtc_hsync_end - 1) << 16));
3252 I915_WRITE(vtot_reg, (adjusted_mode->crtc_vdisplay - 1) |
3253 ((adjusted_mode->crtc_vtotal - 1) << 16));
3254 I915_WRITE(vblank_reg, (adjusted_mode->crtc_vblank_start - 1) |
3255 ((adjusted_mode->crtc_vblank_end - 1) << 16));
3256 I915_WRITE(vsync_reg, (adjusted_mode->crtc_vsync_start - 1) |
3257 ((adjusted_mode->crtc_vsync_end - 1) << 16));
3258 /* pipesrc and dspsize control the size that is scaled from, which should
3259 * always be the user's requested size.
3261 if (!IS_IGDNG(dev)) {
3262 I915_WRITE(dspsize_reg, ((mode->vdisplay - 1) << 16) |
3263 (mode->hdisplay - 1));
3264 I915_WRITE(dsppos_reg, 0);
3266 I915_WRITE(pipesrc_reg, ((mode->hdisplay - 1) << 16) | (mode->vdisplay - 1));
3268 if (IS_IGDNG(dev)) {
3269 I915_WRITE(data_m1_reg, TU_SIZE(m_n.tu) | m_n.gmch_m);
3270 I915_WRITE(data_n1_reg, TU_SIZE(m_n.tu) | m_n.gmch_n);
3271 I915_WRITE(link_m1_reg, m_n.link_m);
3272 I915_WRITE(link_n1_reg, m_n.link_n);
3274 if (is_edp) {
3275 igdng_set_pll_edp(crtc, adjusted_mode->clock);
3276 } else {
3277 /* enable FDI RX PLL too */
3278 temp = I915_READ(fdi_rx_reg);
3279 I915_WRITE(fdi_rx_reg, temp | FDI_RX_PLL_ENABLE);
3280 udelay(200);
3284 I915_WRITE(pipeconf_reg, pipeconf);
3285 I915_READ(pipeconf_reg);
3287 intel_wait_for_vblank(dev);
3289 if (IS_IGDNG(dev)) {
3290 /* enable address swizzle for tiling buffer */
3291 temp = I915_READ(DISP_ARB_CTL);
3292 I915_WRITE(DISP_ARB_CTL, temp | DISP_TILE_SURFACE_SWIZZLING);
3295 I915_WRITE(dspcntr_reg, dspcntr);
3297 /* Flush the plane changes */
3298 ret = intel_pipe_set_base(crtc, x, y, old_fb);
3300 if ((IS_I965G(dev) || plane == 0))
3301 intel_update_fbc(crtc, &crtc->mode);
3303 intel_update_watermarks(dev);
3305 drm_vblank_post_modeset(dev, pipe);
3307 return ret;
3310 /** Loads the palette/gamma unit for the CRTC with the prepared values */
3311 void intel_crtc_load_lut(struct drm_crtc *crtc)
3313 struct drm_device *dev = crtc->dev;
3314 struct drm_i915_private *dev_priv = dev->dev_private;
3315 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3316 int palreg = (intel_crtc->pipe == 0) ? PALETTE_A : PALETTE_B;
3317 int i;
3319 /* The clocks have to be on to load the palette. */
3320 if (!crtc->enabled)
3321 return;
3323 /* use legacy palette for IGDNG */
3324 if (IS_IGDNG(dev))
3325 palreg = (intel_crtc->pipe == 0) ? LGC_PALETTE_A :
3326 LGC_PALETTE_B;
3328 for (i = 0; i < 256; i++) {
3329 I915_WRITE(palreg + 4 * i,
3330 (intel_crtc->lut_r[i] << 16) |
3331 (intel_crtc->lut_g[i] << 8) |
3332 intel_crtc->lut_b[i]);
3336 static int intel_crtc_cursor_set(struct drm_crtc *crtc,
3337 struct drm_file *file_priv,
3338 uint32_t handle,
3339 uint32_t width, uint32_t height)
3341 struct drm_device *dev = crtc->dev;
3342 struct drm_i915_private *dev_priv = dev->dev_private;
3343 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3344 struct drm_gem_object *bo;
3345 struct drm_i915_gem_object *obj_priv;
3346 int pipe = intel_crtc->pipe;
3347 uint32_t control = (pipe == 0) ? CURACNTR : CURBCNTR;
3348 uint32_t base = (pipe == 0) ? CURABASE : CURBBASE;
3349 uint32_t temp = I915_READ(control);
3350 size_t addr;
3351 int ret;
3353 DRM_DEBUG_KMS("\n");
3355 /* if we want to turn off the cursor ignore width and height */
3356 if (!handle) {
3357 DRM_DEBUG_KMS("cursor off\n");
3358 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3359 temp &= ~(CURSOR_MODE | MCURSOR_GAMMA_ENABLE);
3360 temp |= CURSOR_MODE_DISABLE;
3361 } else {
3362 temp &= ~(CURSOR_ENABLE | CURSOR_GAMMA_ENABLE);
3364 addr = 0;
3365 bo = NULL;
3366 mutex_lock(&dev->struct_mutex);
3367 goto finish;
3370 /* Currently we only support 64x64 cursors */
3371 if (width != 64 || height != 64) {
3372 DRM_ERROR("we currently only support 64x64 cursors\n");
3373 return -EINVAL;
3376 bo = drm_gem_object_lookup(dev, file_priv, handle);
3377 if (!bo)
3378 return -ENOENT;
3380 obj_priv = bo->driver_private;
3382 if (bo->size < width * height * 4) {
3383 DRM_ERROR("buffer is to small\n");
3384 ret = -ENOMEM;
3385 goto fail;
3388 /* we only need to pin inside GTT if cursor is non-phy */
3389 mutex_lock(&dev->struct_mutex);
3390 if (!dev_priv->cursor_needs_physical) {
3391 ret = i915_gem_object_pin(bo, PAGE_SIZE);
3392 if (ret) {
3393 DRM_ERROR("failed to pin cursor bo\n");
3394 goto fail_locked;
3396 addr = obj_priv->gtt_offset;
3397 } else {
3398 ret = i915_gem_attach_phys_object(dev, bo, (pipe == 0) ? I915_GEM_PHYS_CURSOR_0 : I915_GEM_PHYS_CURSOR_1);
3399 if (ret) {
3400 DRM_ERROR("failed to attach phys object\n");
3401 goto fail_locked;
3403 addr = obj_priv->phys_obj->handle->busaddr;
3406 if (!IS_I9XX(dev))
3407 I915_WRITE(CURSIZE, (height << 12) | width);
3409 /* Hooray for CUR*CNTR differences */
3410 if (IS_MOBILE(dev) || IS_I9XX(dev)) {
3411 temp &= ~(CURSOR_MODE | MCURSOR_PIPE_SELECT);
3412 temp |= CURSOR_MODE_64_ARGB_AX | MCURSOR_GAMMA_ENABLE;
3413 temp |= (pipe << 28); /* Connect to correct pipe */
3414 } else {
3415 temp &= ~(CURSOR_FORMAT_MASK);
3416 temp |= CURSOR_ENABLE;
3417 temp |= CURSOR_FORMAT_ARGB | CURSOR_GAMMA_ENABLE;
3420 finish:
3421 I915_WRITE(control, temp);
3422 I915_WRITE(base, addr);
3424 if (intel_crtc->cursor_bo) {
3425 if (dev_priv->cursor_needs_physical) {
3426 if (intel_crtc->cursor_bo != bo)
3427 i915_gem_detach_phys_object(dev, intel_crtc->cursor_bo);
3428 } else
3429 i915_gem_object_unpin(intel_crtc->cursor_bo);
3430 drm_gem_object_unreference(intel_crtc->cursor_bo);
3433 mutex_unlock(&dev->struct_mutex);
3435 intel_crtc->cursor_addr = addr;
3436 intel_crtc->cursor_bo = bo;
3438 return 0;
3439 fail:
3440 mutex_lock(&dev->struct_mutex);
3441 fail_locked:
3442 drm_gem_object_unreference(bo);
3443 mutex_unlock(&dev->struct_mutex);
3444 return ret;
3447 static int intel_crtc_cursor_move(struct drm_crtc *crtc, int x, int y)
3449 struct drm_device *dev = crtc->dev;
3450 struct drm_i915_private *dev_priv = dev->dev_private;
3451 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3452 struct intel_framebuffer *intel_fb;
3453 int pipe = intel_crtc->pipe;
3454 uint32_t temp = 0;
3455 uint32_t adder;
3457 if (crtc->fb) {
3458 intel_fb = to_intel_framebuffer(crtc->fb);
3459 intel_mark_busy(dev, intel_fb->obj);
3462 if (x < 0) {
3463 temp |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
3464 x = -x;
3466 if (y < 0) {
3467 temp |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
3468 y = -y;
3471 temp |= x << CURSOR_X_SHIFT;
3472 temp |= y << CURSOR_Y_SHIFT;
3474 adder = intel_crtc->cursor_addr;
3475 I915_WRITE((pipe == 0) ? CURAPOS : CURBPOS, temp);
3476 I915_WRITE((pipe == 0) ? CURABASE : CURBBASE, adder);
3478 return 0;
3481 /** Sets the color ramps on behalf of RandR */
3482 void intel_crtc_fb_gamma_set(struct drm_crtc *crtc, u16 red, u16 green,
3483 u16 blue, int regno)
3485 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3487 intel_crtc->lut_r[regno] = red >> 8;
3488 intel_crtc->lut_g[regno] = green >> 8;
3489 intel_crtc->lut_b[regno] = blue >> 8;
3492 void intel_crtc_fb_gamma_get(struct drm_crtc *crtc, u16 *red, u16 *green,
3493 u16 *blue, int regno)
3495 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3497 *red = intel_crtc->lut_r[regno] << 8;
3498 *green = intel_crtc->lut_g[regno] << 8;
3499 *blue = intel_crtc->lut_b[regno] << 8;
3502 static void intel_crtc_gamma_set(struct drm_crtc *crtc, u16 *red, u16 *green,
3503 u16 *blue, uint32_t size)
3505 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3506 int i;
3508 if (size != 256)
3509 return;
3511 for (i = 0; i < 256; i++) {
3512 intel_crtc->lut_r[i] = red[i] >> 8;
3513 intel_crtc->lut_g[i] = green[i] >> 8;
3514 intel_crtc->lut_b[i] = blue[i] >> 8;
3517 intel_crtc_load_lut(crtc);
3521 * Get a pipe with a simple mode set on it for doing load-based monitor
3522 * detection.
3524 * It will be up to the load-detect code to adjust the pipe as appropriate for
3525 * its requirements. The pipe will be connected to no other outputs.
3527 * Currently this code will only succeed if there is a pipe with no outputs
3528 * configured for it. In the future, it could choose to temporarily disable
3529 * some outputs to free up a pipe for its use.
3531 * \return crtc, or NULL if no pipes are available.
3534 /* VESA 640x480x72Hz mode to set on the pipe */
3535 static struct drm_display_mode load_detect_mode = {
3536 DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
3537 704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
3540 struct drm_crtc *intel_get_load_detect_pipe(struct intel_output *intel_output,
3541 struct drm_display_mode *mode,
3542 int *dpms_mode)
3544 struct intel_crtc *intel_crtc;
3545 struct drm_crtc *possible_crtc;
3546 struct drm_crtc *supported_crtc =NULL;
3547 struct drm_encoder *encoder = &intel_output->enc;
3548 struct drm_crtc *crtc = NULL;
3549 struct drm_device *dev = encoder->dev;
3550 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3551 struct drm_crtc_helper_funcs *crtc_funcs;
3552 int i = -1;
3555 * Algorithm gets a little messy:
3556 * - if the connector already has an assigned crtc, use it (but make
3557 * sure it's on first)
3558 * - try to find the first unused crtc that can drive this connector,
3559 * and use that if we find one
3560 * - if there are no unused crtcs available, try to use the first
3561 * one we found that supports the connector
3564 /* See if we already have a CRTC for this connector */
3565 if (encoder->crtc) {
3566 crtc = encoder->crtc;
3567 /* Make sure the crtc and connector are running */
3568 intel_crtc = to_intel_crtc(crtc);
3569 *dpms_mode = intel_crtc->dpms_mode;
3570 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3571 crtc_funcs = crtc->helper_private;
3572 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3573 encoder_funcs->dpms(encoder, DRM_MODE_DPMS_ON);
3575 return crtc;
3578 /* Find an unused one (if possible) */
3579 list_for_each_entry(possible_crtc, &dev->mode_config.crtc_list, head) {
3580 i++;
3581 if (!(encoder->possible_crtcs & (1 << i)))
3582 continue;
3583 if (!possible_crtc->enabled) {
3584 crtc = possible_crtc;
3585 break;
3587 if (!supported_crtc)
3588 supported_crtc = possible_crtc;
3592 * If we didn't find an unused CRTC, don't use any.
3594 if (!crtc) {
3595 return NULL;
3598 encoder->crtc = crtc;
3599 intel_output->base.encoder = encoder;
3600 intel_output->load_detect_temp = true;
3602 intel_crtc = to_intel_crtc(crtc);
3603 *dpms_mode = intel_crtc->dpms_mode;
3605 if (!crtc->enabled) {
3606 if (!mode)
3607 mode = &load_detect_mode;
3608 drm_crtc_helper_set_mode(crtc, mode, 0, 0, crtc->fb);
3609 } else {
3610 if (intel_crtc->dpms_mode != DRM_MODE_DPMS_ON) {
3611 crtc_funcs = crtc->helper_private;
3612 crtc_funcs->dpms(crtc, DRM_MODE_DPMS_ON);
3615 /* Add this connector to the crtc */
3616 encoder_funcs->mode_set(encoder, &crtc->mode, &crtc->mode);
3617 encoder_funcs->commit(encoder);
3619 /* let the connector get through one full cycle before testing */
3620 intel_wait_for_vblank(dev);
3622 return crtc;
3625 void intel_release_load_detect_pipe(struct intel_output *intel_output, int dpms_mode)
3627 struct drm_encoder *encoder = &intel_output->enc;
3628 struct drm_device *dev = encoder->dev;
3629 struct drm_crtc *crtc = encoder->crtc;
3630 struct drm_encoder_helper_funcs *encoder_funcs = encoder->helper_private;
3631 struct drm_crtc_helper_funcs *crtc_funcs = crtc->helper_private;
3633 if (intel_output->load_detect_temp) {
3634 encoder->crtc = NULL;
3635 intel_output->base.encoder = NULL;
3636 intel_output->load_detect_temp = false;
3637 crtc->enabled = drm_helper_crtc_in_use(crtc);
3638 drm_helper_disable_unused_functions(dev);
3641 /* Switch crtc and output back off if necessary */
3642 if (crtc->enabled && dpms_mode != DRM_MODE_DPMS_ON) {
3643 if (encoder->crtc == crtc)
3644 encoder_funcs->dpms(encoder, dpms_mode);
3645 crtc_funcs->dpms(crtc, dpms_mode);
3649 /* Returns the clock of the currently programmed mode of the given pipe. */
3650 static int intel_crtc_clock_get(struct drm_device *dev, struct drm_crtc *crtc)
3652 struct drm_i915_private *dev_priv = dev->dev_private;
3653 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3654 int pipe = intel_crtc->pipe;
3655 u32 dpll = I915_READ((pipe == 0) ? DPLL_A : DPLL_B);
3656 u32 fp;
3657 intel_clock_t clock;
3659 if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
3660 fp = I915_READ((pipe == 0) ? FPA0 : FPB0);
3661 else
3662 fp = I915_READ((pipe == 0) ? FPA1 : FPB1);
3664 clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
3665 if (IS_IGD(dev)) {
3666 clock.n = ffs((fp & FP_N_IGD_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
3667 clock.m2 = (fp & FP_M2_IGD_DIV_MASK) >> FP_M2_DIV_SHIFT;
3668 } else {
3669 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
3670 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
3673 if (IS_I9XX(dev)) {
3674 if (IS_IGD(dev))
3675 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_IGD) >>
3676 DPLL_FPA01_P1_POST_DIV_SHIFT_IGD);
3677 else
3678 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
3679 DPLL_FPA01_P1_POST_DIV_SHIFT);
3681 switch (dpll & DPLL_MODE_MASK) {
3682 case DPLLB_MODE_DAC_SERIAL:
3683 clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
3684 5 : 10;
3685 break;
3686 case DPLLB_MODE_LVDS:
3687 clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
3688 7 : 14;
3689 break;
3690 default:
3691 DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
3692 "mode\n", (int)(dpll & DPLL_MODE_MASK));
3693 return 0;
3696 /* XXX: Handle the 100Mhz refclk */
3697 intel_clock(dev, 96000, &clock);
3698 } else {
3699 bool is_lvds = (pipe == 1) && (I915_READ(LVDS) & LVDS_PORT_EN);
3701 if (is_lvds) {
3702 clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
3703 DPLL_FPA01_P1_POST_DIV_SHIFT);
3704 clock.p2 = 14;
3706 if ((dpll & PLL_REF_INPUT_MASK) ==
3707 PLLB_REF_INPUT_SPREADSPECTRUMIN) {
3708 /* XXX: might not be 66MHz */
3709 intel_clock(dev, 66000, &clock);
3710 } else
3711 intel_clock(dev, 48000, &clock);
3712 } else {
3713 if (dpll & PLL_P1_DIVIDE_BY_TWO)
3714 clock.p1 = 2;
3715 else {
3716 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
3717 DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
3719 if (dpll & PLL_P2_DIVIDE_BY_4)
3720 clock.p2 = 4;
3721 else
3722 clock.p2 = 2;
3724 intel_clock(dev, 48000, &clock);
3728 /* XXX: It would be nice to validate the clocks, but we can't reuse
3729 * i830PllIsValid() because it relies on the xf86_config connector
3730 * configuration being accurate, which it isn't necessarily.
3733 return clock.dot;
3736 /** Returns the currently programmed mode of the given pipe. */
3737 struct drm_display_mode *intel_crtc_mode_get(struct drm_device *dev,
3738 struct drm_crtc *crtc)
3740 struct drm_i915_private *dev_priv = dev->dev_private;
3741 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3742 int pipe = intel_crtc->pipe;
3743 struct drm_display_mode *mode;
3744 int htot = I915_READ((pipe == 0) ? HTOTAL_A : HTOTAL_B);
3745 int hsync = I915_READ((pipe == 0) ? HSYNC_A : HSYNC_B);
3746 int vtot = I915_READ((pipe == 0) ? VTOTAL_A : VTOTAL_B);
3747 int vsync = I915_READ((pipe == 0) ? VSYNC_A : VSYNC_B);
3749 mode = kzalloc(sizeof(*mode), GFP_KERNEL);
3750 if (!mode)
3751 return NULL;
3753 mode->clock = intel_crtc_clock_get(dev, crtc);
3754 mode->hdisplay = (htot & 0xffff) + 1;
3755 mode->htotal = ((htot & 0xffff0000) >> 16) + 1;
3756 mode->hsync_start = (hsync & 0xffff) + 1;
3757 mode->hsync_end = ((hsync & 0xffff0000) >> 16) + 1;
3758 mode->vdisplay = (vtot & 0xffff) + 1;
3759 mode->vtotal = ((vtot & 0xffff0000) >> 16) + 1;
3760 mode->vsync_start = (vsync & 0xffff) + 1;
3761 mode->vsync_end = ((vsync & 0xffff0000) >> 16) + 1;
3763 drm_mode_set_name(mode);
3764 drm_mode_set_crtcinfo(mode, 0);
3766 return mode;
3769 #define GPU_IDLE_TIMEOUT 500 /* ms */
3771 /* When this timer fires, we've been idle for awhile */
3772 static void intel_gpu_idle_timer(unsigned long arg)
3774 struct drm_device *dev = (struct drm_device *)arg;
3775 drm_i915_private_t *dev_priv = dev->dev_private;
3777 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3779 dev_priv->busy = false;
3781 queue_work(dev_priv->wq, &dev_priv->idle_work);
3784 void intel_increase_renderclock(struct drm_device *dev, bool schedule)
3786 drm_i915_private_t *dev_priv = dev->dev_private;
3788 if (IS_IGDNG(dev))
3789 return;
3791 if (!dev_priv->render_reclock_avail) {
3792 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3793 return;
3796 /* Restore render clock frequency to original value */
3797 if (IS_G4X(dev) || IS_I9XX(dev))
3798 pci_write_config_word(dev->pdev, GCFGC, dev_priv->orig_clock);
3799 else if (IS_I85X(dev))
3800 pci_write_config_word(dev->pdev, HPLLCC, dev_priv->orig_clock);
3801 DRM_DEBUG_DRIVER("increasing render clock frequency\n");
3803 /* Schedule downclock */
3804 if (schedule)
3805 mod_timer(&dev_priv->idle_timer, jiffies +
3806 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
3809 void intel_decrease_renderclock(struct drm_device *dev)
3811 drm_i915_private_t *dev_priv = dev->dev_private;
3813 if (IS_IGDNG(dev))
3814 return;
3816 if (!dev_priv->render_reclock_avail) {
3817 DRM_DEBUG_DRIVER("not reclocking render clock\n");
3818 return;
3821 if (IS_G4X(dev)) {
3822 u16 gcfgc;
3824 /* Adjust render clock... */
3825 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3827 /* Down to minimum... */
3828 gcfgc &= ~GM45_GC_RENDER_CLOCK_MASK;
3829 gcfgc |= GM45_GC_RENDER_CLOCK_266_MHZ;
3831 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3832 } else if (IS_I965G(dev)) {
3833 u16 gcfgc;
3835 /* Adjust render clock... */
3836 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3838 /* Down to minimum... */
3839 gcfgc &= ~I965_GC_RENDER_CLOCK_MASK;
3840 gcfgc |= I965_GC_RENDER_CLOCK_267_MHZ;
3842 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3843 } else if (IS_I945G(dev) || IS_I945GM(dev)) {
3844 u16 gcfgc;
3846 /* Adjust render clock... */
3847 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3849 /* Down to minimum... */
3850 gcfgc &= ~I945_GC_RENDER_CLOCK_MASK;
3851 gcfgc |= I945_GC_RENDER_CLOCK_166_MHZ;
3853 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3854 } else if (IS_I915G(dev)) {
3855 u16 gcfgc;
3857 /* Adjust render clock... */
3858 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3860 /* Down to minimum... */
3861 gcfgc &= ~I915_GC_RENDER_CLOCK_MASK;
3862 gcfgc |= I915_GC_RENDER_CLOCK_166_MHZ;
3864 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3865 } else if (IS_I85X(dev)) {
3866 u16 hpllcc;
3868 /* Adjust render clock... */
3869 pci_read_config_word(dev->pdev, HPLLCC, &hpllcc);
3871 /* Up to maximum... */
3872 hpllcc &= ~GC_CLOCK_CONTROL_MASK;
3873 hpllcc |= GC_CLOCK_133_200;
3875 pci_write_config_word(dev->pdev, HPLLCC, hpllcc);
3877 DRM_DEBUG_DRIVER("decreasing render clock frequency\n");
3880 /* Note that no increase function is needed for this - increase_renderclock()
3881 * will also rewrite these bits
3883 void intel_decrease_displayclock(struct drm_device *dev)
3885 if (IS_IGDNG(dev))
3886 return;
3888 if (IS_I945G(dev) || IS_I945GM(dev) || IS_I915G(dev) ||
3889 IS_I915GM(dev)) {
3890 u16 gcfgc;
3892 /* Adjust render clock... */
3893 pci_read_config_word(dev->pdev, GCFGC, &gcfgc);
3895 /* Down to minimum... */
3896 gcfgc &= ~0xf0;
3897 gcfgc |= 0x80;
3899 pci_write_config_word(dev->pdev, GCFGC, gcfgc);
3903 #define CRTC_IDLE_TIMEOUT 1000 /* ms */
3905 static void intel_crtc_idle_timer(unsigned long arg)
3907 struct intel_crtc *intel_crtc = (struct intel_crtc *)arg;
3908 struct drm_crtc *crtc = &intel_crtc->base;
3909 drm_i915_private_t *dev_priv = crtc->dev->dev_private;
3911 DRM_DEBUG_DRIVER("idle timer fired, downclocking\n");
3913 intel_crtc->busy = false;
3915 queue_work(dev_priv->wq, &dev_priv->idle_work);
3918 static void intel_increase_pllclock(struct drm_crtc *crtc, bool schedule)
3920 struct drm_device *dev = crtc->dev;
3921 drm_i915_private_t *dev_priv = dev->dev_private;
3922 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3923 int pipe = intel_crtc->pipe;
3924 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3925 int dpll = I915_READ(dpll_reg);
3927 if (IS_IGDNG(dev))
3928 return;
3930 if (!dev_priv->lvds_downclock_avail)
3931 return;
3933 if (!HAS_PIPE_CXSR(dev) && (dpll & DISPLAY_RATE_SELECT_FPA1)) {
3934 DRM_DEBUG_DRIVER("upclocking LVDS\n");
3936 /* Unlock panel regs */
3937 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3939 dpll &= ~DISPLAY_RATE_SELECT_FPA1;
3940 I915_WRITE(dpll_reg, dpll);
3941 dpll = I915_READ(dpll_reg);
3942 intel_wait_for_vblank(dev);
3943 dpll = I915_READ(dpll_reg);
3944 if (dpll & DISPLAY_RATE_SELECT_FPA1)
3945 DRM_DEBUG_DRIVER("failed to upclock LVDS!\n");
3947 /* ...and lock them again */
3948 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3951 /* Schedule downclock */
3952 if (schedule)
3953 mod_timer(&intel_crtc->idle_timer, jiffies +
3954 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
3957 static void intel_decrease_pllclock(struct drm_crtc *crtc)
3959 struct drm_device *dev = crtc->dev;
3960 drm_i915_private_t *dev_priv = dev->dev_private;
3961 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3962 int pipe = intel_crtc->pipe;
3963 int dpll_reg = (pipe == 0) ? DPLL_A : DPLL_B;
3964 int dpll = I915_READ(dpll_reg);
3966 if (IS_IGDNG(dev))
3967 return;
3969 if (!dev_priv->lvds_downclock_avail)
3970 return;
3973 * Since this is called by a timer, we should never get here in
3974 * the manual case.
3976 if (!HAS_PIPE_CXSR(dev) && intel_crtc->lowfreq_avail) {
3977 DRM_DEBUG_DRIVER("downclocking LVDS\n");
3979 /* Unlock panel regs */
3980 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) | (0xabcd << 16));
3982 dpll |= DISPLAY_RATE_SELECT_FPA1;
3983 I915_WRITE(dpll_reg, dpll);
3984 dpll = I915_READ(dpll_reg);
3985 intel_wait_for_vblank(dev);
3986 dpll = I915_READ(dpll_reg);
3987 if (!(dpll & DISPLAY_RATE_SELECT_FPA1))
3988 DRM_DEBUG_DRIVER("failed to downclock LVDS!\n");
3990 /* ...and lock them again */
3991 I915_WRITE(PP_CONTROL, I915_READ(PP_CONTROL) & 0x3);
3997 * intel_idle_update - adjust clocks for idleness
3998 * @work: work struct
4000 * Either the GPU or display (or both) went idle. Check the busy status
4001 * here and adjust the CRTC and GPU clocks as necessary.
4003 static void intel_idle_update(struct work_struct *work)
4005 drm_i915_private_t *dev_priv = container_of(work, drm_i915_private_t,
4006 idle_work);
4007 struct drm_device *dev = dev_priv->dev;
4008 struct drm_crtc *crtc;
4009 struct intel_crtc *intel_crtc;
4011 if (!i915_powersave)
4012 return;
4014 mutex_lock(&dev->struct_mutex);
4016 /* GPU isn't processing, downclock it. */
4017 if (!dev_priv->busy) {
4018 intel_decrease_renderclock(dev);
4019 intel_decrease_displayclock(dev);
4022 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4023 /* Skip inactive CRTCs */
4024 if (!crtc->fb)
4025 continue;
4027 intel_crtc = to_intel_crtc(crtc);
4028 if (!intel_crtc->busy)
4029 intel_decrease_pllclock(crtc);
4032 mutex_unlock(&dev->struct_mutex);
4036 * intel_mark_busy - mark the GPU and possibly the display busy
4037 * @dev: drm device
4038 * @obj: object we're operating on
4040 * Callers can use this function to indicate that the GPU is busy processing
4041 * commands. If @obj matches one of the CRTC objects (i.e. it's a scanout
4042 * buffer), we'll also mark the display as busy, so we know to increase its
4043 * clock frequency.
4045 void intel_mark_busy(struct drm_device *dev, struct drm_gem_object *obj)
4047 drm_i915_private_t *dev_priv = dev->dev_private;
4048 struct drm_crtc *crtc = NULL;
4049 struct intel_framebuffer *intel_fb;
4050 struct intel_crtc *intel_crtc;
4052 if (!drm_core_check_feature(dev, DRIVER_MODESET))
4053 return;
4055 if (!dev_priv->busy) {
4056 dev_priv->busy = true;
4057 intel_increase_renderclock(dev, true);
4058 } else {
4059 mod_timer(&dev_priv->idle_timer, jiffies +
4060 msecs_to_jiffies(GPU_IDLE_TIMEOUT));
4063 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4064 if (!crtc->fb)
4065 continue;
4067 intel_crtc = to_intel_crtc(crtc);
4068 intel_fb = to_intel_framebuffer(crtc->fb);
4069 if (intel_fb->obj == obj) {
4070 if (!intel_crtc->busy) {
4071 /* Non-busy -> busy, upclock */
4072 intel_increase_pllclock(crtc, true);
4073 intel_crtc->busy = true;
4074 } else {
4075 /* Busy -> busy, put off timer */
4076 mod_timer(&intel_crtc->idle_timer, jiffies +
4077 msecs_to_jiffies(CRTC_IDLE_TIMEOUT));
4083 static void intel_crtc_destroy(struct drm_crtc *crtc)
4085 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4087 drm_crtc_cleanup(crtc);
4088 kfree(intel_crtc);
4091 struct intel_unpin_work {
4092 struct work_struct work;
4093 struct drm_device *dev;
4094 struct drm_gem_object *obj;
4095 struct drm_pending_vblank_event *event;
4096 int pending;
4099 static void intel_unpin_work_fn(struct work_struct *__work)
4101 struct intel_unpin_work *work =
4102 container_of(__work, struct intel_unpin_work, work);
4104 mutex_lock(&work->dev->struct_mutex);
4105 i915_gem_object_unpin(work->obj);
4106 drm_gem_object_unreference(work->obj);
4107 mutex_unlock(&work->dev->struct_mutex);
4108 kfree(work);
4111 void intel_finish_page_flip(struct drm_device *dev, int pipe)
4113 drm_i915_private_t *dev_priv = dev->dev_private;
4114 struct drm_crtc *crtc = dev_priv->pipe_to_crtc_mapping[pipe];
4115 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4116 struct intel_unpin_work *work;
4117 struct drm_i915_gem_object *obj_priv;
4118 struct drm_pending_vblank_event *e;
4119 struct timeval now;
4120 unsigned long flags;
4122 /* Ignore early vblank irqs */
4123 if (intel_crtc == NULL)
4124 return;
4126 spin_lock_irqsave(&dev->event_lock, flags);
4127 work = intel_crtc->unpin_work;
4128 if (work == NULL || !work->pending) {
4129 spin_unlock_irqrestore(&dev->event_lock, flags);
4130 return;
4133 intel_crtc->unpin_work = NULL;
4134 drm_vblank_put(dev, intel_crtc->pipe);
4136 if (work->event) {
4137 e = work->event;
4138 do_gettimeofday(&now);
4139 e->event.sequence = drm_vblank_count(dev, intel_crtc->pipe);
4140 e->event.tv_sec = now.tv_sec;
4141 e->event.tv_usec = now.tv_usec;
4142 list_add_tail(&e->base.link,
4143 &e->base.file_priv->event_list);
4144 wake_up_interruptible(&e->base.file_priv->event_wait);
4147 spin_unlock_irqrestore(&dev->event_lock, flags);
4149 obj_priv = work->obj->driver_private;
4150 if (atomic_dec_and_test(&obj_priv->pending_flip))
4151 DRM_WAKEUP(&dev_priv->pending_flip_queue);
4152 schedule_work(&work->work);
4155 void intel_prepare_page_flip(struct drm_device *dev, int plane)
4157 drm_i915_private_t *dev_priv = dev->dev_private;
4158 struct intel_crtc *intel_crtc =
4159 to_intel_crtc(dev_priv->plane_to_crtc_mapping[plane]);
4160 unsigned long flags;
4162 spin_lock_irqsave(&dev->event_lock, flags);
4163 if (intel_crtc->unpin_work)
4164 intel_crtc->unpin_work->pending = 1;
4165 spin_unlock_irqrestore(&dev->event_lock, flags);
4168 static int intel_crtc_page_flip(struct drm_crtc *crtc,
4169 struct drm_framebuffer *fb,
4170 struct drm_pending_vblank_event *event)
4172 struct drm_device *dev = crtc->dev;
4173 struct drm_i915_private *dev_priv = dev->dev_private;
4174 struct intel_framebuffer *intel_fb;
4175 struct drm_i915_gem_object *obj_priv;
4176 struct drm_gem_object *obj;
4177 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4178 struct intel_unpin_work *work;
4179 unsigned long flags;
4180 int ret;
4181 RING_LOCALS;
4183 work = kzalloc(sizeof *work, GFP_KERNEL);
4184 if (work == NULL)
4185 return -ENOMEM;
4187 mutex_lock(&dev->struct_mutex);
4189 work->event = event;
4190 work->dev = crtc->dev;
4191 intel_fb = to_intel_framebuffer(crtc->fb);
4192 work->obj = intel_fb->obj;
4193 INIT_WORK(&work->work, intel_unpin_work_fn);
4195 /* We borrow the event spin lock for protecting unpin_work */
4196 spin_lock_irqsave(&dev->event_lock, flags);
4197 if (intel_crtc->unpin_work) {
4198 spin_unlock_irqrestore(&dev->event_lock, flags);
4199 kfree(work);
4200 mutex_unlock(&dev->struct_mutex);
4201 return -EBUSY;
4203 intel_crtc->unpin_work = work;
4204 spin_unlock_irqrestore(&dev->event_lock, flags);
4206 intel_fb = to_intel_framebuffer(fb);
4207 obj = intel_fb->obj;
4209 ret = intel_pin_and_fence_fb_obj(dev, obj);
4210 if (ret != 0) {
4211 kfree(work);
4212 mutex_unlock(&dev->struct_mutex);
4213 return ret;
4216 /* Reference the old fb object for the scheduled work. */
4217 drm_gem_object_reference(work->obj);
4219 crtc->fb = fb;
4220 i915_gem_object_flush_write_domain(obj);
4221 drm_vblank_get(dev, intel_crtc->pipe);
4222 obj_priv = obj->driver_private;
4223 atomic_inc(&obj_priv->pending_flip);
4225 BEGIN_LP_RING(4);
4226 OUT_RING(MI_DISPLAY_FLIP |
4227 MI_DISPLAY_FLIP_PLANE(intel_crtc->plane));
4228 OUT_RING(fb->pitch);
4229 OUT_RING(obj_priv->gtt_offset | obj_priv->tiling_mode);
4230 OUT_RING((fb->width << 16) | fb->height);
4231 ADVANCE_LP_RING();
4233 mutex_unlock(&dev->struct_mutex);
4235 return 0;
4238 static const struct drm_crtc_helper_funcs intel_helper_funcs = {
4239 .dpms = intel_crtc_dpms,
4240 .mode_fixup = intel_crtc_mode_fixup,
4241 .mode_set = intel_crtc_mode_set,
4242 .mode_set_base = intel_pipe_set_base,
4243 .prepare = intel_crtc_prepare,
4244 .commit = intel_crtc_commit,
4245 .load_lut = intel_crtc_load_lut,
4248 static const struct drm_crtc_funcs intel_crtc_funcs = {
4249 .cursor_set = intel_crtc_cursor_set,
4250 .cursor_move = intel_crtc_cursor_move,
4251 .gamma_set = intel_crtc_gamma_set,
4252 .set_config = drm_crtc_helper_set_config,
4253 .destroy = intel_crtc_destroy,
4254 .page_flip = intel_crtc_page_flip,
4258 static void intel_crtc_init(struct drm_device *dev, int pipe)
4260 struct intel_crtc *intel_crtc;
4261 int i;
4263 intel_crtc = kzalloc(sizeof(struct intel_crtc) + (INTELFB_CONN_LIMIT * sizeof(struct drm_connector *)), GFP_KERNEL);
4264 if (intel_crtc == NULL)
4265 return;
4267 drm_crtc_init(dev, &intel_crtc->base, &intel_crtc_funcs);
4269 drm_mode_crtc_set_gamma_size(&intel_crtc->base, 256);
4270 intel_crtc->pipe = pipe;
4271 intel_crtc->plane = pipe;
4272 for (i = 0; i < 256; i++) {
4273 intel_crtc->lut_r[i] = i;
4274 intel_crtc->lut_g[i] = i;
4275 intel_crtc->lut_b[i] = i;
4278 /* Swap pipes & planes for FBC on pre-965 */
4279 intel_crtc->pipe = pipe;
4280 intel_crtc->plane = pipe;
4281 if (IS_MOBILE(dev) && (IS_I9XX(dev) && !IS_I965G(dev))) {
4282 DRM_DEBUG_KMS("swapping pipes & planes for FBC\n");
4283 intel_crtc->plane = ((pipe == 0) ? 1 : 0);
4286 intel_crtc->cursor_addr = 0;
4287 intel_crtc->dpms_mode = DRM_MODE_DPMS_OFF;
4288 drm_crtc_helper_add(&intel_crtc->base, &intel_helper_funcs);
4290 intel_crtc->busy = false;
4292 setup_timer(&intel_crtc->idle_timer, intel_crtc_idle_timer,
4293 (unsigned long)intel_crtc);
4296 int intel_get_pipe_from_crtc_id(struct drm_device *dev, void *data,
4297 struct drm_file *file_priv)
4299 drm_i915_private_t *dev_priv = dev->dev_private;
4300 struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
4301 struct drm_mode_object *drmmode_obj;
4302 struct intel_crtc *crtc;
4304 if (!dev_priv) {
4305 DRM_ERROR("called with no initialization\n");
4306 return -EINVAL;
4309 drmmode_obj = drm_mode_object_find(dev, pipe_from_crtc_id->crtc_id,
4310 DRM_MODE_OBJECT_CRTC);
4312 if (!drmmode_obj) {
4313 DRM_ERROR("no such CRTC id\n");
4314 return -EINVAL;
4317 crtc = to_intel_crtc(obj_to_crtc(drmmode_obj));
4318 pipe_from_crtc_id->pipe = crtc->pipe;
4320 return 0;
4323 struct drm_crtc *intel_get_crtc_from_pipe(struct drm_device *dev, int pipe)
4325 struct drm_crtc *crtc = NULL;
4327 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4328 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4329 if (intel_crtc->pipe == pipe)
4330 break;
4332 return crtc;
4335 static int intel_connector_clones(struct drm_device *dev, int type_mask)
4337 int index_mask = 0;
4338 struct drm_connector *connector;
4339 int entry = 0;
4341 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4342 struct intel_output *intel_output = to_intel_output(connector);
4343 if (type_mask & intel_output->clone_mask)
4344 index_mask |= (1 << entry);
4345 entry++;
4347 return index_mask;
4351 static void intel_setup_outputs(struct drm_device *dev)
4353 struct drm_i915_private *dev_priv = dev->dev_private;
4354 struct drm_connector *connector;
4356 intel_crt_init(dev);
4358 /* Set up integrated LVDS */
4359 if (IS_MOBILE(dev) && !IS_I830(dev))
4360 intel_lvds_init(dev);
4362 if (IS_IGDNG(dev)) {
4363 int found;
4365 if (IS_MOBILE(dev) && (I915_READ(DP_A) & DP_DETECTED))
4366 intel_dp_init(dev, DP_A);
4368 if (I915_READ(HDMIB) & PORT_DETECTED) {
4369 /* check SDVOB */
4370 /* found = intel_sdvo_init(dev, HDMIB); */
4371 found = 0;
4372 if (!found)
4373 intel_hdmi_init(dev, HDMIB);
4374 if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
4375 intel_dp_init(dev, PCH_DP_B);
4378 if (I915_READ(HDMIC) & PORT_DETECTED)
4379 intel_hdmi_init(dev, HDMIC);
4381 if (I915_READ(HDMID) & PORT_DETECTED)
4382 intel_hdmi_init(dev, HDMID);
4384 if (I915_READ(PCH_DP_C) & DP_DETECTED)
4385 intel_dp_init(dev, PCH_DP_C);
4387 if (I915_READ(PCH_DP_D) & DP_DETECTED)
4388 intel_dp_init(dev, PCH_DP_D);
4390 } else if (SUPPORTS_DIGITAL_OUTPUTS(dev)) {
4391 bool found = false;
4393 if (I915_READ(SDVOB) & SDVO_DETECTED) {
4394 found = intel_sdvo_init(dev, SDVOB);
4395 if (!found && SUPPORTS_INTEGRATED_HDMI(dev))
4396 intel_hdmi_init(dev, SDVOB);
4398 if (!found && SUPPORTS_INTEGRATED_DP(dev))
4399 intel_dp_init(dev, DP_B);
4402 /* Before G4X SDVOC doesn't have its own detect register */
4404 if (I915_READ(SDVOB) & SDVO_DETECTED)
4405 found = intel_sdvo_init(dev, SDVOC);
4407 if (!found && (I915_READ(SDVOC) & SDVO_DETECTED)) {
4409 if (SUPPORTS_INTEGRATED_HDMI(dev))
4410 intel_hdmi_init(dev, SDVOC);
4411 if (SUPPORTS_INTEGRATED_DP(dev))
4412 intel_dp_init(dev, DP_C);
4415 if (SUPPORTS_INTEGRATED_DP(dev) && (I915_READ(DP_D) & DP_DETECTED))
4416 intel_dp_init(dev, DP_D);
4417 } else if (IS_I8XX(dev))
4418 intel_dvo_init(dev);
4420 if (SUPPORTS_TV(dev))
4421 intel_tv_init(dev);
4423 list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
4424 struct intel_output *intel_output = to_intel_output(connector);
4425 struct drm_encoder *encoder = &intel_output->enc;
4427 encoder->possible_crtcs = intel_output->crtc_mask;
4428 encoder->possible_clones = intel_connector_clones(dev,
4429 intel_output->clone_mask);
4433 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
4435 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4436 struct drm_device *dev = fb->dev;
4438 if (fb->fbdev)
4439 intelfb_remove(dev, fb);
4441 drm_framebuffer_cleanup(fb);
4442 mutex_lock(&dev->struct_mutex);
4443 drm_gem_object_unreference(intel_fb->obj);
4444 mutex_unlock(&dev->struct_mutex);
4446 kfree(intel_fb);
4449 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
4450 struct drm_file *file_priv,
4451 unsigned int *handle)
4453 struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
4454 struct drm_gem_object *object = intel_fb->obj;
4456 return drm_gem_handle_create(file_priv, object, handle);
4459 static const struct drm_framebuffer_funcs intel_fb_funcs = {
4460 .destroy = intel_user_framebuffer_destroy,
4461 .create_handle = intel_user_framebuffer_create_handle,
4464 int intel_framebuffer_create(struct drm_device *dev,
4465 struct drm_mode_fb_cmd *mode_cmd,
4466 struct drm_framebuffer **fb,
4467 struct drm_gem_object *obj)
4469 struct intel_framebuffer *intel_fb;
4470 int ret;
4472 intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
4473 if (!intel_fb)
4474 return -ENOMEM;
4476 ret = drm_framebuffer_init(dev, &intel_fb->base, &intel_fb_funcs);
4477 if (ret) {
4478 DRM_ERROR("framebuffer init failed %d\n", ret);
4479 return ret;
4482 drm_helper_mode_fill_fb_struct(&intel_fb->base, mode_cmd);
4484 intel_fb->obj = obj;
4486 *fb = &intel_fb->base;
4488 return 0;
4492 static struct drm_framebuffer *
4493 intel_user_framebuffer_create(struct drm_device *dev,
4494 struct drm_file *filp,
4495 struct drm_mode_fb_cmd *mode_cmd)
4497 struct drm_gem_object *obj;
4498 struct drm_framebuffer *fb;
4499 int ret;
4501 obj = drm_gem_object_lookup(dev, filp, mode_cmd->handle);
4502 if (!obj)
4503 return NULL;
4505 ret = intel_framebuffer_create(dev, mode_cmd, &fb, obj);
4506 if (ret) {
4507 mutex_lock(&dev->struct_mutex);
4508 drm_gem_object_unreference(obj);
4509 mutex_unlock(&dev->struct_mutex);
4510 return NULL;
4513 return fb;
4516 static const struct drm_mode_config_funcs intel_mode_funcs = {
4517 .fb_create = intel_user_framebuffer_create,
4518 .fb_changed = intelfb_probe,
4521 void intel_init_clock_gating(struct drm_device *dev)
4523 struct drm_i915_private *dev_priv = dev->dev_private;
4526 * Disable clock gating reported to work incorrectly according to the
4527 * specs, but enable as much else as we can.
4529 if (IS_IGDNG(dev)) {
4530 return;
4531 } else if (IS_G4X(dev)) {
4532 uint32_t dspclk_gate;
4533 I915_WRITE(RENCLK_GATE_D1, 0);
4534 I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
4535 GS_UNIT_CLOCK_GATE_DISABLE |
4536 CL_UNIT_CLOCK_GATE_DISABLE);
4537 I915_WRITE(RAMCLK_GATE_D, 0);
4538 dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
4539 OVRUNIT_CLOCK_GATE_DISABLE |
4540 OVCUNIT_CLOCK_GATE_DISABLE;
4541 if (IS_GM45(dev))
4542 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
4543 I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
4544 } else if (IS_I965GM(dev)) {
4545 I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
4546 I915_WRITE(RENCLK_GATE_D2, 0);
4547 I915_WRITE(DSPCLK_GATE_D, 0);
4548 I915_WRITE(RAMCLK_GATE_D, 0);
4549 I915_WRITE16(DEUC, 0);
4550 } else if (IS_I965G(dev)) {
4551 I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
4552 I965_RCC_CLOCK_GATE_DISABLE |
4553 I965_RCPB_CLOCK_GATE_DISABLE |
4554 I965_ISC_CLOCK_GATE_DISABLE |
4555 I965_FBC_CLOCK_GATE_DISABLE);
4556 I915_WRITE(RENCLK_GATE_D2, 0);
4557 } else if (IS_I9XX(dev)) {
4558 u32 dstate = I915_READ(D_STATE);
4560 dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
4561 DSTATE_DOT_CLOCK_GATING;
4562 I915_WRITE(D_STATE, dstate);
4563 } else if (IS_I85X(dev) || IS_I865G(dev)) {
4564 I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
4565 } else if (IS_I830(dev)) {
4566 I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
4570 * GPU can automatically power down the render unit if given a page
4571 * to save state.
4573 if (I915_HAS_RC6(dev)) {
4574 struct drm_gem_object *pwrctx;
4575 struct drm_i915_gem_object *obj_priv;
4576 int ret;
4578 pwrctx = drm_gem_object_alloc(dev, 4096);
4579 if (!pwrctx) {
4580 DRM_DEBUG("failed to alloc power context, RC6 disabled\n");
4581 goto out;
4584 ret = i915_gem_object_pin(pwrctx, 4096);
4585 if (ret) {
4586 DRM_ERROR("failed to pin power context: %d\n", ret);
4587 drm_gem_object_unreference(pwrctx);
4588 goto out;
4591 i915_gem_object_set_to_gtt_domain(pwrctx, 1);
4593 obj_priv = pwrctx->driver_private;
4595 I915_WRITE(PWRCTXA, obj_priv->gtt_offset | PWRCTX_EN);
4596 I915_WRITE(MCHBAR_RENDER_STANDBY,
4597 I915_READ(MCHBAR_RENDER_STANDBY) & ~RCX_SW_EXIT);
4599 dev_priv->pwrctx = pwrctx;
4602 out:
4603 return;
4606 /* Set up chip specific display functions */
4607 static void intel_init_display(struct drm_device *dev)
4609 struct drm_i915_private *dev_priv = dev->dev_private;
4611 /* We always want a DPMS function */
4612 if (IS_IGDNG(dev))
4613 dev_priv->display.dpms = igdng_crtc_dpms;
4614 else
4615 dev_priv->display.dpms = i9xx_crtc_dpms;
4617 /* Only mobile has FBC, leave pointers NULL for other chips */
4618 if (IS_MOBILE(dev)) {
4619 if (IS_GM45(dev)) {
4620 dev_priv->display.fbc_enabled = g4x_fbc_enabled;
4621 dev_priv->display.enable_fbc = g4x_enable_fbc;
4622 dev_priv->display.disable_fbc = g4x_disable_fbc;
4623 } else if (IS_I965GM(dev) || IS_I945GM(dev) || IS_I915GM(dev)) {
4624 dev_priv->display.fbc_enabled = i8xx_fbc_enabled;
4625 dev_priv->display.enable_fbc = i8xx_enable_fbc;
4626 dev_priv->display.disable_fbc = i8xx_disable_fbc;
4628 /* 855GM needs testing */
4631 /* Returns the core display clock speed */
4632 if (IS_I945G(dev) || (IS_G33(dev) && ! IS_IGDGM(dev)))
4633 dev_priv->display.get_display_clock_speed =
4634 i945_get_display_clock_speed;
4635 else if (IS_I915G(dev))
4636 dev_priv->display.get_display_clock_speed =
4637 i915_get_display_clock_speed;
4638 else if (IS_I945GM(dev) || IS_845G(dev) || IS_IGDGM(dev))
4639 dev_priv->display.get_display_clock_speed =
4640 i9xx_misc_get_display_clock_speed;
4641 else if (IS_I915GM(dev))
4642 dev_priv->display.get_display_clock_speed =
4643 i915gm_get_display_clock_speed;
4644 else if (IS_I865G(dev))
4645 dev_priv->display.get_display_clock_speed =
4646 i865_get_display_clock_speed;
4647 else if (IS_I85X(dev))
4648 dev_priv->display.get_display_clock_speed =
4649 i855_get_display_clock_speed;
4650 else /* 852, 830 */
4651 dev_priv->display.get_display_clock_speed =
4652 i830_get_display_clock_speed;
4654 /* For FIFO watermark updates */
4655 if (IS_IGDNG(dev))
4656 dev_priv->display.update_wm = NULL;
4657 else if (IS_G4X(dev))
4658 dev_priv->display.update_wm = g4x_update_wm;
4659 else if (IS_I965G(dev))
4660 dev_priv->display.update_wm = i965_update_wm;
4661 else if (IS_I9XX(dev) || IS_MOBILE(dev)) {
4662 dev_priv->display.update_wm = i9xx_update_wm;
4663 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
4664 } else {
4665 if (IS_I85X(dev))
4666 dev_priv->display.get_fifo_size = i85x_get_fifo_size;
4667 else if (IS_845G(dev))
4668 dev_priv->display.get_fifo_size = i845_get_fifo_size;
4669 else
4670 dev_priv->display.get_fifo_size = i830_get_fifo_size;
4671 dev_priv->display.update_wm = i830_update_wm;
4675 void intel_modeset_init(struct drm_device *dev)
4677 struct drm_i915_private *dev_priv = dev->dev_private;
4678 int num_pipe;
4679 int i;
4681 drm_mode_config_init(dev);
4683 dev->mode_config.min_width = 0;
4684 dev->mode_config.min_height = 0;
4686 dev->mode_config.funcs = (void *)&intel_mode_funcs;
4688 intel_init_display(dev);
4690 if (IS_I965G(dev)) {
4691 dev->mode_config.max_width = 8192;
4692 dev->mode_config.max_height = 8192;
4693 } else if (IS_I9XX(dev)) {
4694 dev->mode_config.max_width = 4096;
4695 dev->mode_config.max_height = 4096;
4696 } else {
4697 dev->mode_config.max_width = 2048;
4698 dev->mode_config.max_height = 2048;
4701 /* set memory base */
4702 if (IS_I9XX(dev))
4703 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 2);
4704 else
4705 dev->mode_config.fb_base = pci_resource_start(dev->pdev, 0);
4707 if (IS_MOBILE(dev) || IS_I9XX(dev))
4708 num_pipe = 2;
4709 else
4710 num_pipe = 1;
4711 DRM_DEBUG_KMS("%d display pipe%s available.\n",
4712 num_pipe, num_pipe > 1 ? "s" : "");
4714 if (IS_I85X(dev))
4715 pci_read_config_word(dev->pdev, HPLLCC, &dev_priv->orig_clock);
4716 else if (IS_I9XX(dev) || IS_G4X(dev))
4717 pci_read_config_word(dev->pdev, GCFGC, &dev_priv->orig_clock);
4719 for (i = 0; i < num_pipe; i++) {
4720 intel_crtc_init(dev, i);
4723 intel_setup_outputs(dev);
4725 intel_init_clock_gating(dev);
4727 INIT_WORK(&dev_priv->idle_work, intel_idle_update);
4728 setup_timer(&dev_priv->idle_timer, intel_gpu_idle_timer,
4729 (unsigned long)dev);
4731 intel_setup_overlay(dev);
4734 void intel_modeset_cleanup(struct drm_device *dev)
4736 struct drm_i915_private *dev_priv = dev->dev_private;
4737 struct drm_crtc *crtc;
4738 struct intel_crtc *intel_crtc;
4740 mutex_lock(&dev->struct_mutex);
4742 list_for_each_entry(crtc, &dev->mode_config.crtc_list, head) {
4743 /* Skip inactive CRTCs */
4744 if (!crtc->fb)
4745 continue;
4747 intel_crtc = to_intel_crtc(crtc);
4748 intel_increase_pllclock(crtc, false);
4749 del_timer_sync(&intel_crtc->idle_timer);
4752 intel_increase_renderclock(dev, false);
4753 del_timer_sync(&dev_priv->idle_timer);
4755 if (dev_priv->display.disable_fbc)
4756 dev_priv->display.disable_fbc(dev);
4758 if (dev_priv->pwrctx) {
4759 struct drm_i915_gem_object *obj_priv;
4761 obj_priv = dev_priv->pwrctx->driver_private;
4762 I915_WRITE(PWRCTXA, obj_priv->gtt_offset &~ PWRCTX_EN);
4763 I915_READ(PWRCTXA);
4764 i915_gem_object_unpin(dev_priv->pwrctx);
4765 drm_gem_object_unreference(dev_priv->pwrctx);
4768 mutex_unlock(&dev->struct_mutex);
4770 drm_mode_config_cleanup(dev);
4774 /* current intel driver doesn't take advantage of encoders
4775 always give back the encoder for the connector
4777 struct drm_encoder *intel_best_encoder(struct drm_connector *connector)
4779 struct intel_output *intel_output = to_intel_output(connector);
4781 return &intel_output->enc;
4785 * set vga decode state - true == enable VGA decode
4787 int intel_modeset_vga_set_state(struct drm_device *dev, bool state)
4789 struct drm_i915_private *dev_priv = dev->dev_private;
4790 u16 gmch_ctrl;
4792 pci_read_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, &gmch_ctrl);
4793 if (state)
4794 gmch_ctrl &= ~INTEL_GMCH_VGA_DISABLE;
4795 else
4796 gmch_ctrl |= INTEL_GMCH_VGA_DISABLE;
4797 pci_write_config_word(dev_priv->bridge_dev, INTEL_GMCH_CTRL, gmch_ctrl);
4798 return 0;