cifs: fix handling of scopeid in cifs_convert_address
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / scsi / hpsa.c
bloba6dea08664fc638c611260cbdd067978fb8b8092
1 /*
2 * Disk Array driver for HP Smart Array SAS controllers
3 * Copyright 2000, 2009 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
12 * NON INFRINGEMENT. See the GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
22 #include <linux/module.h>
23 #include <linux/interrupt.h>
24 #include <linux/types.h>
25 #include <linux/pci.h>
26 #include <linux/kernel.h>
27 #include <linux/slab.h>
28 #include <linux/delay.h>
29 #include <linux/fs.h>
30 #include <linux/timer.h>
31 #include <linux/seq_file.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/compat.h>
35 #include <linux/blktrace_api.h>
36 #include <linux/uaccess.h>
37 #include <linux/io.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/completion.h>
40 #include <linux/moduleparam.h>
41 #include <scsi/scsi.h>
42 #include <scsi/scsi_cmnd.h>
43 #include <scsi/scsi_device.h>
44 #include <scsi/scsi_host.h>
45 #include <scsi/scsi_tcq.h>
46 #include <linux/cciss_ioctl.h>
47 #include <linux/string.h>
48 #include <linux/bitmap.h>
49 #include <asm/atomic.h>
50 #include <linux/kthread.h>
51 #include "hpsa_cmd.h"
52 #include "hpsa.h"
54 /* HPSA_DRIVER_VERSION must be 3 byte values (0-255) separated by '.' */
55 #define HPSA_DRIVER_VERSION "2.0.2-1"
56 #define DRIVER_NAME "HP HPSA Driver (v " HPSA_DRIVER_VERSION ")"
58 /* How long to wait (in milliseconds) for board to go into simple mode */
59 #define MAX_CONFIG_WAIT 30000
60 #define MAX_IOCTL_CONFIG_WAIT 1000
62 /*define how many times we will try a command because of bus resets */
63 #define MAX_CMD_RETRIES 3
65 /* Embedded module documentation macros - see modules.h */
66 MODULE_AUTHOR("Hewlett-Packard Company");
67 MODULE_DESCRIPTION("Driver for HP Smart Array Controller version " \
68 HPSA_DRIVER_VERSION);
69 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
70 MODULE_VERSION(HPSA_DRIVER_VERSION);
71 MODULE_LICENSE("GPL");
73 static int hpsa_allow_any;
74 module_param(hpsa_allow_any, int, S_IRUGO|S_IWUSR);
75 MODULE_PARM_DESC(hpsa_allow_any,
76 "Allow hpsa driver to access unknown HP Smart Array hardware");
78 /* define the PCI info for the cards we can control */
79 static const struct pci_device_id hpsa_pci_device_id[] = {
80 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3241},
81 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3243},
82 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3245},
83 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3247},
84 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3249},
85 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324a},
86 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x324b},
87 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3233},
88 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3250},
89 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3251},
90 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3252},
91 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3253},
92 {PCI_VENDOR_ID_HP, PCI_DEVICE_ID_HP_CISSE, 0x103C, 0x3254},
93 {PCI_VENDOR_ID_HP, PCI_ANY_ID, PCI_ANY_ID, PCI_ANY_ID,
94 PCI_CLASS_STORAGE_RAID << 8, 0xffff << 8, 0},
95 {0,}
98 MODULE_DEVICE_TABLE(pci, hpsa_pci_device_id);
100 /* board_id = Subsystem Device ID & Vendor ID
101 * product = Marketing Name for the board
102 * access = Address of the struct of function pointers
104 static struct board_type products[] = {
105 {0x3241103C, "Smart Array P212", &SA5_access},
106 {0x3243103C, "Smart Array P410", &SA5_access},
107 {0x3245103C, "Smart Array P410i", &SA5_access},
108 {0x3247103C, "Smart Array P411", &SA5_access},
109 {0x3249103C, "Smart Array P812", &SA5_access},
110 {0x324a103C, "Smart Array P712m", &SA5_access},
111 {0x324b103C, "Smart Array P711m", &SA5_access},
112 {0x3250103C, "Smart Array", &SA5_access},
113 {0x3250113C, "Smart Array", &SA5_access},
114 {0x3250123C, "Smart Array", &SA5_access},
115 {0x3250133C, "Smart Array", &SA5_access},
116 {0x3250143C, "Smart Array", &SA5_access},
117 {0xFFFF103C, "Unknown Smart Array", &SA5_access},
120 static int number_of_controllers;
122 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id);
123 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id);
124 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg);
125 static void start_io(struct ctlr_info *h);
127 #ifdef CONFIG_COMPAT
128 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg);
129 #endif
131 static void cmd_free(struct ctlr_info *h, struct CommandList *c);
132 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c);
133 static struct CommandList *cmd_alloc(struct ctlr_info *h);
134 static struct CommandList *cmd_special_alloc(struct ctlr_info *h);
135 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
136 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
137 int cmd_type);
139 static int hpsa_scsi_queue_command(struct Scsi_Host *h, struct scsi_cmnd *cmd);
140 static void hpsa_scan_start(struct Scsi_Host *);
141 static int hpsa_scan_finished(struct Scsi_Host *sh,
142 unsigned long elapsed_time);
143 static int hpsa_change_queue_depth(struct scsi_device *sdev,
144 int qdepth, int reason);
146 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd);
147 static int hpsa_slave_alloc(struct scsi_device *sdev);
148 static void hpsa_slave_destroy(struct scsi_device *sdev);
150 static ssize_t raid_level_show(struct device *dev,
151 struct device_attribute *attr, char *buf);
152 static ssize_t lunid_show(struct device *dev,
153 struct device_attribute *attr, char *buf);
154 static ssize_t unique_id_show(struct device *dev,
155 struct device_attribute *attr, char *buf);
156 static ssize_t host_show_firmware_revision(struct device *dev,
157 struct device_attribute *attr, char *buf);
158 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno);
159 static ssize_t host_store_rescan(struct device *dev,
160 struct device_attribute *attr, const char *buf, size_t count);
161 static int check_for_unit_attention(struct ctlr_info *h,
162 struct CommandList *c);
163 static void check_ioctl_unit_attention(struct ctlr_info *h,
164 struct CommandList *c);
165 /* performant mode helper functions */
166 static void calc_bucket_map(int *bucket, int num_buckets,
167 int nsgs, int *bucket_map);
168 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h);
169 static inline u32 next_command(struct ctlr_info *h);
170 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
171 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
172 u64 *cfg_offset);
173 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
174 unsigned long *memory_bar);
175 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id);
177 static DEVICE_ATTR(raid_level, S_IRUGO, raid_level_show, NULL);
178 static DEVICE_ATTR(lunid, S_IRUGO, lunid_show, NULL);
179 static DEVICE_ATTR(unique_id, S_IRUGO, unique_id_show, NULL);
180 static DEVICE_ATTR(rescan, S_IWUSR, NULL, host_store_rescan);
181 static DEVICE_ATTR(firmware_revision, S_IRUGO,
182 host_show_firmware_revision, NULL);
184 static struct device_attribute *hpsa_sdev_attrs[] = {
185 &dev_attr_raid_level,
186 &dev_attr_lunid,
187 &dev_attr_unique_id,
188 NULL,
191 static struct device_attribute *hpsa_shost_attrs[] = {
192 &dev_attr_rescan,
193 &dev_attr_firmware_revision,
194 NULL,
197 static struct scsi_host_template hpsa_driver_template = {
198 .module = THIS_MODULE,
199 .name = "hpsa",
200 .proc_name = "hpsa",
201 .queuecommand = hpsa_scsi_queue_command,
202 .scan_start = hpsa_scan_start,
203 .scan_finished = hpsa_scan_finished,
204 .change_queue_depth = hpsa_change_queue_depth,
205 .this_id = -1,
206 .use_clustering = ENABLE_CLUSTERING,
207 .eh_device_reset_handler = hpsa_eh_device_reset_handler,
208 .ioctl = hpsa_ioctl,
209 .slave_alloc = hpsa_slave_alloc,
210 .slave_destroy = hpsa_slave_destroy,
211 #ifdef CONFIG_COMPAT
212 .compat_ioctl = hpsa_compat_ioctl,
213 #endif
214 .sdev_attrs = hpsa_sdev_attrs,
215 .shost_attrs = hpsa_shost_attrs,
218 static inline struct ctlr_info *sdev_to_hba(struct scsi_device *sdev)
220 unsigned long *priv = shost_priv(sdev->host);
221 return (struct ctlr_info *) *priv;
224 static inline struct ctlr_info *shost_to_hba(struct Scsi_Host *sh)
226 unsigned long *priv = shost_priv(sh);
227 return (struct ctlr_info *) *priv;
230 static int check_for_unit_attention(struct ctlr_info *h,
231 struct CommandList *c)
233 if (c->err_info->SenseInfo[2] != UNIT_ATTENTION)
234 return 0;
236 switch (c->err_info->SenseInfo[12]) {
237 case STATE_CHANGED:
238 dev_warn(&h->pdev->dev, "hpsa%d: a state change "
239 "detected, command retried\n", h->ctlr);
240 break;
241 case LUN_FAILED:
242 dev_warn(&h->pdev->dev, "hpsa%d: LUN failure "
243 "detected, action required\n", h->ctlr);
244 break;
245 case REPORT_LUNS_CHANGED:
246 dev_warn(&h->pdev->dev, "hpsa%d: report LUN data "
247 "changed, action required\n", h->ctlr);
249 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
251 break;
252 case POWER_OR_RESET:
253 dev_warn(&h->pdev->dev, "hpsa%d: a power on "
254 "or device reset detected\n", h->ctlr);
255 break;
256 case UNIT_ATTENTION_CLEARED:
257 dev_warn(&h->pdev->dev, "hpsa%d: unit attention "
258 "cleared by another initiator\n", h->ctlr);
259 break;
260 default:
261 dev_warn(&h->pdev->dev, "hpsa%d: unknown "
262 "unit attention detected\n", h->ctlr);
263 break;
265 return 1;
268 static ssize_t host_store_rescan(struct device *dev,
269 struct device_attribute *attr,
270 const char *buf, size_t count)
272 struct ctlr_info *h;
273 struct Scsi_Host *shost = class_to_shost(dev);
274 h = shost_to_hba(shost);
275 hpsa_scan_start(h->scsi_host);
276 return count;
279 static ssize_t host_show_firmware_revision(struct device *dev,
280 struct device_attribute *attr, char *buf)
282 struct ctlr_info *h;
283 struct Scsi_Host *shost = class_to_shost(dev);
284 unsigned char *fwrev;
286 h = shost_to_hba(shost);
287 if (!h->hba_inquiry_data)
288 return 0;
289 fwrev = &h->hba_inquiry_data[32];
290 return snprintf(buf, 20, "%c%c%c%c\n",
291 fwrev[0], fwrev[1], fwrev[2], fwrev[3]);
294 /* Enqueuing and dequeuing functions for cmdlists. */
295 static inline void addQ(struct hlist_head *list, struct CommandList *c)
297 hlist_add_head(&c->list, list);
300 static inline u32 next_command(struct ctlr_info *h)
302 u32 a;
304 if (unlikely(h->transMethod != CFGTBL_Trans_Performant))
305 return h->access.command_completed(h);
307 if ((*(h->reply_pool_head) & 1) == (h->reply_pool_wraparound)) {
308 a = *(h->reply_pool_head); /* Next cmd in ring buffer */
309 (h->reply_pool_head)++;
310 h->commands_outstanding--;
311 } else {
312 a = FIFO_EMPTY;
314 /* Check for wraparound */
315 if (h->reply_pool_head == (h->reply_pool + h->max_commands)) {
316 h->reply_pool_head = h->reply_pool;
317 h->reply_pool_wraparound ^= 1;
319 return a;
322 /* set_performant_mode: Modify the tag for cciss performant
323 * set bit 0 for pull model, bits 3-1 for block fetch
324 * register number
326 static void set_performant_mode(struct ctlr_info *h, struct CommandList *c)
328 if (likely(h->transMethod == CFGTBL_Trans_Performant))
329 c->busaddr |= 1 | (h->blockFetchTable[c->Header.SGList] << 1);
332 static void enqueue_cmd_and_start_io(struct ctlr_info *h,
333 struct CommandList *c)
335 unsigned long flags;
337 set_performant_mode(h, c);
338 spin_lock_irqsave(&h->lock, flags);
339 addQ(&h->reqQ, c);
340 h->Qdepth++;
341 start_io(h);
342 spin_unlock_irqrestore(&h->lock, flags);
345 static inline void removeQ(struct CommandList *c)
347 if (WARN_ON(hlist_unhashed(&c->list)))
348 return;
349 hlist_del_init(&c->list);
352 static inline int is_hba_lunid(unsigned char scsi3addr[])
354 return memcmp(scsi3addr, RAID_CTLR_LUNID, 8) == 0;
357 static inline int is_logical_dev_addr_mode(unsigned char scsi3addr[])
359 return (scsi3addr[3] & 0xC0) == 0x40;
362 static inline int is_scsi_rev_5(struct ctlr_info *h)
364 if (!h->hba_inquiry_data)
365 return 0;
366 if ((h->hba_inquiry_data[2] & 0x07) == 5)
367 return 1;
368 return 0;
371 static const char *raid_label[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
372 "UNKNOWN"
374 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label) - 1)
376 static ssize_t raid_level_show(struct device *dev,
377 struct device_attribute *attr, char *buf)
379 ssize_t l = 0;
380 unsigned char rlevel;
381 struct ctlr_info *h;
382 struct scsi_device *sdev;
383 struct hpsa_scsi_dev_t *hdev;
384 unsigned long flags;
386 sdev = to_scsi_device(dev);
387 h = sdev_to_hba(sdev);
388 spin_lock_irqsave(&h->lock, flags);
389 hdev = sdev->hostdata;
390 if (!hdev) {
391 spin_unlock_irqrestore(&h->lock, flags);
392 return -ENODEV;
395 /* Is this even a logical drive? */
396 if (!is_logical_dev_addr_mode(hdev->scsi3addr)) {
397 spin_unlock_irqrestore(&h->lock, flags);
398 l = snprintf(buf, PAGE_SIZE, "N/A\n");
399 return l;
402 rlevel = hdev->raid_level;
403 spin_unlock_irqrestore(&h->lock, flags);
404 if (rlevel > RAID_UNKNOWN)
405 rlevel = RAID_UNKNOWN;
406 l = snprintf(buf, PAGE_SIZE, "RAID %s\n", raid_label[rlevel]);
407 return l;
410 static ssize_t lunid_show(struct device *dev,
411 struct device_attribute *attr, char *buf)
413 struct ctlr_info *h;
414 struct scsi_device *sdev;
415 struct hpsa_scsi_dev_t *hdev;
416 unsigned long flags;
417 unsigned char lunid[8];
419 sdev = to_scsi_device(dev);
420 h = sdev_to_hba(sdev);
421 spin_lock_irqsave(&h->lock, flags);
422 hdev = sdev->hostdata;
423 if (!hdev) {
424 spin_unlock_irqrestore(&h->lock, flags);
425 return -ENODEV;
427 memcpy(lunid, hdev->scsi3addr, sizeof(lunid));
428 spin_unlock_irqrestore(&h->lock, flags);
429 return snprintf(buf, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
430 lunid[0], lunid[1], lunid[2], lunid[3],
431 lunid[4], lunid[5], lunid[6], lunid[7]);
434 static ssize_t unique_id_show(struct device *dev,
435 struct device_attribute *attr, char *buf)
437 struct ctlr_info *h;
438 struct scsi_device *sdev;
439 struct hpsa_scsi_dev_t *hdev;
440 unsigned long flags;
441 unsigned char sn[16];
443 sdev = to_scsi_device(dev);
444 h = sdev_to_hba(sdev);
445 spin_lock_irqsave(&h->lock, flags);
446 hdev = sdev->hostdata;
447 if (!hdev) {
448 spin_unlock_irqrestore(&h->lock, flags);
449 return -ENODEV;
451 memcpy(sn, hdev->device_id, sizeof(sn));
452 spin_unlock_irqrestore(&h->lock, flags);
453 return snprintf(buf, 16 * 2 + 2,
454 "%02X%02X%02X%02X%02X%02X%02X%02X"
455 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
456 sn[0], sn[1], sn[2], sn[3],
457 sn[4], sn[5], sn[6], sn[7],
458 sn[8], sn[9], sn[10], sn[11],
459 sn[12], sn[13], sn[14], sn[15]);
462 static int hpsa_find_target_lun(struct ctlr_info *h,
463 unsigned char scsi3addr[], int bus, int *target, int *lun)
465 /* finds an unused bus, target, lun for a new physical device
466 * assumes h->devlock is held
468 int i, found = 0;
469 DECLARE_BITMAP(lun_taken, HPSA_MAX_SCSI_DEVS_PER_HBA);
471 memset(&lun_taken[0], 0, HPSA_MAX_SCSI_DEVS_PER_HBA >> 3);
473 for (i = 0; i < h->ndevices; i++) {
474 if (h->dev[i]->bus == bus && h->dev[i]->target != -1)
475 set_bit(h->dev[i]->target, lun_taken);
478 for (i = 0; i < HPSA_MAX_SCSI_DEVS_PER_HBA; i++) {
479 if (!test_bit(i, lun_taken)) {
480 /* *bus = 1; */
481 *target = i;
482 *lun = 0;
483 found = 1;
484 break;
487 return !found;
490 /* Add an entry into h->dev[] array. */
491 static int hpsa_scsi_add_entry(struct ctlr_info *h, int hostno,
492 struct hpsa_scsi_dev_t *device,
493 struct hpsa_scsi_dev_t *added[], int *nadded)
495 /* assumes h->devlock is held */
496 int n = h->ndevices;
497 int i;
498 unsigned char addr1[8], addr2[8];
499 struct hpsa_scsi_dev_t *sd;
501 if (n >= HPSA_MAX_SCSI_DEVS_PER_HBA) {
502 dev_err(&h->pdev->dev, "too many devices, some will be "
503 "inaccessible.\n");
504 return -1;
507 /* physical devices do not have lun or target assigned until now. */
508 if (device->lun != -1)
509 /* Logical device, lun is already assigned. */
510 goto lun_assigned;
512 /* If this device a non-zero lun of a multi-lun device
513 * byte 4 of the 8-byte LUN addr will contain the logical
514 * unit no, zero otherise.
516 if (device->scsi3addr[4] == 0) {
517 /* This is not a non-zero lun of a multi-lun device */
518 if (hpsa_find_target_lun(h, device->scsi3addr,
519 device->bus, &device->target, &device->lun) != 0)
520 return -1;
521 goto lun_assigned;
524 /* This is a non-zero lun of a multi-lun device.
525 * Search through our list and find the device which
526 * has the same 8 byte LUN address, excepting byte 4.
527 * Assign the same bus and target for this new LUN.
528 * Use the logical unit number from the firmware.
530 memcpy(addr1, device->scsi3addr, 8);
531 addr1[4] = 0;
532 for (i = 0; i < n; i++) {
533 sd = h->dev[i];
534 memcpy(addr2, sd->scsi3addr, 8);
535 addr2[4] = 0;
536 /* differ only in byte 4? */
537 if (memcmp(addr1, addr2, 8) == 0) {
538 device->bus = sd->bus;
539 device->target = sd->target;
540 device->lun = device->scsi3addr[4];
541 break;
544 if (device->lun == -1) {
545 dev_warn(&h->pdev->dev, "physical device with no LUN=0,"
546 " suspect firmware bug or unsupported hardware "
547 "configuration.\n");
548 return -1;
551 lun_assigned:
553 h->dev[n] = device;
554 h->ndevices++;
555 added[*nadded] = device;
556 (*nadded)++;
558 /* initially, (before registering with scsi layer) we don't
559 * know our hostno and we don't want to print anything first
560 * time anyway (the scsi layer's inquiries will show that info)
562 /* if (hostno != -1) */
563 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d added.\n",
564 scsi_device_type(device->devtype), hostno,
565 device->bus, device->target, device->lun);
566 return 0;
569 /* Replace an entry from h->dev[] array. */
570 static void hpsa_scsi_replace_entry(struct ctlr_info *h, int hostno,
571 int entry, struct hpsa_scsi_dev_t *new_entry,
572 struct hpsa_scsi_dev_t *added[], int *nadded,
573 struct hpsa_scsi_dev_t *removed[], int *nremoved)
575 /* assumes h->devlock is held */
576 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
577 removed[*nremoved] = h->dev[entry];
578 (*nremoved)++;
579 h->dev[entry] = new_entry;
580 added[*nadded] = new_entry;
581 (*nadded)++;
582 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d changed.\n",
583 scsi_device_type(new_entry->devtype), hostno, new_entry->bus,
584 new_entry->target, new_entry->lun);
587 /* Remove an entry from h->dev[] array. */
588 static void hpsa_scsi_remove_entry(struct ctlr_info *h, int hostno, int entry,
589 struct hpsa_scsi_dev_t *removed[], int *nremoved)
591 /* assumes h->devlock is held */
592 int i;
593 struct hpsa_scsi_dev_t *sd;
595 BUG_ON(entry < 0 || entry >= HPSA_MAX_SCSI_DEVS_PER_HBA);
597 sd = h->dev[entry];
598 removed[*nremoved] = h->dev[entry];
599 (*nremoved)++;
601 for (i = entry; i < h->ndevices-1; i++)
602 h->dev[i] = h->dev[i+1];
603 h->ndevices--;
604 dev_info(&h->pdev->dev, "%s device c%db%dt%dl%d removed.\n",
605 scsi_device_type(sd->devtype), hostno, sd->bus, sd->target,
606 sd->lun);
609 #define SCSI3ADDR_EQ(a, b) ( \
610 (a)[7] == (b)[7] && \
611 (a)[6] == (b)[6] && \
612 (a)[5] == (b)[5] && \
613 (a)[4] == (b)[4] && \
614 (a)[3] == (b)[3] && \
615 (a)[2] == (b)[2] && \
616 (a)[1] == (b)[1] && \
617 (a)[0] == (b)[0])
619 static void fixup_botched_add(struct ctlr_info *h,
620 struct hpsa_scsi_dev_t *added)
622 /* called when scsi_add_device fails in order to re-adjust
623 * h->dev[] to match the mid layer's view.
625 unsigned long flags;
626 int i, j;
628 spin_lock_irqsave(&h->lock, flags);
629 for (i = 0; i < h->ndevices; i++) {
630 if (h->dev[i] == added) {
631 for (j = i; j < h->ndevices-1; j++)
632 h->dev[j] = h->dev[j+1];
633 h->ndevices--;
634 break;
637 spin_unlock_irqrestore(&h->lock, flags);
638 kfree(added);
641 static inline int device_is_the_same(struct hpsa_scsi_dev_t *dev1,
642 struct hpsa_scsi_dev_t *dev2)
644 if ((is_logical_dev_addr_mode(dev1->scsi3addr) ||
645 (dev1->lun != -1 && dev2->lun != -1)) &&
646 dev1->devtype != 0x0C)
647 return (memcmp(dev1, dev2, sizeof(*dev1)) == 0);
649 /* we compare everything except lun and target as these
650 * are not yet assigned. Compare parts likely
651 * to differ first
653 if (memcmp(dev1->scsi3addr, dev2->scsi3addr,
654 sizeof(dev1->scsi3addr)) != 0)
655 return 0;
656 if (memcmp(dev1->device_id, dev2->device_id,
657 sizeof(dev1->device_id)) != 0)
658 return 0;
659 if (memcmp(dev1->model, dev2->model, sizeof(dev1->model)) != 0)
660 return 0;
661 if (memcmp(dev1->vendor, dev2->vendor, sizeof(dev1->vendor)) != 0)
662 return 0;
663 if (memcmp(dev1->revision, dev2->revision, sizeof(dev1->revision)) != 0)
664 return 0;
665 if (dev1->devtype != dev2->devtype)
666 return 0;
667 if (dev1->raid_level != dev2->raid_level)
668 return 0;
669 if (dev1->bus != dev2->bus)
670 return 0;
671 return 1;
674 /* Find needle in haystack. If exact match found, return DEVICE_SAME,
675 * and return needle location in *index. If scsi3addr matches, but not
676 * vendor, model, serial num, etc. return DEVICE_CHANGED, and return needle
677 * location in *index. If needle not found, return DEVICE_NOT_FOUND.
679 static int hpsa_scsi_find_entry(struct hpsa_scsi_dev_t *needle,
680 struct hpsa_scsi_dev_t *haystack[], int haystack_size,
681 int *index)
683 int i;
684 #define DEVICE_NOT_FOUND 0
685 #define DEVICE_CHANGED 1
686 #define DEVICE_SAME 2
687 for (i = 0; i < haystack_size; i++) {
688 if (haystack[i] == NULL) /* previously removed. */
689 continue;
690 if (SCSI3ADDR_EQ(needle->scsi3addr, haystack[i]->scsi3addr)) {
691 *index = i;
692 if (device_is_the_same(needle, haystack[i]))
693 return DEVICE_SAME;
694 else
695 return DEVICE_CHANGED;
698 *index = -1;
699 return DEVICE_NOT_FOUND;
702 static void adjust_hpsa_scsi_table(struct ctlr_info *h, int hostno,
703 struct hpsa_scsi_dev_t *sd[], int nsds)
705 /* sd contains scsi3 addresses and devtypes, and inquiry
706 * data. This function takes what's in sd to be the current
707 * reality and updates h->dev[] to reflect that reality.
709 int i, entry, device_change, changes = 0;
710 struct hpsa_scsi_dev_t *csd;
711 unsigned long flags;
712 struct hpsa_scsi_dev_t **added, **removed;
713 int nadded, nremoved;
714 struct Scsi_Host *sh = NULL;
716 added = kzalloc(sizeof(*added) * HPSA_MAX_SCSI_DEVS_PER_HBA,
717 GFP_KERNEL);
718 removed = kzalloc(sizeof(*removed) * HPSA_MAX_SCSI_DEVS_PER_HBA,
719 GFP_KERNEL);
721 if (!added || !removed) {
722 dev_warn(&h->pdev->dev, "out of memory in "
723 "adjust_hpsa_scsi_table\n");
724 goto free_and_out;
727 spin_lock_irqsave(&h->devlock, flags);
729 /* find any devices in h->dev[] that are not in
730 * sd[] and remove them from h->dev[], and for any
731 * devices which have changed, remove the old device
732 * info and add the new device info.
734 i = 0;
735 nremoved = 0;
736 nadded = 0;
737 while (i < h->ndevices) {
738 csd = h->dev[i];
739 device_change = hpsa_scsi_find_entry(csd, sd, nsds, &entry);
740 if (device_change == DEVICE_NOT_FOUND) {
741 changes++;
742 hpsa_scsi_remove_entry(h, hostno, i,
743 removed, &nremoved);
744 continue; /* remove ^^^, hence i not incremented */
745 } else if (device_change == DEVICE_CHANGED) {
746 changes++;
747 hpsa_scsi_replace_entry(h, hostno, i, sd[entry],
748 added, &nadded, removed, &nremoved);
749 /* Set it to NULL to prevent it from being freed
750 * at the bottom of hpsa_update_scsi_devices()
752 sd[entry] = NULL;
754 i++;
757 /* Now, make sure every device listed in sd[] is also
758 * listed in h->dev[], adding them if they aren't found
761 for (i = 0; i < nsds; i++) {
762 if (!sd[i]) /* if already added above. */
763 continue;
764 device_change = hpsa_scsi_find_entry(sd[i], h->dev,
765 h->ndevices, &entry);
766 if (device_change == DEVICE_NOT_FOUND) {
767 changes++;
768 if (hpsa_scsi_add_entry(h, hostno, sd[i],
769 added, &nadded) != 0)
770 break;
771 sd[i] = NULL; /* prevent from being freed later. */
772 } else if (device_change == DEVICE_CHANGED) {
773 /* should never happen... */
774 changes++;
775 dev_warn(&h->pdev->dev,
776 "device unexpectedly changed.\n");
777 /* but if it does happen, we just ignore that device */
780 spin_unlock_irqrestore(&h->devlock, flags);
782 /* Don't notify scsi mid layer of any changes the first time through
783 * (or if there are no changes) scsi_scan_host will do it later the
784 * first time through.
786 if (hostno == -1 || !changes)
787 goto free_and_out;
789 sh = h->scsi_host;
790 /* Notify scsi mid layer of any removed devices */
791 for (i = 0; i < nremoved; i++) {
792 struct scsi_device *sdev =
793 scsi_device_lookup(sh, removed[i]->bus,
794 removed[i]->target, removed[i]->lun);
795 if (sdev != NULL) {
796 scsi_remove_device(sdev);
797 scsi_device_put(sdev);
798 } else {
799 /* We don't expect to get here.
800 * future cmds to this device will get selection
801 * timeout as if the device was gone.
803 dev_warn(&h->pdev->dev, "didn't find c%db%dt%dl%d "
804 " for removal.", hostno, removed[i]->bus,
805 removed[i]->target, removed[i]->lun);
807 kfree(removed[i]);
808 removed[i] = NULL;
811 /* Notify scsi mid layer of any added devices */
812 for (i = 0; i < nadded; i++) {
813 if (scsi_add_device(sh, added[i]->bus,
814 added[i]->target, added[i]->lun) == 0)
815 continue;
816 dev_warn(&h->pdev->dev, "scsi_add_device c%db%dt%dl%d failed, "
817 "device not added.\n", hostno, added[i]->bus,
818 added[i]->target, added[i]->lun);
819 /* now we have to remove it from h->dev,
820 * since it didn't get added to scsi mid layer
822 fixup_botched_add(h, added[i]);
825 free_and_out:
826 kfree(added);
827 kfree(removed);
831 * Lookup bus/target/lun and retrun corresponding struct hpsa_scsi_dev_t *
832 * Assume's h->devlock is held.
834 static struct hpsa_scsi_dev_t *lookup_hpsa_scsi_dev(struct ctlr_info *h,
835 int bus, int target, int lun)
837 int i;
838 struct hpsa_scsi_dev_t *sd;
840 for (i = 0; i < h->ndevices; i++) {
841 sd = h->dev[i];
842 if (sd->bus == bus && sd->target == target && sd->lun == lun)
843 return sd;
845 return NULL;
848 /* link sdev->hostdata to our per-device structure. */
849 static int hpsa_slave_alloc(struct scsi_device *sdev)
851 struct hpsa_scsi_dev_t *sd;
852 unsigned long flags;
853 struct ctlr_info *h;
855 h = sdev_to_hba(sdev);
856 spin_lock_irqsave(&h->devlock, flags);
857 sd = lookup_hpsa_scsi_dev(h, sdev_channel(sdev),
858 sdev_id(sdev), sdev->lun);
859 if (sd != NULL)
860 sdev->hostdata = sd;
861 spin_unlock_irqrestore(&h->devlock, flags);
862 return 0;
865 static void hpsa_slave_destroy(struct scsi_device *sdev)
867 /* nothing to do. */
870 static void hpsa_scsi_setup(struct ctlr_info *h)
872 h->ndevices = 0;
873 h->scsi_host = NULL;
874 spin_lock_init(&h->devlock);
877 static void hpsa_free_sg_chain_blocks(struct ctlr_info *h)
879 int i;
881 if (!h->cmd_sg_list)
882 return;
883 for (i = 0; i < h->nr_cmds; i++) {
884 kfree(h->cmd_sg_list[i]);
885 h->cmd_sg_list[i] = NULL;
887 kfree(h->cmd_sg_list);
888 h->cmd_sg_list = NULL;
891 static int hpsa_allocate_sg_chain_blocks(struct ctlr_info *h)
893 int i;
895 if (h->chainsize <= 0)
896 return 0;
898 h->cmd_sg_list = kzalloc(sizeof(*h->cmd_sg_list) * h->nr_cmds,
899 GFP_KERNEL);
900 if (!h->cmd_sg_list)
901 return -ENOMEM;
902 for (i = 0; i < h->nr_cmds; i++) {
903 h->cmd_sg_list[i] = kmalloc(sizeof(*h->cmd_sg_list[i]) *
904 h->chainsize, GFP_KERNEL);
905 if (!h->cmd_sg_list[i])
906 goto clean;
908 return 0;
910 clean:
911 hpsa_free_sg_chain_blocks(h);
912 return -ENOMEM;
915 static void hpsa_map_sg_chain_block(struct ctlr_info *h,
916 struct CommandList *c)
918 struct SGDescriptor *chain_sg, *chain_block;
919 u64 temp64;
921 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
922 chain_block = h->cmd_sg_list[c->cmdindex];
923 chain_sg->Ext = HPSA_SG_CHAIN;
924 chain_sg->Len = sizeof(*chain_sg) *
925 (c->Header.SGTotal - h->max_cmd_sg_entries);
926 temp64 = pci_map_single(h->pdev, chain_block, chain_sg->Len,
927 PCI_DMA_TODEVICE);
928 chain_sg->Addr.lower = (u32) (temp64 & 0x0FFFFFFFFULL);
929 chain_sg->Addr.upper = (u32) ((temp64 >> 32) & 0x0FFFFFFFFULL);
932 static void hpsa_unmap_sg_chain_block(struct ctlr_info *h,
933 struct CommandList *c)
935 struct SGDescriptor *chain_sg;
936 union u64bit temp64;
938 if (c->Header.SGTotal <= h->max_cmd_sg_entries)
939 return;
941 chain_sg = &c->SG[h->max_cmd_sg_entries - 1];
942 temp64.val32.lower = chain_sg->Addr.lower;
943 temp64.val32.upper = chain_sg->Addr.upper;
944 pci_unmap_single(h->pdev, temp64.val, chain_sg->Len, PCI_DMA_TODEVICE);
947 static void complete_scsi_command(struct CommandList *cp,
948 int timeout, u32 tag)
950 struct scsi_cmnd *cmd;
951 struct ctlr_info *h;
952 struct ErrorInfo *ei;
954 unsigned char sense_key;
955 unsigned char asc; /* additional sense code */
956 unsigned char ascq; /* additional sense code qualifier */
958 ei = cp->err_info;
959 cmd = (struct scsi_cmnd *) cp->scsi_cmd;
960 h = cp->h;
962 scsi_dma_unmap(cmd); /* undo the DMA mappings */
963 if (cp->Header.SGTotal > h->max_cmd_sg_entries)
964 hpsa_unmap_sg_chain_block(h, cp);
966 cmd->result = (DID_OK << 16); /* host byte */
967 cmd->result |= (COMMAND_COMPLETE << 8); /* msg byte */
968 cmd->result |= ei->ScsiStatus;
970 /* copy the sense data whether we need to or not. */
971 memcpy(cmd->sense_buffer, ei->SenseInfo,
972 ei->SenseLen > SCSI_SENSE_BUFFERSIZE ?
973 SCSI_SENSE_BUFFERSIZE :
974 ei->SenseLen);
975 scsi_set_resid(cmd, ei->ResidualCnt);
977 if (ei->CommandStatus == 0) {
978 cmd->scsi_done(cmd);
979 cmd_free(h, cp);
980 return;
983 /* an error has occurred */
984 switch (ei->CommandStatus) {
986 case CMD_TARGET_STATUS:
987 if (ei->ScsiStatus) {
988 /* Get sense key */
989 sense_key = 0xf & ei->SenseInfo[2];
990 /* Get additional sense code */
991 asc = ei->SenseInfo[12];
992 /* Get addition sense code qualifier */
993 ascq = ei->SenseInfo[13];
996 if (ei->ScsiStatus == SAM_STAT_CHECK_CONDITION) {
997 if (check_for_unit_attention(h, cp)) {
998 cmd->result = DID_SOFT_ERROR << 16;
999 break;
1001 if (sense_key == ILLEGAL_REQUEST) {
1003 * SCSI REPORT_LUNS is commonly unsupported on
1004 * Smart Array. Suppress noisy complaint.
1006 if (cp->Request.CDB[0] == REPORT_LUNS)
1007 break;
1009 /* If ASC/ASCQ indicate Logical Unit
1010 * Not Supported condition,
1012 if ((asc == 0x25) && (ascq == 0x0)) {
1013 dev_warn(&h->pdev->dev, "cp %p "
1014 "has check condition\n", cp);
1015 break;
1019 if (sense_key == NOT_READY) {
1020 /* If Sense is Not Ready, Logical Unit
1021 * Not ready, Manual Intervention
1022 * required
1024 if ((asc == 0x04) && (ascq == 0x03)) {
1025 dev_warn(&h->pdev->dev, "cp %p "
1026 "has check condition: unit "
1027 "not ready, manual "
1028 "intervention required\n", cp);
1029 break;
1032 if (sense_key == ABORTED_COMMAND) {
1033 /* Aborted command is retryable */
1034 dev_warn(&h->pdev->dev, "cp %p "
1035 "has check condition: aborted command: "
1036 "ASC: 0x%x, ASCQ: 0x%x\n",
1037 cp, asc, ascq);
1038 cmd->result = DID_SOFT_ERROR << 16;
1039 break;
1041 /* Must be some other type of check condition */
1042 dev_warn(&h->pdev->dev, "cp %p has check condition: "
1043 "unknown type: "
1044 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1045 "Returning result: 0x%x, "
1046 "cmd=[%02x %02x %02x %02x %02x "
1047 "%02x %02x %02x %02x %02x %02x "
1048 "%02x %02x %02x %02x %02x]\n",
1049 cp, sense_key, asc, ascq,
1050 cmd->result,
1051 cmd->cmnd[0], cmd->cmnd[1],
1052 cmd->cmnd[2], cmd->cmnd[3],
1053 cmd->cmnd[4], cmd->cmnd[5],
1054 cmd->cmnd[6], cmd->cmnd[7],
1055 cmd->cmnd[8], cmd->cmnd[9],
1056 cmd->cmnd[10], cmd->cmnd[11],
1057 cmd->cmnd[12], cmd->cmnd[13],
1058 cmd->cmnd[14], cmd->cmnd[15]);
1059 break;
1063 /* Problem was not a check condition
1064 * Pass it up to the upper layers...
1066 if (ei->ScsiStatus) {
1067 dev_warn(&h->pdev->dev, "cp %p has status 0x%x "
1068 "Sense: 0x%x, ASC: 0x%x, ASCQ: 0x%x, "
1069 "Returning result: 0x%x\n",
1070 cp, ei->ScsiStatus,
1071 sense_key, asc, ascq,
1072 cmd->result);
1073 } else { /* scsi status is zero??? How??? */
1074 dev_warn(&h->pdev->dev, "cp %p SCSI status was 0. "
1075 "Returning no connection.\n", cp),
1077 /* Ordinarily, this case should never happen,
1078 * but there is a bug in some released firmware
1079 * revisions that allows it to happen if, for
1080 * example, a 4100 backplane loses power and
1081 * the tape drive is in it. We assume that
1082 * it's a fatal error of some kind because we
1083 * can't show that it wasn't. We will make it
1084 * look like selection timeout since that is
1085 * the most common reason for this to occur,
1086 * and it's severe enough.
1089 cmd->result = DID_NO_CONNECT << 16;
1091 break;
1093 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1094 break;
1095 case CMD_DATA_OVERRUN:
1096 dev_warn(&h->pdev->dev, "cp %p has"
1097 " completed with data overrun "
1098 "reported\n", cp);
1099 break;
1100 case CMD_INVALID: {
1101 /* print_bytes(cp, sizeof(*cp), 1, 0);
1102 print_cmd(cp); */
1103 /* We get CMD_INVALID if you address a non-existent device
1104 * instead of a selection timeout (no response). You will
1105 * see this if you yank out a drive, then try to access it.
1106 * This is kind of a shame because it means that any other
1107 * CMD_INVALID (e.g. driver bug) will get interpreted as a
1108 * missing target. */
1109 cmd->result = DID_NO_CONNECT << 16;
1111 break;
1112 case CMD_PROTOCOL_ERR:
1113 dev_warn(&h->pdev->dev, "cp %p has "
1114 "protocol error \n", cp);
1115 break;
1116 case CMD_HARDWARE_ERR:
1117 cmd->result = DID_ERROR << 16;
1118 dev_warn(&h->pdev->dev, "cp %p had hardware error\n", cp);
1119 break;
1120 case CMD_CONNECTION_LOST:
1121 cmd->result = DID_ERROR << 16;
1122 dev_warn(&h->pdev->dev, "cp %p had connection lost\n", cp);
1123 break;
1124 case CMD_ABORTED:
1125 cmd->result = DID_ABORT << 16;
1126 dev_warn(&h->pdev->dev, "cp %p was aborted with status 0x%x\n",
1127 cp, ei->ScsiStatus);
1128 break;
1129 case CMD_ABORT_FAILED:
1130 cmd->result = DID_ERROR << 16;
1131 dev_warn(&h->pdev->dev, "cp %p reports abort failed\n", cp);
1132 break;
1133 case CMD_UNSOLICITED_ABORT:
1134 cmd->result = DID_RESET << 16;
1135 dev_warn(&h->pdev->dev, "cp %p aborted do to an unsolicited "
1136 "abort\n", cp);
1137 break;
1138 case CMD_TIMEOUT:
1139 cmd->result = DID_TIME_OUT << 16;
1140 dev_warn(&h->pdev->dev, "cp %p timedout\n", cp);
1141 break;
1142 default:
1143 cmd->result = DID_ERROR << 16;
1144 dev_warn(&h->pdev->dev, "cp %p returned unknown status %x\n",
1145 cp, ei->CommandStatus);
1147 cmd->scsi_done(cmd);
1148 cmd_free(h, cp);
1151 static int hpsa_scsi_detect(struct ctlr_info *h)
1153 struct Scsi_Host *sh;
1154 int error;
1156 sh = scsi_host_alloc(&hpsa_driver_template, sizeof(h));
1157 if (sh == NULL)
1158 goto fail;
1160 sh->io_port = 0;
1161 sh->n_io_port = 0;
1162 sh->this_id = -1;
1163 sh->max_channel = 3;
1164 sh->max_cmd_len = MAX_COMMAND_SIZE;
1165 sh->max_lun = HPSA_MAX_LUN;
1166 sh->max_id = HPSA_MAX_LUN;
1167 sh->can_queue = h->nr_cmds;
1168 sh->cmd_per_lun = h->nr_cmds;
1169 sh->sg_tablesize = h->maxsgentries;
1170 h->scsi_host = sh;
1171 sh->hostdata[0] = (unsigned long) h;
1172 sh->irq = h->intr[PERF_MODE_INT];
1173 sh->unique_id = sh->irq;
1174 error = scsi_add_host(sh, &h->pdev->dev);
1175 if (error)
1176 goto fail_host_put;
1177 scsi_scan_host(sh);
1178 return 0;
1180 fail_host_put:
1181 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_add_host"
1182 " failed for controller %d\n", h->ctlr);
1183 scsi_host_put(sh);
1184 return error;
1185 fail:
1186 dev_err(&h->pdev->dev, "hpsa_scsi_detect: scsi_host_alloc"
1187 " failed for controller %d\n", h->ctlr);
1188 return -ENOMEM;
1191 static void hpsa_pci_unmap(struct pci_dev *pdev,
1192 struct CommandList *c, int sg_used, int data_direction)
1194 int i;
1195 union u64bit addr64;
1197 for (i = 0; i < sg_used; i++) {
1198 addr64.val32.lower = c->SG[i].Addr.lower;
1199 addr64.val32.upper = c->SG[i].Addr.upper;
1200 pci_unmap_single(pdev, (dma_addr_t) addr64.val, c->SG[i].Len,
1201 data_direction);
1205 static void hpsa_map_one(struct pci_dev *pdev,
1206 struct CommandList *cp,
1207 unsigned char *buf,
1208 size_t buflen,
1209 int data_direction)
1211 u64 addr64;
1213 if (buflen == 0 || data_direction == PCI_DMA_NONE) {
1214 cp->Header.SGList = 0;
1215 cp->Header.SGTotal = 0;
1216 return;
1219 addr64 = (u64) pci_map_single(pdev, buf, buflen, data_direction);
1220 cp->SG[0].Addr.lower =
1221 (u32) (addr64 & (u64) 0x00000000FFFFFFFF);
1222 cp->SG[0].Addr.upper =
1223 (u32) ((addr64 >> 32) & (u64) 0x00000000FFFFFFFF);
1224 cp->SG[0].Len = buflen;
1225 cp->Header.SGList = (u8) 1; /* no. SGs contig in this cmd */
1226 cp->Header.SGTotal = (u16) 1; /* total sgs in this cmd list */
1229 static inline void hpsa_scsi_do_simple_cmd_core(struct ctlr_info *h,
1230 struct CommandList *c)
1232 DECLARE_COMPLETION_ONSTACK(wait);
1234 c->waiting = &wait;
1235 enqueue_cmd_and_start_io(h, c);
1236 wait_for_completion(&wait);
1239 static void hpsa_scsi_do_simple_cmd_with_retry(struct ctlr_info *h,
1240 struct CommandList *c, int data_direction)
1242 int retry_count = 0;
1244 do {
1245 memset(c->err_info, 0, sizeof(c->err_info));
1246 hpsa_scsi_do_simple_cmd_core(h, c);
1247 retry_count++;
1248 } while (check_for_unit_attention(h, c) && retry_count <= 3);
1249 hpsa_pci_unmap(h->pdev, c, 1, data_direction);
1252 static void hpsa_scsi_interpret_error(struct CommandList *cp)
1254 struct ErrorInfo *ei;
1255 struct device *d = &cp->h->pdev->dev;
1257 ei = cp->err_info;
1258 switch (ei->CommandStatus) {
1259 case CMD_TARGET_STATUS:
1260 dev_warn(d, "cmd %p has completed with errors\n", cp);
1261 dev_warn(d, "cmd %p has SCSI Status = %x\n", cp,
1262 ei->ScsiStatus);
1263 if (ei->ScsiStatus == 0)
1264 dev_warn(d, "SCSI status is abnormally zero. "
1265 "(probably indicates selection timeout "
1266 "reported incorrectly due to a known "
1267 "firmware bug, circa July, 2001.)\n");
1268 break;
1269 case CMD_DATA_UNDERRUN: /* let mid layer handle it. */
1270 dev_info(d, "UNDERRUN\n");
1271 break;
1272 case CMD_DATA_OVERRUN:
1273 dev_warn(d, "cp %p has completed with data overrun\n", cp);
1274 break;
1275 case CMD_INVALID: {
1276 /* controller unfortunately reports SCSI passthru's
1277 * to non-existent targets as invalid commands.
1279 dev_warn(d, "cp %p is reported invalid (probably means "
1280 "target device no longer present)\n", cp);
1281 /* print_bytes((unsigned char *) cp, sizeof(*cp), 1, 0);
1282 print_cmd(cp); */
1284 break;
1285 case CMD_PROTOCOL_ERR:
1286 dev_warn(d, "cp %p has protocol error \n", cp);
1287 break;
1288 case CMD_HARDWARE_ERR:
1289 /* cmd->result = DID_ERROR << 16; */
1290 dev_warn(d, "cp %p had hardware error\n", cp);
1291 break;
1292 case CMD_CONNECTION_LOST:
1293 dev_warn(d, "cp %p had connection lost\n", cp);
1294 break;
1295 case CMD_ABORTED:
1296 dev_warn(d, "cp %p was aborted\n", cp);
1297 break;
1298 case CMD_ABORT_FAILED:
1299 dev_warn(d, "cp %p reports abort failed\n", cp);
1300 break;
1301 case CMD_UNSOLICITED_ABORT:
1302 dev_warn(d, "cp %p aborted due to an unsolicited abort\n", cp);
1303 break;
1304 case CMD_TIMEOUT:
1305 dev_warn(d, "cp %p timed out\n", cp);
1306 break;
1307 default:
1308 dev_warn(d, "cp %p returned unknown status %x\n", cp,
1309 ei->CommandStatus);
1313 static int hpsa_scsi_do_inquiry(struct ctlr_info *h, unsigned char *scsi3addr,
1314 unsigned char page, unsigned char *buf,
1315 unsigned char bufsize)
1317 int rc = IO_OK;
1318 struct CommandList *c;
1319 struct ErrorInfo *ei;
1321 c = cmd_special_alloc(h);
1323 if (c == NULL) { /* trouble... */
1324 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1325 return -ENOMEM;
1328 fill_cmd(c, HPSA_INQUIRY, h, buf, bufsize, page, scsi3addr, TYPE_CMD);
1329 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1330 ei = c->err_info;
1331 if (ei->CommandStatus != 0 && ei->CommandStatus != CMD_DATA_UNDERRUN) {
1332 hpsa_scsi_interpret_error(c);
1333 rc = -1;
1335 cmd_special_free(h, c);
1336 return rc;
1339 static int hpsa_send_reset(struct ctlr_info *h, unsigned char *scsi3addr)
1341 int rc = IO_OK;
1342 struct CommandList *c;
1343 struct ErrorInfo *ei;
1345 c = cmd_special_alloc(h);
1347 if (c == NULL) { /* trouble... */
1348 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1349 return -ENOMEM;
1352 fill_cmd(c, HPSA_DEVICE_RESET_MSG, h, NULL, 0, 0, scsi3addr, TYPE_MSG);
1353 hpsa_scsi_do_simple_cmd_core(h, c);
1354 /* no unmap needed here because no data xfer. */
1356 ei = c->err_info;
1357 if (ei->CommandStatus != 0) {
1358 hpsa_scsi_interpret_error(c);
1359 rc = -1;
1361 cmd_special_free(h, c);
1362 return rc;
1365 static void hpsa_get_raid_level(struct ctlr_info *h,
1366 unsigned char *scsi3addr, unsigned char *raid_level)
1368 int rc;
1369 unsigned char *buf;
1371 *raid_level = RAID_UNKNOWN;
1372 buf = kzalloc(64, GFP_KERNEL);
1373 if (!buf)
1374 return;
1375 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0xC1, buf, 64);
1376 if (rc == 0)
1377 *raid_level = buf[8];
1378 if (*raid_level > RAID_UNKNOWN)
1379 *raid_level = RAID_UNKNOWN;
1380 kfree(buf);
1381 return;
1384 /* Get the device id from inquiry page 0x83 */
1385 static int hpsa_get_device_id(struct ctlr_info *h, unsigned char *scsi3addr,
1386 unsigned char *device_id, int buflen)
1388 int rc;
1389 unsigned char *buf;
1391 if (buflen > 16)
1392 buflen = 16;
1393 buf = kzalloc(64, GFP_KERNEL);
1394 if (!buf)
1395 return -1;
1396 rc = hpsa_scsi_do_inquiry(h, scsi3addr, 0x83, buf, 64);
1397 if (rc == 0)
1398 memcpy(device_id, &buf[8], buflen);
1399 kfree(buf);
1400 return rc != 0;
1403 static int hpsa_scsi_do_report_luns(struct ctlr_info *h, int logical,
1404 struct ReportLUNdata *buf, int bufsize,
1405 int extended_response)
1407 int rc = IO_OK;
1408 struct CommandList *c;
1409 unsigned char scsi3addr[8];
1410 struct ErrorInfo *ei;
1412 c = cmd_special_alloc(h);
1413 if (c == NULL) { /* trouble... */
1414 dev_err(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
1415 return -1;
1417 /* address the controller */
1418 memset(scsi3addr, 0, sizeof(scsi3addr));
1419 fill_cmd(c, logical ? HPSA_REPORT_LOG : HPSA_REPORT_PHYS, h,
1420 buf, bufsize, 0, scsi3addr, TYPE_CMD);
1421 if (extended_response)
1422 c->Request.CDB[1] = extended_response;
1423 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_FROMDEVICE);
1424 ei = c->err_info;
1425 if (ei->CommandStatus != 0 &&
1426 ei->CommandStatus != CMD_DATA_UNDERRUN) {
1427 hpsa_scsi_interpret_error(c);
1428 rc = -1;
1430 cmd_special_free(h, c);
1431 return rc;
1434 static inline int hpsa_scsi_do_report_phys_luns(struct ctlr_info *h,
1435 struct ReportLUNdata *buf,
1436 int bufsize, int extended_response)
1438 return hpsa_scsi_do_report_luns(h, 0, buf, bufsize, extended_response);
1441 static inline int hpsa_scsi_do_report_log_luns(struct ctlr_info *h,
1442 struct ReportLUNdata *buf, int bufsize)
1444 return hpsa_scsi_do_report_luns(h, 1, buf, bufsize, 0);
1447 static inline void hpsa_set_bus_target_lun(struct hpsa_scsi_dev_t *device,
1448 int bus, int target, int lun)
1450 device->bus = bus;
1451 device->target = target;
1452 device->lun = lun;
1455 static int hpsa_update_device_info(struct ctlr_info *h,
1456 unsigned char scsi3addr[], struct hpsa_scsi_dev_t *this_device)
1458 #define OBDR_TAPE_INQ_SIZE 49
1459 unsigned char *inq_buff;
1461 inq_buff = kzalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1462 if (!inq_buff)
1463 goto bail_out;
1465 /* Do an inquiry to the device to see what it is. */
1466 if (hpsa_scsi_do_inquiry(h, scsi3addr, 0, inq_buff,
1467 (unsigned char) OBDR_TAPE_INQ_SIZE) != 0) {
1468 /* Inquiry failed (msg printed already) */
1469 dev_err(&h->pdev->dev,
1470 "hpsa_update_device_info: inquiry failed\n");
1471 goto bail_out;
1474 this_device->devtype = (inq_buff[0] & 0x1f);
1475 memcpy(this_device->scsi3addr, scsi3addr, 8);
1476 memcpy(this_device->vendor, &inq_buff[8],
1477 sizeof(this_device->vendor));
1478 memcpy(this_device->model, &inq_buff[16],
1479 sizeof(this_device->model));
1480 memcpy(this_device->revision, &inq_buff[32],
1481 sizeof(this_device->revision));
1482 memset(this_device->device_id, 0,
1483 sizeof(this_device->device_id));
1484 hpsa_get_device_id(h, scsi3addr, this_device->device_id,
1485 sizeof(this_device->device_id));
1487 if (this_device->devtype == TYPE_DISK &&
1488 is_logical_dev_addr_mode(scsi3addr))
1489 hpsa_get_raid_level(h, scsi3addr, &this_device->raid_level);
1490 else
1491 this_device->raid_level = RAID_UNKNOWN;
1493 kfree(inq_buff);
1494 return 0;
1496 bail_out:
1497 kfree(inq_buff);
1498 return 1;
1501 static unsigned char *msa2xxx_model[] = {
1502 "MSA2012",
1503 "MSA2024",
1504 "MSA2312",
1505 "MSA2324",
1506 NULL,
1509 static int is_msa2xxx(struct ctlr_info *h, struct hpsa_scsi_dev_t *device)
1511 int i;
1513 for (i = 0; msa2xxx_model[i]; i++)
1514 if (strncmp(device->model, msa2xxx_model[i],
1515 strlen(msa2xxx_model[i])) == 0)
1516 return 1;
1517 return 0;
1520 /* Helper function to assign bus, target, lun mapping of devices.
1521 * Puts non-msa2xxx logical volumes on bus 0, msa2xxx logical
1522 * volumes on bus 1, physical devices on bus 2. and the hba on bus 3.
1523 * Logical drive target and lun are assigned at this time, but
1524 * physical device lun and target assignment are deferred (assigned
1525 * in hpsa_find_target_lun, called by hpsa_scsi_add_entry.)
1527 static void figure_bus_target_lun(struct ctlr_info *h,
1528 u8 *lunaddrbytes, int *bus, int *target, int *lun,
1529 struct hpsa_scsi_dev_t *device)
1531 u32 lunid;
1533 if (is_logical_dev_addr_mode(lunaddrbytes)) {
1534 /* logical device */
1535 if (unlikely(is_scsi_rev_5(h))) {
1536 /* p1210m, logical drives lun assignments
1537 * match SCSI REPORT LUNS data.
1539 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1540 *bus = 0;
1541 *target = 0;
1542 *lun = (lunid & 0x3fff) + 1;
1543 } else {
1544 /* not p1210m... */
1545 lunid = le32_to_cpu(*((__le32 *) lunaddrbytes));
1546 if (is_msa2xxx(h, device)) {
1547 /* msa2xxx way, put logicals on bus 1
1548 * and match target/lun numbers box
1549 * reports.
1551 *bus = 1;
1552 *target = (lunid >> 16) & 0x3fff;
1553 *lun = lunid & 0x00ff;
1554 } else {
1555 /* Traditional smart array way. */
1556 *bus = 0;
1557 *lun = 0;
1558 *target = lunid & 0x3fff;
1561 } else {
1562 /* physical device */
1563 if (is_hba_lunid(lunaddrbytes))
1564 if (unlikely(is_scsi_rev_5(h))) {
1565 *bus = 0; /* put p1210m ctlr at 0,0,0 */
1566 *target = 0;
1567 *lun = 0;
1568 return;
1569 } else
1570 *bus = 3; /* traditional smartarray */
1571 else
1572 *bus = 2; /* physical disk */
1573 *target = -1;
1574 *lun = -1; /* we will fill these in later. */
1579 * If there is no lun 0 on a target, linux won't find any devices.
1580 * For the MSA2xxx boxes, we have to manually detect the enclosure
1581 * which is at lun zero, as CCISS_REPORT_PHYSICAL_LUNS doesn't report
1582 * it for some reason. *tmpdevice is the target we're adding,
1583 * this_device is a pointer into the current element of currentsd[]
1584 * that we're building up in update_scsi_devices(), below.
1585 * lunzerobits is a bitmap that tracks which targets already have a
1586 * lun 0 assigned.
1587 * Returns 1 if an enclosure was added, 0 if not.
1589 static int add_msa2xxx_enclosure_device(struct ctlr_info *h,
1590 struct hpsa_scsi_dev_t *tmpdevice,
1591 struct hpsa_scsi_dev_t *this_device, u8 *lunaddrbytes,
1592 int bus, int target, int lun, unsigned long lunzerobits[],
1593 int *nmsa2xxx_enclosures)
1595 unsigned char scsi3addr[8];
1597 if (test_bit(target, lunzerobits))
1598 return 0; /* There is already a lun 0 on this target. */
1600 if (!is_logical_dev_addr_mode(lunaddrbytes))
1601 return 0; /* It's the logical targets that may lack lun 0. */
1603 if (!is_msa2xxx(h, tmpdevice))
1604 return 0; /* It's only the MSA2xxx that have this problem. */
1606 if (lun == 0) /* if lun is 0, then obviously we have a lun 0. */
1607 return 0;
1609 if (is_hba_lunid(scsi3addr))
1610 return 0; /* Don't add the RAID controller here. */
1612 if (is_scsi_rev_5(h))
1613 return 0; /* p1210m doesn't need to do this. */
1615 #define MAX_MSA2XXX_ENCLOSURES 32
1616 if (*nmsa2xxx_enclosures >= MAX_MSA2XXX_ENCLOSURES) {
1617 dev_warn(&h->pdev->dev, "Maximum number of MSA2XXX "
1618 "enclosures exceeded. Check your hardware "
1619 "configuration.");
1620 return 0;
1623 memset(scsi3addr, 0, 8);
1624 scsi3addr[3] = target;
1625 if (hpsa_update_device_info(h, scsi3addr, this_device))
1626 return 0;
1627 (*nmsa2xxx_enclosures)++;
1628 hpsa_set_bus_target_lun(this_device, bus, target, 0);
1629 set_bit(target, lunzerobits);
1630 return 1;
1634 * Do CISS_REPORT_PHYS and CISS_REPORT_LOG. Data is returned in physdev,
1635 * logdev. The number of luns in physdev and logdev are returned in
1636 * *nphysicals and *nlogicals, respectively.
1637 * Returns 0 on success, -1 otherwise.
1639 static int hpsa_gather_lun_info(struct ctlr_info *h,
1640 int reportlunsize,
1641 struct ReportLUNdata *physdev, u32 *nphysicals,
1642 struct ReportLUNdata *logdev, u32 *nlogicals)
1644 if (hpsa_scsi_do_report_phys_luns(h, physdev, reportlunsize, 0)) {
1645 dev_err(&h->pdev->dev, "report physical LUNs failed.\n");
1646 return -1;
1648 *nphysicals = be32_to_cpu(*((__be32 *)physdev->LUNListLength)) / 8;
1649 if (*nphysicals > HPSA_MAX_PHYS_LUN) {
1650 dev_warn(&h->pdev->dev, "maximum physical LUNs (%d) exceeded."
1651 " %d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1652 *nphysicals - HPSA_MAX_PHYS_LUN);
1653 *nphysicals = HPSA_MAX_PHYS_LUN;
1655 if (hpsa_scsi_do_report_log_luns(h, logdev, reportlunsize)) {
1656 dev_err(&h->pdev->dev, "report logical LUNs failed.\n");
1657 return -1;
1659 *nlogicals = be32_to_cpu(*((__be32 *) logdev->LUNListLength)) / 8;
1660 /* Reject Logicals in excess of our max capability. */
1661 if (*nlogicals > HPSA_MAX_LUN) {
1662 dev_warn(&h->pdev->dev,
1663 "maximum logical LUNs (%d) exceeded. "
1664 "%d LUNs ignored.\n", HPSA_MAX_LUN,
1665 *nlogicals - HPSA_MAX_LUN);
1666 *nlogicals = HPSA_MAX_LUN;
1668 if (*nlogicals + *nphysicals > HPSA_MAX_PHYS_LUN) {
1669 dev_warn(&h->pdev->dev,
1670 "maximum logical + physical LUNs (%d) exceeded. "
1671 "%d LUNs ignored.\n", HPSA_MAX_PHYS_LUN,
1672 *nphysicals + *nlogicals - HPSA_MAX_PHYS_LUN);
1673 *nlogicals = HPSA_MAX_PHYS_LUN - *nphysicals;
1675 return 0;
1678 u8 *figure_lunaddrbytes(struct ctlr_info *h, int raid_ctlr_position, int i,
1679 int nphysicals, int nlogicals, struct ReportLUNdata *physdev_list,
1680 struct ReportLUNdata *logdev_list)
1682 /* Helper function, figure out where the LUN ID info is coming from
1683 * given index i, lists of physical and logical devices, where in
1684 * the list the raid controller is supposed to appear (first or last)
1687 int logicals_start = nphysicals + (raid_ctlr_position == 0);
1688 int last_device = nphysicals + nlogicals + (raid_ctlr_position == 0);
1690 if (i == raid_ctlr_position)
1691 return RAID_CTLR_LUNID;
1693 if (i < logicals_start)
1694 return &physdev_list->LUN[i - (raid_ctlr_position == 0)][0];
1696 if (i < last_device)
1697 return &logdev_list->LUN[i - nphysicals -
1698 (raid_ctlr_position == 0)][0];
1699 BUG();
1700 return NULL;
1703 static void hpsa_update_scsi_devices(struct ctlr_info *h, int hostno)
1705 /* the idea here is we could get notified
1706 * that some devices have changed, so we do a report
1707 * physical luns and report logical luns cmd, and adjust
1708 * our list of devices accordingly.
1710 * The scsi3addr's of devices won't change so long as the
1711 * adapter is not reset. That means we can rescan and
1712 * tell which devices we already know about, vs. new
1713 * devices, vs. disappearing devices.
1715 struct ReportLUNdata *physdev_list = NULL;
1716 struct ReportLUNdata *logdev_list = NULL;
1717 unsigned char *inq_buff = NULL;
1718 u32 nphysicals = 0;
1719 u32 nlogicals = 0;
1720 u32 ndev_allocated = 0;
1721 struct hpsa_scsi_dev_t **currentsd, *this_device, *tmpdevice;
1722 int ncurrent = 0;
1723 int reportlunsize = sizeof(*physdev_list) + HPSA_MAX_PHYS_LUN * 8;
1724 int i, nmsa2xxx_enclosures, ndevs_to_allocate;
1725 int bus, target, lun;
1726 int raid_ctlr_position;
1727 DECLARE_BITMAP(lunzerobits, HPSA_MAX_TARGETS_PER_CTLR);
1729 currentsd = kzalloc(sizeof(*currentsd) * HPSA_MAX_SCSI_DEVS_PER_HBA,
1730 GFP_KERNEL);
1731 physdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1732 logdev_list = kzalloc(reportlunsize, GFP_KERNEL);
1733 inq_buff = kmalloc(OBDR_TAPE_INQ_SIZE, GFP_KERNEL);
1734 tmpdevice = kzalloc(sizeof(*tmpdevice), GFP_KERNEL);
1736 if (!currentsd || !physdev_list || !logdev_list ||
1737 !inq_buff || !tmpdevice) {
1738 dev_err(&h->pdev->dev, "out of memory\n");
1739 goto out;
1741 memset(lunzerobits, 0, sizeof(lunzerobits));
1743 if (hpsa_gather_lun_info(h, reportlunsize, physdev_list, &nphysicals,
1744 logdev_list, &nlogicals))
1745 goto out;
1747 /* We might see up to 32 MSA2xxx enclosures, actually 8 of them
1748 * but each of them 4 times through different paths. The plus 1
1749 * is for the RAID controller.
1751 ndevs_to_allocate = nphysicals + nlogicals + MAX_MSA2XXX_ENCLOSURES + 1;
1753 /* Allocate the per device structures */
1754 for (i = 0; i < ndevs_to_allocate; i++) {
1755 currentsd[i] = kzalloc(sizeof(*currentsd[i]), GFP_KERNEL);
1756 if (!currentsd[i]) {
1757 dev_warn(&h->pdev->dev, "out of memory at %s:%d\n",
1758 __FILE__, __LINE__);
1759 goto out;
1761 ndev_allocated++;
1764 if (unlikely(is_scsi_rev_5(h)))
1765 raid_ctlr_position = 0;
1766 else
1767 raid_ctlr_position = nphysicals + nlogicals;
1769 /* adjust our table of devices */
1770 nmsa2xxx_enclosures = 0;
1771 for (i = 0; i < nphysicals + nlogicals + 1; i++) {
1772 u8 *lunaddrbytes;
1774 /* Figure out where the LUN ID info is coming from */
1775 lunaddrbytes = figure_lunaddrbytes(h, raid_ctlr_position,
1776 i, nphysicals, nlogicals, physdev_list, logdev_list);
1777 /* skip masked physical devices. */
1778 if (lunaddrbytes[3] & 0xC0 &&
1779 i < nphysicals + (raid_ctlr_position == 0))
1780 continue;
1782 /* Get device type, vendor, model, device id */
1783 if (hpsa_update_device_info(h, lunaddrbytes, tmpdevice))
1784 continue; /* skip it if we can't talk to it. */
1785 figure_bus_target_lun(h, lunaddrbytes, &bus, &target, &lun,
1786 tmpdevice);
1787 this_device = currentsd[ncurrent];
1790 * For the msa2xxx boxes, we have to insert a LUN 0 which
1791 * doesn't show up in CCISS_REPORT_PHYSICAL data, but there
1792 * is nonetheless an enclosure device there. We have to
1793 * present that otherwise linux won't find anything if
1794 * there is no lun 0.
1796 if (add_msa2xxx_enclosure_device(h, tmpdevice, this_device,
1797 lunaddrbytes, bus, target, lun, lunzerobits,
1798 &nmsa2xxx_enclosures)) {
1799 ncurrent++;
1800 this_device = currentsd[ncurrent];
1803 *this_device = *tmpdevice;
1804 hpsa_set_bus_target_lun(this_device, bus, target, lun);
1806 switch (this_device->devtype) {
1807 case TYPE_ROM: {
1808 /* We don't *really* support actual CD-ROM devices,
1809 * just "One Button Disaster Recovery" tape drive
1810 * which temporarily pretends to be a CD-ROM drive.
1811 * So we check that the device is really an OBDR tape
1812 * device by checking for "$DR-10" in bytes 43-48 of
1813 * the inquiry data.
1815 char obdr_sig[7];
1816 #define OBDR_TAPE_SIG "$DR-10"
1817 strncpy(obdr_sig, &inq_buff[43], 6);
1818 obdr_sig[6] = '\0';
1819 if (strncmp(obdr_sig, OBDR_TAPE_SIG, 6) != 0)
1820 /* Not OBDR device, ignore it. */
1821 break;
1823 ncurrent++;
1824 break;
1825 case TYPE_DISK:
1826 if (i < nphysicals)
1827 break;
1828 ncurrent++;
1829 break;
1830 case TYPE_TAPE:
1831 case TYPE_MEDIUM_CHANGER:
1832 ncurrent++;
1833 break;
1834 case TYPE_RAID:
1835 /* Only present the Smartarray HBA as a RAID controller.
1836 * If it's a RAID controller other than the HBA itself
1837 * (an external RAID controller, MSA500 or similar)
1838 * don't present it.
1840 if (!is_hba_lunid(lunaddrbytes))
1841 break;
1842 ncurrent++;
1843 break;
1844 default:
1845 break;
1847 if (ncurrent >= HPSA_MAX_SCSI_DEVS_PER_HBA)
1848 break;
1850 adjust_hpsa_scsi_table(h, hostno, currentsd, ncurrent);
1851 out:
1852 kfree(tmpdevice);
1853 for (i = 0; i < ndev_allocated; i++)
1854 kfree(currentsd[i]);
1855 kfree(currentsd);
1856 kfree(inq_buff);
1857 kfree(physdev_list);
1858 kfree(logdev_list);
1861 /* hpsa_scatter_gather takes a struct scsi_cmnd, (cmd), and does the pci
1862 * dma mapping and fills in the scatter gather entries of the
1863 * hpsa command, cp.
1865 static int hpsa_scatter_gather(struct ctlr_info *h,
1866 struct CommandList *cp,
1867 struct scsi_cmnd *cmd)
1869 unsigned int len;
1870 struct scatterlist *sg;
1871 u64 addr64;
1872 int use_sg, i, sg_index, chained;
1873 struct SGDescriptor *curr_sg;
1875 BUG_ON(scsi_sg_count(cmd) > h->maxsgentries);
1877 use_sg = scsi_dma_map(cmd);
1878 if (use_sg < 0)
1879 return use_sg;
1881 if (!use_sg)
1882 goto sglist_finished;
1884 curr_sg = cp->SG;
1885 chained = 0;
1886 sg_index = 0;
1887 scsi_for_each_sg(cmd, sg, use_sg, i) {
1888 if (i == h->max_cmd_sg_entries - 1 &&
1889 use_sg > h->max_cmd_sg_entries) {
1890 chained = 1;
1891 curr_sg = h->cmd_sg_list[cp->cmdindex];
1892 sg_index = 0;
1894 addr64 = (u64) sg_dma_address(sg);
1895 len = sg_dma_len(sg);
1896 curr_sg->Addr.lower = (u32) (addr64 & 0x0FFFFFFFFULL);
1897 curr_sg->Addr.upper = (u32) ((addr64 >> 32) & 0x0FFFFFFFFULL);
1898 curr_sg->Len = len;
1899 curr_sg->Ext = 0; /* we are not chaining */
1900 curr_sg++;
1903 if (use_sg + chained > h->maxSG)
1904 h->maxSG = use_sg + chained;
1906 if (chained) {
1907 cp->Header.SGList = h->max_cmd_sg_entries;
1908 cp->Header.SGTotal = (u16) (use_sg + 1);
1909 hpsa_map_sg_chain_block(h, cp);
1910 return 0;
1913 sglist_finished:
1915 cp->Header.SGList = (u8) use_sg; /* no. SGs contig in this cmd */
1916 cp->Header.SGTotal = (u16) use_sg; /* total sgs in this cmd list */
1917 return 0;
1921 static int hpsa_scsi_queue_command_lck(struct scsi_cmnd *cmd,
1922 void (*done)(struct scsi_cmnd *))
1924 struct ctlr_info *h;
1925 struct hpsa_scsi_dev_t *dev;
1926 unsigned char scsi3addr[8];
1927 struct CommandList *c;
1928 unsigned long flags;
1930 /* Get the ptr to our adapter structure out of cmd->host. */
1931 h = sdev_to_hba(cmd->device);
1932 dev = cmd->device->hostdata;
1933 if (!dev) {
1934 cmd->result = DID_NO_CONNECT << 16;
1935 done(cmd);
1936 return 0;
1938 memcpy(scsi3addr, dev->scsi3addr, sizeof(scsi3addr));
1940 /* Need a lock as this is being allocated from the pool */
1941 spin_lock_irqsave(&h->lock, flags);
1942 c = cmd_alloc(h);
1943 spin_unlock_irqrestore(&h->lock, flags);
1944 if (c == NULL) { /* trouble... */
1945 dev_err(&h->pdev->dev, "cmd_alloc returned NULL!\n");
1946 return SCSI_MLQUEUE_HOST_BUSY;
1949 /* Fill in the command list header */
1951 cmd->scsi_done = done; /* save this for use by completion code */
1953 /* save c in case we have to abort it */
1954 cmd->host_scribble = (unsigned char *) c;
1956 c->cmd_type = CMD_SCSI;
1957 c->scsi_cmd = cmd;
1958 c->Header.ReplyQueue = 0; /* unused in simple mode */
1959 memcpy(&c->Header.LUN.LunAddrBytes[0], &scsi3addr[0], 8);
1960 c->Header.Tag.lower = (c->cmdindex << DIRECT_LOOKUP_SHIFT);
1961 c->Header.Tag.lower |= DIRECT_LOOKUP_BIT;
1963 /* Fill in the request block... */
1965 c->Request.Timeout = 0;
1966 memset(c->Request.CDB, 0, sizeof(c->Request.CDB));
1967 BUG_ON(cmd->cmd_len > sizeof(c->Request.CDB));
1968 c->Request.CDBLen = cmd->cmd_len;
1969 memcpy(c->Request.CDB, cmd->cmnd, cmd->cmd_len);
1970 c->Request.Type.Type = TYPE_CMD;
1971 c->Request.Type.Attribute = ATTR_SIMPLE;
1972 switch (cmd->sc_data_direction) {
1973 case DMA_TO_DEVICE:
1974 c->Request.Type.Direction = XFER_WRITE;
1975 break;
1976 case DMA_FROM_DEVICE:
1977 c->Request.Type.Direction = XFER_READ;
1978 break;
1979 case DMA_NONE:
1980 c->Request.Type.Direction = XFER_NONE;
1981 break;
1982 case DMA_BIDIRECTIONAL:
1983 /* This can happen if a buggy application does a scsi passthru
1984 * and sets both inlen and outlen to non-zero. ( see
1985 * ../scsi/scsi_ioctl.c:scsi_ioctl_send_command() )
1988 c->Request.Type.Direction = XFER_RSVD;
1989 /* This is technically wrong, and hpsa controllers should
1990 * reject it with CMD_INVALID, which is the most correct
1991 * response, but non-fibre backends appear to let it
1992 * slide by, and give the same results as if this field
1993 * were set correctly. Either way is acceptable for
1994 * our purposes here.
1997 break;
1999 default:
2000 dev_err(&h->pdev->dev, "unknown data direction: %d\n",
2001 cmd->sc_data_direction);
2002 BUG();
2003 break;
2006 if (hpsa_scatter_gather(h, c, cmd) < 0) { /* Fill SG list */
2007 cmd_free(h, c);
2008 return SCSI_MLQUEUE_HOST_BUSY;
2010 enqueue_cmd_and_start_io(h, c);
2011 /* the cmd'll come back via intr handler in complete_scsi_command() */
2012 return 0;
2015 static DEF_SCSI_QCMD(hpsa_scsi_queue_command)
2017 static void hpsa_scan_start(struct Scsi_Host *sh)
2019 struct ctlr_info *h = shost_to_hba(sh);
2020 unsigned long flags;
2022 /* wait until any scan already in progress is finished. */
2023 while (1) {
2024 spin_lock_irqsave(&h->scan_lock, flags);
2025 if (h->scan_finished)
2026 break;
2027 spin_unlock_irqrestore(&h->scan_lock, flags);
2028 wait_event(h->scan_wait_queue, h->scan_finished);
2029 /* Note: We don't need to worry about a race between this
2030 * thread and driver unload because the midlayer will
2031 * have incremented the reference count, so unload won't
2032 * happen if we're in here.
2035 h->scan_finished = 0; /* mark scan as in progress */
2036 spin_unlock_irqrestore(&h->scan_lock, flags);
2038 hpsa_update_scsi_devices(h, h->scsi_host->host_no);
2040 spin_lock_irqsave(&h->scan_lock, flags);
2041 h->scan_finished = 1; /* mark scan as finished. */
2042 wake_up_all(&h->scan_wait_queue);
2043 spin_unlock_irqrestore(&h->scan_lock, flags);
2046 static int hpsa_scan_finished(struct Scsi_Host *sh,
2047 unsigned long elapsed_time)
2049 struct ctlr_info *h = shost_to_hba(sh);
2050 unsigned long flags;
2051 int finished;
2053 spin_lock_irqsave(&h->scan_lock, flags);
2054 finished = h->scan_finished;
2055 spin_unlock_irqrestore(&h->scan_lock, flags);
2056 return finished;
2059 static int hpsa_change_queue_depth(struct scsi_device *sdev,
2060 int qdepth, int reason)
2062 struct ctlr_info *h = sdev_to_hba(sdev);
2064 if (reason != SCSI_QDEPTH_DEFAULT)
2065 return -ENOTSUPP;
2067 if (qdepth < 1)
2068 qdepth = 1;
2069 else
2070 if (qdepth > h->nr_cmds)
2071 qdepth = h->nr_cmds;
2072 scsi_adjust_queue_depth(sdev, scsi_get_tag_type(sdev), qdepth);
2073 return sdev->queue_depth;
2076 static void hpsa_unregister_scsi(struct ctlr_info *h)
2078 /* we are being forcibly unloaded, and may not refuse. */
2079 scsi_remove_host(h->scsi_host);
2080 scsi_host_put(h->scsi_host);
2081 h->scsi_host = NULL;
2084 static int hpsa_register_scsi(struct ctlr_info *h)
2086 int rc;
2088 rc = hpsa_scsi_detect(h);
2089 if (rc != 0)
2090 dev_err(&h->pdev->dev, "hpsa_register_scsi: failed"
2091 " hpsa_scsi_detect(), rc is %d\n", rc);
2092 return rc;
2095 static int wait_for_device_to_become_ready(struct ctlr_info *h,
2096 unsigned char lunaddr[])
2098 int rc = 0;
2099 int count = 0;
2100 int waittime = 1; /* seconds */
2101 struct CommandList *c;
2103 c = cmd_special_alloc(h);
2104 if (!c) {
2105 dev_warn(&h->pdev->dev, "out of memory in "
2106 "wait_for_device_to_become_ready.\n");
2107 return IO_ERROR;
2110 /* Send test unit ready until device ready, or give up. */
2111 while (count < HPSA_TUR_RETRY_LIMIT) {
2113 /* Wait for a bit. do this first, because if we send
2114 * the TUR right away, the reset will just abort it.
2116 msleep(1000 * waittime);
2117 count++;
2119 /* Increase wait time with each try, up to a point. */
2120 if (waittime < HPSA_MAX_WAIT_INTERVAL_SECS)
2121 waittime = waittime * 2;
2123 /* Send the Test Unit Ready */
2124 fill_cmd(c, TEST_UNIT_READY, h, NULL, 0, 0, lunaddr, TYPE_CMD);
2125 hpsa_scsi_do_simple_cmd_core(h, c);
2126 /* no unmap needed here because no data xfer. */
2128 if (c->err_info->CommandStatus == CMD_SUCCESS)
2129 break;
2131 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2132 c->err_info->ScsiStatus == SAM_STAT_CHECK_CONDITION &&
2133 (c->err_info->SenseInfo[2] == NO_SENSE ||
2134 c->err_info->SenseInfo[2] == UNIT_ATTENTION))
2135 break;
2137 dev_warn(&h->pdev->dev, "waiting %d secs "
2138 "for device to become ready.\n", waittime);
2139 rc = 1; /* device not ready. */
2142 if (rc)
2143 dev_warn(&h->pdev->dev, "giving up on device.\n");
2144 else
2145 dev_warn(&h->pdev->dev, "device is ready.\n");
2147 cmd_special_free(h, c);
2148 return rc;
2151 /* Need at least one of these error handlers to keep ../scsi/hosts.c from
2152 * complaining. Doing a host- or bus-reset can't do anything good here.
2154 static int hpsa_eh_device_reset_handler(struct scsi_cmnd *scsicmd)
2156 int rc;
2157 struct ctlr_info *h;
2158 struct hpsa_scsi_dev_t *dev;
2160 /* find the controller to which the command to be aborted was sent */
2161 h = sdev_to_hba(scsicmd->device);
2162 if (h == NULL) /* paranoia */
2163 return FAILED;
2164 dev = scsicmd->device->hostdata;
2165 if (!dev) {
2166 dev_err(&h->pdev->dev, "hpsa_eh_device_reset_handler: "
2167 "device lookup failed.\n");
2168 return FAILED;
2170 dev_warn(&h->pdev->dev, "resetting device %d:%d:%d:%d\n",
2171 h->scsi_host->host_no, dev->bus, dev->target, dev->lun);
2172 /* send a reset to the SCSI LUN which the command was sent to */
2173 rc = hpsa_send_reset(h, dev->scsi3addr);
2174 if (rc == 0 && wait_for_device_to_become_ready(h, dev->scsi3addr) == 0)
2175 return SUCCESS;
2177 dev_warn(&h->pdev->dev, "resetting device failed.\n");
2178 return FAILED;
2182 * For operations that cannot sleep, a command block is allocated at init,
2183 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
2184 * which ones are free or in use. Lock must be held when calling this.
2185 * cmd_free() is the complement.
2187 static struct CommandList *cmd_alloc(struct ctlr_info *h)
2189 struct CommandList *c;
2190 int i;
2191 union u64bit temp64;
2192 dma_addr_t cmd_dma_handle, err_dma_handle;
2194 do {
2195 i = find_first_zero_bit(h->cmd_pool_bits, h->nr_cmds);
2196 if (i == h->nr_cmds)
2197 return NULL;
2198 } while (test_and_set_bit
2199 (i & (BITS_PER_LONG - 1),
2200 h->cmd_pool_bits + (i / BITS_PER_LONG)) != 0);
2201 c = h->cmd_pool + i;
2202 memset(c, 0, sizeof(*c));
2203 cmd_dma_handle = h->cmd_pool_dhandle
2204 + i * sizeof(*c);
2205 c->err_info = h->errinfo_pool + i;
2206 memset(c->err_info, 0, sizeof(*c->err_info));
2207 err_dma_handle = h->errinfo_pool_dhandle
2208 + i * sizeof(*c->err_info);
2209 h->nr_allocs++;
2211 c->cmdindex = i;
2213 INIT_HLIST_NODE(&c->list);
2214 c->busaddr = (u32) cmd_dma_handle;
2215 temp64.val = (u64) err_dma_handle;
2216 c->ErrDesc.Addr.lower = temp64.val32.lower;
2217 c->ErrDesc.Addr.upper = temp64.val32.upper;
2218 c->ErrDesc.Len = sizeof(*c->err_info);
2220 c->h = h;
2221 return c;
2224 /* For operations that can wait for kmalloc to possibly sleep,
2225 * this routine can be called. Lock need not be held to call
2226 * cmd_special_alloc. cmd_special_free() is the complement.
2228 static struct CommandList *cmd_special_alloc(struct ctlr_info *h)
2230 struct CommandList *c;
2231 union u64bit temp64;
2232 dma_addr_t cmd_dma_handle, err_dma_handle;
2234 c = pci_alloc_consistent(h->pdev, sizeof(*c), &cmd_dma_handle);
2235 if (c == NULL)
2236 return NULL;
2237 memset(c, 0, sizeof(*c));
2239 c->cmdindex = -1;
2241 c->err_info = pci_alloc_consistent(h->pdev, sizeof(*c->err_info),
2242 &err_dma_handle);
2244 if (c->err_info == NULL) {
2245 pci_free_consistent(h->pdev,
2246 sizeof(*c), c, cmd_dma_handle);
2247 return NULL;
2249 memset(c->err_info, 0, sizeof(*c->err_info));
2251 INIT_HLIST_NODE(&c->list);
2252 c->busaddr = (u32) cmd_dma_handle;
2253 temp64.val = (u64) err_dma_handle;
2254 c->ErrDesc.Addr.lower = temp64.val32.lower;
2255 c->ErrDesc.Addr.upper = temp64.val32.upper;
2256 c->ErrDesc.Len = sizeof(*c->err_info);
2258 c->h = h;
2259 return c;
2262 static void cmd_free(struct ctlr_info *h, struct CommandList *c)
2264 int i;
2266 i = c - h->cmd_pool;
2267 clear_bit(i & (BITS_PER_LONG - 1),
2268 h->cmd_pool_bits + (i / BITS_PER_LONG));
2269 h->nr_frees++;
2272 static void cmd_special_free(struct ctlr_info *h, struct CommandList *c)
2274 union u64bit temp64;
2276 temp64.val32.lower = c->ErrDesc.Addr.lower;
2277 temp64.val32.upper = c->ErrDesc.Addr.upper;
2278 pci_free_consistent(h->pdev, sizeof(*c->err_info),
2279 c->err_info, (dma_addr_t) temp64.val);
2280 pci_free_consistent(h->pdev, sizeof(*c),
2281 c, (dma_addr_t) c->busaddr);
2284 #ifdef CONFIG_COMPAT
2286 static int hpsa_ioctl32_passthru(struct scsi_device *dev, int cmd, void *arg)
2288 IOCTL32_Command_struct __user *arg32 =
2289 (IOCTL32_Command_struct __user *) arg;
2290 IOCTL_Command_struct arg64;
2291 IOCTL_Command_struct __user *p = compat_alloc_user_space(sizeof(arg64));
2292 int err;
2293 u32 cp;
2295 err = 0;
2296 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2297 sizeof(arg64.LUN_info));
2298 err |= copy_from_user(&arg64.Request, &arg32->Request,
2299 sizeof(arg64.Request));
2300 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2301 sizeof(arg64.error_info));
2302 err |= get_user(arg64.buf_size, &arg32->buf_size);
2303 err |= get_user(cp, &arg32->buf);
2304 arg64.buf = compat_ptr(cp);
2305 err |= copy_to_user(p, &arg64, sizeof(arg64));
2307 if (err)
2308 return -EFAULT;
2310 err = hpsa_ioctl(dev, CCISS_PASSTHRU, (void *)p);
2311 if (err)
2312 return err;
2313 err |= copy_in_user(&arg32->error_info, &p->error_info,
2314 sizeof(arg32->error_info));
2315 if (err)
2316 return -EFAULT;
2317 return err;
2320 static int hpsa_ioctl32_big_passthru(struct scsi_device *dev,
2321 int cmd, void *arg)
2323 BIG_IOCTL32_Command_struct __user *arg32 =
2324 (BIG_IOCTL32_Command_struct __user *) arg;
2325 BIG_IOCTL_Command_struct arg64;
2326 BIG_IOCTL_Command_struct __user *p =
2327 compat_alloc_user_space(sizeof(arg64));
2328 int err;
2329 u32 cp;
2331 err = 0;
2332 err |= copy_from_user(&arg64.LUN_info, &arg32->LUN_info,
2333 sizeof(arg64.LUN_info));
2334 err |= copy_from_user(&arg64.Request, &arg32->Request,
2335 sizeof(arg64.Request));
2336 err |= copy_from_user(&arg64.error_info, &arg32->error_info,
2337 sizeof(arg64.error_info));
2338 err |= get_user(arg64.buf_size, &arg32->buf_size);
2339 err |= get_user(arg64.malloc_size, &arg32->malloc_size);
2340 err |= get_user(cp, &arg32->buf);
2341 arg64.buf = compat_ptr(cp);
2342 err |= copy_to_user(p, &arg64, sizeof(arg64));
2344 if (err)
2345 return -EFAULT;
2347 err = hpsa_ioctl(dev, CCISS_BIG_PASSTHRU, (void *)p);
2348 if (err)
2349 return err;
2350 err |= copy_in_user(&arg32->error_info, &p->error_info,
2351 sizeof(arg32->error_info));
2352 if (err)
2353 return -EFAULT;
2354 return err;
2357 static int hpsa_compat_ioctl(struct scsi_device *dev, int cmd, void *arg)
2359 switch (cmd) {
2360 case CCISS_GETPCIINFO:
2361 case CCISS_GETINTINFO:
2362 case CCISS_SETINTINFO:
2363 case CCISS_GETNODENAME:
2364 case CCISS_SETNODENAME:
2365 case CCISS_GETHEARTBEAT:
2366 case CCISS_GETBUSTYPES:
2367 case CCISS_GETFIRMVER:
2368 case CCISS_GETDRIVVER:
2369 case CCISS_REVALIDVOLS:
2370 case CCISS_DEREGDISK:
2371 case CCISS_REGNEWDISK:
2372 case CCISS_REGNEWD:
2373 case CCISS_RESCANDISK:
2374 case CCISS_GETLUNINFO:
2375 return hpsa_ioctl(dev, cmd, arg);
2377 case CCISS_PASSTHRU32:
2378 return hpsa_ioctl32_passthru(dev, cmd, arg);
2379 case CCISS_BIG_PASSTHRU32:
2380 return hpsa_ioctl32_big_passthru(dev, cmd, arg);
2382 default:
2383 return -ENOIOCTLCMD;
2386 #endif
2388 static int hpsa_getpciinfo_ioctl(struct ctlr_info *h, void __user *argp)
2390 struct hpsa_pci_info pciinfo;
2392 if (!argp)
2393 return -EINVAL;
2394 pciinfo.domain = pci_domain_nr(h->pdev->bus);
2395 pciinfo.bus = h->pdev->bus->number;
2396 pciinfo.dev_fn = h->pdev->devfn;
2397 pciinfo.board_id = h->board_id;
2398 if (copy_to_user(argp, &pciinfo, sizeof(pciinfo)))
2399 return -EFAULT;
2400 return 0;
2403 static int hpsa_getdrivver_ioctl(struct ctlr_info *h, void __user *argp)
2405 DriverVer_type DriverVer;
2406 unsigned char vmaj, vmin, vsubmin;
2407 int rc;
2409 rc = sscanf(HPSA_DRIVER_VERSION, "%hhu.%hhu.%hhu",
2410 &vmaj, &vmin, &vsubmin);
2411 if (rc != 3) {
2412 dev_info(&h->pdev->dev, "driver version string '%s' "
2413 "unrecognized.", HPSA_DRIVER_VERSION);
2414 vmaj = 0;
2415 vmin = 0;
2416 vsubmin = 0;
2418 DriverVer = (vmaj << 16) | (vmin << 8) | vsubmin;
2419 if (!argp)
2420 return -EINVAL;
2421 if (copy_to_user(argp, &DriverVer, sizeof(DriverVer_type)))
2422 return -EFAULT;
2423 return 0;
2426 static int hpsa_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2428 IOCTL_Command_struct iocommand;
2429 struct CommandList *c;
2430 char *buff = NULL;
2431 union u64bit temp64;
2433 if (!argp)
2434 return -EINVAL;
2435 if (!capable(CAP_SYS_RAWIO))
2436 return -EPERM;
2437 if (copy_from_user(&iocommand, argp, sizeof(iocommand)))
2438 return -EFAULT;
2439 if ((iocommand.buf_size < 1) &&
2440 (iocommand.Request.Type.Direction != XFER_NONE)) {
2441 return -EINVAL;
2443 if (iocommand.buf_size > 0) {
2444 buff = kmalloc(iocommand.buf_size, GFP_KERNEL);
2445 if (buff == NULL)
2446 return -EFAULT;
2448 if (iocommand.Request.Type.Direction == XFER_WRITE) {
2449 /* Copy the data into the buffer we created */
2450 if (copy_from_user(buff, iocommand.buf, iocommand.buf_size)) {
2451 kfree(buff);
2452 return -EFAULT;
2454 } else
2455 memset(buff, 0, iocommand.buf_size);
2456 c = cmd_special_alloc(h);
2457 if (c == NULL) {
2458 kfree(buff);
2459 return -ENOMEM;
2461 /* Fill in the command type */
2462 c->cmd_type = CMD_IOCTL_PEND;
2463 /* Fill in Command Header */
2464 c->Header.ReplyQueue = 0; /* unused in simple mode */
2465 if (iocommand.buf_size > 0) { /* buffer to fill */
2466 c->Header.SGList = 1;
2467 c->Header.SGTotal = 1;
2468 } else { /* no buffers to fill */
2469 c->Header.SGList = 0;
2470 c->Header.SGTotal = 0;
2472 memcpy(&c->Header.LUN, &iocommand.LUN_info, sizeof(c->Header.LUN));
2473 /* use the kernel address the cmd block for tag */
2474 c->Header.Tag.lower = c->busaddr;
2476 /* Fill in Request block */
2477 memcpy(&c->Request, &iocommand.Request,
2478 sizeof(c->Request));
2480 /* Fill in the scatter gather information */
2481 if (iocommand.buf_size > 0) {
2482 temp64.val = pci_map_single(h->pdev, buff,
2483 iocommand.buf_size, PCI_DMA_BIDIRECTIONAL);
2484 c->SG[0].Addr.lower = temp64.val32.lower;
2485 c->SG[0].Addr.upper = temp64.val32.upper;
2486 c->SG[0].Len = iocommand.buf_size;
2487 c->SG[0].Ext = 0; /* we are not chaining*/
2489 hpsa_scsi_do_simple_cmd_core(h, c);
2490 hpsa_pci_unmap(h->pdev, c, 1, PCI_DMA_BIDIRECTIONAL);
2491 check_ioctl_unit_attention(h, c);
2493 /* Copy the error information out */
2494 memcpy(&iocommand.error_info, c->err_info,
2495 sizeof(iocommand.error_info));
2496 if (copy_to_user(argp, &iocommand, sizeof(iocommand))) {
2497 kfree(buff);
2498 cmd_special_free(h, c);
2499 return -EFAULT;
2502 if (iocommand.Request.Type.Direction == XFER_READ) {
2503 /* Copy the data out of the buffer we created */
2504 if (copy_to_user(iocommand.buf, buff, iocommand.buf_size)) {
2505 kfree(buff);
2506 cmd_special_free(h, c);
2507 return -EFAULT;
2510 kfree(buff);
2511 cmd_special_free(h, c);
2512 return 0;
2515 static int hpsa_big_passthru_ioctl(struct ctlr_info *h, void __user *argp)
2517 BIG_IOCTL_Command_struct *ioc;
2518 struct CommandList *c;
2519 unsigned char **buff = NULL;
2520 int *buff_size = NULL;
2521 union u64bit temp64;
2522 BYTE sg_used = 0;
2523 int status = 0;
2524 int i;
2525 u32 left;
2526 u32 sz;
2527 BYTE __user *data_ptr;
2529 if (!argp)
2530 return -EINVAL;
2531 if (!capable(CAP_SYS_RAWIO))
2532 return -EPERM;
2533 ioc = (BIG_IOCTL_Command_struct *)
2534 kmalloc(sizeof(*ioc), GFP_KERNEL);
2535 if (!ioc) {
2536 status = -ENOMEM;
2537 goto cleanup1;
2539 if (copy_from_user(ioc, argp, sizeof(*ioc))) {
2540 status = -EFAULT;
2541 goto cleanup1;
2543 if ((ioc->buf_size < 1) &&
2544 (ioc->Request.Type.Direction != XFER_NONE)) {
2545 status = -EINVAL;
2546 goto cleanup1;
2548 /* Check kmalloc limits using all SGs */
2549 if (ioc->malloc_size > MAX_KMALLOC_SIZE) {
2550 status = -EINVAL;
2551 goto cleanup1;
2553 if (ioc->buf_size > ioc->malloc_size * MAXSGENTRIES) {
2554 status = -EINVAL;
2555 goto cleanup1;
2557 buff = kzalloc(MAXSGENTRIES * sizeof(char *), GFP_KERNEL);
2558 if (!buff) {
2559 status = -ENOMEM;
2560 goto cleanup1;
2562 buff_size = kmalloc(MAXSGENTRIES * sizeof(int), GFP_KERNEL);
2563 if (!buff_size) {
2564 status = -ENOMEM;
2565 goto cleanup1;
2567 left = ioc->buf_size;
2568 data_ptr = ioc->buf;
2569 while (left) {
2570 sz = (left > ioc->malloc_size) ? ioc->malloc_size : left;
2571 buff_size[sg_used] = sz;
2572 buff[sg_used] = kmalloc(sz, GFP_KERNEL);
2573 if (buff[sg_used] == NULL) {
2574 status = -ENOMEM;
2575 goto cleanup1;
2577 if (ioc->Request.Type.Direction == XFER_WRITE) {
2578 if (copy_from_user(buff[sg_used], data_ptr, sz)) {
2579 status = -ENOMEM;
2580 goto cleanup1;
2582 } else
2583 memset(buff[sg_used], 0, sz);
2584 left -= sz;
2585 data_ptr += sz;
2586 sg_used++;
2588 c = cmd_special_alloc(h);
2589 if (c == NULL) {
2590 status = -ENOMEM;
2591 goto cleanup1;
2593 c->cmd_type = CMD_IOCTL_PEND;
2594 c->Header.ReplyQueue = 0;
2596 if (ioc->buf_size > 0) {
2597 c->Header.SGList = sg_used;
2598 c->Header.SGTotal = sg_used;
2599 } else {
2600 c->Header.SGList = 0;
2601 c->Header.SGTotal = 0;
2603 memcpy(&c->Header.LUN, &ioc->LUN_info, sizeof(c->Header.LUN));
2604 c->Header.Tag.lower = c->busaddr;
2605 memcpy(&c->Request, &ioc->Request, sizeof(c->Request));
2606 if (ioc->buf_size > 0) {
2607 int i;
2608 for (i = 0; i < sg_used; i++) {
2609 temp64.val = pci_map_single(h->pdev, buff[i],
2610 buff_size[i], PCI_DMA_BIDIRECTIONAL);
2611 c->SG[i].Addr.lower = temp64.val32.lower;
2612 c->SG[i].Addr.upper = temp64.val32.upper;
2613 c->SG[i].Len = buff_size[i];
2614 /* we are not chaining */
2615 c->SG[i].Ext = 0;
2618 hpsa_scsi_do_simple_cmd_core(h, c);
2619 hpsa_pci_unmap(h->pdev, c, sg_used, PCI_DMA_BIDIRECTIONAL);
2620 check_ioctl_unit_attention(h, c);
2621 /* Copy the error information out */
2622 memcpy(&ioc->error_info, c->err_info, sizeof(ioc->error_info));
2623 if (copy_to_user(argp, ioc, sizeof(*ioc))) {
2624 cmd_special_free(h, c);
2625 status = -EFAULT;
2626 goto cleanup1;
2628 if (ioc->Request.Type.Direction == XFER_READ) {
2629 /* Copy the data out of the buffer we created */
2630 BYTE __user *ptr = ioc->buf;
2631 for (i = 0; i < sg_used; i++) {
2632 if (copy_to_user(ptr, buff[i], buff_size[i])) {
2633 cmd_special_free(h, c);
2634 status = -EFAULT;
2635 goto cleanup1;
2637 ptr += buff_size[i];
2640 cmd_special_free(h, c);
2641 status = 0;
2642 cleanup1:
2643 if (buff) {
2644 for (i = 0; i < sg_used; i++)
2645 kfree(buff[i]);
2646 kfree(buff);
2648 kfree(buff_size);
2649 kfree(ioc);
2650 return status;
2653 static void check_ioctl_unit_attention(struct ctlr_info *h,
2654 struct CommandList *c)
2656 if (c->err_info->CommandStatus == CMD_TARGET_STATUS &&
2657 c->err_info->ScsiStatus != SAM_STAT_CHECK_CONDITION)
2658 (void) check_for_unit_attention(h, c);
2661 * ioctl
2663 static int hpsa_ioctl(struct scsi_device *dev, int cmd, void *arg)
2665 struct ctlr_info *h;
2666 void __user *argp = (void __user *)arg;
2668 h = sdev_to_hba(dev);
2670 switch (cmd) {
2671 case CCISS_DEREGDISK:
2672 case CCISS_REGNEWDISK:
2673 case CCISS_REGNEWD:
2674 hpsa_scan_start(h->scsi_host);
2675 return 0;
2676 case CCISS_GETPCIINFO:
2677 return hpsa_getpciinfo_ioctl(h, argp);
2678 case CCISS_GETDRIVVER:
2679 return hpsa_getdrivver_ioctl(h, argp);
2680 case CCISS_PASSTHRU:
2681 return hpsa_passthru_ioctl(h, argp);
2682 case CCISS_BIG_PASSTHRU:
2683 return hpsa_big_passthru_ioctl(h, argp);
2684 default:
2685 return -ENOTTY;
2689 static void fill_cmd(struct CommandList *c, u8 cmd, struct ctlr_info *h,
2690 void *buff, size_t size, u8 page_code, unsigned char *scsi3addr,
2691 int cmd_type)
2693 int pci_dir = XFER_NONE;
2695 c->cmd_type = CMD_IOCTL_PEND;
2696 c->Header.ReplyQueue = 0;
2697 if (buff != NULL && size > 0) {
2698 c->Header.SGList = 1;
2699 c->Header.SGTotal = 1;
2700 } else {
2701 c->Header.SGList = 0;
2702 c->Header.SGTotal = 0;
2704 c->Header.Tag.lower = c->busaddr;
2705 memcpy(c->Header.LUN.LunAddrBytes, scsi3addr, 8);
2707 c->Request.Type.Type = cmd_type;
2708 if (cmd_type == TYPE_CMD) {
2709 switch (cmd) {
2710 case HPSA_INQUIRY:
2711 /* are we trying to read a vital product page */
2712 if (page_code != 0) {
2713 c->Request.CDB[1] = 0x01;
2714 c->Request.CDB[2] = page_code;
2716 c->Request.CDBLen = 6;
2717 c->Request.Type.Attribute = ATTR_SIMPLE;
2718 c->Request.Type.Direction = XFER_READ;
2719 c->Request.Timeout = 0;
2720 c->Request.CDB[0] = HPSA_INQUIRY;
2721 c->Request.CDB[4] = size & 0xFF;
2722 break;
2723 case HPSA_REPORT_LOG:
2724 case HPSA_REPORT_PHYS:
2725 /* Talking to controller so It's a physical command
2726 mode = 00 target = 0. Nothing to write.
2728 c->Request.CDBLen = 12;
2729 c->Request.Type.Attribute = ATTR_SIMPLE;
2730 c->Request.Type.Direction = XFER_READ;
2731 c->Request.Timeout = 0;
2732 c->Request.CDB[0] = cmd;
2733 c->Request.CDB[6] = (size >> 24) & 0xFF; /* MSB */
2734 c->Request.CDB[7] = (size >> 16) & 0xFF;
2735 c->Request.CDB[8] = (size >> 8) & 0xFF;
2736 c->Request.CDB[9] = size & 0xFF;
2737 break;
2738 case HPSA_CACHE_FLUSH:
2739 c->Request.CDBLen = 12;
2740 c->Request.Type.Attribute = ATTR_SIMPLE;
2741 c->Request.Type.Direction = XFER_WRITE;
2742 c->Request.Timeout = 0;
2743 c->Request.CDB[0] = BMIC_WRITE;
2744 c->Request.CDB[6] = BMIC_CACHE_FLUSH;
2745 break;
2746 case TEST_UNIT_READY:
2747 c->Request.CDBLen = 6;
2748 c->Request.Type.Attribute = ATTR_SIMPLE;
2749 c->Request.Type.Direction = XFER_NONE;
2750 c->Request.Timeout = 0;
2751 break;
2752 default:
2753 dev_warn(&h->pdev->dev, "unknown command 0x%c\n", cmd);
2754 BUG();
2755 return;
2757 } else if (cmd_type == TYPE_MSG) {
2758 switch (cmd) {
2760 case HPSA_DEVICE_RESET_MSG:
2761 c->Request.CDBLen = 16;
2762 c->Request.Type.Type = 1; /* It is a MSG not a CMD */
2763 c->Request.Type.Attribute = ATTR_SIMPLE;
2764 c->Request.Type.Direction = XFER_NONE;
2765 c->Request.Timeout = 0; /* Don't time out */
2766 c->Request.CDB[0] = 0x01; /* RESET_MSG is 0x01 */
2767 c->Request.CDB[1] = 0x03; /* Reset target above */
2768 /* If bytes 4-7 are zero, it means reset the */
2769 /* LunID device */
2770 c->Request.CDB[4] = 0x00;
2771 c->Request.CDB[5] = 0x00;
2772 c->Request.CDB[6] = 0x00;
2773 c->Request.CDB[7] = 0x00;
2774 break;
2776 default:
2777 dev_warn(&h->pdev->dev, "unknown message type %d\n",
2778 cmd);
2779 BUG();
2781 } else {
2782 dev_warn(&h->pdev->dev, "unknown command type %d\n", cmd_type);
2783 BUG();
2786 switch (c->Request.Type.Direction) {
2787 case XFER_READ:
2788 pci_dir = PCI_DMA_FROMDEVICE;
2789 break;
2790 case XFER_WRITE:
2791 pci_dir = PCI_DMA_TODEVICE;
2792 break;
2793 case XFER_NONE:
2794 pci_dir = PCI_DMA_NONE;
2795 break;
2796 default:
2797 pci_dir = PCI_DMA_BIDIRECTIONAL;
2800 hpsa_map_one(h->pdev, c, buff, size, pci_dir);
2802 return;
2806 * Map (physical) PCI mem into (virtual) kernel space
2808 static void __iomem *remap_pci_mem(ulong base, ulong size)
2810 ulong page_base = ((ulong) base) & PAGE_MASK;
2811 ulong page_offs = ((ulong) base) - page_base;
2812 void __iomem *page_remapped = ioremap(page_base, page_offs + size);
2814 return page_remapped ? (page_remapped + page_offs) : NULL;
2817 /* Takes cmds off the submission queue and sends them to the hardware,
2818 * then puts them on the queue of cmds waiting for completion.
2820 static void start_io(struct ctlr_info *h)
2822 struct CommandList *c;
2824 while (!hlist_empty(&h->reqQ)) {
2825 c = hlist_entry(h->reqQ.first, struct CommandList, list);
2826 /* can't do anything if fifo is full */
2827 if ((h->access.fifo_full(h))) {
2828 dev_warn(&h->pdev->dev, "fifo full\n");
2829 break;
2832 /* Get the first entry from the Request Q */
2833 removeQ(c);
2834 h->Qdepth--;
2836 /* Tell the controller execute command */
2837 h->access.submit_command(h, c);
2839 /* Put job onto the completed Q */
2840 addQ(&h->cmpQ, c);
2844 static inline unsigned long get_next_completion(struct ctlr_info *h)
2846 return h->access.command_completed(h);
2849 static inline bool interrupt_pending(struct ctlr_info *h)
2851 return h->access.intr_pending(h);
2854 static inline long interrupt_not_for_us(struct ctlr_info *h)
2856 return (h->access.intr_pending(h) == 0) ||
2857 (h->interrupts_enabled == 0);
2860 static inline int bad_tag(struct ctlr_info *h, u32 tag_index,
2861 u32 raw_tag)
2863 if (unlikely(tag_index >= h->nr_cmds)) {
2864 dev_warn(&h->pdev->dev, "bad tag 0x%08x ignored.\n", raw_tag);
2865 return 1;
2867 return 0;
2870 static inline void finish_cmd(struct CommandList *c, u32 raw_tag)
2872 removeQ(c);
2873 if (likely(c->cmd_type == CMD_SCSI))
2874 complete_scsi_command(c, 0, raw_tag);
2875 else if (c->cmd_type == CMD_IOCTL_PEND)
2876 complete(c->waiting);
2879 static inline u32 hpsa_tag_contains_index(u32 tag)
2881 #define DIRECT_LOOKUP_BIT 0x10
2882 return tag & DIRECT_LOOKUP_BIT;
2885 static inline u32 hpsa_tag_to_index(u32 tag)
2887 #define DIRECT_LOOKUP_SHIFT 5
2888 return tag >> DIRECT_LOOKUP_SHIFT;
2891 static inline u32 hpsa_tag_discard_error_bits(u32 tag)
2893 #define HPSA_ERROR_BITS 0x03
2894 return tag & ~HPSA_ERROR_BITS;
2897 /* process completion of an indexed ("direct lookup") command */
2898 static inline u32 process_indexed_cmd(struct ctlr_info *h,
2899 u32 raw_tag)
2901 u32 tag_index;
2902 struct CommandList *c;
2904 tag_index = hpsa_tag_to_index(raw_tag);
2905 if (bad_tag(h, tag_index, raw_tag))
2906 return next_command(h);
2907 c = h->cmd_pool + tag_index;
2908 finish_cmd(c, raw_tag);
2909 return next_command(h);
2912 /* process completion of a non-indexed command */
2913 static inline u32 process_nonindexed_cmd(struct ctlr_info *h,
2914 u32 raw_tag)
2916 u32 tag;
2917 struct CommandList *c = NULL;
2918 struct hlist_node *tmp;
2920 tag = hpsa_tag_discard_error_bits(raw_tag);
2921 hlist_for_each_entry(c, tmp, &h->cmpQ, list) {
2922 if ((c->busaddr & 0xFFFFFFE0) == (tag & 0xFFFFFFE0)) {
2923 finish_cmd(c, raw_tag);
2924 return next_command(h);
2927 bad_tag(h, h->nr_cmds + 1, raw_tag);
2928 return next_command(h);
2931 static irqreturn_t do_hpsa_intr_intx(int irq, void *dev_id)
2933 struct ctlr_info *h = dev_id;
2934 unsigned long flags;
2935 u32 raw_tag;
2937 if (interrupt_not_for_us(h))
2938 return IRQ_NONE;
2939 spin_lock_irqsave(&h->lock, flags);
2940 while (interrupt_pending(h)) {
2941 raw_tag = get_next_completion(h);
2942 while (raw_tag != FIFO_EMPTY) {
2943 if (hpsa_tag_contains_index(raw_tag))
2944 raw_tag = process_indexed_cmd(h, raw_tag);
2945 else
2946 raw_tag = process_nonindexed_cmd(h, raw_tag);
2949 spin_unlock_irqrestore(&h->lock, flags);
2950 return IRQ_HANDLED;
2953 static irqreturn_t do_hpsa_intr_msi(int irq, void *dev_id)
2955 struct ctlr_info *h = dev_id;
2956 unsigned long flags;
2957 u32 raw_tag;
2959 spin_lock_irqsave(&h->lock, flags);
2960 raw_tag = get_next_completion(h);
2961 while (raw_tag != FIFO_EMPTY) {
2962 if (hpsa_tag_contains_index(raw_tag))
2963 raw_tag = process_indexed_cmd(h, raw_tag);
2964 else
2965 raw_tag = process_nonindexed_cmd(h, raw_tag);
2967 spin_unlock_irqrestore(&h->lock, flags);
2968 return IRQ_HANDLED;
2971 /* Send a message CDB to the firmware. */
2972 static __devinit int hpsa_message(struct pci_dev *pdev, unsigned char opcode,
2973 unsigned char type)
2975 struct Command {
2976 struct CommandListHeader CommandHeader;
2977 struct RequestBlock Request;
2978 struct ErrDescriptor ErrorDescriptor;
2980 struct Command *cmd;
2981 static const size_t cmd_sz = sizeof(*cmd) +
2982 sizeof(cmd->ErrorDescriptor);
2983 dma_addr_t paddr64;
2984 uint32_t paddr32, tag;
2985 void __iomem *vaddr;
2986 int i, err;
2988 vaddr = pci_ioremap_bar(pdev, 0);
2989 if (vaddr == NULL)
2990 return -ENOMEM;
2992 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
2993 * CCISS commands, so they must be allocated from the lower 4GiB of
2994 * memory.
2996 err = pci_set_consistent_dma_mask(pdev, DMA_BIT_MASK(32));
2997 if (err) {
2998 iounmap(vaddr);
2999 return -ENOMEM;
3002 cmd = pci_alloc_consistent(pdev, cmd_sz, &paddr64);
3003 if (cmd == NULL) {
3004 iounmap(vaddr);
3005 return -ENOMEM;
3008 /* This must fit, because of the 32-bit consistent DMA mask. Also,
3009 * although there's no guarantee, we assume that the address is at
3010 * least 4-byte aligned (most likely, it's page-aligned).
3012 paddr32 = paddr64;
3014 cmd->CommandHeader.ReplyQueue = 0;
3015 cmd->CommandHeader.SGList = 0;
3016 cmd->CommandHeader.SGTotal = 0;
3017 cmd->CommandHeader.Tag.lower = paddr32;
3018 cmd->CommandHeader.Tag.upper = 0;
3019 memset(&cmd->CommandHeader.LUN.LunAddrBytes, 0, 8);
3021 cmd->Request.CDBLen = 16;
3022 cmd->Request.Type.Type = TYPE_MSG;
3023 cmd->Request.Type.Attribute = ATTR_HEADOFQUEUE;
3024 cmd->Request.Type.Direction = XFER_NONE;
3025 cmd->Request.Timeout = 0; /* Don't time out */
3026 cmd->Request.CDB[0] = opcode;
3027 cmd->Request.CDB[1] = type;
3028 memset(&cmd->Request.CDB[2], 0, 14); /* rest of the CDB is reserved */
3029 cmd->ErrorDescriptor.Addr.lower = paddr32 + sizeof(*cmd);
3030 cmd->ErrorDescriptor.Addr.upper = 0;
3031 cmd->ErrorDescriptor.Len = sizeof(struct ErrorInfo);
3033 writel(paddr32, vaddr + SA5_REQUEST_PORT_OFFSET);
3035 for (i = 0; i < HPSA_MSG_SEND_RETRY_LIMIT; i++) {
3036 tag = readl(vaddr + SA5_REPLY_PORT_OFFSET);
3037 if (hpsa_tag_discard_error_bits(tag) == paddr32)
3038 break;
3039 msleep(HPSA_MSG_SEND_RETRY_INTERVAL_MSECS);
3042 iounmap(vaddr);
3044 /* we leak the DMA buffer here ... no choice since the controller could
3045 * still complete the command.
3047 if (i == HPSA_MSG_SEND_RETRY_LIMIT) {
3048 dev_err(&pdev->dev, "controller message %02x:%02x timed out\n",
3049 opcode, type);
3050 return -ETIMEDOUT;
3053 pci_free_consistent(pdev, cmd_sz, cmd, paddr64);
3055 if (tag & HPSA_ERROR_BIT) {
3056 dev_err(&pdev->dev, "controller message %02x:%02x failed\n",
3057 opcode, type);
3058 return -EIO;
3061 dev_info(&pdev->dev, "controller message %02x:%02x succeeded\n",
3062 opcode, type);
3063 return 0;
3066 #define hpsa_soft_reset_controller(p) hpsa_message(p, 1, 0)
3067 #define hpsa_noop(p) hpsa_message(p, 3, 0)
3069 static __devinit int hpsa_reset_msi(struct pci_dev *pdev)
3071 /* the #defines are stolen from drivers/pci/msi.h. */
3072 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
3073 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
3075 int pos;
3076 u16 control = 0;
3078 pos = pci_find_capability(pdev, PCI_CAP_ID_MSI);
3079 if (pos) {
3080 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3081 if (control & PCI_MSI_FLAGS_ENABLE) {
3082 dev_info(&pdev->dev, "resetting MSI\n");
3083 pci_write_config_word(pdev, msi_control_reg(pos),
3084 control & ~PCI_MSI_FLAGS_ENABLE);
3088 pos = pci_find_capability(pdev, PCI_CAP_ID_MSIX);
3089 if (pos) {
3090 pci_read_config_word(pdev, msi_control_reg(pos), &control);
3091 if (control & PCI_MSIX_FLAGS_ENABLE) {
3092 dev_info(&pdev->dev, "resetting MSI-X\n");
3093 pci_write_config_word(pdev, msi_control_reg(pos),
3094 control & ~PCI_MSIX_FLAGS_ENABLE);
3098 return 0;
3101 static int hpsa_controller_hard_reset(struct pci_dev *pdev,
3102 void * __iomem vaddr, bool use_doorbell)
3104 u16 pmcsr;
3105 int pos;
3107 if (use_doorbell) {
3108 /* For everything after the P600, the PCI power state method
3109 * of resetting the controller doesn't work, so we have this
3110 * other way using the doorbell register.
3112 dev_info(&pdev->dev, "using doorbell to reset controller\n");
3113 writel(DOORBELL_CTLR_RESET, vaddr + SA5_DOORBELL);
3114 msleep(1000);
3115 } else { /* Try to do it the PCI power state way */
3117 /* Quoting from the Open CISS Specification: "The Power
3118 * Management Control/Status Register (CSR) controls the power
3119 * state of the device. The normal operating state is D0,
3120 * CSR=00h. The software off state is D3, CSR=03h. To reset
3121 * the controller, place the interface device in D3 then to D0,
3122 * this causes a secondary PCI reset which will reset the
3123 * controller." */
3125 pos = pci_find_capability(pdev, PCI_CAP_ID_PM);
3126 if (pos == 0) {
3127 dev_err(&pdev->dev,
3128 "hpsa_reset_controller: "
3129 "PCI PM not supported\n");
3130 return -ENODEV;
3132 dev_info(&pdev->dev, "using PCI PM to reset controller\n");
3133 /* enter the D3hot power management state */
3134 pci_read_config_word(pdev, pos + PCI_PM_CTRL, &pmcsr);
3135 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3136 pmcsr |= PCI_D3hot;
3137 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3139 msleep(500);
3141 /* enter the D0 power management state */
3142 pmcsr &= ~PCI_PM_CTRL_STATE_MASK;
3143 pmcsr |= PCI_D0;
3144 pci_write_config_word(pdev, pos + PCI_PM_CTRL, pmcsr);
3146 msleep(500);
3148 return 0;
3151 /* This does a hard reset of the controller using PCI power management
3152 * states or the using the doorbell register.
3154 static __devinit int hpsa_kdump_hard_reset_controller(struct pci_dev *pdev)
3156 u16 saved_config_space[32];
3157 u64 cfg_offset;
3158 u32 cfg_base_addr;
3159 u64 cfg_base_addr_index;
3160 void __iomem *vaddr;
3161 unsigned long paddr;
3162 u32 misc_fw_support, active_transport;
3163 int rc, i;
3164 struct CfgTable __iomem *cfgtable;
3165 bool use_doorbell;
3166 u32 board_id;
3168 /* For controllers as old as the P600, this is very nearly
3169 * the same thing as
3171 * pci_save_state(pci_dev);
3172 * pci_set_power_state(pci_dev, PCI_D3hot);
3173 * pci_set_power_state(pci_dev, PCI_D0);
3174 * pci_restore_state(pci_dev);
3176 * but we can't use these nice canned kernel routines on
3177 * kexec, because they also check the MSI/MSI-X state in PCI
3178 * configuration space and do the wrong thing when it is
3179 * set/cleared. Also, the pci_save/restore_state functions
3180 * violate the ordering requirements for restoring the
3181 * configuration space from the CCISS document (see the
3182 * comment below). So we roll our own ....
3184 * For controllers newer than the P600, the pci power state
3185 * method of resetting doesn't work so we have another way
3186 * using the doorbell register.
3189 /* Exclude 640x boards. These are two pci devices in one slot
3190 * which share a battery backed cache module. One controls the
3191 * cache, the other accesses the cache through the one that controls
3192 * it. If we reset the one controlling the cache, the other will
3193 * likely not be happy. Just forbid resetting this conjoined mess.
3194 * The 640x isn't really supported by hpsa anyway.
3196 hpsa_lookup_board_id(pdev, &board_id);
3197 if (board_id == 0x409C0E11 || board_id == 0x409D0E11)
3198 return -ENOTSUPP;
3200 for (i = 0; i < 32; i++)
3201 pci_read_config_word(pdev, 2*i, &saved_config_space[i]);
3204 /* find the first memory BAR, so we can find the cfg table */
3205 rc = hpsa_pci_find_memory_BAR(pdev, &paddr);
3206 if (rc)
3207 return rc;
3208 vaddr = remap_pci_mem(paddr, 0x250);
3209 if (!vaddr)
3210 return -ENOMEM;
3212 /* find cfgtable in order to check if reset via doorbell is supported */
3213 rc = hpsa_find_cfg_addrs(pdev, vaddr, &cfg_base_addr,
3214 &cfg_base_addr_index, &cfg_offset);
3215 if (rc)
3216 goto unmap_vaddr;
3217 cfgtable = remap_pci_mem(pci_resource_start(pdev,
3218 cfg_base_addr_index) + cfg_offset, sizeof(*cfgtable));
3219 if (!cfgtable) {
3220 rc = -ENOMEM;
3221 goto unmap_vaddr;
3224 /* If reset via doorbell register is supported, use that. */
3225 misc_fw_support = readl(&cfgtable->misc_fw_support);
3226 use_doorbell = misc_fw_support & MISC_FW_DOORBELL_RESET;
3228 /* The doorbell reset seems to cause lockups on some Smart
3229 * Arrays (e.g. P410, P410i, maybe others). Until this is
3230 * fixed or at least isolated, avoid the doorbell reset.
3232 use_doorbell = 0;
3234 rc = hpsa_controller_hard_reset(pdev, vaddr, use_doorbell);
3235 if (rc)
3236 goto unmap_cfgtable;
3238 /* Restore the PCI configuration space. The Open CISS
3239 * Specification says, "Restore the PCI Configuration
3240 * Registers, offsets 00h through 60h. It is important to
3241 * restore the command register, 16-bits at offset 04h,
3242 * last. Do not restore the configuration status register,
3243 * 16-bits at offset 06h." Note that the offset is 2*i.
3245 for (i = 0; i < 32; i++) {
3246 if (i == 2 || i == 3)
3247 continue;
3248 pci_write_config_word(pdev, 2*i, saved_config_space[i]);
3250 wmb();
3251 pci_write_config_word(pdev, 4, saved_config_space[2]);
3253 /* Some devices (notably the HP Smart Array 5i Controller)
3254 need a little pause here */
3255 msleep(HPSA_POST_RESET_PAUSE_MSECS);
3257 /* Controller should be in simple mode at this point. If it's not,
3258 * It means we're on one of those controllers which doesn't support
3259 * the doorbell reset method and on which the PCI power management reset
3260 * method doesn't work (P800, for example.)
3261 * In those cases, pretend the reset worked and hope for the best.
3263 active_transport = readl(&cfgtable->TransportActive);
3264 if (active_transport & PERFORMANT_MODE) {
3265 dev_warn(&pdev->dev, "Unable to successfully reset controller,"
3266 " proceeding anyway.\n");
3267 rc = -ENOTSUPP;
3270 unmap_cfgtable:
3271 iounmap(cfgtable);
3273 unmap_vaddr:
3274 iounmap(vaddr);
3275 return rc;
3279 * We cannot read the structure directly, for portability we must use
3280 * the io functions.
3281 * This is for debug only.
3283 static void print_cfg_table(struct device *dev, struct CfgTable *tb)
3285 #ifdef HPSA_DEBUG
3286 int i;
3287 char temp_name[17];
3289 dev_info(dev, "Controller Configuration information\n");
3290 dev_info(dev, "------------------------------------\n");
3291 for (i = 0; i < 4; i++)
3292 temp_name[i] = readb(&(tb->Signature[i]));
3293 temp_name[4] = '\0';
3294 dev_info(dev, " Signature = %s\n", temp_name);
3295 dev_info(dev, " Spec Number = %d\n", readl(&(tb->SpecValence)));
3296 dev_info(dev, " Transport methods supported = 0x%x\n",
3297 readl(&(tb->TransportSupport)));
3298 dev_info(dev, " Transport methods active = 0x%x\n",
3299 readl(&(tb->TransportActive)));
3300 dev_info(dev, " Requested transport Method = 0x%x\n",
3301 readl(&(tb->HostWrite.TransportRequest)));
3302 dev_info(dev, " Coalesce Interrupt Delay = 0x%x\n",
3303 readl(&(tb->HostWrite.CoalIntDelay)));
3304 dev_info(dev, " Coalesce Interrupt Count = 0x%x\n",
3305 readl(&(tb->HostWrite.CoalIntCount)));
3306 dev_info(dev, " Max outstanding commands = 0x%d\n",
3307 readl(&(tb->CmdsOutMax)));
3308 dev_info(dev, " Bus Types = 0x%x\n", readl(&(tb->BusTypes)));
3309 for (i = 0; i < 16; i++)
3310 temp_name[i] = readb(&(tb->ServerName[i]));
3311 temp_name[16] = '\0';
3312 dev_info(dev, " Server Name = %s\n", temp_name);
3313 dev_info(dev, " Heartbeat Counter = 0x%x\n\n\n",
3314 readl(&(tb->HeartBeat)));
3315 #endif /* HPSA_DEBUG */
3318 static int find_PCI_BAR_index(struct pci_dev *pdev, unsigned long pci_bar_addr)
3320 int i, offset, mem_type, bar_type;
3322 if (pci_bar_addr == PCI_BASE_ADDRESS_0) /* looking for BAR zero? */
3323 return 0;
3324 offset = 0;
3325 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
3326 bar_type = pci_resource_flags(pdev, i) & PCI_BASE_ADDRESS_SPACE;
3327 if (bar_type == PCI_BASE_ADDRESS_SPACE_IO)
3328 offset += 4;
3329 else {
3330 mem_type = pci_resource_flags(pdev, i) &
3331 PCI_BASE_ADDRESS_MEM_TYPE_MASK;
3332 switch (mem_type) {
3333 case PCI_BASE_ADDRESS_MEM_TYPE_32:
3334 case PCI_BASE_ADDRESS_MEM_TYPE_1M:
3335 offset += 4; /* 32 bit */
3336 break;
3337 case PCI_BASE_ADDRESS_MEM_TYPE_64:
3338 offset += 8;
3339 break;
3340 default: /* reserved in PCI 2.2 */
3341 dev_warn(&pdev->dev,
3342 "base address is invalid\n");
3343 return -1;
3344 break;
3347 if (offset == pci_bar_addr - PCI_BASE_ADDRESS_0)
3348 return i + 1;
3350 return -1;
3353 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3354 * controllers that are capable. If not, we use IO-APIC mode.
3357 static void __devinit hpsa_interrupt_mode(struct ctlr_info *h)
3359 #ifdef CONFIG_PCI_MSI
3360 int err;
3361 struct msix_entry hpsa_msix_entries[4] = { {0, 0}, {0, 1},
3362 {0, 2}, {0, 3}
3365 /* Some boards advertise MSI but don't really support it */
3366 if ((h->board_id == 0x40700E11) || (h->board_id == 0x40800E11) ||
3367 (h->board_id == 0x40820E11) || (h->board_id == 0x40830E11))
3368 goto default_int_mode;
3369 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSIX)) {
3370 dev_info(&h->pdev->dev, "MSIX\n");
3371 err = pci_enable_msix(h->pdev, hpsa_msix_entries, 4);
3372 if (!err) {
3373 h->intr[0] = hpsa_msix_entries[0].vector;
3374 h->intr[1] = hpsa_msix_entries[1].vector;
3375 h->intr[2] = hpsa_msix_entries[2].vector;
3376 h->intr[3] = hpsa_msix_entries[3].vector;
3377 h->msix_vector = 1;
3378 return;
3380 if (err > 0) {
3381 dev_warn(&h->pdev->dev, "only %d MSI-X vectors "
3382 "available\n", err);
3383 goto default_int_mode;
3384 } else {
3385 dev_warn(&h->pdev->dev, "MSI-X init failed %d\n",
3386 err);
3387 goto default_int_mode;
3390 if (pci_find_capability(h->pdev, PCI_CAP_ID_MSI)) {
3391 dev_info(&h->pdev->dev, "MSI\n");
3392 if (!pci_enable_msi(h->pdev))
3393 h->msi_vector = 1;
3394 else
3395 dev_warn(&h->pdev->dev, "MSI init failed\n");
3397 default_int_mode:
3398 #endif /* CONFIG_PCI_MSI */
3399 /* if we get here we're going to use the default interrupt mode */
3400 h->intr[PERF_MODE_INT] = h->pdev->irq;
3403 static int __devinit hpsa_lookup_board_id(struct pci_dev *pdev, u32 *board_id)
3405 int i;
3406 u32 subsystem_vendor_id, subsystem_device_id;
3408 subsystem_vendor_id = pdev->subsystem_vendor;
3409 subsystem_device_id = pdev->subsystem_device;
3410 *board_id = ((subsystem_device_id << 16) & 0xffff0000) |
3411 subsystem_vendor_id;
3413 for (i = 0; i < ARRAY_SIZE(products); i++)
3414 if (*board_id == products[i].board_id)
3415 return i;
3417 if ((subsystem_vendor_id != PCI_VENDOR_ID_HP &&
3418 subsystem_vendor_id != PCI_VENDOR_ID_COMPAQ) ||
3419 !hpsa_allow_any) {
3420 dev_warn(&pdev->dev, "unrecognized board ID: "
3421 "0x%08x, ignoring.\n", *board_id);
3422 return -ENODEV;
3424 return ARRAY_SIZE(products) - 1; /* generic unknown smart array */
3427 static inline bool hpsa_board_disabled(struct pci_dev *pdev)
3429 u16 command;
3431 (void) pci_read_config_word(pdev, PCI_COMMAND, &command);
3432 return ((command & PCI_COMMAND_MEMORY) == 0);
3435 static int __devinit hpsa_pci_find_memory_BAR(struct pci_dev *pdev,
3436 unsigned long *memory_bar)
3438 int i;
3440 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++)
3441 if (pci_resource_flags(pdev, i) & IORESOURCE_MEM) {
3442 /* addressing mode bits already removed */
3443 *memory_bar = pci_resource_start(pdev, i);
3444 dev_dbg(&pdev->dev, "memory BAR = %lx\n",
3445 *memory_bar);
3446 return 0;
3448 dev_warn(&pdev->dev, "no memory BAR found\n");
3449 return -ENODEV;
3452 static int __devinit hpsa_wait_for_board_ready(struct ctlr_info *h)
3454 int i;
3455 u32 scratchpad;
3457 for (i = 0; i < HPSA_BOARD_READY_ITERATIONS; i++) {
3458 scratchpad = readl(h->vaddr + SA5_SCRATCHPAD_OFFSET);
3459 if (scratchpad == HPSA_FIRMWARE_READY)
3460 return 0;
3461 msleep(HPSA_BOARD_READY_POLL_INTERVAL_MSECS);
3463 dev_warn(&h->pdev->dev, "board not ready, timed out.\n");
3464 return -ENODEV;
3467 static int __devinit hpsa_find_cfg_addrs(struct pci_dev *pdev,
3468 void __iomem *vaddr, u32 *cfg_base_addr, u64 *cfg_base_addr_index,
3469 u64 *cfg_offset)
3471 *cfg_base_addr = readl(vaddr + SA5_CTCFG_OFFSET);
3472 *cfg_offset = readl(vaddr + SA5_CTMEM_OFFSET);
3473 *cfg_base_addr &= (u32) 0x0000ffff;
3474 *cfg_base_addr_index = find_PCI_BAR_index(pdev, *cfg_base_addr);
3475 if (*cfg_base_addr_index == -1) {
3476 dev_warn(&pdev->dev, "cannot find cfg_base_addr_index\n");
3477 return -ENODEV;
3479 return 0;
3482 static int __devinit hpsa_find_cfgtables(struct ctlr_info *h)
3484 u64 cfg_offset;
3485 u32 cfg_base_addr;
3486 u64 cfg_base_addr_index;
3487 u32 trans_offset;
3488 int rc;
3490 rc = hpsa_find_cfg_addrs(h->pdev, h->vaddr, &cfg_base_addr,
3491 &cfg_base_addr_index, &cfg_offset);
3492 if (rc)
3493 return rc;
3494 h->cfgtable = remap_pci_mem(pci_resource_start(h->pdev,
3495 cfg_base_addr_index) + cfg_offset, sizeof(*h->cfgtable));
3496 if (!h->cfgtable)
3497 return -ENOMEM;
3498 /* Find performant mode table. */
3499 trans_offset = readl(&h->cfgtable->TransMethodOffset);
3500 h->transtable = remap_pci_mem(pci_resource_start(h->pdev,
3501 cfg_base_addr_index)+cfg_offset+trans_offset,
3502 sizeof(*h->transtable));
3503 if (!h->transtable)
3504 return -ENOMEM;
3505 return 0;
3508 static void __devinit hpsa_get_max_perf_mode_cmds(struct ctlr_info *h)
3510 h->max_commands = readl(&(h->cfgtable->MaxPerformantModeCommands));
3511 if (h->max_commands < 16) {
3512 dev_warn(&h->pdev->dev, "Controller reports "
3513 "max supported commands of %d, an obvious lie. "
3514 "Using 16. Ensure that firmware is up to date.\n",
3515 h->max_commands);
3516 h->max_commands = 16;
3520 /* Interrogate the hardware for some limits:
3521 * max commands, max SG elements without chaining, and with chaining,
3522 * SG chain block size, etc.
3524 static void __devinit hpsa_find_board_params(struct ctlr_info *h)
3526 hpsa_get_max_perf_mode_cmds(h);
3527 h->nr_cmds = h->max_commands - 4; /* Allow room for some ioctls */
3528 h->maxsgentries = readl(&(h->cfgtable->MaxScatterGatherElements));
3530 * Limit in-command s/g elements to 32 save dma'able memory.
3531 * Howvever spec says if 0, use 31
3533 h->max_cmd_sg_entries = 31;
3534 if (h->maxsgentries > 512) {
3535 h->max_cmd_sg_entries = 32;
3536 h->chainsize = h->maxsgentries - h->max_cmd_sg_entries + 1;
3537 h->maxsgentries--; /* save one for chain pointer */
3538 } else {
3539 h->maxsgentries = 31; /* default to traditional values */
3540 h->chainsize = 0;
3544 static inline bool hpsa_CISS_signature_present(struct ctlr_info *h)
3546 if ((readb(&h->cfgtable->Signature[0]) != 'C') ||
3547 (readb(&h->cfgtable->Signature[1]) != 'I') ||
3548 (readb(&h->cfgtable->Signature[2]) != 'S') ||
3549 (readb(&h->cfgtable->Signature[3]) != 'S')) {
3550 dev_warn(&h->pdev->dev, "not a valid CISS config table\n");
3551 return false;
3553 return true;
3556 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
3557 static inline void hpsa_enable_scsi_prefetch(struct ctlr_info *h)
3559 #ifdef CONFIG_X86
3560 u32 prefetch;
3562 prefetch = readl(&(h->cfgtable->SCSI_Prefetch));
3563 prefetch |= 0x100;
3564 writel(prefetch, &(h->cfgtable->SCSI_Prefetch));
3565 #endif
3568 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
3569 * in a prefetch beyond physical memory.
3571 static inline void hpsa_p600_dma_prefetch_quirk(struct ctlr_info *h)
3573 u32 dma_prefetch;
3575 if (h->board_id != 0x3225103C)
3576 return;
3577 dma_prefetch = readl(h->vaddr + I2O_DMA1_CFG);
3578 dma_prefetch |= 0x8000;
3579 writel(dma_prefetch, h->vaddr + I2O_DMA1_CFG);
3582 static void __devinit hpsa_wait_for_mode_change_ack(struct ctlr_info *h)
3584 int i;
3586 /* under certain very rare conditions, this can take awhile.
3587 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3588 * as we enter this code.)
3590 for (i = 0; i < MAX_CONFIG_WAIT; i++) {
3591 if (!(readl(h->vaddr + SA5_DOORBELL) & CFGTBL_ChangeReq))
3592 break;
3593 /* delay and try again */
3594 msleep(10);
3598 static int __devinit hpsa_enter_simple_mode(struct ctlr_info *h)
3600 u32 trans_support;
3602 trans_support = readl(&(h->cfgtable->TransportSupport));
3603 if (!(trans_support & SIMPLE_MODE))
3604 return -ENOTSUPP;
3606 h->max_commands = readl(&(h->cfgtable->CmdsOutMax));
3607 /* Update the field, and then ring the doorbell */
3608 writel(CFGTBL_Trans_Simple, &(h->cfgtable->HostWrite.TransportRequest));
3609 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
3610 hpsa_wait_for_mode_change_ack(h);
3611 print_cfg_table(&h->pdev->dev, h->cfgtable);
3612 if (!(readl(&(h->cfgtable->TransportActive)) & CFGTBL_Trans_Simple)) {
3613 dev_warn(&h->pdev->dev,
3614 "unable to get board into simple mode\n");
3615 return -ENODEV;
3617 return 0;
3620 static int __devinit hpsa_pci_init(struct ctlr_info *h)
3622 int prod_index, err;
3624 prod_index = hpsa_lookup_board_id(h->pdev, &h->board_id);
3625 if (prod_index < 0)
3626 return -ENODEV;
3627 h->product_name = products[prod_index].product_name;
3628 h->access = *(products[prod_index].access);
3630 if (hpsa_board_disabled(h->pdev)) {
3631 dev_warn(&h->pdev->dev, "controller appears to be disabled\n");
3632 return -ENODEV;
3634 err = pci_enable_device(h->pdev);
3635 if (err) {
3636 dev_warn(&h->pdev->dev, "unable to enable PCI device\n");
3637 return err;
3640 err = pci_request_regions(h->pdev, "hpsa");
3641 if (err) {
3642 dev_err(&h->pdev->dev,
3643 "cannot obtain PCI resources, aborting\n");
3644 return err;
3646 hpsa_interrupt_mode(h);
3647 err = hpsa_pci_find_memory_BAR(h->pdev, &h->paddr);
3648 if (err)
3649 goto err_out_free_res;
3650 h->vaddr = remap_pci_mem(h->paddr, 0x250);
3651 if (!h->vaddr) {
3652 err = -ENOMEM;
3653 goto err_out_free_res;
3655 err = hpsa_wait_for_board_ready(h);
3656 if (err)
3657 goto err_out_free_res;
3658 err = hpsa_find_cfgtables(h);
3659 if (err)
3660 goto err_out_free_res;
3661 hpsa_find_board_params(h);
3663 if (!hpsa_CISS_signature_present(h)) {
3664 err = -ENODEV;
3665 goto err_out_free_res;
3667 hpsa_enable_scsi_prefetch(h);
3668 hpsa_p600_dma_prefetch_quirk(h);
3669 err = hpsa_enter_simple_mode(h);
3670 if (err)
3671 goto err_out_free_res;
3672 return 0;
3674 err_out_free_res:
3675 if (h->transtable)
3676 iounmap(h->transtable);
3677 if (h->cfgtable)
3678 iounmap(h->cfgtable);
3679 if (h->vaddr)
3680 iounmap(h->vaddr);
3682 * Deliberately omit pci_disable_device(): it does something nasty to
3683 * Smart Array controllers that pci_enable_device does not undo
3685 pci_release_regions(h->pdev);
3686 return err;
3689 static void __devinit hpsa_hba_inquiry(struct ctlr_info *h)
3691 int rc;
3693 #define HBA_INQUIRY_BYTE_COUNT 64
3694 h->hba_inquiry_data = kmalloc(HBA_INQUIRY_BYTE_COUNT, GFP_KERNEL);
3695 if (!h->hba_inquiry_data)
3696 return;
3697 rc = hpsa_scsi_do_inquiry(h, RAID_CTLR_LUNID, 0,
3698 h->hba_inquiry_data, HBA_INQUIRY_BYTE_COUNT);
3699 if (rc != 0) {
3700 kfree(h->hba_inquiry_data);
3701 h->hba_inquiry_data = NULL;
3705 static __devinit int hpsa_init_reset_devices(struct pci_dev *pdev)
3707 int rc, i;
3709 if (!reset_devices)
3710 return 0;
3712 /* Reset the controller with a PCI power-cycle or via doorbell */
3713 rc = hpsa_kdump_hard_reset_controller(pdev);
3715 /* -ENOTSUPP here means we cannot reset the controller
3716 * but it's already (and still) up and running in
3717 * "performant mode". Or, it might be 640x, which can't reset
3718 * due to concerns about shared bbwc between 6402/6404 pair.
3720 if (rc == -ENOTSUPP)
3721 return 0; /* just try to do the kdump anyhow. */
3722 if (rc)
3723 return -ENODEV;
3724 if (hpsa_reset_msi(pdev))
3725 return -ENODEV;
3727 /* Now try to get the controller to respond to a no-op */
3728 for (i = 0; i < HPSA_POST_RESET_NOOP_RETRIES; i++) {
3729 if (hpsa_noop(pdev) == 0)
3730 break;
3731 else
3732 dev_warn(&pdev->dev, "no-op failed%s\n",
3733 (i < 11 ? "; re-trying" : ""));
3735 return 0;
3738 static int __devinit hpsa_init_one(struct pci_dev *pdev,
3739 const struct pci_device_id *ent)
3741 int dac, rc;
3742 struct ctlr_info *h;
3744 if (number_of_controllers == 0)
3745 printk(KERN_INFO DRIVER_NAME "\n");
3747 rc = hpsa_init_reset_devices(pdev);
3748 if (rc)
3749 return rc;
3751 /* Command structures must be aligned on a 32-byte boundary because
3752 * the 5 lower bits of the address are used by the hardware. and by
3753 * the driver. See comments in hpsa.h for more info.
3755 #define COMMANDLIST_ALIGNMENT 32
3756 BUILD_BUG_ON(sizeof(struct CommandList) % COMMANDLIST_ALIGNMENT);
3757 h = kzalloc(sizeof(*h), GFP_KERNEL);
3758 if (!h)
3759 return -ENOMEM;
3761 h->pdev = pdev;
3762 h->busy_initializing = 1;
3763 INIT_HLIST_HEAD(&h->cmpQ);
3764 INIT_HLIST_HEAD(&h->reqQ);
3765 rc = hpsa_pci_init(h);
3766 if (rc != 0)
3767 goto clean1;
3769 sprintf(h->devname, "hpsa%d", number_of_controllers);
3770 h->ctlr = number_of_controllers;
3771 number_of_controllers++;
3773 /* configure PCI DMA stuff */
3774 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(64));
3775 if (rc == 0) {
3776 dac = 1;
3777 } else {
3778 rc = pci_set_dma_mask(pdev, DMA_BIT_MASK(32));
3779 if (rc == 0) {
3780 dac = 0;
3781 } else {
3782 dev_err(&pdev->dev, "no suitable DMA available\n");
3783 goto clean1;
3787 /* make sure the board interrupts are off */
3788 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3790 if (h->msix_vector || h->msi_vector)
3791 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_msi,
3792 IRQF_DISABLED, h->devname, h);
3793 else
3794 rc = request_irq(h->intr[PERF_MODE_INT], do_hpsa_intr_intx,
3795 IRQF_DISABLED, h->devname, h);
3796 if (rc) {
3797 dev_err(&pdev->dev, "unable to get irq %d for %s\n",
3798 h->intr[PERF_MODE_INT], h->devname);
3799 goto clean2;
3802 dev_info(&pdev->dev, "%s: <0x%x> at IRQ %d%s using DAC\n",
3803 h->devname, pdev->device,
3804 h->intr[PERF_MODE_INT], dac ? "" : " not");
3806 h->cmd_pool_bits =
3807 kmalloc(((h->nr_cmds + BITS_PER_LONG -
3808 1) / BITS_PER_LONG) * sizeof(unsigned long), GFP_KERNEL);
3809 h->cmd_pool = pci_alloc_consistent(h->pdev,
3810 h->nr_cmds * sizeof(*h->cmd_pool),
3811 &(h->cmd_pool_dhandle));
3812 h->errinfo_pool = pci_alloc_consistent(h->pdev,
3813 h->nr_cmds * sizeof(*h->errinfo_pool),
3814 &(h->errinfo_pool_dhandle));
3815 if ((h->cmd_pool_bits == NULL)
3816 || (h->cmd_pool == NULL)
3817 || (h->errinfo_pool == NULL)) {
3818 dev_err(&pdev->dev, "out of memory");
3819 rc = -ENOMEM;
3820 goto clean4;
3822 if (hpsa_allocate_sg_chain_blocks(h))
3823 goto clean4;
3824 spin_lock_init(&h->lock);
3825 spin_lock_init(&h->scan_lock);
3826 init_waitqueue_head(&h->scan_wait_queue);
3827 h->scan_finished = 1; /* no scan currently in progress */
3829 pci_set_drvdata(pdev, h);
3830 memset(h->cmd_pool_bits, 0,
3831 ((h->nr_cmds + BITS_PER_LONG -
3832 1) / BITS_PER_LONG) * sizeof(unsigned long));
3834 hpsa_scsi_setup(h);
3836 /* Turn the interrupts on so we can service requests */
3837 h->access.set_intr_mask(h, HPSA_INTR_ON);
3839 hpsa_put_ctlr_into_performant_mode(h);
3840 hpsa_hba_inquiry(h);
3841 hpsa_register_scsi(h); /* hook ourselves into SCSI subsystem */
3842 h->busy_initializing = 0;
3843 return 1;
3845 clean4:
3846 hpsa_free_sg_chain_blocks(h);
3847 kfree(h->cmd_pool_bits);
3848 if (h->cmd_pool)
3849 pci_free_consistent(h->pdev,
3850 h->nr_cmds * sizeof(struct CommandList),
3851 h->cmd_pool, h->cmd_pool_dhandle);
3852 if (h->errinfo_pool)
3853 pci_free_consistent(h->pdev,
3854 h->nr_cmds * sizeof(struct ErrorInfo),
3855 h->errinfo_pool,
3856 h->errinfo_pool_dhandle);
3857 free_irq(h->intr[PERF_MODE_INT], h);
3858 clean2:
3859 clean1:
3860 h->busy_initializing = 0;
3861 kfree(h);
3862 return rc;
3865 static void hpsa_flush_cache(struct ctlr_info *h)
3867 char *flush_buf;
3868 struct CommandList *c;
3870 flush_buf = kzalloc(4, GFP_KERNEL);
3871 if (!flush_buf)
3872 return;
3874 c = cmd_special_alloc(h);
3875 if (!c) {
3876 dev_warn(&h->pdev->dev, "cmd_special_alloc returned NULL!\n");
3877 goto out_of_memory;
3879 fill_cmd(c, HPSA_CACHE_FLUSH, h, flush_buf, 4, 0,
3880 RAID_CTLR_LUNID, TYPE_CMD);
3881 hpsa_scsi_do_simple_cmd_with_retry(h, c, PCI_DMA_TODEVICE);
3882 if (c->err_info->CommandStatus != 0)
3883 dev_warn(&h->pdev->dev,
3884 "error flushing cache on controller\n");
3885 cmd_special_free(h, c);
3886 out_of_memory:
3887 kfree(flush_buf);
3890 static void hpsa_shutdown(struct pci_dev *pdev)
3892 struct ctlr_info *h;
3894 h = pci_get_drvdata(pdev);
3895 /* Turn board interrupts off and send the flush cache command
3896 * sendcmd will turn off interrupt, and send the flush...
3897 * To write all data in the battery backed cache to disks
3899 hpsa_flush_cache(h);
3900 h->access.set_intr_mask(h, HPSA_INTR_OFF);
3901 free_irq(h->intr[PERF_MODE_INT], h);
3902 #ifdef CONFIG_PCI_MSI
3903 if (h->msix_vector)
3904 pci_disable_msix(h->pdev);
3905 else if (h->msi_vector)
3906 pci_disable_msi(h->pdev);
3907 #endif /* CONFIG_PCI_MSI */
3910 static void __devexit hpsa_remove_one(struct pci_dev *pdev)
3912 struct ctlr_info *h;
3914 if (pci_get_drvdata(pdev) == NULL) {
3915 dev_err(&pdev->dev, "unable to remove device \n");
3916 return;
3918 h = pci_get_drvdata(pdev);
3919 hpsa_unregister_scsi(h); /* unhook from SCSI subsystem */
3920 hpsa_shutdown(pdev);
3921 iounmap(h->vaddr);
3922 iounmap(h->transtable);
3923 iounmap(h->cfgtable);
3924 hpsa_free_sg_chain_blocks(h);
3925 pci_free_consistent(h->pdev,
3926 h->nr_cmds * sizeof(struct CommandList),
3927 h->cmd_pool, h->cmd_pool_dhandle);
3928 pci_free_consistent(h->pdev,
3929 h->nr_cmds * sizeof(struct ErrorInfo),
3930 h->errinfo_pool, h->errinfo_pool_dhandle);
3931 pci_free_consistent(h->pdev, h->reply_pool_size,
3932 h->reply_pool, h->reply_pool_dhandle);
3933 kfree(h->cmd_pool_bits);
3934 kfree(h->blockFetchTable);
3935 kfree(h->hba_inquiry_data);
3937 * Deliberately omit pci_disable_device(): it does something nasty to
3938 * Smart Array controllers that pci_enable_device does not undo
3940 pci_release_regions(pdev);
3941 pci_set_drvdata(pdev, NULL);
3942 kfree(h);
3945 static int hpsa_suspend(__attribute__((unused)) struct pci_dev *pdev,
3946 __attribute__((unused)) pm_message_t state)
3948 return -ENOSYS;
3951 static int hpsa_resume(__attribute__((unused)) struct pci_dev *pdev)
3953 return -ENOSYS;
3956 static struct pci_driver hpsa_pci_driver = {
3957 .name = "hpsa",
3958 .probe = hpsa_init_one,
3959 .remove = __devexit_p(hpsa_remove_one),
3960 .id_table = hpsa_pci_device_id, /* id_table */
3961 .shutdown = hpsa_shutdown,
3962 .suspend = hpsa_suspend,
3963 .resume = hpsa_resume,
3966 /* Fill in bucket_map[], given nsgs (the max number of
3967 * scatter gather elements supported) and bucket[],
3968 * which is an array of 8 integers. The bucket[] array
3969 * contains 8 different DMA transfer sizes (in 16
3970 * byte increments) which the controller uses to fetch
3971 * commands. This function fills in bucket_map[], which
3972 * maps a given number of scatter gather elements to one of
3973 * the 8 DMA transfer sizes. The point of it is to allow the
3974 * controller to only do as much DMA as needed to fetch the
3975 * command, with the DMA transfer size encoded in the lower
3976 * bits of the command address.
3978 static void calc_bucket_map(int bucket[], int num_buckets,
3979 int nsgs, int *bucket_map)
3981 int i, j, b, size;
3983 /* even a command with 0 SGs requires 4 blocks */
3984 #define MINIMUM_TRANSFER_BLOCKS 4
3985 #define NUM_BUCKETS 8
3986 /* Note, bucket_map must have nsgs+1 entries. */
3987 for (i = 0; i <= nsgs; i++) {
3988 /* Compute size of a command with i SG entries */
3989 size = i + MINIMUM_TRANSFER_BLOCKS;
3990 b = num_buckets; /* Assume the biggest bucket */
3991 /* Find the bucket that is just big enough */
3992 for (j = 0; j < 8; j++) {
3993 if (bucket[j] >= size) {
3994 b = j;
3995 break;
3998 /* for a command with i SG entries, use bucket b. */
3999 bucket_map[i] = b;
4003 static __devinit void hpsa_enter_performant_mode(struct ctlr_info *h)
4005 int i;
4006 unsigned long register_value;
4008 /* This is a bit complicated. There are 8 registers on
4009 * the controller which we write to to tell it 8 different
4010 * sizes of commands which there may be. It's a way of
4011 * reducing the DMA done to fetch each command. Encoded into
4012 * each command's tag are 3 bits which communicate to the controller
4013 * which of the eight sizes that command fits within. The size of
4014 * each command depends on how many scatter gather entries there are.
4015 * Each SG entry requires 16 bytes. The eight registers are programmed
4016 * with the number of 16-byte blocks a command of that size requires.
4017 * The smallest command possible requires 5 such 16 byte blocks.
4018 * the largest command possible requires MAXSGENTRIES + 4 16-byte
4019 * blocks. Note, this only extends to the SG entries contained
4020 * within the command block, and does not extend to chained blocks
4021 * of SG elements. bft[] contains the eight values we write to
4022 * the registers. They are not evenly distributed, but have more
4023 * sizes for small commands, and fewer sizes for larger commands.
4025 int bft[8] = {5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES + 4};
4026 BUILD_BUG_ON(28 > MAXSGENTRIES + 4);
4027 /* 5 = 1 s/g entry or 4k
4028 * 6 = 2 s/g entry or 8k
4029 * 8 = 4 s/g entry or 16k
4030 * 10 = 6 s/g entry or 24k
4033 h->reply_pool_wraparound = 1; /* spec: init to 1 */
4035 /* Controller spec: zero out this buffer. */
4036 memset(h->reply_pool, 0, h->reply_pool_size);
4037 h->reply_pool_head = h->reply_pool;
4039 bft[7] = h->max_sg_entries + 4;
4040 calc_bucket_map(bft, ARRAY_SIZE(bft), 32, h->blockFetchTable);
4041 for (i = 0; i < 8; i++)
4042 writel(bft[i], &h->transtable->BlockFetch[i]);
4044 /* size of controller ring buffer */
4045 writel(h->max_commands, &h->transtable->RepQSize);
4046 writel(1, &h->transtable->RepQCount);
4047 writel(0, &h->transtable->RepQCtrAddrLow32);
4048 writel(0, &h->transtable->RepQCtrAddrHigh32);
4049 writel(h->reply_pool_dhandle, &h->transtable->RepQAddr0Low32);
4050 writel(0, &h->transtable->RepQAddr0High32);
4051 writel(CFGTBL_Trans_Performant,
4052 &(h->cfgtable->HostWrite.TransportRequest));
4053 writel(CFGTBL_ChangeReq, h->vaddr + SA5_DOORBELL);
4054 hpsa_wait_for_mode_change_ack(h);
4055 register_value = readl(&(h->cfgtable->TransportActive));
4056 if (!(register_value & CFGTBL_Trans_Performant)) {
4057 dev_warn(&h->pdev->dev, "unable to get board into"
4058 " performant mode\n");
4059 return;
4063 static __devinit void hpsa_put_ctlr_into_performant_mode(struct ctlr_info *h)
4065 u32 trans_support;
4067 trans_support = readl(&(h->cfgtable->TransportSupport));
4068 if (!(trans_support & PERFORMANT_MODE))
4069 return;
4071 hpsa_get_max_perf_mode_cmds(h);
4072 h->max_sg_entries = 32;
4073 /* Performant mode ring buffer and supporting data structures */
4074 h->reply_pool_size = h->max_commands * sizeof(u64);
4075 h->reply_pool = pci_alloc_consistent(h->pdev, h->reply_pool_size,
4076 &(h->reply_pool_dhandle));
4078 /* Need a block fetch table for performant mode */
4079 h->blockFetchTable = kmalloc(((h->max_sg_entries+1) *
4080 sizeof(u32)), GFP_KERNEL);
4082 if ((h->reply_pool == NULL)
4083 || (h->blockFetchTable == NULL))
4084 goto clean_up;
4086 hpsa_enter_performant_mode(h);
4088 /* Change the access methods to the performant access methods */
4089 h->access = SA5_performant_access;
4090 h->transMethod = CFGTBL_Trans_Performant;
4092 return;
4094 clean_up:
4095 if (h->reply_pool)
4096 pci_free_consistent(h->pdev, h->reply_pool_size,
4097 h->reply_pool, h->reply_pool_dhandle);
4098 kfree(h->blockFetchTable);
4102 * This is it. Register the PCI driver information for the cards we control
4103 * the OS will call our registered routines when it finds one of our cards.
4105 static int __init hpsa_init(void)
4107 return pci_register_driver(&hpsa_pci_driver);
4110 static void __exit hpsa_cleanup(void)
4112 pci_unregister_driver(&hpsa_pci_driver);
4115 module_init(hpsa_init);
4116 module_exit(hpsa_cleanup);