2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/ratelimit.h>
34 #include <linux/oom.h>
35 #include <linux/notifier.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/stop_machine.h>
46 #include <linux/sort.h>
47 #include <linux/pfn.h>
48 #include <linux/backing-dev.h>
49 #include <linux/fault-inject.h>
50 #include <linux/page-isolation.h>
51 #include <linux/page_cgroup.h>
52 #include <linux/debugobjects.h>
53 #include <linux/kmemleak.h>
54 #include <linux/memory.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <linux/ftrace_event.h>
58 #include <linux/memcontrol.h>
59 #include <linux/prefetch.h>
61 #include <asm/tlbflush.h>
62 #include <asm/div64.h>
65 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
66 DEFINE_PER_CPU(int, numa_node
);
67 EXPORT_PER_CPU_SYMBOL(numa_node
);
70 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
72 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
73 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
74 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
75 * defined in <linux/topology.h>.
77 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
78 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
82 * Array of node states.
84 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
85 [N_POSSIBLE
] = NODE_MASK_ALL
,
86 [N_ONLINE
] = { { [0] = 1UL } },
88 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
90 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
92 [N_CPU
] = { { [0] = 1UL } },
95 EXPORT_SYMBOL(node_states
);
97 unsigned long totalram_pages __read_mostly
;
98 unsigned long totalreserve_pages __read_mostly
;
99 int percpu_pagelist_fraction
;
100 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
102 #ifdef CONFIG_PM_SLEEP
104 * The following functions are used by the suspend/hibernate code to temporarily
105 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
106 * while devices are suspended. To avoid races with the suspend/hibernate code,
107 * they should always be called with pm_mutex held (gfp_allowed_mask also should
108 * only be modified with pm_mutex held, unless the suspend/hibernate code is
109 * guaranteed not to run in parallel with that modification).
112 static gfp_t saved_gfp_mask
;
114 void pm_restore_gfp_mask(void)
116 WARN_ON(!mutex_is_locked(&pm_mutex
));
117 if (saved_gfp_mask
) {
118 gfp_allowed_mask
= saved_gfp_mask
;
123 void pm_restrict_gfp_mask(void)
125 WARN_ON(!mutex_is_locked(&pm_mutex
));
126 WARN_ON(saved_gfp_mask
);
127 saved_gfp_mask
= gfp_allowed_mask
;
128 gfp_allowed_mask
&= ~GFP_IOFS
;
130 #endif /* CONFIG_PM_SLEEP */
132 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
133 int pageblock_order __read_mostly
;
136 static void __free_pages_ok(struct page
*page
, unsigned int order
);
139 * results with 256, 32 in the lowmem_reserve sysctl:
140 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
141 * 1G machine -> (16M dma, 784M normal, 224M high)
142 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
143 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
144 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
146 * TBD: should special case ZONE_DMA32 machines here - in those we normally
147 * don't need any ZONE_NORMAL reservation
149 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
150 #ifdef CONFIG_ZONE_DMA
153 #ifdef CONFIG_ZONE_DMA32
156 #ifdef CONFIG_HIGHMEM
162 EXPORT_SYMBOL(totalram_pages
);
164 static char * const zone_names
[MAX_NR_ZONES
] = {
165 #ifdef CONFIG_ZONE_DMA
168 #ifdef CONFIG_ZONE_DMA32
172 #ifdef CONFIG_HIGHMEM
178 int min_free_kbytes
= 1024;
180 static unsigned long __meminitdata nr_kernel_pages
;
181 static unsigned long __meminitdata nr_all_pages
;
182 static unsigned long __meminitdata dma_reserve
;
184 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
186 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
187 * ranges of memory (RAM) that may be registered with add_active_range().
188 * Ranges passed to add_active_range() will be merged if possible
189 * so the number of times add_active_range() can be called is
190 * related to the number of nodes and the number of holes
192 #ifdef CONFIG_MAX_ACTIVE_REGIONS
193 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
194 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
196 #if MAX_NUMNODES >= 32
197 /* If there can be many nodes, allow up to 50 holes per node */
198 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
200 /* By default, allow up to 256 distinct regions */
201 #define MAX_ACTIVE_REGIONS 256
205 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
206 static int __meminitdata nr_nodemap_entries
;
207 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
208 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
209 static unsigned long __initdata required_kernelcore
;
210 static unsigned long __initdata required_movablecore
;
211 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
213 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
215 EXPORT_SYMBOL(movable_zone
);
216 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
219 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
220 int nr_online_nodes __read_mostly
= 1;
221 EXPORT_SYMBOL(nr_node_ids
);
222 EXPORT_SYMBOL(nr_online_nodes
);
225 int page_group_by_mobility_disabled __read_mostly
;
227 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
230 if (unlikely(page_group_by_mobility_disabled
))
231 migratetype
= MIGRATE_UNMOVABLE
;
233 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
234 PB_migrate
, PB_migrate_end
);
237 bool oom_killer_disabled __read_mostly
;
239 #ifdef CONFIG_DEBUG_VM
240 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
244 unsigned long pfn
= page_to_pfn(page
);
247 seq
= zone_span_seqbegin(zone
);
248 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
250 else if (pfn
< zone
->zone_start_pfn
)
252 } while (zone_span_seqretry(zone
, seq
));
257 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
259 if (!pfn_valid_within(page_to_pfn(page
)))
261 if (zone
!= page_zone(page
))
267 * Temporary debugging check for pages not lying within a given zone.
269 static int bad_range(struct zone
*zone
, struct page
*page
)
271 if (page_outside_zone_boundaries(zone
, page
))
273 if (!page_is_consistent(zone
, page
))
279 static inline int bad_range(struct zone
*zone
, struct page
*page
)
285 static void bad_page(struct page
*page
)
287 static unsigned long resume
;
288 static unsigned long nr_shown
;
289 static unsigned long nr_unshown
;
291 /* Don't complain about poisoned pages */
292 if (PageHWPoison(page
)) {
293 reset_page_mapcount(page
); /* remove PageBuddy */
298 * Allow a burst of 60 reports, then keep quiet for that minute;
299 * or allow a steady drip of one report per second.
301 if (nr_shown
== 60) {
302 if (time_before(jiffies
, resume
)) {
308 "BUG: Bad page state: %lu messages suppressed\n",
315 resume
= jiffies
+ 60 * HZ
;
317 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
318 current
->comm
, page_to_pfn(page
));
323 /* Leave bad fields for debug, except PageBuddy could make trouble */
324 reset_page_mapcount(page
); /* remove PageBuddy */
325 add_taint(TAINT_BAD_PAGE
);
329 * Higher-order pages are called "compound pages". They are structured thusly:
331 * The first PAGE_SIZE page is called the "head page".
333 * The remaining PAGE_SIZE pages are called "tail pages".
335 * All pages have PG_compound set. All pages have their ->private pointing at
336 * the head page (even the head page has this).
338 * The first tail page's ->lru.next holds the address of the compound page's
339 * put_page() function. Its ->lru.prev holds the order of allocation.
340 * This usage means that zero-order pages may not be compound.
343 static void free_compound_page(struct page
*page
)
345 __free_pages_ok(page
, compound_order(page
));
348 void prep_compound_page(struct page
*page
, unsigned long order
)
351 int nr_pages
= 1 << order
;
353 set_compound_page_dtor(page
, free_compound_page
);
354 set_compound_order(page
, order
);
356 for (i
= 1; i
< nr_pages
; i
++) {
357 struct page
*p
= page
+ i
;
360 p
->first_page
= page
;
364 /* update __split_huge_page_refcount if you change this function */
365 static int destroy_compound_page(struct page
*page
, unsigned long order
)
368 int nr_pages
= 1 << order
;
371 if (unlikely(compound_order(page
) != order
) ||
372 unlikely(!PageHead(page
))) {
377 __ClearPageHead(page
);
379 for (i
= 1; i
< nr_pages
; i
++) {
380 struct page
*p
= page
+ i
;
382 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
392 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
397 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
398 * and __GFP_HIGHMEM from hard or soft interrupt context.
400 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
401 for (i
= 0; i
< (1 << order
); i
++)
402 clear_highpage(page
+ i
);
405 static inline void set_page_order(struct page
*page
, int order
)
407 set_page_private(page
, order
);
408 __SetPageBuddy(page
);
411 static inline void rmv_page_order(struct page
*page
)
413 __ClearPageBuddy(page
);
414 set_page_private(page
, 0);
418 * Locate the struct page for both the matching buddy in our
419 * pair (buddy1) and the combined O(n+1) page they form (page).
421 * 1) Any buddy B1 will have an order O twin B2 which satisfies
422 * the following equation:
424 * For example, if the starting buddy (buddy2) is #8 its order
426 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
428 * 2) Any buddy B will have an order O+1 parent P which
429 * satisfies the following equation:
432 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
434 static inline unsigned long
435 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
437 return page_idx
^ (1 << order
);
441 * This function checks whether a page is free && is the buddy
442 * we can do coalesce a page and its buddy if
443 * (a) the buddy is not in a hole &&
444 * (b) the buddy is in the buddy system &&
445 * (c) a page and its buddy have the same order &&
446 * (d) a page and its buddy are in the same zone.
448 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
449 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
451 * For recording page's order, we use page_private(page).
453 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
456 if (!pfn_valid_within(page_to_pfn(buddy
)))
459 if (page_zone_id(page
) != page_zone_id(buddy
))
462 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
463 VM_BUG_ON(page_count(buddy
) != 0);
470 * Freeing function for a buddy system allocator.
472 * The concept of a buddy system is to maintain direct-mapped table
473 * (containing bit values) for memory blocks of various "orders".
474 * The bottom level table contains the map for the smallest allocatable
475 * units of memory (here, pages), and each level above it describes
476 * pairs of units from the levels below, hence, "buddies".
477 * At a high level, all that happens here is marking the table entry
478 * at the bottom level available, and propagating the changes upward
479 * as necessary, plus some accounting needed to play nicely with other
480 * parts of the VM system.
481 * At each level, we keep a list of pages, which are heads of continuous
482 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
483 * order is recorded in page_private(page) field.
484 * So when we are allocating or freeing one, we can derive the state of the
485 * other. That is, if we allocate a small block, and both were
486 * free, the remainder of the region must be split into blocks.
487 * If a block is freed, and its buddy is also free, then this
488 * triggers coalescing into a block of larger size.
493 static inline void __free_one_page(struct page
*page
,
494 struct zone
*zone
, unsigned int order
,
497 unsigned long page_idx
;
498 unsigned long combined_idx
;
499 unsigned long uninitialized_var(buddy_idx
);
502 if (unlikely(PageCompound(page
)))
503 if (unlikely(destroy_compound_page(page
, order
)))
506 VM_BUG_ON(migratetype
== -1);
508 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
510 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
511 VM_BUG_ON(bad_range(zone
, page
));
513 while (order
< MAX_ORDER
-1) {
514 buddy_idx
= __find_buddy_index(page_idx
, order
);
515 buddy
= page
+ (buddy_idx
- page_idx
);
516 if (!page_is_buddy(page
, buddy
, order
))
519 /* Our buddy is free, merge with it and move up one order. */
520 list_del(&buddy
->lru
);
521 zone
->free_area
[order
].nr_free
--;
522 rmv_page_order(buddy
);
523 combined_idx
= buddy_idx
& page_idx
;
524 page
= page
+ (combined_idx
- page_idx
);
525 page_idx
= combined_idx
;
528 set_page_order(page
, order
);
531 * If this is not the largest possible page, check if the buddy
532 * of the next-highest order is free. If it is, it's possible
533 * that pages are being freed that will coalesce soon. In case,
534 * that is happening, add the free page to the tail of the list
535 * so it's less likely to be used soon and more likely to be merged
536 * as a higher order page
538 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
539 struct page
*higher_page
, *higher_buddy
;
540 combined_idx
= buddy_idx
& page_idx
;
541 higher_page
= page
+ (combined_idx
- page_idx
);
542 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
543 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
544 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
545 list_add_tail(&page
->lru
,
546 &zone
->free_area
[order
].free_list
[migratetype
]);
551 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
553 zone
->free_area
[order
].nr_free
++;
557 * free_page_mlock() -- clean up attempts to free and mlocked() page.
558 * Page should not be on lru, so no need to fix that up.
559 * free_pages_check() will verify...
561 static inline void free_page_mlock(struct page
*page
)
563 __dec_zone_page_state(page
, NR_MLOCK
);
564 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
567 static inline int free_pages_check(struct page
*page
)
569 if (unlikely(page_mapcount(page
) |
570 (page
->mapping
!= NULL
) |
571 (atomic_read(&page
->_count
) != 0) |
572 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
573 (mem_cgroup_bad_page_check(page
)))) {
577 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
578 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
583 * Frees a number of pages from the PCP lists
584 * Assumes all pages on list are in same zone, and of same order.
585 * count is the number of pages to free.
587 * If the zone was previously in an "all pages pinned" state then look to
588 * see if this freeing clears that state.
590 * And clear the zone's pages_scanned counter, to hold off the "all pages are
591 * pinned" detection logic.
593 static void free_pcppages_bulk(struct zone
*zone
, int count
,
594 struct per_cpu_pages
*pcp
)
600 spin_lock(&zone
->lock
);
601 zone
->all_unreclaimable
= 0;
602 zone
->pages_scanned
= 0;
606 struct list_head
*list
;
609 * Remove pages from lists in a round-robin fashion. A
610 * batch_free count is maintained that is incremented when an
611 * empty list is encountered. This is so more pages are freed
612 * off fuller lists instead of spinning excessively around empty
617 if (++migratetype
== MIGRATE_PCPTYPES
)
619 list
= &pcp
->lists
[migratetype
];
620 } while (list_empty(list
));
622 /* This is the only non-empty list. Free them all. */
623 if (batch_free
== MIGRATE_PCPTYPES
)
624 batch_free
= to_free
;
627 page
= list_entry(list
->prev
, struct page
, lru
);
628 /* must delete as __free_one_page list manipulates */
629 list_del(&page
->lru
);
630 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
631 __free_one_page(page
, zone
, 0, page_private(page
));
632 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
633 } while (--to_free
&& --batch_free
&& !list_empty(list
));
635 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
636 spin_unlock(&zone
->lock
);
639 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
642 spin_lock(&zone
->lock
);
643 zone
->all_unreclaimable
= 0;
644 zone
->pages_scanned
= 0;
646 __free_one_page(page
, zone
, order
, migratetype
);
647 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
648 spin_unlock(&zone
->lock
);
651 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
656 trace_mm_page_free_direct(page
, order
);
657 kmemcheck_free_shadow(page
, order
);
660 page
->mapping
= NULL
;
661 for (i
= 0; i
< (1 << order
); i
++)
662 bad
+= free_pages_check(page
+ i
);
666 if (!PageHighMem(page
)) {
667 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
668 debug_check_no_obj_freed(page_address(page
),
671 arch_free_page(page
, order
);
672 kernel_map_pages(page
, 1 << order
, 0);
677 static void __free_pages_ok(struct page
*page
, unsigned int order
)
680 int wasMlocked
= __TestClearPageMlocked(page
);
682 if (!free_pages_prepare(page
, order
))
685 local_irq_save(flags
);
686 if (unlikely(wasMlocked
))
687 free_page_mlock(page
);
688 __count_vm_events(PGFREE
, 1 << order
);
689 free_one_page(page_zone(page
), page
, order
,
690 get_pageblock_migratetype(page
));
691 local_irq_restore(flags
);
695 * permit the bootmem allocator to evade page validation on high-order frees
697 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
700 __ClearPageReserved(page
);
701 set_page_count(page
, 0);
702 set_page_refcounted(page
);
708 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
709 struct page
*p
= &page
[loop
];
711 if (loop
+ 1 < BITS_PER_LONG
)
713 __ClearPageReserved(p
);
714 set_page_count(p
, 0);
717 set_page_refcounted(page
);
718 __free_pages(page
, order
);
724 * The order of subdivision here is critical for the IO subsystem.
725 * Please do not alter this order without good reasons and regression
726 * testing. Specifically, as large blocks of memory are subdivided,
727 * the order in which smaller blocks are delivered depends on the order
728 * they're subdivided in this function. This is the primary factor
729 * influencing the order in which pages are delivered to the IO
730 * subsystem according to empirical testing, and this is also justified
731 * by considering the behavior of a buddy system containing a single
732 * large block of memory acted on by a series of small allocations.
733 * This behavior is a critical factor in sglist merging's success.
737 static inline void expand(struct zone
*zone
, struct page
*page
,
738 int low
, int high
, struct free_area
*area
,
741 unsigned long size
= 1 << high
;
747 VM_BUG_ON(bad_range(zone
, &page
[size
]));
748 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
750 set_page_order(&page
[size
], high
);
755 * This page is about to be returned from the page allocator
757 static inline int check_new_page(struct page
*page
)
759 if (unlikely(page_mapcount(page
) |
760 (page
->mapping
!= NULL
) |
761 (atomic_read(&page
->_count
) != 0) |
762 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
763 (mem_cgroup_bad_page_check(page
)))) {
770 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
774 for (i
= 0; i
< (1 << order
); i
++) {
775 struct page
*p
= page
+ i
;
776 if (unlikely(check_new_page(p
)))
780 set_page_private(page
, 0);
781 set_page_refcounted(page
);
783 arch_alloc_page(page
, order
);
784 kernel_map_pages(page
, 1 << order
, 1);
786 if (gfp_flags
& __GFP_ZERO
)
787 prep_zero_page(page
, order
, gfp_flags
);
789 if (order
&& (gfp_flags
& __GFP_COMP
))
790 prep_compound_page(page
, order
);
796 * Go through the free lists for the given migratetype and remove
797 * the smallest available page from the freelists
800 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
803 unsigned int current_order
;
804 struct free_area
* area
;
807 /* Find a page of the appropriate size in the preferred list */
808 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
809 area
= &(zone
->free_area
[current_order
]);
810 if (list_empty(&area
->free_list
[migratetype
]))
813 page
= list_entry(area
->free_list
[migratetype
].next
,
815 list_del(&page
->lru
);
816 rmv_page_order(page
);
818 expand(zone
, page
, order
, current_order
, area
, migratetype
);
827 * This array describes the order lists are fallen back to when
828 * the free lists for the desirable migrate type are depleted
830 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
831 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
832 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
833 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
834 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
838 * Move the free pages in a range to the free lists of the requested type.
839 * Note that start_page and end_pages are not aligned on a pageblock
840 * boundary. If alignment is required, use move_freepages_block()
842 static int move_freepages(struct zone
*zone
,
843 struct page
*start_page
, struct page
*end_page
,
850 #ifndef CONFIG_HOLES_IN_ZONE
852 * page_zone is not safe to call in this context when
853 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
854 * anyway as we check zone boundaries in move_freepages_block().
855 * Remove at a later date when no bug reports exist related to
856 * grouping pages by mobility
858 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
861 for (page
= start_page
; page
<= end_page
;) {
862 /* Make sure we are not inadvertently changing nodes */
863 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
865 if (!pfn_valid_within(page_to_pfn(page
))) {
870 if (!PageBuddy(page
)) {
875 order
= page_order(page
);
876 list_move(&page
->lru
,
877 &zone
->free_area
[order
].free_list
[migratetype
]);
879 pages_moved
+= 1 << order
;
885 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
888 unsigned long start_pfn
, end_pfn
;
889 struct page
*start_page
, *end_page
;
891 start_pfn
= page_to_pfn(page
);
892 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
893 start_page
= pfn_to_page(start_pfn
);
894 end_page
= start_page
+ pageblock_nr_pages
- 1;
895 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
897 /* Do not cross zone boundaries */
898 if (start_pfn
< zone
->zone_start_pfn
)
900 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
903 return move_freepages(zone
, start_page
, end_page
, migratetype
);
906 static void change_pageblock_range(struct page
*pageblock_page
,
907 int start_order
, int migratetype
)
909 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
911 while (nr_pageblocks
--) {
912 set_pageblock_migratetype(pageblock_page
, migratetype
);
913 pageblock_page
+= pageblock_nr_pages
;
917 /* Remove an element from the buddy allocator from the fallback list */
918 static inline struct page
*
919 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
921 struct free_area
* area
;
926 /* Find the largest possible block of pages in the other list */
927 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
929 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
930 migratetype
= fallbacks
[start_migratetype
][i
];
932 /* MIGRATE_RESERVE handled later if necessary */
933 if (migratetype
== MIGRATE_RESERVE
)
936 area
= &(zone
->free_area
[current_order
]);
937 if (list_empty(&area
->free_list
[migratetype
]))
940 page
= list_entry(area
->free_list
[migratetype
].next
,
945 * If breaking a large block of pages, move all free
946 * pages to the preferred allocation list. If falling
947 * back for a reclaimable kernel allocation, be more
948 * aggressive about taking ownership of free pages
950 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
951 start_migratetype
== MIGRATE_RECLAIMABLE
||
952 page_group_by_mobility_disabled
) {
954 pages
= move_freepages_block(zone
, page
,
957 /* Claim the whole block if over half of it is free */
958 if (pages
>= (1 << (pageblock_order
-1)) ||
959 page_group_by_mobility_disabled
)
960 set_pageblock_migratetype(page
,
963 migratetype
= start_migratetype
;
966 /* Remove the page from the freelists */
967 list_del(&page
->lru
);
968 rmv_page_order(page
);
970 /* Take ownership for orders >= pageblock_order */
971 if (current_order
>= pageblock_order
)
972 change_pageblock_range(page
, current_order
,
975 expand(zone
, page
, order
, current_order
, area
, migratetype
);
977 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
978 start_migratetype
, migratetype
);
988 * Do the hard work of removing an element from the buddy allocator.
989 * Call me with the zone->lock already held.
991 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
997 page
= __rmqueue_smallest(zone
, order
, migratetype
);
999 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
1000 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1003 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1004 * is used because __rmqueue_smallest is an inline function
1005 * and we want just one call site
1008 migratetype
= MIGRATE_RESERVE
;
1013 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1018 * Obtain a specified number of elements from the buddy allocator, all under
1019 * a single hold of the lock, for efficiency. Add them to the supplied list.
1020 * Returns the number of new pages which were placed at *list.
1022 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1023 unsigned long count
, struct list_head
*list
,
1024 int migratetype
, int cold
)
1028 spin_lock(&zone
->lock
);
1029 for (i
= 0; i
< count
; ++i
) {
1030 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1031 if (unlikely(page
== NULL
))
1035 * Split buddy pages returned by expand() are received here
1036 * in physical page order. The page is added to the callers and
1037 * list and the list head then moves forward. From the callers
1038 * perspective, the linked list is ordered by page number in
1039 * some conditions. This is useful for IO devices that can
1040 * merge IO requests if the physical pages are ordered
1043 if (likely(cold
== 0))
1044 list_add(&page
->lru
, list
);
1046 list_add_tail(&page
->lru
, list
);
1047 set_page_private(page
, migratetype
);
1050 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1051 spin_unlock(&zone
->lock
);
1057 * Called from the vmstat counter updater to drain pagesets of this
1058 * currently executing processor on remote nodes after they have
1061 * Note that this function must be called with the thread pinned to
1062 * a single processor.
1064 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1066 unsigned long flags
;
1069 local_irq_save(flags
);
1070 if (pcp
->count
>= pcp
->batch
)
1071 to_drain
= pcp
->batch
;
1073 to_drain
= pcp
->count
;
1074 free_pcppages_bulk(zone
, to_drain
, pcp
);
1075 pcp
->count
-= to_drain
;
1076 local_irq_restore(flags
);
1081 * Drain pages of the indicated processor.
1083 * The processor must either be the current processor and the
1084 * thread pinned to the current processor or a processor that
1087 static void drain_pages(unsigned int cpu
)
1089 unsigned long flags
;
1092 for_each_populated_zone(zone
) {
1093 struct per_cpu_pageset
*pset
;
1094 struct per_cpu_pages
*pcp
;
1096 local_irq_save(flags
);
1097 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1101 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1104 local_irq_restore(flags
);
1109 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1111 void drain_local_pages(void *arg
)
1113 drain_pages(smp_processor_id());
1117 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1119 void drain_all_pages(void)
1121 on_each_cpu(drain_local_pages
, NULL
, 1);
1124 #ifdef CONFIG_HIBERNATION
1126 void mark_free_pages(struct zone
*zone
)
1128 unsigned long pfn
, max_zone_pfn
;
1129 unsigned long flags
;
1131 struct list_head
*curr
;
1133 if (!zone
->spanned_pages
)
1136 spin_lock_irqsave(&zone
->lock
, flags
);
1138 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1139 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1140 if (pfn_valid(pfn
)) {
1141 struct page
*page
= pfn_to_page(pfn
);
1143 if (!swsusp_page_is_forbidden(page
))
1144 swsusp_unset_page_free(page
);
1147 for_each_migratetype_order(order
, t
) {
1148 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1151 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1152 for (i
= 0; i
< (1UL << order
); i
++)
1153 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1156 spin_unlock_irqrestore(&zone
->lock
, flags
);
1158 #endif /* CONFIG_PM */
1161 * Free a 0-order page
1162 * cold == 1 ? free a cold page : free a hot page
1164 void free_hot_cold_page(struct page
*page
, int cold
)
1166 struct zone
*zone
= page_zone(page
);
1167 struct per_cpu_pages
*pcp
;
1168 unsigned long flags
;
1170 int wasMlocked
= __TestClearPageMlocked(page
);
1172 if (!free_pages_prepare(page
, 0))
1175 migratetype
= get_pageblock_migratetype(page
);
1176 set_page_private(page
, migratetype
);
1177 local_irq_save(flags
);
1178 if (unlikely(wasMlocked
))
1179 free_page_mlock(page
);
1180 __count_vm_event(PGFREE
);
1183 * We only track unmovable, reclaimable and movable on pcp lists.
1184 * Free ISOLATE pages back to the allocator because they are being
1185 * offlined but treat RESERVE as movable pages so we can get those
1186 * areas back if necessary. Otherwise, we may have to free
1187 * excessively into the page allocator
1189 if (migratetype
>= MIGRATE_PCPTYPES
) {
1190 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1191 free_one_page(zone
, page
, 0, migratetype
);
1194 migratetype
= MIGRATE_MOVABLE
;
1197 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1199 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1201 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1203 if (pcp
->count
>= pcp
->high
) {
1204 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1205 pcp
->count
-= pcp
->batch
;
1209 local_irq_restore(flags
);
1213 * split_page takes a non-compound higher-order page, and splits it into
1214 * n (1<<order) sub-pages: page[0..n]
1215 * Each sub-page must be freed individually.
1217 * Note: this is probably too low level an operation for use in drivers.
1218 * Please consult with lkml before using this in your driver.
1220 void split_page(struct page
*page
, unsigned int order
)
1224 VM_BUG_ON(PageCompound(page
));
1225 VM_BUG_ON(!page_count(page
));
1227 #ifdef CONFIG_KMEMCHECK
1229 * Split shadow pages too, because free(page[0]) would
1230 * otherwise free the whole shadow.
1232 if (kmemcheck_page_is_tracked(page
))
1233 split_page(virt_to_page(page
[0].shadow
), order
);
1236 for (i
= 1; i
< (1 << order
); i
++)
1237 set_page_refcounted(page
+ i
);
1241 * Similar to split_page except the page is already free. As this is only
1242 * being used for migration, the migratetype of the block also changes.
1243 * As this is called with interrupts disabled, the caller is responsible
1244 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1247 * Note: this is probably too low level an operation for use in drivers.
1248 * Please consult with lkml before using this in your driver.
1250 int split_free_page(struct page
*page
)
1253 unsigned long watermark
;
1256 BUG_ON(!PageBuddy(page
));
1258 zone
= page_zone(page
);
1259 order
= page_order(page
);
1261 /* Obey watermarks as if the page was being allocated */
1262 watermark
= low_wmark_pages(zone
) + (1 << order
);
1263 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1266 /* Remove page from free list */
1267 list_del(&page
->lru
);
1268 zone
->free_area
[order
].nr_free
--;
1269 rmv_page_order(page
);
1270 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1272 /* Split into individual pages */
1273 set_page_refcounted(page
);
1274 split_page(page
, order
);
1276 if (order
>= pageblock_order
- 1) {
1277 struct page
*endpage
= page
+ (1 << order
) - 1;
1278 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1279 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1286 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1287 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1291 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1292 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1295 unsigned long flags
;
1297 int cold
= !!(gfp_flags
& __GFP_COLD
);
1300 if (likely(order
== 0)) {
1301 struct per_cpu_pages
*pcp
;
1302 struct list_head
*list
;
1304 local_irq_save(flags
);
1305 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1306 list
= &pcp
->lists
[migratetype
];
1307 if (list_empty(list
)) {
1308 pcp
->count
+= rmqueue_bulk(zone
, 0,
1311 if (unlikely(list_empty(list
)))
1316 page
= list_entry(list
->prev
, struct page
, lru
);
1318 page
= list_entry(list
->next
, struct page
, lru
);
1320 list_del(&page
->lru
);
1323 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1325 * __GFP_NOFAIL is not to be used in new code.
1327 * All __GFP_NOFAIL callers should be fixed so that they
1328 * properly detect and handle allocation failures.
1330 * We most definitely don't want callers attempting to
1331 * allocate greater than order-1 page units with
1334 WARN_ON_ONCE(order
> 1);
1336 spin_lock_irqsave(&zone
->lock
, flags
);
1337 page
= __rmqueue(zone
, order
, migratetype
);
1338 spin_unlock(&zone
->lock
);
1341 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1344 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1345 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1346 local_irq_restore(flags
);
1348 VM_BUG_ON(bad_range(zone
, page
));
1349 if (prep_new_page(page
, order
, gfp_flags
))
1354 local_irq_restore(flags
);
1358 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1359 #define ALLOC_WMARK_MIN WMARK_MIN
1360 #define ALLOC_WMARK_LOW WMARK_LOW
1361 #define ALLOC_WMARK_HIGH WMARK_HIGH
1362 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1364 /* Mask to get the watermark bits */
1365 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1367 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1368 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1369 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1371 #ifdef CONFIG_FAIL_PAGE_ALLOC
1374 struct fault_attr attr
;
1376 u32 ignore_gfp_highmem
;
1377 u32 ignore_gfp_wait
;
1379 } fail_page_alloc
= {
1380 .attr
= FAULT_ATTR_INITIALIZER
,
1381 .ignore_gfp_wait
= 1,
1382 .ignore_gfp_highmem
= 1,
1386 static int __init
setup_fail_page_alloc(char *str
)
1388 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1390 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1392 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1394 if (order
< fail_page_alloc
.min_order
)
1396 if (gfp_mask
& __GFP_NOFAIL
)
1398 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1400 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1403 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1406 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1408 static int __init
fail_page_alloc_debugfs(void)
1410 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1413 dir
= fault_create_debugfs_attr("fail_page_alloc", NULL
,
1414 &fail_page_alloc
.attr
);
1416 return PTR_ERR(dir
);
1418 if (!debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1419 &fail_page_alloc
.ignore_gfp_wait
))
1421 if (!debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1422 &fail_page_alloc
.ignore_gfp_highmem
))
1424 if (!debugfs_create_u32("min-order", mode
, dir
,
1425 &fail_page_alloc
.min_order
))
1430 debugfs_remove_recursive(dir
);
1435 late_initcall(fail_page_alloc_debugfs
);
1437 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1439 #else /* CONFIG_FAIL_PAGE_ALLOC */
1441 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1446 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1449 * Return true if free pages are above 'mark'. This takes into account the order
1450 * of the allocation.
1452 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1453 int classzone_idx
, int alloc_flags
, long free_pages
)
1455 /* free_pages my go negative - that's OK */
1459 free_pages
-= (1 << order
) + 1;
1460 if (alloc_flags
& ALLOC_HIGH
)
1462 if (alloc_flags
& ALLOC_HARDER
)
1465 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1467 for (o
= 0; o
< order
; o
++) {
1468 /* At the next order, this order's pages become unavailable */
1469 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1471 /* Require fewer higher order pages to be free */
1474 if (free_pages
<= min
)
1480 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1481 int classzone_idx
, int alloc_flags
)
1483 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1484 zone_page_state(z
, NR_FREE_PAGES
));
1487 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1488 int classzone_idx
, int alloc_flags
)
1490 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1492 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1493 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1495 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1501 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1502 * skip over zones that are not allowed by the cpuset, or that have
1503 * been recently (in last second) found to be nearly full. See further
1504 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1505 * that have to skip over a lot of full or unallowed zones.
1507 * If the zonelist cache is present in the passed in zonelist, then
1508 * returns a pointer to the allowed node mask (either the current
1509 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1511 * If the zonelist cache is not available for this zonelist, does
1512 * nothing and returns NULL.
1514 * If the fullzones BITMAP in the zonelist cache is stale (more than
1515 * a second since last zap'd) then we zap it out (clear its bits.)
1517 * We hold off even calling zlc_setup, until after we've checked the
1518 * first zone in the zonelist, on the theory that most allocations will
1519 * be satisfied from that first zone, so best to examine that zone as
1520 * quickly as we can.
1522 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1524 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1525 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1527 zlc
= zonelist
->zlcache_ptr
;
1531 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1532 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1533 zlc
->last_full_zap
= jiffies
;
1536 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1537 &cpuset_current_mems_allowed
:
1538 &node_states
[N_HIGH_MEMORY
];
1539 return allowednodes
;
1543 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1544 * if it is worth looking at further for free memory:
1545 * 1) Check that the zone isn't thought to be full (doesn't have its
1546 * bit set in the zonelist_cache fullzones BITMAP).
1547 * 2) Check that the zones node (obtained from the zonelist_cache
1548 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1549 * Return true (non-zero) if zone is worth looking at further, or
1550 * else return false (zero) if it is not.
1552 * This check -ignores- the distinction between various watermarks,
1553 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1554 * found to be full for any variation of these watermarks, it will
1555 * be considered full for up to one second by all requests, unless
1556 * we are so low on memory on all allowed nodes that we are forced
1557 * into the second scan of the zonelist.
1559 * In the second scan we ignore this zonelist cache and exactly
1560 * apply the watermarks to all zones, even it is slower to do so.
1561 * We are low on memory in the second scan, and should leave no stone
1562 * unturned looking for a free page.
1564 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1565 nodemask_t
*allowednodes
)
1567 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1568 int i
; /* index of *z in zonelist zones */
1569 int n
; /* node that zone *z is on */
1571 zlc
= zonelist
->zlcache_ptr
;
1575 i
= z
- zonelist
->_zonerefs
;
1578 /* This zone is worth trying if it is allowed but not full */
1579 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1583 * Given 'z' scanning a zonelist, set the corresponding bit in
1584 * zlc->fullzones, so that subsequent attempts to allocate a page
1585 * from that zone don't waste time re-examining it.
1587 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1589 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1590 int i
; /* index of *z in zonelist zones */
1592 zlc
= zonelist
->zlcache_ptr
;
1596 i
= z
- zonelist
->_zonerefs
;
1598 set_bit(i
, zlc
->fullzones
);
1602 * clear all zones full, called after direct reclaim makes progress so that
1603 * a zone that was recently full is not skipped over for up to a second
1605 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1607 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1609 zlc
= zonelist
->zlcache_ptr
;
1613 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1616 #else /* CONFIG_NUMA */
1618 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1623 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1624 nodemask_t
*allowednodes
)
1629 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1633 static void zlc_clear_zones_full(struct zonelist
*zonelist
)
1636 #endif /* CONFIG_NUMA */
1639 * get_page_from_freelist goes through the zonelist trying to allocate
1642 static struct page
*
1643 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1644 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1645 struct zone
*preferred_zone
, int migratetype
)
1648 struct page
*page
= NULL
;
1651 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1652 int zlc_active
= 0; /* set if using zonelist_cache */
1653 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1655 classzone_idx
= zone_idx(preferred_zone
);
1658 * Scan zonelist, looking for a zone with enough free.
1659 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1661 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1662 high_zoneidx
, nodemask
) {
1663 if (NUMA_BUILD
&& zlc_active
&&
1664 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1666 if ((alloc_flags
& ALLOC_CPUSET
) &&
1667 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1670 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1671 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1675 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1676 if (zone_watermark_ok(zone
, order
, mark
,
1677 classzone_idx
, alloc_flags
))
1680 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1682 * we do zlc_setup if there are multiple nodes
1683 * and before considering the first zone allowed
1686 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1691 if (zone_reclaim_mode
== 0)
1692 goto this_zone_full
;
1695 * As we may have just activated ZLC, check if the first
1696 * eligible zone has failed zone_reclaim recently.
1698 if (NUMA_BUILD
&& zlc_active
&&
1699 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1702 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1704 case ZONE_RECLAIM_NOSCAN
:
1707 case ZONE_RECLAIM_FULL
:
1708 /* scanned but unreclaimable */
1711 /* did we reclaim enough */
1712 if (!zone_watermark_ok(zone
, order
, mark
,
1713 classzone_idx
, alloc_flags
))
1714 goto this_zone_full
;
1719 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1720 gfp_mask
, migratetype
);
1725 zlc_mark_zone_full(zonelist
, z
);
1728 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1729 /* Disable zlc cache for second zonelist scan */
1737 * Large machines with many possible nodes should not always dump per-node
1738 * meminfo in irq context.
1740 static inline bool should_suppress_show_mem(void)
1745 ret
= in_interrupt();
1750 static DEFINE_RATELIMIT_STATE(nopage_rs
,
1751 DEFAULT_RATELIMIT_INTERVAL
,
1752 DEFAULT_RATELIMIT_BURST
);
1754 void warn_alloc_failed(gfp_t gfp_mask
, int order
, const char *fmt
, ...)
1757 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
1759 if ((gfp_mask
& __GFP_NOWARN
) || !__ratelimit(&nopage_rs
))
1763 * This documents exceptions given to allocations in certain
1764 * contexts that are allowed to allocate outside current's set
1767 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1768 if (test_thread_flag(TIF_MEMDIE
) ||
1769 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
1770 filter
&= ~SHOW_MEM_FILTER_NODES
;
1771 if (in_interrupt() || !(gfp_mask
& __GFP_WAIT
))
1772 filter
&= ~SHOW_MEM_FILTER_NODES
;
1775 printk(KERN_WARNING
);
1776 va_start(args
, fmt
);
1781 pr_warning("%s: page allocation failure: order:%d, mode:0x%x\n",
1782 current
->comm
, order
, gfp_mask
);
1785 if (!should_suppress_show_mem())
1790 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1791 unsigned long pages_reclaimed
)
1793 /* Do not loop if specifically requested */
1794 if (gfp_mask
& __GFP_NORETRY
)
1798 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1799 * means __GFP_NOFAIL, but that may not be true in other
1802 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1806 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1807 * specified, then we retry until we no longer reclaim any pages
1808 * (above), or we've reclaimed an order of pages at least as
1809 * large as the allocation's order. In both cases, if the
1810 * allocation still fails, we stop retrying.
1812 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1816 * Don't let big-order allocations loop unless the caller
1817 * explicitly requests that.
1819 if (gfp_mask
& __GFP_NOFAIL
)
1825 static inline struct page
*
1826 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1827 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1828 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1833 /* Acquire the OOM killer lock for the zones in zonelist */
1834 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1835 schedule_timeout_uninterruptible(1);
1840 * Go through the zonelist yet one more time, keep very high watermark
1841 * here, this is only to catch a parallel oom killing, we must fail if
1842 * we're still under heavy pressure.
1844 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1845 order
, zonelist
, high_zoneidx
,
1846 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1847 preferred_zone
, migratetype
);
1851 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1852 /* The OOM killer will not help higher order allocs */
1853 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1855 /* The OOM killer does not needlessly kill tasks for lowmem */
1856 if (high_zoneidx
< ZONE_NORMAL
)
1859 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1860 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1861 * The caller should handle page allocation failure by itself if
1862 * it specifies __GFP_THISNODE.
1863 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1865 if (gfp_mask
& __GFP_THISNODE
)
1868 /* Exhausted what can be done so it's blamo time */
1869 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1872 clear_zonelist_oom(zonelist
, gfp_mask
);
1876 #ifdef CONFIG_COMPACTION
1877 /* Try memory compaction for high-order allocations before reclaim */
1878 static struct page
*
1879 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1880 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1881 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1882 int migratetype
, unsigned long *did_some_progress
,
1883 bool sync_migration
)
1887 if (!order
|| compaction_deferred(preferred_zone
))
1890 current
->flags
|= PF_MEMALLOC
;
1891 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1892 nodemask
, sync_migration
);
1893 current
->flags
&= ~PF_MEMALLOC
;
1894 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1896 /* Page migration frees to the PCP lists but we want merging */
1897 drain_pages(get_cpu());
1900 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1901 order
, zonelist
, high_zoneidx
,
1902 alloc_flags
, preferred_zone
,
1905 preferred_zone
->compact_considered
= 0;
1906 preferred_zone
->compact_defer_shift
= 0;
1907 count_vm_event(COMPACTSUCCESS
);
1912 * It's bad if compaction run occurs and fails.
1913 * The most likely reason is that pages exist,
1914 * but not enough to satisfy watermarks.
1916 count_vm_event(COMPACTFAIL
);
1917 defer_compaction(preferred_zone
);
1925 static inline struct page
*
1926 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1927 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1928 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1929 int migratetype
, unsigned long *did_some_progress
,
1930 bool sync_migration
)
1934 #endif /* CONFIG_COMPACTION */
1936 /* The really slow allocator path where we enter direct reclaim */
1937 static inline struct page
*
1938 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1939 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1940 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1941 int migratetype
, unsigned long *did_some_progress
)
1943 struct page
*page
= NULL
;
1944 struct reclaim_state reclaim_state
;
1945 bool drained
= false;
1949 /* We now go into synchronous reclaim */
1950 cpuset_memory_pressure_bump();
1951 current
->flags
|= PF_MEMALLOC
;
1952 lockdep_set_current_reclaim_state(gfp_mask
);
1953 reclaim_state
.reclaimed_slab
= 0;
1954 current
->reclaim_state
= &reclaim_state
;
1956 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1958 current
->reclaim_state
= NULL
;
1959 lockdep_clear_current_reclaim_state();
1960 current
->flags
&= ~PF_MEMALLOC
;
1964 if (unlikely(!(*did_some_progress
)))
1967 /* After successful reclaim, reconsider all zones for allocation */
1969 zlc_clear_zones_full(zonelist
);
1972 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1973 zonelist
, high_zoneidx
,
1974 alloc_flags
, preferred_zone
,
1978 * If an allocation failed after direct reclaim, it could be because
1979 * pages are pinned on the per-cpu lists. Drain them and try again
1981 if (!page
&& !drained
) {
1991 * This is called in the allocator slow-path if the allocation request is of
1992 * sufficient urgency to ignore watermarks and take other desperate measures
1994 static inline struct page
*
1995 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1996 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1997 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2003 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
2004 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
2005 preferred_zone
, migratetype
);
2007 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
2008 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2009 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
2015 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
2016 enum zone_type high_zoneidx
,
2017 enum zone_type classzone_idx
)
2022 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
2023 wakeup_kswapd(zone
, order
, classzone_idx
);
2027 gfp_to_alloc_flags(gfp_t gfp_mask
)
2029 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
2030 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2032 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
2033 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
2036 * The caller may dip into page reserves a bit more if the caller
2037 * cannot run direct reclaim, or if the caller has realtime scheduling
2038 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
2039 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
2041 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
2045 * Not worth trying to allocate harder for
2046 * __GFP_NOMEMALLOC even if it can't schedule.
2048 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2049 alloc_flags
|= ALLOC_HARDER
;
2051 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
2052 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
2054 alloc_flags
&= ~ALLOC_CPUSET
;
2055 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2056 alloc_flags
|= ALLOC_HARDER
;
2058 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2059 if (!in_interrupt() &&
2060 ((current
->flags
& PF_MEMALLOC
) ||
2061 unlikely(test_thread_flag(TIF_MEMDIE
))))
2062 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2068 static inline struct page
*
2069 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2070 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2071 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2074 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2075 struct page
*page
= NULL
;
2077 unsigned long pages_reclaimed
= 0;
2078 unsigned long did_some_progress
;
2079 bool sync_migration
= false;
2082 * In the slowpath, we sanity check order to avoid ever trying to
2083 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2084 * be using allocators in order of preference for an area that is
2087 if (order
>= MAX_ORDER
) {
2088 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2093 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2094 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2095 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2096 * using a larger set of nodes after it has established that the
2097 * allowed per node queues are empty and that nodes are
2100 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2104 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2105 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2106 zone_idx(preferred_zone
));
2109 * OK, we're below the kswapd watermark and have kicked background
2110 * reclaim. Now things get more complex, so set up alloc_flags according
2111 * to how we want to proceed.
2113 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2116 * Find the true preferred zone if the allocation is unconstrained by
2119 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2120 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2124 /* This is the last chance, in general, before the goto nopage. */
2125 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2126 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2127 preferred_zone
, migratetype
);
2131 /* Allocate without watermarks if the context allows */
2132 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2133 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2134 zonelist
, high_zoneidx
, nodemask
,
2135 preferred_zone
, migratetype
);
2140 /* Atomic allocations - we can't balance anything */
2144 /* Avoid recursion of direct reclaim */
2145 if (current
->flags
& PF_MEMALLOC
)
2148 /* Avoid allocations with no watermarks from looping endlessly */
2149 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2153 * Try direct compaction. The first pass is asynchronous. Subsequent
2154 * attempts after direct reclaim are synchronous
2156 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2157 zonelist
, high_zoneidx
,
2159 alloc_flags
, preferred_zone
,
2160 migratetype
, &did_some_progress
,
2164 sync_migration
= true;
2166 /* Try direct reclaim and then allocating */
2167 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2168 zonelist
, high_zoneidx
,
2170 alloc_flags
, preferred_zone
,
2171 migratetype
, &did_some_progress
);
2176 * If we failed to make any progress reclaiming, then we are
2177 * running out of options and have to consider going OOM
2179 if (!did_some_progress
) {
2180 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2181 if (oom_killer_disabled
)
2183 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2184 zonelist
, high_zoneidx
,
2185 nodemask
, preferred_zone
,
2190 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2192 * The oom killer is not called for high-order
2193 * allocations that may fail, so if no progress
2194 * is being made, there are no other options and
2195 * retrying is unlikely to help.
2197 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2200 * The oom killer is not called for lowmem
2201 * allocations to prevent needlessly killing
2204 if (high_zoneidx
< ZONE_NORMAL
)
2212 /* Check if we should retry the allocation */
2213 pages_reclaimed
+= did_some_progress
;
2214 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2215 /* Wait for some write requests to complete then retry */
2216 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2220 * High-order allocations do not necessarily loop after
2221 * direct reclaim and reclaim/compaction depends on compaction
2222 * being called after reclaim so call directly if necessary
2224 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2225 zonelist
, high_zoneidx
,
2227 alloc_flags
, preferred_zone
,
2228 migratetype
, &did_some_progress
,
2235 warn_alloc_failed(gfp_mask
, order
, NULL
);
2238 if (kmemcheck_enabled
)
2239 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2245 * This is the 'heart' of the zoned buddy allocator.
2248 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2249 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2251 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2252 struct zone
*preferred_zone
;
2254 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2256 gfp_mask
&= gfp_allowed_mask
;
2258 lockdep_trace_alloc(gfp_mask
);
2260 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2262 if (should_fail_alloc_page(gfp_mask
, order
))
2266 * Check the zones suitable for the gfp_mask contain at least one
2267 * valid zone. It's possible to have an empty zonelist as a result
2268 * of GFP_THISNODE and a memoryless node
2270 if (unlikely(!zonelist
->_zonerefs
->zone
))
2274 /* The preferred zone is used for statistics later */
2275 first_zones_zonelist(zonelist
, high_zoneidx
,
2276 nodemask
? : &cpuset_current_mems_allowed
,
2278 if (!preferred_zone
) {
2283 /* First allocation attempt */
2284 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2285 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2286 preferred_zone
, migratetype
);
2287 if (unlikely(!page
))
2288 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2289 zonelist
, high_zoneidx
, nodemask
,
2290 preferred_zone
, migratetype
);
2293 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2296 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2299 * Common helper functions.
2301 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2306 * __get_free_pages() returns a 32-bit address, which cannot represent
2309 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2311 page
= alloc_pages(gfp_mask
, order
);
2314 return (unsigned long) page_address(page
);
2316 EXPORT_SYMBOL(__get_free_pages
);
2318 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2320 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2322 EXPORT_SYMBOL(get_zeroed_page
);
2324 void __pagevec_free(struct pagevec
*pvec
)
2326 int i
= pagevec_count(pvec
);
2329 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2330 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2334 void __free_pages(struct page
*page
, unsigned int order
)
2336 if (put_page_testzero(page
)) {
2338 free_hot_cold_page(page
, 0);
2340 __free_pages_ok(page
, order
);
2344 EXPORT_SYMBOL(__free_pages
);
2346 void free_pages(unsigned long addr
, unsigned int order
)
2349 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2350 __free_pages(virt_to_page((void *)addr
), order
);
2354 EXPORT_SYMBOL(free_pages
);
2356 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2359 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2360 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2362 split_page(virt_to_page((void *)addr
), order
);
2363 while (used
< alloc_end
) {
2368 return (void *)addr
;
2372 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2373 * @size: the number of bytes to allocate
2374 * @gfp_mask: GFP flags for the allocation
2376 * This function is similar to alloc_pages(), except that it allocates the
2377 * minimum number of pages to satisfy the request. alloc_pages() can only
2378 * allocate memory in power-of-two pages.
2380 * This function is also limited by MAX_ORDER.
2382 * Memory allocated by this function must be released by free_pages_exact().
2384 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2386 unsigned int order
= get_order(size
);
2389 addr
= __get_free_pages(gfp_mask
, order
);
2390 return make_alloc_exact(addr
, order
, size
);
2392 EXPORT_SYMBOL(alloc_pages_exact
);
2395 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2397 * @nid: the preferred node ID where memory should be allocated
2398 * @size: the number of bytes to allocate
2399 * @gfp_mask: GFP flags for the allocation
2401 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2403 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2406 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2408 unsigned order
= get_order(size
);
2409 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2412 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2414 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2417 * free_pages_exact - release memory allocated via alloc_pages_exact()
2418 * @virt: the value returned by alloc_pages_exact.
2419 * @size: size of allocation, same value as passed to alloc_pages_exact().
2421 * Release the memory allocated by a previous call to alloc_pages_exact.
2423 void free_pages_exact(void *virt
, size_t size
)
2425 unsigned long addr
= (unsigned long)virt
;
2426 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2428 while (addr
< end
) {
2433 EXPORT_SYMBOL(free_pages_exact
);
2435 static unsigned int nr_free_zone_pages(int offset
)
2440 /* Just pick one node, since fallback list is circular */
2441 unsigned int sum
= 0;
2443 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2445 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2446 unsigned long size
= zone
->present_pages
;
2447 unsigned long high
= high_wmark_pages(zone
);
2456 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2458 unsigned int nr_free_buffer_pages(void)
2460 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2462 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2465 * Amount of free RAM allocatable within all zones
2467 unsigned int nr_free_pagecache_pages(void)
2469 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2472 static inline void show_node(struct zone
*zone
)
2475 printk("Node %d ", zone_to_nid(zone
));
2478 void si_meminfo(struct sysinfo
*val
)
2480 val
->totalram
= totalram_pages
;
2482 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2483 val
->bufferram
= nr_blockdev_pages();
2484 val
->totalhigh
= totalhigh_pages
;
2485 val
->freehigh
= nr_free_highpages();
2486 val
->mem_unit
= PAGE_SIZE
;
2489 EXPORT_SYMBOL(si_meminfo
);
2492 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2494 pg_data_t
*pgdat
= NODE_DATA(nid
);
2496 val
->totalram
= pgdat
->node_present_pages
;
2497 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2498 #ifdef CONFIG_HIGHMEM
2499 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2500 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2506 val
->mem_unit
= PAGE_SIZE
;
2511 * Determine whether the node should be displayed or not, depending on whether
2512 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
2514 bool skip_free_areas_node(unsigned int flags
, int nid
)
2518 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2522 ret
= !node_isset(nid
, cpuset_current_mems_allowed
);
2528 #define K(x) ((x) << (PAGE_SHIFT-10))
2531 * Show free area list (used inside shift_scroll-lock stuff)
2532 * We also calculate the percentage fragmentation. We do this by counting the
2533 * memory on each free list with the exception of the first item on the list.
2534 * Suppresses nodes that are not allowed by current's cpuset if
2535 * SHOW_MEM_FILTER_NODES is passed.
2537 void show_free_areas(unsigned int filter
)
2542 for_each_populated_zone(zone
) {
2543 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2546 printk("%s per-cpu:\n", zone
->name
);
2548 for_each_online_cpu(cpu
) {
2549 struct per_cpu_pageset
*pageset
;
2551 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2553 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2554 cpu
, pageset
->pcp
.high
,
2555 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2559 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2560 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2562 " dirty:%lu writeback:%lu unstable:%lu\n"
2563 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2564 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2565 global_page_state(NR_ACTIVE_ANON
),
2566 global_page_state(NR_INACTIVE_ANON
),
2567 global_page_state(NR_ISOLATED_ANON
),
2568 global_page_state(NR_ACTIVE_FILE
),
2569 global_page_state(NR_INACTIVE_FILE
),
2570 global_page_state(NR_ISOLATED_FILE
),
2571 global_page_state(NR_UNEVICTABLE
),
2572 global_page_state(NR_FILE_DIRTY
),
2573 global_page_state(NR_WRITEBACK
),
2574 global_page_state(NR_UNSTABLE_NFS
),
2575 global_page_state(NR_FREE_PAGES
),
2576 global_page_state(NR_SLAB_RECLAIMABLE
),
2577 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2578 global_page_state(NR_FILE_MAPPED
),
2579 global_page_state(NR_SHMEM
),
2580 global_page_state(NR_PAGETABLE
),
2581 global_page_state(NR_BOUNCE
));
2583 for_each_populated_zone(zone
) {
2586 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2594 " active_anon:%lukB"
2595 " inactive_anon:%lukB"
2596 " active_file:%lukB"
2597 " inactive_file:%lukB"
2598 " unevictable:%lukB"
2599 " isolated(anon):%lukB"
2600 " isolated(file):%lukB"
2607 " slab_reclaimable:%lukB"
2608 " slab_unreclaimable:%lukB"
2609 " kernel_stack:%lukB"
2613 " writeback_tmp:%lukB"
2614 " pages_scanned:%lu"
2615 " all_unreclaimable? %s"
2618 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2619 K(min_wmark_pages(zone
)),
2620 K(low_wmark_pages(zone
)),
2621 K(high_wmark_pages(zone
)),
2622 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2623 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2624 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2625 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2626 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2627 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2628 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2629 K(zone
->present_pages
),
2630 K(zone_page_state(zone
, NR_MLOCK
)),
2631 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2632 K(zone_page_state(zone
, NR_WRITEBACK
)),
2633 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2634 K(zone_page_state(zone
, NR_SHMEM
)),
2635 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2636 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2637 zone_page_state(zone
, NR_KERNEL_STACK
) *
2639 K(zone_page_state(zone
, NR_PAGETABLE
)),
2640 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2641 K(zone_page_state(zone
, NR_BOUNCE
)),
2642 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2643 zone
->pages_scanned
,
2644 (zone
->all_unreclaimable
? "yes" : "no")
2646 printk("lowmem_reserve[]:");
2647 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2648 printk(" %lu", zone
->lowmem_reserve
[i
]);
2652 for_each_populated_zone(zone
) {
2653 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2655 if (skip_free_areas_node(filter
, zone_to_nid(zone
)))
2658 printk("%s: ", zone
->name
);
2660 spin_lock_irqsave(&zone
->lock
, flags
);
2661 for (order
= 0; order
< MAX_ORDER
; order
++) {
2662 nr
[order
] = zone
->free_area
[order
].nr_free
;
2663 total
+= nr
[order
] << order
;
2665 spin_unlock_irqrestore(&zone
->lock
, flags
);
2666 for (order
= 0; order
< MAX_ORDER
; order
++)
2667 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2668 printk("= %lukB\n", K(total
));
2671 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2673 show_swap_cache_info();
2676 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2678 zoneref
->zone
= zone
;
2679 zoneref
->zone_idx
= zone_idx(zone
);
2683 * Builds allocation fallback zone lists.
2685 * Add all populated zones of a node to the zonelist.
2687 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2688 int nr_zones
, enum zone_type zone_type
)
2692 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2697 zone
= pgdat
->node_zones
+ zone_type
;
2698 if (populated_zone(zone
)) {
2699 zoneref_set_zone(zone
,
2700 &zonelist
->_zonerefs
[nr_zones
++]);
2701 check_highest_zone(zone_type
);
2704 } while (zone_type
);
2711 * 0 = automatic detection of better ordering.
2712 * 1 = order by ([node] distance, -zonetype)
2713 * 2 = order by (-zonetype, [node] distance)
2715 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2716 * the same zonelist. So only NUMA can configure this param.
2718 #define ZONELIST_ORDER_DEFAULT 0
2719 #define ZONELIST_ORDER_NODE 1
2720 #define ZONELIST_ORDER_ZONE 2
2722 /* zonelist order in the kernel.
2723 * set_zonelist_order() will set this to NODE or ZONE.
2725 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2726 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2730 /* The value user specified ....changed by config */
2731 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2732 /* string for sysctl */
2733 #define NUMA_ZONELIST_ORDER_LEN 16
2734 char numa_zonelist_order
[16] = "default";
2737 * interface for configure zonelist ordering.
2738 * command line option "numa_zonelist_order"
2739 * = "[dD]efault - default, automatic configuration.
2740 * = "[nN]ode - order by node locality, then by zone within node
2741 * = "[zZ]one - order by zone, then by locality within zone
2744 static int __parse_numa_zonelist_order(char *s
)
2746 if (*s
== 'd' || *s
== 'D') {
2747 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2748 } else if (*s
== 'n' || *s
== 'N') {
2749 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2750 } else if (*s
== 'z' || *s
== 'Z') {
2751 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2754 "Ignoring invalid numa_zonelist_order value: "
2761 static __init
int setup_numa_zonelist_order(char *s
)
2768 ret
= __parse_numa_zonelist_order(s
);
2770 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2774 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2777 * sysctl handler for numa_zonelist_order
2779 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2780 void __user
*buffer
, size_t *length
,
2783 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2785 static DEFINE_MUTEX(zl_order_mutex
);
2787 mutex_lock(&zl_order_mutex
);
2789 strcpy(saved_string
, (char*)table
->data
);
2790 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2794 int oldval
= user_zonelist_order
;
2795 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2797 * bogus value. restore saved string
2799 strncpy((char*)table
->data
, saved_string
,
2800 NUMA_ZONELIST_ORDER_LEN
);
2801 user_zonelist_order
= oldval
;
2802 } else if (oldval
!= user_zonelist_order
) {
2803 mutex_lock(&zonelists_mutex
);
2804 build_all_zonelists(NULL
);
2805 mutex_unlock(&zonelists_mutex
);
2809 mutex_unlock(&zl_order_mutex
);
2814 #define MAX_NODE_LOAD (nr_online_nodes)
2815 static int node_load
[MAX_NUMNODES
];
2818 * find_next_best_node - find the next node that should appear in a given node's fallback list
2819 * @node: node whose fallback list we're appending
2820 * @used_node_mask: nodemask_t of already used nodes
2822 * We use a number of factors to determine which is the next node that should
2823 * appear on a given node's fallback list. The node should not have appeared
2824 * already in @node's fallback list, and it should be the next closest node
2825 * according to the distance array (which contains arbitrary distance values
2826 * from each node to each node in the system), and should also prefer nodes
2827 * with no CPUs, since presumably they'll have very little allocation pressure
2828 * on them otherwise.
2829 * It returns -1 if no node is found.
2831 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2834 int min_val
= INT_MAX
;
2836 const struct cpumask
*tmp
= cpumask_of_node(0);
2838 /* Use the local node if we haven't already */
2839 if (!node_isset(node
, *used_node_mask
)) {
2840 node_set(node
, *used_node_mask
);
2844 for_each_node_state(n
, N_HIGH_MEMORY
) {
2846 /* Don't want a node to appear more than once */
2847 if (node_isset(n
, *used_node_mask
))
2850 /* Use the distance array to find the distance */
2851 val
= node_distance(node
, n
);
2853 /* Penalize nodes under us ("prefer the next node") */
2856 /* Give preference to headless and unused nodes */
2857 tmp
= cpumask_of_node(n
);
2858 if (!cpumask_empty(tmp
))
2859 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2861 /* Slight preference for less loaded node */
2862 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2863 val
+= node_load
[n
];
2865 if (val
< min_val
) {
2872 node_set(best_node
, *used_node_mask
);
2879 * Build zonelists ordered by node and zones within node.
2880 * This results in maximum locality--normal zone overflows into local
2881 * DMA zone, if any--but risks exhausting DMA zone.
2883 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2886 struct zonelist
*zonelist
;
2888 zonelist
= &pgdat
->node_zonelists
[0];
2889 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2891 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2893 zonelist
->_zonerefs
[j
].zone
= NULL
;
2894 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2898 * Build gfp_thisnode zonelists
2900 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2903 struct zonelist
*zonelist
;
2905 zonelist
= &pgdat
->node_zonelists
[1];
2906 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2907 zonelist
->_zonerefs
[j
].zone
= NULL
;
2908 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2912 * Build zonelists ordered by zone and nodes within zones.
2913 * This results in conserving DMA zone[s] until all Normal memory is
2914 * exhausted, but results in overflowing to remote node while memory
2915 * may still exist in local DMA zone.
2917 static int node_order
[MAX_NUMNODES
];
2919 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2922 int zone_type
; /* needs to be signed */
2924 struct zonelist
*zonelist
;
2926 zonelist
= &pgdat
->node_zonelists
[0];
2928 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2929 for (j
= 0; j
< nr_nodes
; j
++) {
2930 node
= node_order
[j
];
2931 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2932 if (populated_zone(z
)) {
2934 &zonelist
->_zonerefs
[pos
++]);
2935 check_highest_zone(zone_type
);
2939 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2940 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2943 static int default_zonelist_order(void)
2946 unsigned long low_kmem_size
,total_size
;
2950 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2951 * If they are really small and used heavily, the system can fall
2952 * into OOM very easily.
2953 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2955 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2958 for_each_online_node(nid
) {
2959 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2960 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2961 if (populated_zone(z
)) {
2962 if (zone_type
< ZONE_NORMAL
)
2963 low_kmem_size
+= z
->present_pages
;
2964 total_size
+= z
->present_pages
;
2965 } else if (zone_type
== ZONE_NORMAL
) {
2967 * If any node has only lowmem, then node order
2968 * is preferred to allow kernel allocations
2969 * locally; otherwise, they can easily infringe
2970 * on other nodes when there is an abundance of
2971 * lowmem available to allocate from.
2973 return ZONELIST_ORDER_NODE
;
2977 if (!low_kmem_size
|| /* there are no DMA area. */
2978 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2979 return ZONELIST_ORDER_NODE
;
2981 * look into each node's config.
2982 * If there is a node whose DMA/DMA32 memory is very big area on
2983 * local memory, NODE_ORDER may be suitable.
2985 average_size
= total_size
/
2986 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2987 for_each_online_node(nid
) {
2990 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2991 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2992 if (populated_zone(z
)) {
2993 if (zone_type
< ZONE_NORMAL
)
2994 low_kmem_size
+= z
->present_pages
;
2995 total_size
+= z
->present_pages
;
2998 if (low_kmem_size
&&
2999 total_size
> average_size
&& /* ignore small node */
3000 low_kmem_size
> total_size
* 70/100)
3001 return ZONELIST_ORDER_NODE
;
3003 return ZONELIST_ORDER_ZONE
;
3006 static void set_zonelist_order(void)
3008 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
3009 current_zonelist_order
= default_zonelist_order();
3011 current_zonelist_order
= user_zonelist_order
;
3014 static void build_zonelists(pg_data_t
*pgdat
)
3018 nodemask_t used_mask
;
3019 int local_node
, prev_node
;
3020 struct zonelist
*zonelist
;
3021 int order
= current_zonelist_order
;
3023 /* initialize zonelists */
3024 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
3025 zonelist
= pgdat
->node_zonelists
+ i
;
3026 zonelist
->_zonerefs
[0].zone
= NULL
;
3027 zonelist
->_zonerefs
[0].zone_idx
= 0;
3030 /* NUMA-aware ordering of nodes */
3031 local_node
= pgdat
->node_id
;
3032 load
= nr_online_nodes
;
3033 prev_node
= local_node
;
3034 nodes_clear(used_mask
);
3036 memset(node_order
, 0, sizeof(node_order
));
3039 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3040 int distance
= node_distance(local_node
, node
);
3043 * If another node is sufficiently far away then it is better
3044 * to reclaim pages in a zone before going off node.
3046 if (distance
> RECLAIM_DISTANCE
)
3047 zone_reclaim_mode
= 1;
3050 * We don't want to pressure a particular node.
3051 * So adding penalty to the first node in same
3052 * distance group to make it round-robin.
3054 if (distance
!= node_distance(local_node
, prev_node
))
3055 node_load
[node
] = load
;
3059 if (order
== ZONELIST_ORDER_NODE
)
3060 build_zonelists_in_node_order(pgdat
, node
);
3062 node_order
[j
++] = node
; /* remember order */
3065 if (order
== ZONELIST_ORDER_ZONE
) {
3066 /* calculate node order -- i.e., DMA last! */
3067 build_zonelists_in_zone_order(pgdat
, j
);
3070 build_thisnode_zonelists(pgdat
);
3073 /* Construct the zonelist performance cache - see further mmzone.h */
3074 static void build_zonelist_cache(pg_data_t
*pgdat
)
3076 struct zonelist
*zonelist
;
3077 struct zonelist_cache
*zlc
;
3080 zonelist
= &pgdat
->node_zonelists
[0];
3081 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3082 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3083 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3084 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3087 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3089 * Return node id of node used for "local" allocations.
3090 * I.e., first node id of first zone in arg node's generic zonelist.
3091 * Used for initializing percpu 'numa_mem', which is used primarily
3092 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3094 int local_memory_node(int node
)
3098 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3099 gfp_zone(GFP_KERNEL
),
3106 #else /* CONFIG_NUMA */
3108 static void set_zonelist_order(void)
3110 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3113 static void build_zonelists(pg_data_t
*pgdat
)
3115 int node
, local_node
;
3117 struct zonelist
*zonelist
;
3119 local_node
= pgdat
->node_id
;
3121 zonelist
= &pgdat
->node_zonelists
[0];
3122 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3125 * Now we build the zonelist so that it contains the zones
3126 * of all the other nodes.
3127 * We don't want to pressure a particular node, so when
3128 * building the zones for node N, we make sure that the
3129 * zones coming right after the local ones are those from
3130 * node N+1 (modulo N)
3132 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3133 if (!node_online(node
))
3135 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3138 for (node
= 0; node
< local_node
; node
++) {
3139 if (!node_online(node
))
3141 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3145 zonelist
->_zonerefs
[j
].zone
= NULL
;
3146 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3149 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3150 static void build_zonelist_cache(pg_data_t
*pgdat
)
3152 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3155 #endif /* CONFIG_NUMA */
3158 * Boot pageset table. One per cpu which is going to be used for all
3159 * zones and all nodes. The parameters will be set in such a way
3160 * that an item put on a list will immediately be handed over to
3161 * the buddy list. This is safe since pageset manipulation is done
3162 * with interrupts disabled.
3164 * The boot_pagesets must be kept even after bootup is complete for
3165 * unused processors and/or zones. They do play a role for bootstrapping
3166 * hotplugged processors.
3168 * zoneinfo_show() and maybe other functions do
3169 * not check if the processor is online before following the pageset pointer.
3170 * Other parts of the kernel may not check if the zone is available.
3172 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3173 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3174 static void setup_zone_pageset(struct zone
*zone
);
3177 * Global mutex to protect against size modification of zonelists
3178 * as well as to serialize pageset setup for the new populated zone.
3180 DEFINE_MUTEX(zonelists_mutex
);
3182 /* return values int ....just for stop_machine() */
3183 static __init_refok
int __build_all_zonelists(void *data
)
3189 memset(node_load
, 0, sizeof(node_load
));
3191 for_each_online_node(nid
) {
3192 pg_data_t
*pgdat
= NODE_DATA(nid
);
3194 build_zonelists(pgdat
);
3195 build_zonelist_cache(pgdat
);
3199 * Initialize the boot_pagesets that are going to be used
3200 * for bootstrapping processors. The real pagesets for
3201 * each zone will be allocated later when the per cpu
3202 * allocator is available.
3204 * boot_pagesets are used also for bootstrapping offline
3205 * cpus if the system is already booted because the pagesets
3206 * are needed to initialize allocators on a specific cpu too.
3207 * F.e. the percpu allocator needs the page allocator which
3208 * needs the percpu allocator in order to allocate its pagesets
3209 * (a chicken-egg dilemma).
3211 for_each_possible_cpu(cpu
) {
3212 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3214 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3216 * We now know the "local memory node" for each node--
3217 * i.e., the node of the first zone in the generic zonelist.
3218 * Set up numa_mem percpu variable for on-line cpus. During
3219 * boot, only the boot cpu should be on-line; we'll init the
3220 * secondary cpus' numa_mem as they come on-line. During
3221 * node/memory hotplug, we'll fixup all on-line cpus.
3223 if (cpu_online(cpu
))
3224 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3232 * Called with zonelists_mutex held always
3233 * unless system_state == SYSTEM_BOOTING.
3235 void __ref
build_all_zonelists(void *data
)
3237 set_zonelist_order();
3239 if (system_state
== SYSTEM_BOOTING
) {
3240 __build_all_zonelists(NULL
);
3241 mminit_verify_zonelist();
3242 cpuset_init_current_mems_allowed();
3244 /* we have to stop all cpus to guarantee there is no user
3246 #ifdef CONFIG_MEMORY_HOTPLUG
3248 setup_zone_pageset((struct zone
*)data
);
3250 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3251 /* cpuset refresh routine should be here */
3253 vm_total_pages
= nr_free_pagecache_pages();
3255 * Disable grouping by mobility if the number of pages in the
3256 * system is too low to allow the mechanism to work. It would be
3257 * more accurate, but expensive to check per-zone. This check is
3258 * made on memory-hotadd so a system can start with mobility
3259 * disabled and enable it later
3261 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3262 page_group_by_mobility_disabled
= 1;
3264 page_group_by_mobility_disabled
= 0;
3266 printk("Built %i zonelists in %s order, mobility grouping %s. "
3267 "Total pages: %ld\n",
3269 zonelist_order_name
[current_zonelist_order
],
3270 page_group_by_mobility_disabled
? "off" : "on",
3273 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3278 * Helper functions to size the waitqueue hash table.
3279 * Essentially these want to choose hash table sizes sufficiently
3280 * large so that collisions trying to wait on pages are rare.
3281 * But in fact, the number of active page waitqueues on typical
3282 * systems is ridiculously low, less than 200. So this is even
3283 * conservative, even though it seems large.
3285 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3286 * waitqueues, i.e. the size of the waitq table given the number of pages.
3288 #define PAGES_PER_WAITQUEUE 256
3290 #ifndef CONFIG_MEMORY_HOTPLUG
3291 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3293 unsigned long size
= 1;
3295 pages
/= PAGES_PER_WAITQUEUE
;
3297 while (size
< pages
)
3301 * Once we have dozens or even hundreds of threads sleeping
3302 * on IO we've got bigger problems than wait queue collision.
3303 * Limit the size of the wait table to a reasonable size.
3305 size
= min(size
, 4096UL);
3307 return max(size
, 4UL);
3311 * A zone's size might be changed by hot-add, so it is not possible to determine
3312 * a suitable size for its wait_table. So we use the maximum size now.
3314 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3316 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3317 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3318 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3320 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3321 * or more by the traditional way. (See above). It equals:
3323 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3324 * ia64(16K page size) : = ( 8G + 4M)byte.
3325 * powerpc (64K page size) : = (32G +16M)byte.
3327 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3334 * This is an integer logarithm so that shifts can be used later
3335 * to extract the more random high bits from the multiplicative
3336 * hash function before the remainder is taken.
3338 static inline unsigned long wait_table_bits(unsigned long size
)
3343 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3346 * Check if a pageblock contains reserved pages
3348 static int pageblock_is_reserved(unsigned long start_pfn
, unsigned long end_pfn
)
3352 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3353 if (!pfn_valid_within(pfn
) || PageReserved(pfn_to_page(pfn
)))
3360 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3361 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3362 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3363 * higher will lead to a bigger reserve which will get freed as contiguous
3364 * blocks as reclaim kicks in
3366 static void setup_zone_migrate_reserve(struct zone
*zone
)
3368 unsigned long start_pfn
, pfn
, end_pfn
, block_end_pfn
;
3370 unsigned long block_migratetype
;
3373 /* Get the start pfn, end pfn and the number of blocks to reserve */
3374 start_pfn
= zone
->zone_start_pfn
;
3375 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3376 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3380 * Reserve blocks are generally in place to help high-order atomic
3381 * allocations that are short-lived. A min_free_kbytes value that
3382 * would result in more than 2 reserve blocks for atomic allocations
3383 * is assumed to be in place to help anti-fragmentation for the
3384 * future allocation of hugepages at runtime.
3386 reserve
= min(2, reserve
);
3388 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3389 if (!pfn_valid(pfn
))
3391 page
= pfn_to_page(pfn
);
3393 /* Watch out for overlapping nodes */
3394 if (page_to_nid(page
) != zone_to_nid(zone
))
3397 /* Blocks with reserved pages will never free, skip them. */
3398 block_end_pfn
= min(pfn
+ pageblock_nr_pages
, end_pfn
);
3399 if (pageblock_is_reserved(pfn
, block_end_pfn
))
3402 block_migratetype
= get_pageblock_migratetype(page
);
3404 /* If this block is reserved, account for it */
3405 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3410 /* Suitable for reserving if this block is movable */
3411 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3412 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3413 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3419 * If the reserve is met and this is a previous reserved block,
3422 if (block_migratetype
== MIGRATE_RESERVE
) {
3423 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3424 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3430 * Initially all pages are reserved - free ones are freed
3431 * up by free_all_bootmem() once the early boot process is
3432 * done. Non-atomic initialization, single-pass.
3434 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3435 unsigned long start_pfn
, enum memmap_context context
)
3438 unsigned long end_pfn
= start_pfn
+ size
;
3442 if (highest_memmap_pfn
< end_pfn
- 1)
3443 highest_memmap_pfn
= end_pfn
- 1;
3445 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3446 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3448 * There can be holes in boot-time mem_map[]s
3449 * handed to this function. They do not
3450 * exist on hotplugged memory.
3452 if (context
== MEMMAP_EARLY
) {
3453 if (!early_pfn_valid(pfn
))
3455 if (!early_pfn_in_nid(pfn
, nid
))
3458 page
= pfn_to_page(pfn
);
3459 set_page_links(page
, zone
, nid
, pfn
);
3460 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3461 init_page_count(page
);
3462 reset_page_mapcount(page
);
3463 SetPageReserved(page
);
3465 * Mark the block movable so that blocks are reserved for
3466 * movable at startup. This will force kernel allocations
3467 * to reserve their blocks rather than leaking throughout
3468 * the address space during boot when many long-lived
3469 * kernel allocations are made. Later some blocks near
3470 * the start are marked MIGRATE_RESERVE by
3471 * setup_zone_migrate_reserve()
3473 * bitmap is created for zone's valid pfn range. but memmap
3474 * can be created for invalid pages (for alignment)
3475 * check here not to call set_pageblock_migratetype() against
3478 if ((z
->zone_start_pfn
<= pfn
)
3479 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3480 && !(pfn
& (pageblock_nr_pages
- 1)))
3481 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3483 INIT_LIST_HEAD(&page
->lru
);
3484 #ifdef WANT_PAGE_VIRTUAL
3485 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3486 if (!is_highmem_idx(zone
))
3487 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3492 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3495 for_each_migratetype_order(order
, t
) {
3496 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3497 zone
->free_area
[order
].nr_free
= 0;
3501 #ifndef __HAVE_ARCH_MEMMAP_INIT
3502 #define memmap_init(size, nid, zone, start_pfn) \
3503 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3506 static int zone_batchsize(struct zone
*zone
)
3512 * The per-cpu-pages pools are set to around 1000th of the
3513 * size of the zone. But no more than 1/2 of a meg.
3515 * OK, so we don't know how big the cache is. So guess.
3517 batch
= zone
->present_pages
/ 1024;
3518 if (batch
* PAGE_SIZE
> 512 * 1024)
3519 batch
= (512 * 1024) / PAGE_SIZE
;
3520 batch
/= 4; /* We effectively *= 4 below */
3525 * Clamp the batch to a 2^n - 1 value. Having a power
3526 * of 2 value was found to be more likely to have
3527 * suboptimal cache aliasing properties in some cases.
3529 * For example if 2 tasks are alternately allocating
3530 * batches of pages, one task can end up with a lot
3531 * of pages of one half of the possible page colors
3532 * and the other with pages of the other colors.
3534 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3539 /* The deferral and batching of frees should be suppressed under NOMMU
3542 * The problem is that NOMMU needs to be able to allocate large chunks
3543 * of contiguous memory as there's no hardware page translation to
3544 * assemble apparent contiguous memory from discontiguous pages.
3546 * Queueing large contiguous runs of pages for batching, however,
3547 * causes the pages to actually be freed in smaller chunks. As there
3548 * can be a significant delay between the individual batches being
3549 * recycled, this leads to the once large chunks of space being
3550 * fragmented and becoming unavailable for high-order allocations.
3556 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3558 struct per_cpu_pages
*pcp
;
3561 memset(p
, 0, sizeof(*p
));
3565 pcp
->high
= 6 * batch
;
3566 pcp
->batch
= max(1UL, 1 * batch
);
3567 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3568 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3572 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3573 * to the value high for the pageset p.
3576 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3579 struct per_cpu_pages
*pcp
;
3583 pcp
->batch
= max(1UL, high
/4);
3584 if ((high
/4) > (PAGE_SHIFT
* 8))
3585 pcp
->batch
= PAGE_SHIFT
* 8;
3588 static void setup_zone_pageset(struct zone
*zone
)
3592 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3594 for_each_possible_cpu(cpu
) {
3595 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3597 setup_pageset(pcp
, zone_batchsize(zone
));
3599 if (percpu_pagelist_fraction
)
3600 setup_pagelist_highmark(pcp
,
3601 (zone
->present_pages
/
3602 percpu_pagelist_fraction
));
3607 * Allocate per cpu pagesets and initialize them.
3608 * Before this call only boot pagesets were available.
3610 void __init
setup_per_cpu_pageset(void)
3614 for_each_populated_zone(zone
)
3615 setup_zone_pageset(zone
);
3618 static noinline __init_refok
3619 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3622 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3626 * The per-page waitqueue mechanism uses hashed waitqueues
3629 zone
->wait_table_hash_nr_entries
=
3630 wait_table_hash_nr_entries(zone_size_pages
);
3631 zone
->wait_table_bits
=
3632 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3633 alloc_size
= zone
->wait_table_hash_nr_entries
3634 * sizeof(wait_queue_head_t
);
3636 if (!slab_is_available()) {
3637 zone
->wait_table
= (wait_queue_head_t
*)
3638 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3641 * This case means that a zone whose size was 0 gets new memory
3642 * via memory hot-add.
3643 * But it may be the case that a new node was hot-added. In
3644 * this case vmalloc() will not be able to use this new node's
3645 * memory - this wait_table must be initialized to use this new
3646 * node itself as well.
3647 * To use this new node's memory, further consideration will be
3650 zone
->wait_table
= vmalloc(alloc_size
);
3652 if (!zone
->wait_table
)
3655 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3656 init_waitqueue_head(zone
->wait_table
+ i
);
3661 static int __zone_pcp_update(void *data
)
3663 struct zone
*zone
= data
;
3665 unsigned long batch
= zone_batchsize(zone
), flags
;
3667 for_each_possible_cpu(cpu
) {
3668 struct per_cpu_pageset
*pset
;
3669 struct per_cpu_pages
*pcp
;
3671 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3674 local_irq_save(flags
);
3675 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3676 setup_pageset(pset
, batch
);
3677 local_irq_restore(flags
);
3682 void zone_pcp_update(struct zone
*zone
)
3684 stop_machine(__zone_pcp_update
, zone
, NULL
);
3687 static __meminit
void zone_pcp_init(struct zone
*zone
)
3690 * per cpu subsystem is not up at this point. The following code
3691 * relies on the ability of the linker to provide the
3692 * offset of a (static) per cpu variable into the per cpu area.
3694 zone
->pageset
= &boot_pageset
;
3696 if (zone
->present_pages
)
3697 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3698 zone
->name
, zone
->present_pages
,
3699 zone_batchsize(zone
));
3702 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3703 unsigned long zone_start_pfn
,
3705 enum memmap_context context
)
3707 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3709 ret
= zone_wait_table_init(zone
, size
);
3712 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3714 zone
->zone_start_pfn
= zone_start_pfn
;
3716 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3717 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3719 (unsigned long)zone_idx(zone
),
3720 zone_start_pfn
, (zone_start_pfn
+ size
));
3722 zone_init_free_lists(zone
);
3727 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3729 * Basic iterator support. Return the first range of PFNs for a node
3730 * Note: nid == MAX_NUMNODES returns first region regardless of node
3732 static int __meminit
first_active_region_index_in_nid(int nid
)
3736 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3737 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3744 * Basic iterator support. Return the next active range of PFNs for a node
3745 * Note: nid == MAX_NUMNODES returns next region regardless of node
3747 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3749 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3750 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3756 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3758 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3759 * Architectures may implement their own version but if add_active_range()
3760 * was used and there are no special requirements, this is a convenient
3763 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3767 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3768 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3769 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3771 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3772 return early_node_map
[i
].nid
;
3774 /* This is a memory hole */
3777 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3779 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3783 nid
= __early_pfn_to_nid(pfn
);
3786 /* just returns 0 */
3790 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3791 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3795 nid
= __early_pfn_to_nid(pfn
);
3796 if (nid
>= 0 && nid
!= node
)
3802 /* Basic iterator support to walk early_node_map[] */
3803 #define for_each_active_range_index_in_nid(i, nid) \
3804 for (i = first_active_region_index_in_nid(nid); i != -1; \
3805 i = next_active_region_index_in_nid(i, nid))
3808 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3809 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3810 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3812 * If an architecture guarantees that all ranges registered with
3813 * add_active_ranges() contain no holes and may be freed, this
3814 * this function may be used instead of calling free_bootmem() manually.
3816 void __init
free_bootmem_with_active_regions(int nid
,
3817 unsigned long max_low_pfn
)
3821 for_each_active_range_index_in_nid(i
, nid
) {
3822 unsigned long size_pages
= 0;
3823 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3825 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3828 if (end_pfn
> max_low_pfn
)
3829 end_pfn
= max_low_pfn
;
3831 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3832 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3833 PFN_PHYS(early_node_map
[i
].start_pfn
),
3834 size_pages
<< PAGE_SHIFT
);
3838 #ifdef CONFIG_HAVE_MEMBLOCK
3840 * Basic iterator support. Return the last range of PFNs for a node
3841 * Note: nid == MAX_NUMNODES returns last region regardless of node
3843 static int __meminit
last_active_region_index_in_nid(int nid
)
3847 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3848 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3855 * Basic iterator support. Return the previous active range of PFNs for a node
3856 * Note: nid == MAX_NUMNODES returns next region regardless of node
3858 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3860 for (index
= index
- 1; index
>= 0; index
--)
3861 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3867 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3868 for (i = last_active_region_index_in_nid(nid); i != -1; \
3869 i = previous_active_region_index_in_nid(i, nid))
3871 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3872 u64 goal
, u64 limit
)
3876 /* Need to go over early_node_map to find out good range for node */
3877 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3879 u64 ei_start
, ei_last
;
3880 u64 final_start
, final_end
;
3882 ei_last
= early_node_map
[i
].end_pfn
;
3883 ei_last
<<= PAGE_SHIFT
;
3884 ei_start
= early_node_map
[i
].start_pfn
;
3885 ei_start
<<= PAGE_SHIFT
;
3887 final_start
= max(ei_start
, goal
);
3888 final_end
= min(ei_last
, limit
);
3890 if (final_start
>= final_end
)
3893 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3895 if (addr
== MEMBLOCK_ERROR
)
3901 return MEMBLOCK_ERROR
;
3905 int __init
add_from_early_node_map(struct range
*range
, int az
,
3906 int nr_range
, int nid
)
3911 /* need to go over early_node_map to find out good range for node */
3912 for_each_active_range_index_in_nid(i
, nid
) {
3913 start
= early_node_map
[i
].start_pfn
;
3914 end
= early_node_map
[i
].end_pfn
;
3915 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3920 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3925 for_each_active_range_index_in_nid(i
, nid
) {
3926 ret
= work_fn(early_node_map
[i
].start_pfn
,
3927 early_node_map
[i
].end_pfn
, data
);
3933 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3934 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3936 * If an architecture guarantees that all ranges registered with
3937 * add_active_ranges() contain no holes and may be freed, this
3938 * function may be used instead of calling memory_present() manually.
3940 void __init
sparse_memory_present_with_active_regions(int nid
)
3944 for_each_active_range_index_in_nid(i
, nid
)
3945 memory_present(early_node_map
[i
].nid
,
3946 early_node_map
[i
].start_pfn
,
3947 early_node_map
[i
].end_pfn
);
3951 * get_pfn_range_for_nid - Return the start and end page frames for a node
3952 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3953 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3954 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3956 * It returns the start and end page frame of a node based on information
3957 * provided by an arch calling add_active_range(). If called for a node
3958 * with no available memory, a warning is printed and the start and end
3961 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3962 unsigned long *start_pfn
, unsigned long *end_pfn
)
3968 for_each_active_range_index_in_nid(i
, nid
) {
3969 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3970 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3973 if (*start_pfn
== -1UL)
3978 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3979 * assumption is made that zones within a node are ordered in monotonic
3980 * increasing memory addresses so that the "highest" populated zone is used
3982 static void __init
find_usable_zone_for_movable(void)
3985 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3986 if (zone_index
== ZONE_MOVABLE
)
3989 if (arch_zone_highest_possible_pfn
[zone_index
] >
3990 arch_zone_lowest_possible_pfn
[zone_index
])
3994 VM_BUG_ON(zone_index
== -1);
3995 movable_zone
= zone_index
;
3999 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
4000 * because it is sized independent of architecture. Unlike the other zones,
4001 * the starting point for ZONE_MOVABLE is not fixed. It may be different
4002 * in each node depending on the size of each node and how evenly kernelcore
4003 * is distributed. This helper function adjusts the zone ranges
4004 * provided by the architecture for a given node by using the end of the
4005 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
4006 * zones within a node are in order of monotonic increases memory addresses
4008 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
4009 unsigned long zone_type
,
4010 unsigned long node_start_pfn
,
4011 unsigned long node_end_pfn
,
4012 unsigned long *zone_start_pfn
,
4013 unsigned long *zone_end_pfn
)
4015 /* Only adjust if ZONE_MOVABLE is on this node */
4016 if (zone_movable_pfn
[nid
]) {
4017 /* Size ZONE_MOVABLE */
4018 if (zone_type
== ZONE_MOVABLE
) {
4019 *zone_start_pfn
= zone_movable_pfn
[nid
];
4020 *zone_end_pfn
= min(node_end_pfn
,
4021 arch_zone_highest_possible_pfn
[movable_zone
]);
4023 /* Adjust for ZONE_MOVABLE starting within this range */
4024 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
4025 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
4026 *zone_end_pfn
= zone_movable_pfn
[nid
];
4028 /* Check if this whole range is within ZONE_MOVABLE */
4029 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
4030 *zone_start_pfn
= *zone_end_pfn
;
4035 * Return the number of pages a zone spans in a node, including holes
4036 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
4038 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4039 unsigned long zone_type
,
4040 unsigned long *ignored
)
4042 unsigned long node_start_pfn
, node_end_pfn
;
4043 unsigned long zone_start_pfn
, zone_end_pfn
;
4045 /* Get the start and end of the node and zone */
4046 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4047 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4048 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4049 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4050 node_start_pfn
, node_end_pfn
,
4051 &zone_start_pfn
, &zone_end_pfn
);
4053 /* Check that this node has pages within the zone's required range */
4054 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4057 /* Move the zone boundaries inside the node if necessary */
4058 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4059 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4061 /* Return the spanned pages */
4062 return zone_end_pfn
- zone_start_pfn
;
4066 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4067 * then all holes in the requested range will be accounted for.
4069 unsigned long __meminit
__absent_pages_in_range(int nid
,
4070 unsigned long range_start_pfn
,
4071 unsigned long range_end_pfn
)
4074 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4075 unsigned long start_pfn
;
4077 /* Find the end_pfn of the first active range of pfns in the node */
4078 i
= first_active_region_index_in_nid(nid
);
4082 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4084 /* Account for ranges before physical memory on this node */
4085 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4086 hole_pages
= prev_end_pfn
- range_start_pfn
;
4088 /* Find all holes for the zone within the node */
4089 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4091 /* No need to continue if prev_end_pfn is outside the zone */
4092 if (prev_end_pfn
>= range_end_pfn
)
4095 /* Make sure the end of the zone is not within the hole */
4096 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4097 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4099 /* Update the hole size cound and move on */
4100 if (start_pfn
> range_start_pfn
) {
4101 BUG_ON(prev_end_pfn
> start_pfn
);
4102 hole_pages
+= start_pfn
- prev_end_pfn
;
4104 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4107 /* Account for ranges past physical memory on this node */
4108 if (range_end_pfn
> prev_end_pfn
)
4109 hole_pages
+= range_end_pfn
-
4110 max(range_start_pfn
, prev_end_pfn
);
4116 * absent_pages_in_range - Return number of page frames in holes within a range
4117 * @start_pfn: The start PFN to start searching for holes
4118 * @end_pfn: The end PFN to stop searching for holes
4120 * It returns the number of pages frames in memory holes within a range.
4122 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4123 unsigned long end_pfn
)
4125 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4128 /* Return the number of page frames in holes in a zone on a node */
4129 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4130 unsigned long zone_type
,
4131 unsigned long *ignored
)
4133 unsigned long node_start_pfn
, node_end_pfn
;
4134 unsigned long zone_start_pfn
, zone_end_pfn
;
4136 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4137 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4139 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4142 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4143 node_start_pfn
, node_end_pfn
,
4144 &zone_start_pfn
, &zone_end_pfn
);
4145 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4149 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4150 unsigned long zone_type
,
4151 unsigned long *zones_size
)
4153 return zones_size
[zone_type
];
4156 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4157 unsigned long zone_type
,
4158 unsigned long *zholes_size
)
4163 return zholes_size
[zone_type
];
4168 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4169 unsigned long *zones_size
, unsigned long *zholes_size
)
4171 unsigned long realtotalpages
, totalpages
= 0;
4174 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4175 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4177 pgdat
->node_spanned_pages
= totalpages
;
4179 realtotalpages
= totalpages
;
4180 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4182 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4184 pgdat
->node_present_pages
= realtotalpages
;
4185 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4189 #ifndef CONFIG_SPARSEMEM
4191 * Calculate the size of the zone->blockflags rounded to an unsigned long
4192 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4193 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4194 * round what is now in bits to nearest long in bits, then return it in
4197 static unsigned long __init
usemap_size(unsigned long zonesize
)
4199 unsigned long usemapsize
;
4201 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4202 usemapsize
= usemapsize
>> pageblock_order
;
4203 usemapsize
*= NR_PAGEBLOCK_BITS
;
4204 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4206 return usemapsize
/ 8;
4209 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4210 struct zone
*zone
, unsigned long zonesize
)
4212 unsigned long usemapsize
= usemap_size(zonesize
);
4213 zone
->pageblock_flags
= NULL
;
4215 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4219 static inline void setup_usemap(struct pglist_data
*pgdat
,
4220 struct zone
*zone
, unsigned long zonesize
) {}
4221 #endif /* CONFIG_SPARSEMEM */
4223 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4225 /* Return a sensible default order for the pageblock size. */
4226 static inline int pageblock_default_order(void)
4228 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4229 return HUGETLB_PAGE_ORDER
;
4234 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4235 static inline void __init
set_pageblock_order(unsigned int order
)
4237 /* Check that pageblock_nr_pages has not already been setup */
4238 if (pageblock_order
)
4242 * Assume the largest contiguous order of interest is a huge page.
4243 * This value may be variable depending on boot parameters on IA64
4245 pageblock_order
= order
;
4247 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4250 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4251 * and pageblock_default_order() are unused as pageblock_order is set
4252 * at compile-time. See include/linux/pageblock-flags.h for the values of
4253 * pageblock_order based on the kernel config
4255 static inline int pageblock_default_order(unsigned int order
)
4259 #define set_pageblock_order(x) do {} while (0)
4261 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4264 * Set up the zone data structures:
4265 * - mark all pages reserved
4266 * - mark all memory queues empty
4267 * - clear the memory bitmaps
4269 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4270 unsigned long *zones_size
, unsigned long *zholes_size
)
4273 int nid
= pgdat
->node_id
;
4274 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4277 pgdat_resize_init(pgdat
);
4278 pgdat
->nr_zones
= 0;
4279 init_waitqueue_head(&pgdat
->kswapd_wait
);
4280 pgdat
->kswapd_max_order
= 0;
4281 pgdat_page_cgroup_init(pgdat
);
4283 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4284 struct zone
*zone
= pgdat
->node_zones
+ j
;
4285 unsigned long size
, realsize
, memmap_pages
;
4288 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4289 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4293 * Adjust realsize so that it accounts for how much memory
4294 * is used by this zone for memmap. This affects the watermark
4295 * and per-cpu initialisations
4298 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4299 if (realsize
>= memmap_pages
) {
4300 realsize
-= memmap_pages
;
4303 " %s zone: %lu pages used for memmap\n",
4304 zone_names
[j
], memmap_pages
);
4307 " %s zone: %lu pages exceeds realsize %lu\n",
4308 zone_names
[j
], memmap_pages
, realsize
);
4310 /* Account for reserved pages */
4311 if (j
== 0 && realsize
> dma_reserve
) {
4312 realsize
-= dma_reserve
;
4313 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4314 zone_names
[0], dma_reserve
);
4317 if (!is_highmem_idx(j
))
4318 nr_kernel_pages
+= realsize
;
4319 nr_all_pages
+= realsize
;
4321 zone
->spanned_pages
= size
;
4322 zone
->present_pages
= realsize
;
4325 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4327 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4329 zone
->name
= zone_names
[j
];
4330 spin_lock_init(&zone
->lock
);
4331 spin_lock_init(&zone
->lru_lock
);
4332 zone_seqlock_init(zone
);
4333 zone
->zone_pgdat
= pgdat
;
4335 zone_pcp_init(zone
);
4337 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4338 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4339 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4340 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4341 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4342 zap_zone_vm_stats(zone
);
4347 set_pageblock_order(pageblock_default_order());
4348 setup_usemap(pgdat
, zone
, size
);
4349 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4350 size
, MEMMAP_EARLY
);
4352 memmap_init(size
, nid
, j
, zone_start_pfn
);
4353 zone_start_pfn
+= size
;
4357 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4359 /* Skip empty nodes */
4360 if (!pgdat
->node_spanned_pages
)
4363 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4364 /* ia64 gets its own node_mem_map, before this, without bootmem */
4365 if (!pgdat
->node_mem_map
) {
4366 unsigned long size
, start
, end
;
4370 * The zone's endpoints aren't required to be MAX_ORDER
4371 * aligned but the node_mem_map endpoints must be in order
4372 * for the buddy allocator to function correctly.
4374 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4375 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4376 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4377 size
= (end
- start
) * sizeof(struct page
);
4378 map
= alloc_remap(pgdat
->node_id
, size
);
4380 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4381 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4383 #ifndef CONFIG_NEED_MULTIPLE_NODES
4385 * With no DISCONTIG, the global mem_map is just set as node 0's
4387 if (pgdat
== NODE_DATA(0)) {
4388 mem_map
= NODE_DATA(0)->node_mem_map
;
4389 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4390 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4391 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4392 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4395 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4398 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4399 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4401 pg_data_t
*pgdat
= NODE_DATA(nid
);
4403 pgdat
->node_id
= nid
;
4404 pgdat
->node_start_pfn
= node_start_pfn
;
4405 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4407 alloc_node_mem_map(pgdat
);
4408 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4409 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4410 nid
, (unsigned long)pgdat
,
4411 (unsigned long)pgdat
->node_mem_map
);
4414 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4417 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4419 #if MAX_NUMNODES > 1
4421 * Figure out the number of possible node ids.
4423 static void __init
setup_nr_node_ids(void)
4426 unsigned int highest
= 0;
4428 for_each_node_mask(node
, node_possible_map
)
4430 nr_node_ids
= highest
+ 1;
4433 static inline void setup_nr_node_ids(void)
4439 * add_active_range - Register a range of PFNs backed by physical memory
4440 * @nid: The node ID the range resides on
4441 * @start_pfn: The start PFN of the available physical memory
4442 * @end_pfn: The end PFN of the available physical memory
4444 * These ranges are stored in an early_node_map[] and later used by
4445 * free_area_init_nodes() to calculate zone sizes and holes. If the
4446 * range spans a memory hole, it is up to the architecture to ensure
4447 * the memory is not freed by the bootmem allocator. If possible
4448 * the range being registered will be merged with existing ranges.
4450 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4451 unsigned long end_pfn
)
4455 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4456 "Entering add_active_range(%d, %#lx, %#lx) "
4457 "%d entries of %d used\n",
4458 nid
, start_pfn
, end_pfn
,
4459 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4461 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4463 /* Merge with existing active regions if possible */
4464 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4465 if (early_node_map
[i
].nid
!= nid
)
4468 /* Skip if an existing region covers this new one */
4469 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4470 end_pfn
<= early_node_map
[i
].end_pfn
)
4473 /* Merge forward if suitable */
4474 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4475 end_pfn
> early_node_map
[i
].end_pfn
) {
4476 early_node_map
[i
].end_pfn
= end_pfn
;
4480 /* Merge backward if suitable */
4481 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4482 end_pfn
>= early_node_map
[i
].start_pfn
) {
4483 early_node_map
[i
].start_pfn
= start_pfn
;
4488 /* Check that early_node_map is large enough */
4489 if (i
>= MAX_ACTIVE_REGIONS
) {
4490 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4491 MAX_ACTIVE_REGIONS
);
4495 early_node_map
[i
].nid
= nid
;
4496 early_node_map
[i
].start_pfn
= start_pfn
;
4497 early_node_map
[i
].end_pfn
= end_pfn
;
4498 nr_nodemap_entries
= i
+ 1;
4502 * remove_active_range - Shrink an existing registered range of PFNs
4503 * @nid: The node id the range is on that should be shrunk
4504 * @start_pfn: The new PFN of the range
4505 * @end_pfn: The new PFN of the range
4507 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4508 * The map is kept near the end physical page range that has already been
4509 * registered. This function allows an arch to shrink an existing registered
4512 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4513 unsigned long end_pfn
)
4518 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4519 nid
, start_pfn
, end_pfn
);
4521 /* Find the old active region end and shrink */
4522 for_each_active_range_index_in_nid(i
, nid
) {
4523 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4524 early_node_map
[i
].end_pfn
<= end_pfn
) {
4526 early_node_map
[i
].start_pfn
= 0;
4527 early_node_map
[i
].end_pfn
= 0;
4531 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4532 early_node_map
[i
].end_pfn
> start_pfn
) {
4533 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4534 early_node_map
[i
].end_pfn
= start_pfn
;
4535 if (temp_end_pfn
> end_pfn
)
4536 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4539 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4540 early_node_map
[i
].end_pfn
> end_pfn
&&
4541 early_node_map
[i
].start_pfn
< end_pfn
) {
4542 early_node_map
[i
].start_pfn
= end_pfn
;
4550 /* remove the blank ones */
4551 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4552 if (early_node_map
[i
].nid
!= nid
)
4554 if (early_node_map
[i
].end_pfn
)
4556 /* we found it, get rid of it */
4557 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4558 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4559 sizeof(early_node_map
[j
]));
4560 j
= nr_nodemap_entries
- 1;
4561 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4562 nr_nodemap_entries
--;
4567 * remove_all_active_ranges - Remove all currently registered regions
4569 * During discovery, it may be found that a table like SRAT is invalid
4570 * and an alternative discovery method must be used. This function removes
4571 * all currently registered regions.
4573 void __init
remove_all_active_ranges(void)
4575 memset(early_node_map
, 0, sizeof(early_node_map
));
4576 nr_nodemap_entries
= 0;
4579 /* Compare two active node_active_regions */
4580 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4582 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4583 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4585 /* Done this way to avoid overflows */
4586 if (arange
->start_pfn
> brange
->start_pfn
)
4588 if (arange
->start_pfn
< brange
->start_pfn
)
4594 /* sort the node_map by start_pfn */
4595 void __init
sort_node_map(void)
4597 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4598 sizeof(struct node_active_region
),
4599 cmp_node_active_region
, NULL
);
4603 * node_map_pfn_alignment - determine the maximum internode alignment
4605 * This function should be called after node map is populated and sorted.
4606 * It calculates the maximum power of two alignment which can distinguish
4609 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
4610 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
4611 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
4612 * shifted, 1GiB is enough and this function will indicate so.
4614 * This is used to test whether pfn -> nid mapping of the chosen memory
4615 * model has fine enough granularity to avoid incorrect mapping for the
4616 * populated node map.
4618 * Returns the determined alignment in pfn's. 0 if there is no alignment
4619 * requirement (single node).
4621 unsigned long __init
node_map_pfn_alignment(void)
4623 unsigned long accl_mask
= 0, last_end
= 0;
4627 for_each_active_range_index_in_nid(i
, MAX_NUMNODES
) {
4628 int nid
= early_node_map
[i
].nid
;
4629 unsigned long start
= early_node_map
[i
].start_pfn
;
4630 unsigned long end
= early_node_map
[i
].end_pfn
;
4633 if (!start
|| last_nid
< 0 || last_nid
== nid
) {
4640 * Start with a mask granular enough to pin-point to the
4641 * start pfn and tick off bits one-by-one until it becomes
4642 * too coarse to separate the current node from the last.
4644 mask
= ~((1 << __ffs(start
)) - 1);
4645 while (mask
&& last_end
<= (start
& (mask
<< 1)))
4648 /* accumulate all internode masks */
4652 /* convert mask to number of pages */
4653 return ~accl_mask
+ 1;
4656 /* Find the lowest pfn for a node */
4657 static unsigned long __init
find_min_pfn_for_node(int nid
)
4660 unsigned long min_pfn
= ULONG_MAX
;
4662 /* Assuming a sorted map, the first range found has the starting pfn */
4663 for_each_active_range_index_in_nid(i
, nid
)
4664 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4666 if (min_pfn
== ULONG_MAX
) {
4668 "Could not find start_pfn for node %d\n", nid
);
4676 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4678 * It returns the minimum PFN based on information provided via
4679 * add_active_range().
4681 unsigned long __init
find_min_pfn_with_active_regions(void)
4683 return find_min_pfn_for_node(MAX_NUMNODES
);
4687 * early_calculate_totalpages()
4688 * Sum pages in active regions for movable zone.
4689 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4691 static unsigned long __init
early_calculate_totalpages(void)
4694 unsigned long totalpages
= 0;
4696 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4697 unsigned long pages
= early_node_map
[i
].end_pfn
-
4698 early_node_map
[i
].start_pfn
;
4699 totalpages
+= pages
;
4701 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4707 * Find the PFN the Movable zone begins in each node. Kernel memory
4708 * is spread evenly between nodes as long as the nodes have enough
4709 * memory. When they don't, some nodes will have more kernelcore than
4712 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4715 unsigned long usable_startpfn
;
4716 unsigned long kernelcore_node
, kernelcore_remaining
;
4717 /* save the state before borrow the nodemask */
4718 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4719 unsigned long totalpages
= early_calculate_totalpages();
4720 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4723 * If movablecore was specified, calculate what size of
4724 * kernelcore that corresponds so that memory usable for
4725 * any allocation type is evenly spread. If both kernelcore
4726 * and movablecore are specified, then the value of kernelcore
4727 * will be used for required_kernelcore if it's greater than
4728 * what movablecore would have allowed.
4730 if (required_movablecore
) {
4731 unsigned long corepages
;
4734 * Round-up so that ZONE_MOVABLE is at least as large as what
4735 * was requested by the user
4737 required_movablecore
=
4738 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4739 corepages
= totalpages
- required_movablecore
;
4741 required_kernelcore
= max(required_kernelcore
, corepages
);
4744 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4745 if (!required_kernelcore
)
4748 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4749 find_usable_zone_for_movable();
4750 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4753 /* Spread kernelcore memory as evenly as possible throughout nodes */
4754 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4755 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4757 * Recalculate kernelcore_node if the division per node
4758 * now exceeds what is necessary to satisfy the requested
4759 * amount of memory for the kernel
4761 if (required_kernelcore
< kernelcore_node
)
4762 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4765 * As the map is walked, we track how much memory is usable
4766 * by the kernel using kernelcore_remaining. When it is
4767 * 0, the rest of the node is usable by ZONE_MOVABLE
4769 kernelcore_remaining
= kernelcore_node
;
4771 /* Go through each range of PFNs within this node */
4772 for_each_active_range_index_in_nid(i
, nid
) {
4773 unsigned long start_pfn
, end_pfn
;
4774 unsigned long size_pages
;
4776 start_pfn
= max(early_node_map
[i
].start_pfn
,
4777 zone_movable_pfn
[nid
]);
4778 end_pfn
= early_node_map
[i
].end_pfn
;
4779 if (start_pfn
>= end_pfn
)
4782 /* Account for what is only usable for kernelcore */
4783 if (start_pfn
< usable_startpfn
) {
4784 unsigned long kernel_pages
;
4785 kernel_pages
= min(end_pfn
, usable_startpfn
)
4788 kernelcore_remaining
-= min(kernel_pages
,
4789 kernelcore_remaining
);
4790 required_kernelcore
-= min(kernel_pages
,
4791 required_kernelcore
);
4793 /* Continue if range is now fully accounted */
4794 if (end_pfn
<= usable_startpfn
) {
4797 * Push zone_movable_pfn to the end so
4798 * that if we have to rebalance
4799 * kernelcore across nodes, we will
4800 * not double account here
4802 zone_movable_pfn
[nid
] = end_pfn
;
4805 start_pfn
= usable_startpfn
;
4809 * The usable PFN range for ZONE_MOVABLE is from
4810 * start_pfn->end_pfn. Calculate size_pages as the
4811 * number of pages used as kernelcore
4813 size_pages
= end_pfn
- start_pfn
;
4814 if (size_pages
> kernelcore_remaining
)
4815 size_pages
= kernelcore_remaining
;
4816 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4819 * Some kernelcore has been met, update counts and
4820 * break if the kernelcore for this node has been
4823 required_kernelcore
-= min(required_kernelcore
,
4825 kernelcore_remaining
-= size_pages
;
4826 if (!kernelcore_remaining
)
4832 * If there is still required_kernelcore, we do another pass with one
4833 * less node in the count. This will push zone_movable_pfn[nid] further
4834 * along on the nodes that still have memory until kernelcore is
4838 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4841 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4842 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4843 zone_movable_pfn
[nid
] =
4844 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4847 /* restore the node_state */
4848 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4851 /* Any regular memory on that node ? */
4852 static void check_for_regular_memory(pg_data_t
*pgdat
)
4854 #ifdef CONFIG_HIGHMEM
4855 enum zone_type zone_type
;
4857 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4858 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4859 if (zone
->present_pages
)
4860 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4866 * free_area_init_nodes - Initialise all pg_data_t and zone data
4867 * @max_zone_pfn: an array of max PFNs for each zone
4869 * This will call free_area_init_node() for each active node in the system.
4870 * Using the page ranges provided by add_active_range(), the size of each
4871 * zone in each node and their holes is calculated. If the maximum PFN
4872 * between two adjacent zones match, it is assumed that the zone is empty.
4873 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4874 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4875 * starts where the previous one ended. For example, ZONE_DMA32 starts
4876 * at arch_max_dma_pfn.
4878 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4883 /* Sort early_node_map as initialisation assumes it is sorted */
4886 /* Record where the zone boundaries are */
4887 memset(arch_zone_lowest_possible_pfn
, 0,
4888 sizeof(arch_zone_lowest_possible_pfn
));
4889 memset(arch_zone_highest_possible_pfn
, 0,
4890 sizeof(arch_zone_highest_possible_pfn
));
4891 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4892 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4893 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4894 if (i
== ZONE_MOVABLE
)
4896 arch_zone_lowest_possible_pfn
[i
] =
4897 arch_zone_highest_possible_pfn
[i
-1];
4898 arch_zone_highest_possible_pfn
[i
] =
4899 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4901 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4902 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4904 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4905 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4906 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4908 /* Print out the zone ranges */
4909 printk("Zone PFN ranges:\n");
4910 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4911 if (i
== ZONE_MOVABLE
)
4913 printk(" %-8s ", zone_names
[i
]);
4914 if (arch_zone_lowest_possible_pfn
[i
] ==
4915 arch_zone_highest_possible_pfn
[i
])
4918 printk("%0#10lx -> %0#10lx\n",
4919 arch_zone_lowest_possible_pfn
[i
],
4920 arch_zone_highest_possible_pfn
[i
]);
4923 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4924 printk("Movable zone start PFN for each node\n");
4925 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4926 if (zone_movable_pfn
[i
])
4927 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4930 /* Print out the early_node_map[] */
4931 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4932 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4933 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4934 early_node_map
[i
].start_pfn
,
4935 early_node_map
[i
].end_pfn
);
4937 /* Initialise every node */
4938 mminit_verify_pageflags_layout();
4939 setup_nr_node_ids();
4940 for_each_online_node(nid
) {
4941 pg_data_t
*pgdat
= NODE_DATA(nid
);
4942 free_area_init_node(nid
, NULL
,
4943 find_min_pfn_for_node(nid
), NULL
);
4945 /* Any memory on that node */
4946 if (pgdat
->node_present_pages
)
4947 node_set_state(nid
, N_HIGH_MEMORY
);
4948 check_for_regular_memory(pgdat
);
4952 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4954 unsigned long long coremem
;
4958 coremem
= memparse(p
, &p
);
4959 *core
= coremem
>> PAGE_SHIFT
;
4961 /* Paranoid check that UL is enough for the coremem value */
4962 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4968 * kernelcore=size sets the amount of memory for use for allocations that
4969 * cannot be reclaimed or migrated.
4971 static int __init
cmdline_parse_kernelcore(char *p
)
4973 return cmdline_parse_core(p
, &required_kernelcore
);
4977 * movablecore=size sets the amount of memory for use for allocations that
4978 * can be reclaimed or migrated.
4980 static int __init
cmdline_parse_movablecore(char *p
)
4982 return cmdline_parse_core(p
, &required_movablecore
);
4985 early_param("kernelcore", cmdline_parse_kernelcore
);
4986 early_param("movablecore", cmdline_parse_movablecore
);
4988 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4991 * set_dma_reserve - set the specified number of pages reserved in the first zone
4992 * @new_dma_reserve: The number of pages to mark reserved
4994 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4995 * In the DMA zone, a significant percentage may be consumed by kernel image
4996 * and other unfreeable allocations which can skew the watermarks badly. This
4997 * function may optionally be used to account for unfreeable pages in the
4998 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4999 * smaller per-cpu batchsize.
5001 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
5003 dma_reserve
= new_dma_reserve
;
5006 void __init
free_area_init(unsigned long *zones_size
)
5008 free_area_init_node(0, zones_size
,
5009 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
5012 static int page_alloc_cpu_notify(struct notifier_block
*self
,
5013 unsigned long action
, void *hcpu
)
5015 int cpu
= (unsigned long)hcpu
;
5017 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
5021 * Spill the event counters of the dead processor
5022 * into the current processors event counters.
5023 * This artificially elevates the count of the current
5026 vm_events_fold_cpu(cpu
);
5029 * Zero the differential counters of the dead processor
5030 * so that the vm statistics are consistent.
5032 * This is only okay since the processor is dead and cannot
5033 * race with what we are doing.
5035 refresh_cpu_vm_stats(cpu
);
5040 void __init
page_alloc_init(void)
5042 hotcpu_notifier(page_alloc_cpu_notify
, 0);
5046 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
5047 * or min_free_kbytes changes.
5049 static void calculate_totalreserve_pages(void)
5051 struct pglist_data
*pgdat
;
5052 unsigned long reserve_pages
= 0;
5053 enum zone_type i
, j
;
5055 for_each_online_pgdat(pgdat
) {
5056 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
5057 struct zone
*zone
= pgdat
->node_zones
+ i
;
5058 unsigned long max
= 0;
5060 /* Find valid and maximum lowmem_reserve in the zone */
5061 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
5062 if (zone
->lowmem_reserve
[j
] > max
)
5063 max
= zone
->lowmem_reserve
[j
];
5066 /* we treat the high watermark as reserved pages. */
5067 max
+= high_wmark_pages(zone
);
5069 if (max
> zone
->present_pages
)
5070 max
= zone
->present_pages
;
5071 reserve_pages
+= max
;
5074 totalreserve_pages
= reserve_pages
;
5078 * setup_per_zone_lowmem_reserve - called whenever
5079 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
5080 * has a correct pages reserved value, so an adequate number of
5081 * pages are left in the zone after a successful __alloc_pages().
5083 static void setup_per_zone_lowmem_reserve(void)
5085 struct pglist_data
*pgdat
;
5086 enum zone_type j
, idx
;
5088 for_each_online_pgdat(pgdat
) {
5089 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
5090 struct zone
*zone
= pgdat
->node_zones
+ j
;
5091 unsigned long present_pages
= zone
->present_pages
;
5093 zone
->lowmem_reserve
[j
] = 0;
5097 struct zone
*lower_zone
;
5101 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5102 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5104 lower_zone
= pgdat
->node_zones
+ idx
;
5105 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5106 sysctl_lowmem_reserve_ratio
[idx
];
5107 present_pages
+= lower_zone
->present_pages
;
5112 /* update totalreserve_pages */
5113 calculate_totalreserve_pages();
5117 * setup_per_zone_wmarks - called when min_free_kbytes changes
5118 * or when memory is hot-{added|removed}
5120 * Ensures that the watermark[min,low,high] values for each zone are set
5121 * correctly with respect to min_free_kbytes.
5123 void setup_per_zone_wmarks(void)
5125 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5126 unsigned long lowmem_pages
= 0;
5128 unsigned long flags
;
5130 /* Calculate total number of !ZONE_HIGHMEM pages */
5131 for_each_zone(zone
) {
5132 if (!is_highmem(zone
))
5133 lowmem_pages
+= zone
->present_pages
;
5136 for_each_zone(zone
) {
5139 spin_lock_irqsave(&zone
->lock
, flags
);
5140 tmp
= (u64
)pages_min
* zone
->present_pages
;
5141 do_div(tmp
, lowmem_pages
);
5142 if (is_highmem(zone
)) {
5144 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5145 * need highmem pages, so cap pages_min to a small
5148 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5149 * deltas controls asynch page reclaim, and so should
5150 * not be capped for highmem.
5154 min_pages
= zone
->present_pages
/ 1024;
5155 if (min_pages
< SWAP_CLUSTER_MAX
)
5156 min_pages
= SWAP_CLUSTER_MAX
;
5157 if (min_pages
> 128)
5159 zone
->watermark
[WMARK_MIN
] = min_pages
;
5162 * If it's a lowmem zone, reserve a number of pages
5163 * proportionate to the zone's size.
5165 zone
->watermark
[WMARK_MIN
] = tmp
;
5168 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5169 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5170 setup_zone_migrate_reserve(zone
);
5171 spin_unlock_irqrestore(&zone
->lock
, flags
);
5174 /* update totalreserve_pages */
5175 calculate_totalreserve_pages();
5179 * The inactive anon list should be small enough that the VM never has to
5180 * do too much work, but large enough that each inactive page has a chance
5181 * to be referenced again before it is swapped out.
5183 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5184 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5185 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5186 * the anonymous pages are kept on the inactive list.
5189 * memory ratio inactive anon
5190 * -------------------------------------
5199 static void __meminit
calculate_zone_inactive_ratio(struct zone
*zone
)
5201 unsigned int gb
, ratio
;
5203 /* Zone size in gigabytes */
5204 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5206 ratio
= int_sqrt(10 * gb
);
5210 zone
->inactive_ratio
= ratio
;
5213 static void __meminit
setup_per_zone_inactive_ratio(void)
5218 calculate_zone_inactive_ratio(zone
);
5222 * Initialise min_free_kbytes.
5224 * For small machines we want it small (128k min). For large machines
5225 * we want it large (64MB max). But it is not linear, because network
5226 * bandwidth does not increase linearly with machine size. We use
5228 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5229 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5245 int __meminit
init_per_zone_wmark_min(void)
5247 unsigned long lowmem_kbytes
;
5249 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5251 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5252 if (min_free_kbytes
< 128)
5253 min_free_kbytes
= 128;
5254 if (min_free_kbytes
> 65536)
5255 min_free_kbytes
= 65536;
5256 setup_per_zone_wmarks();
5257 refresh_zone_stat_thresholds();
5258 setup_per_zone_lowmem_reserve();
5259 setup_per_zone_inactive_ratio();
5262 module_init(init_per_zone_wmark_min
)
5265 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5266 * that we can call two helper functions whenever min_free_kbytes
5269 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5270 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5272 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5274 setup_per_zone_wmarks();
5279 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5280 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5285 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5290 zone
->min_unmapped_pages
= (zone
->present_pages
*
5291 sysctl_min_unmapped_ratio
) / 100;
5295 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5296 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5301 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5306 zone
->min_slab_pages
= (zone
->present_pages
*
5307 sysctl_min_slab_ratio
) / 100;
5313 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5314 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5315 * whenever sysctl_lowmem_reserve_ratio changes.
5317 * The reserve ratio obviously has absolutely no relation with the
5318 * minimum watermarks. The lowmem reserve ratio can only make sense
5319 * if in function of the boot time zone sizes.
5321 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5322 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5324 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5325 setup_per_zone_lowmem_reserve();
5330 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5331 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5332 * can have before it gets flushed back to buddy allocator.
5335 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5336 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5342 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5343 if (!write
|| (ret
== -EINVAL
))
5345 for_each_populated_zone(zone
) {
5346 for_each_possible_cpu(cpu
) {
5348 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5349 setup_pagelist_highmark(
5350 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5356 int hashdist
= HASHDIST_DEFAULT
;
5359 static int __init
set_hashdist(char *str
)
5363 hashdist
= simple_strtoul(str
, &str
, 0);
5366 __setup("hashdist=", set_hashdist
);
5370 * allocate a large system hash table from bootmem
5371 * - it is assumed that the hash table must contain an exact power-of-2
5372 * quantity of entries
5373 * - limit is the number of hash buckets, not the total allocation size
5375 void *__init
alloc_large_system_hash(const char *tablename
,
5376 unsigned long bucketsize
,
5377 unsigned long numentries
,
5380 unsigned int *_hash_shift
,
5381 unsigned int *_hash_mask
,
5382 unsigned long limit
)
5384 unsigned long long max
= limit
;
5385 unsigned long log2qty
, size
;
5388 /* allow the kernel cmdline to have a say */
5390 /* round applicable memory size up to nearest megabyte */
5391 numentries
= nr_kernel_pages
;
5392 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5393 numentries
>>= 20 - PAGE_SHIFT
;
5394 numentries
<<= 20 - PAGE_SHIFT
;
5396 /* limit to 1 bucket per 2^scale bytes of low memory */
5397 if (scale
> PAGE_SHIFT
)
5398 numentries
>>= (scale
- PAGE_SHIFT
);
5400 numentries
<<= (PAGE_SHIFT
- scale
);
5402 /* Make sure we've got at least a 0-order allocation.. */
5403 if (unlikely(flags
& HASH_SMALL
)) {
5404 /* Makes no sense without HASH_EARLY */
5405 WARN_ON(!(flags
& HASH_EARLY
));
5406 if (!(numentries
>> *_hash_shift
)) {
5407 numentries
= 1UL << *_hash_shift
;
5408 BUG_ON(!numentries
);
5410 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5411 numentries
= PAGE_SIZE
/ bucketsize
;
5413 numentries
= roundup_pow_of_two(numentries
);
5415 /* limit allocation size to 1/16 total memory by default */
5417 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5418 do_div(max
, bucketsize
);
5421 if (numentries
> max
)
5424 log2qty
= ilog2(numentries
);
5427 size
= bucketsize
<< log2qty
;
5428 if (flags
& HASH_EARLY
)
5429 table
= alloc_bootmem_nopanic(size
);
5431 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5434 * If bucketsize is not a power-of-two, we may free
5435 * some pages at the end of hash table which
5436 * alloc_pages_exact() automatically does
5438 if (get_order(size
) < MAX_ORDER
) {
5439 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5440 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5443 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5446 panic("Failed to allocate %s hash table\n", tablename
);
5448 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5451 ilog2(size
) - PAGE_SHIFT
,
5455 *_hash_shift
= log2qty
;
5457 *_hash_mask
= (1 << log2qty
) - 1;
5462 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5463 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5466 #ifdef CONFIG_SPARSEMEM
5467 return __pfn_to_section(pfn
)->pageblock_flags
;
5469 return zone
->pageblock_flags
;
5470 #endif /* CONFIG_SPARSEMEM */
5473 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5475 #ifdef CONFIG_SPARSEMEM
5476 pfn
&= (PAGES_PER_SECTION
-1);
5477 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5479 pfn
= pfn
- zone
->zone_start_pfn
;
5480 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5481 #endif /* CONFIG_SPARSEMEM */
5485 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5486 * @page: The page within the block of interest
5487 * @start_bitidx: The first bit of interest to retrieve
5488 * @end_bitidx: The last bit of interest
5489 * returns pageblock_bits flags
5491 unsigned long get_pageblock_flags_group(struct page
*page
,
5492 int start_bitidx
, int end_bitidx
)
5495 unsigned long *bitmap
;
5496 unsigned long pfn
, bitidx
;
5497 unsigned long flags
= 0;
5498 unsigned long value
= 1;
5500 zone
= page_zone(page
);
5501 pfn
= page_to_pfn(page
);
5502 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5503 bitidx
= pfn_to_bitidx(zone
, pfn
);
5505 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5506 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5513 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5514 * @page: The page within the block of interest
5515 * @start_bitidx: The first bit of interest
5516 * @end_bitidx: The last bit of interest
5517 * @flags: The flags to set
5519 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5520 int start_bitidx
, int end_bitidx
)
5523 unsigned long *bitmap
;
5524 unsigned long pfn
, bitidx
;
5525 unsigned long value
= 1;
5527 zone
= page_zone(page
);
5528 pfn
= page_to_pfn(page
);
5529 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5530 bitidx
= pfn_to_bitidx(zone
, pfn
);
5531 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5532 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5534 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5536 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5538 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5542 * This is designed as sub function...plz see page_isolation.c also.
5543 * set/clear page block's type to be ISOLATE.
5544 * page allocater never alloc memory from ISOLATE block.
5548 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5550 unsigned long pfn
, iter
, found
;
5552 * For avoiding noise data, lru_add_drain_all() should be called
5553 * If ZONE_MOVABLE, the zone never contains immobile pages
5555 if (zone_idx(zone
) == ZONE_MOVABLE
)
5558 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5561 pfn
= page_to_pfn(page
);
5562 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5563 unsigned long check
= pfn
+ iter
;
5565 if (!pfn_valid_within(check
))
5568 page
= pfn_to_page(check
);
5569 if (!page_count(page
)) {
5570 if (PageBuddy(page
))
5571 iter
+= (1 << page_order(page
)) - 1;
5577 * If there are RECLAIMABLE pages, we need to check it.
5578 * But now, memory offline itself doesn't call shrink_slab()
5579 * and it still to be fixed.
5582 * If the page is not RAM, page_count()should be 0.
5583 * we don't need more check. This is an _used_ not-movable page.
5585 * The problematic thing here is PG_reserved pages. PG_reserved
5586 * is set to both of a memory hole page and a _used_ kernel
5595 bool is_pageblock_removable_nolock(struct page
*page
)
5597 struct zone
*zone
= page_zone(page
);
5598 return __count_immobile_pages(zone
, page
, 0);
5601 int set_migratetype_isolate(struct page
*page
)
5604 unsigned long flags
, pfn
;
5605 struct memory_isolate_notify arg
;
5609 zone
= page_zone(page
);
5611 spin_lock_irqsave(&zone
->lock
, flags
);
5613 pfn
= page_to_pfn(page
);
5614 arg
.start_pfn
= pfn
;
5615 arg
.nr_pages
= pageblock_nr_pages
;
5616 arg
.pages_found
= 0;
5619 * It may be possible to isolate a pageblock even if the
5620 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5621 * notifier chain is used by balloon drivers to return the
5622 * number of pages in a range that are held by the balloon
5623 * driver to shrink memory. If all the pages are accounted for
5624 * by balloons, are free, or on the LRU, isolation can continue.
5625 * Later, for example, when memory hotplug notifier runs, these
5626 * pages reported as "can be isolated" should be isolated(freed)
5627 * by the balloon driver through the memory notifier chain.
5629 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5630 notifier_ret
= notifier_to_errno(notifier_ret
);
5634 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5635 * We just check MOVABLE pages.
5637 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5641 * immobile means "not-on-lru" paes. If immobile is larger than
5642 * removable-by-driver pages reported by notifier, we'll fail.
5647 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5648 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5651 spin_unlock_irqrestore(&zone
->lock
, flags
);
5657 void unset_migratetype_isolate(struct page
*page
)
5660 unsigned long flags
;
5661 zone
= page_zone(page
);
5662 spin_lock_irqsave(&zone
->lock
, flags
);
5663 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5665 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5666 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5668 spin_unlock_irqrestore(&zone
->lock
, flags
);
5671 #ifdef CONFIG_MEMORY_HOTREMOVE
5673 * All pages in the range must be isolated before calling this.
5676 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5682 unsigned long flags
;
5683 /* find the first valid pfn */
5684 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5689 zone
= page_zone(pfn_to_page(pfn
));
5690 spin_lock_irqsave(&zone
->lock
, flags
);
5692 while (pfn
< end_pfn
) {
5693 if (!pfn_valid(pfn
)) {
5697 page
= pfn_to_page(pfn
);
5698 BUG_ON(page_count(page
));
5699 BUG_ON(!PageBuddy(page
));
5700 order
= page_order(page
);
5701 #ifdef CONFIG_DEBUG_VM
5702 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5703 pfn
, 1 << order
, end_pfn
);
5705 list_del(&page
->lru
);
5706 rmv_page_order(page
);
5707 zone
->free_area
[order
].nr_free
--;
5708 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5710 for (i
= 0; i
< (1 << order
); i
++)
5711 SetPageReserved((page
+i
));
5712 pfn
+= (1 << order
);
5714 spin_unlock_irqrestore(&zone
->lock
, flags
);
5718 #ifdef CONFIG_MEMORY_FAILURE
5719 bool is_free_buddy_page(struct page
*page
)
5721 struct zone
*zone
= page_zone(page
);
5722 unsigned long pfn
= page_to_pfn(page
);
5723 unsigned long flags
;
5726 spin_lock_irqsave(&zone
->lock
, flags
);
5727 for (order
= 0; order
< MAX_ORDER
; order
++) {
5728 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5730 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5733 spin_unlock_irqrestore(&zone
->lock
, flags
);
5735 return order
< MAX_ORDER
;
5739 static struct trace_print_flags pageflag_names
[] = {
5740 {1UL << PG_locked
, "locked" },
5741 {1UL << PG_error
, "error" },
5742 {1UL << PG_referenced
, "referenced" },
5743 {1UL << PG_uptodate
, "uptodate" },
5744 {1UL << PG_dirty
, "dirty" },
5745 {1UL << PG_lru
, "lru" },
5746 {1UL << PG_active
, "active" },
5747 {1UL << PG_slab
, "slab" },
5748 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5749 {1UL << PG_arch_1
, "arch_1" },
5750 {1UL << PG_reserved
, "reserved" },
5751 {1UL << PG_private
, "private" },
5752 {1UL << PG_private_2
, "private_2" },
5753 {1UL << PG_writeback
, "writeback" },
5754 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5755 {1UL << PG_head
, "head" },
5756 {1UL << PG_tail
, "tail" },
5758 {1UL << PG_compound
, "compound" },
5760 {1UL << PG_swapcache
, "swapcache" },
5761 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5762 {1UL << PG_reclaim
, "reclaim" },
5763 {1UL << PG_swapbacked
, "swapbacked" },
5764 {1UL << PG_unevictable
, "unevictable" },
5766 {1UL << PG_mlocked
, "mlocked" },
5768 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5769 {1UL << PG_uncached
, "uncached" },
5771 #ifdef CONFIG_MEMORY_FAILURE
5772 {1UL << PG_hwpoison
, "hwpoison" },
5777 static void dump_page_flags(unsigned long flags
)
5779 const char *delim
= "";
5783 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5785 /* remove zone id */
5786 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5788 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5790 mask
= pageflag_names
[i
].mask
;
5791 if ((flags
& mask
) != mask
)
5795 printk("%s%s", delim
, pageflag_names
[i
].name
);
5799 /* check for left over flags */
5801 printk("%s%#lx", delim
, flags
);
5806 void dump_page(struct page
*page
)
5809 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5810 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5811 page
->mapping
, page
->index
);
5812 dump_page_flags(page
->flags
);
5813 mem_cgroup_print_bad_page(page
);