2 * linux/mm/page_alloc.c
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
17 #include <linux/stddef.h>
19 #include <linux/swap.h>
20 #include <linux/interrupt.h>
21 #include <linux/pagemap.h>
22 #include <linux/jiffies.h>
23 #include <linux/bootmem.h>
24 #include <linux/memblock.h>
25 #include <linux/compiler.h>
26 #include <linux/kernel.h>
27 #include <linux/kmemcheck.h>
28 #include <linux/module.h>
29 #include <linux/suspend.h>
30 #include <linux/pagevec.h>
31 #include <linux/blkdev.h>
32 #include <linux/slab.h>
33 #include <linux/oom.h>
34 #include <linux/notifier.h>
35 #include <linux/topology.h>
36 #include <linux/sysctl.h>
37 #include <linux/cpu.h>
38 #include <linux/cpuset.h>
39 #include <linux/memory_hotplug.h>
40 #include <linux/nodemask.h>
41 #include <linux/vmalloc.h>
42 #include <linux/mempolicy.h>
43 #include <linux/stop_machine.h>
44 #include <linux/sort.h>
45 #include <linux/pfn.h>
46 #include <linux/backing-dev.h>
47 #include <linux/fault-inject.h>
48 #include <linux/page-isolation.h>
49 #include <linux/page_cgroup.h>
50 #include <linux/debugobjects.h>
51 #include <linux/kmemleak.h>
52 #include <linux/memory.h>
53 #include <linux/compaction.h>
54 #include <trace/events/kmem.h>
55 #include <linux/ftrace_event.h>
56 #include <linux/memcontrol.h>
58 #include <asm/tlbflush.h>
59 #include <asm/div64.h>
62 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
63 DEFINE_PER_CPU(int, numa_node
);
64 EXPORT_PER_CPU_SYMBOL(numa_node
);
67 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
69 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
70 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
71 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
72 * defined in <linux/topology.h>.
74 DEFINE_PER_CPU(int, _numa_mem_
); /* Kernel "local memory" node */
75 EXPORT_PER_CPU_SYMBOL(_numa_mem_
);
79 * Array of node states.
81 nodemask_t node_states
[NR_NODE_STATES
] __read_mostly
= {
82 [N_POSSIBLE
] = NODE_MASK_ALL
,
83 [N_ONLINE
] = { { [0] = 1UL } },
85 [N_NORMAL_MEMORY
] = { { [0] = 1UL } },
87 [N_HIGH_MEMORY
] = { { [0] = 1UL } },
89 [N_CPU
] = { { [0] = 1UL } },
92 EXPORT_SYMBOL(node_states
);
94 unsigned long totalram_pages __read_mostly
;
95 unsigned long totalreserve_pages __read_mostly
;
96 int percpu_pagelist_fraction
;
97 gfp_t gfp_allowed_mask __read_mostly
= GFP_BOOT_MASK
;
99 #ifdef CONFIG_PM_SLEEP
101 * The following functions are used by the suspend/hibernate code to temporarily
102 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
103 * while devices are suspended. To avoid races with the suspend/hibernate code,
104 * they should always be called with pm_mutex held (gfp_allowed_mask also should
105 * only be modified with pm_mutex held, unless the suspend/hibernate code is
106 * guaranteed not to run in parallel with that modification).
109 static gfp_t saved_gfp_mask
;
111 void pm_restore_gfp_mask(void)
113 WARN_ON(!mutex_is_locked(&pm_mutex
));
114 if (saved_gfp_mask
) {
115 gfp_allowed_mask
= saved_gfp_mask
;
120 void pm_restrict_gfp_mask(void)
122 WARN_ON(!mutex_is_locked(&pm_mutex
));
123 WARN_ON(saved_gfp_mask
);
124 saved_gfp_mask
= gfp_allowed_mask
;
125 gfp_allowed_mask
&= ~GFP_IOFS
;
127 #endif /* CONFIG_PM_SLEEP */
129 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
130 int pageblock_order __read_mostly
;
133 static void __free_pages_ok(struct page
*page
, unsigned int order
);
136 * results with 256, 32 in the lowmem_reserve sysctl:
137 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
138 * 1G machine -> (16M dma, 784M normal, 224M high)
139 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
140 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
141 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
143 * TBD: should special case ZONE_DMA32 machines here - in those we normally
144 * don't need any ZONE_NORMAL reservation
146 int sysctl_lowmem_reserve_ratio
[MAX_NR_ZONES
-1] = {
147 #ifdef CONFIG_ZONE_DMA
150 #ifdef CONFIG_ZONE_DMA32
153 #ifdef CONFIG_HIGHMEM
159 EXPORT_SYMBOL(totalram_pages
);
161 static char * const zone_names
[MAX_NR_ZONES
] = {
162 #ifdef CONFIG_ZONE_DMA
165 #ifdef CONFIG_ZONE_DMA32
169 #ifdef CONFIG_HIGHMEM
175 int min_free_kbytes
= 1024;
177 static unsigned long __meminitdata nr_kernel_pages
;
178 static unsigned long __meminitdata nr_all_pages
;
179 static unsigned long __meminitdata dma_reserve
;
181 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
183 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
184 * ranges of memory (RAM) that may be registered with add_active_range().
185 * Ranges passed to add_active_range() will be merged if possible
186 * so the number of times add_active_range() can be called is
187 * related to the number of nodes and the number of holes
189 #ifdef CONFIG_MAX_ACTIVE_REGIONS
190 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
191 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
193 #if MAX_NUMNODES >= 32
194 /* If there can be many nodes, allow up to 50 holes per node */
195 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
197 /* By default, allow up to 256 distinct regions */
198 #define MAX_ACTIVE_REGIONS 256
202 static struct node_active_region __meminitdata early_node_map
[MAX_ACTIVE_REGIONS
];
203 static int __meminitdata nr_nodemap_entries
;
204 static unsigned long __meminitdata arch_zone_lowest_possible_pfn
[MAX_NR_ZONES
];
205 static unsigned long __meminitdata arch_zone_highest_possible_pfn
[MAX_NR_ZONES
];
206 static unsigned long __initdata required_kernelcore
;
207 static unsigned long __initdata required_movablecore
;
208 static unsigned long __meminitdata zone_movable_pfn
[MAX_NUMNODES
];
210 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
212 EXPORT_SYMBOL(movable_zone
);
213 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
216 int nr_node_ids __read_mostly
= MAX_NUMNODES
;
217 int nr_online_nodes __read_mostly
= 1;
218 EXPORT_SYMBOL(nr_node_ids
);
219 EXPORT_SYMBOL(nr_online_nodes
);
222 int page_group_by_mobility_disabled __read_mostly
;
224 static void set_pageblock_migratetype(struct page
*page
, int migratetype
)
227 if (unlikely(page_group_by_mobility_disabled
))
228 migratetype
= MIGRATE_UNMOVABLE
;
230 set_pageblock_flags_group(page
, (unsigned long)migratetype
,
231 PB_migrate
, PB_migrate_end
);
234 bool oom_killer_disabled __read_mostly
;
236 #ifdef CONFIG_DEBUG_VM
237 static int page_outside_zone_boundaries(struct zone
*zone
, struct page
*page
)
241 unsigned long pfn
= page_to_pfn(page
);
244 seq
= zone_span_seqbegin(zone
);
245 if (pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
247 else if (pfn
< zone
->zone_start_pfn
)
249 } while (zone_span_seqretry(zone
, seq
));
254 static int page_is_consistent(struct zone
*zone
, struct page
*page
)
256 if (!pfn_valid_within(page_to_pfn(page
)))
258 if (zone
!= page_zone(page
))
264 * Temporary debugging check for pages not lying within a given zone.
266 static int bad_range(struct zone
*zone
, struct page
*page
)
268 if (page_outside_zone_boundaries(zone
, page
))
270 if (!page_is_consistent(zone
, page
))
276 static inline int bad_range(struct zone
*zone
, struct page
*page
)
282 static void bad_page(struct page
*page
)
284 static unsigned long resume
;
285 static unsigned long nr_shown
;
286 static unsigned long nr_unshown
;
288 /* Don't complain about poisoned pages */
289 if (PageHWPoison(page
)) {
290 reset_page_mapcount(page
); /* remove PageBuddy */
295 * Allow a burst of 60 reports, then keep quiet for that minute;
296 * or allow a steady drip of one report per second.
298 if (nr_shown
== 60) {
299 if (time_before(jiffies
, resume
)) {
305 "BUG: Bad page state: %lu messages suppressed\n",
312 resume
= jiffies
+ 60 * HZ
;
314 printk(KERN_ALERT
"BUG: Bad page state in process %s pfn:%05lx\n",
315 current
->comm
, page_to_pfn(page
));
320 /* Leave bad fields for debug, except PageBuddy could make trouble */
321 reset_page_mapcount(page
); /* remove PageBuddy */
322 add_taint(TAINT_BAD_PAGE
);
326 * Higher-order pages are called "compound pages". They are structured thusly:
328 * The first PAGE_SIZE page is called the "head page".
330 * The remaining PAGE_SIZE pages are called "tail pages".
332 * All pages have PG_compound set. All pages have their ->private pointing at
333 * the head page (even the head page has this).
335 * The first tail page's ->lru.next holds the address of the compound page's
336 * put_page() function. Its ->lru.prev holds the order of allocation.
337 * This usage means that zero-order pages may not be compound.
340 static void free_compound_page(struct page
*page
)
342 __free_pages_ok(page
, compound_order(page
));
345 void prep_compound_page(struct page
*page
, unsigned long order
)
348 int nr_pages
= 1 << order
;
350 set_compound_page_dtor(page
, free_compound_page
);
351 set_compound_order(page
, order
);
353 for (i
= 1; i
< nr_pages
; i
++) {
354 struct page
*p
= page
+ i
;
357 p
->first_page
= page
;
361 /* update __split_huge_page_refcount if you change this function */
362 static int destroy_compound_page(struct page
*page
, unsigned long order
)
365 int nr_pages
= 1 << order
;
368 if (unlikely(compound_order(page
) != order
) ||
369 unlikely(!PageHead(page
))) {
374 __ClearPageHead(page
);
376 for (i
= 1; i
< nr_pages
; i
++) {
377 struct page
*p
= page
+ i
;
379 if (unlikely(!PageTail(p
) || (p
->first_page
!= page
))) {
389 static inline void prep_zero_page(struct page
*page
, int order
, gfp_t gfp_flags
)
394 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
395 * and __GFP_HIGHMEM from hard or soft interrupt context.
397 VM_BUG_ON((gfp_flags
& __GFP_HIGHMEM
) && in_interrupt());
398 for (i
= 0; i
< (1 << order
); i
++)
399 clear_highpage(page
+ i
);
402 static inline void set_page_order(struct page
*page
, int order
)
404 set_page_private(page
, order
);
405 __SetPageBuddy(page
);
408 static inline void rmv_page_order(struct page
*page
)
410 __ClearPageBuddy(page
);
411 set_page_private(page
, 0);
415 * Locate the struct page for both the matching buddy in our
416 * pair (buddy1) and the combined O(n+1) page they form (page).
418 * 1) Any buddy B1 will have an order O twin B2 which satisfies
419 * the following equation:
421 * For example, if the starting buddy (buddy2) is #8 its order
423 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
425 * 2) Any buddy B will have an order O+1 parent P which
426 * satisfies the following equation:
429 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
431 static inline unsigned long
432 __find_buddy_index(unsigned long page_idx
, unsigned int order
)
434 return page_idx
^ (1 << order
);
438 * This function checks whether a page is free && is the buddy
439 * we can do coalesce a page and its buddy if
440 * (a) the buddy is not in a hole &&
441 * (b) the buddy is in the buddy system &&
442 * (c) a page and its buddy have the same order &&
443 * (d) a page and its buddy are in the same zone.
445 * For recording whether a page is in the buddy system, we set ->_mapcount -2.
446 * Setting, clearing, and testing _mapcount -2 is serialized by zone->lock.
448 * For recording page's order, we use page_private(page).
450 static inline int page_is_buddy(struct page
*page
, struct page
*buddy
,
453 if (!pfn_valid_within(page_to_pfn(buddy
)))
456 if (page_zone_id(page
) != page_zone_id(buddy
))
459 if (PageBuddy(buddy
) && page_order(buddy
) == order
) {
460 VM_BUG_ON(page_count(buddy
) != 0);
467 * Freeing function for a buddy system allocator.
469 * The concept of a buddy system is to maintain direct-mapped table
470 * (containing bit values) for memory blocks of various "orders".
471 * The bottom level table contains the map for the smallest allocatable
472 * units of memory (here, pages), and each level above it describes
473 * pairs of units from the levels below, hence, "buddies".
474 * At a high level, all that happens here is marking the table entry
475 * at the bottom level available, and propagating the changes upward
476 * as necessary, plus some accounting needed to play nicely with other
477 * parts of the VM system.
478 * At each level, we keep a list of pages, which are heads of continuous
479 * free pages of length of (1 << order) and marked with _mapcount -2. Page's
480 * order is recorded in page_private(page) field.
481 * So when we are allocating or freeing one, we can derive the state of the
482 * other. That is, if we allocate a small block, and both were
483 * free, the remainder of the region must be split into blocks.
484 * If a block is freed, and its buddy is also free, then this
485 * triggers coalescing into a block of larger size.
490 static inline void __free_one_page(struct page
*page
,
491 struct zone
*zone
, unsigned int order
,
494 unsigned long page_idx
;
495 unsigned long combined_idx
;
496 unsigned long uninitialized_var(buddy_idx
);
499 if (unlikely(PageCompound(page
)))
500 if (unlikely(destroy_compound_page(page
, order
)))
503 VM_BUG_ON(migratetype
== -1);
505 page_idx
= page_to_pfn(page
) & ((1 << MAX_ORDER
) - 1);
507 VM_BUG_ON(page_idx
& ((1 << order
) - 1));
508 VM_BUG_ON(bad_range(zone
, page
));
510 while (order
< MAX_ORDER
-1) {
511 buddy_idx
= __find_buddy_index(page_idx
, order
);
512 buddy
= page
+ (buddy_idx
- page_idx
);
513 if (!page_is_buddy(page
, buddy
, order
))
516 /* Our buddy is free, merge with it and move up one order. */
517 list_del(&buddy
->lru
);
518 zone
->free_area
[order
].nr_free
--;
519 rmv_page_order(buddy
);
520 combined_idx
= buddy_idx
& page_idx
;
521 page
= page
+ (combined_idx
- page_idx
);
522 page_idx
= combined_idx
;
525 set_page_order(page
, order
);
528 * If this is not the largest possible page, check if the buddy
529 * of the next-highest order is free. If it is, it's possible
530 * that pages are being freed that will coalesce soon. In case,
531 * that is happening, add the free page to the tail of the list
532 * so it's less likely to be used soon and more likely to be merged
533 * as a higher order page
535 if ((order
< MAX_ORDER
-2) && pfn_valid_within(page_to_pfn(buddy
))) {
536 struct page
*higher_page
, *higher_buddy
;
537 combined_idx
= buddy_idx
& page_idx
;
538 higher_page
= page
+ (combined_idx
- page_idx
);
539 buddy_idx
= __find_buddy_index(combined_idx
, order
+ 1);
540 higher_buddy
= page
+ (buddy_idx
- combined_idx
);
541 if (page_is_buddy(higher_page
, higher_buddy
, order
+ 1)) {
542 list_add_tail(&page
->lru
,
543 &zone
->free_area
[order
].free_list
[migratetype
]);
548 list_add(&page
->lru
, &zone
->free_area
[order
].free_list
[migratetype
]);
550 zone
->free_area
[order
].nr_free
++;
554 * free_page_mlock() -- clean up attempts to free and mlocked() page.
555 * Page should not be on lru, so no need to fix that up.
556 * free_pages_check() will verify...
558 static inline void free_page_mlock(struct page
*page
)
560 __dec_zone_page_state(page
, NR_MLOCK
);
561 __count_vm_event(UNEVICTABLE_MLOCKFREED
);
564 static inline int free_pages_check(struct page
*page
)
566 if (unlikely(page_mapcount(page
) |
567 (page
->mapping
!= NULL
) |
568 (atomic_read(&page
->_count
) != 0) |
569 (page
->flags
& PAGE_FLAGS_CHECK_AT_FREE
) |
570 (mem_cgroup_bad_page_check(page
)))) {
574 if (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
)
575 page
->flags
&= ~PAGE_FLAGS_CHECK_AT_PREP
;
580 * Frees a number of pages from the PCP lists
581 * Assumes all pages on list are in same zone, and of same order.
582 * count is the number of pages to free.
584 * If the zone was previously in an "all pages pinned" state then look to
585 * see if this freeing clears that state.
587 * And clear the zone's pages_scanned counter, to hold off the "all pages are
588 * pinned" detection logic.
590 static void free_pcppages_bulk(struct zone
*zone
, int count
,
591 struct per_cpu_pages
*pcp
)
597 spin_lock(&zone
->lock
);
598 zone
->all_unreclaimable
= 0;
599 zone
->pages_scanned
= 0;
603 struct list_head
*list
;
606 * Remove pages from lists in a round-robin fashion. A
607 * batch_free count is maintained that is incremented when an
608 * empty list is encountered. This is so more pages are freed
609 * off fuller lists instead of spinning excessively around empty
614 if (++migratetype
== MIGRATE_PCPTYPES
)
616 list
= &pcp
->lists
[migratetype
];
617 } while (list_empty(list
));
619 /* This is the only non-empty list. Free them all. */
620 if (batch_free
== MIGRATE_PCPTYPES
)
621 batch_free
= to_free
;
624 page
= list_entry(list
->prev
, struct page
, lru
);
625 /* must delete as __free_one_page list manipulates */
626 list_del(&page
->lru
);
627 /* MIGRATE_MOVABLE list may include MIGRATE_RESERVEs */
628 __free_one_page(page
, zone
, 0, page_private(page
));
629 trace_mm_page_pcpu_drain(page
, 0, page_private(page
));
630 } while (--to_free
&& --batch_free
&& !list_empty(list
));
632 __mod_zone_page_state(zone
, NR_FREE_PAGES
, count
);
633 spin_unlock(&zone
->lock
);
636 static void free_one_page(struct zone
*zone
, struct page
*page
, int order
,
639 spin_lock(&zone
->lock
);
640 zone
->all_unreclaimable
= 0;
641 zone
->pages_scanned
= 0;
643 __free_one_page(page
, zone
, order
, migratetype
);
644 __mod_zone_page_state(zone
, NR_FREE_PAGES
, 1 << order
);
645 spin_unlock(&zone
->lock
);
648 static bool free_pages_prepare(struct page
*page
, unsigned int order
)
653 trace_mm_page_free_direct(page
, order
);
654 kmemcheck_free_shadow(page
, order
);
657 page
->mapping
= NULL
;
658 for (i
= 0; i
< (1 << order
); i
++)
659 bad
+= free_pages_check(page
+ i
);
663 if (!PageHighMem(page
)) {
664 debug_check_no_locks_freed(page_address(page
),PAGE_SIZE
<<order
);
665 debug_check_no_obj_freed(page_address(page
),
668 arch_free_page(page
, order
);
669 kernel_map_pages(page
, 1 << order
, 0);
674 static void __free_pages_ok(struct page
*page
, unsigned int order
)
677 int wasMlocked
= __TestClearPageMlocked(page
);
679 if (!free_pages_prepare(page
, order
))
682 local_irq_save(flags
);
683 if (unlikely(wasMlocked
))
684 free_page_mlock(page
);
685 __count_vm_events(PGFREE
, 1 << order
);
686 free_one_page(page_zone(page
), page
, order
,
687 get_pageblock_migratetype(page
));
688 local_irq_restore(flags
);
692 * permit the bootmem allocator to evade page validation on high-order frees
694 void __meminit
__free_pages_bootmem(struct page
*page
, unsigned int order
)
697 __ClearPageReserved(page
);
698 set_page_count(page
, 0);
699 set_page_refcounted(page
);
705 for (loop
= 0; loop
< BITS_PER_LONG
; loop
++) {
706 struct page
*p
= &page
[loop
];
708 if (loop
+ 1 < BITS_PER_LONG
)
710 __ClearPageReserved(p
);
711 set_page_count(p
, 0);
714 set_page_refcounted(page
);
715 __free_pages(page
, order
);
721 * The order of subdivision here is critical for the IO subsystem.
722 * Please do not alter this order without good reasons and regression
723 * testing. Specifically, as large blocks of memory are subdivided,
724 * the order in which smaller blocks are delivered depends on the order
725 * they're subdivided in this function. This is the primary factor
726 * influencing the order in which pages are delivered to the IO
727 * subsystem according to empirical testing, and this is also justified
728 * by considering the behavior of a buddy system containing a single
729 * large block of memory acted on by a series of small allocations.
730 * This behavior is a critical factor in sglist merging's success.
734 static inline void expand(struct zone
*zone
, struct page
*page
,
735 int low
, int high
, struct free_area
*area
,
738 unsigned long size
= 1 << high
;
744 VM_BUG_ON(bad_range(zone
, &page
[size
]));
745 list_add(&page
[size
].lru
, &area
->free_list
[migratetype
]);
747 set_page_order(&page
[size
], high
);
752 * This page is about to be returned from the page allocator
754 static inline int check_new_page(struct page
*page
)
756 if (unlikely(page_mapcount(page
) |
757 (page
->mapping
!= NULL
) |
758 (atomic_read(&page
->_count
) != 0) |
759 (page
->flags
& PAGE_FLAGS_CHECK_AT_PREP
) |
760 (mem_cgroup_bad_page_check(page
)))) {
767 static int prep_new_page(struct page
*page
, int order
, gfp_t gfp_flags
)
771 for (i
= 0; i
< (1 << order
); i
++) {
772 struct page
*p
= page
+ i
;
773 if (unlikely(check_new_page(p
)))
777 set_page_private(page
, 0);
778 set_page_refcounted(page
);
780 arch_alloc_page(page
, order
);
781 kernel_map_pages(page
, 1 << order
, 1);
783 if (gfp_flags
& __GFP_ZERO
)
784 prep_zero_page(page
, order
, gfp_flags
);
786 if (order
&& (gfp_flags
& __GFP_COMP
))
787 prep_compound_page(page
, order
);
793 * Go through the free lists for the given migratetype and remove
794 * the smallest available page from the freelists
797 struct page
*__rmqueue_smallest(struct zone
*zone
, unsigned int order
,
800 unsigned int current_order
;
801 struct free_area
* area
;
804 /* Find a page of the appropriate size in the preferred list */
805 for (current_order
= order
; current_order
< MAX_ORDER
; ++current_order
) {
806 area
= &(zone
->free_area
[current_order
]);
807 if (list_empty(&area
->free_list
[migratetype
]))
810 page
= list_entry(area
->free_list
[migratetype
].next
,
812 list_del(&page
->lru
);
813 rmv_page_order(page
);
815 expand(zone
, page
, order
, current_order
, area
, migratetype
);
824 * This array describes the order lists are fallen back to when
825 * the free lists for the desirable migrate type are depleted
827 static int fallbacks
[MIGRATE_TYPES
][MIGRATE_TYPES
-1] = {
828 [MIGRATE_UNMOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
829 [MIGRATE_RECLAIMABLE
] = { MIGRATE_UNMOVABLE
, MIGRATE_MOVABLE
, MIGRATE_RESERVE
},
830 [MIGRATE_MOVABLE
] = { MIGRATE_RECLAIMABLE
, MIGRATE_UNMOVABLE
, MIGRATE_RESERVE
},
831 [MIGRATE_RESERVE
] = { MIGRATE_RESERVE
, MIGRATE_RESERVE
, MIGRATE_RESERVE
}, /* Never used */
835 * Move the free pages in a range to the free lists of the requested type.
836 * Note that start_page and end_pages are not aligned on a pageblock
837 * boundary. If alignment is required, use move_freepages_block()
839 static int move_freepages(struct zone
*zone
,
840 struct page
*start_page
, struct page
*end_page
,
847 #ifndef CONFIG_HOLES_IN_ZONE
849 * page_zone is not safe to call in this context when
850 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
851 * anyway as we check zone boundaries in move_freepages_block().
852 * Remove at a later date when no bug reports exist related to
853 * grouping pages by mobility
855 BUG_ON(page_zone(start_page
) != page_zone(end_page
));
858 for (page
= start_page
; page
<= end_page
;) {
859 /* Make sure we are not inadvertently changing nodes */
860 VM_BUG_ON(page_to_nid(page
) != zone_to_nid(zone
));
862 if (!pfn_valid_within(page_to_pfn(page
))) {
867 if (!PageBuddy(page
)) {
872 order
= page_order(page
);
873 list_move(&page
->lru
,
874 &zone
->free_area
[order
].free_list
[migratetype
]);
876 pages_moved
+= 1 << order
;
882 static int move_freepages_block(struct zone
*zone
, struct page
*page
,
885 unsigned long start_pfn
, end_pfn
;
886 struct page
*start_page
, *end_page
;
888 start_pfn
= page_to_pfn(page
);
889 start_pfn
= start_pfn
& ~(pageblock_nr_pages
-1);
890 start_page
= pfn_to_page(start_pfn
);
891 end_page
= start_page
+ pageblock_nr_pages
- 1;
892 end_pfn
= start_pfn
+ pageblock_nr_pages
- 1;
894 /* Do not cross zone boundaries */
895 if (start_pfn
< zone
->zone_start_pfn
)
897 if (end_pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
)
900 return move_freepages(zone
, start_page
, end_page
, migratetype
);
903 static void change_pageblock_range(struct page
*pageblock_page
,
904 int start_order
, int migratetype
)
906 int nr_pageblocks
= 1 << (start_order
- pageblock_order
);
908 while (nr_pageblocks
--) {
909 set_pageblock_migratetype(pageblock_page
, migratetype
);
910 pageblock_page
+= pageblock_nr_pages
;
914 /* Remove an element from the buddy allocator from the fallback list */
915 static inline struct page
*
916 __rmqueue_fallback(struct zone
*zone
, int order
, int start_migratetype
)
918 struct free_area
* area
;
923 /* Find the largest possible block of pages in the other list */
924 for (current_order
= MAX_ORDER
-1; current_order
>= order
;
926 for (i
= 0; i
< MIGRATE_TYPES
- 1; i
++) {
927 migratetype
= fallbacks
[start_migratetype
][i
];
929 /* MIGRATE_RESERVE handled later if necessary */
930 if (migratetype
== MIGRATE_RESERVE
)
933 area
= &(zone
->free_area
[current_order
]);
934 if (list_empty(&area
->free_list
[migratetype
]))
937 page
= list_entry(area
->free_list
[migratetype
].next
,
942 * If breaking a large block of pages, move all free
943 * pages to the preferred allocation list. If falling
944 * back for a reclaimable kernel allocation, be more
945 * aggressive about taking ownership of free pages
947 if (unlikely(current_order
>= (pageblock_order
>> 1)) ||
948 start_migratetype
== MIGRATE_RECLAIMABLE
||
949 page_group_by_mobility_disabled
) {
951 pages
= move_freepages_block(zone
, page
,
954 /* Claim the whole block if over half of it is free */
955 if (pages
>= (1 << (pageblock_order
-1)) ||
956 page_group_by_mobility_disabled
)
957 set_pageblock_migratetype(page
,
960 migratetype
= start_migratetype
;
963 /* Remove the page from the freelists */
964 list_del(&page
->lru
);
965 rmv_page_order(page
);
967 /* Take ownership for orders >= pageblock_order */
968 if (current_order
>= pageblock_order
)
969 change_pageblock_range(page
, current_order
,
972 expand(zone
, page
, order
, current_order
, area
, migratetype
);
974 trace_mm_page_alloc_extfrag(page
, order
, current_order
,
975 start_migratetype
, migratetype
);
985 * Do the hard work of removing an element from the buddy allocator.
986 * Call me with the zone->lock already held.
988 static struct page
*__rmqueue(struct zone
*zone
, unsigned int order
,
994 page
= __rmqueue_smallest(zone
, order
, migratetype
);
996 if (unlikely(!page
) && migratetype
!= MIGRATE_RESERVE
) {
997 page
= __rmqueue_fallback(zone
, order
, migratetype
);
1000 * Use MIGRATE_RESERVE rather than fail an allocation. goto
1001 * is used because __rmqueue_smallest is an inline function
1002 * and we want just one call site
1005 migratetype
= MIGRATE_RESERVE
;
1010 trace_mm_page_alloc_zone_locked(page
, order
, migratetype
);
1015 * Obtain a specified number of elements from the buddy allocator, all under
1016 * a single hold of the lock, for efficiency. Add them to the supplied list.
1017 * Returns the number of new pages which were placed at *list.
1019 static int rmqueue_bulk(struct zone
*zone
, unsigned int order
,
1020 unsigned long count
, struct list_head
*list
,
1021 int migratetype
, int cold
)
1025 spin_lock(&zone
->lock
);
1026 for (i
= 0; i
< count
; ++i
) {
1027 struct page
*page
= __rmqueue(zone
, order
, migratetype
);
1028 if (unlikely(page
== NULL
))
1032 * Split buddy pages returned by expand() are received here
1033 * in physical page order. The page is added to the callers and
1034 * list and the list head then moves forward. From the callers
1035 * perspective, the linked list is ordered by page number in
1036 * some conditions. This is useful for IO devices that can
1037 * merge IO requests if the physical pages are ordered
1040 if (likely(cold
== 0))
1041 list_add(&page
->lru
, list
);
1043 list_add_tail(&page
->lru
, list
);
1044 set_page_private(page
, migratetype
);
1047 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(i
<< order
));
1048 spin_unlock(&zone
->lock
);
1054 * Called from the vmstat counter updater to drain pagesets of this
1055 * currently executing processor on remote nodes after they have
1058 * Note that this function must be called with the thread pinned to
1059 * a single processor.
1061 void drain_zone_pages(struct zone
*zone
, struct per_cpu_pages
*pcp
)
1063 unsigned long flags
;
1066 local_irq_save(flags
);
1067 if (pcp
->count
>= pcp
->batch
)
1068 to_drain
= pcp
->batch
;
1070 to_drain
= pcp
->count
;
1071 free_pcppages_bulk(zone
, to_drain
, pcp
);
1072 pcp
->count
-= to_drain
;
1073 local_irq_restore(flags
);
1078 * Drain pages of the indicated processor.
1080 * The processor must either be the current processor and the
1081 * thread pinned to the current processor or a processor that
1084 static void drain_pages(unsigned int cpu
)
1086 unsigned long flags
;
1089 for_each_populated_zone(zone
) {
1090 struct per_cpu_pageset
*pset
;
1091 struct per_cpu_pages
*pcp
;
1093 local_irq_save(flags
);
1094 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
1098 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
1101 local_irq_restore(flags
);
1106 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
1108 void drain_local_pages(void *arg
)
1110 drain_pages(smp_processor_id());
1114 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
1116 void drain_all_pages(void)
1118 on_each_cpu(drain_local_pages
, NULL
, 1);
1121 #ifdef CONFIG_HIBERNATION
1123 void mark_free_pages(struct zone
*zone
)
1125 unsigned long pfn
, max_zone_pfn
;
1126 unsigned long flags
;
1128 struct list_head
*curr
;
1130 if (!zone
->spanned_pages
)
1133 spin_lock_irqsave(&zone
->lock
, flags
);
1135 max_zone_pfn
= zone
->zone_start_pfn
+ zone
->spanned_pages
;
1136 for (pfn
= zone
->zone_start_pfn
; pfn
< max_zone_pfn
; pfn
++)
1137 if (pfn_valid(pfn
)) {
1138 struct page
*page
= pfn_to_page(pfn
);
1140 if (!swsusp_page_is_forbidden(page
))
1141 swsusp_unset_page_free(page
);
1144 for_each_migratetype_order(order
, t
) {
1145 list_for_each(curr
, &zone
->free_area
[order
].free_list
[t
]) {
1148 pfn
= page_to_pfn(list_entry(curr
, struct page
, lru
));
1149 for (i
= 0; i
< (1UL << order
); i
++)
1150 swsusp_set_page_free(pfn_to_page(pfn
+ i
));
1153 spin_unlock_irqrestore(&zone
->lock
, flags
);
1155 #endif /* CONFIG_PM */
1158 * Free a 0-order page
1159 * cold == 1 ? free a cold page : free a hot page
1161 void free_hot_cold_page(struct page
*page
, int cold
)
1163 struct zone
*zone
= page_zone(page
);
1164 struct per_cpu_pages
*pcp
;
1165 unsigned long flags
;
1167 int wasMlocked
= __TestClearPageMlocked(page
);
1169 if (!free_pages_prepare(page
, 0))
1172 migratetype
= get_pageblock_migratetype(page
);
1173 set_page_private(page
, migratetype
);
1174 local_irq_save(flags
);
1175 if (unlikely(wasMlocked
))
1176 free_page_mlock(page
);
1177 __count_vm_event(PGFREE
);
1180 * We only track unmovable, reclaimable and movable on pcp lists.
1181 * Free ISOLATE pages back to the allocator because they are being
1182 * offlined but treat RESERVE as movable pages so we can get those
1183 * areas back if necessary. Otherwise, we may have to free
1184 * excessively into the page allocator
1186 if (migratetype
>= MIGRATE_PCPTYPES
) {
1187 if (unlikely(migratetype
== MIGRATE_ISOLATE
)) {
1188 free_one_page(zone
, page
, 0, migratetype
);
1191 migratetype
= MIGRATE_MOVABLE
;
1194 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1196 list_add_tail(&page
->lru
, &pcp
->lists
[migratetype
]);
1198 list_add(&page
->lru
, &pcp
->lists
[migratetype
]);
1200 if (pcp
->count
>= pcp
->high
) {
1201 free_pcppages_bulk(zone
, pcp
->batch
, pcp
);
1202 pcp
->count
-= pcp
->batch
;
1206 local_irq_restore(flags
);
1210 * split_page takes a non-compound higher-order page, and splits it into
1211 * n (1<<order) sub-pages: page[0..n]
1212 * Each sub-page must be freed individually.
1214 * Note: this is probably too low level an operation for use in drivers.
1215 * Please consult with lkml before using this in your driver.
1217 void split_page(struct page
*page
, unsigned int order
)
1221 VM_BUG_ON(PageCompound(page
));
1222 VM_BUG_ON(!page_count(page
));
1224 #ifdef CONFIG_KMEMCHECK
1226 * Split shadow pages too, because free(page[0]) would
1227 * otherwise free the whole shadow.
1229 if (kmemcheck_page_is_tracked(page
))
1230 split_page(virt_to_page(page
[0].shadow
), order
);
1233 for (i
= 1; i
< (1 << order
); i
++)
1234 set_page_refcounted(page
+ i
);
1238 * Similar to split_page except the page is already free. As this is only
1239 * being used for migration, the migratetype of the block also changes.
1240 * As this is called with interrupts disabled, the caller is responsible
1241 * for calling arch_alloc_page() and kernel_map_page() after interrupts
1244 * Note: this is probably too low level an operation for use in drivers.
1245 * Please consult with lkml before using this in your driver.
1247 int split_free_page(struct page
*page
)
1250 unsigned long watermark
;
1253 BUG_ON(!PageBuddy(page
));
1255 zone
= page_zone(page
);
1256 order
= page_order(page
);
1258 /* Obey watermarks as if the page was being allocated */
1259 watermark
= low_wmark_pages(zone
) + (1 << order
);
1260 if (!zone_watermark_ok(zone
, 0, watermark
, 0, 0))
1263 /* Remove page from free list */
1264 list_del(&page
->lru
);
1265 zone
->free_area
[order
].nr_free
--;
1266 rmv_page_order(page
);
1267 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1UL << order
));
1269 /* Split into individual pages */
1270 set_page_refcounted(page
);
1271 split_page(page
, order
);
1273 if (order
>= pageblock_order
- 1) {
1274 struct page
*endpage
= page
+ (1 << order
) - 1;
1275 for (; page
< endpage
; page
+= pageblock_nr_pages
)
1276 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
1283 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1284 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1288 struct page
*buffered_rmqueue(struct zone
*preferred_zone
,
1289 struct zone
*zone
, int order
, gfp_t gfp_flags
,
1292 unsigned long flags
;
1294 int cold
= !!(gfp_flags
& __GFP_COLD
);
1297 if (likely(order
== 0)) {
1298 struct per_cpu_pages
*pcp
;
1299 struct list_head
*list
;
1301 local_irq_save(flags
);
1302 pcp
= &this_cpu_ptr(zone
->pageset
)->pcp
;
1303 list
= &pcp
->lists
[migratetype
];
1304 if (list_empty(list
)) {
1305 pcp
->count
+= rmqueue_bulk(zone
, 0,
1308 if (unlikely(list_empty(list
)))
1313 page
= list_entry(list
->prev
, struct page
, lru
);
1315 page
= list_entry(list
->next
, struct page
, lru
);
1317 list_del(&page
->lru
);
1320 if (unlikely(gfp_flags
& __GFP_NOFAIL
)) {
1322 * __GFP_NOFAIL is not to be used in new code.
1324 * All __GFP_NOFAIL callers should be fixed so that they
1325 * properly detect and handle allocation failures.
1327 * We most definitely don't want callers attempting to
1328 * allocate greater than order-1 page units with
1331 WARN_ON_ONCE(order
> 1);
1333 spin_lock_irqsave(&zone
->lock
, flags
);
1334 page
= __rmqueue(zone
, order
, migratetype
);
1335 spin_unlock(&zone
->lock
);
1338 __mod_zone_page_state(zone
, NR_FREE_PAGES
, -(1 << order
));
1341 __count_zone_vm_events(PGALLOC
, zone
, 1 << order
);
1342 zone_statistics(preferred_zone
, zone
, gfp_flags
);
1343 local_irq_restore(flags
);
1345 VM_BUG_ON(bad_range(zone
, page
));
1346 if (prep_new_page(page
, order
, gfp_flags
))
1351 local_irq_restore(flags
);
1355 /* The ALLOC_WMARK bits are used as an index to zone->watermark */
1356 #define ALLOC_WMARK_MIN WMARK_MIN
1357 #define ALLOC_WMARK_LOW WMARK_LOW
1358 #define ALLOC_WMARK_HIGH WMARK_HIGH
1359 #define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1361 /* Mask to get the watermark bits */
1362 #define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1364 #define ALLOC_HARDER 0x10 /* try to alloc harder */
1365 #define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1366 #define ALLOC_CPUSET 0x40 /* check for correct cpuset */
1368 #ifdef CONFIG_FAIL_PAGE_ALLOC
1370 static struct fail_page_alloc_attr
{
1371 struct fault_attr attr
;
1373 u32 ignore_gfp_highmem
;
1374 u32 ignore_gfp_wait
;
1377 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1379 struct dentry
*ignore_gfp_highmem_file
;
1380 struct dentry
*ignore_gfp_wait_file
;
1381 struct dentry
*min_order_file
;
1383 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1385 } fail_page_alloc
= {
1386 .attr
= FAULT_ATTR_INITIALIZER
,
1387 .ignore_gfp_wait
= 1,
1388 .ignore_gfp_highmem
= 1,
1392 static int __init
setup_fail_page_alloc(char *str
)
1394 return setup_fault_attr(&fail_page_alloc
.attr
, str
);
1396 __setup("fail_page_alloc=", setup_fail_page_alloc
);
1398 static int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1400 if (order
< fail_page_alloc
.min_order
)
1402 if (gfp_mask
& __GFP_NOFAIL
)
1404 if (fail_page_alloc
.ignore_gfp_highmem
&& (gfp_mask
& __GFP_HIGHMEM
))
1406 if (fail_page_alloc
.ignore_gfp_wait
&& (gfp_mask
& __GFP_WAIT
))
1409 return should_fail(&fail_page_alloc
.attr
, 1 << order
);
1412 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1414 static int __init
fail_page_alloc_debugfs(void)
1416 mode_t mode
= S_IFREG
| S_IRUSR
| S_IWUSR
;
1420 err
= init_fault_attr_dentries(&fail_page_alloc
.attr
,
1424 dir
= fail_page_alloc
.attr
.dentries
.dir
;
1426 fail_page_alloc
.ignore_gfp_wait_file
=
1427 debugfs_create_bool("ignore-gfp-wait", mode
, dir
,
1428 &fail_page_alloc
.ignore_gfp_wait
);
1430 fail_page_alloc
.ignore_gfp_highmem_file
=
1431 debugfs_create_bool("ignore-gfp-highmem", mode
, dir
,
1432 &fail_page_alloc
.ignore_gfp_highmem
);
1433 fail_page_alloc
.min_order_file
=
1434 debugfs_create_u32("min-order", mode
, dir
,
1435 &fail_page_alloc
.min_order
);
1437 if (!fail_page_alloc
.ignore_gfp_wait_file
||
1438 !fail_page_alloc
.ignore_gfp_highmem_file
||
1439 !fail_page_alloc
.min_order_file
) {
1441 debugfs_remove(fail_page_alloc
.ignore_gfp_wait_file
);
1442 debugfs_remove(fail_page_alloc
.ignore_gfp_highmem_file
);
1443 debugfs_remove(fail_page_alloc
.min_order_file
);
1444 cleanup_fault_attr_dentries(&fail_page_alloc
.attr
);
1450 late_initcall(fail_page_alloc_debugfs
);
1452 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1454 #else /* CONFIG_FAIL_PAGE_ALLOC */
1456 static inline int should_fail_alloc_page(gfp_t gfp_mask
, unsigned int order
)
1461 #endif /* CONFIG_FAIL_PAGE_ALLOC */
1464 * Return true if free pages are above 'mark'. This takes into account the order
1465 * of the allocation.
1467 static bool __zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1468 int classzone_idx
, int alloc_flags
, long free_pages
)
1470 /* free_pages my go negative - that's OK */
1474 free_pages
-= (1 << order
) + 1;
1475 if (alloc_flags
& ALLOC_HIGH
)
1477 if (alloc_flags
& ALLOC_HARDER
)
1480 if (free_pages
<= min
+ z
->lowmem_reserve
[classzone_idx
])
1482 for (o
= 0; o
< order
; o
++) {
1483 /* At the next order, this order's pages become unavailable */
1484 free_pages
-= z
->free_area
[o
].nr_free
<< o
;
1486 /* Require fewer higher order pages to be free */
1489 if (free_pages
<= min
)
1495 bool zone_watermark_ok(struct zone
*z
, int order
, unsigned long mark
,
1496 int classzone_idx
, int alloc_flags
)
1498 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1499 zone_page_state(z
, NR_FREE_PAGES
));
1502 bool zone_watermark_ok_safe(struct zone
*z
, int order
, unsigned long mark
,
1503 int classzone_idx
, int alloc_flags
)
1505 long free_pages
= zone_page_state(z
, NR_FREE_PAGES
);
1507 if (z
->percpu_drift_mark
&& free_pages
< z
->percpu_drift_mark
)
1508 free_pages
= zone_page_state_snapshot(z
, NR_FREE_PAGES
);
1510 return __zone_watermark_ok(z
, order
, mark
, classzone_idx
, alloc_flags
,
1516 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1517 * skip over zones that are not allowed by the cpuset, or that have
1518 * been recently (in last second) found to be nearly full. See further
1519 * comments in mmzone.h. Reduces cache footprint of zonelist scans
1520 * that have to skip over a lot of full or unallowed zones.
1522 * If the zonelist cache is present in the passed in zonelist, then
1523 * returns a pointer to the allowed node mask (either the current
1524 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
1526 * If the zonelist cache is not available for this zonelist, does
1527 * nothing and returns NULL.
1529 * If the fullzones BITMAP in the zonelist cache is stale (more than
1530 * a second since last zap'd) then we zap it out (clear its bits.)
1532 * We hold off even calling zlc_setup, until after we've checked the
1533 * first zone in the zonelist, on the theory that most allocations will
1534 * be satisfied from that first zone, so best to examine that zone as
1535 * quickly as we can.
1537 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1539 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1540 nodemask_t
*allowednodes
; /* zonelist_cache approximation */
1542 zlc
= zonelist
->zlcache_ptr
;
1546 if (time_after(jiffies
, zlc
->last_full_zap
+ HZ
)) {
1547 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
1548 zlc
->last_full_zap
= jiffies
;
1551 allowednodes
= !in_interrupt() && (alloc_flags
& ALLOC_CPUSET
) ?
1552 &cpuset_current_mems_allowed
:
1553 &node_states
[N_HIGH_MEMORY
];
1554 return allowednodes
;
1558 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1559 * if it is worth looking at further for free memory:
1560 * 1) Check that the zone isn't thought to be full (doesn't have its
1561 * bit set in the zonelist_cache fullzones BITMAP).
1562 * 2) Check that the zones node (obtained from the zonelist_cache
1563 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1564 * Return true (non-zero) if zone is worth looking at further, or
1565 * else return false (zero) if it is not.
1567 * This check -ignores- the distinction between various watermarks,
1568 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1569 * found to be full for any variation of these watermarks, it will
1570 * be considered full for up to one second by all requests, unless
1571 * we are so low on memory on all allowed nodes that we are forced
1572 * into the second scan of the zonelist.
1574 * In the second scan we ignore this zonelist cache and exactly
1575 * apply the watermarks to all zones, even it is slower to do so.
1576 * We are low on memory in the second scan, and should leave no stone
1577 * unturned looking for a free page.
1579 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1580 nodemask_t
*allowednodes
)
1582 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1583 int i
; /* index of *z in zonelist zones */
1584 int n
; /* node that zone *z is on */
1586 zlc
= zonelist
->zlcache_ptr
;
1590 i
= z
- zonelist
->_zonerefs
;
1593 /* This zone is worth trying if it is allowed but not full */
1594 return node_isset(n
, *allowednodes
) && !test_bit(i
, zlc
->fullzones
);
1598 * Given 'z' scanning a zonelist, set the corresponding bit in
1599 * zlc->fullzones, so that subsequent attempts to allocate a page
1600 * from that zone don't waste time re-examining it.
1602 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1604 struct zonelist_cache
*zlc
; /* cached zonelist speedup info */
1605 int i
; /* index of *z in zonelist zones */
1607 zlc
= zonelist
->zlcache_ptr
;
1611 i
= z
- zonelist
->_zonerefs
;
1613 set_bit(i
, zlc
->fullzones
);
1616 #else /* CONFIG_NUMA */
1618 static nodemask_t
*zlc_setup(struct zonelist
*zonelist
, int alloc_flags
)
1623 static int zlc_zone_worth_trying(struct zonelist
*zonelist
, struct zoneref
*z
,
1624 nodemask_t
*allowednodes
)
1629 static void zlc_mark_zone_full(struct zonelist
*zonelist
, struct zoneref
*z
)
1632 #endif /* CONFIG_NUMA */
1635 * get_page_from_freelist goes through the zonelist trying to allocate
1638 static struct page
*
1639 get_page_from_freelist(gfp_t gfp_mask
, nodemask_t
*nodemask
, unsigned int order
,
1640 struct zonelist
*zonelist
, int high_zoneidx
, int alloc_flags
,
1641 struct zone
*preferred_zone
, int migratetype
)
1644 struct page
*page
= NULL
;
1647 nodemask_t
*allowednodes
= NULL
;/* zonelist_cache approximation */
1648 int zlc_active
= 0; /* set if using zonelist_cache */
1649 int did_zlc_setup
= 0; /* just call zlc_setup() one time */
1651 classzone_idx
= zone_idx(preferred_zone
);
1654 * Scan zonelist, looking for a zone with enough free.
1655 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1657 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
,
1658 high_zoneidx
, nodemask
) {
1659 if (NUMA_BUILD
&& zlc_active
&&
1660 !zlc_zone_worth_trying(zonelist
, z
, allowednodes
))
1662 if ((alloc_flags
& ALLOC_CPUSET
) &&
1663 !cpuset_zone_allowed_softwall(zone
, gfp_mask
))
1666 BUILD_BUG_ON(ALLOC_NO_WATERMARKS
< NR_WMARK
);
1667 if (!(alloc_flags
& ALLOC_NO_WATERMARKS
)) {
1671 mark
= zone
->watermark
[alloc_flags
& ALLOC_WMARK_MASK
];
1672 if (zone_watermark_ok(zone
, order
, mark
,
1673 classzone_idx
, alloc_flags
))
1676 if (zone_reclaim_mode
== 0)
1677 goto this_zone_full
;
1679 ret
= zone_reclaim(zone
, gfp_mask
, order
);
1681 case ZONE_RECLAIM_NOSCAN
:
1684 case ZONE_RECLAIM_FULL
:
1685 /* scanned but unreclaimable */
1686 goto this_zone_full
;
1688 /* did we reclaim enough */
1689 if (!zone_watermark_ok(zone
, order
, mark
,
1690 classzone_idx
, alloc_flags
))
1691 goto this_zone_full
;
1696 page
= buffered_rmqueue(preferred_zone
, zone
, order
,
1697 gfp_mask
, migratetype
);
1702 zlc_mark_zone_full(zonelist
, z
);
1704 if (NUMA_BUILD
&& !did_zlc_setup
&& nr_online_nodes
> 1) {
1706 * we do zlc_setup after the first zone is tried but only
1707 * if there are multiple nodes make it worthwhile
1709 allowednodes
= zlc_setup(zonelist
, alloc_flags
);
1715 if (unlikely(NUMA_BUILD
&& page
== NULL
&& zlc_active
)) {
1716 /* Disable zlc cache for second zonelist scan */
1724 * Large machines with many possible nodes should not always dump per-node
1725 * meminfo in irq context.
1727 static inline bool should_suppress_show_mem(void)
1732 ret
= in_interrupt();
1738 should_alloc_retry(gfp_t gfp_mask
, unsigned int order
,
1739 unsigned long pages_reclaimed
)
1741 /* Do not loop if specifically requested */
1742 if (gfp_mask
& __GFP_NORETRY
)
1746 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1747 * means __GFP_NOFAIL, but that may not be true in other
1750 if (order
<= PAGE_ALLOC_COSTLY_ORDER
)
1754 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1755 * specified, then we retry until we no longer reclaim any pages
1756 * (above), or we've reclaimed an order of pages at least as
1757 * large as the allocation's order. In both cases, if the
1758 * allocation still fails, we stop retrying.
1760 if (gfp_mask
& __GFP_REPEAT
&& pages_reclaimed
< (1 << order
))
1764 * Don't let big-order allocations loop unless the caller
1765 * explicitly requests that.
1767 if (gfp_mask
& __GFP_NOFAIL
)
1773 static inline struct page
*
1774 __alloc_pages_may_oom(gfp_t gfp_mask
, unsigned int order
,
1775 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1776 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1781 /* Acquire the OOM killer lock for the zones in zonelist */
1782 if (!try_set_zonelist_oom(zonelist
, gfp_mask
)) {
1783 schedule_timeout_uninterruptible(1);
1788 * Go through the zonelist yet one more time, keep very high watermark
1789 * here, this is only to catch a parallel oom killing, we must fail if
1790 * we're still under heavy pressure.
1792 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
,
1793 order
, zonelist
, high_zoneidx
,
1794 ALLOC_WMARK_HIGH
|ALLOC_CPUSET
,
1795 preferred_zone
, migratetype
);
1799 if (!(gfp_mask
& __GFP_NOFAIL
)) {
1800 /* The OOM killer will not help higher order allocs */
1801 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
1803 /* The OOM killer does not needlessly kill tasks for lowmem */
1804 if (high_zoneidx
< ZONE_NORMAL
)
1807 * GFP_THISNODE contains __GFP_NORETRY and we never hit this.
1808 * Sanity check for bare calls of __GFP_THISNODE, not real OOM.
1809 * The caller should handle page allocation failure by itself if
1810 * it specifies __GFP_THISNODE.
1811 * Note: Hugepage uses it but will hit PAGE_ALLOC_COSTLY_ORDER.
1813 if (gfp_mask
& __GFP_THISNODE
)
1816 /* Exhausted what can be done so it's blamo time */
1817 out_of_memory(zonelist
, gfp_mask
, order
, nodemask
);
1820 clear_zonelist_oom(zonelist
, gfp_mask
);
1824 #ifdef CONFIG_COMPACTION
1825 /* Try memory compaction for high-order allocations before reclaim */
1826 static struct page
*
1827 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1828 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1829 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1830 int migratetype
, unsigned long *did_some_progress
,
1831 bool sync_migration
)
1835 if (!order
|| compaction_deferred(preferred_zone
))
1838 current
->flags
|= PF_MEMALLOC
;
1839 *did_some_progress
= try_to_compact_pages(zonelist
, order
, gfp_mask
,
1840 nodemask
, sync_migration
);
1841 current
->flags
&= ~PF_MEMALLOC
;
1842 if (*did_some_progress
!= COMPACT_SKIPPED
) {
1844 /* Page migration frees to the PCP lists but we want merging */
1845 drain_pages(get_cpu());
1848 page
= get_page_from_freelist(gfp_mask
, nodemask
,
1849 order
, zonelist
, high_zoneidx
,
1850 alloc_flags
, preferred_zone
,
1853 preferred_zone
->compact_considered
= 0;
1854 preferred_zone
->compact_defer_shift
= 0;
1855 count_vm_event(COMPACTSUCCESS
);
1860 * It's bad if compaction run occurs and fails.
1861 * The most likely reason is that pages exist,
1862 * but not enough to satisfy watermarks.
1864 count_vm_event(COMPACTFAIL
);
1865 defer_compaction(preferred_zone
);
1873 static inline struct page
*
1874 __alloc_pages_direct_compact(gfp_t gfp_mask
, unsigned int order
,
1875 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1876 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1877 int migratetype
, unsigned long *did_some_progress
,
1878 bool sync_migration
)
1882 #endif /* CONFIG_COMPACTION */
1884 /* The really slow allocator path where we enter direct reclaim */
1885 static inline struct page
*
1886 __alloc_pages_direct_reclaim(gfp_t gfp_mask
, unsigned int order
,
1887 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1888 nodemask_t
*nodemask
, int alloc_flags
, struct zone
*preferred_zone
,
1889 int migratetype
, unsigned long *did_some_progress
)
1891 struct page
*page
= NULL
;
1892 struct reclaim_state reclaim_state
;
1893 bool drained
= false;
1897 /* We now go into synchronous reclaim */
1898 cpuset_memory_pressure_bump();
1899 current
->flags
|= PF_MEMALLOC
;
1900 lockdep_set_current_reclaim_state(gfp_mask
);
1901 reclaim_state
.reclaimed_slab
= 0;
1902 current
->reclaim_state
= &reclaim_state
;
1904 *did_some_progress
= try_to_free_pages(zonelist
, order
, gfp_mask
, nodemask
);
1906 current
->reclaim_state
= NULL
;
1907 lockdep_clear_current_reclaim_state();
1908 current
->flags
&= ~PF_MEMALLOC
;
1912 if (unlikely(!(*did_some_progress
)))
1916 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1917 zonelist
, high_zoneidx
,
1918 alloc_flags
, preferred_zone
,
1922 * If an allocation failed after direct reclaim, it could be because
1923 * pages are pinned on the per-cpu lists. Drain them and try again
1925 if (!page
&& !drained
) {
1935 * This is called in the allocator slow-path if the allocation request is of
1936 * sufficient urgency to ignore watermarks and take other desperate measures
1938 static inline struct page
*
1939 __alloc_pages_high_priority(gfp_t gfp_mask
, unsigned int order
,
1940 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
1941 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
1947 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
,
1948 zonelist
, high_zoneidx
, ALLOC_NO_WATERMARKS
,
1949 preferred_zone
, migratetype
);
1951 if (!page
&& gfp_mask
& __GFP_NOFAIL
)
1952 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
1953 } while (!page
&& (gfp_mask
& __GFP_NOFAIL
));
1959 void wake_all_kswapd(unsigned int order
, struct zonelist
*zonelist
,
1960 enum zone_type high_zoneidx
,
1961 enum zone_type classzone_idx
)
1966 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
)
1967 wakeup_kswapd(zone
, order
, classzone_idx
);
1971 gfp_to_alloc_flags(gfp_t gfp_mask
)
1973 int alloc_flags
= ALLOC_WMARK_MIN
| ALLOC_CPUSET
;
1974 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
1976 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1977 BUILD_BUG_ON(__GFP_HIGH
!= (__force gfp_t
) ALLOC_HIGH
);
1980 * The caller may dip into page reserves a bit more if the caller
1981 * cannot run direct reclaim, or if the caller has realtime scheduling
1982 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1983 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1985 alloc_flags
|= (__force
int) (gfp_mask
& __GFP_HIGH
);
1989 * Not worth trying to allocate harder for
1990 * __GFP_NOMEMALLOC even if it can't schedule.
1992 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
1993 alloc_flags
|= ALLOC_HARDER
;
1995 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1996 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1998 alloc_flags
&= ~ALLOC_CPUSET
;
1999 } else if (unlikely(rt_task(current
)) && !in_interrupt())
2000 alloc_flags
|= ALLOC_HARDER
;
2002 if (likely(!(gfp_mask
& __GFP_NOMEMALLOC
))) {
2003 if (!in_interrupt() &&
2004 ((current
->flags
& PF_MEMALLOC
) ||
2005 unlikely(test_thread_flag(TIF_MEMDIE
))))
2006 alloc_flags
|= ALLOC_NO_WATERMARKS
;
2012 static inline struct page
*
2013 __alloc_pages_slowpath(gfp_t gfp_mask
, unsigned int order
,
2014 struct zonelist
*zonelist
, enum zone_type high_zoneidx
,
2015 nodemask_t
*nodemask
, struct zone
*preferred_zone
,
2018 const gfp_t wait
= gfp_mask
& __GFP_WAIT
;
2019 struct page
*page
= NULL
;
2021 unsigned long pages_reclaimed
= 0;
2022 unsigned long did_some_progress
;
2023 bool sync_migration
= false;
2026 * In the slowpath, we sanity check order to avoid ever trying to
2027 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
2028 * be using allocators in order of preference for an area that is
2031 if (order
>= MAX_ORDER
) {
2032 WARN_ON_ONCE(!(gfp_mask
& __GFP_NOWARN
));
2037 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
2038 * __GFP_NOWARN set) should not cause reclaim since the subsystem
2039 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
2040 * using a larger set of nodes after it has established that the
2041 * allowed per node queues are empty and that nodes are
2044 if (NUMA_BUILD
&& (gfp_mask
& GFP_THISNODE
) == GFP_THISNODE
)
2048 if (!(gfp_mask
& __GFP_NO_KSWAPD
))
2049 wake_all_kswapd(order
, zonelist
, high_zoneidx
,
2050 zone_idx(preferred_zone
));
2053 * OK, we're below the kswapd watermark and have kicked background
2054 * reclaim. Now things get more complex, so set up alloc_flags according
2055 * to how we want to proceed.
2057 alloc_flags
= gfp_to_alloc_flags(gfp_mask
);
2060 * Find the true preferred zone if the allocation is unconstrained by
2063 if (!(alloc_flags
& ALLOC_CPUSET
) && !nodemask
)
2064 first_zones_zonelist(zonelist
, high_zoneidx
, NULL
,
2068 /* This is the last chance, in general, before the goto nopage. */
2069 page
= get_page_from_freelist(gfp_mask
, nodemask
, order
, zonelist
,
2070 high_zoneidx
, alloc_flags
& ~ALLOC_NO_WATERMARKS
,
2071 preferred_zone
, migratetype
);
2075 /* Allocate without watermarks if the context allows */
2076 if (alloc_flags
& ALLOC_NO_WATERMARKS
) {
2077 page
= __alloc_pages_high_priority(gfp_mask
, order
,
2078 zonelist
, high_zoneidx
, nodemask
,
2079 preferred_zone
, migratetype
);
2084 /* Atomic allocations - we can't balance anything */
2088 /* Avoid recursion of direct reclaim */
2089 if (current
->flags
& PF_MEMALLOC
)
2092 /* Avoid allocations with no watermarks from looping endlessly */
2093 if (test_thread_flag(TIF_MEMDIE
) && !(gfp_mask
& __GFP_NOFAIL
))
2097 * Try direct compaction. The first pass is asynchronous. Subsequent
2098 * attempts after direct reclaim are synchronous
2100 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2101 zonelist
, high_zoneidx
,
2103 alloc_flags
, preferred_zone
,
2104 migratetype
, &did_some_progress
,
2108 sync_migration
= !(gfp_mask
& __GFP_NO_KSWAPD
);
2110 /* Try direct reclaim and then allocating */
2111 page
= __alloc_pages_direct_reclaim(gfp_mask
, order
,
2112 zonelist
, high_zoneidx
,
2114 alloc_flags
, preferred_zone
,
2115 migratetype
, &did_some_progress
);
2120 * If we failed to make any progress reclaiming, then we are
2121 * running out of options and have to consider going OOM
2123 if (!did_some_progress
) {
2124 if ((gfp_mask
& __GFP_FS
) && !(gfp_mask
& __GFP_NORETRY
)) {
2125 if (oom_killer_disabled
)
2127 page
= __alloc_pages_may_oom(gfp_mask
, order
,
2128 zonelist
, high_zoneidx
,
2129 nodemask
, preferred_zone
,
2134 if (!(gfp_mask
& __GFP_NOFAIL
)) {
2136 * The oom killer is not called for high-order
2137 * allocations that may fail, so if no progress
2138 * is being made, there are no other options and
2139 * retrying is unlikely to help.
2141 if (order
> PAGE_ALLOC_COSTLY_ORDER
)
2144 * The oom killer is not called for lowmem
2145 * allocations to prevent needlessly killing
2148 if (high_zoneidx
< ZONE_NORMAL
)
2156 /* Check if we should retry the allocation */
2157 pages_reclaimed
+= did_some_progress
;
2158 if (should_alloc_retry(gfp_mask
, order
, pages_reclaimed
)) {
2159 /* Wait for some write requests to complete then retry */
2160 wait_iff_congested(preferred_zone
, BLK_RW_ASYNC
, HZ
/50);
2164 * High-order allocations do not necessarily loop after
2165 * direct reclaim and reclaim/compaction depends on compaction
2166 * being called after reclaim so call directly if necessary
2168 page
= __alloc_pages_direct_compact(gfp_mask
, order
,
2169 zonelist
, high_zoneidx
,
2171 alloc_flags
, preferred_zone
,
2172 migratetype
, &did_some_progress
,
2179 if (!(gfp_mask
& __GFP_NOWARN
) && printk_ratelimit()) {
2180 unsigned int filter
= SHOW_MEM_FILTER_NODES
;
2183 * This documents exceptions given to allocations in certain
2184 * contexts that are allowed to allocate outside current's set
2187 if (!(gfp_mask
& __GFP_NOMEMALLOC
))
2188 if (test_thread_flag(TIF_MEMDIE
) ||
2189 (current
->flags
& (PF_MEMALLOC
| PF_EXITING
)))
2190 filter
&= ~SHOW_MEM_FILTER_NODES
;
2191 if (in_interrupt() || !wait
)
2192 filter
&= ~SHOW_MEM_FILTER_NODES
;
2194 pr_warning("%s: page allocation failure. order:%d, mode:0x%x\n",
2195 current
->comm
, order
, gfp_mask
);
2197 if (!should_suppress_show_mem())
2202 if (kmemcheck_enabled
)
2203 kmemcheck_pagealloc_alloc(page
, order
, gfp_mask
);
2209 * This is the 'heart' of the zoned buddy allocator.
2212 __alloc_pages_nodemask(gfp_t gfp_mask
, unsigned int order
,
2213 struct zonelist
*zonelist
, nodemask_t
*nodemask
)
2215 enum zone_type high_zoneidx
= gfp_zone(gfp_mask
);
2216 struct zone
*preferred_zone
;
2218 int migratetype
= allocflags_to_migratetype(gfp_mask
);
2220 gfp_mask
&= gfp_allowed_mask
;
2222 lockdep_trace_alloc(gfp_mask
);
2224 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2226 if (should_fail_alloc_page(gfp_mask
, order
))
2230 * Check the zones suitable for the gfp_mask contain at least one
2231 * valid zone. It's possible to have an empty zonelist as a result
2232 * of GFP_THISNODE and a memoryless node
2234 if (unlikely(!zonelist
->_zonerefs
->zone
))
2238 /* The preferred zone is used for statistics later */
2239 first_zones_zonelist(zonelist
, high_zoneidx
,
2240 nodemask
? : &cpuset_current_mems_allowed
,
2242 if (!preferred_zone
) {
2247 /* First allocation attempt */
2248 page
= get_page_from_freelist(gfp_mask
|__GFP_HARDWALL
, nodemask
, order
,
2249 zonelist
, high_zoneidx
, ALLOC_WMARK_LOW
|ALLOC_CPUSET
,
2250 preferred_zone
, migratetype
);
2251 if (unlikely(!page
))
2252 page
= __alloc_pages_slowpath(gfp_mask
, order
,
2253 zonelist
, high_zoneidx
, nodemask
,
2254 preferred_zone
, migratetype
);
2257 trace_mm_page_alloc(page
, order
, gfp_mask
, migratetype
);
2260 EXPORT_SYMBOL(__alloc_pages_nodemask
);
2263 * Common helper functions.
2265 unsigned long __get_free_pages(gfp_t gfp_mask
, unsigned int order
)
2270 * __get_free_pages() returns a 32-bit address, which cannot represent
2273 VM_BUG_ON((gfp_mask
& __GFP_HIGHMEM
) != 0);
2275 page
= alloc_pages(gfp_mask
, order
);
2278 return (unsigned long) page_address(page
);
2280 EXPORT_SYMBOL(__get_free_pages
);
2282 unsigned long get_zeroed_page(gfp_t gfp_mask
)
2284 return __get_free_pages(gfp_mask
| __GFP_ZERO
, 0);
2286 EXPORT_SYMBOL(get_zeroed_page
);
2288 void __pagevec_free(struct pagevec
*pvec
)
2290 int i
= pagevec_count(pvec
);
2293 trace_mm_pagevec_free(pvec
->pages
[i
], pvec
->cold
);
2294 free_hot_cold_page(pvec
->pages
[i
], pvec
->cold
);
2298 void __free_pages(struct page
*page
, unsigned int order
)
2300 if (put_page_testzero(page
)) {
2302 free_hot_cold_page(page
, 0);
2304 __free_pages_ok(page
, order
);
2308 EXPORT_SYMBOL(__free_pages
);
2310 void free_pages(unsigned long addr
, unsigned int order
)
2313 VM_BUG_ON(!virt_addr_valid((void *)addr
));
2314 __free_pages(virt_to_page((void *)addr
), order
);
2318 EXPORT_SYMBOL(free_pages
);
2320 static void *make_alloc_exact(unsigned long addr
, unsigned order
, size_t size
)
2323 unsigned long alloc_end
= addr
+ (PAGE_SIZE
<< order
);
2324 unsigned long used
= addr
+ PAGE_ALIGN(size
);
2326 split_page(virt_to_page((void *)addr
), order
);
2327 while (used
< alloc_end
) {
2332 return (void *)addr
;
2336 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
2337 * @size: the number of bytes to allocate
2338 * @gfp_mask: GFP flags for the allocation
2340 * This function is similar to alloc_pages(), except that it allocates the
2341 * minimum number of pages to satisfy the request. alloc_pages() can only
2342 * allocate memory in power-of-two pages.
2344 * This function is also limited by MAX_ORDER.
2346 * Memory allocated by this function must be released by free_pages_exact().
2348 void *alloc_pages_exact(size_t size
, gfp_t gfp_mask
)
2350 unsigned int order
= get_order(size
);
2353 addr
= __get_free_pages(gfp_mask
, order
);
2354 return make_alloc_exact(addr
, order
, size
);
2356 EXPORT_SYMBOL(alloc_pages_exact
);
2359 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
2361 * @nid: the preferred node ID where memory should be allocated
2362 * @size: the number of bytes to allocate
2363 * @gfp_mask: GFP flags for the allocation
2365 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
2367 * Note this is not alloc_pages_exact_node() which allocates on a specific node,
2370 void *alloc_pages_exact_nid(int nid
, size_t size
, gfp_t gfp_mask
)
2372 unsigned order
= get_order(size
);
2373 struct page
*p
= alloc_pages_node(nid
, gfp_mask
, order
);
2376 return make_alloc_exact((unsigned long)page_address(p
), order
, size
);
2378 EXPORT_SYMBOL(alloc_pages_exact_nid
);
2381 * free_pages_exact - release memory allocated via alloc_pages_exact()
2382 * @virt: the value returned by alloc_pages_exact.
2383 * @size: size of allocation, same value as passed to alloc_pages_exact().
2385 * Release the memory allocated by a previous call to alloc_pages_exact.
2387 void free_pages_exact(void *virt
, size_t size
)
2389 unsigned long addr
= (unsigned long)virt
;
2390 unsigned long end
= addr
+ PAGE_ALIGN(size
);
2392 while (addr
< end
) {
2397 EXPORT_SYMBOL(free_pages_exact
);
2399 static unsigned int nr_free_zone_pages(int offset
)
2404 /* Just pick one node, since fallback list is circular */
2405 unsigned int sum
= 0;
2407 struct zonelist
*zonelist
= node_zonelist(numa_node_id(), GFP_KERNEL
);
2409 for_each_zone_zonelist(zone
, z
, zonelist
, offset
) {
2410 unsigned long size
= zone
->present_pages
;
2411 unsigned long high
= high_wmark_pages(zone
);
2420 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
2422 unsigned int nr_free_buffer_pages(void)
2424 return nr_free_zone_pages(gfp_zone(GFP_USER
));
2426 EXPORT_SYMBOL_GPL(nr_free_buffer_pages
);
2429 * Amount of free RAM allocatable within all zones
2431 unsigned int nr_free_pagecache_pages(void)
2433 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE
));
2436 static inline void show_node(struct zone
*zone
)
2439 printk("Node %d ", zone_to_nid(zone
));
2442 void si_meminfo(struct sysinfo
*val
)
2444 val
->totalram
= totalram_pages
;
2446 val
->freeram
= global_page_state(NR_FREE_PAGES
);
2447 val
->bufferram
= nr_blockdev_pages();
2448 val
->totalhigh
= totalhigh_pages
;
2449 val
->freehigh
= nr_free_highpages();
2450 val
->mem_unit
= PAGE_SIZE
;
2453 EXPORT_SYMBOL(si_meminfo
);
2456 void si_meminfo_node(struct sysinfo
*val
, int nid
)
2458 pg_data_t
*pgdat
= NODE_DATA(nid
);
2460 val
->totalram
= pgdat
->node_present_pages
;
2461 val
->freeram
= node_page_state(nid
, NR_FREE_PAGES
);
2462 #ifdef CONFIG_HIGHMEM
2463 val
->totalhigh
= pgdat
->node_zones
[ZONE_HIGHMEM
].present_pages
;
2464 val
->freehigh
= zone_page_state(&pgdat
->node_zones
[ZONE_HIGHMEM
],
2470 val
->mem_unit
= PAGE_SIZE
;
2475 * Determine whether the zone's node should be displayed or not, depending on
2476 * whether SHOW_MEM_FILTER_NODES was passed to __show_free_areas().
2478 static bool skip_free_areas_zone(unsigned int flags
, const struct zone
*zone
)
2482 if (!(flags
& SHOW_MEM_FILTER_NODES
))
2486 ret
= !node_isset(zone
->zone_pgdat
->node_id
,
2487 cpuset_current_mems_allowed
);
2493 #define K(x) ((x) << (PAGE_SHIFT-10))
2496 * Show free area list (used inside shift_scroll-lock stuff)
2497 * We also calculate the percentage fragmentation. We do this by counting the
2498 * memory on each free list with the exception of the first item on the list.
2499 * Suppresses nodes that are not allowed by current's cpuset if
2500 * SHOW_MEM_FILTER_NODES is passed.
2502 void __show_free_areas(unsigned int filter
)
2507 for_each_populated_zone(zone
) {
2508 if (skip_free_areas_zone(filter
, zone
))
2511 printk("%s per-cpu:\n", zone
->name
);
2513 for_each_online_cpu(cpu
) {
2514 struct per_cpu_pageset
*pageset
;
2516 pageset
= per_cpu_ptr(zone
->pageset
, cpu
);
2518 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2519 cpu
, pageset
->pcp
.high
,
2520 pageset
->pcp
.batch
, pageset
->pcp
.count
);
2524 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
2525 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
2527 " dirty:%lu writeback:%lu unstable:%lu\n"
2528 " free:%lu slab_reclaimable:%lu slab_unreclaimable:%lu\n"
2529 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n",
2530 global_page_state(NR_ACTIVE_ANON
),
2531 global_page_state(NR_INACTIVE_ANON
),
2532 global_page_state(NR_ISOLATED_ANON
),
2533 global_page_state(NR_ACTIVE_FILE
),
2534 global_page_state(NR_INACTIVE_FILE
),
2535 global_page_state(NR_ISOLATED_FILE
),
2536 global_page_state(NR_UNEVICTABLE
),
2537 global_page_state(NR_FILE_DIRTY
),
2538 global_page_state(NR_WRITEBACK
),
2539 global_page_state(NR_UNSTABLE_NFS
),
2540 global_page_state(NR_FREE_PAGES
),
2541 global_page_state(NR_SLAB_RECLAIMABLE
),
2542 global_page_state(NR_SLAB_UNRECLAIMABLE
),
2543 global_page_state(NR_FILE_MAPPED
),
2544 global_page_state(NR_SHMEM
),
2545 global_page_state(NR_PAGETABLE
),
2546 global_page_state(NR_BOUNCE
));
2548 for_each_populated_zone(zone
) {
2551 if (skip_free_areas_zone(filter
, zone
))
2559 " active_anon:%lukB"
2560 " inactive_anon:%lukB"
2561 " active_file:%lukB"
2562 " inactive_file:%lukB"
2563 " unevictable:%lukB"
2564 " isolated(anon):%lukB"
2565 " isolated(file):%lukB"
2572 " slab_reclaimable:%lukB"
2573 " slab_unreclaimable:%lukB"
2574 " kernel_stack:%lukB"
2578 " writeback_tmp:%lukB"
2579 " pages_scanned:%lu"
2580 " all_unreclaimable? %s"
2583 K(zone_page_state(zone
, NR_FREE_PAGES
)),
2584 K(min_wmark_pages(zone
)),
2585 K(low_wmark_pages(zone
)),
2586 K(high_wmark_pages(zone
)),
2587 K(zone_page_state(zone
, NR_ACTIVE_ANON
)),
2588 K(zone_page_state(zone
, NR_INACTIVE_ANON
)),
2589 K(zone_page_state(zone
, NR_ACTIVE_FILE
)),
2590 K(zone_page_state(zone
, NR_INACTIVE_FILE
)),
2591 K(zone_page_state(zone
, NR_UNEVICTABLE
)),
2592 K(zone_page_state(zone
, NR_ISOLATED_ANON
)),
2593 K(zone_page_state(zone
, NR_ISOLATED_FILE
)),
2594 K(zone
->present_pages
),
2595 K(zone_page_state(zone
, NR_MLOCK
)),
2596 K(zone_page_state(zone
, NR_FILE_DIRTY
)),
2597 K(zone_page_state(zone
, NR_WRITEBACK
)),
2598 K(zone_page_state(zone
, NR_FILE_MAPPED
)),
2599 K(zone_page_state(zone
, NR_SHMEM
)),
2600 K(zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)),
2601 K(zone_page_state(zone
, NR_SLAB_UNRECLAIMABLE
)),
2602 zone_page_state(zone
, NR_KERNEL_STACK
) *
2604 K(zone_page_state(zone
, NR_PAGETABLE
)),
2605 K(zone_page_state(zone
, NR_UNSTABLE_NFS
)),
2606 K(zone_page_state(zone
, NR_BOUNCE
)),
2607 K(zone_page_state(zone
, NR_WRITEBACK_TEMP
)),
2608 zone
->pages_scanned
,
2609 (zone
->all_unreclaimable
? "yes" : "no")
2611 printk("lowmem_reserve[]:");
2612 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
2613 printk(" %lu", zone
->lowmem_reserve
[i
]);
2617 for_each_populated_zone(zone
) {
2618 unsigned long nr
[MAX_ORDER
], flags
, order
, total
= 0;
2620 if (skip_free_areas_zone(filter
, zone
))
2623 printk("%s: ", zone
->name
);
2625 spin_lock_irqsave(&zone
->lock
, flags
);
2626 for (order
= 0; order
< MAX_ORDER
; order
++) {
2627 nr
[order
] = zone
->free_area
[order
].nr_free
;
2628 total
+= nr
[order
] << order
;
2630 spin_unlock_irqrestore(&zone
->lock
, flags
);
2631 for (order
= 0; order
< MAX_ORDER
; order
++)
2632 printk("%lu*%lukB ", nr
[order
], K(1UL) << order
);
2633 printk("= %lukB\n", K(total
));
2636 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES
));
2638 show_swap_cache_info();
2641 void show_free_areas(void)
2643 __show_free_areas(0);
2646 static void zoneref_set_zone(struct zone
*zone
, struct zoneref
*zoneref
)
2648 zoneref
->zone
= zone
;
2649 zoneref
->zone_idx
= zone_idx(zone
);
2653 * Builds allocation fallback zone lists.
2655 * Add all populated zones of a node to the zonelist.
2657 static int build_zonelists_node(pg_data_t
*pgdat
, struct zonelist
*zonelist
,
2658 int nr_zones
, enum zone_type zone_type
)
2662 BUG_ON(zone_type
>= MAX_NR_ZONES
);
2667 zone
= pgdat
->node_zones
+ zone_type
;
2668 if (populated_zone(zone
)) {
2669 zoneref_set_zone(zone
,
2670 &zonelist
->_zonerefs
[nr_zones
++]);
2671 check_highest_zone(zone_type
);
2674 } while (zone_type
);
2681 * 0 = automatic detection of better ordering.
2682 * 1 = order by ([node] distance, -zonetype)
2683 * 2 = order by (-zonetype, [node] distance)
2685 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2686 * the same zonelist. So only NUMA can configure this param.
2688 #define ZONELIST_ORDER_DEFAULT 0
2689 #define ZONELIST_ORDER_NODE 1
2690 #define ZONELIST_ORDER_ZONE 2
2692 /* zonelist order in the kernel.
2693 * set_zonelist_order() will set this to NODE or ZONE.
2695 static int current_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2696 static char zonelist_order_name
[3][8] = {"Default", "Node", "Zone"};
2700 /* The value user specified ....changed by config */
2701 static int user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2702 /* string for sysctl */
2703 #define NUMA_ZONELIST_ORDER_LEN 16
2704 char numa_zonelist_order
[16] = "default";
2707 * interface for configure zonelist ordering.
2708 * command line option "numa_zonelist_order"
2709 * = "[dD]efault - default, automatic configuration.
2710 * = "[nN]ode - order by node locality, then by zone within node
2711 * = "[zZ]one - order by zone, then by locality within zone
2714 static int __parse_numa_zonelist_order(char *s
)
2716 if (*s
== 'd' || *s
== 'D') {
2717 user_zonelist_order
= ZONELIST_ORDER_DEFAULT
;
2718 } else if (*s
== 'n' || *s
== 'N') {
2719 user_zonelist_order
= ZONELIST_ORDER_NODE
;
2720 } else if (*s
== 'z' || *s
== 'Z') {
2721 user_zonelist_order
= ZONELIST_ORDER_ZONE
;
2724 "Ignoring invalid numa_zonelist_order value: "
2731 static __init
int setup_numa_zonelist_order(char *s
)
2738 ret
= __parse_numa_zonelist_order(s
);
2740 strlcpy(numa_zonelist_order
, s
, NUMA_ZONELIST_ORDER_LEN
);
2744 early_param("numa_zonelist_order", setup_numa_zonelist_order
);
2747 * sysctl handler for numa_zonelist_order
2749 int numa_zonelist_order_handler(ctl_table
*table
, int write
,
2750 void __user
*buffer
, size_t *length
,
2753 char saved_string
[NUMA_ZONELIST_ORDER_LEN
];
2755 static DEFINE_MUTEX(zl_order_mutex
);
2757 mutex_lock(&zl_order_mutex
);
2759 strcpy(saved_string
, (char*)table
->data
);
2760 ret
= proc_dostring(table
, write
, buffer
, length
, ppos
);
2764 int oldval
= user_zonelist_order
;
2765 if (__parse_numa_zonelist_order((char*)table
->data
)) {
2767 * bogus value. restore saved string
2769 strncpy((char*)table
->data
, saved_string
,
2770 NUMA_ZONELIST_ORDER_LEN
);
2771 user_zonelist_order
= oldval
;
2772 } else if (oldval
!= user_zonelist_order
) {
2773 mutex_lock(&zonelists_mutex
);
2774 build_all_zonelists(NULL
);
2775 mutex_unlock(&zonelists_mutex
);
2779 mutex_unlock(&zl_order_mutex
);
2784 #define MAX_NODE_LOAD (nr_online_nodes)
2785 static int node_load
[MAX_NUMNODES
];
2788 * find_next_best_node - find the next node that should appear in a given node's fallback list
2789 * @node: node whose fallback list we're appending
2790 * @used_node_mask: nodemask_t of already used nodes
2792 * We use a number of factors to determine which is the next node that should
2793 * appear on a given node's fallback list. The node should not have appeared
2794 * already in @node's fallback list, and it should be the next closest node
2795 * according to the distance array (which contains arbitrary distance values
2796 * from each node to each node in the system), and should also prefer nodes
2797 * with no CPUs, since presumably they'll have very little allocation pressure
2798 * on them otherwise.
2799 * It returns -1 if no node is found.
2801 static int find_next_best_node(int node
, nodemask_t
*used_node_mask
)
2804 int min_val
= INT_MAX
;
2806 const struct cpumask
*tmp
= cpumask_of_node(0);
2808 /* Use the local node if we haven't already */
2809 if (!node_isset(node
, *used_node_mask
)) {
2810 node_set(node
, *used_node_mask
);
2814 for_each_node_state(n
, N_HIGH_MEMORY
) {
2816 /* Don't want a node to appear more than once */
2817 if (node_isset(n
, *used_node_mask
))
2820 /* Use the distance array to find the distance */
2821 val
= node_distance(node
, n
);
2823 /* Penalize nodes under us ("prefer the next node") */
2826 /* Give preference to headless and unused nodes */
2827 tmp
= cpumask_of_node(n
);
2828 if (!cpumask_empty(tmp
))
2829 val
+= PENALTY_FOR_NODE_WITH_CPUS
;
2831 /* Slight preference for less loaded node */
2832 val
*= (MAX_NODE_LOAD
*MAX_NUMNODES
);
2833 val
+= node_load
[n
];
2835 if (val
< min_val
) {
2842 node_set(best_node
, *used_node_mask
);
2849 * Build zonelists ordered by node and zones within node.
2850 * This results in maximum locality--normal zone overflows into local
2851 * DMA zone, if any--but risks exhausting DMA zone.
2853 static void build_zonelists_in_node_order(pg_data_t
*pgdat
, int node
)
2856 struct zonelist
*zonelist
;
2858 zonelist
= &pgdat
->node_zonelists
[0];
2859 for (j
= 0; zonelist
->_zonerefs
[j
].zone
!= NULL
; j
++)
2861 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
2863 zonelist
->_zonerefs
[j
].zone
= NULL
;
2864 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2868 * Build gfp_thisnode zonelists
2870 static void build_thisnode_zonelists(pg_data_t
*pgdat
)
2873 struct zonelist
*zonelist
;
2875 zonelist
= &pgdat
->node_zonelists
[1];
2876 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
2877 zonelist
->_zonerefs
[j
].zone
= NULL
;
2878 zonelist
->_zonerefs
[j
].zone_idx
= 0;
2882 * Build zonelists ordered by zone and nodes within zones.
2883 * This results in conserving DMA zone[s] until all Normal memory is
2884 * exhausted, but results in overflowing to remote node while memory
2885 * may still exist in local DMA zone.
2887 static int node_order
[MAX_NUMNODES
];
2889 static void build_zonelists_in_zone_order(pg_data_t
*pgdat
, int nr_nodes
)
2892 int zone_type
; /* needs to be signed */
2894 struct zonelist
*zonelist
;
2896 zonelist
= &pgdat
->node_zonelists
[0];
2898 for (zone_type
= MAX_NR_ZONES
- 1; zone_type
>= 0; zone_type
--) {
2899 for (j
= 0; j
< nr_nodes
; j
++) {
2900 node
= node_order
[j
];
2901 z
= &NODE_DATA(node
)->node_zones
[zone_type
];
2902 if (populated_zone(z
)) {
2904 &zonelist
->_zonerefs
[pos
++]);
2905 check_highest_zone(zone_type
);
2909 zonelist
->_zonerefs
[pos
].zone
= NULL
;
2910 zonelist
->_zonerefs
[pos
].zone_idx
= 0;
2913 static int default_zonelist_order(void)
2916 unsigned long low_kmem_size
,total_size
;
2920 * ZONE_DMA and ZONE_DMA32 can be very small area in the system.
2921 * If they are really small and used heavily, the system can fall
2922 * into OOM very easily.
2923 * This function detect ZONE_DMA/DMA32 size and configures zone order.
2925 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2928 for_each_online_node(nid
) {
2929 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2930 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2931 if (populated_zone(z
)) {
2932 if (zone_type
< ZONE_NORMAL
)
2933 low_kmem_size
+= z
->present_pages
;
2934 total_size
+= z
->present_pages
;
2935 } else if (zone_type
== ZONE_NORMAL
) {
2937 * If any node has only lowmem, then node order
2938 * is preferred to allow kernel allocations
2939 * locally; otherwise, they can easily infringe
2940 * on other nodes when there is an abundance of
2941 * lowmem available to allocate from.
2943 return ZONELIST_ORDER_NODE
;
2947 if (!low_kmem_size
|| /* there are no DMA area. */
2948 low_kmem_size
> total_size
/2) /* DMA/DMA32 is big. */
2949 return ZONELIST_ORDER_NODE
;
2951 * look into each node's config.
2952 * If there is a node whose DMA/DMA32 memory is very big area on
2953 * local memory, NODE_ORDER may be suitable.
2955 average_size
= total_size
/
2956 (nodes_weight(node_states
[N_HIGH_MEMORY
]) + 1);
2957 for_each_online_node(nid
) {
2960 for (zone_type
= 0; zone_type
< MAX_NR_ZONES
; zone_type
++) {
2961 z
= &NODE_DATA(nid
)->node_zones
[zone_type
];
2962 if (populated_zone(z
)) {
2963 if (zone_type
< ZONE_NORMAL
)
2964 low_kmem_size
+= z
->present_pages
;
2965 total_size
+= z
->present_pages
;
2968 if (low_kmem_size
&&
2969 total_size
> average_size
&& /* ignore small node */
2970 low_kmem_size
> total_size
* 70/100)
2971 return ZONELIST_ORDER_NODE
;
2973 return ZONELIST_ORDER_ZONE
;
2976 static void set_zonelist_order(void)
2978 if (user_zonelist_order
== ZONELIST_ORDER_DEFAULT
)
2979 current_zonelist_order
= default_zonelist_order();
2981 current_zonelist_order
= user_zonelist_order
;
2984 static void build_zonelists(pg_data_t
*pgdat
)
2988 nodemask_t used_mask
;
2989 int local_node
, prev_node
;
2990 struct zonelist
*zonelist
;
2991 int order
= current_zonelist_order
;
2993 /* initialize zonelists */
2994 for (i
= 0; i
< MAX_ZONELISTS
; i
++) {
2995 zonelist
= pgdat
->node_zonelists
+ i
;
2996 zonelist
->_zonerefs
[0].zone
= NULL
;
2997 zonelist
->_zonerefs
[0].zone_idx
= 0;
3000 /* NUMA-aware ordering of nodes */
3001 local_node
= pgdat
->node_id
;
3002 load
= nr_online_nodes
;
3003 prev_node
= local_node
;
3004 nodes_clear(used_mask
);
3006 memset(node_order
, 0, sizeof(node_order
));
3009 while ((node
= find_next_best_node(local_node
, &used_mask
)) >= 0) {
3010 int distance
= node_distance(local_node
, node
);
3013 * If another node is sufficiently far away then it is better
3014 * to reclaim pages in a zone before going off node.
3016 if (distance
> RECLAIM_DISTANCE
)
3017 zone_reclaim_mode
= 1;
3020 * We don't want to pressure a particular node.
3021 * So adding penalty to the first node in same
3022 * distance group to make it round-robin.
3024 if (distance
!= node_distance(local_node
, prev_node
))
3025 node_load
[node
] = load
;
3029 if (order
== ZONELIST_ORDER_NODE
)
3030 build_zonelists_in_node_order(pgdat
, node
);
3032 node_order
[j
++] = node
; /* remember order */
3035 if (order
== ZONELIST_ORDER_ZONE
) {
3036 /* calculate node order -- i.e., DMA last! */
3037 build_zonelists_in_zone_order(pgdat
, j
);
3040 build_thisnode_zonelists(pgdat
);
3043 /* Construct the zonelist performance cache - see further mmzone.h */
3044 static void build_zonelist_cache(pg_data_t
*pgdat
)
3046 struct zonelist
*zonelist
;
3047 struct zonelist_cache
*zlc
;
3050 zonelist
= &pgdat
->node_zonelists
[0];
3051 zonelist
->zlcache_ptr
= zlc
= &zonelist
->zlcache
;
3052 bitmap_zero(zlc
->fullzones
, MAX_ZONES_PER_ZONELIST
);
3053 for (z
= zonelist
->_zonerefs
; z
->zone
; z
++)
3054 zlc
->z_to_n
[z
- zonelist
->_zonerefs
] = zonelist_node_idx(z
);
3057 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3059 * Return node id of node used for "local" allocations.
3060 * I.e., first node id of first zone in arg node's generic zonelist.
3061 * Used for initializing percpu 'numa_mem', which is used primarily
3062 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
3064 int local_memory_node(int node
)
3068 (void)first_zones_zonelist(node_zonelist(node
, GFP_KERNEL
),
3069 gfp_zone(GFP_KERNEL
),
3076 #else /* CONFIG_NUMA */
3078 static void set_zonelist_order(void)
3080 current_zonelist_order
= ZONELIST_ORDER_ZONE
;
3083 static void build_zonelists(pg_data_t
*pgdat
)
3085 int node
, local_node
;
3087 struct zonelist
*zonelist
;
3089 local_node
= pgdat
->node_id
;
3091 zonelist
= &pgdat
->node_zonelists
[0];
3092 j
= build_zonelists_node(pgdat
, zonelist
, 0, MAX_NR_ZONES
- 1);
3095 * Now we build the zonelist so that it contains the zones
3096 * of all the other nodes.
3097 * We don't want to pressure a particular node, so when
3098 * building the zones for node N, we make sure that the
3099 * zones coming right after the local ones are those from
3100 * node N+1 (modulo N)
3102 for (node
= local_node
+ 1; node
< MAX_NUMNODES
; node
++) {
3103 if (!node_online(node
))
3105 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3108 for (node
= 0; node
< local_node
; node
++) {
3109 if (!node_online(node
))
3111 j
= build_zonelists_node(NODE_DATA(node
), zonelist
, j
,
3115 zonelist
->_zonerefs
[j
].zone
= NULL
;
3116 zonelist
->_zonerefs
[j
].zone_idx
= 0;
3119 /* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
3120 static void build_zonelist_cache(pg_data_t
*pgdat
)
3122 pgdat
->node_zonelists
[0].zlcache_ptr
= NULL
;
3125 #endif /* CONFIG_NUMA */
3128 * Boot pageset table. One per cpu which is going to be used for all
3129 * zones and all nodes. The parameters will be set in such a way
3130 * that an item put on a list will immediately be handed over to
3131 * the buddy list. This is safe since pageset manipulation is done
3132 * with interrupts disabled.
3134 * The boot_pagesets must be kept even after bootup is complete for
3135 * unused processors and/or zones. They do play a role for bootstrapping
3136 * hotplugged processors.
3138 * zoneinfo_show() and maybe other functions do
3139 * not check if the processor is online before following the pageset pointer.
3140 * Other parts of the kernel may not check if the zone is available.
3142 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
);
3143 static DEFINE_PER_CPU(struct per_cpu_pageset
, boot_pageset
);
3144 static void setup_zone_pageset(struct zone
*zone
);
3147 * Global mutex to protect against size modification of zonelists
3148 * as well as to serialize pageset setup for the new populated zone.
3150 DEFINE_MUTEX(zonelists_mutex
);
3152 /* return values int ....just for stop_machine() */
3153 static __init_refok
int __build_all_zonelists(void *data
)
3159 memset(node_load
, 0, sizeof(node_load
));
3161 for_each_online_node(nid
) {
3162 pg_data_t
*pgdat
= NODE_DATA(nid
);
3164 build_zonelists(pgdat
);
3165 build_zonelist_cache(pgdat
);
3169 * Initialize the boot_pagesets that are going to be used
3170 * for bootstrapping processors. The real pagesets for
3171 * each zone will be allocated later when the per cpu
3172 * allocator is available.
3174 * boot_pagesets are used also for bootstrapping offline
3175 * cpus if the system is already booted because the pagesets
3176 * are needed to initialize allocators on a specific cpu too.
3177 * F.e. the percpu allocator needs the page allocator which
3178 * needs the percpu allocator in order to allocate its pagesets
3179 * (a chicken-egg dilemma).
3181 for_each_possible_cpu(cpu
) {
3182 setup_pageset(&per_cpu(boot_pageset
, cpu
), 0);
3184 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
3186 * We now know the "local memory node" for each node--
3187 * i.e., the node of the first zone in the generic zonelist.
3188 * Set up numa_mem percpu variable for on-line cpus. During
3189 * boot, only the boot cpu should be on-line; we'll init the
3190 * secondary cpus' numa_mem as they come on-line. During
3191 * node/memory hotplug, we'll fixup all on-line cpus.
3193 if (cpu_online(cpu
))
3194 set_cpu_numa_mem(cpu
, local_memory_node(cpu_to_node(cpu
)));
3202 * Called with zonelists_mutex held always
3203 * unless system_state == SYSTEM_BOOTING.
3205 void __ref
build_all_zonelists(void *data
)
3207 set_zonelist_order();
3209 if (system_state
== SYSTEM_BOOTING
) {
3210 __build_all_zonelists(NULL
);
3211 mminit_verify_zonelist();
3212 cpuset_init_current_mems_allowed();
3214 /* we have to stop all cpus to guarantee there is no user
3216 #ifdef CONFIG_MEMORY_HOTPLUG
3218 setup_zone_pageset((struct zone
*)data
);
3220 stop_machine(__build_all_zonelists
, NULL
, NULL
);
3221 /* cpuset refresh routine should be here */
3223 vm_total_pages
= nr_free_pagecache_pages();
3225 * Disable grouping by mobility if the number of pages in the
3226 * system is too low to allow the mechanism to work. It would be
3227 * more accurate, but expensive to check per-zone. This check is
3228 * made on memory-hotadd so a system can start with mobility
3229 * disabled and enable it later
3231 if (vm_total_pages
< (pageblock_nr_pages
* MIGRATE_TYPES
))
3232 page_group_by_mobility_disabled
= 1;
3234 page_group_by_mobility_disabled
= 0;
3236 printk("Built %i zonelists in %s order, mobility grouping %s. "
3237 "Total pages: %ld\n",
3239 zonelist_order_name
[current_zonelist_order
],
3240 page_group_by_mobility_disabled
? "off" : "on",
3243 printk("Policy zone: %s\n", zone_names
[policy_zone
]);
3248 * Helper functions to size the waitqueue hash table.
3249 * Essentially these want to choose hash table sizes sufficiently
3250 * large so that collisions trying to wait on pages are rare.
3251 * But in fact, the number of active page waitqueues on typical
3252 * systems is ridiculously low, less than 200. So this is even
3253 * conservative, even though it seems large.
3255 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
3256 * waitqueues, i.e. the size of the waitq table given the number of pages.
3258 #define PAGES_PER_WAITQUEUE 256
3260 #ifndef CONFIG_MEMORY_HOTPLUG
3261 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3263 unsigned long size
= 1;
3265 pages
/= PAGES_PER_WAITQUEUE
;
3267 while (size
< pages
)
3271 * Once we have dozens or even hundreds of threads sleeping
3272 * on IO we've got bigger problems than wait queue collision.
3273 * Limit the size of the wait table to a reasonable size.
3275 size
= min(size
, 4096UL);
3277 return max(size
, 4UL);
3281 * A zone's size might be changed by hot-add, so it is not possible to determine
3282 * a suitable size for its wait_table. So we use the maximum size now.
3284 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
3286 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
3287 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
3288 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
3290 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
3291 * or more by the traditional way. (See above). It equals:
3293 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
3294 * ia64(16K page size) : = ( 8G + 4M)byte.
3295 * powerpc (64K page size) : = (32G +16M)byte.
3297 static inline unsigned long wait_table_hash_nr_entries(unsigned long pages
)
3304 * This is an integer logarithm so that shifts can be used later
3305 * to extract the more random high bits from the multiplicative
3306 * hash function before the remainder is taken.
3308 static inline unsigned long wait_table_bits(unsigned long size
)
3313 #define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
3316 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
3317 * of blocks reserved is based on min_wmark_pages(zone). The memory within
3318 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
3319 * higher will lead to a bigger reserve which will get freed as contiguous
3320 * blocks as reclaim kicks in
3322 static void setup_zone_migrate_reserve(struct zone
*zone
)
3324 unsigned long start_pfn
, pfn
, end_pfn
;
3326 unsigned long block_migratetype
;
3329 /* Get the start pfn, end pfn and the number of blocks to reserve */
3330 start_pfn
= zone
->zone_start_pfn
;
3331 end_pfn
= start_pfn
+ zone
->spanned_pages
;
3332 reserve
= roundup(min_wmark_pages(zone
), pageblock_nr_pages
) >>
3336 * Reserve blocks are generally in place to help high-order atomic
3337 * allocations that are short-lived. A min_free_kbytes value that
3338 * would result in more than 2 reserve blocks for atomic allocations
3339 * is assumed to be in place to help anti-fragmentation for the
3340 * future allocation of hugepages at runtime.
3342 reserve
= min(2, reserve
);
3344 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
+= pageblock_nr_pages
) {
3345 if (!pfn_valid(pfn
))
3347 page
= pfn_to_page(pfn
);
3349 /* Watch out for overlapping nodes */
3350 if (page_to_nid(page
) != zone_to_nid(zone
))
3353 /* Blocks with reserved pages will never free, skip them. */
3354 if (PageReserved(page
))
3357 block_migratetype
= get_pageblock_migratetype(page
);
3359 /* If this block is reserved, account for it */
3360 if (reserve
> 0 && block_migratetype
== MIGRATE_RESERVE
) {
3365 /* Suitable for reserving if this block is movable */
3366 if (reserve
> 0 && block_migratetype
== MIGRATE_MOVABLE
) {
3367 set_pageblock_migratetype(page
, MIGRATE_RESERVE
);
3368 move_freepages_block(zone
, page
, MIGRATE_RESERVE
);
3374 * If the reserve is met and this is a previous reserved block,
3377 if (block_migratetype
== MIGRATE_RESERVE
) {
3378 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3379 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
3385 * Initially all pages are reserved - free ones are freed
3386 * up by free_all_bootmem() once the early boot process is
3387 * done. Non-atomic initialization, single-pass.
3389 void __meminit
memmap_init_zone(unsigned long size
, int nid
, unsigned long zone
,
3390 unsigned long start_pfn
, enum memmap_context context
)
3393 unsigned long end_pfn
= start_pfn
+ size
;
3397 if (highest_memmap_pfn
< end_pfn
- 1)
3398 highest_memmap_pfn
= end_pfn
- 1;
3400 z
= &NODE_DATA(nid
)->node_zones
[zone
];
3401 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++) {
3403 * There can be holes in boot-time mem_map[]s
3404 * handed to this function. They do not
3405 * exist on hotplugged memory.
3407 if (context
== MEMMAP_EARLY
) {
3408 if (!early_pfn_valid(pfn
))
3410 if (!early_pfn_in_nid(pfn
, nid
))
3413 page
= pfn_to_page(pfn
);
3414 set_page_links(page
, zone
, nid
, pfn
);
3415 mminit_verify_page_links(page
, zone
, nid
, pfn
);
3416 init_page_count(page
);
3417 reset_page_mapcount(page
);
3418 SetPageReserved(page
);
3420 * Mark the block movable so that blocks are reserved for
3421 * movable at startup. This will force kernel allocations
3422 * to reserve their blocks rather than leaking throughout
3423 * the address space during boot when many long-lived
3424 * kernel allocations are made. Later some blocks near
3425 * the start are marked MIGRATE_RESERVE by
3426 * setup_zone_migrate_reserve()
3428 * bitmap is created for zone's valid pfn range. but memmap
3429 * can be created for invalid pages (for alignment)
3430 * check here not to call set_pageblock_migratetype() against
3433 if ((z
->zone_start_pfn
<= pfn
)
3434 && (pfn
< z
->zone_start_pfn
+ z
->spanned_pages
)
3435 && !(pfn
& (pageblock_nr_pages
- 1)))
3436 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
3438 INIT_LIST_HEAD(&page
->lru
);
3439 #ifdef WANT_PAGE_VIRTUAL
3440 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
3441 if (!is_highmem_idx(zone
))
3442 set_page_address(page
, __va(pfn
<< PAGE_SHIFT
));
3447 static void __meminit
zone_init_free_lists(struct zone
*zone
)
3450 for_each_migratetype_order(order
, t
) {
3451 INIT_LIST_HEAD(&zone
->free_area
[order
].free_list
[t
]);
3452 zone
->free_area
[order
].nr_free
= 0;
3456 #ifndef __HAVE_ARCH_MEMMAP_INIT
3457 #define memmap_init(size, nid, zone, start_pfn) \
3458 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
3461 static int zone_batchsize(struct zone
*zone
)
3467 * The per-cpu-pages pools are set to around 1000th of the
3468 * size of the zone. But no more than 1/2 of a meg.
3470 * OK, so we don't know how big the cache is. So guess.
3472 batch
= zone
->present_pages
/ 1024;
3473 if (batch
* PAGE_SIZE
> 512 * 1024)
3474 batch
= (512 * 1024) / PAGE_SIZE
;
3475 batch
/= 4; /* We effectively *= 4 below */
3480 * Clamp the batch to a 2^n - 1 value. Having a power
3481 * of 2 value was found to be more likely to have
3482 * suboptimal cache aliasing properties in some cases.
3484 * For example if 2 tasks are alternately allocating
3485 * batches of pages, one task can end up with a lot
3486 * of pages of one half of the possible page colors
3487 * and the other with pages of the other colors.
3489 batch
= rounddown_pow_of_two(batch
+ batch
/2) - 1;
3494 /* The deferral and batching of frees should be suppressed under NOMMU
3497 * The problem is that NOMMU needs to be able to allocate large chunks
3498 * of contiguous memory as there's no hardware page translation to
3499 * assemble apparent contiguous memory from discontiguous pages.
3501 * Queueing large contiguous runs of pages for batching, however,
3502 * causes the pages to actually be freed in smaller chunks. As there
3503 * can be a significant delay between the individual batches being
3504 * recycled, this leads to the once large chunks of space being
3505 * fragmented and becoming unavailable for high-order allocations.
3511 static void setup_pageset(struct per_cpu_pageset
*p
, unsigned long batch
)
3513 struct per_cpu_pages
*pcp
;
3516 memset(p
, 0, sizeof(*p
));
3520 pcp
->high
= 6 * batch
;
3521 pcp
->batch
= max(1UL, 1 * batch
);
3522 for (migratetype
= 0; migratetype
< MIGRATE_PCPTYPES
; migratetype
++)
3523 INIT_LIST_HEAD(&pcp
->lists
[migratetype
]);
3527 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
3528 * to the value high for the pageset p.
3531 static void setup_pagelist_highmark(struct per_cpu_pageset
*p
,
3534 struct per_cpu_pages
*pcp
;
3538 pcp
->batch
= max(1UL, high
/4);
3539 if ((high
/4) > (PAGE_SHIFT
* 8))
3540 pcp
->batch
= PAGE_SHIFT
* 8;
3543 static __meminit
void setup_zone_pageset(struct zone
*zone
)
3547 zone
->pageset
= alloc_percpu(struct per_cpu_pageset
);
3549 for_each_possible_cpu(cpu
) {
3550 struct per_cpu_pageset
*pcp
= per_cpu_ptr(zone
->pageset
, cpu
);
3552 setup_pageset(pcp
, zone_batchsize(zone
));
3554 if (percpu_pagelist_fraction
)
3555 setup_pagelist_highmark(pcp
,
3556 (zone
->present_pages
/
3557 percpu_pagelist_fraction
));
3562 * Allocate per cpu pagesets and initialize them.
3563 * Before this call only boot pagesets were available.
3565 void __init
setup_per_cpu_pageset(void)
3569 for_each_populated_zone(zone
)
3570 setup_zone_pageset(zone
);
3573 static noinline __init_refok
3574 int zone_wait_table_init(struct zone
*zone
, unsigned long zone_size_pages
)
3577 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3581 * The per-page waitqueue mechanism uses hashed waitqueues
3584 zone
->wait_table_hash_nr_entries
=
3585 wait_table_hash_nr_entries(zone_size_pages
);
3586 zone
->wait_table_bits
=
3587 wait_table_bits(zone
->wait_table_hash_nr_entries
);
3588 alloc_size
= zone
->wait_table_hash_nr_entries
3589 * sizeof(wait_queue_head_t
);
3591 if (!slab_is_available()) {
3592 zone
->wait_table
= (wait_queue_head_t
*)
3593 alloc_bootmem_node_nopanic(pgdat
, alloc_size
);
3596 * This case means that a zone whose size was 0 gets new memory
3597 * via memory hot-add.
3598 * But it may be the case that a new node was hot-added. In
3599 * this case vmalloc() will not be able to use this new node's
3600 * memory - this wait_table must be initialized to use this new
3601 * node itself as well.
3602 * To use this new node's memory, further consideration will be
3605 zone
->wait_table
= vmalloc(alloc_size
);
3607 if (!zone
->wait_table
)
3610 for(i
= 0; i
< zone
->wait_table_hash_nr_entries
; ++i
)
3611 init_waitqueue_head(zone
->wait_table
+ i
);
3616 static int __zone_pcp_update(void *data
)
3618 struct zone
*zone
= data
;
3620 unsigned long batch
= zone_batchsize(zone
), flags
;
3622 for_each_possible_cpu(cpu
) {
3623 struct per_cpu_pageset
*pset
;
3624 struct per_cpu_pages
*pcp
;
3626 pset
= per_cpu_ptr(zone
->pageset
, cpu
);
3629 local_irq_save(flags
);
3630 free_pcppages_bulk(zone
, pcp
->count
, pcp
);
3631 setup_pageset(pset
, batch
);
3632 local_irq_restore(flags
);
3637 void zone_pcp_update(struct zone
*zone
)
3639 stop_machine(__zone_pcp_update
, zone
, NULL
);
3642 static __meminit
void zone_pcp_init(struct zone
*zone
)
3645 * per cpu subsystem is not up at this point. The following code
3646 * relies on the ability of the linker to provide the
3647 * offset of a (static) per cpu variable into the per cpu area.
3649 zone
->pageset
= &boot_pageset
;
3651 if (zone
->present_pages
)
3652 printk(KERN_DEBUG
" %s zone: %lu pages, LIFO batch:%u\n",
3653 zone
->name
, zone
->present_pages
,
3654 zone_batchsize(zone
));
3657 __meminit
int init_currently_empty_zone(struct zone
*zone
,
3658 unsigned long zone_start_pfn
,
3660 enum memmap_context context
)
3662 struct pglist_data
*pgdat
= zone
->zone_pgdat
;
3664 ret
= zone_wait_table_init(zone
, size
);
3667 pgdat
->nr_zones
= zone_idx(zone
) + 1;
3669 zone
->zone_start_pfn
= zone_start_pfn
;
3671 mminit_dprintk(MMINIT_TRACE
, "memmap_init",
3672 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3674 (unsigned long)zone_idx(zone
),
3675 zone_start_pfn
, (zone_start_pfn
+ size
));
3677 zone_init_free_lists(zone
);
3682 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3684 * Basic iterator support. Return the first range of PFNs for a node
3685 * Note: nid == MAX_NUMNODES returns first region regardless of node
3687 static int __meminit
first_active_region_index_in_nid(int nid
)
3691 for (i
= 0; i
< nr_nodemap_entries
; i
++)
3692 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3699 * Basic iterator support. Return the next active range of PFNs for a node
3700 * Note: nid == MAX_NUMNODES returns next region regardless of node
3702 static int __meminit
next_active_region_index_in_nid(int index
, int nid
)
3704 for (index
= index
+ 1; index
< nr_nodemap_entries
; index
++)
3705 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3711 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3713 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3714 * Architectures may implement their own version but if add_active_range()
3715 * was used and there are no special requirements, this is a convenient
3718 int __meminit
__early_pfn_to_nid(unsigned long pfn
)
3722 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
3723 unsigned long start_pfn
= early_node_map
[i
].start_pfn
;
3724 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3726 if (start_pfn
<= pfn
&& pfn
< end_pfn
)
3727 return early_node_map
[i
].nid
;
3729 /* This is a memory hole */
3732 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3734 int __meminit
early_pfn_to_nid(unsigned long pfn
)
3738 nid
= __early_pfn_to_nid(pfn
);
3741 /* just returns 0 */
3745 #ifdef CONFIG_NODES_SPAN_OTHER_NODES
3746 bool __meminit
early_pfn_in_nid(unsigned long pfn
, int node
)
3750 nid
= __early_pfn_to_nid(pfn
);
3751 if (nid
>= 0 && nid
!= node
)
3757 /* Basic iterator support to walk early_node_map[] */
3758 #define for_each_active_range_index_in_nid(i, nid) \
3759 for (i = first_active_region_index_in_nid(nid); i != -1; \
3760 i = next_active_region_index_in_nid(i, nid))
3763 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
3764 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3765 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
3767 * If an architecture guarantees that all ranges registered with
3768 * add_active_ranges() contain no holes and may be freed, this
3769 * this function may be used instead of calling free_bootmem() manually.
3771 void __init
free_bootmem_with_active_regions(int nid
,
3772 unsigned long max_low_pfn
)
3776 for_each_active_range_index_in_nid(i
, nid
) {
3777 unsigned long size_pages
= 0;
3778 unsigned long end_pfn
= early_node_map
[i
].end_pfn
;
3780 if (early_node_map
[i
].start_pfn
>= max_low_pfn
)
3783 if (end_pfn
> max_low_pfn
)
3784 end_pfn
= max_low_pfn
;
3786 size_pages
= end_pfn
- early_node_map
[i
].start_pfn
;
3787 free_bootmem_node(NODE_DATA(early_node_map
[i
].nid
),
3788 PFN_PHYS(early_node_map
[i
].start_pfn
),
3789 size_pages
<< PAGE_SHIFT
);
3793 #ifdef CONFIG_HAVE_MEMBLOCK
3795 * Basic iterator support. Return the last range of PFNs for a node
3796 * Note: nid == MAX_NUMNODES returns last region regardless of node
3798 static int __meminit
last_active_region_index_in_nid(int nid
)
3802 for (i
= nr_nodemap_entries
- 1; i
>= 0; i
--)
3803 if (nid
== MAX_NUMNODES
|| early_node_map
[i
].nid
== nid
)
3810 * Basic iterator support. Return the previous active range of PFNs for a node
3811 * Note: nid == MAX_NUMNODES returns next region regardless of node
3813 static int __meminit
previous_active_region_index_in_nid(int index
, int nid
)
3815 for (index
= index
- 1; index
>= 0; index
--)
3816 if (nid
== MAX_NUMNODES
|| early_node_map
[index
].nid
== nid
)
3822 #define for_each_active_range_index_in_nid_reverse(i, nid) \
3823 for (i = last_active_region_index_in_nid(nid); i != -1; \
3824 i = previous_active_region_index_in_nid(i, nid))
3826 u64 __init
find_memory_core_early(int nid
, u64 size
, u64 align
,
3827 u64 goal
, u64 limit
)
3831 /* Need to go over early_node_map to find out good range for node */
3832 for_each_active_range_index_in_nid_reverse(i
, nid
) {
3834 u64 ei_start
, ei_last
;
3835 u64 final_start
, final_end
;
3837 ei_last
= early_node_map
[i
].end_pfn
;
3838 ei_last
<<= PAGE_SHIFT
;
3839 ei_start
= early_node_map
[i
].start_pfn
;
3840 ei_start
<<= PAGE_SHIFT
;
3842 final_start
= max(ei_start
, goal
);
3843 final_end
= min(ei_last
, limit
);
3845 if (final_start
>= final_end
)
3848 addr
= memblock_find_in_range(final_start
, final_end
, size
, align
);
3850 if (addr
== MEMBLOCK_ERROR
)
3856 return MEMBLOCK_ERROR
;
3860 int __init
add_from_early_node_map(struct range
*range
, int az
,
3861 int nr_range
, int nid
)
3866 /* need to go over early_node_map to find out good range for node */
3867 for_each_active_range_index_in_nid(i
, nid
) {
3868 start
= early_node_map
[i
].start_pfn
;
3869 end
= early_node_map
[i
].end_pfn
;
3870 nr_range
= add_range(range
, az
, nr_range
, start
, end
);
3875 void __init
work_with_active_regions(int nid
, work_fn_t work_fn
, void *data
)
3880 for_each_active_range_index_in_nid(i
, nid
) {
3881 ret
= work_fn(early_node_map
[i
].start_pfn
,
3882 early_node_map
[i
].end_pfn
, data
);
3888 * sparse_memory_present_with_active_regions - Call memory_present for each active range
3889 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
3891 * If an architecture guarantees that all ranges registered with
3892 * add_active_ranges() contain no holes and may be freed, this
3893 * function may be used instead of calling memory_present() manually.
3895 void __init
sparse_memory_present_with_active_regions(int nid
)
3899 for_each_active_range_index_in_nid(i
, nid
)
3900 memory_present(early_node_map
[i
].nid
,
3901 early_node_map
[i
].start_pfn
,
3902 early_node_map
[i
].end_pfn
);
3906 * get_pfn_range_for_nid - Return the start and end page frames for a node
3907 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3908 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3909 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
3911 * It returns the start and end page frame of a node based on information
3912 * provided by an arch calling add_active_range(). If called for a node
3913 * with no available memory, a warning is printed and the start and end
3916 void __meminit
get_pfn_range_for_nid(unsigned int nid
,
3917 unsigned long *start_pfn
, unsigned long *end_pfn
)
3923 for_each_active_range_index_in_nid(i
, nid
) {
3924 *start_pfn
= min(*start_pfn
, early_node_map
[i
].start_pfn
);
3925 *end_pfn
= max(*end_pfn
, early_node_map
[i
].end_pfn
);
3928 if (*start_pfn
== -1UL)
3933 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3934 * assumption is made that zones within a node are ordered in monotonic
3935 * increasing memory addresses so that the "highest" populated zone is used
3937 static void __init
find_usable_zone_for_movable(void)
3940 for (zone_index
= MAX_NR_ZONES
- 1; zone_index
>= 0; zone_index
--) {
3941 if (zone_index
== ZONE_MOVABLE
)
3944 if (arch_zone_highest_possible_pfn
[zone_index
] >
3945 arch_zone_lowest_possible_pfn
[zone_index
])
3949 VM_BUG_ON(zone_index
== -1);
3950 movable_zone
= zone_index
;
3954 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3955 * because it is sized independent of architecture. Unlike the other zones,
3956 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3957 * in each node depending on the size of each node and how evenly kernelcore
3958 * is distributed. This helper function adjusts the zone ranges
3959 * provided by the architecture for a given node by using the end of the
3960 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3961 * zones within a node are in order of monotonic increases memory addresses
3963 static void __meminit
adjust_zone_range_for_zone_movable(int nid
,
3964 unsigned long zone_type
,
3965 unsigned long node_start_pfn
,
3966 unsigned long node_end_pfn
,
3967 unsigned long *zone_start_pfn
,
3968 unsigned long *zone_end_pfn
)
3970 /* Only adjust if ZONE_MOVABLE is on this node */
3971 if (zone_movable_pfn
[nid
]) {
3972 /* Size ZONE_MOVABLE */
3973 if (zone_type
== ZONE_MOVABLE
) {
3974 *zone_start_pfn
= zone_movable_pfn
[nid
];
3975 *zone_end_pfn
= min(node_end_pfn
,
3976 arch_zone_highest_possible_pfn
[movable_zone
]);
3978 /* Adjust for ZONE_MOVABLE starting within this range */
3979 } else if (*zone_start_pfn
< zone_movable_pfn
[nid
] &&
3980 *zone_end_pfn
> zone_movable_pfn
[nid
]) {
3981 *zone_end_pfn
= zone_movable_pfn
[nid
];
3983 /* Check if this whole range is within ZONE_MOVABLE */
3984 } else if (*zone_start_pfn
>= zone_movable_pfn
[nid
])
3985 *zone_start_pfn
= *zone_end_pfn
;
3990 * Return the number of pages a zone spans in a node, including holes
3991 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3993 static unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
3994 unsigned long zone_type
,
3995 unsigned long *ignored
)
3997 unsigned long node_start_pfn
, node_end_pfn
;
3998 unsigned long zone_start_pfn
, zone_end_pfn
;
4000 /* Get the start and end of the node and zone */
4001 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4002 zone_start_pfn
= arch_zone_lowest_possible_pfn
[zone_type
];
4003 zone_end_pfn
= arch_zone_highest_possible_pfn
[zone_type
];
4004 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4005 node_start_pfn
, node_end_pfn
,
4006 &zone_start_pfn
, &zone_end_pfn
);
4008 /* Check that this node has pages within the zone's required range */
4009 if (zone_end_pfn
< node_start_pfn
|| zone_start_pfn
> node_end_pfn
)
4012 /* Move the zone boundaries inside the node if necessary */
4013 zone_end_pfn
= min(zone_end_pfn
, node_end_pfn
);
4014 zone_start_pfn
= max(zone_start_pfn
, node_start_pfn
);
4016 /* Return the spanned pages */
4017 return zone_end_pfn
- zone_start_pfn
;
4021 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
4022 * then all holes in the requested range will be accounted for.
4024 unsigned long __meminit
__absent_pages_in_range(int nid
,
4025 unsigned long range_start_pfn
,
4026 unsigned long range_end_pfn
)
4029 unsigned long prev_end_pfn
= 0, hole_pages
= 0;
4030 unsigned long start_pfn
;
4032 /* Find the end_pfn of the first active range of pfns in the node */
4033 i
= first_active_region_index_in_nid(nid
);
4037 prev_end_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4039 /* Account for ranges before physical memory on this node */
4040 if (early_node_map
[i
].start_pfn
> range_start_pfn
)
4041 hole_pages
= prev_end_pfn
- range_start_pfn
;
4043 /* Find all holes for the zone within the node */
4044 for (; i
!= -1; i
= next_active_region_index_in_nid(i
, nid
)) {
4046 /* No need to continue if prev_end_pfn is outside the zone */
4047 if (prev_end_pfn
>= range_end_pfn
)
4050 /* Make sure the end of the zone is not within the hole */
4051 start_pfn
= min(early_node_map
[i
].start_pfn
, range_end_pfn
);
4052 prev_end_pfn
= max(prev_end_pfn
, range_start_pfn
);
4054 /* Update the hole size cound and move on */
4055 if (start_pfn
> range_start_pfn
) {
4056 BUG_ON(prev_end_pfn
> start_pfn
);
4057 hole_pages
+= start_pfn
- prev_end_pfn
;
4059 prev_end_pfn
= early_node_map
[i
].end_pfn
;
4062 /* Account for ranges past physical memory on this node */
4063 if (range_end_pfn
> prev_end_pfn
)
4064 hole_pages
+= range_end_pfn
-
4065 max(range_start_pfn
, prev_end_pfn
);
4071 * absent_pages_in_range - Return number of page frames in holes within a range
4072 * @start_pfn: The start PFN to start searching for holes
4073 * @end_pfn: The end PFN to stop searching for holes
4075 * It returns the number of pages frames in memory holes within a range.
4077 unsigned long __init
absent_pages_in_range(unsigned long start_pfn
,
4078 unsigned long end_pfn
)
4080 return __absent_pages_in_range(MAX_NUMNODES
, start_pfn
, end_pfn
);
4083 /* Return the number of page frames in holes in a zone on a node */
4084 static unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4085 unsigned long zone_type
,
4086 unsigned long *ignored
)
4088 unsigned long node_start_pfn
, node_end_pfn
;
4089 unsigned long zone_start_pfn
, zone_end_pfn
;
4091 get_pfn_range_for_nid(nid
, &node_start_pfn
, &node_end_pfn
);
4092 zone_start_pfn
= max(arch_zone_lowest_possible_pfn
[zone_type
],
4094 zone_end_pfn
= min(arch_zone_highest_possible_pfn
[zone_type
],
4097 adjust_zone_range_for_zone_movable(nid
, zone_type
,
4098 node_start_pfn
, node_end_pfn
,
4099 &zone_start_pfn
, &zone_end_pfn
);
4100 return __absent_pages_in_range(nid
, zone_start_pfn
, zone_end_pfn
);
4104 static inline unsigned long __meminit
zone_spanned_pages_in_node(int nid
,
4105 unsigned long zone_type
,
4106 unsigned long *zones_size
)
4108 return zones_size
[zone_type
];
4111 static inline unsigned long __meminit
zone_absent_pages_in_node(int nid
,
4112 unsigned long zone_type
,
4113 unsigned long *zholes_size
)
4118 return zholes_size
[zone_type
];
4123 static void __meminit
calculate_node_totalpages(struct pglist_data
*pgdat
,
4124 unsigned long *zones_size
, unsigned long *zholes_size
)
4126 unsigned long realtotalpages
, totalpages
= 0;
4129 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4130 totalpages
+= zone_spanned_pages_in_node(pgdat
->node_id
, i
,
4132 pgdat
->node_spanned_pages
= totalpages
;
4134 realtotalpages
= totalpages
;
4135 for (i
= 0; i
< MAX_NR_ZONES
; i
++)
4137 zone_absent_pages_in_node(pgdat
->node_id
, i
,
4139 pgdat
->node_present_pages
= realtotalpages
;
4140 printk(KERN_DEBUG
"On node %d totalpages: %lu\n", pgdat
->node_id
,
4144 #ifndef CONFIG_SPARSEMEM
4146 * Calculate the size of the zone->blockflags rounded to an unsigned long
4147 * Start by making sure zonesize is a multiple of pageblock_order by rounding
4148 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
4149 * round what is now in bits to nearest long in bits, then return it in
4152 static unsigned long __init
usemap_size(unsigned long zonesize
)
4154 unsigned long usemapsize
;
4156 usemapsize
= roundup(zonesize
, pageblock_nr_pages
);
4157 usemapsize
= usemapsize
>> pageblock_order
;
4158 usemapsize
*= NR_PAGEBLOCK_BITS
;
4159 usemapsize
= roundup(usemapsize
, 8 * sizeof(unsigned long));
4161 return usemapsize
/ 8;
4164 static void __init
setup_usemap(struct pglist_data
*pgdat
,
4165 struct zone
*zone
, unsigned long zonesize
)
4167 unsigned long usemapsize
= usemap_size(zonesize
);
4168 zone
->pageblock_flags
= NULL
;
4170 zone
->pageblock_flags
= alloc_bootmem_node_nopanic(pgdat
,
4174 static inline void setup_usemap(struct pglist_data
*pgdat
,
4175 struct zone
*zone
, unsigned long zonesize
) {}
4176 #endif /* CONFIG_SPARSEMEM */
4178 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
4180 /* Return a sensible default order for the pageblock size. */
4181 static inline int pageblock_default_order(void)
4183 if (HPAGE_SHIFT
> PAGE_SHIFT
)
4184 return HUGETLB_PAGE_ORDER
;
4189 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
4190 static inline void __init
set_pageblock_order(unsigned int order
)
4192 /* Check that pageblock_nr_pages has not already been setup */
4193 if (pageblock_order
)
4197 * Assume the largest contiguous order of interest is a huge page.
4198 * This value may be variable depending on boot parameters on IA64
4200 pageblock_order
= order
;
4202 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4205 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
4206 * and pageblock_default_order() are unused as pageblock_order is set
4207 * at compile-time. See include/linux/pageblock-flags.h for the values of
4208 * pageblock_order based on the kernel config
4210 static inline int pageblock_default_order(unsigned int order
)
4214 #define set_pageblock_order(x) do {} while (0)
4216 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
4219 * Set up the zone data structures:
4220 * - mark all pages reserved
4221 * - mark all memory queues empty
4222 * - clear the memory bitmaps
4224 static void __paginginit
free_area_init_core(struct pglist_data
*pgdat
,
4225 unsigned long *zones_size
, unsigned long *zholes_size
)
4228 int nid
= pgdat
->node_id
;
4229 unsigned long zone_start_pfn
= pgdat
->node_start_pfn
;
4232 pgdat_resize_init(pgdat
);
4233 pgdat
->nr_zones
= 0;
4234 init_waitqueue_head(&pgdat
->kswapd_wait
);
4235 pgdat
->kswapd_max_order
= 0;
4236 pgdat_page_cgroup_init(pgdat
);
4238 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4239 struct zone
*zone
= pgdat
->node_zones
+ j
;
4240 unsigned long size
, realsize
, memmap_pages
;
4243 size
= zone_spanned_pages_in_node(nid
, j
, zones_size
);
4244 realsize
= size
- zone_absent_pages_in_node(nid
, j
,
4248 * Adjust realsize so that it accounts for how much memory
4249 * is used by this zone for memmap. This affects the watermark
4250 * and per-cpu initialisations
4253 PAGE_ALIGN(size
* sizeof(struct page
)) >> PAGE_SHIFT
;
4254 if (realsize
>= memmap_pages
) {
4255 realsize
-= memmap_pages
;
4258 " %s zone: %lu pages used for memmap\n",
4259 zone_names
[j
], memmap_pages
);
4262 " %s zone: %lu pages exceeds realsize %lu\n",
4263 zone_names
[j
], memmap_pages
, realsize
);
4265 /* Account for reserved pages */
4266 if (j
== 0 && realsize
> dma_reserve
) {
4267 realsize
-= dma_reserve
;
4268 printk(KERN_DEBUG
" %s zone: %lu pages reserved\n",
4269 zone_names
[0], dma_reserve
);
4272 if (!is_highmem_idx(j
))
4273 nr_kernel_pages
+= realsize
;
4274 nr_all_pages
+= realsize
;
4276 zone
->spanned_pages
= size
;
4277 zone
->present_pages
= realsize
;
4280 zone
->min_unmapped_pages
= (realsize
*sysctl_min_unmapped_ratio
)
4282 zone
->min_slab_pages
= (realsize
* sysctl_min_slab_ratio
) / 100;
4284 zone
->name
= zone_names
[j
];
4285 spin_lock_init(&zone
->lock
);
4286 spin_lock_init(&zone
->lru_lock
);
4287 zone_seqlock_init(zone
);
4288 zone
->zone_pgdat
= pgdat
;
4290 zone_pcp_init(zone
);
4292 INIT_LIST_HEAD(&zone
->lru
[l
].list
);
4293 zone
->reclaim_stat
.nr_saved_scan
[l
] = 0;
4295 zone
->reclaim_stat
.recent_rotated
[0] = 0;
4296 zone
->reclaim_stat
.recent_rotated
[1] = 0;
4297 zone
->reclaim_stat
.recent_scanned
[0] = 0;
4298 zone
->reclaim_stat
.recent_scanned
[1] = 0;
4299 zap_zone_vm_stats(zone
);
4304 set_pageblock_order(pageblock_default_order());
4305 setup_usemap(pgdat
, zone
, size
);
4306 ret
= init_currently_empty_zone(zone
, zone_start_pfn
,
4307 size
, MEMMAP_EARLY
);
4309 memmap_init(size
, nid
, j
, zone_start_pfn
);
4310 zone_start_pfn
+= size
;
4314 static void __init_refok
alloc_node_mem_map(struct pglist_data
*pgdat
)
4316 /* Skip empty nodes */
4317 if (!pgdat
->node_spanned_pages
)
4320 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4321 /* ia64 gets its own node_mem_map, before this, without bootmem */
4322 if (!pgdat
->node_mem_map
) {
4323 unsigned long size
, start
, end
;
4327 * The zone's endpoints aren't required to be MAX_ORDER
4328 * aligned but the node_mem_map endpoints must be in order
4329 * for the buddy allocator to function correctly.
4331 start
= pgdat
->node_start_pfn
& ~(MAX_ORDER_NR_PAGES
- 1);
4332 end
= pgdat
->node_start_pfn
+ pgdat
->node_spanned_pages
;
4333 end
= ALIGN(end
, MAX_ORDER_NR_PAGES
);
4334 size
= (end
- start
) * sizeof(struct page
);
4335 map
= alloc_remap(pgdat
->node_id
, size
);
4337 map
= alloc_bootmem_node_nopanic(pgdat
, size
);
4338 pgdat
->node_mem_map
= map
+ (pgdat
->node_start_pfn
- start
);
4340 #ifndef CONFIG_NEED_MULTIPLE_NODES
4342 * With no DISCONTIG, the global mem_map is just set as node 0's
4344 if (pgdat
== NODE_DATA(0)) {
4345 mem_map
= NODE_DATA(0)->node_mem_map
;
4346 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4347 if (page_to_pfn(mem_map
) != pgdat
->node_start_pfn
)
4348 mem_map
-= (pgdat
->node_start_pfn
- ARCH_PFN_OFFSET
);
4349 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4352 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
4355 void __paginginit
free_area_init_node(int nid
, unsigned long *zones_size
,
4356 unsigned long node_start_pfn
, unsigned long *zholes_size
)
4358 pg_data_t
*pgdat
= NODE_DATA(nid
);
4360 pgdat
->node_id
= nid
;
4361 pgdat
->node_start_pfn
= node_start_pfn
;
4362 calculate_node_totalpages(pgdat
, zones_size
, zholes_size
);
4364 alloc_node_mem_map(pgdat
);
4365 #ifdef CONFIG_FLAT_NODE_MEM_MAP
4366 printk(KERN_DEBUG
"free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
4367 nid
, (unsigned long)pgdat
,
4368 (unsigned long)pgdat
->node_mem_map
);
4371 free_area_init_core(pgdat
, zones_size
, zholes_size
);
4374 #ifdef CONFIG_ARCH_POPULATES_NODE_MAP
4376 #if MAX_NUMNODES > 1
4378 * Figure out the number of possible node ids.
4380 static void __init
setup_nr_node_ids(void)
4383 unsigned int highest
= 0;
4385 for_each_node_mask(node
, node_possible_map
)
4387 nr_node_ids
= highest
+ 1;
4390 static inline void setup_nr_node_ids(void)
4396 * add_active_range - Register a range of PFNs backed by physical memory
4397 * @nid: The node ID the range resides on
4398 * @start_pfn: The start PFN of the available physical memory
4399 * @end_pfn: The end PFN of the available physical memory
4401 * These ranges are stored in an early_node_map[] and later used by
4402 * free_area_init_nodes() to calculate zone sizes and holes. If the
4403 * range spans a memory hole, it is up to the architecture to ensure
4404 * the memory is not freed by the bootmem allocator. If possible
4405 * the range being registered will be merged with existing ranges.
4407 void __init
add_active_range(unsigned int nid
, unsigned long start_pfn
,
4408 unsigned long end_pfn
)
4412 mminit_dprintk(MMINIT_TRACE
, "memory_register",
4413 "Entering add_active_range(%d, %#lx, %#lx) "
4414 "%d entries of %d used\n",
4415 nid
, start_pfn
, end_pfn
,
4416 nr_nodemap_entries
, MAX_ACTIVE_REGIONS
);
4418 mminit_validate_memmodel_limits(&start_pfn
, &end_pfn
);
4420 /* Merge with existing active regions if possible */
4421 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4422 if (early_node_map
[i
].nid
!= nid
)
4425 /* Skip if an existing region covers this new one */
4426 if (start_pfn
>= early_node_map
[i
].start_pfn
&&
4427 end_pfn
<= early_node_map
[i
].end_pfn
)
4430 /* Merge forward if suitable */
4431 if (start_pfn
<= early_node_map
[i
].end_pfn
&&
4432 end_pfn
> early_node_map
[i
].end_pfn
) {
4433 early_node_map
[i
].end_pfn
= end_pfn
;
4437 /* Merge backward if suitable */
4438 if (start_pfn
< early_node_map
[i
].start_pfn
&&
4439 end_pfn
>= early_node_map
[i
].start_pfn
) {
4440 early_node_map
[i
].start_pfn
= start_pfn
;
4445 /* Check that early_node_map is large enough */
4446 if (i
>= MAX_ACTIVE_REGIONS
) {
4447 printk(KERN_CRIT
"More than %d memory regions, truncating\n",
4448 MAX_ACTIVE_REGIONS
);
4452 early_node_map
[i
].nid
= nid
;
4453 early_node_map
[i
].start_pfn
= start_pfn
;
4454 early_node_map
[i
].end_pfn
= end_pfn
;
4455 nr_nodemap_entries
= i
+ 1;
4459 * remove_active_range - Shrink an existing registered range of PFNs
4460 * @nid: The node id the range is on that should be shrunk
4461 * @start_pfn: The new PFN of the range
4462 * @end_pfn: The new PFN of the range
4464 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
4465 * The map is kept near the end physical page range that has already been
4466 * registered. This function allows an arch to shrink an existing registered
4469 void __init
remove_active_range(unsigned int nid
, unsigned long start_pfn
,
4470 unsigned long end_pfn
)
4475 printk(KERN_DEBUG
"remove_active_range (%d, %lu, %lu)\n",
4476 nid
, start_pfn
, end_pfn
);
4478 /* Find the old active region end and shrink */
4479 for_each_active_range_index_in_nid(i
, nid
) {
4480 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4481 early_node_map
[i
].end_pfn
<= end_pfn
) {
4483 early_node_map
[i
].start_pfn
= 0;
4484 early_node_map
[i
].end_pfn
= 0;
4488 if (early_node_map
[i
].start_pfn
< start_pfn
&&
4489 early_node_map
[i
].end_pfn
> start_pfn
) {
4490 unsigned long temp_end_pfn
= early_node_map
[i
].end_pfn
;
4491 early_node_map
[i
].end_pfn
= start_pfn
;
4492 if (temp_end_pfn
> end_pfn
)
4493 add_active_range(nid
, end_pfn
, temp_end_pfn
);
4496 if (early_node_map
[i
].start_pfn
>= start_pfn
&&
4497 early_node_map
[i
].end_pfn
> end_pfn
&&
4498 early_node_map
[i
].start_pfn
< end_pfn
) {
4499 early_node_map
[i
].start_pfn
= end_pfn
;
4507 /* remove the blank ones */
4508 for (i
= nr_nodemap_entries
- 1; i
> 0; i
--) {
4509 if (early_node_map
[i
].nid
!= nid
)
4511 if (early_node_map
[i
].end_pfn
)
4513 /* we found it, get rid of it */
4514 for (j
= i
; j
< nr_nodemap_entries
- 1; j
++)
4515 memcpy(&early_node_map
[j
], &early_node_map
[j
+1],
4516 sizeof(early_node_map
[j
]));
4517 j
= nr_nodemap_entries
- 1;
4518 memset(&early_node_map
[j
], 0, sizeof(early_node_map
[j
]));
4519 nr_nodemap_entries
--;
4524 * remove_all_active_ranges - Remove all currently registered regions
4526 * During discovery, it may be found that a table like SRAT is invalid
4527 * and an alternative discovery method must be used. This function removes
4528 * all currently registered regions.
4530 void __init
remove_all_active_ranges(void)
4532 memset(early_node_map
, 0, sizeof(early_node_map
));
4533 nr_nodemap_entries
= 0;
4536 /* Compare two active node_active_regions */
4537 static int __init
cmp_node_active_region(const void *a
, const void *b
)
4539 struct node_active_region
*arange
= (struct node_active_region
*)a
;
4540 struct node_active_region
*brange
= (struct node_active_region
*)b
;
4542 /* Done this way to avoid overflows */
4543 if (arange
->start_pfn
> brange
->start_pfn
)
4545 if (arange
->start_pfn
< brange
->start_pfn
)
4551 /* sort the node_map by start_pfn */
4552 void __init
sort_node_map(void)
4554 sort(early_node_map
, (size_t)nr_nodemap_entries
,
4555 sizeof(struct node_active_region
),
4556 cmp_node_active_region
, NULL
);
4559 /* Find the lowest pfn for a node */
4560 static unsigned long __init
find_min_pfn_for_node(int nid
)
4563 unsigned long min_pfn
= ULONG_MAX
;
4565 /* Assuming a sorted map, the first range found has the starting pfn */
4566 for_each_active_range_index_in_nid(i
, nid
)
4567 min_pfn
= min(min_pfn
, early_node_map
[i
].start_pfn
);
4569 if (min_pfn
== ULONG_MAX
) {
4571 "Could not find start_pfn for node %d\n", nid
);
4579 * find_min_pfn_with_active_regions - Find the minimum PFN registered
4581 * It returns the minimum PFN based on information provided via
4582 * add_active_range().
4584 unsigned long __init
find_min_pfn_with_active_regions(void)
4586 return find_min_pfn_for_node(MAX_NUMNODES
);
4590 * early_calculate_totalpages()
4591 * Sum pages in active regions for movable zone.
4592 * Populate N_HIGH_MEMORY for calculating usable_nodes.
4594 static unsigned long __init
early_calculate_totalpages(void)
4597 unsigned long totalpages
= 0;
4599 for (i
= 0; i
< nr_nodemap_entries
; i
++) {
4600 unsigned long pages
= early_node_map
[i
].end_pfn
-
4601 early_node_map
[i
].start_pfn
;
4602 totalpages
+= pages
;
4604 node_set_state(early_node_map
[i
].nid
, N_HIGH_MEMORY
);
4610 * Find the PFN the Movable zone begins in each node. Kernel memory
4611 * is spread evenly between nodes as long as the nodes have enough
4612 * memory. When they don't, some nodes will have more kernelcore than
4615 static void __init
find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn
)
4618 unsigned long usable_startpfn
;
4619 unsigned long kernelcore_node
, kernelcore_remaining
;
4620 /* save the state before borrow the nodemask */
4621 nodemask_t saved_node_state
= node_states
[N_HIGH_MEMORY
];
4622 unsigned long totalpages
= early_calculate_totalpages();
4623 int usable_nodes
= nodes_weight(node_states
[N_HIGH_MEMORY
]);
4626 * If movablecore was specified, calculate what size of
4627 * kernelcore that corresponds so that memory usable for
4628 * any allocation type is evenly spread. If both kernelcore
4629 * and movablecore are specified, then the value of kernelcore
4630 * will be used for required_kernelcore if it's greater than
4631 * what movablecore would have allowed.
4633 if (required_movablecore
) {
4634 unsigned long corepages
;
4637 * Round-up so that ZONE_MOVABLE is at least as large as what
4638 * was requested by the user
4640 required_movablecore
=
4641 roundup(required_movablecore
, MAX_ORDER_NR_PAGES
);
4642 corepages
= totalpages
- required_movablecore
;
4644 required_kernelcore
= max(required_kernelcore
, corepages
);
4647 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4648 if (!required_kernelcore
)
4651 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4652 find_usable_zone_for_movable();
4653 usable_startpfn
= arch_zone_lowest_possible_pfn
[movable_zone
];
4656 /* Spread kernelcore memory as evenly as possible throughout nodes */
4657 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4658 for_each_node_state(nid
, N_HIGH_MEMORY
) {
4660 * Recalculate kernelcore_node if the division per node
4661 * now exceeds what is necessary to satisfy the requested
4662 * amount of memory for the kernel
4664 if (required_kernelcore
< kernelcore_node
)
4665 kernelcore_node
= required_kernelcore
/ usable_nodes
;
4668 * As the map is walked, we track how much memory is usable
4669 * by the kernel using kernelcore_remaining. When it is
4670 * 0, the rest of the node is usable by ZONE_MOVABLE
4672 kernelcore_remaining
= kernelcore_node
;
4674 /* Go through each range of PFNs within this node */
4675 for_each_active_range_index_in_nid(i
, nid
) {
4676 unsigned long start_pfn
, end_pfn
;
4677 unsigned long size_pages
;
4679 start_pfn
= max(early_node_map
[i
].start_pfn
,
4680 zone_movable_pfn
[nid
]);
4681 end_pfn
= early_node_map
[i
].end_pfn
;
4682 if (start_pfn
>= end_pfn
)
4685 /* Account for what is only usable for kernelcore */
4686 if (start_pfn
< usable_startpfn
) {
4687 unsigned long kernel_pages
;
4688 kernel_pages
= min(end_pfn
, usable_startpfn
)
4691 kernelcore_remaining
-= min(kernel_pages
,
4692 kernelcore_remaining
);
4693 required_kernelcore
-= min(kernel_pages
,
4694 required_kernelcore
);
4696 /* Continue if range is now fully accounted */
4697 if (end_pfn
<= usable_startpfn
) {
4700 * Push zone_movable_pfn to the end so
4701 * that if we have to rebalance
4702 * kernelcore across nodes, we will
4703 * not double account here
4705 zone_movable_pfn
[nid
] = end_pfn
;
4708 start_pfn
= usable_startpfn
;
4712 * The usable PFN range for ZONE_MOVABLE is from
4713 * start_pfn->end_pfn. Calculate size_pages as the
4714 * number of pages used as kernelcore
4716 size_pages
= end_pfn
- start_pfn
;
4717 if (size_pages
> kernelcore_remaining
)
4718 size_pages
= kernelcore_remaining
;
4719 zone_movable_pfn
[nid
] = start_pfn
+ size_pages
;
4722 * Some kernelcore has been met, update counts and
4723 * break if the kernelcore for this node has been
4726 required_kernelcore
-= min(required_kernelcore
,
4728 kernelcore_remaining
-= size_pages
;
4729 if (!kernelcore_remaining
)
4735 * If there is still required_kernelcore, we do another pass with one
4736 * less node in the count. This will push zone_movable_pfn[nid] further
4737 * along on the nodes that still have memory until kernelcore is
4741 if (usable_nodes
&& required_kernelcore
> usable_nodes
)
4744 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4745 for (nid
= 0; nid
< MAX_NUMNODES
; nid
++)
4746 zone_movable_pfn
[nid
] =
4747 roundup(zone_movable_pfn
[nid
], MAX_ORDER_NR_PAGES
);
4750 /* restore the node_state */
4751 node_states
[N_HIGH_MEMORY
] = saved_node_state
;
4754 /* Any regular memory on that node ? */
4755 static void check_for_regular_memory(pg_data_t
*pgdat
)
4757 #ifdef CONFIG_HIGHMEM
4758 enum zone_type zone_type
;
4760 for (zone_type
= 0; zone_type
<= ZONE_NORMAL
; zone_type
++) {
4761 struct zone
*zone
= &pgdat
->node_zones
[zone_type
];
4762 if (zone
->present_pages
)
4763 node_set_state(zone_to_nid(zone
), N_NORMAL_MEMORY
);
4769 * free_area_init_nodes - Initialise all pg_data_t and zone data
4770 * @max_zone_pfn: an array of max PFNs for each zone
4772 * This will call free_area_init_node() for each active node in the system.
4773 * Using the page ranges provided by add_active_range(), the size of each
4774 * zone in each node and their holes is calculated. If the maximum PFN
4775 * between two adjacent zones match, it is assumed that the zone is empty.
4776 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4777 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4778 * starts where the previous one ended. For example, ZONE_DMA32 starts
4779 * at arch_max_dma_pfn.
4781 void __init
free_area_init_nodes(unsigned long *max_zone_pfn
)
4786 /* Sort early_node_map as initialisation assumes it is sorted */
4789 /* Record where the zone boundaries are */
4790 memset(arch_zone_lowest_possible_pfn
, 0,
4791 sizeof(arch_zone_lowest_possible_pfn
));
4792 memset(arch_zone_highest_possible_pfn
, 0,
4793 sizeof(arch_zone_highest_possible_pfn
));
4794 arch_zone_lowest_possible_pfn
[0] = find_min_pfn_with_active_regions();
4795 arch_zone_highest_possible_pfn
[0] = max_zone_pfn
[0];
4796 for (i
= 1; i
< MAX_NR_ZONES
; i
++) {
4797 if (i
== ZONE_MOVABLE
)
4799 arch_zone_lowest_possible_pfn
[i
] =
4800 arch_zone_highest_possible_pfn
[i
-1];
4801 arch_zone_highest_possible_pfn
[i
] =
4802 max(max_zone_pfn
[i
], arch_zone_lowest_possible_pfn
[i
]);
4804 arch_zone_lowest_possible_pfn
[ZONE_MOVABLE
] = 0;
4805 arch_zone_highest_possible_pfn
[ZONE_MOVABLE
] = 0;
4807 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4808 memset(zone_movable_pfn
, 0, sizeof(zone_movable_pfn
));
4809 find_zone_movable_pfns_for_nodes(zone_movable_pfn
);
4811 /* Print out the zone ranges */
4812 printk("Zone PFN ranges:\n");
4813 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4814 if (i
== ZONE_MOVABLE
)
4816 printk(" %-8s ", zone_names
[i
]);
4817 if (arch_zone_lowest_possible_pfn
[i
] ==
4818 arch_zone_highest_possible_pfn
[i
])
4821 printk("%0#10lx -> %0#10lx\n",
4822 arch_zone_lowest_possible_pfn
[i
],
4823 arch_zone_highest_possible_pfn
[i
]);
4826 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4827 printk("Movable zone start PFN for each node\n");
4828 for (i
= 0; i
< MAX_NUMNODES
; i
++) {
4829 if (zone_movable_pfn
[i
])
4830 printk(" Node %d: %lu\n", i
, zone_movable_pfn
[i
]);
4833 /* Print out the early_node_map[] */
4834 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries
);
4835 for (i
= 0; i
< nr_nodemap_entries
; i
++)
4836 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map
[i
].nid
,
4837 early_node_map
[i
].start_pfn
,
4838 early_node_map
[i
].end_pfn
);
4840 /* Initialise every node */
4841 mminit_verify_pageflags_layout();
4842 setup_nr_node_ids();
4843 for_each_online_node(nid
) {
4844 pg_data_t
*pgdat
= NODE_DATA(nid
);
4845 free_area_init_node(nid
, NULL
,
4846 find_min_pfn_for_node(nid
), NULL
);
4848 /* Any memory on that node */
4849 if (pgdat
->node_present_pages
)
4850 node_set_state(nid
, N_HIGH_MEMORY
);
4851 check_for_regular_memory(pgdat
);
4855 static int __init
cmdline_parse_core(char *p
, unsigned long *core
)
4857 unsigned long long coremem
;
4861 coremem
= memparse(p
, &p
);
4862 *core
= coremem
>> PAGE_SHIFT
;
4864 /* Paranoid check that UL is enough for the coremem value */
4865 WARN_ON((coremem
>> PAGE_SHIFT
) > ULONG_MAX
);
4871 * kernelcore=size sets the amount of memory for use for allocations that
4872 * cannot be reclaimed or migrated.
4874 static int __init
cmdline_parse_kernelcore(char *p
)
4876 return cmdline_parse_core(p
, &required_kernelcore
);
4880 * movablecore=size sets the amount of memory for use for allocations that
4881 * can be reclaimed or migrated.
4883 static int __init
cmdline_parse_movablecore(char *p
)
4885 return cmdline_parse_core(p
, &required_movablecore
);
4888 early_param("kernelcore", cmdline_parse_kernelcore
);
4889 early_param("movablecore", cmdline_parse_movablecore
);
4891 #endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4894 * set_dma_reserve - set the specified number of pages reserved in the first zone
4895 * @new_dma_reserve: The number of pages to mark reserved
4897 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4898 * In the DMA zone, a significant percentage may be consumed by kernel image
4899 * and other unfreeable allocations which can skew the watermarks badly. This
4900 * function may optionally be used to account for unfreeable pages in the
4901 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4902 * smaller per-cpu batchsize.
4904 void __init
set_dma_reserve(unsigned long new_dma_reserve
)
4906 dma_reserve
= new_dma_reserve
;
4909 void __init
free_area_init(unsigned long *zones_size
)
4911 free_area_init_node(0, zones_size
,
4912 __pa(PAGE_OFFSET
) >> PAGE_SHIFT
, NULL
);
4915 static int page_alloc_cpu_notify(struct notifier_block
*self
,
4916 unsigned long action
, void *hcpu
)
4918 int cpu
= (unsigned long)hcpu
;
4920 if (action
== CPU_DEAD
|| action
== CPU_DEAD_FROZEN
) {
4924 * Spill the event counters of the dead processor
4925 * into the current processors event counters.
4926 * This artificially elevates the count of the current
4929 vm_events_fold_cpu(cpu
);
4932 * Zero the differential counters of the dead processor
4933 * so that the vm statistics are consistent.
4935 * This is only okay since the processor is dead and cannot
4936 * race with what we are doing.
4938 refresh_cpu_vm_stats(cpu
);
4943 void __init
page_alloc_init(void)
4945 hotcpu_notifier(page_alloc_cpu_notify
, 0);
4949 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4950 * or min_free_kbytes changes.
4952 static void calculate_totalreserve_pages(void)
4954 struct pglist_data
*pgdat
;
4955 unsigned long reserve_pages
= 0;
4956 enum zone_type i
, j
;
4958 for_each_online_pgdat(pgdat
) {
4959 for (i
= 0; i
< MAX_NR_ZONES
; i
++) {
4960 struct zone
*zone
= pgdat
->node_zones
+ i
;
4961 unsigned long max
= 0;
4963 /* Find valid and maximum lowmem_reserve in the zone */
4964 for (j
= i
; j
< MAX_NR_ZONES
; j
++) {
4965 if (zone
->lowmem_reserve
[j
] > max
)
4966 max
= zone
->lowmem_reserve
[j
];
4969 /* we treat the high watermark as reserved pages. */
4970 max
+= high_wmark_pages(zone
);
4972 if (max
> zone
->present_pages
)
4973 max
= zone
->present_pages
;
4974 reserve_pages
+= max
;
4977 totalreserve_pages
= reserve_pages
;
4981 * setup_per_zone_lowmem_reserve - called whenever
4982 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4983 * has a correct pages reserved value, so an adequate number of
4984 * pages are left in the zone after a successful __alloc_pages().
4986 static void setup_per_zone_lowmem_reserve(void)
4988 struct pglist_data
*pgdat
;
4989 enum zone_type j
, idx
;
4991 for_each_online_pgdat(pgdat
) {
4992 for (j
= 0; j
< MAX_NR_ZONES
; j
++) {
4993 struct zone
*zone
= pgdat
->node_zones
+ j
;
4994 unsigned long present_pages
= zone
->present_pages
;
4996 zone
->lowmem_reserve
[j
] = 0;
5000 struct zone
*lower_zone
;
5004 if (sysctl_lowmem_reserve_ratio
[idx
] < 1)
5005 sysctl_lowmem_reserve_ratio
[idx
] = 1;
5007 lower_zone
= pgdat
->node_zones
+ idx
;
5008 lower_zone
->lowmem_reserve
[j
] = present_pages
/
5009 sysctl_lowmem_reserve_ratio
[idx
];
5010 present_pages
+= lower_zone
->present_pages
;
5015 /* update totalreserve_pages */
5016 calculate_totalreserve_pages();
5020 * setup_per_zone_wmarks - called when min_free_kbytes changes
5021 * or when memory is hot-{added|removed}
5023 * Ensures that the watermark[min,low,high] values for each zone are set
5024 * correctly with respect to min_free_kbytes.
5026 void setup_per_zone_wmarks(void)
5028 unsigned long pages_min
= min_free_kbytes
>> (PAGE_SHIFT
- 10);
5029 unsigned long lowmem_pages
= 0;
5031 unsigned long flags
;
5033 /* Calculate total number of !ZONE_HIGHMEM pages */
5034 for_each_zone(zone
) {
5035 if (!is_highmem(zone
))
5036 lowmem_pages
+= zone
->present_pages
;
5039 for_each_zone(zone
) {
5042 spin_lock_irqsave(&zone
->lock
, flags
);
5043 tmp
= (u64
)pages_min
* zone
->present_pages
;
5044 do_div(tmp
, lowmem_pages
);
5045 if (is_highmem(zone
)) {
5047 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
5048 * need highmem pages, so cap pages_min to a small
5051 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
5052 * deltas controls asynch page reclaim, and so should
5053 * not be capped for highmem.
5057 min_pages
= zone
->present_pages
/ 1024;
5058 if (min_pages
< SWAP_CLUSTER_MAX
)
5059 min_pages
= SWAP_CLUSTER_MAX
;
5060 if (min_pages
> 128)
5062 zone
->watermark
[WMARK_MIN
] = min_pages
;
5065 * If it's a lowmem zone, reserve a number of pages
5066 * proportionate to the zone's size.
5068 zone
->watermark
[WMARK_MIN
] = tmp
;
5071 zone
->watermark
[WMARK_LOW
] = min_wmark_pages(zone
) + (tmp
>> 2);
5072 zone
->watermark
[WMARK_HIGH
] = min_wmark_pages(zone
) + (tmp
>> 1);
5073 setup_zone_migrate_reserve(zone
);
5074 spin_unlock_irqrestore(&zone
->lock
, flags
);
5077 /* update totalreserve_pages */
5078 calculate_totalreserve_pages();
5082 * The inactive anon list should be small enough that the VM never has to
5083 * do too much work, but large enough that each inactive page has a chance
5084 * to be referenced again before it is swapped out.
5086 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
5087 * INACTIVE_ANON pages on this zone's LRU, maintained by the
5088 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
5089 * the anonymous pages are kept on the inactive list.
5092 * memory ratio inactive anon
5093 * -------------------------------------
5102 void calculate_zone_inactive_ratio(struct zone
*zone
)
5104 unsigned int gb
, ratio
;
5106 /* Zone size in gigabytes */
5107 gb
= zone
->present_pages
>> (30 - PAGE_SHIFT
);
5109 ratio
= int_sqrt(10 * gb
);
5113 zone
->inactive_ratio
= ratio
;
5116 static void __init
setup_per_zone_inactive_ratio(void)
5121 calculate_zone_inactive_ratio(zone
);
5125 * Initialise min_free_kbytes.
5127 * For small machines we want it small (128k min). For large machines
5128 * we want it large (64MB max). But it is not linear, because network
5129 * bandwidth does not increase linearly with machine size. We use
5131 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
5132 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
5148 static int __init
init_per_zone_wmark_min(void)
5150 unsigned long lowmem_kbytes
;
5152 lowmem_kbytes
= nr_free_buffer_pages() * (PAGE_SIZE
>> 10);
5154 min_free_kbytes
= int_sqrt(lowmem_kbytes
* 16);
5155 if (min_free_kbytes
< 128)
5156 min_free_kbytes
= 128;
5157 if (min_free_kbytes
> 65536)
5158 min_free_kbytes
= 65536;
5159 setup_per_zone_wmarks();
5160 setup_per_zone_lowmem_reserve();
5161 setup_per_zone_inactive_ratio();
5164 module_init(init_per_zone_wmark_min
)
5167 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
5168 * that we can call two helper functions whenever min_free_kbytes
5171 int min_free_kbytes_sysctl_handler(ctl_table
*table
, int write
,
5172 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5174 proc_dointvec(table
, write
, buffer
, length
, ppos
);
5176 setup_per_zone_wmarks();
5181 int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table
*table
, int write
,
5182 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5187 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5192 zone
->min_unmapped_pages
= (zone
->present_pages
*
5193 sysctl_min_unmapped_ratio
) / 100;
5197 int sysctl_min_slab_ratio_sysctl_handler(ctl_table
*table
, int write
,
5198 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5203 rc
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5208 zone
->min_slab_pages
= (zone
->present_pages
*
5209 sysctl_min_slab_ratio
) / 100;
5215 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
5216 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
5217 * whenever sysctl_lowmem_reserve_ratio changes.
5219 * The reserve ratio obviously has absolutely no relation with the
5220 * minimum watermarks. The lowmem reserve ratio can only make sense
5221 * if in function of the boot time zone sizes.
5223 int lowmem_reserve_ratio_sysctl_handler(ctl_table
*table
, int write
,
5224 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5226 proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5227 setup_per_zone_lowmem_reserve();
5232 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
5233 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
5234 * can have before it gets flushed back to buddy allocator.
5237 int percpu_pagelist_fraction_sysctl_handler(ctl_table
*table
, int write
,
5238 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
5244 ret
= proc_dointvec_minmax(table
, write
, buffer
, length
, ppos
);
5245 if (!write
|| (ret
== -EINVAL
))
5247 for_each_populated_zone(zone
) {
5248 for_each_possible_cpu(cpu
) {
5250 high
= zone
->present_pages
/ percpu_pagelist_fraction
;
5251 setup_pagelist_highmark(
5252 per_cpu_ptr(zone
->pageset
, cpu
), high
);
5258 int hashdist
= HASHDIST_DEFAULT
;
5261 static int __init
set_hashdist(char *str
)
5265 hashdist
= simple_strtoul(str
, &str
, 0);
5268 __setup("hashdist=", set_hashdist
);
5272 * allocate a large system hash table from bootmem
5273 * - it is assumed that the hash table must contain an exact power-of-2
5274 * quantity of entries
5275 * - limit is the number of hash buckets, not the total allocation size
5277 void *__init
alloc_large_system_hash(const char *tablename
,
5278 unsigned long bucketsize
,
5279 unsigned long numentries
,
5282 unsigned int *_hash_shift
,
5283 unsigned int *_hash_mask
,
5284 unsigned long limit
)
5286 unsigned long long max
= limit
;
5287 unsigned long log2qty
, size
;
5290 /* allow the kernel cmdline to have a say */
5292 /* round applicable memory size up to nearest megabyte */
5293 numentries
= nr_kernel_pages
;
5294 numentries
+= (1UL << (20 - PAGE_SHIFT
)) - 1;
5295 numentries
>>= 20 - PAGE_SHIFT
;
5296 numentries
<<= 20 - PAGE_SHIFT
;
5298 /* limit to 1 bucket per 2^scale bytes of low memory */
5299 if (scale
> PAGE_SHIFT
)
5300 numentries
>>= (scale
- PAGE_SHIFT
);
5302 numentries
<<= (PAGE_SHIFT
- scale
);
5304 /* Make sure we've got at least a 0-order allocation.. */
5305 if (unlikely(flags
& HASH_SMALL
)) {
5306 /* Makes no sense without HASH_EARLY */
5307 WARN_ON(!(flags
& HASH_EARLY
));
5308 if (!(numentries
>> *_hash_shift
)) {
5309 numentries
= 1UL << *_hash_shift
;
5310 BUG_ON(!numentries
);
5312 } else if (unlikely((numentries
* bucketsize
) < PAGE_SIZE
))
5313 numentries
= PAGE_SIZE
/ bucketsize
;
5315 numentries
= roundup_pow_of_two(numentries
);
5317 /* limit allocation size to 1/16 total memory by default */
5319 max
= ((unsigned long long)nr_all_pages
<< PAGE_SHIFT
) >> 4;
5320 do_div(max
, bucketsize
);
5323 if (numentries
> max
)
5326 log2qty
= ilog2(numentries
);
5329 size
= bucketsize
<< log2qty
;
5330 if (flags
& HASH_EARLY
)
5331 table
= alloc_bootmem_nopanic(size
);
5333 table
= __vmalloc(size
, GFP_ATOMIC
, PAGE_KERNEL
);
5336 * If bucketsize is not a power-of-two, we may free
5337 * some pages at the end of hash table which
5338 * alloc_pages_exact() automatically does
5340 if (get_order(size
) < MAX_ORDER
) {
5341 table
= alloc_pages_exact(size
, GFP_ATOMIC
);
5342 kmemleak_alloc(table
, size
, 1, GFP_ATOMIC
);
5345 } while (!table
&& size
> PAGE_SIZE
&& --log2qty
);
5348 panic("Failed to allocate %s hash table\n", tablename
);
5350 printk(KERN_INFO
"%s hash table entries: %ld (order: %d, %lu bytes)\n",
5353 ilog2(size
) - PAGE_SHIFT
,
5357 *_hash_shift
= log2qty
;
5359 *_hash_mask
= (1 << log2qty
) - 1;
5364 /* Return a pointer to the bitmap storing bits affecting a block of pages */
5365 static inline unsigned long *get_pageblock_bitmap(struct zone
*zone
,
5368 #ifdef CONFIG_SPARSEMEM
5369 return __pfn_to_section(pfn
)->pageblock_flags
;
5371 return zone
->pageblock_flags
;
5372 #endif /* CONFIG_SPARSEMEM */
5375 static inline int pfn_to_bitidx(struct zone
*zone
, unsigned long pfn
)
5377 #ifdef CONFIG_SPARSEMEM
5378 pfn
&= (PAGES_PER_SECTION
-1);
5379 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5381 pfn
= pfn
- zone
->zone_start_pfn
;
5382 return (pfn
>> pageblock_order
) * NR_PAGEBLOCK_BITS
;
5383 #endif /* CONFIG_SPARSEMEM */
5387 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
5388 * @page: The page within the block of interest
5389 * @start_bitidx: The first bit of interest to retrieve
5390 * @end_bitidx: The last bit of interest
5391 * returns pageblock_bits flags
5393 unsigned long get_pageblock_flags_group(struct page
*page
,
5394 int start_bitidx
, int end_bitidx
)
5397 unsigned long *bitmap
;
5398 unsigned long pfn
, bitidx
;
5399 unsigned long flags
= 0;
5400 unsigned long value
= 1;
5402 zone
= page_zone(page
);
5403 pfn
= page_to_pfn(page
);
5404 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5405 bitidx
= pfn_to_bitidx(zone
, pfn
);
5407 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5408 if (test_bit(bitidx
+ start_bitidx
, bitmap
))
5415 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
5416 * @page: The page within the block of interest
5417 * @start_bitidx: The first bit of interest
5418 * @end_bitidx: The last bit of interest
5419 * @flags: The flags to set
5421 void set_pageblock_flags_group(struct page
*page
, unsigned long flags
,
5422 int start_bitidx
, int end_bitidx
)
5425 unsigned long *bitmap
;
5426 unsigned long pfn
, bitidx
;
5427 unsigned long value
= 1;
5429 zone
= page_zone(page
);
5430 pfn
= page_to_pfn(page
);
5431 bitmap
= get_pageblock_bitmap(zone
, pfn
);
5432 bitidx
= pfn_to_bitidx(zone
, pfn
);
5433 VM_BUG_ON(pfn
< zone
->zone_start_pfn
);
5434 VM_BUG_ON(pfn
>= zone
->zone_start_pfn
+ zone
->spanned_pages
);
5436 for (; start_bitidx
<= end_bitidx
; start_bitidx
++, value
<<= 1)
5438 __set_bit(bitidx
+ start_bitidx
, bitmap
);
5440 __clear_bit(bitidx
+ start_bitidx
, bitmap
);
5444 * This is designed as sub function...plz see page_isolation.c also.
5445 * set/clear page block's type to be ISOLATE.
5446 * page allocater never alloc memory from ISOLATE block.
5450 __count_immobile_pages(struct zone
*zone
, struct page
*page
, int count
)
5452 unsigned long pfn
, iter
, found
;
5454 * For avoiding noise data, lru_add_drain_all() should be called
5455 * If ZONE_MOVABLE, the zone never contains immobile pages
5457 if (zone_idx(zone
) == ZONE_MOVABLE
)
5460 if (get_pageblock_migratetype(page
) == MIGRATE_MOVABLE
)
5463 pfn
= page_to_pfn(page
);
5464 for (found
= 0, iter
= 0; iter
< pageblock_nr_pages
; iter
++) {
5465 unsigned long check
= pfn
+ iter
;
5467 if (!pfn_valid_within(check
))
5470 page
= pfn_to_page(check
);
5471 if (!page_count(page
)) {
5472 if (PageBuddy(page
))
5473 iter
+= (1 << page_order(page
)) - 1;
5479 * If there are RECLAIMABLE pages, we need to check it.
5480 * But now, memory offline itself doesn't call shrink_slab()
5481 * and it still to be fixed.
5484 * If the page is not RAM, page_count()should be 0.
5485 * we don't need more check. This is an _used_ not-movable page.
5487 * The problematic thing here is PG_reserved pages. PG_reserved
5488 * is set to both of a memory hole page and a _used_ kernel
5497 bool is_pageblock_removable_nolock(struct page
*page
)
5499 struct zone
*zone
= page_zone(page
);
5500 return __count_immobile_pages(zone
, page
, 0);
5503 int set_migratetype_isolate(struct page
*page
)
5506 unsigned long flags
, pfn
;
5507 struct memory_isolate_notify arg
;
5512 zone
= page_zone(page
);
5513 zone_idx
= zone_idx(zone
);
5515 spin_lock_irqsave(&zone
->lock
, flags
);
5517 pfn
= page_to_pfn(page
);
5518 arg
.start_pfn
= pfn
;
5519 arg
.nr_pages
= pageblock_nr_pages
;
5520 arg
.pages_found
= 0;
5523 * It may be possible to isolate a pageblock even if the
5524 * migratetype is not MIGRATE_MOVABLE. The memory isolation
5525 * notifier chain is used by balloon drivers to return the
5526 * number of pages in a range that are held by the balloon
5527 * driver to shrink memory. If all the pages are accounted for
5528 * by balloons, are free, or on the LRU, isolation can continue.
5529 * Later, for example, when memory hotplug notifier runs, these
5530 * pages reported as "can be isolated" should be isolated(freed)
5531 * by the balloon driver through the memory notifier chain.
5533 notifier_ret
= memory_isolate_notify(MEM_ISOLATE_COUNT
, &arg
);
5534 notifier_ret
= notifier_to_errno(notifier_ret
);
5538 * FIXME: Now, memory hotplug doesn't call shrink_slab() by itself.
5539 * We just check MOVABLE pages.
5541 if (__count_immobile_pages(zone
, page
, arg
.pages_found
))
5545 * immobile means "not-on-lru" paes. If immobile is larger than
5546 * removable-by-driver pages reported by notifier, we'll fail.
5551 set_pageblock_migratetype(page
, MIGRATE_ISOLATE
);
5552 move_freepages_block(zone
, page
, MIGRATE_ISOLATE
);
5555 spin_unlock_irqrestore(&zone
->lock
, flags
);
5561 void unset_migratetype_isolate(struct page
*page
)
5564 unsigned long flags
;
5565 zone
= page_zone(page
);
5566 spin_lock_irqsave(&zone
->lock
, flags
);
5567 if (get_pageblock_migratetype(page
) != MIGRATE_ISOLATE
)
5569 set_pageblock_migratetype(page
, MIGRATE_MOVABLE
);
5570 move_freepages_block(zone
, page
, MIGRATE_MOVABLE
);
5572 spin_unlock_irqrestore(&zone
->lock
, flags
);
5575 #ifdef CONFIG_MEMORY_HOTREMOVE
5577 * All pages in the range must be isolated before calling this.
5580 __offline_isolated_pages(unsigned long start_pfn
, unsigned long end_pfn
)
5586 unsigned long flags
;
5587 /* find the first valid pfn */
5588 for (pfn
= start_pfn
; pfn
< end_pfn
; pfn
++)
5593 zone
= page_zone(pfn_to_page(pfn
));
5594 spin_lock_irqsave(&zone
->lock
, flags
);
5596 while (pfn
< end_pfn
) {
5597 if (!pfn_valid(pfn
)) {
5601 page
= pfn_to_page(pfn
);
5602 BUG_ON(page_count(page
));
5603 BUG_ON(!PageBuddy(page
));
5604 order
= page_order(page
);
5605 #ifdef CONFIG_DEBUG_VM
5606 printk(KERN_INFO
"remove from free list %lx %d %lx\n",
5607 pfn
, 1 << order
, end_pfn
);
5609 list_del(&page
->lru
);
5610 rmv_page_order(page
);
5611 zone
->free_area
[order
].nr_free
--;
5612 __mod_zone_page_state(zone
, NR_FREE_PAGES
,
5614 for (i
= 0; i
< (1 << order
); i
++)
5615 SetPageReserved((page
+i
));
5616 pfn
+= (1 << order
);
5618 spin_unlock_irqrestore(&zone
->lock
, flags
);
5622 #ifdef CONFIG_MEMORY_FAILURE
5623 bool is_free_buddy_page(struct page
*page
)
5625 struct zone
*zone
= page_zone(page
);
5626 unsigned long pfn
= page_to_pfn(page
);
5627 unsigned long flags
;
5630 spin_lock_irqsave(&zone
->lock
, flags
);
5631 for (order
= 0; order
< MAX_ORDER
; order
++) {
5632 struct page
*page_head
= page
- (pfn
& ((1 << order
) - 1));
5634 if (PageBuddy(page_head
) && page_order(page_head
) >= order
)
5637 spin_unlock_irqrestore(&zone
->lock
, flags
);
5639 return order
< MAX_ORDER
;
5643 static struct trace_print_flags pageflag_names
[] = {
5644 {1UL << PG_locked
, "locked" },
5645 {1UL << PG_error
, "error" },
5646 {1UL << PG_referenced
, "referenced" },
5647 {1UL << PG_uptodate
, "uptodate" },
5648 {1UL << PG_dirty
, "dirty" },
5649 {1UL << PG_lru
, "lru" },
5650 {1UL << PG_active
, "active" },
5651 {1UL << PG_slab
, "slab" },
5652 {1UL << PG_owner_priv_1
, "owner_priv_1" },
5653 {1UL << PG_arch_1
, "arch_1" },
5654 {1UL << PG_reserved
, "reserved" },
5655 {1UL << PG_private
, "private" },
5656 {1UL << PG_private_2
, "private_2" },
5657 {1UL << PG_writeback
, "writeback" },
5658 #ifdef CONFIG_PAGEFLAGS_EXTENDED
5659 {1UL << PG_head
, "head" },
5660 {1UL << PG_tail
, "tail" },
5662 {1UL << PG_compound
, "compound" },
5664 {1UL << PG_swapcache
, "swapcache" },
5665 {1UL << PG_mappedtodisk
, "mappedtodisk" },
5666 {1UL << PG_reclaim
, "reclaim" },
5667 {1UL << PG_swapbacked
, "swapbacked" },
5668 {1UL << PG_unevictable
, "unevictable" },
5670 {1UL << PG_mlocked
, "mlocked" },
5672 #ifdef CONFIG_ARCH_USES_PG_UNCACHED
5673 {1UL << PG_uncached
, "uncached" },
5675 #ifdef CONFIG_MEMORY_FAILURE
5676 {1UL << PG_hwpoison
, "hwpoison" },
5681 static void dump_page_flags(unsigned long flags
)
5683 const char *delim
= "";
5687 printk(KERN_ALERT
"page flags: %#lx(", flags
);
5689 /* remove zone id */
5690 flags
&= (1UL << NR_PAGEFLAGS
) - 1;
5692 for (i
= 0; pageflag_names
[i
].name
&& flags
; i
++) {
5694 mask
= pageflag_names
[i
].mask
;
5695 if ((flags
& mask
) != mask
)
5699 printk("%s%s", delim
, pageflag_names
[i
].name
);
5703 /* check for left over flags */
5705 printk("%s%#lx", delim
, flags
);
5710 void dump_page(struct page
*page
)
5713 "page:%p count:%d mapcount:%d mapping:%p index:%#lx\n",
5714 page
, atomic_read(&page
->_count
), page_mapcount(page
),
5715 page
->mapping
, page
->index
);
5716 dump_page_flags(page
->flags
);
5717 mem_cgroup_print_bad_page(page
);