xen: add kconfig menu
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / ext4 / inode.c
blob986120f30066c68b68f7b40906a489cc2870810b
1 /*
2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
9 * from
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
26 #include <linux/fs.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
43 #include "ext4_jbd2.h"
44 #include "xattr.h"
45 #include "acl.h"
46 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode *inode,
53 loff_t new_size)
55 return jbd2_journal_begin_ordered_truncate(
56 EXT4_SB(inode->i_sb)->s_journal,
57 &EXT4_I(inode)->jinode,
58 new_size);
61 static void ext4_invalidatepage(struct page *page, unsigned long offset);
64 * Test whether an inode is a fast symlink.
66 static int ext4_inode_is_fast_symlink(struct inode *inode)
68 int ea_blocks = EXT4_I(inode)->i_file_acl ?
69 (inode->i_sb->s_blocksize >> 9) : 0;
71 return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
75 * Work out how many blocks we need to proceed with the next chunk of a
76 * truncate transaction.
78 static unsigned long blocks_for_truncate(struct inode *inode)
80 ext4_lblk_t needed;
82 needed = inode->i_blocks >> (inode->i_sb->s_blocksize_bits - 9);
84 /* Give ourselves just enough room to cope with inodes in which
85 * i_blocks is corrupt: we've seen disk corruptions in the past
86 * which resulted in random data in an inode which looked enough
87 * like a regular file for ext4 to try to delete it. Things
88 * will go a bit crazy if that happens, but at least we should
89 * try not to panic the whole kernel. */
90 if (needed < 2)
91 needed = 2;
93 /* But we need to bound the transaction so we don't overflow the
94 * journal. */
95 if (needed > EXT4_MAX_TRANS_DATA)
96 needed = EXT4_MAX_TRANS_DATA;
98 return EXT4_DATA_TRANS_BLOCKS(inode->i_sb) + needed;
102 * Truncate transactions can be complex and absolutely huge. So we need to
103 * be able to restart the transaction at a conventient checkpoint to make
104 * sure we don't overflow the journal.
106 * start_transaction gets us a new handle for a truncate transaction,
107 * and extend_transaction tries to extend the existing one a bit. If
108 * extend fails, we need to propagate the failure up and restart the
109 * transaction in the top-level truncate loop. --sct
111 static handle_t *start_transaction(struct inode *inode)
113 handle_t *result;
115 result = ext4_journal_start(inode, blocks_for_truncate(inode));
116 if (!IS_ERR(result))
117 return result;
119 ext4_std_error(inode->i_sb, PTR_ERR(result));
120 return result;
124 * Try to extend this transaction for the purposes of truncation.
126 * Returns 0 if we managed to create more room. If we can't create more
127 * room, and the transaction must be restarted we return 1.
129 static int try_to_extend_transaction(handle_t *handle, struct inode *inode)
131 if (!ext4_handle_valid(handle))
132 return 0;
133 if (ext4_handle_has_enough_credits(handle, EXT4_RESERVE_TRANS_BLOCKS+1))
134 return 0;
135 if (!ext4_journal_extend(handle, blocks_for_truncate(inode)))
136 return 0;
137 return 1;
141 * Restart the transaction associated with *handle. This does a commit,
142 * so before we call here everything must be consistently dirtied against
143 * this transaction.
145 int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
146 int nblocks)
148 int ret;
151 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152 * moment, get_block can be called only for blocks inside i_size since
153 * page cache has been already dropped and writes are blocked by
154 * i_mutex. So we can safely drop the i_data_sem here.
156 BUG_ON(EXT4_JOURNAL(inode) == NULL);
157 jbd_debug(2, "restarting handle %p\n", handle);
158 up_write(&EXT4_I(inode)->i_data_sem);
159 ret = ext4_journal_restart(handle, blocks_for_truncate(inode));
160 down_write(&EXT4_I(inode)->i_data_sem);
161 ext4_discard_preallocations(inode);
163 return ret;
167 * Called at the last iput() if i_nlink is zero.
169 void ext4_delete_inode(struct inode *inode)
171 handle_t *handle;
172 int err;
174 if (!is_bad_inode(inode))
175 dquot_initialize(inode);
177 if (ext4_should_order_data(inode))
178 ext4_begin_ordered_truncate(inode, 0);
179 truncate_inode_pages(&inode->i_data, 0);
181 if (is_bad_inode(inode))
182 goto no_delete;
184 handle = ext4_journal_start(inode, blocks_for_truncate(inode)+3);
185 if (IS_ERR(handle)) {
186 ext4_std_error(inode->i_sb, PTR_ERR(handle));
188 * If we're going to skip the normal cleanup, we still need to
189 * make sure that the in-core orphan linked list is properly
190 * cleaned up.
192 ext4_orphan_del(NULL, inode);
193 goto no_delete;
196 if (IS_SYNC(inode))
197 ext4_handle_sync(handle);
198 inode->i_size = 0;
199 err = ext4_mark_inode_dirty(handle, inode);
200 if (err) {
201 ext4_warning(inode->i_sb,
202 "couldn't mark inode dirty (err %d)", err);
203 goto stop_handle;
205 if (inode->i_blocks)
206 ext4_truncate(inode);
209 * ext4_ext_truncate() doesn't reserve any slop when it
210 * restarts journal transactions; therefore there may not be
211 * enough credits left in the handle to remove the inode from
212 * the orphan list and set the dtime field.
214 if (!ext4_handle_has_enough_credits(handle, 3)) {
215 err = ext4_journal_extend(handle, 3);
216 if (err > 0)
217 err = ext4_journal_restart(handle, 3);
218 if (err != 0) {
219 ext4_warning(inode->i_sb,
220 "couldn't extend journal (err %d)", err);
221 stop_handle:
222 ext4_journal_stop(handle);
223 goto no_delete;
228 * Kill off the orphan record which ext4_truncate created.
229 * AKPM: I think this can be inside the above `if'.
230 * Note that ext4_orphan_del() has to be able to cope with the
231 * deletion of a non-existent orphan - this is because we don't
232 * know if ext4_truncate() actually created an orphan record.
233 * (Well, we could do this if we need to, but heck - it works)
235 ext4_orphan_del(handle, inode);
236 EXT4_I(inode)->i_dtime = get_seconds();
239 * One subtle ordering requirement: if anything has gone wrong
240 * (transaction abort, IO errors, whatever), then we can still
241 * do these next steps (the fs will already have been marked as
242 * having errors), but we can't free the inode if the mark_dirty
243 * fails.
245 if (ext4_mark_inode_dirty(handle, inode))
246 /* If that failed, just do the required in-core inode clear. */
247 clear_inode(inode);
248 else
249 ext4_free_inode(handle, inode);
250 ext4_journal_stop(handle);
251 return;
252 no_delete:
253 clear_inode(inode); /* We must guarantee clearing of inode... */
256 typedef struct {
257 __le32 *p;
258 __le32 key;
259 struct buffer_head *bh;
260 } Indirect;
262 static inline void add_chain(Indirect *p, struct buffer_head *bh, __le32 *v)
264 p->key = *(p->p = v);
265 p->bh = bh;
269 * ext4_block_to_path - parse the block number into array of offsets
270 * @inode: inode in question (we are only interested in its superblock)
271 * @i_block: block number to be parsed
272 * @offsets: array to store the offsets in
273 * @boundary: set this non-zero if the referred-to block is likely to be
274 * followed (on disk) by an indirect block.
276 * To store the locations of file's data ext4 uses a data structure common
277 * for UNIX filesystems - tree of pointers anchored in the inode, with
278 * data blocks at leaves and indirect blocks in intermediate nodes.
279 * This function translates the block number into path in that tree -
280 * return value is the path length and @offsets[n] is the offset of
281 * pointer to (n+1)th node in the nth one. If @block is out of range
282 * (negative or too large) warning is printed and zero returned.
284 * Note: function doesn't find node addresses, so no IO is needed. All
285 * we need to know is the capacity of indirect blocks (taken from the
286 * inode->i_sb).
290 * Portability note: the last comparison (check that we fit into triple
291 * indirect block) is spelled differently, because otherwise on an
292 * architecture with 32-bit longs and 8Kb pages we might get into trouble
293 * if our filesystem had 8Kb blocks. We might use long long, but that would
294 * kill us on x86. Oh, well, at least the sign propagation does not matter -
295 * i_block would have to be negative in the very beginning, so we would not
296 * get there at all.
299 static int ext4_block_to_path(struct inode *inode,
300 ext4_lblk_t i_block,
301 ext4_lblk_t offsets[4], int *boundary)
303 int ptrs = EXT4_ADDR_PER_BLOCK(inode->i_sb);
304 int ptrs_bits = EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb);
305 const long direct_blocks = EXT4_NDIR_BLOCKS,
306 indirect_blocks = ptrs,
307 double_blocks = (1 << (ptrs_bits * 2));
308 int n = 0;
309 int final = 0;
311 if (i_block < direct_blocks) {
312 offsets[n++] = i_block;
313 final = direct_blocks;
314 } else if ((i_block -= direct_blocks) < indirect_blocks) {
315 offsets[n++] = EXT4_IND_BLOCK;
316 offsets[n++] = i_block;
317 final = ptrs;
318 } else if ((i_block -= indirect_blocks) < double_blocks) {
319 offsets[n++] = EXT4_DIND_BLOCK;
320 offsets[n++] = i_block >> ptrs_bits;
321 offsets[n++] = i_block & (ptrs - 1);
322 final = ptrs;
323 } else if (((i_block -= double_blocks) >> (ptrs_bits * 2)) < ptrs) {
324 offsets[n++] = EXT4_TIND_BLOCK;
325 offsets[n++] = i_block >> (ptrs_bits * 2);
326 offsets[n++] = (i_block >> ptrs_bits) & (ptrs - 1);
327 offsets[n++] = i_block & (ptrs - 1);
328 final = ptrs;
329 } else {
330 ext4_warning(inode->i_sb, "block %lu > max in inode %lu",
331 i_block + direct_blocks +
332 indirect_blocks + double_blocks, inode->i_ino);
334 if (boundary)
335 *boundary = final - 1 - (i_block & (ptrs - 1));
336 return n;
339 static int __ext4_check_blockref(const char *function, struct inode *inode,
340 __le32 *p, unsigned int max)
342 __le32 *bref = p;
343 unsigned int blk;
345 while (bref < p+max) {
346 blk = le32_to_cpu(*bref++);
347 if (blk &&
348 unlikely(!ext4_data_block_valid(EXT4_SB(inode->i_sb),
349 blk, 1))) {
350 __ext4_error(inode->i_sb, function,
351 "invalid block reference %u "
352 "in inode #%lu", blk, inode->i_ino);
353 return -EIO;
356 return 0;
360 #define ext4_check_indirect_blockref(inode, bh) \
361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364 #define ext4_check_inode_blockref(inode) \
365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
366 EXT4_NDIR_BLOCKS)
369 * ext4_get_branch - read the chain of indirect blocks leading to data
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
386 * numbers.
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
395 * Need to be called with
396 * down_read(&EXT4_I(inode)->i_data_sem)
398 static Indirect *ext4_get_branch(struct inode *inode, int depth,
399 ext4_lblk_t *offsets,
400 Indirect chain[4], int *err)
402 struct super_block *sb = inode->i_sb;
403 Indirect *p = chain;
404 struct buffer_head *bh;
406 *err = 0;
407 /* i_data is not going away, no lock needed */
408 add_chain(chain, NULL, EXT4_I(inode)->i_data + *offsets);
409 if (!p->key)
410 goto no_block;
411 while (--depth) {
412 bh = sb_getblk(sb, le32_to_cpu(p->key));
413 if (unlikely(!bh))
414 goto failure;
416 if (!bh_uptodate_or_lock(bh)) {
417 if (bh_submit_read(bh) < 0) {
418 put_bh(bh);
419 goto failure;
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode, bh)) {
423 put_bh(bh);
424 goto failure;
428 add_chain(++p, bh, (__le32 *)bh->b_data + *++offsets);
429 /* Reader: end */
430 if (!p->key)
431 goto no_block;
433 return NULL;
435 failure:
436 *err = -EIO;
437 no_block:
438 return p;
442 * ext4_find_near - find a place for allocation with sufficient locality
443 * @inode: owner
444 * @ind: descriptor of indirect block.
446 * This function returns the preferred place for block allocation.
447 * It is used when heuristic for sequential allocation fails.
448 * Rules are:
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
452 * cylinder group.
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
459 * Caller must make sure that @ind is valid and will stay that way.
461 static ext4_fsblk_t ext4_find_near(struct inode *inode, Indirect *ind)
463 struct ext4_inode_info *ei = EXT4_I(inode);
464 __le32 *start = ind->bh ? (__le32 *) ind->bh->b_data : ei->i_data;
465 __le32 *p;
466 ext4_fsblk_t bg_start;
467 ext4_fsblk_t last_block;
468 ext4_grpblk_t colour;
469 ext4_group_t block_group;
470 int flex_size = ext4_flex_bg_size(EXT4_SB(inode->i_sb));
472 /* Try to find previous block */
473 for (p = ind->p - 1; p >= start; p--) {
474 if (*p)
475 return le32_to_cpu(*p);
478 /* No such thing, so let's try location of indirect block */
479 if (ind->bh)
480 return ind->bh->b_blocknr;
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
486 block_group = ei->i_block_group;
487 if (flex_size >= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME) {
488 block_group &= ~(flex_size-1);
489 if (S_ISREG(inode->i_mode))
490 block_group++;
492 bg_start = ext4_group_first_block_no(inode->i_sb, block_group);
493 last_block = ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es) - 1;
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
499 if (test_opt(inode->i_sb, DELALLOC))
500 return bg_start;
502 if (bg_start + EXT4_BLOCKS_PER_GROUP(inode->i_sb) <= last_block)
503 colour = (current->pid % 16) *
504 (EXT4_BLOCKS_PER_GROUP(inode->i_sb) / 16);
505 else
506 colour = (current->pid % 16) * ((last_block - bg_start) / 16);
507 return bg_start + colour;
511 * ext4_find_goal - find a preferred place for allocation.
512 * @inode: owner
513 * @block: block we want
514 * @partial: pointer to the last triple within a chain
516 * Normally this function find the preferred place for block allocation,
517 * returns it.
518 * Because this is only used for non-extent files, we limit the block nr
519 * to 32 bits.
521 static ext4_fsblk_t ext4_find_goal(struct inode *inode, ext4_lblk_t block,
522 Indirect *partial)
524 ext4_fsblk_t goal;
527 * XXX need to get goal block from mballoc's data structures
530 goal = ext4_find_near(inode, partial);
531 goal = goal & EXT4_MAX_BLOCK_FILE_PHYS;
532 return goal;
536 * ext4_blks_to_allocate: Look up the block map and count the number
537 * of direct blocks need to be allocated for the given branch.
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
547 static int ext4_blks_to_allocate(Indirect *branch, int k, unsigned int blks,
548 int blocks_to_boundary)
550 unsigned int count = 0;
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
556 if (k > 0) {
557 /* right now we don't handle cross boundary allocation */
558 if (blks < blocks_to_boundary + 1)
559 count += blks;
560 else
561 count += blocks_to_boundary + 1;
562 return count;
565 count++;
566 while (count < blks && count <= blocks_to_boundary &&
567 le32_to_cpu(*(branch[0].p + count)) == 0) {
568 count++;
570 return count;
574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 * @indirect_blks: the number of blocks need to allocate for indirect
576 * blocks
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
581 * direct blocks
583 static int ext4_alloc_blocks(handle_t *handle, struct inode *inode,
584 ext4_lblk_t iblock, ext4_fsblk_t goal,
585 int indirect_blks, int blks,
586 ext4_fsblk_t new_blocks[4], int *err)
588 struct ext4_allocation_request ar;
589 int target, i;
590 unsigned long count = 0, blk_allocated = 0;
591 int index = 0;
592 ext4_fsblk_t current_block = 0;
593 int ret = 0;
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
603 /* first we try to allocate the indirect blocks */
604 target = indirect_blks;
605 while (target > 0) {
606 count = target;
607 /* allocating blocks for indirect blocks and direct blocks */
608 current_block = ext4_new_meta_blocks(handle, inode,
609 goal, &count, err);
610 if (*err)
611 goto failed_out;
613 if (unlikely(current_block + count > EXT4_MAX_BLOCK_FILE_PHYS)) {
614 EXT4_ERROR_INODE(inode,
615 "current_block %llu + count %lu > %d!",
616 current_block, count,
617 EXT4_MAX_BLOCK_FILE_PHYS);
618 *err = -EIO;
619 goto failed_out;
622 target -= count;
623 /* allocate blocks for indirect blocks */
624 while (index < indirect_blks && count) {
625 new_blocks[index++] = current_block++;
626 count--;
628 if (count > 0) {
630 * save the new block number
631 * for the first direct block
633 new_blocks[index] = current_block;
634 printk(KERN_INFO "%s returned more blocks than "
635 "requested\n", __func__);
636 WARN_ON(1);
637 break;
641 target = blks - count ;
642 blk_allocated = count;
643 if (!target)
644 goto allocated;
645 /* Now allocate data blocks */
646 memset(&ar, 0, sizeof(ar));
647 ar.inode = inode;
648 ar.goal = goal;
649 ar.len = target;
650 ar.logical = iblock;
651 if (S_ISREG(inode->i_mode))
652 /* enable in-core preallocation only for regular files */
653 ar.flags = EXT4_MB_HINT_DATA;
655 current_block = ext4_mb_new_blocks(handle, &ar, err);
656 if (unlikely(current_block + ar.len > EXT4_MAX_BLOCK_FILE_PHYS)) {
657 EXT4_ERROR_INODE(inode,
658 "current_block %llu + ar.len %d > %d!",
659 current_block, ar.len,
660 EXT4_MAX_BLOCK_FILE_PHYS);
661 *err = -EIO;
662 goto failed_out;
665 if (*err && (target == blks)) {
667 * if the allocation failed and we didn't allocate
668 * any blocks before
670 goto failed_out;
672 if (!*err) {
673 if (target == blks) {
675 * save the new block number
676 * for the first direct block
678 new_blocks[index] = current_block;
680 blk_allocated += ar.len;
682 allocated:
683 /* total number of blocks allocated for direct blocks */
684 ret = blk_allocated;
685 *err = 0;
686 return ret;
687 failed_out:
688 for (i = 0; i < index; i++)
689 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
690 return ret;
694 * ext4_alloc_branch - allocate and set up a chain of blocks.
695 * @inode: owner
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
705 * the same format as ext4_get_branch() would do. We are calling it after
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
708 * picture as after the successful ext4_get_block(), except that in one
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716 * as described above and return 0.
718 static int ext4_alloc_branch(handle_t *handle, struct inode *inode,
719 ext4_lblk_t iblock, int indirect_blks,
720 int *blks, ext4_fsblk_t goal,
721 ext4_lblk_t *offsets, Indirect *branch)
723 int blocksize = inode->i_sb->s_blocksize;
724 int i, n = 0;
725 int err = 0;
726 struct buffer_head *bh;
727 int num;
728 ext4_fsblk_t new_blocks[4];
729 ext4_fsblk_t current_block;
731 num = ext4_alloc_blocks(handle, inode, iblock, goal, indirect_blks,
732 *blks, new_blocks, &err);
733 if (err)
734 return err;
736 branch[0].key = cpu_to_le32(new_blocks[0]);
738 * metadata blocks and data blocks are allocated.
740 for (n = 1; n <= indirect_blks; n++) {
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
744 * parent to disk.
746 bh = sb_getblk(inode->i_sb, new_blocks[n-1]);
747 branch[n].bh = bh;
748 lock_buffer(bh);
749 BUFFER_TRACE(bh, "call get_create_access");
750 err = ext4_journal_get_create_access(handle, bh);
751 if (err) {
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
754 unlock_buffer(bh);
755 goto failed;
758 memset(bh->b_data, 0, blocksize);
759 branch[n].p = (__le32 *) bh->b_data + offsets[n];
760 branch[n].key = cpu_to_le32(new_blocks[n]);
761 *branch[n].p = branch[n].key;
762 if (n == indirect_blks) {
763 current_block = new_blocks[n];
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
769 for (i = 1; i < num; i++)
770 *(branch[n].p + i) = cpu_to_le32(++current_block);
772 BUFFER_TRACE(bh, "marking uptodate");
773 set_buffer_uptodate(bh);
774 unlock_buffer(bh);
776 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
777 err = ext4_handle_dirty_metadata(handle, inode, bh);
778 if (err)
779 goto failed;
781 *blks = num;
782 return err;
783 failed:
784 /* Allocation failed, free what we already allocated */
785 ext4_free_blocks(handle, inode, 0, new_blocks[0], 1, 0);
786 for (i = 1; i <= n ; i++) {
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
792 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1,
793 EXT4_FREE_BLOCKS_FORGET);
795 for (i = n+1; i < indirect_blks; i++)
796 ext4_free_blocks(handle, inode, 0, new_blocks[i], 1, 0);
798 ext4_free_blocks(handle, inode, 0, new_blocks[i], num, 0);
800 return err;
804 * ext4_splice_branch - splice the allocated branch onto inode.
805 * @inode: owner
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
808 * ext4_alloc_branch)
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
817 static int ext4_splice_branch(handle_t *handle, struct inode *inode,
818 ext4_lblk_t block, Indirect *where, int num,
819 int blks)
821 int i;
822 int err = 0;
823 ext4_fsblk_t current_block;
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
828 * before the splice.
830 if (where->bh) {
831 BUFFER_TRACE(where->bh, "get_write_access");
832 err = ext4_journal_get_write_access(handle, where->bh);
833 if (err)
834 goto err_out;
836 /* That's it */
838 *where->p = where->key;
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
844 if (num == 0 && blks > 1) {
845 current_block = le32_to_cpu(where->key) + 1;
846 for (i = 1; i < blks; i++)
847 *(where->p + i) = cpu_to_le32(current_block++);
850 /* We are done with atomic stuff, now do the rest of housekeeping */
851 /* had we spliced it onto indirect block? */
852 if (where->bh) {
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861 jbd_debug(5, "splicing indirect only\n");
862 BUFFER_TRACE(where->bh, "call ext4_handle_dirty_metadata");
863 err = ext4_handle_dirty_metadata(handle, inode, where->bh);
864 if (err)
865 goto err_out;
866 } else {
868 * OK, we spliced it into the inode itself on a direct block.
870 ext4_mark_inode_dirty(handle, inode);
871 jbd_debug(5, "splicing direct\n");
873 return err;
875 err_out:
876 for (i = 1; i <= num; i++) {
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
882 ext4_free_blocks(handle, inode, where[i].bh, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET);
885 ext4_free_blocks(handle, inode, 0, le32_to_cpu(where[num].key),
886 blks, 0);
888 return err;
892 * The ext4_ind_get_blocks() function handles non-extents inodes
893 * (i.e., using the traditional indirect/double-indirect i_blocks
894 * scheme) for ext4_get_blocks().
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
907 * `handle' can be NULL if create == 0.
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
917 * blocks.
919 static int ext4_ind_get_blocks(handle_t *handle, struct inode *inode,
920 ext4_lblk_t iblock, unsigned int maxblocks,
921 struct buffer_head *bh_result,
922 int flags)
924 int err = -EIO;
925 ext4_lblk_t offsets[4];
926 Indirect chain[4];
927 Indirect *partial;
928 ext4_fsblk_t goal;
929 int indirect_blks;
930 int blocks_to_boundary = 0;
931 int depth;
932 int count = 0;
933 ext4_fsblk_t first_block = 0;
935 J_ASSERT(!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL));
936 J_ASSERT(handle != NULL || (flags & EXT4_GET_BLOCKS_CREATE) == 0);
937 depth = ext4_block_to_path(inode, iblock, offsets,
938 &blocks_to_boundary);
940 if (depth == 0)
941 goto out;
943 partial = ext4_get_branch(inode, depth, offsets, chain, &err);
945 /* Simplest case - block found, no allocation needed */
946 if (!partial) {
947 first_block = le32_to_cpu(chain[depth - 1].key);
948 clear_buffer_new(bh_result);
949 count++;
950 /*map more blocks*/
951 while (count < maxblocks && count <= blocks_to_boundary) {
952 ext4_fsblk_t blk;
954 blk = le32_to_cpu(*(chain[depth-1].p + count));
956 if (blk == first_block + count)
957 count++;
958 else
959 break;
961 goto got_it;
964 /* Next simple case - plain lookup or failed read of indirect block */
965 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0 || err == -EIO)
966 goto cleanup;
969 * Okay, we need to do block allocation.
971 goal = ext4_find_goal(inode, iblock, partial);
973 /* the number of blocks need to allocate for [d,t]indirect blocks */
974 indirect_blks = (chain + depth) - partial - 1;
977 * Next look up the indirect map to count the totoal number of
978 * direct blocks to allocate for this branch.
980 count = ext4_blks_to_allocate(partial, indirect_blks,
981 maxblocks, blocks_to_boundary);
983 * Block out ext4_truncate while we alter the tree
985 err = ext4_alloc_branch(handle, inode, iblock, indirect_blks,
986 &count, goal,
987 offsets + (partial - chain), partial);
990 * The ext4_splice_branch call will free and forget any buffers
991 * on the new chain if there is a failure, but that risks using
992 * up transaction credits, especially for bitmaps where the
993 * credits cannot be returned. Can we handle this somehow? We
994 * may need to return -EAGAIN upwards in the worst case. --sct
996 if (!err)
997 err = ext4_splice_branch(handle, inode, iblock,
998 partial, indirect_blks, count);
999 if (err)
1000 goto cleanup;
1002 set_buffer_new(bh_result);
1004 ext4_update_inode_fsync_trans(handle, inode, 1);
1005 got_it:
1006 map_bh(bh_result, inode->i_sb, le32_to_cpu(chain[depth-1].key));
1007 if (count > blocks_to_boundary)
1008 set_buffer_boundary(bh_result);
1009 err = count;
1010 /* Clean up and exit */
1011 partial = chain + depth - 1; /* the whole chain */
1012 cleanup:
1013 while (partial > chain) {
1014 BUFFER_TRACE(partial->bh, "call brelse");
1015 brelse(partial->bh);
1016 partial--;
1018 BUFFER_TRACE(bh_result, "returned");
1019 out:
1020 return err;
1023 #ifdef CONFIG_QUOTA
1024 qsize_t *ext4_get_reserved_space(struct inode *inode)
1026 return &EXT4_I(inode)->i_reserved_quota;
1028 #endif
1031 * Calculate the number of metadata blocks need to reserve
1032 * to allocate a new block at @lblocks for non extent file based file
1034 static int ext4_indirect_calc_metadata_amount(struct inode *inode,
1035 sector_t lblock)
1037 struct ext4_inode_info *ei = EXT4_I(inode);
1038 int dind_mask = EXT4_ADDR_PER_BLOCK(inode->i_sb) - 1;
1039 int blk_bits;
1041 if (lblock < EXT4_NDIR_BLOCKS)
1042 return 0;
1044 lblock -= EXT4_NDIR_BLOCKS;
1046 if (ei->i_da_metadata_calc_len &&
1047 (lblock & dind_mask) == ei->i_da_metadata_calc_last_lblock) {
1048 ei->i_da_metadata_calc_len++;
1049 return 0;
1051 ei->i_da_metadata_calc_last_lblock = lblock & dind_mask;
1052 ei->i_da_metadata_calc_len = 1;
1053 blk_bits = roundup_pow_of_two(lblock + 1);
1054 return (blk_bits / EXT4_ADDR_PER_BLOCK_BITS(inode->i_sb)) + 1;
1058 * Calculate the number of metadata blocks need to reserve
1059 * to allocate a block located at @lblock
1061 static int ext4_calc_metadata_amount(struct inode *inode, sector_t lblock)
1063 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
1064 return ext4_ext_calc_metadata_amount(inode, lblock);
1066 return ext4_indirect_calc_metadata_amount(inode, lblock);
1070 * Called with i_data_sem down, which is important since we can call
1071 * ext4_discard_preallocations() from here.
1073 void ext4_da_update_reserve_space(struct inode *inode,
1074 int used, int quota_claim)
1076 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1077 struct ext4_inode_info *ei = EXT4_I(inode);
1078 int mdb_free = 0, allocated_meta_blocks = 0;
1080 spin_lock(&ei->i_block_reservation_lock);
1081 trace_ext4_da_update_reserve_space(inode, used);
1082 if (unlikely(used > ei->i_reserved_data_blocks)) {
1083 ext4_msg(inode->i_sb, KERN_NOTICE, "%s: ino %lu, used %d "
1084 "with only %d reserved data blocks\n",
1085 __func__, inode->i_ino, used,
1086 ei->i_reserved_data_blocks);
1087 WARN_ON(1);
1088 used = ei->i_reserved_data_blocks;
1091 /* Update per-inode reservations */
1092 ei->i_reserved_data_blocks -= used;
1093 used += ei->i_allocated_meta_blocks;
1094 ei->i_reserved_meta_blocks -= ei->i_allocated_meta_blocks;
1095 allocated_meta_blocks = ei->i_allocated_meta_blocks;
1096 ei->i_allocated_meta_blocks = 0;
1097 percpu_counter_sub(&sbi->s_dirtyblocks_counter, used);
1099 if (ei->i_reserved_data_blocks == 0) {
1101 * We can release all of the reserved metadata blocks
1102 * only when we have written all of the delayed
1103 * allocation blocks.
1105 mdb_free = ei->i_reserved_meta_blocks;
1106 ei->i_reserved_meta_blocks = 0;
1107 ei->i_da_metadata_calc_len = 0;
1108 percpu_counter_sub(&sbi->s_dirtyblocks_counter, mdb_free);
1110 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1112 /* Update quota subsystem */
1113 if (quota_claim) {
1114 dquot_claim_block(inode, used);
1115 if (mdb_free)
1116 dquot_release_reservation_block(inode, mdb_free);
1117 } else {
1119 * We did fallocate with an offset that is already delayed
1120 * allocated. So on delayed allocated writeback we should
1121 * not update the quota for allocated blocks. But then
1122 * converting an fallocate region to initialized region would
1123 * have caused a metadata allocation. So claim quota for
1124 * that
1126 if (allocated_meta_blocks)
1127 dquot_claim_block(inode, allocated_meta_blocks);
1128 dquot_release_reservation_block(inode, mdb_free + used);
1132 * If we have done all the pending block allocations and if
1133 * there aren't any writers on the inode, we can discard the
1134 * inode's preallocations.
1136 if ((ei->i_reserved_data_blocks == 0) &&
1137 (atomic_read(&inode->i_writecount) == 0))
1138 ext4_discard_preallocations(inode);
1141 static int check_block_validity(struct inode *inode, const char *msg,
1142 sector_t logical, sector_t phys, int len)
1144 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), phys, len)) {
1145 __ext4_error(inode->i_sb, msg,
1146 "inode #%lu logical block %llu mapped to %llu "
1147 "(size %d)", inode->i_ino,
1148 (unsigned long long) logical,
1149 (unsigned long long) phys, len);
1150 return -EIO;
1152 return 0;
1156 * Return the number of contiguous dirty pages in a given inode
1157 * starting at page frame idx.
1159 static pgoff_t ext4_num_dirty_pages(struct inode *inode, pgoff_t idx,
1160 unsigned int max_pages)
1162 struct address_space *mapping = inode->i_mapping;
1163 pgoff_t index;
1164 struct pagevec pvec;
1165 pgoff_t num = 0;
1166 int i, nr_pages, done = 0;
1168 if (max_pages == 0)
1169 return 0;
1170 pagevec_init(&pvec, 0);
1171 while (!done) {
1172 index = idx;
1173 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
1174 PAGECACHE_TAG_DIRTY,
1175 (pgoff_t)PAGEVEC_SIZE);
1176 if (nr_pages == 0)
1177 break;
1178 for (i = 0; i < nr_pages; i++) {
1179 struct page *page = pvec.pages[i];
1180 struct buffer_head *bh, *head;
1182 lock_page(page);
1183 if (unlikely(page->mapping != mapping) ||
1184 !PageDirty(page) ||
1185 PageWriteback(page) ||
1186 page->index != idx) {
1187 done = 1;
1188 unlock_page(page);
1189 break;
1191 if (page_has_buffers(page)) {
1192 bh = head = page_buffers(page);
1193 do {
1194 if (!buffer_delay(bh) &&
1195 !buffer_unwritten(bh))
1196 done = 1;
1197 bh = bh->b_this_page;
1198 } while (!done && (bh != head));
1200 unlock_page(page);
1201 if (done)
1202 break;
1203 idx++;
1204 num++;
1205 if (num >= max_pages)
1206 break;
1208 pagevec_release(&pvec);
1210 return num;
1214 * The ext4_get_blocks() function tries to look up the requested blocks,
1215 * and returns if the blocks are already mapped.
1217 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218 * and store the allocated blocks in the result buffer head and mark it
1219 * mapped.
1221 * If file type is extents based, it will call ext4_ext_get_blocks(),
1222 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1223 * based files
1225 * On success, it returns the number of blocks being mapped or allocate.
1226 * if create==0 and the blocks are pre-allocated and uninitialized block,
1227 * the result buffer head is unmapped. If the create ==1, it will make sure
1228 * the buffer head is mapped.
1230 * It returns 0 if plain look up failed (blocks have not been allocated), in
1231 * that casem, buffer head is unmapped
1233 * It returns the error in case of allocation failure.
1235 int ext4_get_blocks(handle_t *handle, struct inode *inode, sector_t block,
1236 unsigned int max_blocks, struct buffer_head *bh,
1237 int flags)
1239 int retval;
1241 clear_buffer_mapped(bh);
1242 clear_buffer_unwritten(bh);
1244 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1245 "logical block %lu\n", inode->i_ino, flags, max_blocks,
1246 (unsigned long)block);
1248 * Try to see if we can get the block without requesting a new
1249 * file system block.
1251 down_read((&EXT4_I(inode)->i_data_sem));
1252 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1253 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1254 bh, 0);
1255 } else {
1256 retval = ext4_ind_get_blocks(handle, inode, block, max_blocks,
1257 bh, 0);
1259 up_read((&EXT4_I(inode)->i_data_sem));
1261 if (retval > 0 && buffer_mapped(bh)) {
1262 int ret = check_block_validity(inode, "file system corruption",
1263 block, bh->b_blocknr, retval);
1264 if (ret != 0)
1265 return ret;
1268 /* If it is only a block(s) look up */
1269 if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
1270 return retval;
1273 * Returns if the blocks have already allocated
1275 * Note that if blocks have been preallocated
1276 * ext4_ext_get_block() returns th create = 0
1277 * with buffer head unmapped.
1279 if (retval > 0 && buffer_mapped(bh))
1280 return retval;
1283 * When we call get_blocks without the create flag, the
1284 * BH_Unwritten flag could have gotten set if the blocks
1285 * requested were part of a uninitialized extent. We need to
1286 * clear this flag now that we are committed to convert all or
1287 * part of the uninitialized extent to be an initialized
1288 * extent. This is because we need to avoid the combination
1289 * of BH_Unwritten and BH_Mapped flags being simultaneously
1290 * set on the buffer_head.
1292 clear_buffer_unwritten(bh);
1295 * New blocks allocate and/or writing to uninitialized extent
1296 * will possibly result in updating i_data, so we take
1297 * the write lock of i_data_sem, and call get_blocks()
1298 * with create == 1 flag.
1300 down_write((&EXT4_I(inode)->i_data_sem));
1303 * if the caller is from delayed allocation writeout path
1304 * we have already reserved fs blocks for allocation
1305 * let the underlying get_block() function know to
1306 * avoid double accounting
1308 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1309 EXT4_I(inode)->i_delalloc_reserved_flag = 1;
1311 * We need to check for EXT4 here because migrate
1312 * could have changed the inode type in between
1314 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
1315 retval = ext4_ext_get_blocks(handle, inode, block, max_blocks,
1316 bh, flags);
1317 } else {
1318 retval = ext4_ind_get_blocks(handle, inode, block,
1319 max_blocks, bh, flags);
1321 if (retval > 0 && buffer_new(bh)) {
1323 * We allocated new blocks which will result in
1324 * i_data's format changing. Force the migrate
1325 * to fail by clearing migrate flags
1327 ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now. We don't
1333 * support fallocate for non extent files. So we can update
1334 * reserve space here.
1336 if ((retval > 0) &&
1337 (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
1338 ext4_da_update_reserve_space(inode, retval, 1);
1340 if (flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE)
1341 EXT4_I(inode)->i_delalloc_reserved_flag = 0;
1343 up_write((&EXT4_I(inode)->i_data_sem));
1344 if (retval > 0 && buffer_mapped(bh)) {
1345 int ret = check_block_validity(inode, "file system "
1346 "corruption after allocation",
1347 block, bh->b_blocknr, retval);
1348 if (ret != 0)
1349 return ret;
1351 return retval;
1354 /* Maximum number of blocks we map for direct IO at once. */
1355 #define DIO_MAX_BLOCKS 4096
1357 int ext4_get_block(struct inode *inode, sector_t iblock,
1358 struct buffer_head *bh_result, int create)
1360 handle_t *handle = ext4_journal_current_handle();
1361 int ret = 0, started = 0;
1362 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
1363 int dio_credits;
1365 if (create && !handle) {
1366 /* Direct IO write... */
1367 if (max_blocks > DIO_MAX_BLOCKS)
1368 max_blocks = DIO_MAX_BLOCKS;
1369 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
1370 handle = ext4_journal_start(inode, dio_credits);
1371 if (IS_ERR(handle)) {
1372 ret = PTR_ERR(handle);
1373 goto out;
1375 started = 1;
1378 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
1379 create ? EXT4_GET_BLOCKS_CREATE : 0);
1380 if (ret > 0) {
1381 bh_result->b_size = (ret << inode->i_blkbits);
1382 ret = 0;
1384 if (started)
1385 ext4_journal_stop(handle);
1386 out:
1387 return ret;
1391 * `handle' can be NULL if create is zero
1393 struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
1394 ext4_lblk_t block, int create, int *errp)
1396 struct buffer_head dummy;
1397 int fatal = 0, err;
1398 int flags = 0;
1400 J_ASSERT(handle != NULL || create == 0);
1402 dummy.b_state = 0;
1403 dummy.b_blocknr = -1000;
1404 buffer_trace_init(&dummy.b_history);
1405 if (create)
1406 flags |= EXT4_GET_BLOCKS_CREATE;
1407 err = ext4_get_blocks(handle, inode, block, 1, &dummy, flags);
1409 * ext4_get_blocks() returns number of blocks mapped. 0 in
1410 * case of a HOLE.
1412 if (err > 0) {
1413 if (err > 1)
1414 WARN_ON(1);
1415 err = 0;
1417 *errp = err;
1418 if (!err && buffer_mapped(&dummy)) {
1419 struct buffer_head *bh;
1420 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
1421 if (!bh) {
1422 *errp = -EIO;
1423 goto err;
1425 if (buffer_new(&dummy)) {
1426 J_ASSERT(create != 0);
1427 J_ASSERT(handle != NULL);
1430 * Now that we do not always journal data, we should
1431 * keep in mind whether this should always journal the
1432 * new buffer as metadata. For now, regular file
1433 * writes use ext4_get_block instead, so it's not a
1434 * problem.
1436 lock_buffer(bh);
1437 BUFFER_TRACE(bh, "call get_create_access");
1438 fatal = ext4_journal_get_create_access(handle, bh);
1439 if (!fatal && !buffer_uptodate(bh)) {
1440 memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1441 set_buffer_uptodate(bh);
1443 unlock_buffer(bh);
1444 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
1445 err = ext4_handle_dirty_metadata(handle, inode, bh);
1446 if (!fatal)
1447 fatal = err;
1448 } else {
1449 BUFFER_TRACE(bh, "not a new buffer");
1451 if (fatal) {
1452 *errp = fatal;
1453 brelse(bh);
1454 bh = NULL;
1456 return bh;
1458 err:
1459 return NULL;
1462 struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
1463 ext4_lblk_t block, int create, int *err)
1465 struct buffer_head *bh;
1467 bh = ext4_getblk(handle, inode, block, create, err);
1468 if (!bh)
1469 return bh;
1470 if (buffer_uptodate(bh))
1471 return bh;
1472 ll_rw_block(READ_META, 1, &bh);
1473 wait_on_buffer(bh);
1474 if (buffer_uptodate(bh))
1475 return bh;
1476 put_bh(bh);
1477 *err = -EIO;
1478 return NULL;
1481 static int walk_page_buffers(handle_t *handle,
1482 struct buffer_head *head,
1483 unsigned from,
1484 unsigned to,
1485 int *partial,
1486 int (*fn)(handle_t *handle,
1487 struct buffer_head *bh))
1489 struct buffer_head *bh;
1490 unsigned block_start, block_end;
1491 unsigned blocksize = head->b_size;
1492 int err, ret = 0;
1493 struct buffer_head *next;
1495 for (bh = head, block_start = 0;
1496 ret == 0 && (bh != head || !block_start);
1497 block_start = block_end, bh = next) {
1498 next = bh->b_this_page;
1499 block_end = block_start + blocksize;
1500 if (block_end <= from || block_start >= to) {
1501 if (partial && !buffer_uptodate(bh))
1502 *partial = 1;
1503 continue;
1505 err = (*fn)(handle, bh);
1506 if (!ret)
1507 ret = err;
1509 return ret;
1513 * To preserve ordering, it is essential that the hole instantiation and
1514 * the data write be encapsulated in a single transaction. We cannot
1515 * close off a transaction and start a new one between the ext4_get_block()
1516 * and the commit_write(). So doing the jbd2_journal_start at the start of
1517 * prepare_write() is the right place.
1519 * Also, this function can nest inside ext4_writepage() ->
1520 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1521 * has generated enough buffer credits to do the whole page. So we won't
1522 * block on the journal in that case, which is good, because the caller may
1523 * be PF_MEMALLOC.
1525 * By accident, ext4 can be reentered when a transaction is open via
1526 * quota file writes. If we were to commit the transaction while thus
1527 * reentered, there can be a deadlock - we would be holding a quota
1528 * lock, and the commit would never complete if another thread had a
1529 * transaction open and was blocking on the quota lock - a ranking
1530 * violation.
1532 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1533 * will _not_ run commit under these circumstances because handle->h_ref
1534 * is elevated. We'll still have enough credits for the tiny quotafile
1535 * write.
1537 static int do_journal_get_write_access(handle_t *handle,
1538 struct buffer_head *bh)
1540 if (!buffer_mapped(bh) || buffer_freed(bh))
1541 return 0;
1542 return ext4_journal_get_write_access(handle, bh);
1546 * Truncate blocks that were not used by write. We have to truncate the
1547 * pagecache as well so that corresponding buffers get properly unmapped.
1549 static void ext4_truncate_failed_write(struct inode *inode)
1551 truncate_inode_pages(inode->i_mapping, inode->i_size);
1552 ext4_truncate(inode);
1555 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
1556 struct buffer_head *bh_result, int create);
1557 static int ext4_write_begin(struct file *file, struct address_space *mapping,
1558 loff_t pos, unsigned len, unsigned flags,
1559 struct page **pagep, void **fsdata)
1561 struct inode *inode = mapping->host;
1562 int ret, needed_blocks;
1563 handle_t *handle;
1564 int retries = 0;
1565 struct page *page;
1566 pgoff_t index;
1567 unsigned from, to;
1569 trace_ext4_write_begin(inode, pos, len, flags);
1571 * Reserve one block more for addition to orphan list in case
1572 * we allocate blocks but write fails for some reason
1574 needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
1575 index = pos >> PAGE_CACHE_SHIFT;
1576 from = pos & (PAGE_CACHE_SIZE - 1);
1577 to = from + len;
1579 retry:
1580 handle = ext4_journal_start(inode, needed_blocks);
1581 if (IS_ERR(handle)) {
1582 ret = PTR_ERR(handle);
1583 goto out;
1586 /* We cannot recurse into the filesystem as the transaction is already
1587 * started */
1588 flags |= AOP_FLAG_NOFS;
1590 page = grab_cache_page_write_begin(mapping, index, flags);
1591 if (!page) {
1592 ext4_journal_stop(handle);
1593 ret = -ENOMEM;
1594 goto out;
1596 *pagep = page;
1598 if (ext4_should_dioread_nolock(inode))
1599 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1600 fsdata, ext4_get_block_write);
1601 else
1602 ret = block_write_begin(file, mapping, pos, len, flags, pagep,
1603 fsdata, ext4_get_block);
1605 if (!ret && ext4_should_journal_data(inode)) {
1606 ret = walk_page_buffers(handle, page_buffers(page),
1607 from, to, NULL, do_journal_get_write_access);
1610 if (ret) {
1611 unlock_page(page);
1612 page_cache_release(page);
1614 * block_write_begin may have instantiated a few blocks
1615 * outside i_size. Trim these off again. Don't need
1616 * i_size_read because we hold i_mutex.
1618 * Add inode to orphan list in case we crash before
1619 * truncate finishes
1621 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1622 ext4_orphan_add(handle, inode);
1624 ext4_journal_stop(handle);
1625 if (pos + len > inode->i_size) {
1626 ext4_truncate_failed_write(inode);
1628 * If truncate failed early the inode might
1629 * still be on the orphan list; we need to
1630 * make sure the inode is removed from the
1631 * orphan list in that case.
1633 if (inode->i_nlink)
1634 ext4_orphan_del(NULL, inode);
1638 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
1639 goto retry;
1640 out:
1641 return ret;
1644 /* For write_end() in data=journal mode */
1645 static int write_end_fn(handle_t *handle, struct buffer_head *bh)
1647 if (!buffer_mapped(bh) || buffer_freed(bh))
1648 return 0;
1649 set_buffer_uptodate(bh);
1650 return ext4_handle_dirty_metadata(handle, NULL, bh);
1653 static int ext4_generic_write_end(struct file *file,
1654 struct address_space *mapping,
1655 loff_t pos, unsigned len, unsigned copied,
1656 struct page *page, void *fsdata)
1658 int i_size_changed = 0;
1659 struct inode *inode = mapping->host;
1660 handle_t *handle = ext4_journal_current_handle();
1662 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
1665 * No need to use i_size_read() here, the i_size
1666 * cannot change under us because we hold i_mutex.
1668 * But it's important to update i_size while still holding page lock:
1669 * page writeout could otherwise come in and zero beyond i_size.
1671 if (pos + copied > inode->i_size) {
1672 i_size_write(inode, pos + copied);
1673 i_size_changed = 1;
1676 if (pos + copied > EXT4_I(inode)->i_disksize) {
1677 /* We need to mark inode dirty even if
1678 * new_i_size is less that inode->i_size
1679 * bu greater than i_disksize.(hint delalloc)
1681 ext4_update_i_disksize(inode, (pos + copied));
1682 i_size_changed = 1;
1684 unlock_page(page);
1685 page_cache_release(page);
1688 * Don't mark the inode dirty under page lock. First, it unnecessarily
1689 * makes the holding time of page lock longer. Second, it forces lock
1690 * ordering of page lock and transaction start for journaling
1691 * filesystems.
1693 if (i_size_changed)
1694 ext4_mark_inode_dirty(handle, inode);
1696 return copied;
1700 * We need to pick up the new inode size which generic_commit_write gave us
1701 * `file' can be NULL - eg, when called from page_symlink().
1703 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1704 * buffers are managed internally.
1706 static int ext4_ordered_write_end(struct file *file,
1707 struct address_space *mapping,
1708 loff_t pos, unsigned len, unsigned copied,
1709 struct page *page, void *fsdata)
1711 handle_t *handle = ext4_journal_current_handle();
1712 struct inode *inode = mapping->host;
1713 int ret = 0, ret2;
1715 trace_ext4_ordered_write_end(inode, pos, len, copied);
1716 ret = ext4_jbd2_file_inode(handle, inode);
1718 if (ret == 0) {
1719 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1720 page, fsdata);
1721 copied = ret2;
1722 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1723 /* if we have allocated more blocks and copied
1724 * less. We will have blocks allocated outside
1725 * inode->i_size. So truncate them
1727 ext4_orphan_add(handle, inode);
1728 if (ret2 < 0)
1729 ret = ret2;
1731 ret2 = ext4_journal_stop(handle);
1732 if (!ret)
1733 ret = ret2;
1735 if (pos + len > inode->i_size) {
1736 ext4_truncate_failed_write(inode);
1738 * If truncate failed early the inode might still be
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1742 if (inode->i_nlink)
1743 ext4_orphan_del(NULL, inode);
1747 return ret ? ret : copied;
1750 static int ext4_writeback_write_end(struct file *file,
1751 struct address_space *mapping,
1752 loff_t pos, unsigned len, unsigned copied,
1753 struct page *page, void *fsdata)
1755 handle_t *handle = ext4_journal_current_handle();
1756 struct inode *inode = mapping->host;
1757 int ret = 0, ret2;
1759 trace_ext4_writeback_write_end(inode, pos, len, copied);
1760 ret2 = ext4_generic_write_end(file, mapping, pos, len, copied,
1761 page, fsdata);
1762 copied = ret2;
1763 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1764 /* if we have allocated more blocks and copied
1765 * less. We will have blocks allocated outside
1766 * inode->i_size. So truncate them
1768 ext4_orphan_add(handle, inode);
1770 if (ret2 < 0)
1771 ret = ret2;
1773 ret2 = ext4_journal_stop(handle);
1774 if (!ret)
1775 ret = ret2;
1777 if (pos + len > inode->i_size) {
1778 ext4_truncate_failed_write(inode);
1780 * If truncate failed early the inode might still be
1781 * on the orphan list; we need to make sure the inode
1782 * is removed from the orphan list in that case.
1784 if (inode->i_nlink)
1785 ext4_orphan_del(NULL, inode);
1788 return ret ? ret : copied;
1791 static int ext4_journalled_write_end(struct file *file,
1792 struct address_space *mapping,
1793 loff_t pos, unsigned len, unsigned copied,
1794 struct page *page, void *fsdata)
1796 handle_t *handle = ext4_journal_current_handle();
1797 struct inode *inode = mapping->host;
1798 int ret = 0, ret2;
1799 int partial = 0;
1800 unsigned from, to;
1801 loff_t new_i_size;
1803 trace_ext4_journalled_write_end(inode, pos, len, copied);
1804 from = pos & (PAGE_CACHE_SIZE - 1);
1805 to = from + len;
1807 if (copied < len) {
1808 if (!PageUptodate(page))
1809 copied = 0;
1810 page_zero_new_buffers(page, from+copied, to);
1813 ret = walk_page_buffers(handle, page_buffers(page), from,
1814 to, &partial, write_end_fn);
1815 if (!partial)
1816 SetPageUptodate(page);
1817 new_i_size = pos + copied;
1818 if (new_i_size > inode->i_size)
1819 i_size_write(inode, pos+copied);
1820 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
1821 if (new_i_size > EXT4_I(inode)->i_disksize) {
1822 ext4_update_i_disksize(inode, new_i_size);
1823 ret2 = ext4_mark_inode_dirty(handle, inode);
1824 if (!ret)
1825 ret = ret2;
1828 unlock_page(page);
1829 page_cache_release(page);
1830 if (pos + len > inode->i_size && ext4_can_truncate(inode))
1831 /* if we have allocated more blocks and copied
1832 * less. We will have blocks allocated outside
1833 * inode->i_size. So truncate them
1835 ext4_orphan_add(handle, inode);
1837 ret2 = ext4_journal_stop(handle);
1838 if (!ret)
1839 ret = ret2;
1840 if (pos + len > inode->i_size) {
1841 ext4_truncate_failed_write(inode);
1843 * If truncate failed early the inode might still be
1844 * on the orphan list; we need to make sure the inode
1845 * is removed from the orphan list in that case.
1847 if (inode->i_nlink)
1848 ext4_orphan_del(NULL, inode);
1851 return ret ? ret : copied;
1855 * Reserve a single block located at lblock
1857 static int ext4_da_reserve_space(struct inode *inode, sector_t lblock)
1859 int retries = 0;
1860 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1861 struct ext4_inode_info *ei = EXT4_I(inode);
1862 unsigned long md_needed, md_reserved;
1863 int ret;
1866 * recalculate the amount of metadata blocks to reserve
1867 * in order to allocate nrblocks
1868 * worse case is one extent per block
1870 repeat:
1871 spin_lock(&ei->i_block_reservation_lock);
1872 md_reserved = ei->i_reserved_meta_blocks;
1873 md_needed = ext4_calc_metadata_amount(inode, lblock);
1874 trace_ext4_da_reserve_space(inode, md_needed);
1875 spin_unlock(&ei->i_block_reservation_lock);
1878 * Make quota reservation here to prevent quota overflow
1879 * later. Real quota accounting is done at pages writeout
1880 * time.
1882 ret = dquot_reserve_block(inode, md_needed + 1);
1883 if (ret)
1884 return ret;
1886 if (ext4_claim_free_blocks(sbi, md_needed + 1)) {
1887 dquot_release_reservation_block(inode, md_needed + 1);
1888 if (ext4_should_retry_alloc(inode->i_sb, &retries)) {
1889 yield();
1890 goto repeat;
1892 return -ENOSPC;
1894 spin_lock(&ei->i_block_reservation_lock);
1895 ei->i_reserved_data_blocks++;
1896 ei->i_reserved_meta_blocks += md_needed;
1897 spin_unlock(&ei->i_block_reservation_lock);
1899 return 0; /* success */
1902 static void ext4_da_release_space(struct inode *inode, int to_free)
1904 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
1905 struct ext4_inode_info *ei = EXT4_I(inode);
1907 if (!to_free)
1908 return; /* Nothing to release, exit */
1910 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
1912 if (unlikely(to_free > ei->i_reserved_data_blocks)) {
1914 * if there aren't enough reserved blocks, then the
1915 * counter is messed up somewhere. Since this
1916 * function is called from invalidate page, it's
1917 * harmless to return without any action.
1919 ext4_msg(inode->i_sb, KERN_NOTICE, "ext4_da_release_space: "
1920 "ino %lu, to_free %d with only %d reserved "
1921 "data blocks\n", inode->i_ino, to_free,
1922 ei->i_reserved_data_blocks);
1923 WARN_ON(1);
1924 to_free = ei->i_reserved_data_blocks;
1926 ei->i_reserved_data_blocks -= to_free;
1928 if (ei->i_reserved_data_blocks == 0) {
1930 * We can release all of the reserved metadata blocks
1931 * only when we have written all of the delayed
1932 * allocation blocks.
1934 to_free += ei->i_reserved_meta_blocks;
1935 ei->i_reserved_meta_blocks = 0;
1936 ei->i_da_metadata_calc_len = 0;
1939 /* update fs dirty blocks counter */
1940 percpu_counter_sub(&sbi->s_dirtyblocks_counter, to_free);
1942 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
1944 dquot_release_reservation_block(inode, to_free);
1947 static void ext4_da_page_release_reservation(struct page *page,
1948 unsigned long offset)
1950 int to_release = 0;
1951 struct buffer_head *head, *bh;
1952 unsigned int curr_off = 0;
1954 head = page_buffers(page);
1955 bh = head;
1956 do {
1957 unsigned int next_off = curr_off + bh->b_size;
1959 if ((offset <= curr_off) && (buffer_delay(bh))) {
1960 to_release++;
1961 clear_buffer_delay(bh);
1963 curr_off = next_off;
1964 } while ((bh = bh->b_this_page) != head);
1965 ext4_da_release_space(page->mapping->host, to_release);
1969 * Delayed allocation stuff
1973 * mpage_da_submit_io - walks through extent of pages and try to write
1974 * them with writepage() call back
1976 * @mpd->inode: inode
1977 * @mpd->first_page: first page of the extent
1978 * @mpd->next_page: page after the last page of the extent
1980 * By the time mpage_da_submit_io() is called we expect all blocks
1981 * to be allocated. this may be wrong if allocation failed.
1983 * As pages are already locked by write_cache_pages(), we can't use it
1985 static int mpage_da_submit_io(struct mpage_da_data *mpd)
1987 long pages_skipped;
1988 struct pagevec pvec;
1989 unsigned long index, end;
1990 int ret = 0, err, nr_pages, i;
1991 struct inode *inode = mpd->inode;
1992 struct address_space *mapping = inode->i_mapping;
1994 BUG_ON(mpd->next_page <= mpd->first_page);
1996 * We need to start from the first_page to the next_page - 1
1997 * to make sure we also write the mapped dirty buffer_heads.
1998 * If we look at mpd->b_blocknr we would only be looking
1999 * at the currently mapped buffer_heads.
2001 index = mpd->first_page;
2002 end = mpd->next_page - 1;
2004 pagevec_init(&pvec, 0);
2005 while (index <= end) {
2006 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2007 if (nr_pages == 0)
2008 break;
2009 for (i = 0; i < nr_pages; i++) {
2010 struct page *page = pvec.pages[i];
2012 index = page->index;
2013 if (index > end)
2014 break;
2015 index++;
2017 BUG_ON(!PageLocked(page));
2018 BUG_ON(PageWriteback(page));
2020 pages_skipped = mpd->wbc->pages_skipped;
2021 err = mapping->a_ops->writepage(page, mpd->wbc);
2022 if (!err && (pages_skipped == mpd->wbc->pages_skipped))
2024 * have successfully written the page
2025 * without skipping the same
2027 mpd->pages_written++;
2029 * In error case, we have to continue because
2030 * remaining pages are still locked
2031 * XXX: unlock and re-dirty them?
2033 if (ret == 0)
2034 ret = err;
2036 pagevec_release(&pvec);
2038 return ret;
2042 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2044 * @mpd->inode - inode to walk through
2045 * @exbh->b_blocknr - first block on a disk
2046 * @exbh->b_size - amount of space in bytes
2047 * @logical - first logical block to start assignment with
2049 * the function goes through all passed space and put actual disk
2050 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2052 static void mpage_put_bnr_to_bhs(struct mpage_da_data *mpd, sector_t logical,
2053 struct buffer_head *exbh)
2055 struct inode *inode = mpd->inode;
2056 struct address_space *mapping = inode->i_mapping;
2057 int blocks = exbh->b_size >> inode->i_blkbits;
2058 sector_t pblock = exbh->b_blocknr, cur_logical;
2059 struct buffer_head *head, *bh;
2060 pgoff_t index, end;
2061 struct pagevec pvec;
2062 int nr_pages, i;
2064 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2065 end = (logical + blocks - 1) >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2066 cur_logical = index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2068 pagevec_init(&pvec, 0);
2070 while (index <= end) {
2071 /* XXX: optimize tail */
2072 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2073 if (nr_pages == 0)
2074 break;
2075 for (i = 0; i < nr_pages; i++) {
2076 struct page *page = pvec.pages[i];
2078 index = page->index;
2079 if (index > end)
2080 break;
2081 index++;
2083 BUG_ON(!PageLocked(page));
2084 BUG_ON(PageWriteback(page));
2085 BUG_ON(!page_has_buffers(page));
2087 bh = page_buffers(page);
2088 head = bh;
2090 /* skip blocks out of the range */
2091 do {
2092 if (cur_logical >= logical)
2093 break;
2094 cur_logical++;
2095 } while ((bh = bh->b_this_page) != head);
2097 do {
2098 if (cur_logical >= logical + blocks)
2099 break;
2101 if (buffer_delay(bh) ||
2102 buffer_unwritten(bh)) {
2104 BUG_ON(bh->b_bdev != inode->i_sb->s_bdev);
2106 if (buffer_delay(bh)) {
2107 clear_buffer_delay(bh);
2108 bh->b_blocknr = pblock;
2109 } else {
2111 * unwritten already should have
2112 * blocknr assigned. Verify that
2114 clear_buffer_unwritten(bh);
2115 BUG_ON(bh->b_blocknr != pblock);
2118 } else if (buffer_mapped(bh))
2119 BUG_ON(bh->b_blocknr != pblock);
2121 if (buffer_uninit(exbh))
2122 set_buffer_uninit(bh);
2123 cur_logical++;
2124 pblock++;
2125 } while ((bh = bh->b_this_page) != head);
2127 pagevec_release(&pvec);
2133 * __unmap_underlying_blocks - just a helper function to unmap
2134 * set of blocks described by @bh
2136 static inline void __unmap_underlying_blocks(struct inode *inode,
2137 struct buffer_head *bh)
2139 struct block_device *bdev = inode->i_sb->s_bdev;
2140 int blocks, i;
2142 blocks = bh->b_size >> inode->i_blkbits;
2143 for (i = 0; i < blocks; i++)
2144 unmap_underlying_metadata(bdev, bh->b_blocknr + i);
2147 static void ext4_da_block_invalidatepages(struct mpage_da_data *mpd,
2148 sector_t logical, long blk_cnt)
2150 int nr_pages, i;
2151 pgoff_t index, end;
2152 struct pagevec pvec;
2153 struct inode *inode = mpd->inode;
2154 struct address_space *mapping = inode->i_mapping;
2156 index = logical >> (PAGE_CACHE_SHIFT - inode->i_blkbits);
2157 end = (logical + blk_cnt - 1) >>
2158 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2159 while (index <= end) {
2160 nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
2161 if (nr_pages == 0)
2162 break;
2163 for (i = 0; i < nr_pages; i++) {
2164 struct page *page = pvec.pages[i];
2165 if (page->index > end)
2166 break;
2167 BUG_ON(!PageLocked(page));
2168 BUG_ON(PageWriteback(page));
2169 block_invalidatepage(page, 0);
2170 ClearPageUptodate(page);
2171 unlock_page(page);
2173 index = pvec.pages[nr_pages - 1]->index + 1;
2174 pagevec_release(&pvec);
2176 return;
2179 static void ext4_print_free_blocks(struct inode *inode)
2181 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
2182 printk(KERN_CRIT "Total free blocks count %lld\n",
2183 ext4_count_free_blocks(inode->i_sb));
2184 printk(KERN_CRIT "Free/Dirty block details\n");
2185 printk(KERN_CRIT "free_blocks=%lld\n",
2186 (long long) percpu_counter_sum(&sbi->s_freeblocks_counter));
2187 printk(KERN_CRIT "dirty_blocks=%lld\n",
2188 (long long) percpu_counter_sum(&sbi->s_dirtyblocks_counter));
2189 printk(KERN_CRIT "Block reservation details\n");
2190 printk(KERN_CRIT "i_reserved_data_blocks=%u\n",
2191 EXT4_I(inode)->i_reserved_data_blocks);
2192 printk(KERN_CRIT "i_reserved_meta_blocks=%u\n",
2193 EXT4_I(inode)->i_reserved_meta_blocks);
2194 return;
2198 * mpage_da_map_blocks - go through given space
2200 * @mpd - bh describing space
2202 * The function skips space we know is already mapped to disk blocks.
2205 static int mpage_da_map_blocks(struct mpage_da_data *mpd)
2207 int err, blks, get_blocks_flags;
2208 struct buffer_head new;
2209 sector_t next = mpd->b_blocknr;
2210 unsigned max_blocks = mpd->b_size >> mpd->inode->i_blkbits;
2211 loff_t disksize = EXT4_I(mpd->inode)->i_disksize;
2212 handle_t *handle = NULL;
2215 * We consider only non-mapped and non-allocated blocks
2217 if ((mpd->b_state & (1 << BH_Mapped)) &&
2218 !(mpd->b_state & (1 << BH_Delay)) &&
2219 !(mpd->b_state & (1 << BH_Unwritten)))
2220 return 0;
2223 * If we didn't accumulate anything to write simply return
2225 if (!mpd->b_size)
2226 return 0;
2228 handle = ext4_journal_current_handle();
2229 BUG_ON(!handle);
2232 * Call ext4_get_blocks() to allocate any delayed allocation
2233 * blocks, or to convert an uninitialized extent to be
2234 * initialized (in the case where we have written into
2235 * one or more preallocated blocks).
2237 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2238 * indicate that we are on the delayed allocation path. This
2239 * affects functions in many different parts of the allocation
2240 * call path. This flag exists primarily because we don't
2241 * want to change *many* call functions, so ext4_get_blocks()
2242 * will set the magic i_delalloc_reserved_flag once the
2243 * inode's allocation semaphore is taken.
2245 * If the blocks in questions were delalloc blocks, set
2246 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2247 * variables are updated after the blocks have been allocated.
2249 new.b_state = 0;
2250 get_blocks_flags = EXT4_GET_BLOCKS_CREATE;
2251 if (ext4_should_dioread_nolock(mpd->inode))
2252 get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
2253 if (mpd->b_state & (1 << BH_Delay))
2254 get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
2256 blks = ext4_get_blocks(handle, mpd->inode, next, max_blocks,
2257 &new, get_blocks_flags);
2258 if (blks < 0) {
2259 err = blks;
2261 * If get block returns with error we simply
2262 * return. Later writepage will redirty the page and
2263 * writepages will find the dirty page again
2265 if (err == -EAGAIN)
2266 return 0;
2268 if (err == -ENOSPC &&
2269 ext4_count_free_blocks(mpd->inode->i_sb)) {
2270 mpd->retval = err;
2271 return 0;
2275 * get block failure will cause us to loop in
2276 * writepages, because a_ops->writepage won't be able
2277 * to make progress. The page will be redirtied by
2278 * writepage and writepages will again try to write
2279 * the same.
2281 ext4_msg(mpd->inode->i_sb, KERN_CRIT,
2282 "delayed block allocation failed for inode %lu at "
2283 "logical offset %llu with max blocks %zd with "
2284 "error %d\n", mpd->inode->i_ino,
2285 (unsigned long long) next,
2286 mpd->b_size >> mpd->inode->i_blkbits, err);
2287 printk(KERN_CRIT "This should not happen!! "
2288 "Data will be lost\n");
2289 if (err == -ENOSPC) {
2290 ext4_print_free_blocks(mpd->inode);
2292 /* invalidate all the pages */
2293 ext4_da_block_invalidatepages(mpd, next,
2294 mpd->b_size >> mpd->inode->i_blkbits);
2295 return err;
2297 BUG_ON(blks == 0);
2299 new.b_size = (blks << mpd->inode->i_blkbits);
2301 if (buffer_new(&new))
2302 __unmap_underlying_blocks(mpd->inode, &new);
2305 * If blocks are delayed marked, we need to
2306 * put actual blocknr and drop delayed bit
2308 if ((mpd->b_state & (1 << BH_Delay)) ||
2309 (mpd->b_state & (1 << BH_Unwritten)))
2310 mpage_put_bnr_to_bhs(mpd, next, &new);
2312 if (ext4_should_order_data(mpd->inode)) {
2313 err = ext4_jbd2_file_inode(handle, mpd->inode);
2314 if (err)
2315 return err;
2319 * Update on-disk size along with block allocation.
2321 disksize = ((loff_t) next + blks) << mpd->inode->i_blkbits;
2322 if (disksize > i_size_read(mpd->inode))
2323 disksize = i_size_read(mpd->inode);
2324 if (disksize > EXT4_I(mpd->inode)->i_disksize) {
2325 ext4_update_i_disksize(mpd->inode, disksize);
2326 return ext4_mark_inode_dirty(handle, mpd->inode);
2329 return 0;
2332 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2333 (1 << BH_Delay) | (1 << BH_Unwritten))
2336 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2338 * @mpd->lbh - extent of blocks
2339 * @logical - logical number of the block in the file
2340 * @bh - bh of the block (used to access block's state)
2342 * the function is used to collect contig. blocks in same state
2344 static void mpage_add_bh_to_extent(struct mpage_da_data *mpd,
2345 sector_t logical, size_t b_size,
2346 unsigned long b_state)
2348 sector_t next;
2349 int nrblocks = mpd->b_size >> mpd->inode->i_blkbits;
2351 /* check if thereserved journal credits might overflow */
2352 if (!(EXT4_I(mpd->inode)->i_flags & EXT4_EXTENTS_FL)) {
2353 if (nrblocks >= EXT4_MAX_TRANS_DATA) {
2355 * With non-extent format we are limited by the journal
2356 * credit available. Total credit needed to insert
2357 * nrblocks contiguous blocks is dependent on the
2358 * nrblocks. So limit nrblocks.
2360 goto flush_it;
2361 } else if ((nrblocks + (b_size >> mpd->inode->i_blkbits)) >
2362 EXT4_MAX_TRANS_DATA) {
2364 * Adding the new buffer_head would make it cross the
2365 * allowed limit for which we have journal credit
2366 * reserved. So limit the new bh->b_size
2368 b_size = (EXT4_MAX_TRANS_DATA - nrblocks) <<
2369 mpd->inode->i_blkbits;
2370 /* we will do mpage_da_submit_io in the next loop */
2374 * First block in the extent
2376 if (mpd->b_size == 0) {
2377 mpd->b_blocknr = logical;
2378 mpd->b_size = b_size;
2379 mpd->b_state = b_state & BH_FLAGS;
2380 return;
2383 next = mpd->b_blocknr + nrblocks;
2385 * Can we merge the block to our big extent?
2387 if (logical == next && (b_state & BH_FLAGS) == mpd->b_state) {
2388 mpd->b_size += b_size;
2389 return;
2392 flush_it:
2394 * We couldn't merge the block to our extent, so we
2395 * need to flush current extent and start new one
2397 if (mpage_da_map_blocks(mpd) == 0)
2398 mpage_da_submit_io(mpd);
2399 mpd->io_done = 1;
2400 return;
2403 static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
2405 return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
2409 * __mpage_da_writepage - finds extent of pages and blocks
2411 * @page: page to consider
2412 * @wbc: not used, we just follow rules
2413 * @data: context
2415 * The function finds extents of pages and scan them for all blocks.
2417 static int __mpage_da_writepage(struct page *page,
2418 struct writeback_control *wbc, void *data)
2420 struct mpage_da_data *mpd = data;
2421 struct inode *inode = mpd->inode;
2422 struct buffer_head *bh, *head;
2423 sector_t logical;
2425 if (mpd->io_done) {
2427 * Rest of the page in the page_vec
2428 * redirty then and skip then. We will
2429 * try to write them again after
2430 * starting a new transaction
2432 redirty_page_for_writepage(wbc, page);
2433 unlock_page(page);
2434 return MPAGE_DA_EXTENT_TAIL;
2437 * Can we merge this page to current extent?
2439 if (mpd->next_page != page->index) {
2441 * Nope, we can't. So, we map non-allocated blocks
2442 * and start IO on them using writepage()
2444 if (mpd->next_page != mpd->first_page) {
2445 if (mpage_da_map_blocks(mpd) == 0)
2446 mpage_da_submit_io(mpd);
2448 * skip rest of the page in the page_vec
2450 mpd->io_done = 1;
2451 redirty_page_for_writepage(wbc, page);
2452 unlock_page(page);
2453 return MPAGE_DA_EXTENT_TAIL;
2457 * Start next extent of pages ...
2459 mpd->first_page = page->index;
2462 * ... and blocks
2464 mpd->b_size = 0;
2465 mpd->b_state = 0;
2466 mpd->b_blocknr = 0;
2469 mpd->next_page = page->index + 1;
2470 logical = (sector_t) page->index <<
2471 (PAGE_CACHE_SHIFT - inode->i_blkbits);
2473 if (!page_has_buffers(page)) {
2474 mpage_add_bh_to_extent(mpd, logical, PAGE_CACHE_SIZE,
2475 (1 << BH_Dirty) | (1 << BH_Uptodate));
2476 if (mpd->io_done)
2477 return MPAGE_DA_EXTENT_TAIL;
2478 } else {
2480 * Page with regular buffer heads, just add all dirty ones
2482 head = page_buffers(page);
2483 bh = head;
2484 do {
2485 BUG_ON(buffer_locked(bh));
2487 * We need to try to allocate
2488 * unmapped blocks in the same page.
2489 * Otherwise we won't make progress
2490 * with the page in ext4_writepage
2492 if (ext4_bh_delay_or_unwritten(NULL, bh)) {
2493 mpage_add_bh_to_extent(mpd, logical,
2494 bh->b_size,
2495 bh->b_state);
2496 if (mpd->io_done)
2497 return MPAGE_DA_EXTENT_TAIL;
2498 } else if (buffer_dirty(bh) && (buffer_mapped(bh))) {
2500 * mapped dirty buffer. We need to update
2501 * the b_state because we look at
2502 * b_state in mpage_da_map_blocks. We don't
2503 * update b_size because if we find an
2504 * unmapped buffer_head later we need to
2505 * use the b_state flag of that buffer_head.
2507 if (mpd->b_size == 0)
2508 mpd->b_state = bh->b_state & BH_FLAGS;
2510 logical++;
2511 } while ((bh = bh->b_this_page) != head);
2514 return 0;
2518 * This is a special get_blocks_t callback which is used by
2519 * ext4_da_write_begin(). It will either return mapped block or
2520 * reserve space for a single block.
2522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2523 * We also have b_blocknr = -1 and b_bdev initialized properly
2525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2527 * initialized properly.
2529 static int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
2530 struct buffer_head *bh_result, int create)
2532 int ret = 0;
2533 sector_t invalid_block = ~((sector_t) 0xffff);
2535 if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
2536 invalid_block = ~0;
2538 BUG_ON(create == 0);
2539 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2542 * first, we need to know whether the block is allocated already
2543 * preallocated blocks are unmapped but should treated
2544 * the same as allocated blocks.
2546 ret = ext4_get_blocks(NULL, inode, iblock, 1, bh_result, 0);
2547 if ((ret == 0) && !buffer_delay(bh_result)) {
2548 /* the block isn't (pre)allocated yet, let's reserve space */
2550 * XXX: __block_prepare_write() unmaps passed block,
2551 * is it OK?
2553 ret = ext4_da_reserve_space(inode, iblock);
2554 if (ret)
2555 /* not enough space to reserve */
2556 return ret;
2558 map_bh(bh_result, inode->i_sb, invalid_block);
2559 set_buffer_new(bh_result);
2560 set_buffer_delay(bh_result);
2561 } else if (ret > 0) {
2562 bh_result->b_size = (ret << inode->i_blkbits);
2563 if (buffer_unwritten(bh_result)) {
2564 /* A delayed write to unwritten bh should
2565 * be marked new and mapped. Mapped ensures
2566 * that we don't do get_block multiple times
2567 * when we write to the same offset and new
2568 * ensures that we do proper zero out for
2569 * partial write.
2571 set_buffer_new(bh_result);
2572 set_buffer_mapped(bh_result);
2574 ret = 0;
2577 return ret;
2581 * This function is used as a standard get_block_t calback function
2582 * when there is no desire to allocate any blocks. It is used as a
2583 * callback function for block_prepare_write(), nobh_writepage(), and
2584 * block_write_full_page(). These functions should only try to map a
2585 * single block at a time.
2587 * Since this function doesn't do block allocations even if the caller
2588 * requests it by passing in create=1, it is critically important that
2589 * any caller checks to make sure that any buffer heads are returned
2590 * by this function are either all already mapped or marked for
2591 * delayed allocation before calling nobh_writepage() or
2592 * block_write_full_page(). Otherwise, b_blocknr could be left
2593 * unitialized, and the page write functions will be taken by
2594 * surprise.
2596 static int noalloc_get_block_write(struct inode *inode, sector_t iblock,
2597 struct buffer_head *bh_result, int create)
2599 int ret = 0;
2600 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
2602 BUG_ON(bh_result->b_size != inode->i_sb->s_blocksize);
2605 * we don't want to do block allocation in writepage
2606 * so call get_block_wrap with create = 0
2608 ret = ext4_get_blocks(NULL, inode, iblock, max_blocks, bh_result, 0);
2609 if (ret > 0) {
2610 bh_result->b_size = (ret << inode->i_blkbits);
2611 ret = 0;
2613 return ret;
2616 static int bget_one(handle_t *handle, struct buffer_head *bh)
2618 get_bh(bh);
2619 return 0;
2622 static int bput_one(handle_t *handle, struct buffer_head *bh)
2624 put_bh(bh);
2625 return 0;
2628 static int __ext4_journalled_writepage(struct page *page,
2629 unsigned int len)
2631 struct address_space *mapping = page->mapping;
2632 struct inode *inode = mapping->host;
2633 struct buffer_head *page_bufs;
2634 handle_t *handle = NULL;
2635 int ret = 0;
2636 int err;
2638 page_bufs = page_buffers(page);
2639 BUG_ON(!page_bufs);
2640 walk_page_buffers(handle, page_bufs, 0, len, NULL, bget_one);
2641 /* As soon as we unlock the page, it can go away, but we have
2642 * references to buffers so we are safe */
2643 unlock_page(page);
2645 handle = ext4_journal_start(inode, ext4_writepage_trans_blocks(inode));
2646 if (IS_ERR(handle)) {
2647 ret = PTR_ERR(handle);
2648 goto out;
2651 ret = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2652 do_journal_get_write_access);
2654 err = walk_page_buffers(handle, page_bufs, 0, len, NULL,
2655 write_end_fn);
2656 if (ret == 0)
2657 ret = err;
2658 err = ext4_journal_stop(handle);
2659 if (!ret)
2660 ret = err;
2662 walk_page_buffers(handle, page_bufs, 0, len, NULL, bput_one);
2663 ext4_set_inode_state(inode, EXT4_STATE_JDATA);
2664 out:
2665 return ret;
2668 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode);
2669 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate);
2672 * Note that we don't need to start a transaction unless we're journaling data
2673 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2674 * need to file the inode to the transaction's list in ordered mode because if
2675 * we are writing back data added by write(), the inode is already there and if
2676 * we are writing back data modified via mmap(), noone guarantees in which
2677 * transaction the data will hit the disk. In case we are journaling data, we
2678 * cannot start transaction directly because transaction start ranks above page
2679 * lock so we have to do some magic.
2681 * This function can get called via...
2682 * - ext4_da_writepages after taking page lock (have journal handle)
2683 * - journal_submit_inode_data_buffers (no journal handle)
2684 * - shrink_page_list via pdflush (no journal handle)
2685 * - grab_page_cache when doing write_begin (have journal handle)
2687 * We don't do any block allocation in this function. If we have page with
2688 * multiple blocks we need to write those buffer_heads that are mapped. This
2689 * is important for mmaped based write. So if we do with blocksize 1K
2690 * truncate(f, 1024);
2691 * a = mmap(f, 0, 4096);
2692 * a[0] = 'a';
2693 * truncate(f, 4096);
2694 * we have in the page first buffer_head mapped via page_mkwrite call back
2695 * but other bufer_heads would be unmapped but dirty(dirty done via the
2696 * do_wp_page). So writepage should write the first block. If we modify
2697 * the mmap area beyond 1024 we will again get a page_fault and the
2698 * page_mkwrite callback will do the block allocation and mark the
2699 * buffer_heads mapped.
2701 * We redirty the page if we have any buffer_heads that is either delay or
2702 * unwritten in the page.
2704 * We can get recursively called as show below.
2706 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2707 * ext4_writepage()
2709 * But since we don't do any block allocation we should not deadlock.
2710 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2712 static int ext4_writepage(struct page *page,
2713 struct writeback_control *wbc)
2715 int ret = 0;
2716 loff_t size;
2717 unsigned int len;
2718 struct buffer_head *page_bufs = NULL;
2719 struct inode *inode = page->mapping->host;
2721 trace_ext4_writepage(inode, page);
2722 size = i_size_read(inode);
2723 if (page->index == size >> PAGE_CACHE_SHIFT)
2724 len = size & ~PAGE_CACHE_MASK;
2725 else
2726 len = PAGE_CACHE_SIZE;
2728 if (page_has_buffers(page)) {
2729 page_bufs = page_buffers(page);
2730 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2731 ext4_bh_delay_or_unwritten)) {
2733 * We don't want to do block allocation
2734 * So redirty the page and return
2735 * We may reach here when we do a journal commit
2736 * via journal_submit_inode_data_buffers.
2737 * If we don't have mapping block we just ignore
2738 * them. We can also reach here via shrink_page_list
2740 redirty_page_for_writepage(wbc, page);
2741 unlock_page(page);
2742 return 0;
2744 } else {
2746 * The test for page_has_buffers() is subtle:
2747 * We know the page is dirty but it lost buffers. That means
2748 * that at some moment in time after write_begin()/write_end()
2749 * has been called all buffers have been clean and thus they
2750 * must have been written at least once. So they are all
2751 * mapped and we can happily proceed with mapping them
2752 * and writing the page.
2754 * Try to initialize the buffer_heads and check whether
2755 * all are mapped and non delay. We don't want to
2756 * do block allocation here.
2758 ret = block_prepare_write(page, 0, len,
2759 noalloc_get_block_write);
2760 if (!ret) {
2761 page_bufs = page_buffers(page);
2762 /* check whether all are mapped and non delay */
2763 if (walk_page_buffers(NULL, page_bufs, 0, len, NULL,
2764 ext4_bh_delay_or_unwritten)) {
2765 redirty_page_for_writepage(wbc, page);
2766 unlock_page(page);
2767 return 0;
2769 } else {
2771 * We can't do block allocation here
2772 * so just redity the page and unlock
2773 * and return
2775 redirty_page_for_writepage(wbc, page);
2776 unlock_page(page);
2777 return 0;
2779 /* now mark the buffer_heads as dirty and uptodate */
2780 block_commit_write(page, 0, len);
2783 if (PageChecked(page) && ext4_should_journal_data(inode)) {
2785 * It's mmapped pagecache. Add buffers and journal it. There
2786 * doesn't seem much point in redirtying the page here.
2788 ClearPageChecked(page);
2789 return __ext4_journalled_writepage(page, len);
2792 if (test_opt(inode->i_sb, NOBH) && ext4_should_writeback_data(inode))
2793 ret = nobh_writepage(page, noalloc_get_block_write, wbc);
2794 else if (page_bufs && buffer_uninit(page_bufs)) {
2795 ext4_set_bh_endio(page_bufs, inode);
2796 ret = block_write_full_page_endio(page, noalloc_get_block_write,
2797 wbc, ext4_end_io_buffer_write);
2798 } else
2799 ret = block_write_full_page(page, noalloc_get_block_write,
2800 wbc);
2802 return ret;
2806 * This is called via ext4_da_writepages() to
2807 * calulate the total number of credits to reserve to fit
2808 * a single extent allocation into a single transaction,
2809 * ext4_da_writpeages() will loop calling this before
2810 * the block allocation.
2813 static int ext4_da_writepages_trans_blocks(struct inode *inode)
2815 int max_blocks = EXT4_I(inode)->i_reserved_data_blocks;
2818 * With non-extent format the journal credit needed to
2819 * insert nrblocks contiguous block is dependent on
2820 * number of contiguous block. So we will limit
2821 * number of contiguous block to a sane value
2823 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) &&
2824 (max_blocks > EXT4_MAX_TRANS_DATA))
2825 max_blocks = EXT4_MAX_TRANS_DATA;
2827 return ext4_chunk_trans_blocks(inode, max_blocks);
2830 static int ext4_da_writepages(struct address_space *mapping,
2831 struct writeback_control *wbc)
2833 pgoff_t index;
2834 int range_whole = 0;
2835 handle_t *handle = NULL;
2836 struct mpage_da_data mpd;
2837 struct inode *inode = mapping->host;
2838 int no_nrwrite_index_update;
2839 int pages_written = 0;
2840 long pages_skipped;
2841 unsigned int max_pages;
2842 int range_cyclic, cycled = 1, io_done = 0;
2843 int needed_blocks, ret = 0;
2844 long desired_nr_to_write, nr_to_writebump = 0;
2845 loff_t range_start = wbc->range_start;
2846 struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
2848 trace_ext4_da_writepages(inode, wbc);
2851 * No pages to write? This is mainly a kludge to avoid starting
2852 * a transaction for special inodes like journal inode on last iput()
2853 * because that could violate lock ordering on umount
2855 if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
2856 return 0;
2859 * If the filesystem has aborted, it is read-only, so return
2860 * right away instead of dumping stack traces later on that
2861 * will obscure the real source of the problem. We test
2862 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2863 * the latter could be true if the filesystem is mounted
2864 * read-only, and in that case, ext4_da_writepages should
2865 * *never* be called, so if that ever happens, we would want
2866 * the stack trace.
2868 if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED))
2869 return -EROFS;
2871 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2872 range_whole = 1;
2874 range_cyclic = wbc->range_cyclic;
2875 if (wbc->range_cyclic) {
2876 index = mapping->writeback_index;
2877 if (index)
2878 cycled = 0;
2879 wbc->range_start = index << PAGE_CACHE_SHIFT;
2880 wbc->range_end = LLONG_MAX;
2881 wbc->range_cyclic = 0;
2882 } else
2883 index = wbc->range_start >> PAGE_CACHE_SHIFT;
2886 * This works around two forms of stupidity. The first is in
2887 * the writeback code, which caps the maximum number of pages
2888 * written to be 1024 pages. This is wrong on multiple
2889 * levels; different architectues have a different page size,
2890 * which changes the maximum amount of data which gets
2891 * written. Secondly, 4 megabytes is way too small. XFS
2892 * forces this value to be 16 megabytes by multiplying
2893 * nr_to_write parameter by four, and then relies on its
2894 * allocator to allocate larger extents to make them
2895 * contiguous. Unfortunately this brings us to the second
2896 * stupidity, which is that ext4's mballoc code only allocates
2897 * at most 2048 blocks. So we force contiguous writes up to
2898 * the number of dirty blocks in the inode, or
2899 * sbi->max_writeback_mb_bump whichever is smaller.
2901 max_pages = sbi->s_max_writeback_mb_bump << (20 - PAGE_CACHE_SHIFT);
2902 if (!range_cyclic && range_whole)
2903 desired_nr_to_write = wbc->nr_to_write * 8;
2904 else
2905 desired_nr_to_write = ext4_num_dirty_pages(inode, index,
2906 max_pages);
2907 if (desired_nr_to_write > max_pages)
2908 desired_nr_to_write = max_pages;
2910 if (wbc->nr_to_write < desired_nr_to_write) {
2911 nr_to_writebump = desired_nr_to_write - wbc->nr_to_write;
2912 wbc->nr_to_write = desired_nr_to_write;
2915 mpd.wbc = wbc;
2916 mpd.inode = mapping->host;
2919 * we don't want write_cache_pages to update
2920 * nr_to_write and writeback_index
2922 no_nrwrite_index_update = wbc->no_nrwrite_index_update;
2923 wbc->no_nrwrite_index_update = 1;
2924 pages_skipped = wbc->pages_skipped;
2926 retry:
2927 while (!ret && wbc->nr_to_write > 0) {
2930 * we insert one extent at a time. So we need
2931 * credit needed for single extent allocation.
2932 * journalled mode is currently not supported
2933 * by delalloc
2935 BUG_ON(ext4_should_journal_data(inode));
2936 needed_blocks = ext4_da_writepages_trans_blocks(inode);
2938 /* start a new transaction*/
2939 handle = ext4_journal_start(inode, needed_blocks);
2940 if (IS_ERR(handle)) {
2941 ret = PTR_ERR(handle);
2942 ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
2943 "%ld pages, ino %lu; err %d\n", __func__,
2944 wbc->nr_to_write, inode->i_ino, ret);
2945 goto out_writepages;
2949 * Now call __mpage_da_writepage to find the next
2950 * contiguous region of logical blocks that need
2951 * blocks to be allocated by ext4. We don't actually
2952 * submit the blocks for I/O here, even though
2953 * write_cache_pages thinks it will, and will set the
2954 * pages as clean for write before calling
2955 * __mpage_da_writepage().
2957 mpd.b_size = 0;
2958 mpd.b_state = 0;
2959 mpd.b_blocknr = 0;
2960 mpd.first_page = 0;
2961 mpd.next_page = 0;
2962 mpd.io_done = 0;
2963 mpd.pages_written = 0;
2964 mpd.retval = 0;
2965 ret = write_cache_pages(mapping, wbc, __mpage_da_writepage,
2966 &mpd);
2968 * If we have a contiguous extent of pages and we
2969 * haven't done the I/O yet, map the blocks and submit
2970 * them for I/O.
2972 if (!mpd.io_done && mpd.next_page != mpd.first_page) {
2973 if (mpage_da_map_blocks(&mpd) == 0)
2974 mpage_da_submit_io(&mpd);
2975 mpd.io_done = 1;
2976 ret = MPAGE_DA_EXTENT_TAIL;
2978 trace_ext4_da_write_pages(inode, &mpd);
2979 wbc->nr_to_write -= mpd.pages_written;
2981 ext4_journal_stop(handle);
2983 if ((mpd.retval == -ENOSPC) && sbi->s_journal) {
2984 /* commit the transaction which would
2985 * free blocks released in the transaction
2986 * and try again
2988 jbd2_journal_force_commit_nested(sbi->s_journal);
2989 wbc->pages_skipped = pages_skipped;
2990 ret = 0;
2991 } else if (ret == MPAGE_DA_EXTENT_TAIL) {
2993 * got one extent now try with
2994 * rest of the pages
2996 pages_written += mpd.pages_written;
2997 wbc->pages_skipped = pages_skipped;
2998 ret = 0;
2999 io_done = 1;
3000 } else if (wbc->nr_to_write)
3002 * There is no more writeout needed
3003 * or we requested for a noblocking writeout
3004 * and we found the device congested
3006 break;
3008 if (!io_done && !cycled) {
3009 cycled = 1;
3010 index = 0;
3011 wbc->range_start = index << PAGE_CACHE_SHIFT;
3012 wbc->range_end = mapping->writeback_index - 1;
3013 goto retry;
3015 if (pages_skipped != wbc->pages_skipped)
3016 ext4_msg(inode->i_sb, KERN_CRIT,
3017 "This should not happen leaving %s "
3018 "with nr_to_write = %ld ret = %d\n",
3019 __func__, wbc->nr_to_write, ret);
3021 /* Update index */
3022 index += pages_written;
3023 wbc->range_cyclic = range_cyclic;
3024 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
3026 * set the writeback_index so that range_cyclic
3027 * mode will write it back later
3029 mapping->writeback_index = index;
3031 out_writepages:
3032 if (!no_nrwrite_index_update)
3033 wbc->no_nrwrite_index_update = 0;
3034 wbc->nr_to_write -= nr_to_writebump;
3035 wbc->range_start = range_start;
3036 trace_ext4_da_writepages_result(inode, wbc, ret, pages_written);
3037 return ret;
3040 #define FALL_BACK_TO_NONDELALLOC 1
3041 static int ext4_nonda_switch(struct super_block *sb)
3043 s64 free_blocks, dirty_blocks;
3044 struct ext4_sb_info *sbi = EXT4_SB(sb);
3047 * switch to non delalloc mode if we are running low
3048 * on free block. The free block accounting via percpu
3049 * counters can get slightly wrong with percpu_counter_batch getting
3050 * accumulated on each CPU without updating global counters
3051 * Delalloc need an accurate free block accounting. So switch
3052 * to non delalloc when we are near to error range.
3054 free_blocks = percpu_counter_read_positive(&sbi->s_freeblocks_counter);
3055 dirty_blocks = percpu_counter_read_positive(&sbi->s_dirtyblocks_counter);
3056 if (2 * free_blocks < 3 * dirty_blocks ||
3057 free_blocks < (dirty_blocks + EXT4_FREEBLOCKS_WATERMARK)) {
3059 * free block count is less than 150% of dirty blocks
3060 * or free blocks is less than watermark
3062 return 1;
3065 * Even if we don't switch but are nearing capacity,
3066 * start pushing delalloc when 1/2 of free blocks are dirty.
3068 if (free_blocks < 2 * dirty_blocks)
3069 writeback_inodes_sb_if_idle(sb);
3071 return 0;
3074 static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
3075 loff_t pos, unsigned len, unsigned flags,
3076 struct page **pagep, void **fsdata)
3078 int ret, retries = 0, quota_retries = 0;
3079 struct page *page;
3080 pgoff_t index;
3081 unsigned from, to;
3082 struct inode *inode = mapping->host;
3083 handle_t *handle;
3085 index = pos >> PAGE_CACHE_SHIFT;
3086 from = pos & (PAGE_CACHE_SIZE - 1);
3087 to = from + len;
3089 if (ext4_nonda_switch(inode->i_sb)) {
3090 *fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
3091 return ext4_write_begin(file, mapping, pos,
3092 len, flags, pagep, fsdata);
3094 *fsdata = (void *)0;
3095 trace_ext4_da_write_begin(inode, pos, len, flags);
3096 retry:
3098 * With delayed allocation, we don't log the i_disksize update
3099 * if there is delayed block allocation. But we still need
3100 * to journalling the i_disksize update if writes to the end
3101 * of file which has an already mapped buffer.
3103 handle = ext4_journal_start(inode, 1);
3104 if (IS_ERR(handle)) {
3105 ret = PTR_ERR(handle);
3106 goto out;
3108 /* We cannot recurse into the filesystem as the transaction is already
3109 * started */
3110 flags |= AOP_FLAG_NOFS;
3112 page = grab_cache_page_write_begin(mapping, index, flags);
3113 if (!page) {
3114 ext4_journal_stop(handle);
3115 ret = -ENOMEM;
3116 goto out;
3118 *pagep = page;
3120 ret = block_write_begin(file, mapping, pos, len, flags, pagep, fsdata,
3121 ext4_da_get_block_prep);
3122 if (ret < 0) {
3123 unlock_page(page);
3124 ext4_journal_stop(handle);
3125 page_cache_release(page);
3127 * block_write_begin may have instantiated a few blocks
3128 * outside i_size. Trim these off again. Don't need
3129 * i_size_read because we hold i_mutex.
3131 if (pos + len > inode->i_size)
3132 ext4_truncate_failed_write(inode);
3135 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3136 goto retry;
3138 if ((ret == -EDQUOT) &&
3139 EXT4_I(inode)->i_reserved_meta_blocks &&
3140 (quota_retries++ < 3)) {
3142 * Since we often over-estimate the number of meta
3143 * data blocks required, we may sometimes get a
3144 * spurios out of quota error even though there would
3145 * be enough space once we write the data blocks and
3146 * find out how many meta data blocks were _really_
3147 * required. So try forcing the inode write to see if
3148 * that helps.
3150 write_inode_now(inode, (quota_retries == 3));
3151 goto retry;
3153 out:
3154 return ret;
3158 * Check if we should update i_disksize
3159 * when write to the end of file but not require block allocation
3161 static int ext4_da_should_update_i_disksize(struct page *page,
3162 unsigned long offset)
3164 struct buffer_head *bh;
3165 struct inode *inode = page->mapping->host;
3166 unsigned int idx;
3167 int i;
3169 bh = page_buffers(page);
3170 idx = offset >> inode->i_blkbits;
3172 for (i = 0; i < idx; i++)
3173 bh = bh->b_this_page;
3175 if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
3176 return 0;
3177 return 1;
3180 static int ext4_da_write_end(struct file *file,
3181 struct address_space *mapping,
3182 loff_t pos, unsigned len, unsigned copied,
3183 struct page *page, void *fsdata)
3185 struct inode *inode = mapping->host;
3186 int ret = 0, ret2;
3187 handle_t *handle = ext4_journal_current_handle();
3188 loff_t new_i_size;
3189 unsigned long start, end;
3190 int write_mode = (int)(unsigned long)fsdata;
3192 if (write_mode == FALL_BACK_TO_NONDELALLOC) {
3193 if (ext4_should_order_data(inode)) {
3194 return ext4_ordered_write_end(file, mapping, pos,
3195 len, copied, page, fsdata);
3196 } else if (ext4_should_writeback_data(inode)) {
3197 return ext4_writeback_write_end(file, mapping, pos,
3198 len, copied, page, fsdata);
3199 } else {
3200 BUG();
3204 trace_ext4_da_write_end(inode, pos, len, copied);
3205 start = pos & (PAGE_CACHE_SIZE - 1);
3206 end = start + copied - 1;
3209 * generic_write_end() will run mark_inode_dirty() if i_size
3210 * changes. So let's piggyback the i_disksize mark_inode_dirty
3211 * into that.
3214 new_i_size = pos + copied;
3215 if (new_i_size > EXT4_I(inode)->i_disksize) {
3216 if (ext4_da_should_update_i_disksize(page, end)) {
3217 down_write(&EXT4_I(inode)->i_data_sem);
3218 if (new_i_size > EXT4_I(inode)->i_disksize) {
3220 * Updating i_disksize when extending file
3221 * without needing block allocation
3223 if (ext4_should_order_data(inode))
3224 ret = ext4_jbd2_file_inode(handle,
3225 inode);
3227 EXT4_I(inode)->i_disksize = new_i_size;
3229 up_write(&EXT4_I(inode)->i_data_sem);
3230 /* We need to mark inode dirty even if
3231 * new_i_size is less that inode->i_size
3232 * bu greater than i_disksize.(hint delalloc)
3234 ext4_mark_inode_dirty(handle, inode);
3237 ret2 = generic_write_end(file, mapping, pos, len, copied,
3238 page, fsdata);
3239 copied = ret2;
3240 if (ret2 < 0)
3241 ret = ret2;
3242 ret2 = ext4_journal_stop(handle);
3243 if (!ret)
3244 ret = ret2;
3246 return ret ? ret : copied;
3249 static void ext4_da_invalidatepage(struct page *page, unsigned long offset)
3252 * Drop reserved blocks
3254 BUG_ON(!PageLocked(page));
3255 if (!page_has_buffers(page))
3256 goto out;
3258 ext4_da_page_release_reservation(page, offset);
3260 out:
3261 ext4_invalidatepage(page, offset);
3263 return;
3267 * Force all delayed allocation blocks to be allocated for a given inode.
3269 int ext4_alloc_da_blocks(struct inode *inode)
3271 trace_ext4_alloc_da_blocks(inode);
3273 if (!EXT4_I(inode)->i_reserved_data_blocks &&
3274 !EXT4_I(inode)->i_reserved_meta_blocks)
3275 return 0;
3278 * We do something simple for now. The filemap_flush() will
3279 * also start triggering a write of the data blocks, which is
3280 * not strictly speaking necessary (and for users of
3281 * laptop_mode, not even desirable). However, to do otherwise
3282 * would require replicating code paths in:
3284 * ext4_da_writepages() ->
3285 * write_cache_pages() ---> (via passed in callback function)
3286 * __mpage_da_writepage() -->
3287 * mpage_add_bh_to_extent()
3288 * mpage_da_map_blocks()
3290 * The problem is that write_cache_pages(), located in
3291 * mm/page-writeback.c, marks pages clean in preparation for
3292 * doing I/O, which is not desirable if we're not planning on
3293 * doing I/O at all.
3295 * We could call write_cache_pages(), and then redirty all of
3296 * the pages by calling redirty_page_for_writeback() but that
3297 * would be ugly in the extreme. So instead we would need to
3298 * replicate parts of the code in the above functions,
3299 * simplifying them becuase we wouldn't actually intend to
3300 * write out the pages, but rather only collect contiguous
3301 * logical block extents, call the multi-block allocator, and
3302 * then update the buffer heads with the block allocations.
3304 * For now, though, we'll cheat by calling filemap_flush(),
3305 * which will map the blocks, and start the I/O, but not
3306 * actually wait for the I/O to complete.
3308 return filemap_flush(inode->i_mapping);
3312 * bmap() is special. It gets used by applications such as lilo and by
3313 * the swapper to find the on-disk block of a specific piece of data.
3315 * Naturally, this is dangerous if the block concerned is still in the
3316 * journal. If somebody makes a swapfile on an ext4 data-journaling
3317 * filesystem and enables swap, then they may get a nasty shock when the
3318 * data getting swapped to that swapfile suddenly gets overwritten by
3319 * the original zero's written out previously to the journal and
3320 * awaiting writeback in the kernel's buffer cache.
3322 * So, if we see any bmap calls here on a modified, data-journaled file,
3323 * take extra steps to flush any blocks which might be in the cache.
3325 static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
3327 struct inode *inode = mapping->host;
3328 journal_t *journal;
3329 int err;
3331 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
3332 test_opt(inode->i_sb, DELALLOC)) {
3334 * With delalloc we want to sync the file
3335 * so that we can make sure we allocate
3336 * blocks for file
3338 filemap_write_and_wait(mapping);
3341 if (EXT4_JOURNAL(inode) &&
3342 ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
3344 * This is a REALLY heavyweight approach, but the use of
3345 * bmap on dirty files is expected to be extremely rare:
3346 * only if we run lilo or swapon on a freshly made file
3347 * do we expect this to happen.
3349 * (bmap requires CAP_SYS_RAWIO so this does not
3350 * represent an unprivileged user DOS attack --- we'd be
3351 * in trouble if mortal users could trigger this path at
3352 * will.)
3354 * NB. EXT4_STATE_JDATA is not set on files other than
3355 * regular files. If somebody wants to bmap a directory
3356 * or symlink and gets confused because the buffer
3357 * hasn't yet been flushed to disk, they deserve
3358 * everything they get.
3361 ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
3362 journal = EXT4_JOURNAL(inode);
3363 jbd2_journal_lock_updates(journal);
3364 err = jbd2_journal_flush(journal);
3365 jbd2_journal_unlock_updates(journal);
3367 if (err)
3368 return 0;
3371 return generic_block_bmap(mapping, block, ext4_get_block);
3374 static int ext4_readpage(struct file *file, struct page *page)
3376 return mpage_readpage(page, ext4_get_block);
3379 static int
3380 ext4_readpages(struct file *file, struct address_space *mapping,
3381 struct list_head *pages, unsigned nr_pages)
3383 return mpage_readpages(mapping, pages, nr_pages, ext4_get_block);
3386 static void ext4_free_io_end(ext4_io_end_t *io)
3388 BUG_ON(!io);
3389 if (io->page)
3390 put_page(io->page);
3391 iput(io->inode);
3392 kfree(io);
3395 static void ext4_invalidatepage_free_endio(struct page *page, unsigned long offset)
3397 struct buffer_head *head, *bh;
3398 unsigned int curr_off = 0;
3400 if (!page_has_buffers(page))
3401 return;
3402 head = bh = page_buffers(page);
3403 do {
3404 if (offset <= curr_off && test_clear_buffer_uninit(bh)
3405 && bh->b_private) {
3406 ext4_free_io_end(bh->b_private);
3407 bh->b_private = NULL;
3408 bh->b_end_io = NULL;
3410 curr_off = curr_off + bh->b_size;
3411 bh = bh->b_this_page;
3412 } while (bh != head);
3415 static void ext4_invalidatepage(struct page *page, unsigned long offset)
3417 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3420 * free any io_end structure allocated for buffers to be discarded
3422 if (ext4_should_dioread_nolock(page->mapping->host))
3423 ext4_invalidatepage_free_endio(page, offset);
3425 * If it's a full truncate we just forget about the pending dirtying
3427 if (offset == 0)
3428 ClearPageChecked(page);
3430 if (journal)
3431 jbd2_journal_invalidatepage(journal, page, offset);
3432 else
3433 block_invalidatepage(page, offset);
3436 static int ext4_releasepage(struct page *page, gfp_t wait)
3438 journal_t *journal = EXT4_JOURNAL(page->mapping->host);
3440 WARN_ON(PageChecked(page));
3441 if (!page_has_buffers(page))
3442 return 0;
3443 if (journal)
3444 return jbd2_journal_try_to_free_buffers(journal, page, wait);
3445 else
3446 return try_to_free_buffers(page);
3450 * O_DIRECT for ext3 (or indirect map) based files
3452 * If the O_DIRECT write will extend the file then add this inode to the
3453 * orphan list. So recovery will truncate it back to the original size
3454 * if the machine crashes during the write.
3456 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3457 * crashes then stale disk data _may_ be exposed inside the file. But current
3458 * VFS code falls back into buffered path in that case so we are safe.
3460 static ssize_t ext4_ind_direct_IO(int rw, struct kiocb *iocb,
3461 const struct iovec *iov, loff_t offset,
3462 unsigned long nr_segs)
3464 struct file *file = iocb->ki_filp;
3465 struct inode *inode = file->f_mapping->host;
3466 struct ext4_inode_info *ei = EXT4_I(inode);
3467 handle_t *handle;
3468 ssize_t ret;
3469 int orphan = 0;
3470 size_t count = iov_length(iov, nr_segs);
3471 int retries = 0;
3473 if (rw == WRITE) {
3474 loff_t final_size = offset + count;
3476 if (final_size > inode->i_size) {
3477 /* Credits for sb + inode write */
3478 handle = ext4_journal_start(inode, 2);
3479 if (IS_ERR(handle)) {
3480 ret = PTR_ERR(handle);
3481 goto out;
3483 ret = ext4_orphan_add(handle, inode);
3484 if (ret) {
3485 ext4_journal_stop(handle);
3486 goto out;
3488 orphan = 1;
3489 ei->i_disksize = inode->i_size;
3490 ext4_journal_stop(handle);
3494 retry:
3495 if (rw == READ && ext4_should_dioread_nolock(inode))
3496 ret = blockdev_direct_IO_no_locking(rw, iocb, inode,
3497 inode->i_sb->s_bdev, iov,
3498 offset, nr_segs,
3499 ext4_get_block, NULL);
3500 else
3501 ret = blockdev_direct_IO(rw, iocb, inode,
3502 inode->i_sb->s_bdev, iov,
3503 offset, nr_segs,
3504 ext4_get_block, NULL);
3505 if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
3506 goto retry;
3508 if (orphan) {
3509 int err;
3511 /* Credits for sb + inode write */
3512 handle = ext4_journal_start(inode, 2);
3513 if (IS_ERR(handle)) {
3514 /* This is really bad luck. We've written the data
3515 * but cannot extend i_size. Bail out and pretend
3516 * the write failed... */
3517 ret = PTR_ERR(handle);
3518 if (inode->i_nlink)
3519 ext4_orphan_del(NULL, inode);
3521 goto out;
3523 if (inode->i_nlink)
3524 ext4_orphan_del(handle, inode);
3525 if (ret > 0) {
3526 loff_t end = offset + ret;
3527 if (end > inode->i_size) {
3528 ei->i_disksize = end;
3529 i_size_write(inode, end);
3531 * We're going to return a positive `ret'
3532 * here due to non-zero-length I/O, so there's
3533 * no way of reporting error returns from
3534 * ext4_mark_inode_dirty() to userspace. So
3535 * ignore it.
3537 ext4_mark_inode_dirty(handle, inode);
3540 err = ext4_journal_stop(handle);
3541 if (ret == 0)
3542 ret = err;
3544 out:
3545 return ret;
3548 static int ext4_get_block_write(struct inode *inode, sector_t iblock,
3549 struct buffer_head *bh_result, int create)
3551 handle_t *handle = ext4_journal_current_handle();
3552 int ret = 0;
3553 unsigned max_blocks = bh_result->b_size >> inode->i_blkbits;
3554 int dio_credits;
3555 int started = 0;
3557 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3558 inode->i_ino, create);
3560 * ext4_get_block in prepare for a DIO write or buffer write.
3561 * We allocate an uinitialized extent if blocks haven't been allocated.
3562 * The extent will be converted to initialized after IO complete.
3564 create = EXT4_GET_BLOCKS_IO_CREATE_EXT;
3566 if (!handle) {
3567 if (max_blocks > DIO_MAX_BLOCKS)
3568 max_blocks = DIO_MAX_BLOCKS;
3569 dio_credits = ext4_chunk_trans_blocks(inode, max_blocks);
3570 handle = ext4_journal_start(inode, dio_credits);
3571 if (IS_ERR(handle)) {
3572 ret = PTR_ERR(handle);
3573 goto out;
3575 started = 1;
3578 ret = ext4_get_blocks(handle, inode, iblock, max_blocks, bh_result,
3579 create);
3580 if (ret > 0) {
3581 bh_result->b_size = (ret << inode->i_blkbits);
3582 ret = 0;
3584 if (started)
3585 ext4_journal_stop(handle);
3586 out:
3587 return ret;
3590 static void dump_completed_IO(struct inode * inode)
3592 #ifdef EXT4_DEBUG
3593 struct list_head *cur, *before, *after;
3594 ext4_io_end_t *io, *io0, *io1;
3595 unsigned long flags;
3597 if (list_empty(&EXT4_I(inode)->i_completed_io_list)){
3598 ext4_debug("inode %lu completed_io list is empty\n", inode->i_ino);
3599 return;
3602 ext4_debug("Dump inode %lu completed_io list \n", inode->i_ino);
3603 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3604 list_for_each_entry(io, &EXT4_I(inode)->i_completed_io_list, list){
3605 cur = &io->list;
3606 before = cur->prev;
3607 io0 = container_of(before, ext4_io_end_t, list);
3608 after = cur->next;
3609 io1 = container_of(after, ext4_io_end_t, list);
3611 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3612 io, inode->i_ino, io0, io1);
3614 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3615 #endif
3619 * check a range of space and convert unwritten extents to written.
3621 static int ext4_end_io_nolock(ext4_io_end_t *io)
3623 struct inode *inode = io->inode;
3624 loff_t offset = io->offset;
3625 ssize_t size = io->size;
3626 int ret = 0;
3628 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3629 "list->prev 0x%p\n",
3630 io, inode->i_ino, io->list.next, io->list.prev);
3632 if (list_empty(&io->list))
3633 return ret;
3635 if (io->flag != EXT4_IO_UNWRITTEN)
3636 return ret;
3638 ret = ext4_convert_unwritten_extents(inode, offset, size);
3639 if (ret < 0) {
3640 printk(KERN_EMERG "%s: failed to convert unwritten"
3641 "extents to written extents, error is %d"
3642 " io is still on inode %lu aio dio list\n",
3643 __func__, ret, inode->i_ino);
3644 return ret;
3647 /* clear the DIO AIO unwritten flag */
3648 io->flag = 0;
3649 return ret;
3653 * work on completed aio dio IO, to convert unwritten extents to extents
3655 static void ext4_end_io_work(struct work_struct *work)
3657 ext4_io_end_t *io = container_of(work, ext4_io_end_t, work);
3658 struct inode *inode = io->inode;
3659 struct ext4_inode_info *ei = EXT4_I(inode);
3660 unsigned long flags;
3661 int ret;
3663 mutex_lock(&inode->i_mutex);
3664 ret = ext4_end_io_nolock(io);
3665 if (ret < 0) {
3666 mutex_unlock(&inode->i_mutex);
3667 return;
3670 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3671 if (!list_empty(&io->list))
3672 list_del_init(&io->list);
3673 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3674 mutex_unlock(&inode->i_mutex);
3675 ext4_free_io_end(io);
3679 * This function is called from ext4_sync_file().
3681 * When IO is completed, the work to convert unwritten extents to
3682 * written is queued on workqueue but may not get immediately
3683 * scheduled. When fsync is called, we need to ensure the
3684 * conversion is complete before fsync returns.
3685 * The inode keeps track of a list of pending/completed IO that
3686 * might needs to do the conversion. This function walks through
3687 * the list and convert the related unwritten extents for completed IO
3688 * to written.
3689 * The function return the number of pending IOs on success.
3691 int flush_completed_IO(struct inode *inode)
3693 ext4_io_end_t *io;
3694 struct ext4_inode_info *ei = EXT4_I(inode);
3695 unsigned long flags;
3696 int ret = 0;
3697 int ret2 = 0;
3699 if (list_empty(&ei->i_completed_io_list))
3700 return ret;
3702 dump_completed_IO(inode);
3703 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3704 while (!list_empty(&ei->i_completed_io_list)){
3705 io = list_entry(ei->i_completed_io_list.next,
3706 ext4_io_end_t, list);
3708 * Calling ext4_end_io_nolock() to convert completed
3709 * IO to written.
3711 * When ext4_sync_file() is called, run_queue() may already
3712 * about to flush the work corresponding to this io structure.
3713 * It will be upset if it founds the io structure related
3714 * to the work-to-be schedule is freed.
3716 * Thus we need to keep the io structure still valid here after
3717 * convertion finished. The io structure has a flag to
3718 * avoid double converting from both fsync and background work
3719 * queue work.
3721 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3722 ret = ext4_end_io_nolock(io);
3723 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3724 if (ret < 0)
3725 ret2 = ret;
3726 else
3727 list_del_init(&io->list);
3729 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3730 return (ret2 < 0) ? ret2 : 0;
3733 static ext4_io_end_t *ext4_init_io_end (struct inode *inode, gfp_t flags)
3735 ext4_io_end_t *io = NULL;
3737 io = kmalloc(sizeof(*io), flags);
3739 if (io) {
3740 igrab(inode);
3741 io->inode = inode;
3742 io->flag = 0;
3743 io->offset = 0;
3744 io->size = 0;
3745 io->page = NULL;
3746 INIT_WORK(&io->work, ext4_end_io_work);
3747 INIT_LIST_HEAD(&io->list);
3750 return io;
3753 static void ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
3754 ssize_t size, void *private)
3756 ext4_io_end_t *io_end = iocb->private;
3757 struct workqueue_struct *wq;
3758 unsigned long flags;
3759 struct ext4_inode_info *ei;
3761 /* if not async direct IO or dio with 0 bytes write, just return */
3762 if (!io_end || !size)
3763 return;
3765 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3767 iocb->private, io_end->inode->i_ino, iocb, offset,
3768 size);
3770 /* if not aio dio with unwritten extents, just free io and return */
3771 if (io_end->flag != EXT4_IO_UNWRITTEN){
3772 ext4_free_io_end(io_end);
3773 iocb->private = NULL;
3774 return;
3777 io_end->offset = offset;
3778 io_end->size = size;
3779 io_end->flag = EXT4_IO_UNWRITTEN;
3780 wq = EXT4_SB(io_end->inode->i_sb)->dio_unwritten_wq;
3782 /* queue the work to convert unwritten extents to written */
3783 queue_work(wq, &io_end->work);
3785 /* Add the io_end to per-inode completed aio dio list*/
3786 ei = EXT4_I(io_end->inode);
3787 spin_lock_irqsave(&ei->i_completed_io_lock, flags);
3788 list_add_tail(&io_end->list, &ei->i_completed_io_list);
3789 spin_unlock_irqrestore(&ei->i_completed_io_lock, flags);
3790 iocb->private = NULL;
3793 static void ext4_end_io_buffer_write(struct buffer_head *bh, int uptodate)
3795 ext4_io_end_t *io_end = bh->b_private;
3796 struct workqueue_struct *wq;
3797 struct inode *inode;
3798 unsigned long flags;
3800 if (!test_clear_buffer_uninit(bh) || !io_end)
3801 goto out;
3803 if (!(io_end->inode->i_sb->s_flags & MS_ACTIVE)) {
3804 printk("sb umounted, discard end_io request for inode %lu\n",
3805 io_end->inode->i_ino);
3806 ext4_free_io_end(io_end);
3807 goto out;
3810 io_end->flag = EXT4_IO_UNWRITTEN;
3811 inode = io_end->inode;
3813 /* Add the io_end to per-inode completed io list*/
3814 spin_lock_irqsave(&EXT4_I(inode)->i_completed_io_lock, flags);
3815 list_add_tail(&io_end->list, &EXT4_I(inode)->i_completed_io_list);
3816 spin_unlock_irqrestore(&EXT4_I(inode)->i_completed_io_lock, flags);
3818 wq = EXT4_SB(inode->i_sb)->dio_unwritten_wq;
3819 /* queue the work to convert unwritten extents to written */
3820 queue_work(wq, &io_end->work);
3821 out:
3822 bh->b_private = NULL;
3823 bh->b_end_io = NULL;
3824 clear_buffer_uninit(bh);
3825 end_buffer_async_write(bh, uptodate);
3828 static int ext4_set_bh_endio(struct buffer_head *bh, struct inode *inode)
3830 ext4_io_end_t *io_end;
3831 struct page *page = bh->b_page;
3832 loff_t offset = (sector_t)page->index << PAGE_CACHE_SHIFT;
3833 size_t size = bh->b_size;
3835 retry:
3836 io_end = ext4_init_io_end(inode, GFP_ATOMIC);
3837 if (!io_end) {
3838 if (printk_ratelimit())
3839 printk(KERN_WARNING "%s: allocation fail\n", __func__);
3840 schedule();
3841 goto retry;
3843 io_end->offset = offset;
3844 io_end->size = size;
3846 * We need to hold a reference to the page to make sure it
3847 * doesn't get evicted before ext4_end_io_work() has a chance
3848 * to convert the extent from written to unwritten.
3850 io_end->page = page;
3851 get_page(io_end->page);
3853 bh->b_private = io_end;
3854 bh->b_end_io = ext4_end_io_buffer_write;
3855 return 0;
3859 * For ext4 extent files, ext4 will do direct-io write to holes,
3860 * preallocated extents, and those write extend the file, no need to
3861 * fall back to buffered IO.
3863 * For holes, we fallocate those blocks, mark them as unintialized
3864 * If those blocks were preallocated, we mark sure they are splited, but
3865 * still keep the range to write as unintialized.
3867 * The unwrritten extents will be converted to written when DIO is completed.
3868 * For async direct IO, since the IO may still pending when return, we
3869 * set up an end_io call back function, which will do the convertion
3870 * when async direct IO completed.
3872 * If the O_DIRECT write will extend the file then add this inode to the
3873 * orphan list. So recovery will truncate it back to the original size
3874 * if the machine crashes during the write.
3877 static ssize_t ext4_ext_direct_IO(int rw, struct kiocb *iocb,
3878 const struct iovec *iov, loff_t offset,
3879 unsigned long nr_segs)
3881 struct file *file = iocb->ki_filp;
3882 struct inode *inode = file->f_mapping->host;
3883 ssize_t ret;
3884 size_t count = iov_length(iov, nr_segs);
3886 loff_t final_size = offset + count;
3887 if (rw == WRITE && final_size <= inode->i_size) {
3889 * We could direct write to holes and fallocate.
3891 * Allocated blocks to fill the hole are marked as uninitialized
3892 * to prevent paralel buffered read to expose the stale data
3893 * before DIO complete the data IO.
3895 * As to previously fallocated extents, ext4 get_block
3896 * will just simply mark the buffer mapped but still
3897 * keep the extents uninitialized.
3899 * for non AIO case, we will convert those unwritten extents
3900 * to written after return back from blockdev_direct_IO.
3902 * for async DIO, the conversion needs to be defered when
3903 * the IO is completed. The ext4 end_io callback function
3904 * will be called to take care of the conversion work.
3905 * Here for async case, we allocate an io_end structure to
3906 * hook to the iocb.
3908 iocb->private = NULL;
3909 EXT4_I(inode)->cur_aio_dio = NULL;
3910 if (!is_sync_kiocb(iocb)) {
3911 iocb->private = ext4_init_io_end(inode, GFP_NOFS);
3912 if (!iocb->private)
3913 return -ENOMEM;
3915 * we save the io structure for current async
3916 * direct IO, so that later ext4_get_blocks()
3917 * could flag the io structure whether there
3918 * is a unwritten extents needs to be converted
3919 * when IO is completed.
3921 EXT4_I(inode)->cur_aio_dio = iocb->private;
3924 ret = blockdev_direct_IO(rw, iocb, inode,
3925 inode->i_sb->s_bdev, iov,
3926 offset, nr_segs,
3927 ext4_get_block_write,
3928 ext4_end_io_dio);
3929 if (iocb->private)
3930 EXT4_I(inode)->cur_aio_dio = NULL;
3932 * The io_end structure takes a reference to the inode,
3933 * that structure needs to be destroyed and the
3934 * reference to the inode need to be dropped, when IO is
3935 * complete, even with 0 byte write, or failed.
3937 * In the successful AIO DIO case, the io_end structure will be
3938 * desctroyed and the reference to the inode will be dropped
3939 * after the end_io call back function is called.
3941 * In the case there is 0 byte write, or error case, since
3942 * VFS direct IO won't invoke the end_io call back function,
3943 * we need to free the end_io structure here.
3945 if (ret != -EIOCBQUEUED && ret <= 0 && iocb->private) {
3946 ext4_free_io_end(iocb->private);
3947 iocb->private = NULL;
3948 } else if (ret > 0 && ext4_test_inode_state(inode,
3949 EXT4_STATE_DIO_UNWRITTEN)) {
3950 int err;
3952 * for non AIO case, since the IO is already
3953 * completed, we could do the convertion right here
3955 err = ext4_convert_unwritten_extents(inode,
3956 offset, ret);
3957 if (err < 0)
3958 ret = err;
3959 ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
3961 return ret;
3964 /* for write the the end of file case, we fall back to old way */
3965 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3968 static ssize_t ext4_direct_IO(int rw, struct kiocb *iocb,
3969 const struct iovec *iov, loff_t offset,
3970 unsigned long nr_segs)
3972 struct file *file = iocb->ki_filp;
3973 struct inode *inode = file->f_mapping->host;
3975 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)
3976 return ext4_ext_direct_IO(rw, iocb, iov, offset, nr_segs);
3978 return ext4_ind_direct_IO(rw, iocb, iov, offset, nr_segs);
3982 * Pages can be marked dirty completely asynchronously from ext4's journalling
3983 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3984 * much here because ->set_page_dirty is called under VFS locks. The page is
3985 * not necessarily locked.
3987 * We cannot just dirty the page and leave attached buffers clean, because the
3988 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3989 * or jbddirty because all the journalling code will explode.
3991 * So what we do is to mark the page "pending dirty" and next time writepage
3992 * is called, propagate that into the buffers appropriately.
3994 static int ext4_journalled_set_page_dirty(struct page *page)
3996 SetPageChecked(page);
3997 return __set_page_dirty_nobuffers(page);
4000 static const struct address_space_operations ext4_ordered_aops = {
4001 .readpage = ext4_readpage,
4002 .readpages = ext4_readpages,
4003 .writepage = ext4_writepage,
4004 .sync_page = block_sync_page,
4005 .write_begin = ext4_write_begin,
4006 .write_end = ext4_ordered_write_end,
4007 .bmap = ext4_bmap,
4008 .invalidatepage = ext4_invalidatepage,
4009 .releasepage = ext4_releasepage,
4010 .direct_IO = ext4_direct_IO,
4011 .migratepage = buffer_migrate_page,
4012 .is_partially_uptodate = block_is_partially_uptodate,
4013 .error_remove_page = generic_error_remove_page,
4016 static const struct address_space_operations ext4_writeback_aops = {
4017 .readpage = ext4_readpage,
4018 .readpages = ext4_readpages,
4019 .writepage = ext4_writepage,
4020 .sync_page = block_sync_page,
4021 .write_begin = ext4_write_begin,
4022 .write_end = ext4_writeback_write_end,
4023 .bmap = ext4_bmap,
4024 .invalidatepage = ext4_invalidatepage,
4025 .releasepage = ext4_releasepage,
4026 .direct_IO = ext4_direct_IO,
4027 .migratepage = buffer_migrate_page,
4028 .is_partially_uptodate = block_is_partially_uptodate,
4029 .error_remove_page = generic_error_remove_page,
4032 static const struct address_space_operations ext4_journalled_aops = {
4033 .readpage = ext4_readpage,
4034 .readpages = ext4_readpages,
4035 .writepage = ext4_writepage,
4036 .sync_page = block_sync_page,
4037 .write_begin = ext4_write_begin,
4038 .write_end = ext4_journalled_write_end,
4039 .set_page_dirty = ext4_journalled_set_page_dirty,
4040 .bmap = ext4_bmap,
4041 .invalidatepage = ext4_invalidatepage,
4042 .releasepage = ext4_releasepage,
4043 .is_partially_uptodate = block_is_partially_uptodate,
4044 .error_remove_page = generic_error_remove_page,
4047 static const struct address_space_operations ext4_da_aops = {
4048 .readpage = ext4_readpage,
4049 .readpages = ext4_readpages,
4050 .writepage = ext4_writepage,
4051 .writepages = ext4_da_writepages,
4052 .sync_page = block_sync_page,
4053 .write_begin = ext4_da_write_begin,
4054 .write_end = ext4_da_write_end,
4055 .bmap = ext4_bmap,
4056 .invalidatepage = ext4_da_invalidatepage,
4057 .releasepage = ext4_releasepage,
4058 .direct_IO = ext4_direct_IO,
4059 .migratepage = buffer_migrate_page,
4060 .is_partially_uptodate = block_is_partially_uptodate,
4061 .error_remove_page = generic_error_remove_page,
4064 void ext4_set_aops(struct inode *inode)
4066 if (ext4_should_order_data(inode) &&
4067 test_opt(inode->i_sb, DELALLOC))
4068 inode->i_mapping->a_ops = &ext4_da_aops;
4069 else if (ext4_should_order_data(inode))
4070 inode->i_mapping->a_ops = &ext4_ordered_aops;
4071 else if (ext4_should_writeback_data(inode) &&
4072 test_opt(inode->i_sb, DELALLOC))
4073 inode->i_mapping->a_ops = &ext4_da_aops;
4074 else if (ext4_should_writeback_data(inode))
4075 inode->i_mapping->a_ops = &ext4_writeback_aops;
4076 else
4077 inode->i_mapping->a_ops = &ext4_journalled_aops;
4081 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4082 * up to the end of the block which corresponds to `from'.
4083 * This required during truncate. We need to physically zero the tail end
4084 * of that block so it doesn't yield old data if the file is later grown.
4086 int ext4_block_truncate_page(handle_t *handle,
4087 struct address_space *mapping, loff_t from)
4089 ext4_fsblk_t index = from >> PAGE_CACHE_SHIFT;
4090 unsigned offset = from & (PAGE_CACHE_SIZE-1);
4091 unsigned blocksize, length, pos;
4092 ext4_lblk_t iblock;
4093 struct inode *inode = mapping->host;
4094 struct buffer_head *bh;
4095 struct page *page;
4096 int err = 0;
4098 page = find_or_create_page(mapping, from >> PAGE_CACHE_SHIFT,
4099 mapping_gfp_mask(mapping) & ~__GFP_FS);
4100 if (!page)
4101 return -EINVAL;
4103 blocksize = inode->i_sb->s_blocksize;
4104 length = blocksize - (offset & (blocksize - 1));
4105 iblock = index << (PAGE_CACHE_SHIFT - inode->i_sb->s_blocksize_bits);
4108 * For "nobh" option, we can only work if we don't need to
4109 * read-in the page - otherwise we create buffers to do the IO.
4111 if (!page_has_buffers(page) && test_opt(inode->i_sb, NOBH) &&
4112 ext4_should_writeback_data(inode) && PageUptodate(page)) {
4113 zero_user(page, offset, length);
4114 set_page_dirty(page);
4115 goto unlock;
4118 if (!page_has_buffers(page))
4119 create_empty_buffers(page, blocksize, 0);
4121 /* Find the buffer that contains "offset" */
4122 bh = page_buffers(page);
4123 pos = blocksize;
4124 while (offset >= pos) {
4125 bh = bh->b_this_page;
4126 iblock++;
4127 pos += blocksize;
4130 err = 0;
4131 if (buffer_freed(bh)) {
4132 BUFFER_TRACE(bh, "freed: skip");
4133 goto unlock;
4136 if (!buffer_mapped(bh)) {
4137 BUFFER_TRACE(bh, "unmapped");
4138 ext4_get_block(inode, iblock, bh, 0);
4139 /* unmapped? It's a hole - nothing to do */
4140 if (!buffer_mapped(bh)) {
4141 BUFFER_TRACE(bh, "still unmapped");
4142 goto unlock;
4146 /* Ok, it's mapped. Make sure it's up-to-date */
4147 if (PageUptodate(page))
4148 set_buffer_uptodate(bh);
4150 if (!buffer_uptodate(bh)) {
4151 err = -EIO;
4152 ll_rw_block(READ, 1, &bh);
4153 wait_on_buffer(bh);
4154 /* Uhhuh. Read error. Complain and punt. */
4155 if (!buffer_uptodate(bh))
4156 goto unlock;
4159 if (ext4_should_journal_data(inode)) {
4160 BUFFER_TRACE(bh, "get write access");
4161 err = ext4_journal_get_write_access(handle, bh);
4162 if (err)
4163 goto unlock;
4166 zero_user(page, offset, length);
4168 BUFFER_TRACE(bh, "zeroed end of block");
4170 err = 0;
4171 if (ext4_should_journal_data(inode)) {
4172 err = ext4_handle_dirty_metadata(handle, inode, bh);
4173 } else {
4174 if (ext4_should_order_data(inode))
4175 err = ext4_jbd2_file_inode(handle, inode);
4176 mark_buffer_dirty(bh);
4179 unlock:
4180 unlock_page(page);
4181 page_cache_release(page);
4182 return err;
4186 * Probably it should be a library function... search for first non-zero word
4187 * or memcmp with zero_page, whatever is better for particular architecture.
4188 * Linus?
4190 static inline int all_zeroes(__le32 *p, __le32 *q)
4192 while (p < q)
4193 if (*p++)
4194 return 0;
4195 return 1;
4199 * ext4_find_shared - find the indirect blocks for partial truncation.
4200 * @inode: inode in question
4201 * @depth: depth of the affected branch
4202 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4203 * @chain: place to store the pointers to partial indirect blocks
4204 * @top: place to the (detached) top of branch
4206 * This is a helper function used by ext4_truncate().
4208 * When we do truncate() we may have to clean the ends of several
4209 * indirect blocks but leave the blocks themselves alive. Block is
4210 * partially truncated if some data below the new i_size is refered
4211 * from it (and it is on the path to the first completely truncated
4212 * data block, indeed). We have to free the top of that path along
4213 * with everything to the right of the path. Since no allocation
4214 * past the truncation point is possible until ext4_truncate()
4215 * finishes, we may safely do the latter, but top of branch may
4216 * require special attention - pageout below the truncation point
4217 * might try to populate it.
4219 * We atomically detach the top of branch from the tree, store the
4220 * block number of its root in *@top, pointers to buffer_heads of
4221 * partially truncated blocks - in @chain[].bh and pointers to
4222 * their last elements that should not be removed - in
4223 * @chain[].p. Return value is the pointer to last filled element
4224 * of @chain.
4226 * The work left to caller to do the actual freeing of subtrees:
4227 * a) free the subtree starting from *@top
4228 * b) free the subtrees whose roots are stored in
4229 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4230 * c) free the subtrees growing from the inode past the @chain[0].
4231 * (no partially truncated stuff there). */
4233 static Indirect *ext4_find_shared(struct inode *inode, int depth,
4234 ext4_lblk_t offsets[4], Indirect chain[4],
4235 __le32 *top)
4237 Indirect *partial, *p;
4238 int k, err;
4240 *top = 0;
4241 /* Make k index the deepest non-null offset + 1 */
4242 for (k = depth; k > 1 && !offsets[k-1]; k--)
4244 partial = ext4_get_branch(inode, k, offsets, chain, &err);
4245 /* Writer: pointers */
4246 if (!partial)
4247 partial = chain + k-1;
4249 * If the branch acquired continuation since we've looked at it -
4250 * fine, it should all survive and (new) top doesn't belong to us.
4252 if (!partial->key && *partial->p)
4253 /* Writer: end */
4254 goto no_top;
4255 for (p = partial; (p > chain) && all_zeroes((__le32 *) p->bh->b_data, p->p); p--)
4258 * OK, we've found the last block that must survive. The rest of our
4259 * branch should be detached before unlocking. However, if that rest
4260 * of branch is all ours and does not grow immediately from the inode
4261 * it's easier to cheat and just decrement partial->p.
4263 if (p == chain + k - 1 && p > chain) {
4264 p->p--;
4265 } else {
4266 *top = *p->p;
4267 /* Nope, don't do this in ext4. Must leave the tree intact */
4268 #if 0
4269 *p->p = 0;
4270 #endif
4272 /* Writer: end */
4274 while (partial > p) {
4275 brelse(partial->bh);
4276 partial--;
4278 no_top:
4279 return partial;
4283 * Zero a number of block pointers in either an inode or an indirect block.
4284 * If we restart the transaction we must again get write access to the
4285 * indirect block for further modification.
4287 * We release `count' blocks on disk, but (last - first) may be greater
4288 * than `count' because there can be holes in there.
4290 static int ext4_clear_blocks(handle_t *handle, struct inode *inode,
4291 struct buffer_head *bh,
4292 ext4_fsblk_t block_to_free,
4293 unsigned long count, __le32 *first,
4294 __le32 *last)
4296 __le32 *p;
4297 int flags = EXT4_FREE_BLOCKS_FORGET | EXT4_FREE_BLOCKS_VALIDATED;
4299 if (S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))
4300 flags |= EXT4_FREE_BLOCKS_METADATA;
4302 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), block_to_free,
4303 count)) {
4304 ext4_error(inode->i_sb, "inode #%lu: "
4305 "attempt to clear blocks %llu len %lu, invalid",
4306 inode->i_ino, (unsigned long long) block_to_free,
4307 count);
4308 return 1;
4311 if (try_to_extend_transaction(handle, inode)) {
4312 if (bh) {
4313 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
4314 ext4_handle_dirty_metadata(handle, inode, bh);
4316 ext4_mark_inode_dirty(handle, inode);
4317 ext4_truncate_restart_trans(handle, inode,
4318 blocks_for_truncate(inode));
4319 if (bh) {
4320 BUFFER_TRACE(bh, "retaking write access");
4321 ext4_journal_get_write_access(handle, bh);
4325 for (p = first; p < last; p++)
4326 *p = 0;
4328 ext4_free_blocks(handle, inode, 0, block_to_free, count, flags);
4329 return 0;
4333 * ext4_free_data - free a list of data blocks
4334 * @handle: handle for this transaction
4335 * @inode: inode we are dealing with
4336 * @this_bh: indirect buffer_head which contains *@first and *@last
4337 * @first: array of block numbers
4338 * @last: points immediately past the end of array
4340 * We are freeing all blocks refered from that array (numbers are stored as
4341 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4343 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4344 * blocks are contiguous then releasing them at one time will only affect one
4345 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4346 * actually use a lot of journal space.
4348 * @this_bh will be %NULL if @first and @last point into the inode's direct
4349 * block pointers.
4351 static void ext4_free_data(handle_t *handle, struct inode *inode,
4352 struct buffer_head *this_bh,
4353 __le32 *first, __le32 *last)
4355 ext4_fsblk_t block_to_free = 0; /* Starting block # of a run */
4356 unsigned long count = 0; /* Number of blocks in the run */
4357 __le32 *block_to_free_p = NULL; /* Pointer into inode/ind
4358 corresponding to
4359 block_to_free */
4360 ext4_fsblk_t nr; /* Current block # */
4361 __le32 *p; /* Pointer into inode/ind
4362 for current block */
4363 int err;
4365 if (this_bh) { /* For indirect block */
4366 BUFFER_TRACE(this_bh, "get_write_access");
4367 err = ext4_journal_get_write_access(handle, this_bh);
4368 /* Important: if we can't update the indirect pointers
4369 * to the blocks, we can't free them. */
4370 if (err)
4371 return;
4374 for (p = first; p < last; p++) {
4375 nr = le32_to_cpu(*p);
4376 if (nr) {
4377 /* accumulate blocks to free if they're contiguous */
4378 if (count == 0) {
4379 block_to_free = nr;
4380 block_to_free_p = p;
4381 count = 1;
4382 } else if (nr == block_to_free + count) {
4383 count++;
4384 } else {
4385 if (ext4_clear_blocks(handle, inode, this_bh,
4386 block_to_free, count,
4387 block_to_free_p, p))
4388 break;
4389 block_to_free = nr;
4390 block_to_free_p = p;
4391 count = 1;
4396 if (count > 0)
4397 ext4_clear_blocks(handle, inode, this_bh, block_to_free,
4398 count, block_to_free_p, p);
4400 if (this_bh) {
4401 BUFFER_TRACE(this_bh, "call ext4_handle_dirty_metadata");
4404 * The buffer head should have an attached journal head at this
4405 * point. However, if the data is corrupted and an indirect
4406 * block pointed to itself, it would have been detached when
4407 * the block was cleared. Check for this instead of OOPSing.
4409 if ((EXT4_JOURNAL(inode) == NULL) || bh2jh(this_bh))
4410 ext4_handle_dirty_metadata(handle, inode, this_bh);
4411 else
4412 ext4_error(inode->i_sb,
4413 "circular indirect block detected, "
4414 "inode=%lu, block=%llu",
4415 inode->i_ino,
4416 (unsigned long long) this_bh->b_blocknr);
4421 * ext4_free_branches - free an array of branches
4422 * @handle: JBD handle for this transaction
4423 * @inode: inode we are dealing with
4424 * @parent_bh: the buffer_head which contains *@first and *@last
4425 * @first: array of block numbers
4426 * @last: pointer immediately past the end of array
4427 * @depth: depth of the branches to free
4429 * We are freeing all blocks refered from these branches (numbers are
4430 * stored as little-endian 32-bit) and updating @inode->i_blocks
4431 * appropriately.
4433 static void ext4_free_branches(handle_t *handle, struct inode *inode,
4434 struct buffer_head *parent_bh,
4435 __le32 *first, __le32 *last, int depth)
4437 ext4_fsblk_t nr;
4438 __le32 *p;
4440 if (ext4_handle_is_aborted(handle))
4441 return;
4443 if (depth--) {
4444 struct buffer_head *bh;
4445 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4446 p = last;
4447 while (--p >= first) {
4448 nr = le32_to_cpu(*p);
4449 if (!nr)
4450 continue; /* A hole */
4452 if (!ext4_data_block_valid(EXT4_SB(inode->i_sb),
4453 nr, 1)) {
4454 ext4_error(inode->i_sb,
4455 "indirect mapped block in inode "
4456 "#%lu invalid (level %d, blk #%lu)",
4457 inode->i_ino, depth,
4458 (unsigned long) nr);
4459 break;
4462 /* Go read the buffer for the next level down */
4463 bh = sb_bread(inode->i_sb, nr);
4466 * A read failure? Report error and clear slot
4467 * (should be rare).
4469 if (!bh) {
4470 ext4_error(inode->i_sb,
4471 "Read failure, inode=%lu, block=%llu",
4472 inode->i_ino, nr);
4473 continue;
4476 /* This zaps the entire block. Bottom up. */
4477 BUFFER_TRACE(bh, "free child branches");
4478 ext4_free_branches(handle, inode, bh,
4479 (__le32 *) bh->b_data,
4480 (__le32 *) bh->b_data + addr_per_block,
4481 depth);
4484 * We've probably journalled the indirect block several
4485 * times during the truncate. But it's no longer
4486 * needed and we now drop it from the transaction via
4487 * jbd2_journal_revoke().
4489 * That's easy if it's exclusively part of this
4490 * transaction. But if it's part of the committing
4491 * transaction then jbd2_journal_forget() will simply
4492 * brelse() it. That means that if the underlying
4493 * block is reallocated in ext4_get_block(),
4494 * unmap_underlying_metadata() will find this block
4495 * and will try to get rid of it. damn, damn.
4497 * If this block has already been committed to the
4498 * journal, a revoke record will be written. And
4499 * revoke records must be emitted *before* clearing
4500 * this block's bit in the bitmaps.
4502 ext4_forget(handle, 1, inode, bh, bh->b_blocknr);
4505 * Everything below this this pointer has been
4506 * released. Now let this top-of-subtree go.
4508 * We want the freeing of this indirect block to be
4509 * atomic in the journal with the updating of the
4510 * bitmap block which owns it. So make some room in
4511 * the journal.
4513 * We zero the parent pointer *after* freeing its
4514 * pointee in the bitmaps, so if extend_transaction()
4515 * for some reason fails to put the bitmap changes and
4516 * the release into the same transaction, recovery
4517 * will merely complain about releasing a free block,
4518 * rather than leaking blocks.
4520 if (ext4_handle_is_aborted(handle))
4521 return;
4522 if (try_to_extend_transaction(handle, inode)) {
4523 ext4_mark_inode_dirty(handle, inode);
4524 ext4_truncate_restart_trans(handle, inode,
4525 blocks_for_truncate(inode));
4528 ext4_free_blocks(handle, inode, 0, nr, 1,
4529 EXT4_FREE_BLOCKS_METADATA);
4531 if (parent_bh) {
4533 * The block which we have just freed is
4534 * pointed to by an indirect block: journal it
4536 BUFFER_TRACE(parent_bh, "get_write_access");
4537 if (!ext4_journal_get_write_access(handle,
4538 parent_bh)){
4539 *p = 0;
4540 BUFFER_TRACE(parent_bh,
4541 "call ext4_handle_dirty_metadata");
4542 ext4_handle_dirty_metadata(handle,
4543 inode,
4544 parent_bh);
4548 } else {
4549 /* We have reached the bottom of the tree. */
4550 BUFFER_TRACE(parent_bh, "free data blocks");
4551 ext4_free_data(handle, inode, parent_bh, first, last);
4555 int ext4_can_truncate(struct inode *inode)
4557 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
4558 return 0;
4559 if (S_ISREG(inode->i_mode))
4560 return 1;
4561 if (S_ISDIR(inode->i_mode))
4562 return 1;
4563 if (S_ISLNK(inode->i_mode))
4564 return !ext4_inode_is_fast_symlink(inode);
4565 return 0;
4569 * ext4_truncate()
4571 * We block out ext4_get_block() block instantiations across the entire
4572 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4573 * simultaneously on behalf of the same inode.
4575 * As we work through the truncate and commmit bits of it to the journal there
4576 * is one core, guiding principle: the file's tree must always be consistent on
4577 * disk. We must be able to restart the truncate after a crash.
4579 * The file's tree may be transiently inconsistent in memory (although it
4580 * probably isn't), but whenever we close off and commit a journal transaction,
4581 * the contents of (the filesystem + the journal) must be consistent and
4582 * restartable. It's pretty simple, really: bottom up, right to left (although
4583 * left-to-right works OK too).
4585 * Note that at recovery time, journal replay occurs *before* the restart of
4586 * truncate against the orphan inode list.
4588 * The committed inode has the new, desired i_size (which is the same as
4589 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4590 * that this inode's truncate did not complete and it will again call
4591 * ext4_truncate() to have another go. So there will be instantiated blocks
4592 * to the right of the truncation point in a crashed ext4 filesystem. But
4593 * that's fine - as long as they are linked from the inode, the post-crash
4594 * ext4_truncate() run will find them and release them.
4596 void ext4_truncate(struct inode *inode)
4598 handle_t *handle;
4599 struct ext4_inode_info *ei = EXT4_I(inode);
4600 __le32 *i_data = ei->i_data;
4601 int addr_per_block = EXT4_ADDR_PER_BLOCK(inode->i_sb);
4602 struct address_space *mapping = inode->i_mapping;
4603 ext4_lblk_t offsets[4];
4604 Indirect chain[4];
4605 Indirect *partial;
4606 __le32 nr = 0;
4607 int n;
4608 ext4_lblk_t last_block;
4609 unsigned blocksize = inode->i_sb->s_blocksize;
4611 if (!ext4_can_truncate(inode))
4612 return;
4614 EXT4_I(inode)->i_flags &= ~EXT4_EOFBLOCKS_FL;
4616 if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
4617 ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
4619 if (EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL) {
4620 ext4_ext_truncate(inode);
4621 return;
4624 handle = start_transaction(inode);
4625 if (IS_ERR(handle))
4626 return; /* AKPM: return what? */
4628 last_block = (inode->i_size + blocksize-1)
4629 >> EXT4_BLOCK_SIZE_BITS(inode->i_sb);
4631 if (inode->i_size & (blocksize - 1))
4632 if (ext4_block_truncate_page(handle, mapping, inode->i_size))
4633 goto out_stop;
4635 n = ext4_block_to_path(inode, last_block, offsets, NULL);
4636 if (n == 0)
4637 goto out_stop; /* error */
4640 * OK. This truncate is going to happen. We add the inode to the
4641 * orphan list, so that if this truncate spans multiple transactions,
4642 * and we crash, we will resume the truncate when the filesystem
4643 * recovers. It also marks the inode dirty, to catch the new size.
4645 * Implication: the file must always be in a sane, consistent
4646 * truncatable state while each transaction commits.
4648 if (ext4_orphan_add(handle, inode))
4649 goto out_stop;
4652 * From here we block out all ext4_get_block() callers who want to
4653 * modify the block allocation tree.
4655 down_write(&ei->i_data_sem);
4657 ext4_discard_preallocations(inode);
4660 * The orphan list entry will now protect us from any crash which
4661 * occurs before the truncate completes, so it is now safe to propagate
4662 * the new, shorter inode size (held for now in i_size) into the
4663 * on-disk inode. We do this via i_disksize, which is the value which
4664 * ext4 *really* writes onto the disk inode.
4666 ei->i_disksize = inode->i_size;
4668 if (n == 1) { /* direct blocks */
4669 ext4_free_data(handle, inode, NULL, i_data+offsets[0],
4670 i_data + EXT4_NDIR_BLOCKS);
4671 goto do_indirects;
4674 partial = ext4_find_shared(inode, n, offsets, chain, &nr);
4675 /* Kill the top of shared branch (not detached) */
4676 if (nr) {
4677 if (partial == chain) {
4678 /* Shared branch grows from the inode */
4679 ext4_free_branches(handle, inode, NULL,
4680 &nr, &nr+1, (chain+n-1) - partial);
4681 *partial->p = 0;
4683 * We mark the inode dirty prior to restart,
4684 * and prior to stop. No need for it here.
4686 } else {
4687 /* Shared branch grows from an indirect block */
4688 BUFFER_TRACE(partial->bh, "get_write_access");
4689 ext4_free_branches(handle, inode, partial->bh,
4690 partial->p,
4691 partial->p+1, (chain+n-1) - partial);
4694 /* Clear the ends of indirect blocks on the shared branch */
4695 while (partial > chain) {
4696 ext4_free_branches(handle, inode, partial->bh, partial->p + 1,
4697 (__le32*)partial->bh->b_data+addr_per_block,
4698 (chain+n-1) - partial);
4699 BUFFER_TRACE(partial->bh, "call brelse");
4700 brelse(partial->bh);
4701 partial--;
4703 do_indirects:
4704 /* Kill the remaining (whole) subtrees */
4705 switch (offsets[0]) {
4706 default:
4707 nr = i_data[EXT4_IND_BLOCK];
4708 if (nr) {
4709 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 1);
4710 i_data[EXT4_IND_BLOCK] = 0;
4712 case EXT4_IND_BLOCK:
4713 nr = i_data[EXT4_DIND_BLOCK];
4714 if (nr) {
4715 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 2);
4716 i_data[EXT4_DIND_BLOCK] = 0;
4718 case EXT4_DIND_BLOCK:
4719 nr = i_data[EXT4_TIND_BLOCK];
4720 if (nr) {
4721 ext4_free_branches(handle, inode, NULL, &nr, &nr+1, 3);
4722 i_data[EXT4_TIND_BLOCK] = 0;
4724 case EXT4_TIND_BLOCK:
4728 up_write(&ei->i_data_sem);
4729 inode->i_mtime = inode->i_ctime = ext4_current_time(inode);
4730 ext4_mark_inode_dirty(handle, inode);
4733 * In a multi-transaction truncate, we only make the final transaction
4734 * synchronous
4736 if (IS_SYNC(inode))
4737 ext4_handle_sync(handle);
4738 out_stop:
4740 * If this was a simple ftruncate(), and the file will remain alive
4741 * then we need to clear up the orphan record which we created above.
4742 * However, if this was a real unlink then we were called by
4743 * ext4_delete_inode(), and we allow that function to clean up the
4744 * orphan info for us.
4746 if (inode->i_nlink)
4747 ext4_orphan_del(handle, inode);
4749 ext4_journal_stop(handle);
4753 * ext4_get_inode_loc returns with an extra refcount against the inode's
4754 * underlying buffer_head on success. If 'in_mem' is true, we have all
4755 * data in memory that is needed to recreate the on-disk version of this
4756 * inode.
4758 static int __ext4_get_inode_loc(struct inode *inode,
4759 struct ext4_iloc *iloc, int in_mem)
4761 struct ext4_group_desc *gdp;
4762 struct buffer_head *bh;
4763 struct super_block *sb = inode->i_sb;
4764 ext4_fsblk_t block;
4765 int inodes_per_block, inode_offset;
4767 iloc->bh = NULL;
4768 if (!ext4_valid_inum(sb, inode->i_ino))
4769 return -EIO;
4771 iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
4772 gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
4773 if (!gdp)
4774 return -EIO;
4777 * Figure out the offset within the block group inode table
4779 inodes_per_block = (EXT4_BLOCK_SIZE(sb) / EXT4_INODE_SIZE(sb));
4780 inode_offset = ((inode->i_ino - 1) %
4781 EXT4_INODES_PER_GROUP(sb));
4782 block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
4783 iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
4785 bh = sb_getblk(sb, block);
4786 if (!bh) {
4787 ext4_error(sb, "unable to read inode block - "
4788 "inode=%lu, block=%llu", inode->i_ino, block);
4789 return -EIO;
4791 if (!buffer_uptodate(bh)) {
4792 lock_buffer(bh);
4795 * If the buffer has the write error flag, we have failed
4796 * to write out another inode in the same block. In this
4797 * case, we don't have to read the block because we may
4798 * read the old inode data successfully.
4800 if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
4801 set_buffer_uptodate(bh);
4803 if (buffer_uptodate(bh)) {
4804 /* someone brought it uptodate while we waited */
4805 unlock_buffer(bh);
4806 goto has_buffer;
4810 * If we have all information of the inode in memory and this
4811 * is the only valid inode in the block, we need not read the
4812 * block.
4814 if (in_mem) {
4815 struct buffer_head *bitmap_bh;
4816 int i, start;
4818 start = inode_offset & ~(inodes_per_block - 1);
4820 /* Is the inode bitmap in cache? */
4821 bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
4822 if (!bitmap_bh)
4823 goto make_io;
4826 * If the inode bitmap isn't in cache then the
4827 * optimisation may end up performing two reads instead
4828 * of one, so skip it.
4830 if (!buffer_uptodate(bitmap_bh)) {
4831 brelse(bitmap_bh);
4832 goto make_io;
4834 for (i = start; i < start + inodes_per_block; i++) {
4835 if (i == inode_offset)
4836 continue;
4837 if (ext4_test_bit(i, bitmap_bh->b_data))
4838 break;
4840 brelse(bitmap_bh);
4841 if (i == start + inodes_per_block) {
4842 /* all other inodes are free, so skip I/O */
4843 memset(bh->b_data, 0, bh->b_size);
4844 set_buffer_uptodate(bh);
4845 unlock_buffer(bh);
4846 goto has_buffer;
4850 make_io:
4852 * If we need to do any I/O, try to pre-readahead extra
4853 * blocks from the inode table.
4855 if (EXT4_SB(sb)->s_inode_readahead_blks) {
4856 ext4_fsblk_t b, end, table;
4857 unsigned num;
4859 table = ext4_inode_table(sb, gdp);
4860 /* s_inode_readahead_blks is always a power of 2 */
4861 b = block & ~(EXT4_SB(sb)->s_inode_readahead_blks-1);
4862 if (table > b)
4863 b = table;
4864 end = b + EXT4_SB(sb)->s_inode_readahead_blks;
4865 num = EXT4_INODES_PER_GROUP(sb);
4866 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4867 EXT4_FEATURE_RO_COMPAT_GDT_CSUM))
4868 num -= ext4_itable_unused_count(sb, gdp);
4869 table += num / inodes_per_block;
4870 if (end > table)
4871 end = table;
4872 while (b <= end)
4873 sb_breadahead(sb, b++);
4877 * There are other valid inodes in the buffer, this inode
4878 * has in-inode xattrs, or we don't have this inode in memory.
4879 * Read the block from disk.
4881 get_bh(bh);
4882 bh->b_end_io = end_buffer_read_sync;
4883 submit_bh(READ_META, bh);
4884 wait_on_buffer(bh);
4885 if (!buffer_uptodate(bh)) {
4886 ext4_error(sb, "unable to read inode block - inode=%lu,"
4887 " block=%llu", inode->i_ino, block);
4888 brelse(bh);
4889 return -EIO;
4892 has_buffer:
4893 iloc->bh = bh;
4894 return 0;
4897 int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
4899 /* We have all inode data except xattrs in memory here. */
4900 return __ext4_get_inode_loc(inode, iloc,
4901 !ext4_test_inode_state(inode, EXT4_STATE_XATTR));
4904 void ext4_set_inode_flags(struct inode *inode)
4906 unsigned int flags = EXT4_I(inode)->i_flags;
4908 inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
4909 if (flags & EXT4_SYNC_FL)
4910 inode->i_flags |= S_SYNC;
4911 if (flags & EXT4_APPEND_FL)
4912 inode->i_flags |= S_APPEND;
4913 if (flags & EXT4_IMMUTABLE_FL)
4914 inode->i_flags |= S_IMMUTABLE;
4915 if (flags & EXT4_NOATIME_FL)
4916 inode->i_flags |= S_NOATIME;
4917 if (flags & EXT4_DIRSYNC_FL)
4918 inode->i_flags |= S_DIRSYNC;
4921 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4922 void ext4_get_inode_flags(struct ext4_inode_info *ei)
4924 unsigned int flags = ei->vfs_inode.i_flags;
4926 ei->i_flags &= ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
4927 EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|EXT4_DIRSYNC_FL);
4928 if (flags & S_SYNC)
4929 ei->i_flags |= EXT4_SYNC_FL;
4930 if (flags & S_APPEND)
4931 ei->i_flags |= EXT4_APPEND_FL;
4932 if (flags & S_IMMUTABLE)
4933 ei->i_flags |= EXT4_IMMUTABLE_FL;
4934 if (flags & S_NOATIME)
4935 ei->i_flags |= EXT4_NOATIME_FL;
4936 if (flags & S_DIRSYNC)
4937 ei->i_flags |= EXT4_DIRSYNC_FL;
4940 static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
4941 struct ext4_inode_info *ei)
4943 blkcnt_t i_blocks ;
4944 struct inode *inode = &(ei->vfs_inode);
4945 struct super_block *sb = inode->i_sb;
4947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb,
4948 EXT4_FEATURE_RO_COMPAT_HUGE_FILE)) {
4949 /* we are using combined 48 bit field */
4950 i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
4951 le32_to_cpu(raw_inode->i_blocks_lo);
4952 if (ei->i_flags & EXT4_HUGE_FILE_FL) {
4953 /* i_blocks represent file system block size */
4954 return i_blocks << (inode->i_blkbits - 9);
4955 } else {
4956 return i_blocks;
4958 } else {
4959 return le32_to_cpu(raw_inode->i_blocks_lo);
4963 struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
4965 struct ext4_iloc iloc;
4966 struct ext4_inode *raw_inode;
4967 struct ext4_inode_info *ei;
4968 struct inode *inode;
4969 journal_t *journal = EXT4_SB(sb)->s_journal;
4970 long ret;
4971 int block;
4973 inode = iget_locked(sb, ino);
4974 if (!inode)
4975 return ERR_PTR(-ENOMEM);
4976 if (!(inode->i_state & I_NEW))
4977 return inode;
4979 ei = EXT4_I(inode);
4980 iloc.bh = 0;
4982 ret = __ext4_get_inode_loc(inode, &iloc, 0);
4983 if (ret < 0)
4984 goto bad_inode;
4985 raw_inode = ext4_raw_inode(&iloc);
4986 inode->i_mode = le16_to_cpu(raw_inode->i_mode);
4987 inode->i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
4988 inode->i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
4989 if (!(test_opt(inode->i_sb, NO_UID32))) {
4990 inode->i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
4991 inode->i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
4993 inode->i_nlink = le16_to_cpu(raw_inode->i_links_count);
4995 ei->i_state_flags = 0;
4996 ei->i_dir_start_lookup = 0;
4997 ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
4998 /* We now have enough fields to check if the inode was active or not.
4999 * This is needed because nfsd might try to access dead inodes
5000 * the test is that same one that e2fsck uses
5001 * NeilBrown 1999oct15
5003 if (inode->i_nlink == 0) {
5004 if (inode->i_mode == 0 ||
5005 !(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) {
5006 /* this inode is deleted */
5007 ret = -ESTALE;
5008 goto bad_inode;
5010 /* The only unlinked inodes we let through here have
5011 * valid i_mode and are being read by the orphan
5012 * recovery code: that's fine, we're about to complete
5013 * the process of deleting those. */
5015 ei->i_flags = le32_to_cpu(raw_inode->i_flags);
5016 inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
5017 ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
5018 if (EXT4_HAS_INCOMPAT_FEATURE(sb, EXT4_FEATURE_INCOMPAT_64BIT))
5019 ei->i_file_acl |=
5020 ((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
5021 inode->i_size = ext4_isize(raw_inode);
5022 ei->i_disksize = inode->i_size;
5023 #ifdef CONFIG_QUOTA
5024 ei->i_reserved_quota = 0;
5025 #endif
5026 inode->i_generation = le32_to_cpu(raw_inode->i_generation);
5027 ei->i_block_group = iloc.block_group;
5028 ei->i_last_alloc_group = ~0;
5030 * NOTE! The in-memory inode i_data array is in little-endian order
5031 * even on big-endian machines: we do NOT byteswap the block numbers!
5033 for (block = 0; block < EXT4_N_BLOCKS; block++)
5034 ei->i_data[block] = raw_inode->i_block[block];
5035 INIT_LIST_HEAD(&ei->i_orphan);
5038 * Set transaction id's of transactions that have to be committed
5039 * to finish f[data]sync. We set them to currently running transaction
5040 * as we cannot be sure that the inode or some of its metadata isn't
5041 * part of the transaction - the inode could have been reclaimed and
5042 * now it is reread from disk.
5044 if (journal) {
5045 transaction_t *transaction;
5046 tid_t tid;
5048 spin_lock(&journal->j_state_lock);
5049 if (journal->j_running_transaction)
5050 transaction = journal->j_running_transaction;
5051 else
5052 transaction = journal->j_committing_transaction;
5053 if (transaction)
5054 tid = transaction->t_tid;
5055 else
5056 tid = journal->j_commit_sequence;
5057 spin_unlock(&journal->j_state_lock);
5058 ei->i_sync_tid = tid;
5059 ei->i_datasync_tid = tid;
5062 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5063 ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
5064 if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
5065 EXT4_INODE_SIZE(inode->i_sb)) {
5066 ret = -EIO;
5067 goto bad_inode;
5069 if (ei->i_extra_isize == 0) {
5070 /* The extra space is currently unused. Use it. */
5071 ei->i_extra_isize = sizeof(struct ext4_inode) -
5072 EXT4_GOOD_OLD_INODE_SIZE;
5073 } else {
5074 __le32 *magic = (void *)raw_inode +
5075 EXT4_GOOD_OLD_INODE_SIZE +
5076 ei->i_extra_isize;
5077 if (*magic == cpu_to_le32(EXT4_XATTR_MAGIC))
5078 ext4_set_inode_state(inode, EXT4_STATE_XATTR);
5080 } else
5081 ei->i_extra_isize = 0;
5083 EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
5084 EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
5085 EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
5086 EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
5088 inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
5089 if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
5090 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5091 inode->i_version |=
5092 (__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
5095 ret = 0;
5096 if (ei->i_file_acl &&
5097 !ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
5098 ext4_error(sb, "bad extended attribute block %llu inode #%lu",
5099 ei->i_file_acl, inode->i_ino);
5100 ret = -EIO;
5101 goto bad_inode;
5102 } else if (ei->i_flags & EXT4_EXTENTS_FL) {
5103 if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5104 (S_ISLNK(inode->i_mode) &&
5105 !ext4_inode_is_fast_symlink(inode)))
5106 /* Validate extent which is part of inode */
5107 ret = ext4_ext_check_inode(inode);
5108 } else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
5109 (S_ISLNK(inode->i_mode) &&
5110 !ext4_inode_is_fast_symlink(inode))) {
5111 /* Validate block references which are part of inode */
5112 ret = ext4_check_inode_blockref(inode);
5114 if (ret)
5115 goto bad_inode;
5117 if (S_ISREG(inode->i_mode)) {
5118 inode->i_op = &ext4_file_inode_operations;
5119 inode->i_fop = &ext4_file_operations;
5120 ext4_set_aops(inode);
5121 } else if (S_ISDIR(inode->i_mode)) {
5122 inode->i_op = &ext4_dir_inode_operations;
5123 inode->i_fop = &ext4_dir_operations;
5124 } else if (S_ISLNK(inode->i_mode)) {
5125 if (ext4_inode_is_fast_symlink(inode)) {
5126 inode->i_op = &ext4_fast_symlink_inode_operations;
5127 nd_terminate_link(ei->i_data, inode->i_size,
5128 sizeof(ei->i_data) - 1);
5129 } else {
5130 inode->i_op = &ext4_symlink_inode_operations;
5131 ext4_set_aops(inode);
5133 } else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
5134 S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
5135 inode->i_op = &ext4_special_inode_operations;
5136 if (raw_inode->i_block[0])
5137 init_special_inode(inode, inode->i_mode,
5138 old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
5139 else
5140 init_special_inode(inode, inode->i_mode,
5141 new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
5142 } else {
5143 ret = -EIO;
5144 ext4_error(inode->i_sb, "bogus i_mode (%o) for inode=%lu",
5145 inode->i_mode, inode->i_ino);
5146 goto bad_inode;
5148 brelse(iloc.bh);
5149 ext4_set_inode_flags(inode);
5150 unlock_new_inode(inode);
5151 return inode;
5153 bad_inode:
5154 brelse(iloc.bh);
5155 iget_failed(inode);
5156 return ERR_PTR(ret);
5159 static int ext4_inode_blocks_set(handle_t *handle,
5160 struct ext4_inode *raw_inode,
5161 struct ext4_inode_info *ei)
5163 struct inode *inode = &(ei->vfs_inode);
5164 u64 i_blocks = inode->i_blocks;
5165 struct super_block *sb = inode->i_sb;
5167 if (i_blocks <= ~0U) {
5169 * i_blocks can be represnted in a 32 bit variable
5170 * as multiple of 512 bytes
5172 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5173 raw_inode->i_blocks_high = 0;
5174 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5175 return 0;
5177 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb, EXT4_FEATURE_RO_COMPAT_HUGE_FILE))
5178 return -EFBIG;
5180 if (i_blocks <= 0xffffffffffffULL) {
5182 * i_blocks can be represented in a 48 bit variable
5183 * as multiple of 512 bytes
5185 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5186 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5187 ei->i_flags &= ~EXT4_HUGE_FILE_FL;
5188 } else {
5189 ei->i_flags |= EXT4_HUGE_FILE_FL;
5190 /* i_block is stored in file system block size */
5191 i_blocks = i_blocks >> (inode->i_blkbits - 9);
5192 raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
5193 raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
5195 return 0;
5199 * Post the struct inode info into an on-disk inode location in the
5200 * buffer-cache. This gobbles the caller's reference to the
5201 * buffer_head in the inode location struct.
5203 * The caller must have write access to iloc->bh.
5205 static int ext4_do_update_inode(handle_t *handle,
5206 struct inode *inode,
5207 struct ext4_iloc *iloc)
5209 struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
5210 struct ext4_inode_info *ei = EXT4_I(inode);
5211 struct buffer_head *bh = iloc->bh;
5212 int err = 0, rc, block;
5214 /* For fields not not tracking in the in-memory inode,
5215 * initialise them to zero for new inodes. */
5216 if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
5217 memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
5219 ext4_get_inode_flags(ei);
5220 raw_inode->i_mode = cpu_to_le16(inode->i_mode);
5221 if (!(test_opt(inode->i_sb, NO_UID32))) {
5222 raw_inode->i_uid_low = cpu_to_le16(low_16_bits(inode->i_uid));
5223 raw_inode->i_gid_low = cpu_to_le16(low_16_bits(inode->i_gid));
5225 * Fix up interoperability with old kernels. Otherwise, old inodes get
5226 * re-used with the upper 16 bits of the uid/gid intact
5228 if (!ei->i_dtime) {
5229 raw_inode->i_uid_high =
5230 cpu_to_le16(high_16_bits(inode->i_uid));
5231 raw_inode->i_gid_high =
5232 cpu_to_le16(high_16_bits(inode->i_gid));
5233 } else {
5234 raw_inode->i_uid_high = 0;
5235 raw_inode->i_gid_high = 0;
5237 } else {
5238 raw_inode->i_uid_low =
5239 cpu_to_le16(fs_high2lowuid(inode->i_uid));
5240 raw_inode->i_gid_low =
5241 cpu_to_le16(fs_high2lowgid(inode->i_gid));
5242 raw_inode->i_uid_high = 0;
5243 raw_inode->i_gid_high = 0;
5245 raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
5247 EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
5248 EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
5249 EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
5250 EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
5252 if (ext4_inode_blocks_set(handle, raw_inode, ei))
5253 goto out_brelse;
5254 raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
5255 raw_inode->i_flags = cpu_to_le32(ei->i_flags);
5256 if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
5257 cpu_to_le32(EXT4_OS_HURD))
5258 raw_inode->i_file_acl_high =
5259 cpu_to_le16(ei->i_file_acl >> 32);
5260 raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
5261 ext4_isize_set(raw_inode, ei->i_disksize);
5262 if (ei->i_disksize > 0x7fffffffULL) {
5263 struct super_block *sb = inode->i_sb;
5264 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb,
5265 EXT4_FEATURE_RO_COMPAT_LARGE_FILE) ||
5266 EXT4_SB(sb)->s_es->s_rev_level ==
5267 cpu_to_le32(EXT4_GOOD_OLD_REV)) {
5268 /* If this is the first large file
5269 * created, add a flag to the superblock.
5271 err = ext4_journal_get_write_access(handle,
5272 EXT4_SB(sb)->s_sbh);
5273 if (err)
5274 goto out_brelse;
5275 ext4_update_dynamic_rev(sb);
5276 EXT4_SET_RO_COMPAT_FEATURE(sb,
5277 EXT4_FEATURE_RO_COMPAT_LARGE_FILE);
5278 sb->s_dirt = 1;
5279 ext4_handle_sync(handle);
5280 err = ext4_handle_dirty_metadata(handle, NULL,
5281 EXT4_SB(sb)->s_sbh);
5284 raw_inode->i_generation = cpu_to_le32(inode->i_generation);
5285 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
5286 if (old_valid_dev(inode->i_rdev)) {
5287 raw_inode->i_block[0] =
5288 cpu_to_le32(old_encode_dev(inode->i_rdev));
5289 raw_inode->i_block[1] = 0;
5290 } else {
5291 raw_inode->i_block[0] = 0;
5292 raw_inode->i_block[1] =
5293 cpu_to_le32(new_encode_dev(inode->i_rdev));
5294 raw_inode->i_block[2] = 0;
5296 } else
5297 for (block = 0; block < EXT4_N_BLOCKS; block++)
5298 raw_inode->i_block[block] = ei->i_data[block];
5300 raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
5301 if (ei->i_extra_isize) {
5302 if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
5303 raw_inode->i_version_hi =
5304 cpu_to_le32(inode->i_version >> 32);
5305 raw_inode->i_extra_isize = cpu_to_le16(ei->i_extra_isize);
5308 BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
5309 rc = ext4_handle_dirty_metadata(handle, NULL, bh);
5310 if (!err)
5311 err = rc;
5312 ext4_clear_inode_state(inode, EXT4_STATE_NEW);
5314 ext4_update_inode_fsync_trans(handle, inode, 0);
5315 out_brelse:
5316 brelse(bh);
5317 ext4_std_error(inode->i_sb, err);
5318 return err;
5322 * ext4_write_inode()
5324 * We are called from a few places:
5326 * - Within generic_file_write() for O_SYNC files.
5327 * Here, there will be no transaction running. We wait for any running
5328 * trasnaction to commit.
5330 * - Within sys_sync(), kupdate and such.
5331 * We wait on commit, if tol to.
5333 * - Within prune_icache() (PF_MEMALLOC == true)
5334 * Here we simply return. We can't afford to block kswapd on the
5335 * journal commit.
5337 * In all cases it is actually safe for us to return without doing anything,
5338 * because the inode has been copied into a raw inode buffer in
5339 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5340 * knfsd.
5342 * Note that we are absolutely dependent upon all inode dirtiers doing the
5343 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5344 * which we are interested.
5346 * It would be a bug for them to not do this. The code:
5348 * mark_inode_dirty(inode)
5349 * stuff();
5350 * inode->i_size = expr;
5352 * is in error because a kswapd-driven write_inode() could occur while
5353 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5354 * will no longer be on the superblock's dirty inode list.
5356 int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
5358 int err;
5360 if (current->flags & PF_MEMALLOC)
5361 return 0;
5363 if (EXT4_SB(inode->i_sb)->s_journal) {
5364 if (ext4_journal_current_handle()) {
5365 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5366 dump_stack();
5367 return -EIO;
5370 if (wbc->sync_mode != WB_SYNC_ALL)
5371 return 0;
5373 err = ext4_force_commit(inode->i_sb);
5374 } else {
5375 struct ext4_iloc iloc;
5377 err = ext4_get_inode_loc(inode, &iloc);
5378 if (err)
5379 return err;
5380 if (wbc->sync_mode == WB_SYNC_ALL)
5381 sync_dirty_buffer(iloc.bh);
5382 if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
5383 ext4_error(inode->i_sb, "IO error syncing inode, "
5384 "inode=%lu, block=%llu", inode->i_ino,
5385 (unsigned long long)iloc.bh->b_blocknr);
5386 err = -EIO;
5389 return err;
5393 * ext4_setattr()
5395 * Called from notify_change.
5397 * We want to trap VFS attempts to truncate the file as soon as
5398 * possible. In particular, we want to make sure that when the VFS
5399 * shrinks i_size, we put the inode on the orphan list and modify
5400 * i_disksize immediately, so that during the subsequent flushing of
5401 * dirty pages and freeing of disk blocks, we can guarantee that any
5402 * commit will leave the blocks being flushed in an unused state on
5403 * disk. (On recovery, the inode will get truncated and the blocks will
5404 * be freed, so we have a strong guarantee that no future commit will
5405 * leave these blocks visible to the user.)
5407 * Another thing we have to assure is that if we are in ordered mode
5408 * and inode is still attached to the committing transaction, we must
5409 * we start writeout of all the dirty pages which are being truncated.
5410 * This way we are sure that all the data written in the previous
5411 * transaction are already on disk (truncate waits for pages under
5412 * writeback).
5414 * Called with inode->i_mutex down.
5416 int ext4_setattr(struct dentry *dentry, struct iattr *attr)
5418 struct inode *inode = dentry->d_inode;
5419 int error, rc = 0;
5420 const unsigned int ia_valid = attr->ia_valid;
5422 error = inode_change_ok(inode, attr);
5423 if (error)
5424 return error;
5426 if (ia_valid & ATTR_SIZE)
5427 dquot_initialize(inode);
5428 if ((ia_valid & ATTR_UID && attr->ia_uid != inode->i_uid) ||
5429 (ia_valid & ATTR_GID && attr->ia_gid != inode->i_gid)) {
5430 handle_t *handle;
5432 /* (user+group)*(old+new) structure, inode write (sb,
5433 * inode block, ? - but truncate inode update has it) */
5434 handle = ext4_journal_start(inode, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb)+
5435 EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb))+3);
5436 if (IS_ERR(handle)) {
5437 error = PTR_ERR(handle);
5438 goto err_out;
5440 error = dquot_transfer(inode, attr);
5441 if (error) {
5442 ext4_journal_stop(handle);
5443 return error;
5445 /* Update corresponding info in inode so that everything is in
5446 * one transaction */
5447 if (attr->ia_valid & ATTR_UID)
5448 inode->i_uid = attr->ia_uid;
5449 if (attr->ia_valid & ATTR_GID)
5450 inode->i_gid = attr->ia_gid;
5451 error = ext4_mark_inode_dirty(handle, inode);
5452 ext4_journal_stop(handle);
5455 if (attr->ia_valid & ATTR_SIZE) {
5456 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL)) {
5457 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5459 if (attr->ia_size > sbi->s_bitmap_maxbytes) {
5460 error = -EFBIG;
5461 goto err_out;
5466 if (S_ISREG(inode->i_mode) &&
5467 attr->ia_valid & ATTR_SIZE &&
5468 (attr->ia_size < inode->i_size ||
5469 (EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))) {
5470 handle_t *handle;
5472 handle = ext4_journal_start(inode, 3);
5473 if (IS_ERR(handle)) {
5474 error = PTR_ERR(handle);
5475 goto err_out;
5478 error = ext4_orphan_add(handle, inode);
5479 EXT4_I(inode)->i_disksize = attr->ia_size;
5480 rc = ext4_mark_inode_dirty(handle, inode);
5481 if (!error)
5482 error = rc;
5483 ext4_journal_stop(handle);
5485 if (ext4_should_order_data(inode)) {
5486 error = ext4_begin_ordered_truncate(inode,
5487 attr->ia_size);
5488 if (error) {
5489 /* Do as much error cleanup as possible */
5490 handle = ext4_journal_start(inode, 3);
5491 if (IS_ERR(handle)) {
5492 ext4_orphan_del(NULL, inode);
5493 goto err_out;
5495 ext4_orphan_del(handle, inode);
5496 ext4_journal_stop(handle);
5497 goto err_out;
5500 /* ext4_truncate will clear the flag */
5501 if ((EXT4_I(inode)->i_flags & EXT4_EOFBLOCKS_FL))
5502 ext4_truncate(inode);
5505 rc = inode_setattr(inode, attr);
5507 /* If inode_setattr's call to ext4_truncate failed to get a
5508 * transaction handle at all, we need to clean up the in-core
5509 * orphan list manually. */
5510 if (inode->i_nlink)
5511 ext4_orphan_del(NULL, inode);
5513 if (!rc && (ia_valid & ATTR_MODE))
5514 rc = ext4_acl_chmod(inode);
5516 err_out:
5517 ext4_std_error(inode->i_sb, error);
5518 if (!error)
5519 error = rc;
5520 return error;
5523 int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
5524 struct kstat *stat)
5526 struct inode *inode;
5527 unsigned long delalloc_blocks;
5529 inode = dentry->d_inode;
5530 generic_fillattr(inode, stat);
5533 * We can't update i_blocks if the block allocation is delayed
5534 * otherwise in the case of system crash before the real block
5535 * allocation is done, we will have i_blocks inconsistent with
5536 * on-disk file blocks.
5537 * We always keep i_blocks updated together with real
5538 * allocation. But to not confuse with user, stat
5539 * will return the blocks that include the delayed allocation
5540 * blocks for this file.
5542 spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
5543 delalloc_blocks = EXT4_I(inode)->i_reserved_data_blocks;
5544 spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
5546 stat->blocks += (delalloc_blocks << inode->i_sb->s_blocksize_bits)>>9;
5547 return 0;
5550 static int ext4_indirect_trans_blocks(struct inode *inode, int nrblocks,
5551 int chunk)
5553 int indirects;
5555 /* if nrblocks are contiguous */
5556 if (chunk) {
5558 * With N contiguous data blocks, it need at most
5559 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5560 * 2 dindirect blocks
5561 * 1 tindirect block
5563 indirects = nrblocks / EXT4_ADDR_PER_BLOCK(inode->i_sb);
5564 return indirects + 3;
5567 * if nrblocks are not contiguous, worse case, each block touch
5568 * a indirect block, and each indirect block touch a double indirect
5569 * block, plus a triple indirect block
5571 indirects = nrblocks * 2 + 1;
5572 return indirects;
5575 static int ext4_index_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5577 if (!(EXT4_I(inode)->i_flags & EXT4_EXTENTS_FL))
5578 return ext4_indirect_trans_blocks(inode, nrblocks, chunk);
5579 return ext4_ext_index_trans_blocks(inode, nrblocks, chunk);
5583 * Account for index blocks, block groups bitmaps and block group
5584 * descriptor blocks if modify datablocks and index blocks
5585 * worse case, the indexs blocks spread over different block groups
5587 * If datablocks are discontiguous, they are possible to spread over
5588 * different block groups too. If they are contiuguous, with flexbg,
5589 * they could still across block group boundary.
5591 * Also account for superblock, inode, quota and xattr blocks
5593 int ext4_meta_trans_blocks(struct inode *inode, int nrblocks, int chunk)
5595 ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
5596 int gdpblocks;
5597 int idxblocks;
5598 int ret = 0;
5601 * How many index blocks need to touch to modify nrblocks?
5602 * The "Chunk" flag indicating whether the nrblocks is
5603 * physically contiguous on disk
5605 * For Direct IO and fallocate, they calls get_block to allocate
5606 * one single extent at a time, so they could set the "Chunk" flag
5608 idxblocks = ext4_index_trans_blocks(inode, nrblocks, chunk);
5610 ret = idxblocks;
5613 * Now let's see how many group bitmaps and group descriptors need
5614 * to account
5616 groups = idxblocks;
5617 if (chunk)
5618 groups += 1;
5619 else
5620 groups += nrblocks;
5622 gdpblocks = groups;
5623 if (groups > ngroups)
5624 groups = ngroups;
5625 if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
5626 gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
5628 /* bitmaps and block group descriptor blocks */
5629 ret += groups + gdpblocks;
5631 /* Blocks for super block, inode, quota and xattr blocks */
5632 ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
5634 return ret;
5638 * Calulate the total number of credits to reserve to fit
5639 * the modification of a single pages into a single transaction,
5640 * which may include multiple chunks of block allocations.
5642 * This could be called via ext4_write_begin()
5644 * We need to consider the worse case, when
5645 * one new block per extent.
5647 int ext4_writepage_trans_blocks(struct inode *inode)
5649 int bpp = ext4_journal_blocks_per_page(inode);
5650 int ret;
5652 ret = ext4_meta_trans_blocks(inode, bpp, 0);
5654 /* Account for data blocks for journalled mode */
5655 if (ext4_should_journal_data(inode))
5656 ret += bpp;
5657 return ret;
5661 * Calculate the journal credits for a chunk of data modification.
5663 * This is called from DIO, fallocate or whoever calling
5664 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5666 * journal buffers for data blocks are not included here, as DIO
5667 * and fallocate do no need to journal data buffers.
5669 int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
5671 return ext4_meta_trans_blocks(inode, nrblocks, 1);
5675 * The caller must have previously called ext4_reserve_inode_write().
5676 * Give this, we know that the caller already has write access to iloc->bh.
5678 int ext4_mark_iloc_dirty(handle_t *handle,
5679 struct inode *inode, struct ext4_iloc *iloc)
5681 int err = 0;
5683 if (test_opt(inode->i_sb, I_VERSION))
5684 inode_inc_iversion(inode);
5686 /* the do_update_inode consumes one bh->b_count */
5687 get_bh(iloc->bh);
5689 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5690 err = ext4_do_update_inode(handle, inode, iloc);
5691 put_bh(iloc->bh);
5692 return err;
5696 * On success, We end up with an outstanding reference count against
5697 * iloc->bh. This _must_ be cleaned up later.
5701 ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
5702 struct ext4_iloc *iloc)
5704 int err;
5706 err = ext4_get_inode_loc(inode, iloc);
5707 if (!err) {
5708 BUFFER_TRACE(iloc->bh, "get_write_access");
5709 err = ext4_journal_get_write_access(handle, iloc->bh);
5710 if (err) {
5711 brelse(iloc->bh);
5712 iloc->bh = NULL;
5715 ext4_std_error(inode->i_sb, err);
5716 return err;
5720 * Expand an inode by new_extra_isize bytes.
5721 * Returns 0 on success or negative error number on failure.
5723 static int ext4_expand_extra_isize(struct inode *inode,
5724 unsigned int new_extra_isize,
5725 struct ext4_iloc iloc,
5726 handle_t *handle)
5728 struct ext4_inode *raw_inode;
5729 struct ext4_xattr_ibody_header *header;
5730 struct ext4_xattr_entry *entry;
5732 if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
5733 return 0;
5735 raw_inode = ext4_raw_inode(&iloc);
5737 header = IHDR(inode, raw_inode);
5738 entry = IFIRST(header);
5740 /* No extended attributes present */
5741 if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
5742 header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
5743 memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
5744 new_extra_isize);
5745 EXT4_I(inode)->i_extra_isize = new_extra_isize;
5746 return 0;
5749 /* try to expand with EAs present */
5750 return ext4_expand_extra_isize_ea(inode, new_extra_isize,
5751 raw_inode, handle);
5755 * What we do here is to mark the in-core inode as clean with respect to inode
5756 * dirtiness (it may still be data-dirty).
5757 * This means that the in-core inode may be reaped by prune_icache
5758 * without having to perform any I/O. This is a very good thing,
5759 * because *any* task may call prune_icache - even ones which
5760 * have a transaction open against a different journal.
5762 * Is this cheating? Not really. Sure, we haven't written the
5763 * inode out, but prune_icache isn't a user-visible syncing function.
5764 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5765 * we start and wait on commits.
5767 * Is this efficient/effective? Well, we're being nice to the system
5768 * by cleaning up our inodes proactively so they can be reaped
5769 * without I/O. But we are potentially leaving up to five seconds'
5770 * worth of inodes floating about which prune_icache wants us to
5771 * write out. One way to fix that would be to get prune_icache()
5772 * to do a write_super() to free up some memory. It has the desired
5773 * effect.
5775 int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
5777 struct ext4_iloc iloc;
5778 struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
5779 static unsigned int mnt_count;
5780 int err, ret;
5782 might_sleep();
5783 err = ext4_reserve_inode_write(handle, inode, &iloc);
5784 if (ext4_handle_valid(handle) &&
5785 EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
5786 !ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
5788 * We need extra buffer credits since we may write into EA block
5789 * with this same handle. If journal_extend fails, then it will
5790 * only result in a minor loss of functionality for that inode.
5791 * If this is felt to be critical, then e2fsck should be run to
5792 * force a large enough s_min_extra_isize.
5794 if ((jbd2_journal_extend(handle,
5795 EXT4_DATA_TRANS_BLOCKS(inode->i_sb))) == 0) {
5796 ret = ext4_expand_extra_isize(inode,
5797 sbi->s_want_extra_isize,
5798 iloc, handle);
5799 if (ret) {
5800 ext4_set_inode_state(inode,
5801 EXT4_STATE_NO_EXPAND);
5802 if (mnt_count !=
5803 le16_to_cpu(sbi->s_es->s_mnt_count)) {
5804 ext4_warning(inode->i_sb,
5805 "Unable to expand inode %lu. Delete"
5806 " some EAs or run e2fsck.",
5807 inode->i_ino);
5808 mnt_count =
5809 le16_to_cpu(sbi->s_es->s_mnt_count);
5814 if (!err)
5815 err = ext4_mark_iloc_dirty(handle, inode, &iloc);
5816 return err;
5820 * ext4_dirty_inode() is called from __mark_inode_dirty()
5822 * We're really interested in the case where a file is being extended.
5823 * i_size has been changed by generic_commit_write() and we thus need
5824 * to include the updated inode in the current transaction.
5826 * Also, dquot_alloc_block() will always dirty the inode when blocks
5827 * are allocated to the file.
5829 * If the inode is marked synchronous, we don't honour that here - doing
5830 * so would cause a commit on atime updates, which we don't bother doing.
5831 * We handle synchronous inodes at the highest possible level.
5833 void ext4_dirty_inode(struct inode *inode)
5835 handle_t *handle;
5837 handle = ext4_journal_start(inode, 2);
5838 if (IS_ERR(handle))
5839 goto out;
5841 ext4_mark_inode_dirty(handle, inode);
5843 ext4_journal_stop(handle);
5844 out:
5845 return;
5848 #if 0
5850 * Bind an inode's backing buffer_head into this transaction, to prevent
5851 * it from being flushed to disk early. Unlike
5852 * ext4_reserve_inode_write, this leaves behind no bh reference and
5853 * returns no iloc structure, so the caller needs to repeat the iloc
5854 * lookup to mark the inode dirty later.
5856 static int ext4_pin_inode(handle_t *handle, struct inode *inode)
5858 struct ext4_iloc iloc;
5860 int err = 0;
5861 if (handle) {
5862 err = ext4_get_inode_loc(inode, &iloc);
5863 if (!err) {
5864 BUFFER_TRACE(iloc.bh, "get_write_access");
5865 err = jbd2_journal_get_write_access(handle, iloc.bh);
5866 if (!err)
5867 err = ext4_handle_dirty_metadata(handle,
5868 NULL,
5869 iloc.bh);
5870 brelse(iloc.bh);
5873 ext4_std_error(inode->i_sb, err);
5874 return err;
5876 #endif
5878 int ext4_change_inode_journal_flag(struct inode *inode, int val)
5880 journal_t *journal;
5881 handle_t *handle;
5882 int err;
5885 * We have to be very careful here: changing a data block's
5886 * journaling status dynamically is dangerous. If we write a
5887 * data block to the journal, change the status and then delete
5888 * that block, we risk forgetting to revoke the old log record
5889 * from the journal and so a subsequent replay can corrupt data.
5890 * So, first we make sure that the journal is empty and that
5891 * nobody is changing anything.
5894 journal = EXT4_JOURNAL(inode);
5895 if (!journal)
5896 return 0;
5897 if (is_journal_aborted(journal))
5898 return -EROFS;
5900 jbd2_journal_lock_updates(journal);
5901 jbd2_journal_flush(journal);
5904 * OK, there are no updates running now, and all cached data is
5905 * synced to disk. We are now in a completely consistent state
5906 * which doesn't have anything in the journal, and we know that
5907 * no filesystem updates are running, so it is safe to modify
5908 * the inode's in-core data-journaling state flag now.
5911 if (val)
5912 EXT4_I(inode)->i_flags |= EXT4_JOURNAL_DATA_FL;
5913 else
5914 EXT4_I(inode)->i_flags &= ~EXT4_JOURNAL_DATA_FL;
5915 ext4_set_aops(inode);
5917 jbd2_journal_unlock_updates(journal);
5919 /* Finally we can mark the inode as dirty. */
5921 handle = ext4_journal_start(inode, 1);
5922 if (IS_ERR(handle))
5923 return PTR_ERR(handle);
5925 err = ext4_mark_inode_dirty(handle, inode);
5926 ext4_handle_sync(handle);
5927 ext4_journal_stop(handle);
5928 ext4_std_error(inode->i_sb, err);
5930 return err;
5933 static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
5935 return !buffer_mapped(bh);
5938 int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
5940 struct page *page = vmf->page;
5941 loff_t size;
5942 unsigned long len;
5943 int ret = -EINVAL;
5944 void *fsdata;
5945 struct file *file = vma->vm_file;
5946 struct inode *inode = file->f_path.dentry->d_inode;
5947 struct address_space *mapping = inode->i_mapping;
5950 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5951 * get i_mutex because we are already holding mmap_sem.
5953 down_read(&inode->i_alloc_sem);
5954 size = i_size_read(inode);
5955 if (page->mapping != mapping || size <= page_offset(page)
5956 || !PageUptodate(page)) {
5957 /* page got truncated from under us? */
5958 goto out_unlock;
5960 ret = 0;
5961 if (PageMappedToDisk(page))
5962 goto out_unlock;
5964 if (page->index == size >> PAGE_CACHE_SHIFT)
5965 len = size & ~PAGE_CACHE_MASK;
5966 else
5967 len = PAGE_CACHE_SIZE;
5969 lock_page(page);
5971 * return if we have all the buffers mapped. This avoid
5972 * the need to call write_begin/write_end which does a
5973 * journal_start/journal_stop which can block and take
5974 * long time
5976 if (page_has_buffers(page)) {
5977 if (!walk_page_buffers(NULL, page_buffers(page), 0, len, NULL,
5978 ext4_bh_unmapped)) {
5979 unlock_page(page);
5980 goto out_unlock;
5983 unlock_page(page);
5985 * OK, we need to fill the hole... Do write_begin write_end
5986 * to do block allocation/reservation.We are not holding
5987 * inode.i__mutex here. That allow * parallel write_begin,
5988 * write_end call. lock_page prevent this from happening
5989 * on the same page though
5991 ret = mapping->a_ops->write_begin(file, mapping, page_offset(page),
5992 len, AOP_FLAG_UNINTERRUPTIBLE, &page, &fsdata);
5993 if (ret < 0)
5994 goto out_unlock;
5995 ret = mapping->a_ops->write_end(file, mapping, page_offset(page),
5996 len, len, page, fsdata);
5997 if (ret < 0)
5998 goto out_unlock;
5999 ret = 0;
6000 out_unlock:
6001 if (ret)
6002 ret = VM_FAULT_SIGBUS;
6003 up_read(&inode->i_alloc_sem);
6004 return ret;