2 * linux/fs/ext4/inode.c
4 * Copyright (C) 1992, 1993, 1994, 1995
5 * Remy Card (card@masi.ibp.fr)
6 * Laboratoire MASI - Institut Blaise Pascal
7 * Universite Pierre et Marie Curie (Paris VI)
11 * linux/fs/minix/inode.c
13 * Copyright (C) 1991, 1992 Linus Torvalds
15 * Goal-directed block allocation by Stephen Tweedie
16 * (sct@redhat.com), 1993, 1998
17 * Big-endian to little-endian byte-swapping/bitmaps by
18 * David S. Miller (davem@caip.rutgers.edu), 1995
19 * 64-bit file support on 64-bit platforms by Jakub Jelinek
20 * (jj@sunsite.ms.mff.cuni.cz)
22 * Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
25 #include <linux/module.h>
27 #include <linux/time.h>
28 #include <linux/jbd2.h>
29 #include <linux/highuid.h>
30 #include <linux/pagemap.h>
31 #include <linux/quotaops.h>
32 #include <linux/string.h>
33 #include <linux/buffer_head.h>
34 #include <linux/writeback.h>
35 #include <linux/pagevec.h>
36 #include <linux/mpage.h>
37 #include <linux/namei.h>
38 #include <linux/uio.h>
39 #include <linux/bio.h>
40 #include <linux/workqueue.h>
41 #include <linux/kernel.h>
43 #include "ext4_jbd2.h"
46 #include "ext4_extents.h"
48 #include <trace/events/ext4.h>
50 #define MPAGE_DA_EXTENT_TAIL 0x01
52 static inline int ext4_begin_ordered_truncate(struct inode
*inode
,
55 return jbd2_journal_begin_ordered_truncate(
56 EXT4_SB(inode
->i_sb
)->s_journal
,
57 &EXT4_I(inode
)->jinode
,
61 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
);
64 * Test whether an inode is a fast symlink.
66 static int ext4_inode_is_fast_symlink(struct inode
*inode
)
68 int ea_blocks
= EXT4_I(inode
)->i_file_acl
?
69 (inode
->i_sb
->s_blocksize
>> 9) : 0;
71 return (S_ISLNK(inode
->i_mode
) && inode
->i_blocks
- ea_blocks
== 0);
75 * Work out how many blocks we need to proceed with the next chunk of a
76 * truncate transaction.
78 static unsigned long blocks_for_truncate(struct inode
*inode
)
82 needed
= inode
->i_blocks
>> (inode
->i_sb
->s_blocksize_bits
- 9);
84 /* Give ourselves just enough room to cope with inodes in which
85 * i_blocks is corrupt: we've seen disk corruptions in the past
86 * which resulted in random data in an inode which looked enough
87 * like a regular file for ext4 to try to delete it. Things
88 * will go a bit crazy if that happens, but at least we should
89 * try not to panic the whole kernel. */
93 /* But we need to bound the transaction so we don't overflow the
95 if (needed
> EXT4_MAX_TRANS_DATA
)
96 needed
= EXT4_MAX_TRANS_DATA
;
98 return EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
) + needed
;
102 * Truncate transactions can be complex and absolutely huge. So we need to
103 * be able to restart the transaction at a conventient checkpoint to make
104 * sure we don't overflow the journal.
106 * start_transaction gets us a new handle for a truncate transaction,
107 * and extend_transaction tries to extend the existing one a bit. If
108 * extend fails, we need to propagate the failure up and restart the
109 * transaction in the top-level truncate loop. --sct
111 static handle_t
*start_transaction(struct inode
*inode
)
115 result
= ext4_journal_start(inode
, blocks_for_truncate(inode
));
119 ext4_std_error(inode
->i_sb
, PTR_ERR(result
));
124 * Try to extend this transaction for the purposes of truncation.
126 * Returns 0 if we managed to create more room. If we can't create more
127 * room, and the transaction must be restarted we return 1.
129 static int try_to_extend_transaction(handle_t
*handle
, struct inode
*inode
)
131 if (!ext4_handle_valid(handle
))
133 if (ext4_handle_has_enough_credits(handle
, EXT4_RESERVE_TRANS_BLOCKS
+1))
135 if (!ext4_journal_extend(handle
, blocks_for_truncate(inode
)))
141 * Restart the transaction associated with *handle. This does a commit,
142 * so before we call here everything must be consistently dirtied against
145 int ext4_truncate_restart_trans(handle_t
*handle
, struct inode
*inode
,
151 * Drop i_data_sem to avoid deadlock with ext4_get_blocks At this
152 * moment, get_block can be called only for blocks inside i_size since
153 * page cache has been already dropped and writes are blocked by
154 * i_mutex. So we can safely drop the i_data_sem here.
156 BUG_ON(EXT4_JOURNAL(inode
) == NULL
);
157 jbd_debug(2, "restarting handle %p\n", handle
);
158 up_write(&EXT4_I(inode
)->i_data_sem
);
159 ret
= ext4_journal_restart(handle
, blocks_for_truncate(inode
));
160 down_write(&EXT4_I(inode
)->i_data_sem
);
161 ext4_discard_preallocations(inode
);
167 * Called at the last iput() if i_nlink is zero.
169 void ext4_delete_inode(struct inode
*inode
)
174 if (!is_bad_inode(inode
))
175 dquot_initialize(inode
);
177 if (ext4_should_order_data(inode
))
178 ext4_begin_ordered_truncate(inode
, 0);
179 truncate_inode_pages(&inode
->i_data
, 0);
181 if (is_bad_inode(inode
))
184 handle
= ext4_journal_start(inode
, blocks_for_truncate(inode
)+3);
185 if (IS_ERR(handle
)) {
186 ext4_std_error(inode
->i_sb
, PTR_ERR(handle
));
188 * If we're going to skip the normal cleanup, we still need to
189 * make sure that the in-core orphan linked list is properly
192 ext4_orphan_del(NULL
, inode
);
197 ext4_handle_sync(handle
);
199 err
= ext4_mark_inode_dirty(handle
, inode
);
201 ext4_warning(inode
->i_sb
,
202 "couldn't mark inode dirty (err %d)", err
);
206 ext4_truncate(inode
);
209 * ext4_ext_truncate() doesn't reserve any slop when it
210 * restarts journal transactions; therefore there may not be
211 * enough credits left in the handle to remove the inode from
212 * the orphan list and set the dtime field.
214 if (!ext4_handle_has_enough_credits(handle
, 3)) {
215 err
= ext4_journal_extend(handle
, 3);
217 err
= ext4_journal_restart(handle
, 3);
219 ext4_warning(inode
->i_sb
,
220 "couldn't extend journal (err %d)", err
);
222 ext4_journal_stop(handle
);
228 * Kill off the orphan record which ext4_truncate created.
229 * AKPM: I think this can be inside the above `if'.
230 * Note that ext4_orphan_del() has to be able to cope with the
231 * deletion of a non-existent orphan - this is because we don't
232 * know if ext4_truncate() actually created an orphan record.
233 * (Well, we could do this if we need to, but heck - it works)
235 ext4_orphan_del(handle
, inode
);
236 EXT4_I(inode
)->i_dtime
= get_seconds();
239 * One subtle ordering requirement: if anything has gone wrong
240 * (transaction abort, IO errors, whatever), then we can still
241 * do these next steps (the fs will already have been marked as
242 * having errors), but we can't free the inode if the mark_dirty
245 if (ext4_mark_inode_dirty(handle
, inode
))
246 /* If that failed, just do the required in-core inode clear. */
249 ext4_free_inode(handle
, inode
);
250 ext4_journal_stop(handle
);
253 clear_inode(inode
); /* We must guarantee clearing of inode... */
259 struct buffer_head
*bh
;
262 static inline void add_chain(Indirect
*p
, struct buffer_head
*bh
, __le32
*v
)
264 p
->key
= *(p
->p
= v
);
269 * ext4_block_to_path - parse the block number into array of offsets
270 * @inode: inode in question (we are only interested in its superblock)
271 * @i_block: block number to be parsed
272 * @offsets: array to store the offsets in
273 * @boundary: set this non-zero if the referred-to block is likely to be
274 * followed (on disk) by an indirect block.
276 * To store the locations of file's data ext4 uses a data structure common
277 * for UNIX filesystems - tree of pointers anchored in the inode, with
278 * data blocks at leaves and indirect blocks in intermediate nodes.
279 * This function translates the block number into path in that tree -
280 * return value is the path length and @offsets[n] is the offset of
281 * pointer to (n+1)th node in the nth one. If @block is out of range
282 * (negative or too large) warning is printed and zero returned.
284 * Note: function doesn't find node addresses, so no IO is needed. All
285 * we need to know is the capacity of indirect blocks (taken from the
290 * Portability note: the last comparison (check that we fit into triple
291 * indirect block) is spelled differently, because otherwise on an
292 * architecture with 32-bit longs and 8Kb pages we might get into trouble
293 * if our filesystem had 8Kb blocks. We might use long long, but that would
294 * kill us on x86. Oh, well, at least the sign propagation does not matter -
295 * i_block would have to be negative in the very beginning, so we would not
299 static int ext4_block_to_path(struct inode
*inode
,
301 ext4_lblk_t offsets
[4], int *boundary
)
303 int ptrs
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
304 int ptrs_bits
= EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
);
305 const long direct_blocks
= EXT4_NDIR_BLOCKS
,
306 indirect_blocks
= ptrs
,
307 double_blocks
= (1 << (ptrs_bits
* 2));
311 if (i_block
< direct_blocks
) {
312 offsets
[n
++] = i_block
;
313 final
= direct_blocks
;
314 } else if ((i_block
-= direct_blocks
) < indirect_blocks
) {
315 offsets
[n
++] = EXT4_IND_BLOCK
;
316 offsets
[n
++] = i_block
;
318 } else if ((i_block
-= indirect_blocks
) < double_blocks
) {
319 offsets
[n
++] = EXT4_DIND_BLOCK
;
320 offsets
[n
++] = i_block
>> ptrs_bits
;
321 offsets
[n
++] = i_block
& (ptrs
- 1);
323 } else if (((i_block
-= double_blocks
) >> (ptrs_bits
* 2)) < ptrs
) {
324 offsets
[n
++] = EXT4_TIND_BLOCK
;
325 offsets
[n
++] = i_block
>> (ptrs_bits
* 2);
326 offsets
[n
++] = (i_block
>> ptrs_bits
) & (ptrs
- 1);
327 offsets
[n
++] = i_block
& (ptrs
- 1);
330 ext4_warning(inode
->i_sb
, "block %lu > max in inode %lu",
331 i_block
+ direct_blocks
+
332 indirect_blocks
+ double_blocks
, inode
->i_ino
);
335 *boundary
= final
- 1 - (i_block
& (ptrs
- 1));
339 static int __ext4_check_blockref(const char *function
, struct inode
*inode
,
340 __le32
*p
, unsigned int max
)
345 while (bref
< p
+max
) {
346 blk
= le32_to_cpu(*bref
++);
348 unlikely(!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
350 __ext4_error(inode
->i_sb
, function
,
351 "invalid block reference %u "
352 "in inode #%lu", blk
, inode
->i_ino
);
360 #define ext4_check_indirect_blockref(inode, bh) \
361 __ext4_check_blockref(__func__, inode, (__le32 *)(bh)->b_data, \
362 EXT4_ADDR_PER_BLOCK((inode)->i_sb))
364 #define ext4_check_inode_blockref(inode) \
365 __ext4_check_blockref(__func__, inode, EXT4_I(inode)->i_data, \
369 * ext4_get_branch - read the chain of indirect blocks leading to data
370 * @inode: inode in question
371 * @depth: depth of the chain (1 - direct pointer, etc.)
372 * @offsets: offsets of pointers in inode/indirect blocks
373 * @chain: place to store the result
374 * @err: here we store the error value
376 * Function fills the array of triples <key, p, bh> and returns %NULL
377 * if everything went OK or the pointer to the last filled triple
378 * (incomplete one) otherwise. Upon the return chain[i].key contains
379 * the number of (i+1)-th block in the chain (as it is stored in memory,
380 * i.e. little-endian 32-bit), chain[i].p contains the address of that
381 * number (it points into struct inode for i==0 and into the bh->b_data
382 * for i>0) and chain[i].bh points to the buffer_head of i-th indirect
383 * block for i>0 and NULL for i==0. In other words, it holds the block
384 * numbers of the chain, addresses they were taken from (and where we can
385 * verify that chain did not change) and buffer_heads hosting these
388 * Function stops when it stumbles upon zero pointer (absent block)
389 * (pointer to last triple returned, *@err == 0)
390 * or when it gets an IO error reading an indirect block
391 * (ditto, *@err == -EIO)
392 * or when it reads all @depth-1 indirect blocks successfully and finds
393 * the whole chain, all way to the data (returns %NULL, *err == 0).
395 * Need to be called with
396 * down_read(&EXT4_I(inode)->i_data_sem)
398 static Indirect
*ext4_get_branch(struct inode
*inode
, int depth
,
399 ext4_lblk_t
*offsets
,
400 Indirect chain
[4], int *err
)
402 struct super_block
*sb
= inode
->i_sb
;
404 struct buffer_head
*bh
;
407 /* i_data is not going away, no lock needed */
408 add_chain(chain
, NULL
, EXT4_I(inode
)->i_data
+ *offsets
);
412 bh
= sb_getblk(sb
, le32_to_cpu(p
->key
));
416 if (!bh_uptodate_or_lock(bh
)) {
417 if (bh_submit_read(bh
) < 0) {
421 /* validate block references */
422 if (ext4_check_indirect_blockref(inode
, bh
)) {
428 add_chain(++p
, bh
, (__le32
*)bh
->b_data
+ *++offsets
);
442 * ext4_find_near - find a place for allocation with sufficient locality
444 * @ind: descriptor of indirect block.
446 * This function returns the preferred place for block allocation.
447 * It is used when heuristic for sequential allocation fails.
449 * + if there is a block to the left of our position - allocate near it.
450 * + if pointer will live in indirect block - allocate near that block.
451 * + if pointer will live in inode - allocate in the same
454 * In the latter case we colour the starting block by the callers PID to
455 * prevent it from clashing with concurrent allocations for a different inode
456 * in the same block group. The PID is used here so that functionally related
457 * files will be close-by on-disk.
459 * Caller must make sure that @ind is valid and will stay that way.
461 static ext4_fsblk_t
ext4_find_near(struct inode
*inode
, Indirect
*ind
)
463 struct ext4_inode_info
*ei
= EXT4_I(inode
);
464 __le32
*start
= ind
->bh
? (__le32
*) ind
->bh
->b_data
: ei
->i_data
;
466 ext4_fsblk_t bg_start
;
467 ext4_fsblk_t last_block
;
468 ext4_grpblk_t colour
;
469 ext4_group_t block_group
;
470 int flex_size
= ext4_flex_bg_size(EXT4_SB(inode
->i_sb
));
472 /* Try to find previous block */
473 for (p
= ind
->p
- 1; p
>= start
; p
--) {
475 return le32_to_cpu(*p
);
478 /* No such thing, so let's try location of indirect block */
480 return ind
->bh
->b_blocknr
;
483 * It is going to be referred to from the inode itself? OK, just put it
484 * into the same cylinder group then.
486 block_group
= ei
->i_block_group
;
487 if (flex_size
>= EXT4_FLEX_SIZE_DIR_ALLOC_SCHEME
) {
488 block_group
&= ~(flex_size
-1);
489 if (S_ISREG(inode
->i_mode
))
492 bg_start
= ext4_group_first_block_no(inode
->i_sb
, block_group
);
493 last_block
= ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
) - 1;
496 * If we are doing delayed allocation, we don't need take
497 * colour into account.
499 if (test_opt(inode
->i_sb
, DELALLOC
))
502 if (bg_start
+ EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) <= last_block
)
503 colour
= (current
->pid
% 16) *
504 (EXT4_BLOCKS_PER_GROUP(inode
->i_sb
) / 16);
506 colour
= (current
->pid
% 16) * ((last_block
- bg_start
) / 16);
507 return bg_start
+ colour
;
511 * ext4_find_goal - find a preferred place for allocation.
513 * @block: block we want
514 * @partial: pointer to the last triple within a chain
516 * Normally this function find the preferred place for block allocation,
518 * Because this is only used for non-extent files, we limit the block nr
521 static ext4_fsblk_t
ext4_find_goal(struct inode
*inode
, ext4_lblk_t block
,
527 * XXX need to get goal block from mballoc's data structures
530 goal
= ext4_find_near(inode
, partial
);
531 goal
= goal
& EXT4_MAX_BLOCK_FILE_PHYS
;
536 * ext4_blks_to_allocate: Look up the block map and count the number
537 * of direct blocks need to be allocated for the given branch.
539 * @branch: chain of indirect blocks
540 * @k: number of blocks need for indirect blocks
541 * @blks: number of data blocks to be mapped.
542 * @blocks_to_boundary: the offset in the indirect block
544 * return the total number of blocks to be allocate, including the
545 * direct and indirect blocks.
547 static int ext4_blks_to_allocate(Indirect
*branch
, int k
, unsigned int blks
,
548 int blocks_to_boundary
)
550 unsigned int count
= 0;
553 * Simple case, [t,d]Indirect block(s) has not allocated yet
554 * then it's clear blocks on that path have not allocated
557 /* right now we don't handle cross boundary allocation */
558 if (blks
< blocks_to_boundary
+ 1)
561 count
+= blocks_to_boundary
+ 1;
566 while (count
< blks
&& count
<= blocks_to_boundary
&&
567 le32_to_cpu(*(branch
[0].p
+ count
)) == 0) {
574 * ext4_alloc_blocks: multiple allocate blocks needed for a branch
575 * @indirect_blks: the number of blocks need to allocate for indirect
578 * @new_blocks: on return it will store the new block numbers for
579 * the indirect blocks(if needed) and the first direct block,
580 * @blks: on return it will store the total number of allocated
583 static int ext4_alloc_blocks(handle_t
*handle
, struct inode
*inode
,
584 ext4_lblk_t iblock
, ext4_fsblk_t goal
,
585 int indirect_blks
, int blks
,
586 ext4_fsblk_t new_blocks
[4], int *err
)
588 struct ext4_allocation_request ar
;
590 unsigned long count
= 0, blk_allocated
= 0;
592 ext4_fsblk_t current_block
= 0;
596 * Here we try to allocate the requested multiple blocks at once,
597 * on a best-effort basis.
598 * To build a branch, we should allocate blocks for
599 * the indirect blocks(if not allocated yet), and at least
600 * the first direct block of this branch. That's the
601 * minimum number of blocks need to allocate(required)
603 /* first we try to allocate the indirect blocks */
604 target
= indirect_blks
;
607 /* allocating blocks for indirect blocks and direct blocks */
608 current_block
= ext4_new_meta_blocks(handle
, inode
,
613 if (unlikely(current_block
+ count
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
614 EXT4_ERROR_INODE(inode
,
615 "current_block %llu + count %lu > %d!",
616 current_block
, count
,
617 EXT4_MAX_BLOCK_FILE_PHYS
);
623 /* allocate blocks for indirect blocks */
624 while (index
< indirect_blks
&& count
) {
625 new_blocks
[index
++] = current_block
++;
630 * save the new block number
631 * for the first direct block
633 new_blocks
[index
] = current_block
;
634 printk(KERN_INFO
"%s returned more blocks than "
635 "requested\n", __func__
);
641 target
= blks
- count
;
642 blk_allocated
= count
;
645 /* Now allocate data blocks */
646 memset(&ar
, 0, sizeof(ar
));
651 if (S_ISREG(inode
->i_mode
))
652 /* enable in-core preallocation only for regular files */
653 ar
.flags
= EXT4_MB_HINT_DATA
;
655 current_block
= ext4_mb_new_blocks(handle
, &ar
, err
);
656 if (unlikely(current_block
+ ar
.len
> EXT4_MAX_BLOCK_FILE_PHYS
)) {
657 EXT4_ERROR_INODE(inode
,
658 "current_block %llu + ar.len %d > %d!",
659 current_block
, ar
.len
,
660 EXT4_MAX_BLOCK_FILE_PHYS
);
665 if (*err
&& (target
== blks
)) {
667 * if the allocation failed and we didn't allocate
673 if (target
== blks
) {
675 * save the new block number
676 * for the first direct block
678 new_blocks
[index
] = current_block
;
680 blk_allocated
+= ar
.len
;
683 /* total number of blocks allocated for direct blocks */
688 for (i
= 0; i
< index
; i
++)
689 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
694 * ext4_alloc_branch - allocate and set up a chain of blocks.
696 * @indirect_blks: number of allocated indirect blocks
697 * @blks: number of allocated direct blocks
698 * @offsets: offsets (in the blocks) to store the pointers to next.
699 * @branch: place to store the chain in.
701 * This function allocates blocks, zeroes out all but the last one,
702 * links them into chain and (if we are synchronous) writes them to disk.
703 * In other words, it prepares a branch that can be spliced onto the
704 * inode. It stores the information about that chain in the branch[], in
705 * the same format as ext4_get_branch() would do. We are calling it after
706 * we had read the existing part of chain and partial points to the last
707 * triple of that (one with zero ->key). Upon the exit we have the same
708 * picture as after the successful ext4_get_block(), except that in one
709 * place chain is disconnected - *branch->p is still zero (we did not
710 * set the last link), but branch->key contains the number that should
711 * be placed into *branch->p to fill that gap.
713 * If allocation fails we free all blocks we've allocated (and forget
714 * their buffer_heads) and return the error value the from failed
715 * ext4_alloc_block() (normally -ENOSPC). Otherwise we set the chain
716 * as described above and return 0.
718 static int ext4_alloc_branch(handle_t
*handle
, struct inode
*inode
,
719 ext4_lblk_t iblock
, int indirect_blks
,
720 int *blks
, ext4_fsblk_t goal
,
721 ext4_lblk_t
*offsets
, Indirect
*branch
)
723 int blocksize
= inode
->i_sb
->s_blocksize
;
726 struct buffer_head
*bh
;
728 ext4_fsblk_t new_blocks
[4];
729 ext4_fsblk_t current_block
;
731 num
= ext4_alloc_blocks(handle
, inode
, iblock
, goal
, indirect_blks
,
732 *blks
, new_blocks
, &err
);
736 branch
[0].key
= cpu_to_le32(new_blocks
[0]);
738 * metadata blocks and data blocks are allocated.
740 for (n
= 1; n
<= indirect_blks
; n
++) {
742 * Get buffer_head for parent block, zero it out
743 * and set the pointer to new one, then send
746 bh
= sb_getblk(inode
->i_sb
, new_blocks
[n
-1]);
749 BUFFER_TRACE(bh
, "call get_create_access");
750 err
= ext4_journal_get_create_access(handle
, bh
);
752 /* Don't brelse(bh) here; it's done in
753 * ext4_journal_forget() below */
758 memset(bh
->b_data
, 0, blocksize
);
759 branch
[n
].p
= (__le32
*) bh
->b_data
+ offsets
[n
];
760 branch
[n
].key
= cpu_to_le32(new_blocks
[n
]);
761 *branch
[n
].p
= branch
[n
].key
;
762 if (n
== indirect_blks
) {
763 current_block
= new_blocks
[n
];
765 * End of chain, update the last new metablock of
766 * the chain to point to the new allocated
767 * data blocks numbers
769 for (i
= 1; i
< num
; i
++)
770 *(branch
[n
].p
+ i
) = cpu_to_le32(++current_block
);
772 BUFFER_TRACE(bh
, "marking uptodate");
773 set_buffer_uptodate(bh
);
776 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
777 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
784 /* Allocation failed, free what we already allocated */
785 ext4_free_blocks(handle
, inode
, 0, new_blocks
[0], 1, 0);
786 for (i
= 1; i
<= n
; i
++) {
788 * branch[i].bh is newly allocated, so there is no
789 * need to revoke the block, which is why we don't
790 * need to set EXT4_FREE_BLOCKS_METADATA.
792 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1,
793 EXT4_FREE_BLOCKS_FORGET
);
795 for (i
= n
+1; i
< indirect_blks
; i
++)
796 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], 1, 0);
798 ext4_free_blocks(handle
, inode
, 0, new_blocks
[i
], num
, 0);
804 * ext4_splice_branch - splice the allocated branch onto inode.
806 * @block: (logical) number of block we are adding
807 * @chain: chain of indirect blocks (with a missing link - see
809 * @where: location of missing link
810 * @num: number of indirect blocks we are adding
811 * @blks: number of direct blocks we are adding
813 * This function fills the missing link and does all housekeeping needed in
814 * inode (->i_blocks, etc.). In case of success we end up with the full
815 * chain to new block and return 0.
817 static int ext4_splice_branch(handle_t
*handle
, struct inode
*inode
,
818 ext4_lblk_t block
, Indirect
*where
, int num
,
823 ext4_fsblk_t current_block
;
826 * If we're splicing into a [td]indirect block (as opposed to the
827 * inode) then we need to get write access to the [td]indirect block
831 BUFFER_TRACE(where
->bh
, "get_write_access");
832 err
= ext4_journal_get_write_access(handle
, where
->bh
);
838 *where
->p
= where
->key
;
841 * Update the host buffer_head or inode to point to more just allocated
842 * direct blocks blocks
844 if (num
== 0 && blks
> 1) {
845 current_block
= le32_to_cpu(where
->key
) + 1;
846 for (i
= 1; i
< blks
; i
++)
847 *(where
->p
+ i
) = cpu_to_le32(current_block
++);
850 /* We are done with atomic stuff, now do the rest of housekeeping */
851 /* had we spliced it onto indirect block? */
854 * If we spliced it onto an indirect block, we haven't
855 * altered the inode. Note however that if it is being spliced
856 * onto an indirect block at the very end of the file (the
857 * file is growing) then we *will* alter the inode to reflect
858 * the new i_size. But that is not done here - it is done in
859 * generic_commit_write->__mark_inode_dirty->ext4_dirty_inode.
861 jbd_debug(5, "splicing indirect only\n");
862 BUFFER_TRACE(where
->bh
, "call ext4_handle_dirty_metadata");
863 err
= ext4_handle_dirty_metadata(handle
, inode
, where
->bh
);
868 * OK, we spliced it into the inode itself on a direct block.
870 ext4_mark_inode_dirty(handle
, inode
);
871 jbd_debug(5, "splicing direct\n");
876 for (i
= 1; i
<= num
; i
++) {
878 * branch[i].bh is newly allocated, so there is no
879 * need to revoke the block, which is why we don't
880 * need to set EXT4_FREE_BLOCKS_METADATA.
882 ext4_free_blocks(handle
, inode
, where
[i
].bh
, 0, 1,
883 EXT4_FREE_BLOCKS_FORGET
);
885 ext4_free_blocks(handle
, inode
, 0, le32_to_cpu(where
[num
].key
),
892 * The ext4_ind_get_blocks() function handles non-extents inodes
893 * (i.e., using the traditional indirect/double-indirect i_blocks
894 * scheme) for ext4_get_blocks().
896 * Allocation strategy is simple: if we have to allocate something, we will
897 * have to go the whole way to leaf. So let's do it before attaching anything
898 * to tree, set linkage between the newborn blocks, write them if sync is
899 * required, recheck the path, free and repeat if check fails, otherwise
900 * set the last missing link (that will protect us from any truncate-generated
901 * removals - all blocks on the path are immune now) and possibly force the
902 * write on the parent block.
903 * That has a nice additional property: no special recovery from the failed
904 * allocations is needed - we simply release blocks and do not touch anything
905 * reachable from inode.
907 * `handle' can be NULL if create == 0.
909 * return > 0, # of blocks mapped or allocated.
910 * return = 0, if plain lookup failed.
911 * return < 0, error case.
913 * The ext4_ind_get_blocks() function should be called with
914 * down_write(&EXT4_I(inode)->i_data_sem) if allocating filesystem
915 * blocks (i.e., flags has EXT4_GET_BLOCKS_CREATE set) or
916 * down_read(&EXT4_I(inode)->i_data_sem) if not allocating file system
919 static int ext4_ind_get_blocks(handle_t
*handle
, struct inode
*inode
,
920 ext4_lblk_t iblock
, unsigned int maxblocks
,
921 struct buffer_head
*bh_result
,
925 ext4_lblk_t offsets
[4];
930 int blocks_to_boundary
= 0;
933 ext4_fsblk_t first_block
= 0;
935 J_ASSERT(!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
));
936 J_ASSERT(handle
!= NULL
|| (flags
& EXT4_GET_BLOCKS_CREATE
) == 0);
937 depth
= ext4_block_to_path(inode
, iblock
, offsets
,
938 &blocks_to_boundary
);
943 partial
= ext4_get_branch(inode
, depth
, offsets
, chain
, &err
);
945 /* Simplest case - block found, no allocation needed */
947 first_block
= le32_to_cpu(chain
[depth
- 1].key
);
948 clear_buffer_new(bh_result
);
951 while (count
< maxblocks
&& count
<= blocks_to_boundary
) {
954 blk
= le32_to_cpu(*(chain
[depth
-1].p
+ count
));
956 if (blk
== first_block
+ count
)
964 /* Next simple case - plain lookup or failed read of indirect block */
965 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0 || err
== -EIO
)
969 * Okay, we need to do block allocation.
971 goal
= ext4_find_goal(inode
, iblock
, partial
);
973 /* the number of blocks need to allocate for [d,t]indirect blocks */
974 indirect_blks
= (chain
+ depth
) - partial
- 1;
977 * Next look up the indirect map to count the totoal number of
978 * direct blocks to allocate for this branch.
980 count
= ext4_blks_to_allocate(partial
, indirect_blks
,
981 maxblocks
, blocks_to_boundary
);
983 * Block out ext4_truncate while we alter the tree
985 err
= ext4_alloc_branch(handle
, inode
, iblock
, indirect_blks
,
987 offsets
+ (partial
- chain
), partial
);
990 * The ext4_splice_branch call will free and forget any buffers
991 * on the new chain if there is a failure, but that risks using
992 * up transaction credits, especially for bitmaps where the
993 * credits cannot be returned. Can we handle this somehow? We
994 * may need to return -EAGAIN upwards in the worst case. --sct
997 err
= ext4_splice_branch(handle
, inode
, iblock
,
998 partial
, indirect_blks
, count
);
1002 set_buffer_new(bh_result
);
1004 ext4_update_inode_fsync_trans(handle
, inode
, 1);
1006 map_bh(bh_result
, inode
->i_sb
, le32_to_cpu(chain
[depth
-1].key
));
1007 if (count
> blocks_to_boundary
)
1008 set_buffer_boundary(bh_result
);
1010 /* Clean up and exit */
1011 partial
= chain
+ depth
- 1; /* the whole chain */
1013 while (partial
> chain
) {
1014 BUFFER_TRACE(partial
->bh
, "call brelse");
1015 brelse(partial
->bh
);
1018 BUFFER_TRACE(bh_result
, "returned");
1024 qsize_t
*ext4_get_reserved_space(struct inode
*inode
)
1026 return &EXT4_I(inode
)->i_reserved_quota
;
1031 * Calculate the number of metadata blocks need to reserve
1032 * to allocate a new block at @lblocks for non extent file based file
1034 static int ext4_indirect_calc_metadata_amount(struct inode
*inode
,
1037 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1038 int dind_mask
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
) - 1;
1041 if (lblock
< EXT4_NDIR_BLOCKS
)
1044 lblock
-= EXT4_NDIR_BLOCKS
;
1046 if (ei
->i_da_metadata_calc_len
&&
1047 (lblock
& dind_mask
) == ei
->i_da_metadata_calc_last_lblock
) {
1048 ei
->i_da_metadata_calc_len
++;
1051 ei
->i_da_metadata_calc_last_lblock
= lblock
& dind_mask
;
1052 ei
->i_da_metadata_calc_len
= 1;
1053 blk_bits
= roundup_pow_of_two(lblock
+ 1);
1054 return (blk_bits
/ EXT4_ADDR_PER_BLOCK_BITS(inode
->i_sb
)) + 1;
1058 * Calculate the number of metadata blocks need to reserve
1059 * to allocate a block located at @lblock
1061 static int ext4_calc_metadata_amount(struct inode
*inode
, sector_t lblock
)
1063 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
1064 return ext4_ext_calc_metadata_amount(inode
, lblock
);
1066 return ext4_indirect_calc_metadata_amount(inode
, lblock
);
1070 * Called with i_data_sem down, which is important since we can call
1071 * ext4_discard_preallocations() from here.
1073 void ext4_da_update_reserve_space(struct inode
*inode
,
1074 int used
, int quota_claim
)
1076 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1077 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1078 int mdb_free
= 0, allocated_meta_blocks
= 0;
1080 spin_lock(&ei
->i_block_reservation_lock
);
1081 trace_ext4_da_update_reserve_space(inode
, used
);
1082 if (unlikely(used
> ei
->i_reserved_data_blocks
)) {
1083 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "%s: ino %lu, used %d "
1084 "with only %d reserved data blocks\n",
1085 __func__
, inode
->i_ino
, used
,
1086 ei
->i_reserved_data_blocks
);
1088 used
= ei
->i_reserved_data_blocks
;
1091 /* Update per-inode reservations */
1092 ei
->i_reserved_data_blocks
-= used
;
1093 used
+= ei
->i_allocated_meta_blocks
;
1094 ei
->i_reserved_meta_blocks
-= ei
->i_allocated_meta_blocks
;
1095 allocated_meta_blocks
= ei
->i_allocated_meta_blocks
;
1096 ei
->i_allocated_meta_blocks
= 0;
1097 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, used
);
1099 if (ei
->i_reserved_data_blocks
== 0) {
1101 * We can release all of the reserved metadata blocks
1102 * only when we have written all of the delayed
1103 * allocation blocks.
1105 mdb_free
= ei
->i_reserved_meta_blocks
;
1106 ei
->i_reserved_meta_blocks
= 0;
1107 ei
->i_da_metadata_calc_len
= 0;
1108 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, mdb_free
);
1110 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1112 /* Update quota subsystem */
1114 dquot_claim_block(inode
, used
);
1116 dquot_release_reservation_block(inode
, mdb_free
);
1119 * We did fallocate with an offset that is already delayed
1120 * allocated. So on delayed allocated writeback we should
1121 * not update the quota for allocated blocks. But then
1122 * converting an fallocate region to initialized region would
1123 * have caused a metadata allocation. So claim quota for
1126 if (allocated_meta_blocks
)
1127 dquot_claim_block(inode
, allocated_meta_blocks
);
1128 dquot_release_reservation_block(inode
, mdb_free
+ used
);
1132 * If we have done all the pending block allocations and if
1133 * there aren't any writers on the inode, we can discard the
1134 * inode's preallocations.
1136 if ((ei
->i_reserved_data_blocks
== 0) &&
1137 (atomic_read(&inode
->i_writecount
) == 0))
1138 ext4_discard_preallocations(inode
);
1141 static int check_block_validity(struct inode
*inode
, const char *msg
,
1142 sector_t logical
, sector_t phys
, int len
)
1144 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), phys
, len
)) {
1145 __ext4_error(inode
->i_sb
, msg
,
1146 "inode #%lu logical block %llu mapped to %llu "
1147 "(size %d)", inode
->i_ino
,
1148 (unsigned long long) logical
,
1149 (unsigned long long) phys
, len
);
1156 * Return the number of contiguous dirty pages in a given inode
1157 * starting at page frame idx.
1159 static pgoff_t
ext4_num_dirty_pages(struct inode
*inode
, pgoff_t idx
,
1160 unsigned int max_pages
)
1162 struct address_space
*mapping
= inode
->i_mapping
;
1164 struct pagevec pvec
;
1166 int i
, nr_pages
, done
= 0;
1170 pagevec_init(&pvec
, 0);
1173 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
,
1174 PAGECACHE_TAG_DIRTY
,
1175 (pgoff_t
)PAGEVEC_SIZE
);
1178 for (i
= 0; i
< nr_pages
; i
++) {
1179 struct page
*page
= pvec
.pages
[i
];
1180 struct buffer_head
*bh
, *head
;
1183 if (unlikely(page
->mapping
!= mapping
) ||
1185 PageWriteback(page
) ||
1186 page
->index
!= idx
) {
1191 if (page_has_buffers(page
)) {
1192 bh
= head
= page_buffers(page
);
1194 if (!buffer_delay(bh
) &&
1195 !buffer_unwritten(bh
))
1197 bh
= bh
->b_this_page
;
1198 } while (!done
&& (bh
!= head
));
1205 if (num
>= max_pages
)
1208 pagevec_release(&pvec
);
1214 * The ext4_get_blocks() function tries to look up the requested blocks,
1215 * and returns if the blocks are already mapped.
1217 * Otherwise it takes the write lock of the i_data_sem and allocate blocks
1218 * and store the allocated blocks in the result buffer head and mark it
1221 * If file type is extents based, it will call ext4_ext_get_blocks(),
1222 * Otherwise, call with ext4_ind_get_blocks() to handle indirect mapping
1225 * On success, it returns the number of blocks being mapped or allocate.
1226 * if create==0 and the blocks are pre-allocated and uninitialized block,
1227 * the result buffer head is unmapped. If the create ==1, it will make sure
1228 * the buffer head is mapped.
1230 * It returns 0 if plain look up failed (blocks have not been allocated), in
1231 * that casem, buffer head is unmapped
1233 * It returns the error in case of allocation failure.
1235 int ext4_get_blocks(handle_t
*handle
, struct inode
*inode
, sector_t block
,
1236 unsigned int max_blocks
, struct buffer_head
*bh
,
1241 clear_buffer_mapped(bh
);
1242 clear_buffer_unwritten(bh
);
1244 ext_debug("ext4_get_blocks(): inode %lu, flag %d, max_blocks %u,"
1245 "logical block %lu\n", inode
->i_ino
, flags
, max_blocks
,
1246 (unsigned long)block
);
1248 * Try to see if we can get the block without requesting a new
1249 * file system block.
1251 down_read((&EXT4_I(inode
)->i_data_sem
));
1252 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1253 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1256 retval
= ext4_ind_get_blocks(handle
, inode
, block
, max_blocks
,
1259 up_read((&EXT4_I(inode
)->i_data_sem
));
1261 if (retval
> 0 && buffer_mapped(bh
)) {
1262 int ret
= check_block_validity(inode
, "file system corruption",
1263 block
, bh
->b_blocknr
, retval
);
1268 /* If it is only a block(s) look up */
1269 if ((flags
& EXT4_GET_BLOCKS_CREATE
) == 0)
1273 * Returns if the blocks have already allocated
1275 * Note that if blocks have been preallocated
1276 * ext4_ext_get_block() returns th create = 0
1277 * with buffer head unmapped.
1279 if (retval
> 0 && buffer_mapped(bh
))
1283 * When we call get_blocks without the create flag, the
1284 * BH_Unwritten flag could have gotten set if the blocks
1285 * requested were part of a uninitialized extent. We need to
1286 * clear this flag now that we are committed to convert all or
1287 * part of the uninitialized extent to be an initialized
1288 * extent. This is because we need to avoid the combination
1289 * of BH_Unwritten and BH_Mapped flags being simultaneously
1290 * set on the buffer_head.
1292 clear_buffer_unwritten(bh
);
1295 * New blocks allocate and/or writing to uninitialized extent
1296 * will possibly result in updating i_data, so we take
1297 * the write lock of i_data_sem, and call get_blocks()
1298 * with create == 1 flag.
1300 down_write((&EXT4_I(inode
)->i_data_sem
));
1303 * if the caller is from delayed allocation writeout path
1304 * we have already reserved fs blocks for allocation
1305 * let the underlying get_block() function know to
1306 * avoid double accounting
1308 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1309 EXT4_I(inode
)->i_delalloc_reserved_flag
= 1;
1311 * We need to check for EXT4 here because migrate
1312 * could have changed the inode type in between
1314 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
1315 retval
= ext4_ext_get_blocks(handle
, inode
, block
, max_blocks
,
1318 retval
= ext4_ind_get_blocks(handle
, inode
, block
,
1319 max_blocks
, bh
, flags
);
1321 if (retval
> 0 && buffer_new(bh
)) {
1323 * We allocated new blocks which will result in
1324 * i_data's format changing. Force the migrate
1325 * to fail by clearing migrate flags
1327 ext4_clear_inode_state(inode
, EXT4_STATE_EXT_MIGRATE
);
1331 * Update reserved blocks/metadata blocks after successful
1332 * block allocation which had been deferred till now. We don't
1333 * support fallocate for non extent files. So we can update
1334 * reserve space here.
1337 (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
))
1338 ext4_da_update_reserve_space(inode
, retval
, 1);
1340 if (flags
& EXT4_GET_BLOCKS_DELALLOC_RESERVE
)
1341 EXT4_I(inode
)->i_delalloc_reserved_flag
= 0;
1343 up_write((&EXT4_I(inode
)->i_data_sem
));
1344 if (retval
> 0 && buffer_mapped(bh
)) {
1345 int ret
= check_block_validity(inode
, "file system "
1346 "corruption after allocation",
1347 block
, bh
->b_blocknr
, retval
);
1354 /* Maximum number of blocks we map for direct IO at once. */
1355 #define DIO_MAX_BLOCKS 4096
1357 int ext4_get_block(struct inode
*inode
, sector_t iblock
,
1358 struct buffer_head
*bh_result
, int create
)
1360 handle_t
*handle
= ext4_journal_current_handle();
1361 int ret
= 0, started
= 0;
1362 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
1365 if (create
&& !handle
) {
1366 /* Direct IO write... */
1367 if (max_blocks
> DIO_MAX_BLOCKS
)
1368 max_blocks
= DIO_MAX_BLOCKS
;
1369 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
1370 handle
= ext4_journal_start(inode
, dio_credits
);
1371 if (IS_ERR(handle
)) {
1372 ret
= PTR_ERR(handle
);
1378 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
1379 create
? EXT4_GET_BLOCKS_CREATE
: 0);
1381 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
1385 ext4_journal_stop(handle
);
1391 * `handle' can be NULL if create is zero
1393 struct buffer_head
*ext4_getblk(handle_t
*handle
, struct inode
*inode
,
1394 ext4_lblk_t block
, int create
, int *errp
)
1396 struct buffer_head dummy
;
1400 J_ASSERT(handle
!= NULL
|| create
== 0);
1403 dummy
.b_blocknr
= -1000;
1404 buffer_trace_init(&dummy
.b_history
);
1406 flags
|= EXT4_GET_BLOCKS_CREATE
;
1407 err
= ext4_get_blocks(handle
, inode
, block
, 1, &dummy
, flags
);
1409 * ext4_get_blocks() returns number of blocks mapped. 0 in
1418 if (!err
&& buffer_mapped(&dummy
)) {
1419 struct buffer_head
*bh
;
1420 bh
= sb_getblk(inode
->i_sb
, dummy
.b_blocknr
);
1425 if (buffer_new(&dummy
)) {
1426 J_ASSERT(create
!= 0);
1427 J_ASSERT(handle
!= NULL
);
1430 * Now that we do not always journal data, we should
1431 * keep in mind whether this should always journal the
1432 * new buffer as metadata. For now, regular file
1433 * writes use ext4_get_block instead, so it's not a
1437 BUFFER_TRACE(bh
, "call get_create_access");
1438 fatal
= ext4_journal_get_create_access(handle
, bh
);
1439 if (!fatal
&& !buffer_uptodate(bh
)) {
1440 memset(bh
->b_data
, 0, inode
->i_sb
->s_blocksize
);
1441 set_buffer_uptodate(bh
);
1444 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
1445 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
1449 BUFFER_TRACE(bh
, "not a new buffer");
1462 struct buffer_head
*ext4_bread(handle_t
*handle
, struct inode
*inode
,
1463 ext4_lblk_t block
, int create
, int *err
)
1465 struct buffer_head
*bh
;
1467 bh
= ext4_getblk(handle
, inode
, block
, create
, err
);
1470 if (buffer_uptodate(bh
))
1472 ll_rw_block(READ_META
, 1, &bh
);
1474 if (buffer_uptodate(bh
))
1481 static int walk_page_buffers(handle_t
*handle
,
1482 struct buffer_head
*head
,
1486 int (*fn
)(handle_t
*handle
,
1487 struct buffer_head
*bh
))
1489 struct buffer_head
*bh
;
1490 unsigned block_start
, block_end
;
1491 unsigned blocksize
= head
->b_size
;
1493 struct buffer_head
*next
;
1495 for (bh
= head
, block_start
= 0;
1496 ret
== 0 && (bh
!= head
|| !block_start
);
1497 block_start
= block_end
, bh
= next
) {
1498 next
= bh
->b_this_page
;
1499 block_end
= block_start
+ blocksize
;
1500 if (block_end
<= from
|| block_start
>= to
) {
1501 if (partial
&& !buffer_uptodate(bh
))
1505 err
= (*fn
)(handle
, bh
);
1513 * To preserve ordering, it is essential that the hole instantiation and
1514 * the data write be encapsulated in a single transaction. We cannot
1515 * close off a transaction and start a new one between the ext4_get_block()
1516 * and the commit_write(). So doing the jbd2_journal_start at the start of
1517 * prepare_write() is the right place.
1519 * Also, this function can nest inside ext4_writepage() ->
1520 * block_write_full_page(). In that case, we *know* that ext4_writepage()
1521 * has generated enough buffer credits to do the whole page. So we won't
1522 * block on the journal in that case, which is good, because the caller may
1525 * By accident, ext4 can be reentered when a transaction is open via
1526 * quota file writes. If we were to commit the transaction while thus
1527 * reentered, there can be a deadlock - we would be holding a quota
1528 * lock, and the commit would never complete if another thread had a
1529 * transaction open and was blocking on the quota lock - a ranking
1532 * So what we do is to rely on the fact that jbd2_journal_stop/journal_start
1533 * will _not_ run commit under these circumstances because handle->h_ref
1534 * is elevated. We'll still have enough credits for the tiny quotafile
1537 static int do_journal_get_write_access(handle_t
*handle
,
1538 struct buffer_head
*bh
)
1540 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1542 return ext4_journal_get_write_access(handle
, bh
);
1546 * Truncate blocks that were not used by write. We have to truncate the
1547 * pagecache as well so that corresponding buffers get properly unmapped.
1549 static void ext4_truncate_failed_write(struct inode
*inode
)
1551 truncate_inode_pages(inode
->i_mapping
, inode
->i_size
);
1552 ext4_truncate(inode
);
1555 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
1556 struct buffer_head
*bh_result
, int create
);
1557 static int ext4_write_begin(struct file
*file
, struct address_space
*mapping
,
1558 loff_t pos
, unsigned len
, unsigned flags
,
1559 struct page
**pagep
, void **fsdata
)
1561 struct inode
*inode
= mapping
->host
;
1562 int ret
, needed_blocks
;
1569 trace_ext4_write_begin(inode
, pos
, len
, flags
);
1571 * Reserve one block more for addition to orphan list in case
1572 * we allocate blocks but write fails for some reason
1574 needed_blocks
= ext4_writepage_trans_blocks(inode
) + 1;
1575 index
= pos
>> PAGE_CACHE_SHIFT
;
1576 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1580 handle
= ext4_journal_start(inode
, needed_blocks
);
1581 if (IS_ERR(handle
)) {
1582 ret
= PTR_ERR(handle
);
1586 /* We cannot recurse into the filesystem as the transaction is already
1588 flags
|= AOP_FLAG_NOFS
;
1590 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
1592 ext4_journal_stop(handle
);
1598 if (ext4_should_dioread_nolock(inode
))
1599 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
1600 fsdata
, ext4_get_block_write
);
1602 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
,
1603 fsdata
, ext4_get_block
);
1605 if (!ret
&& ext4_should_journal_data(inode
)) {
1606 ret
= walk_page_buffers(handle
, page_buffers(page
),
1607 from
, to
, NULL
, do_journal_get_write_access
);
1612 page_cache_release(page
);
1614 * block_write_begin may have instantiated a few blocks
1615 * outside i_size. Trim these off again. Don't need
1616 * i_size_read because we hold i_mutex.
1618 * Add inode to orphan list in case we crash before
1621 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1622 ext4_orphan_add(handle
, inode
);
1624 ext4_journal_stop(handle
);
1625 if (pos
+ len
> inode
->i_size
) {
1626 ext4_truncate_failed_write(inode
);
1628 * If truncate failed early the inode might
1629 * still be on the orphan list; we need to
1630 * make sure the inode is removed from the
1631 * orphan list in that case.
1634 ext4_orphan_del(NULL
, inode
);
1638 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
1644 /* For write_end() in data=journal mode */
1645 static int write_end_fn(handle_t
*handle
, struct buffer_head
*bh
)
1647 if (!buffer_mapped(bh
) || buffer_freed(bh
))
1649 set_buffer_uptodate(bh
);
1650 return ext4_handle_dirty_metadata(handle
, NULL
, bh
);
1653 static int ext4_generic_write_end(struct file
*file
,
1654 struct address_space
*mapping
,
1655 loff_t pos
, unsigned len
, unsigned copied
,
1656 struct page
*page
, void *fsdata
)
1658 int i_size_changed
= 0;
1659 struct inode
*inode
= mapping
->host
;
1660 handle_t
*handle
= ext4_journal_current_handle();
1662 copied
= block_write_end(file
, mapping
, pos
, len
, copied
, page
, fsdata
);
1665 * No need to use i_size_read() here, the i_size
1666 * cannot change under us because we hold i_mutex.
1668 * But it's important to update i_size while still holding page lock:
1669 * page writeout could otherwise come in and zero beyond i_size.
1671 if (pos
+ copied
> inode
->i_size
) {
1672 i_size_write(inode
, pos
+ copied
);
1676 if (pos
+ copied
> EXT4_I(inode
)->i_disksize
) {
1677 /* We need to mark inode dirty even if
1678 * new_i_size is less that inode->i_size
1679 * bu greater than i_disksize.(hint delalloc)
1681 ext4_update_i_disksize(inode
, (pos
+ copied
));
1685 page_cache_release(page
);
1688 * Don't mark the inode dirty under page lock. First, it unnecessarily
1689 * makes the holding time of page lock longer. Second, it forces lock
1690 * ordering of page lock and transaction start for journaling
1694 ext4_mark_inode_dirty(handle
, inode
);
1700 * We need to pick up the new inode size which generic_commit_write gave us
1701 * `file' can be NULL - eg, when called from page_symlink().
1703 * ext4 never places buffers on inode->i_mapping->private_list. metadata
1704 * buffers are managed internally.
1706 static int ext4_ordered_write_end(struct file
*file
,
1707 struct address_space
*mapping
,
1708 loff_t pos
, unsigned len
, unsigned copied
,
1709 struct page
*page
, void *fsdata
)
1711 handle_t
*handle
= ext4_journal_current_handle();
1712 struct inode
*inode
= mapping
->host
;
1715 trace_ext4_ordered_write_end(inode
, pos
, len
, copied
);
1716 ret
= ext4_jbd2_file_inode(handle
, inode
);
1719 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1722 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1723 /* if we have allocated more blocks and copied
1724 * less. We will have blocks allocated outside
1725 * inode->i_size. So truncate them
1727 ext4_orphan_add(handle
, inode
);
1731 ret2
= ext4_journal_stop(handle
);
1735 if (pos
+ len
> inode
->i_size
) {
1736 ext4_truncate_failed_write(inode
);
1738 * If truncate failed early the inode might still be
1739 * on the orphan list; we need to make sure the inode
1740 * is removed from the orphan list in that case.
1743 ext4_orphan_del(NULL
, inode
);
1747 return ret
? ret
: copied
;
1750 static int ext4_writeback_write_end(struct file
*file
,
1751 struct address_space
*mapping
,
1752 loff_t pos
, unsigned len
, unsigned copied
,
1753 struct page
*page
, void *fsdata
)
1755 handle_t
*handle
= ext4_journal_current_handle();
1756 struct inode
*inode
= mapping
->host
;
1759 trace_ext4_writeback_write_end(inode
, pos
, len
, copied
);
1760 ret2
= ext4_generic_write_end(file
, mapping
, pos
, len
, copied
,
1763 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1764 /* if we have allocated more blocks and copied
1765 * less. We will have blocks allocated outside
1766 * inode->i_size. So truncate them
1768 ext4_orphan_add(handle
, inode
);
1773 ret2
= ext4_journal_stop(handle
);
1777 if (pos
+ len
> inode
->i_size
) {
1778 ext4_truncate_failed_write(inode
);
1780 * If truncate failed early the inode might still be
1781 * on the orphan list; we need to make sure the inode
1782 * is removed from the orphan list in that case.
1785 ext4_orphan_del(NULL
, inode
);
1788 return ret
? ret
: copied
;
1791 static int ext4_journalled_write_end(struct file
*file
,
1792 struct address_space
*mapping
,
1793 loff_t pos
, unsigned len
, unsigned copied
,
1794 struct page
*page
, void *fsdata
)
1796 handle_t
*handle
= ext4_journal_current_handle();
1797 struct inode
*inode
= mapping
->host
;
1803 trace_ext4_journalled_write_end(inode
, pos
, len
, copied
);
1804 from
= pos
& (PAGE_CACHE_SIZE
- 1);
1808 if (!PageUptodate(page
))
1810 page_zero_new_buffers(page
, from
+copied
, to
);
1813 ret
= walk_page_buffers(handle
, page_buffers(page
), from
,
1814 to
, &partial
, write_end_fn
);
1816 SetPageUptodate(page
);
1817 new_i_size
= pos
+ copied
;
1818 if (new_i_size
> inode
->i_size
)
1819 i_size_write(inode
, pos
+copied
);
1820 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
1821 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
1822 ext4_update_i_disksize(inode
, new_i_size
);
1823 ret2
= ext4_mark_inode_dirty(handle
, inode
);
1829 page_cache_release(page
);
1830 if (pos
+ len
> inode
->i_size
&& ext4_can_truncate(inode
))
1831 /* if we have allocated more blocks and copied
1832 * less. We will have blocks allocated outside
1833 * inode->i_size. So truncate them
1835 ext4_orphan_add(handle
, inode
);
1837 ret2
= ext4_journal_stop(handle
);
1840 if (pos
+ len
> inode
->i_size
) {
1841 ext4_truncate_failed_write(inode
);
1843 * If truncate failed early the inode might still be
1844 * on the orphan list; we need to make sure the inode
1845 * is removed from the orphan list in that case.
1848 ext4_orphan_del(NULL
, inode
);
1851 return ret
? ret
: copied
;
1855 * Reserve a single block located at lblock
1857 static int ext4_da_reserve_space(struct inode
*inode
, sector_t lblock
)
1860 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1861 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1862 unsigned long md_needed
, md_reserved
;
1866 * recalculate the amount of metadata blocks to reserve
1867 * in order to allocate nrblocks
1868 * worse case is one extent per block
1871 spin_lock(&ei
->i_block_reservation_lock
);
1872 md_reserved
= ei
->i_reserved_meta_blocks
;
1873 md_needed
= ext4_calc_metadata_amount(inode
, lblock
);
1874 trace_ext4_da_reserve_space(inode
, md_needed
);
1875 spin_unlock(&ei
->i_block_reservation_lock
);
1878 * Make quota reservation here to prevent quota overflow
1879 * later. Real quota accounting is done at pages writeout
1882 ret
= dquot_reserve_block(inode
, md_needed
+ 1);
1886 if (ext4_claim_free_blocks(sbi
, md_needed
+ 1)) {
1887 dquot_release_reservation_block(inode
, md_needed
+ 1);
1888 if (ext4_should_retry_alloc(inode
->i_sb
, &retries
)) {
1894 spin_lock(&ei
->i_block_reservation_lock
);
1895 ei
->i_reserved_data_blocks
++;
1896 ei
->i_reserved_meta_blocks
+= md_needed
;
1897 spin_unlock(&ei
->i_block_reservation_lock
);
1899 return 0; /* success */
1902 static void ext4_da_release_space(struct inode
*inode
, int to_free
)
1904 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
1905 struct ext4_inode_info
*ei
= EXT4_I(inode
);
1908 return; /* Nothing to release, exit */
1910 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
1912 if (unlikely(to_free
> ei
->i_reserved_data_blocks
)) {
1914 * if there aren't enough reserved blocks, then the
1915 * counter is messed up somewhere. Since this
1916 * function is called from invalidate page, it's
1917 * harmless to return without any action.
1919 ext4_msg(inode
->i_sb
, KERN_NOTICE
, "ext4_da_release_space: "
1920 "ino %lu, to_free %d with only %d reserved "
1921 "data blocks\n", inode
->i_ino
, to_free
,
1922 ei
->i_reserved_data_blocks
);
1924 to_free
= ei
->i_reserved_data_blocks
;
1926 ei
->i_reserved_data_blocks
-= to_free
;
1928 if (ei
->i_reserved_data_blocks
== 0) {
1930 * We can release all of the reserved metadata blocks
1931 * only when we have written all of the delayed
1932 * allocation blocks.
1934 to_free
+= ei
->i_reserved_meta_blocks
;
1935 ei
->i_reserved_meta_blocks
= 0;
1936 ei
->i_da_metadata_calc_len
= 0;
1939 /* update fs dirty blocks counter */
1940 percpu_counter_sub(&sbi
->s_dirtyblocks_counter
, to_free
);
1942 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
1944 dquot_release_reservation_block(inode
, to_free
);
1947 static void ext4_da_page_release_reservation(struct page
*page
,
1948 unsigned long offset
)
1951 struct buffer_head
*head
, *bh
;
1952 unsigned int curr_off
= 0;
1954 head
= page_buffers(page
);
1957 unsigned int next_off
= curr_off
+ bh
->b_size
;
1959 if ((offset
<= curr_off
) && (buffer_delay(bh
))) {
1961 clear_buffer_delay(bh
);
1963 curr_off
= next_off
;
1964 } while ((bh
= bh
->b_this_page
) != head
);
1965 ext4_da_release_space(page
->mapping
->host
, to_release
);
1969 * Delayed allocation stuff
1973 * mpage_da_submit_io - walks through extent of pages and try to write
1974 * them with writepage() call back
1976 * @mpd->inode: inode
1977 * @mpd->first_page: first page of the extent
1978 * @mpd->next_page: page after the last page of the extent
1980 * By the time mpage_da_submit_io() is called we expect all blocks
1981 * to be allocated. this may be wrong if allocation failed.
1983 * As pages are already locked by write_cache_pages(), we can't use it
1985 static int mpage_da_submit_io(struct mpage_da_data
*mpd
)
1988 struct pagevec pvec
;
1989 unsigned long index
, end
;
1990 int ret
= 0, err
, nr_pages
, i
;
1991 struct inode
*inode
= mpd
->inode
;
1992 struct address_space
*mapping
= inode
->i_mapping
;
1994 BUG_ON(mpd
->next_page
<= mpd
->first_page
);
1996 * We need to start from the first_page to the next_page - 1
1997 * to make sure we also write the mapped dirty buffer_heads.
1998 * If we look at mpd->b_blocknr we would only be looking
1999 * at the currently mapped buffer_heads.
2001 index
= mpd
->first_page
;
2002 end
= mpd
->next_page
- 1;
2004 pagevec_init(&pvec
, 0);
2005 while (index
<= end
) {
2006 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2009 for (i
= 0; i
< nr_pages
; i
++) {
2010 struct page
*page
= pvec
.pages
[i
];
2012 index
= page
->index
;
2017 BUG_ON(!PageLocked(page
));
2018 BUG_ON(PageWriteback(page
));
2020 pages_skipped
= mpd
->wbc
->pages_skipped
;
2021 err
= mapping
->a_ops
->writepage(page
, mpd
->wbc
);
2022 if (!err
&& (pages_skipped
== mpd
->wbc
->pages_skipped
))
2024 * have successfully written the page
2025 * without skipping the same
2027 mpd
->pages_written
++;
2029 * In error case, we have to continue because
2030 * remaining pages are still locked
2031 * XXX: unlock and re-dirty them?
2036 pagevec_release(&pvec
);
2042 * mpage_put_bnr_to_bhs - walk blocks and assign them actual numbers
2044 * @mpd->inode - inode to walk through
2045 * @exbh->b_blocknr - first block on a disk
2046 * @exbh->b_size - amount of space in bytes
2047 * @logical - first logical block to start assignment with
2049 * the function goes through all passed space and put actual disk
2050 * block numbers into buffer heads, dropping BH_Delay and BH_Unwritten
2052 static void mpage_put_bnr_to_bhs(struct mpage_da_data
*mpd
, sector_t logical
,
2053 struct buffer_head
*exbh
)
2055 struct inode
*inode
= mpd
->inode
;
2056 struct address_space
*mapping
= inode
->i_mapping
;
2057 int blocks
= exbh
->b_size
>> inode
->i_blkbits
;
2058 sector_t pblock
= exbh
->b_blocknr
, cur_logical
;
2059 struct buffer_head
*head
, *bh
;
2061 struct pagevec pvec
;
2064 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2065 end
= (logical
+ blocks
- 1) >> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2066 cur_logical
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2068 pagevec_init(&pvec
, 0);
2070 while (index
<= end
) {
2071 /* XXX: optimize tail */
2072 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2075 for (i
= 0; i
< nr_pages
; i
++) {
2076 struct page
*page
= pvec
.pages
[i
];
2078 index
= page
->index
;
2083 BUG_ON(!PageLocked(page
));
2084 BUG_ON(PageWriteback(page
));
2085 BUG_ON(!page_has_buffers(page
));
2087 bh
= page_buffers(page
);
2090 /* skip blocks out of the range */
2092 if (cur_logical
>= logical
)
2095 } while ((bh
= bh
->b_this_page
) != head
);
2098 if (cur_logical
>= logical
+ blocks
)
2101 if (buffer_delay(bh
) ||
2102 buffer_unwritten(bh
)) {
2104 BUG_ON(bh
->b_bdev
!= inode
->i_sb
->s_bdev
);
2106 if (buffer_delay(bh
)) {
2107 clear_buffer_delay(bh
);
2108 bh
->b_blocknr
= pblock
;
2111 * unwritten already should have
2112 * blocknr assigned. Verify that
2114 clear_buffer_unwritten(bh
);
2115 BUG_ON(bh
->b_blocknr
!= pblock
);
2118 } else if (buffer_mapped(bh
))
2119 BUG_ON(bh
->b_blocknr
!= pblock
);
2121 if (buffer_uninit(exbh
))
2122 set_buffer_uninit(bh
);
2125 } while ((bh
= bh
->b_this_page
) != head
);
2127 pagevec_release(&pvec
);
2133 * __unmap_underlying_blocks - just a helper function to unmap
2134 * set of blocks described by @bh
2136 static inline void __unmap_underlying_blocks(struct inode
*inode
,
2137 struct buffer_head
*bh
)
2139 struct block_device
*bdev
= inode
->i_sb
->s_bdev
;
2142 blocks
= bh
->b_size
>> inode
->i_blkbits
;
2143 for (i
= 0; i
< blocks
; i
++)
2144 unmap_underlying_metadata(bdev
, bh
->b_blocknr
+ i
);
2147 static void ext4_da_block_invalidatepages(struct mpage_da_data
*mpd
,
2148 sector_t logical
, long blk_cnt
)
2152 struct pagevec pvec
;
2153 struct inode
*inode
= mpd
->inode
;
2154 struct address_space
*mapping
= inode
->i_mapping
;
2156 index
= logical
>> (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2157 end
= (logical
+ blk_cnt
- 1) >>
2158 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2159 while (index
<= end
) {
2160 nr_pages
= pagevec_lookup(&pvec
, mapping
, index
, PAGEVEC_SIZE
);
2163 for (i
= 0; i
< nr_pages
; i
++) {
2164 struct page
*page
= pvec
.pages
[i
];
2165 if (page
->index
> end
)
2167 BUG_ON(!PageLocked(page
));
2168 BUG_ON(PageWriteback(page
));
2169 block_invalidatepage(page
, 0);
2170 ClearPageUptodate(page
);
2173 index
= pvec
.pages
[nr_pages
- 1]->index
+ 1;
2174 pagevec_release(&pvec
);
2179 static void ext4_print_free_blocks(struct inode
*inode
)
2181 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
2182 printk(KERN_CRIT
"Total free blocks count %lld\n",
2183 ext4_count_free_blocks(inode
->i_sb
));
2184 printk(KERN_CRIT
"Free/Dirty block details\n");
2185 printk(KERN_CRIT
"free_blocks=%lld\n",
2186 (long long) percpu_counter_sum(&sbi
->s_freeblocks_counter
));
2187 printk(KERN_CRIT
"dirty_blocks=%lld\n",
2188 (long long) percpu_counter_sum(&sbi
->s_dirtyblocks_counter
));
2189 printk(KERN_CRIT
"Block reservation details\n");
2190 printk(KERN_CRIT
"i_reserved_data_blocks=%u\n",
2191 EXT4_I(inode
)->i_reserved_data_blocks
);
2192 printk(KERN_CRIT
"i_reserved_meta_blocks=%u\n",
2193 EXT4_I(inode
)->i_reserved_meta_blocks
);
2198 * mpage_da_map_blocks - go through given space
2200 * @mpd - bh describing space
2202 * The function skips space we know is already mapped to disk blocks.
2205 static int mpage_da_map_blocks(struct mpage_da_data
*mpd
)
2207 int err
, blks
, get_blocks_flags
;
2208 struct buffer_head
new;
2209 sector_t next
= mpd
->b_blocknr
;
2210 unsigned max_blocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2211 loff_t disksize
= EXT4_I(mpd
->inode
)->i_disksize
;
2212 handle_t
*handle
= NULL
;
2215 * We consider only non-mapped and non-allocated blocks
2217 if ((mpd
->b_state
& (1 << BH_Mapped
)) &&
2218 !(mpd
->b_state
& (1 << BH_Delay
)) &&
2219 !(mpd
->b_state
& (1 << BH_Unwritten
)))
2223 * If we didn't accumulate anything to write simply return
2228 handle
= ext4_journal_current_handle();
2232 * Call ext4_get_blocks() to allocate any delayed allocation
2233 * blocks, or to convert an uninitialized extent to be
2234 * initialized (in the case where we have written into
2235 * one or more preallocated blocks).
2237 * We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE to
2238 * indicate that we are on the delayed allocation path. This
2239 * affects functions in many different parts of the allocation
2240 * call path. This flag exists primarily because we don't
2241 * want to change *many* call functions, so ext4_get_blocks()
2242 * will set the magic i_delalloc_reserved_flag once the
2243 * inode's allocation semaphore is taken.
2245 * If the blocks in questions were delalloc blocks, set
2246 * EXT4_GET_BLOCKS_DELALLOC_RESERVE so the delalloc accounting
2247 * variables are updated after the blocks have been allocated.
2250 get_blocks_flags
= EXT4_GET_BLOCKS_CREATE
;
2251 if (ext4_should_dioread_nolock(mpd
->inode
))
2252 get_blocks_flags
|= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
2253 if (mpd
->b_state
& (1 << BH_Delay
))
2254 get_blocks_flags
|= EXT4_GET_BLOCKS_DELALLOC_RESERVE
;
2256 blks
= ext4_get_blocks(handle
, mpd
->inode
, next
, max_blocks
,
2257 &new, get_blocks_flags
);
2261 * If get block returns with error we simply
2262 * return. Later writepage will redirty the page and
2263 * writepages will find the dirty page again
2268 if (err
== -ENOSPC
&&
2269 ext4_count_free_blocks(mpd
->inode
->i_sb
)) {
2275 * get block failure will cause us to loop in
2276 * writepages, because a_ops->writepage won't be able
2277 * to make progress. The page will be redirtied by
2278 * writepage and writepages will again try to write
2281 ext4_msg(mpd
->inode
->i_sb
, KERN_CRIT
,
2282 "delayed block allocation failed for inode %lu at "
2283 "logical offset %llu with max blocks %zd with "
2284 "error %d\n", mpd
->inode
->i_ino
,
2285 (unsigned long long) next
,
2286 mpd
->b_size
>> mpd
->inode
->i_blkbits
, err
);
2287 printk(KERN_CRIT
"This should not happen!! "
2288 "Data will be lost\n");
2289 if (err
== -ENOSPC
) {
2290 ext4_print_free_blocks(mpd
->inode
);
2292 /* invalidate all the pages */
2293 ext4_da_block_invalidatepages(mpd
, next
,
2294 mpd
->b_size
>> mpd
->inode
->i_blkbits
);
2299 new.b_size
= (blks
<< mpd
->inode
->i_blkbits
);
2301 if (buffer_new(&new))
2302 __unmap_underlying_blocks(mpd
->inode
, &new);
2305 * If blocks are delayed marked, we need to
2306 * put actual blocknr and drop delayed bit
2308 if ((mpd
->b_state
& (1 << BH_Delay
)) ||
2309 (mpd
->b_state
& (1 << BH_Unwritten
)))
2310 mpage_put_bnr_to_bhs(mpd
, next
, &new);
2312 if (ext4_should_order_data(mpd
->inode
)) {
2313 err
= ext4_jbd2_file_inode(handle
, mpd
->inode
);
2319 * Update on-disk size along with block allocation.
2321 disksize
= ((loff_t
) next
+ blks
) << mpd
->inode
->i_blkbits
;
2322 if (disksize
> i_size_read(mpd
->inode
))
2323 disksize
= i_size_read(mpd
->inode
);
2324 if (disksize
> EXT4_I(mpd
->inode
)->i_disksize
) {
2325 ext4_update_i_disksize(mpd
->inode
, disksize
);
2326 return ext4_mark_inode_dirty(handle
, mpd
->inode
);
2332 #define BH_FLAGS ((1 << BH_Uptodate) | (1 << BH_Mapped) | \
2333 (1 << BH_Delay) | (1 << BH_Unwritten))
2336 * mpage_add_bh_to_extent - try to add one more block to extent of blocks
2338 * @mpd->lbh - extent of blocks
2339 * @logical - logical number of the block in the file
2340 * @bh - bh of the block (used to access block's state)
2342 * the function is used to collect contig. blocks in same state
2344 static void mpage_add_bh_to_extent(struct mpage_da_data
*mpd
,
2345 sector_t logical
, size_t b_size
,
2346 unsigned long b_state
)
2349 int nrblocks
= mpd
->b_size
>> mpd
->inode
->i_blkbits
;
2351 /* check if thereserved journal credits might overflow */
2352 if (!(EXT4_I(mpd
->inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
2353 if (nrblocks
>= EXT4_MAX_TRANS_DATA
) {
2355 * With non-extent format we are limited by the journal
2356 * credit available. Total credit needed to insert
2357 * nrblocks contiguous blocks is dependent on the
2358 * nrblocks. So limit nrblocks.
2361 } else if ((nrblocks
+ (b_size
>> mpd
->inode
->i_blkbits
)) >
2362 EXT4_MAX_TRANS_DATA
) {
2364 * Adding the new buffer_head would make it cross the
2365 * allowed limit for which we have journal credit
2366 * reserved. So limit the new bh->b_size
2368 b_size
= (EXT4_MAX_TRANS_DATA
- nrblocks
) <<
2369 mpd
->inode
->i_blkbits
;
2370 /* we will do mpage_da_submit_io in the next loop */
2374 * First block in the extent
2376 if (mpd
->b_size
== 0) {
2377 mpd
->b_blocknr
= logical
;
2378 mpd
->b_size
= b_size
;
2379 mpd
->b_state
= b_state
& BH_FLAGS
;
2383 next
= mpd
->b_blocknr
+ nrblocks
;
2385 * Can we merge the block to our big extent?
2387 if (logical
== next
&& (b_state
& BH_FLAGS
) == mpd
->b_state
) {
2388 mpd
->b_size
+= b_size
;
2394 * We couldn't merge the block to our extent, so we
2395 * need to flush current extent and start new one
2397 if (mpage_da_map_blocks(mpd
) == 0)
2398 mpage_da_submit_io(mpd
);
2403 static int ext4_bh_delay_or_unwritten(handle_t
*handle
, struct buffer_head
*bh
)
2405 return (buffer_delay(bh
) || buffer_unwritten(bh
)) && buffer_dirty(bh
);
2409 * __mpage_da_writepage - finds extent of pages and blocks
2411 * @page: page to consider
2412 * @wbc: not used, we just follow rules
2415 * The function finds extents of pages and scan them for all blocks.
2417 static int __mpage_da_writepage(struct page
*page
,
2418 struct writeback_control
*wbc
, void *data
)
2420 struct mpage_da_data
*mpd
= data
;
2421 struct inode
*inode
= mpd
->inode
;
2422 struct buffer_head
*bh
, *head
;
2427 * Rest of the page in the page_vec
2428 * redirty then and skip then. We will
2429 * try to write them again after
2430 * starting a new transaction
2432 redirty_page_for_writepage(wbc
, page
);
2434 return MPAGE_DA_EXTENT_TAIL
;
2437 * Can we merge this page to current extent?
2439 if (mpd
->next_page
!= page
->index
) {
2441 * Nope, we can't. So, we map non-allocated blocks
2442 * and start IO on them using writepage()
2444 if (mpd
->next_page
!= mpd
->first_page
) {
2445 if (mpage_da_map_blocks(mpd
) == 0)
2446 mpage_da_submit_io(mpd
);
2448 * skip rest of the page in the page_vec
2451 redirty_page_for_writepage(wbc
, page
);
2453 return MPAGE_DA_EXTENT_TAIL
;
2457 * Start next extent of pages ...
2459 mpd
->first_page
= page
->index
;
2469 mpd
->next_page
= page
->index
+ 1;
2470 logical
= (sector_t
) page
->index
<<
2471 (PAGE_CACHE_SHIFT
- inode
->i_blkbits
);
2473 if (!page_has_buffers(page
)) {
2474 mpage_add_bh_to_extent(mpd
, logical
, PAGE_CACHE_SIZE
,
2475 (1 << BH_Dirty
) | (1 << BH_Uptodate
));
2477 return MPAGE_DA_EXTENT_TAIL
;
2480 * Page with regular buffer heads, just add all dirty ones
2482 head
= page_buffers(page
);
2485 BUG_ON(buffer_locked(bh
));
2487 * We need to try to allocate
2488 * unmapped blocks in the same page.
2489 * Otherwise we won't make progress
2490 * with the page in ext4_writepage
2492 if (ext4_bh_delay_or_unwritten(NULL
, bh
)) {
2493 mpage_add_bh_to_extent(mpd
, logical
,
2497 return MPAGE_DA_EXTENT_TAIL
;
2498 } else if (buffer_dirty(bh
) && (buffer_mapped(bh
))) {
2500 * mapped dirty buffer. We need to update
2501 * the b_state because we look at
2502 * b_state in mpage_da_map_blocks. We don't
2503 * update b_size because if we find an
2504 * unmapped buffer_head later we need to
2505 * use the b_state flag of that buffer_head.
2507 if (mpd
->b_size
== 0)
2508 mpd
->b_state
= bh
->b_state
& BH_FLAGS
;
2511 } while ((bh
= bh
->b_this_page
) != head
);
2518 * This is a special get_blocks_t callback which is used by
2519 * ext4_da_write_begin(). It will either return mapped block or
2520 * reserve space for a single block.
2522 * For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
2523 * We also have b_blocknr = -1 and b_bdev initialized properly
2525 * For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
2526 * We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
2527 * initialized properly.
2529 static int ext4_da_get_block_prep(struct inode
*inode
, sector_t iblock
,
2530 struct buffer_head
*bh_result
, int create
)
2533 sector_t invalid_block
= ~((sector_t
) 0xffff);
2535 if (invalid_block
< ext4_blocks_count(EXT4_SB(inode
->i_sb
)->s_es
))
2538 BUG_ON(create
== 0);
2539 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2542 * first, we need to know whether the block is allocated already
2543 * preallocated blocks are unmapped but should treated
2544 * the same as allocated blocks.
2546 ret
= ext4_get_blocks(NULL
, inode
, iblock
, 1, bh_result
, 0);
2547 if ((ret
== 0) && !buffer_delay(bh_result
)) {
2548 /* the block isn't (pre)allocated yet, let's reserve space */
2550 * XXX: __block_prepare_write() unmaps passed block,
2553 ret
= ext4_da_reserve_space(inode
, iblock
);
2555 /* not enough space to reserve */
2558 map_bh(bh_result
, inode
->i_sb
, invalid_block
);
2559 set_buffer_new(bh_result
);
2560 set_buffer_delay(bh_result
);
2561 } else if (ret
> 0) {
2562 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2563 if (buffer_unwritten(bh_result
)) {
2564 /* A delayed write to unwritten bh should
2565 * be marked new and mapped. Mapped ensures
2566 * that we don't do get_block multiple times
2567 * when we write to the same offset and new
2568 * ensures that we do proper zero out for
2571 set_buffer_new(bh_result
);
2572 set_buffer_mapped(bh_result
);
2581 * This function is used as a standard get_block_t calback function
2582 * when there is no desire to allocate any blocks. It is used as a
2583 * callback function for block_prepare_write(), nobh_writepage(), and
2584 * block_write_full_page(). These functions should only try to map a
2585 * single block at a time.
2587 * Since this function doesn't do block allocations even if the caller
2588 * requests it by passing in create=1, it is critically important that
2589 * any caller checks to make sure that any buffer heads are returned
2590 * by this function are either all already mapped or marked for
2591 * delayed allocation before calling nobh_writepage() or
2592 * block_write_full_page(). Otherwise, b_blocknr could be left
2593 * unitialized, and the page write functions will be taken by
2596 static int noalloc_get_block_write(struct inode
*inode
, sector_t iblock
,
2597 struct buffer_head
*bh_result
, int create
)
2600 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
2602 BUG_ON(bh_result
->b_size
!= inode
->i_sb
->s_blocksize
);
2605 * we don't want to do block allocation in writepage
2606 * so call get_block_wrap with create = 0
2608 ret
= ext4_get_blocks(NULL
, inode
, iblock
, max_blocks
, bh_result
, 0);
2610 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
2616 static int bget_one(handle_t
*handle
, struct buffer_head
*bh
)
2622 static int bput_one(handle_t
*handle
, struct buffer_head
*bh
)
2628 static int __ext4_journalled_writepage(struct page
*page
,
2631 struct address_space
*mapping
= page
->mapping
;
2632 struct inode
*inode
= mapping
->host
;
2633 struct buffer_head
*page_bufs
;
2634 handle_t
*handle
= NULL
;
2638 page_bufs
= page_buffers(page
);
2640 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bget_one
);
2641 /* As soon as we unlock the page, it can go away, but we have
2642 * references to buffers so we are safe */
2645 handle
= ext4_journal_start(inode
, ext4_writepage_trans_blocks(inode
));
2646 if (IS_ERR(handle
)) {
2647 ret
= PTR_ERR(handle
);
2651 ret
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2652 do_journal_get_write_access
);
2654 err
= walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
,
2658 err
= ext4_journal_stop(handle
);
2662 walk_page_buffers(handle
, page_bufs
, 0, len
, NULL
, bput_one
);
2663 ext4_set_inode_state(inode
, EXT4_STATE_JDATA
);
2668 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
);
2669 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
);
2672 * Note that we don't need to start a transaction unless we're journaling data
2673 * because we should have holes filled from ext4_page_mkwrite(). We even don't
2674 * need to file the inode to the transaction's list in ordered mode because if
2675 * we are writing back data added by write(), the inode is already there and if
2676 * we are writing back data modified via mmap(), noone guarantees in which
2677 * transaction the data will hit the disk. In case we are journaling data, we
2678 * cannot start transaction directly because transaction start ranks above page
2679 * lock so we have to do some magic.
2681 * This function can get called via...
2682 * - ext4_da_writepages after taking page lock (have journal handle)
2683 * - journal_submit_inode_data_buffers (no journal handle)
2684 * - shrink_page_list via pdflush (no journal handle)
2685 * - grab_page_cache when doing write_begin (have journal handle)
2687 * We don't do any block allocation in this function. If we have page with
2688 * multiple blocks we need to write those buffer_heads that are mapped. This
2689 * is important for mmaped based write. So if we do with blocksize 1K
2690 * truncate(f, 1024);
2691 * a = mmap(f, 0, 4096);
2693 * truncate(f, 4096);
2694 * we have in the page first buffer_head mapped via page_mkwrite call back
2695 * but other bufer_heads would be unmapped but dirty(dirty done via the
2696 * do_wp_page). So writepage should write the first block. If we modify
2697 * the mmap area beyond 1024 we will again get a page_fault and the
2698 * page_mkwrite callback will do the block allocation and mark the
2699 * buffer_heads mapped.
2701 * We redirty the page if we have any buffer_heads that is either delay or
2702 * unwritten in the page.
2704 * We can get recursively called as show below.
2706 * ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
2709 * But since we don't do any block allocation we should not deadlock.
2710 * Page also have the dirty flag cleared so we don't get recurive page_lock.
2712 static int ext4_writepage(struct page
*page
,
2713 struct writeback_control
*wbc
)
2718 struct buffer_head
*page_bufs
= NULL
;
2719 struct inode
*inode
= page
->mapping
->host
;
2721 trace_ext4_writepage(inode
, page
);
2722 size
= i_size_read(inode
);
2723 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
2724 len
= size
& ~PAGE_CACHE_MASK
;
2726 len
= PAGE_CACHE_SIZE
;
2728 if (page_has_buffers(page
)) {
2729 page_bufs
= page_buffers(page
);
2730 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2731 ext4_bh_delay_or_unwritten
)) {
2733 * We don't want to do block allocation
2734 * So redirty the page and return
2735 * We may reach here when we do a journal commit
2736 * via journal_submit_inode_data_buffers.
2737 * If we don't have mapping block we just ignore
2738 * them. We can also reach here via shrink_page_list
2740 redirty_page_for_writepage(wbc
, page
);
2746 * The test for page_has_buffers() is subtle:
2747 * We know the page is dirty but it lost buffers. That means
2748 * that at some moment in time after write_begin()/write_end()
2749 * has been called all buffers have been clean and thus they
2750 * must have been written at least once. So they are all
2751 * mapped and we can happily proceed with mapping them
2752 * and writing the page.
2754 * Try to initialize the buffer_heads and check whether
2755 * all are mapped and non delay. We don't want to
2756 * do block allocation here.
2758 ret
= block_prepare_write(page
, 0, len
,
2759 noalloc_get_block_write
);
2761 page_bufs
= page_buffers(page
);
2762 /* check whether all are mapped and non delay */
2763 if (walk_page_buffers(NULL
, page_bufs
, 0, len
, NULL
,
2764 ext4_bh_delay_or_unwritten
)) {
2765 redirty_page_for_writepage(wbc
, page
);
2771 * We can't do block allocation here
2772 * so just redity the page and unlock
2775 redirty_page_for_writepage(wbc
, page
);
2779 /* now mark the buffer_heads as dirty and uptodate */
2780 block_commit_write(page
, 0, len
);
2783 if (PageChecked(page
) && ext4_should_journal_data(inode
)) {
2785 * It's mmapped pagecache. Add buffers and journal it. There
2786 * doesn't seem much point in redirtying the page here.
2788 ClearPageChecked(page
);
2789 return __ext4_journalled_writepage(page
, len
);
2792 if (test_opt(inode
->i_sb
, NOBH
) && ext4_should_writeback_data(inode
))
2793 ret
= nobh_writepage(page
, noalloc_get_block_write
, wbc
);
2794 else if (page_bufs
&& buffer_uninit(page_bufs
)) {
2795 ext4_set_bh_endio(page_bufs
, inode
);
2796 ret
= block_write_full_page_endio(page
, noalloc_get_block_write
,
2797 wbc
, ext4_end_io_buffer_write
);
2799 ret
= block_write_full_page(page
, noalloc_get_block_write
,
2806 * This is called via ext4_da_writepages() to
2807 * calulate the total number of credits to reserve to fit
2808 * a single extent allocation into a single transaction,
2809 * ext4_da_writpeages() will loop calling this before
2810 * the block allocation.
2813 static int ext4_da_writepages_trans_blocks(struct inode
*inode
)
2815 int max_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
2818 * With non-extent format the journal credit needed to
2819 * insert nrblocks contiguous block is dependent on
2820 * number of contiguous block. So we will limit
2821 * number of contiguous block to a sane value
2823 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) &&
2824 (max_blocks
> EXT4_MAX_TRANS_DATA
))
2825 max_blocks
= EXT4_MAX_TRANS_DATA
;
2827 return ext4_chunk_trans_blocks(inode
, max_blocks
);
2830 static int ext4_da_writepages(struct address_space
*mapping
,
2831 struct writeback_control
*wbc
)
2834 int range_whole
= 0;
2835 handle_t
*handle
= NULL
;
2836 struct mpage_da_data mpd
;
2837 struct inode
*inode
= mapping
->host
;
2838 int no_nrwrite_index_update
;
2839 int pages_written
= 0;
2841 unsigned int max_pages
;
2842 int range_cyclic
, cycled
= 1, io_done
= 0;
2843 int needed_blocks
, ret
= 0;
2844 long desired_nr_to_write
, nr_to_writebump
= 0;
2845 loff_t range_start
= wbc
->range_start
;
2846 struct ext4_sb_info
*sbi
= EXT4_SB(mapping
->host
->i_sb
);
2848 trace_ext4_da_writepages(inode
, wbc
);
2851 * No pages to write? This is mainly a kludge to avoid starting
2852 * a transaction for special inodes like journal inode on last iput()
2853 * because that could violate lock ordering on umount
2855 if (!mapping
->nrpages
|| !mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
))
2859 * If the filesystem has aborted, it is read-only, so return
2860 * right away instead of dumping stack traces later on that
2861 * will obscure the real source of the problem. We test
2862 * EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
2863 * the latter could be true if the filesystem is mounted
2864 * read-only, and in that case, ext4_da_writepages should
2865 * *never* be called, so if that ever happens, we would want
2868 if (unlikely(sbi
->s_mount_flags
& EXT4_MF_FS_ABORTED
))
2871 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
2874 range_cyclic
= wbc
->range_cyclic
;
2875 if (wbc
->range_cyclic
) {
2876 index
= mapping
->writeback_index
;
2879 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
2880 wbc
->range_end
= LLONG_MAX
;
2881 wbc
->range_cyclic
= 0;
2883 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
2886 * This works around two forms of stupidity. The first is in
2887 * the writeback code, which caps the maximum number of pages
2888 * written to be 1024 pages. This is wrong on multiple
2889 * levels; different architectues have a different page size,
2890 * which changes the maximum amount of data which gets
2891 * written. Secondly, 4 megabytes is way too small. XFS
2892 * forces this value to be 16 megabytes by multiplying
2893 * nr_to_write parameter by four, and then relies on its
2894 * allocator to allocate larger extents to make them
2895 * contiguous. Unfortunately this brings us to the second
2896 * stupidity, which is that ext4's mballoc code only allocates
2897 * at most 2048 blocks. So we force contiguous writes up to
2898 * the number of dirty blocks in the inode, or
2899 * sbi->max_writeback_mb_bump whichever is smaller.
2901 max_pages
= sbi
->s_max_writeback_mb_bump
<< (20 - PAGE_CACHE_SHIFT
);
2902 if (!range_cyclic
&& range_whole
)
2903 desired_nr_to_write
= wbc
->nr_to_write
* 8;
2905 desired_nr_to_write
= ext4_num_dirty_pages(inode
, index
,
2907 if (desired_nr_to_write
> max_pages
)
2908 desired_nr_to_write
= max_pages
;
2910 if (wbc
->nr_to_write
< desired_nr_to_write
) {
2911 nr_to_writebump
= desired_nr_to_write
- wbc
->nr_to_write
;
2912 wbc
->nr_to_write
= desired_nr_to_write
;
2916 mpd
.inode
= mapping
->host
;
2919 * we don't want write_cache_pages to update
2920 * nr_to_write and writeback_index
2922 no_nrwrite_index_update
= wbc
->no_nrwrite_index_update
;
2923 wbc
->no_nrwrite_index_update
= 1;
2924 pages_skipped
= wbc
->pages_skipped
;
2927 while (!ret
&& wbc
->nr_to_write
> 0) {
2930 * we insert one extent at a time. So we need
2931 * credit needed for single extent allocation.
2932 * journalled mode is currently not supported
2935 BUG_ON(ext4_should_journal_data(inode
));
2936 needed_blocks
= ext4_da_writepages_trans_blocks(inode
);
2938 /* start a new transaction*/
2939 handle
= ext4_journal_start(inode
, needed_blocks
);
2940 if (IS_ERR(handle
)) {
2941 ret
= PTR_ERR(handle
);
2942 ext4_msg(inode
->i_sb
, KERN_CRIT
, "%s: jbd2_start: "
2943 "%ld pages, ino %lu; err %d\n", __func__
,
2944 wbc
->nr_to_write
, inode
->i_ino
, ret
);
2945 goto out_writepages
;
2949 * Now call __mpage_da_writepage to find the next
2950 * contiguous region of logical blocks that need
2951 * blocks to be allocated by ext4. We don't actually
2952 * submit the blocks for I/O here, even though
2953 * write_cache_pages thinks it will, and will set the
2954 * pages as clean for write before calling
2955 * __mpage_da_writepage().
2963 mpd
.pages_written
= 0;
2965 ret
= write_cache_pages(mapping
, wbc
, __mpage_da_writepage
,
2968 * If we have a contiguous extent of pages and we
2969 * haven't done the I/O yet, map the blocks and submit
2972 if (!mpd
.io_done
&& mpd
.next_page
!= mpd
.first_page
) {
2973 if (mpage_da_map_blocks(&mpd
) == 0)
2974 mpage_da_submit_io(&mpd
);
2976 ret
= MPAGE_DA_EXTENT_TAIL
;
2978 trace_ext4_da_write_pages(inode
, &mpd
);
2979 wbc
->nr_to_write
-= mpd
.pages_written
;
2981 ext4_journal_stop(handle
);
2983 if ((mpd
.retval
== -ENOSPC
) && sbi
->s_journal
) {
2984 /* commit the transaction which would
2985 * free blocks released in the transaction
2988 jbd2_journal_force_commit_nested(sbi
->s_journal
);
2989 wbc
->pages_skipped
= pages_skipped
;
2991 } else if (ret
== MPAGE_DA_EXTENT_TAIL
) {
2993 * got one extent now try with
2996 pages_written
+= mpd
.pages_written
;
2997 wbc
->pages_skipped
= pages_skipped
;
3000 } else if (wbc
->nr_to_write
)
3002 * There is no more writeout needed
3003 * or we requested for a noblocking writeout
3004 * and we found the device congested
3008 if (!io_done
&& !cycled
) {
3011 wbc
->range_start
= index
<< PAGE_CACHE_SHIFT
;
3012 wbc
->range_end
= mapping
->writeback_index
- 1;
3015 if (pages_skipped
!= wbc
->pages_skipped
)
3016 ext4_msg(inode
->i_sb
, KERN_CRIT
,
3017 "This should not happen leaving %s "
3018 "with nr_to_write = %ld ret = %d\n",
3019 __func__
, wbc
->nr_to_write
, ret
);
3022 index
+= pages_written
;
3023 wbc
->range_cyclic
= range_cyclic
;
3024 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
3026 * set the writeback_index so that range_cyclic
3027 * mode will write it back later
3029 mapping
->writeback_index
= index
;
3032 if (!no_nrwrite_index_update
)
3033 wbc
->no_nrwrite_index_update
= 0;
3034 wbc
->nr_to_write
-= nr_to_writebump
;
3035 wbc
->range_start
= range_start
;
3036 trace_ext4_da_writepages_result(inode
, wbc
, ret
, pages_written
);
3040 #define FALL_BACK_TO_NONDELALLOC 1
3041 static int ext4_nonda_switch(struct super_block
*sb
)
3043 s64 free_blocks
, dirty_blocks
;
3044 struct ext4_sb_info
*sbi
= EXT4_SB(sb
);
3047 * switch to non delalloc mode if we are running low
3048 * on free block. The free block accounting via percpu
3049 * counters can get slightly wrong with percpu_counter_batch getting
3050 * accumulated on each CPU without updating global counters
3051 * Delalloc need an accurate free block accounting. So switch
3052 * to non delalloc when we are near to error range.
3054 free_blocks
= percpu_counter_read_positive(&sbi
->s_freeblocks_counter
);
3055 dirty_blocks
= percpu_counter_read_positive(&sbi
->s_dirtyblocks_counter
);
3056 if (2 * free_blocks
< 3 * dirty_blocks
||
3057 free_blocks
< (dirty_blocks
+ EXT4_FREEBLOCKS_WATERMARK
)) {
3059 * free block count is less than 150% of dirty blocks
3060 * or free blocks is less than watermark
3065 * Even if we don't switch but are nearing capacity,
3066 * start pushing delalloc when 1/2 of free blocks are dirty.
3068 if (free_blocks
< 2 * dirty_blocks
)
3069 writeback_inodes_sb_if_idle(sb
);
3074 static int ext4_da_write_begin(struct file
*file
, struct address_space
*mapping
,
3075 loff_t pos
, unsigned len
, unsigned flags
,
3076 struct page
**pagep
, void **fsdata
)
3078 int ret
, retries
= 0, quota_retries
= 0;
3082 struct inode
*inode
= mapping
->host
;
3085 index
= pos
>> PAGE_CACHE_SHIFT
;
3086 from
= pos
& (PAGE_CACHE_SIZE
- 1);
3089 if (ext4_nonda_switch(inode
->i_sb
)) {
3090 *fsdata
= (void *)FALL_BACK_TO_NONDELALLOC
;
3091 return ext4_write_begin(file
, mapping
, pos
,
3092 len
, flags
, pagep
, fsdata
);
3094 *fsdata
= (void *)0;
3095 trace_ext4_da_write_begin(inode
, pos
, len
, flags
);
3098 * With delayed allocation, we don't log the i_disksize update
3099 * if there is delayed block allocation. But we still need
3100 * to journalling the i_disksize update if writes to the end
3101 * of file which has an already mapped buffer.
3103 handle
= ext4_journal_start(inode
, 1);
3104 if (IS_ERR(handle
)) {
3105 ret
= PTR_ERR(handle
);
3108 /* We cannot recurse into the filesystem as the transaction is already
3110 flags
|= AOP_FLAG_NOFS
;
3112 page
= grab_cache_page_write_begin(mapping
, index
, flags
);
3114 ext4_journal_stop(handle
);
3120 ret
= block_write_begin(file
, mapping
, pos
, len
, flags
, pagep
, fsdata
,
3121 ext4_da_get_block_prep
);
3124 ext4_journal_stop(handle
);
3125 page_cache_release(page
);
3127 * block_write_begin may have instantiated a few blocks
3128 * outside i_size. Trim these off again. Don't need
3129 * i_size_read because we hold i_mutex.
3131 if (pos
+ len
> inode
->i_size
)
3132 ext4_truncate_failed_write(inode
);
3135 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3138 if ((ret
== -EDQUOT
) &&
3139 EXT4_I(inode
)->i_reserved_meta_blocks
&&
3140 (quota_retries
++ < 3)) {
3142 * Since we often over-estimate the number of meta
3143 * data blocks required, we may sometimes get a
3144 * spurios out of quota error even though there would
3145 * be enough space once we write the data blocks and
3146 * find out how many meta data blocks were _really_
3147 * required. So try forcing the inode write to see if
3150 write_inode_now(inode
, (quota_retries
== 3));
3158 * Check if we should update i_disksize
3159 * when write to the end of file but not require block allocation
3161 static int ext4_da_should_update_i_disksize(struct page
*page
,
3162 unsigned long offset
)
3164 struct buffer_head
*bh
;
3165 struct inode
*inode
= page
->mapping
->host
;
3169 bh
= page_buffers(page
);
3170 idx
= offset
>> inode
->i_blkbits
;
3172 for (i
= 0; i
< idx
; i
++)
3173 bh
= bh
->b_this_page
;
3175 if (!buffer_mapped(bh
) || (buffer_delay(bh
)) || buffer_unwritten(bh
))
3180 static int ext4_da_write_end(struct file
*file
,
3181 struct address_space
*mapping
,
3182 loff_t pos
, unsigned len
, unsigned copied
,
3183 struct page
*page
, void *fsdata
)
3185 struct inode
*inode
= mapping
->host
;
3187 handle_t
*handle
= ext4_journal_current_handle();
3189 unsigned long start
, end
;
3190 int write_mode
= (int)(unsigned long)fsdata
;
3192 if (write_mode
== FALL_BACK_TO_NONDELALLOC
) {
3193 if (ext4_should_order_data(inode
)) {
3194 return ext4_ordered_write_end(file
, mapping
, pos
,
3195 len
, copied
, page
, fsdata
);
3196 } else if (ext4_should_writeback_data(inode
)) {
3197 return ext4_writeback_write_end(file
, mapping
, pos
,
3198 len
, copied
, page
, fsdata
);
3204 trace_ext4_da_write_end(inode
, pos
, len
, copied
);
3205 start
= pos
& (PAGE_CACHE_SIZE
- 1);
3206 end
= start
+ copied
- 1;
3209 * generic_write_end() will run mark_inode_dirty() if i_size
3210 * changes. So let's piggyback the i_disksize mark_inode_dirty
3214 new_i_size
= pos
+ copied
;
3215 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3216 if (ext4_da_should_update_i_disksize(page
, end
)) {
3217 down_write(&EXT4_I(inode
)->i_data_sem
);
3218 if (new_i_size
> EXT4_I(inode
)->i_disksize
) {
3220 * Updating i_disksize when extending file
3221 * without needing block allocation
3223 if (ext4_should_order_data(inode
))
3224 ret
= ext4_jbd2_file_inode(handle
,
3227 EXT4_I(inode
)->i_disksize
= new_i_size
;
3229 up_write(&EXT4_I(inode
)->i_data_sem
);
3230 /* We need to mark inode dirty even if
3231 * new_i_size is less that inode->i_size
3232 * bu greater than i_disksize.(hint delalloc)
3234 ext4_mark_inode_dirty(handle
, inode
);
3237 ret2
= generic_write_end(file
, mapping
, pos
, len
, copied
,
3242 ret2
= ext4_journal_stop(handle
);
3246 return ret
? ret
: copied
;
3249 static void ext4_da_invalidatepage(struct page
*page
, unsigned long offset
)
3252 * Drop reserved blocks
3254 BUG_ON(!PageLocked(page
));
3255 if (!page_has_buffers(page
))
3258 ext4_da_page_release_reservation(page
, offset
);
3261 ext4_invalidatepage(page
, offset
);
3267 * Force all delayed allocation blocks to be allocated for a given inode.
3269 int ext4_alloc_da_blocks(struct inode
*inode
)
3271 trace_ext4_alloc_da_blocks(inode
);
3273 if (!EXT4_I(inode
)->i_reserved_data_blocks
&&
3274 !EXT4_I(inode
)->i_reserved_meta_blocks
)
3278 * We do something simple for now. The filemap_flush() will
3279 * also start triggering a write of the data blocks, which is
3280 * not strictly speaking necessary (and for users of
3281 * laptop_mode, not even desirable). However, to do otherwise
3282 * would require replicating code paths in:
3284 * ext4_da_writepages() ->
3285 * write_cache_pages() ---> (via passed in callback function)
3286 * __mpage_da_writepage() -->
3287 * mpage_add_bh_to_extent()
3288 * mpage_da_map_blocks()
3290 * The problem is that write_cache_pages(), located in
3291 * mm/page-writeback.c, marks pages clean in preparation for
3292 * doing I/O, which is not desirable if we're not planning on
3295 * We could call write_cache_pages(), and then redirty all of
3296 * the pages by calling redirty_page_for_writeback() but that
3297 * would be ugly in the extreme. So instead we would need to
3298 * replicate parts of the code in the above functions,
3299 * simplifying them becuase we wouldn't actually intend to
3300 * write out the pages, but rather only collect contiguous
3301 * logical block extents, call the multi-block allocator, and
3302 * then update the buffer heads with the block allocations.
3304 * For now, though, we'll cheat by calling filemap_flush(),
3305 * which will map the blocks, and start the I/O, but not
3306 * actually wait for the I/O to complete.
3308 return filemap_flush(inode
->i_mapping
);
3312 * bmap() is special. It gets used by applications such as lilo and by
3313 * the swapper to find the on-disk block of a specific piece of data.
3315 * Naturally, this is dangerous if the block concerned is still in the
3316 * journal. If somebody makes a swapfile on an ext4 data-journaling
3317 * filesystem and enables swap, then they may get a nasty shock when the
3318 * data getting swapped to that swapfile suddenly gets overwritten by
3319 * the original zero's written out previously to the journal and
3320 * awaiting writeback in the kernel's buffer cache.
3322 * So, if we see any bmap calls here on a modified, data-journaled file,
3323 * take extra steps to flush any blocks which might be in the cache.
3325 static sector_t
ext4_bmap(struct address_space
*mapping
, sector_t block
)
3327 struct inode
*inode
= mapping
->host
;
3331 if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
) &&
3332 test_opt(inode
->i_sb
, DELALLOC
)) {
3334 * With delalloc we want to sync the file
3335 * so that we can make sure we allocate
3338 filemap_write_and_wait(mapping
);
3341 if (EXT4_JOURNAL(inode
) &&
3342 ext4_test_inode_state(inode
, EXT4_STATE_JDATA
)) {
3344 * This is a REALLY heavyweight approach, but the use of
3345 * bmap on dirty files is expected to be extremely rare:
3346 * only if we run lilo or swapon on a freshly made file
3347 * do we expect this to happen.
3349 * (bmap requires CAP_SYS_RAWIO so this does not
3350 * represent an unprivileged user DOS attack --- we'd be
3351 * in trouble if mortal users could trigger this path at
3354 * NB. EXT4_STATE_JDATA is not set on files other than
3355 * regular files. If somebody wants to bmap a directory
3356 * or symlink and gets confused because the buffer
3357 * hasn't yet been flushed to disk, they deserve
3358 * everything they get.
3361 ext4_clear_inode_state(inode
, EXT4_STATE_JDATA
);
3362 journal
= EXT4_JOURNAL(inode
);
3363 jbd2_journal_lock_updates(journal
);
3364 err
= jbd2_journal_flush(journal
);
3365 jbd2_journal_unlock_updates(journal
);
3371 return generic_block_bmap(mapping
, block
, ext4_get_block
);
3374 static int ext4_readpage(struct file
*file
, struct page
*page
)
3376 return mpage_readpage(page
, ext4_get_block
);
3380 ext4_readpages(struct file
*file
, struct address_space
*mapping
,
3381 struct list_head
*pages
, unsigned nr_pages
)
3383 return mpage_readpages(mapping
, pages
, nr_pages
, ext4_get_block
);
3386 static void ext4_free_io_end(ext4_io_end_t
*io
)
3395 static void ext4_invalidatepage_free_endio(struct page
*page
, unsigned long offset
)
3397 struct buffer_head
*head
, *bh
;
3398 unsigned int curr_off
= 0;
3400 if (!page_has_buffers(page
))
3402 head
= bh
= page_buffers(page
);
3404 if (offset
<= curr_off
&& test_clear_buffer_uninit(bh
)
3406 ext4_free_io_end(bh
->b_private
);
3407 bh
->b_private
= NULL
;
3408 bh
->b_end_io
= NULL
;
3410 curr_off
= curr_off
+ bh
->b_size
;
3411 bh
= bh
->b_this_page
;
3412 } while (bh
!= head
);
3415 static void ext4_invalidatepage(struct page
*page
, unsigned long offset
)
3417 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3420 * free any io_end structure allocated for buffers to be discarded
3422 if (ext4_should_dioread_nolock(page
->mapping
->host
))
3423 ext4_invalidatepage_free_endio(page
, offset
);
3425 * If it's a full truncate we just forget about the pending dirtying
3428 ClearPageChecked(page
);
3431 jbd2_journal_invalidatepage(journal
, page
, offset
);
3433 block_invalidatepage(page
, offset
);
3436 static int ext4_releasepage(struct page
*page
, gfp_t wait
)
3438 journal_t
*journal
= EXT4_JOURNAL(page
->mapping
->host
);
3440 WARN_ON(PageChecked(page
));
3441 if (!page_has_buffers(page
))
3444 return jbd2_journal_try_to_free_buffers(journal
, page
, wait
);
3446 return try_to_free_buffers(page
);
3450 * O_DIRECT for ext3 (or indirect map) based files
3452 * If the O_DIRECT write will extend the file then add this inode to the
3453 * orphan list. So recovery will truncate it back to the original size
3454 * if the machine crashes during the write.
3456 * If the O_DIRECT write is intantiating holes inside i_size and the machine
3457 * crashes then stale disk data _may_ be exposed inside the file. But current
3458 * VFS code falls back into buffered path in that case so we are safe.
3460 static ssize_t
ext4_ind_direct_IO(int rw
, struct kiocb
*iocb
,
3461 const struct iovec
*iov
, loff_t offset
,
3462 unsigned long nr_segs
)
3464 struct file
*file
= iocb
->ki_filp
;
3465 struct inode
*inode
= file
->f_mapping
->host
;
3466 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3470 size_t count
= iov_length(iov
, nr_segs
);
3474 loff_t final_size
= offset
+ count
;
3476 if (final_size
> inode
->i_size
) {
3477 /* Credits for sb + inode write */
3478 handle
= ext4_journal_start(inode
, 2);
3479 if (IS_ERR(handle
)) {
3480 ret
= PTR_ERR(handle
);
3483 ret
= ext4_orphan_add(handle
, inode
);
3485 ext4_journal_stop(handle
);
3489 ei
->i_disksize
= inode
->i_size
;
3490 ext4_journal_stop(handle
);
3495 if (rw
== READ
&& ext4_should_dioread_nolock(inode
))
3496 ret
= blockdev_direct_IO_no_locking(rw
, iocb
, inode
,
3497 inode
->i_sb
->s_bdev
, iov
,
3499 ext4_get_block
, NULL
);
3501 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3502 inode
->i_sb
->s_bdev
, iov
,
3504 ext4_get_block
, NULL
);
3505 if (ret
== -ENOSPC
&& ext4_should_retry_alloc(inode
->i_sb
, &retries
))
3511 /* Credits for sb + inode write */
3512 handle
= ext4_journal_start(inode
, 2);
3513 if (IS_ERR(handle
)) {
3514 /* This is really bad luck. We've written the data
3515 * but cannot extend i_size. Bail out and pretend
3516 * the write failed... */
3517 ret
= PTR_ERR(handle
);
3519 ext4_orphan_del(NULL
, inode
);
3524 ext4_orphan_del(handle
, inode
);
3526 loff_t end
= offset
+ ret
;
3527 if (end
> inode
->i_size
) {
3528 ei
->i_disksize
= end
;
3529 i_size_write(inode
, end
);
3531 * We're going to return a positive `ret'
3532 * here due to non-zero-length I/O, so there's
3533 * no way of reporting error returns from
3534 * ext4_mark_inode_dirty() to userspace. So
3537 ext4_mark_inode_dirty(handle
, inode
);
3540 err
= ext4_journal_stop(handle
);
3548 static int ext4_get_block_write(struct inode
*inode
, sector_t iblock
,
3549 struct buffer_head
*bh_result
, int create
)
3551 handle_t
*handle
= ext4_journal_current_handle();
3553 unsigned max_blocks
= bh_result
->b_size
>> inode
->i_blkbits
;
3557 ext4_debug("ext4_get_block_write: inode %lu, create flag %d\n",
3558 inode
->i_ino
, create
);
3560 * ext4_get_block in prepare for a DIO write or buffer write.
3561 * We allocate an uinitialized extent if blocks haven't been allocated.
3562 * The extent will be converted to initialized after IO complete.
3564 create
= EXT4_GET_BLOCKS_IO_CREATE_EXT
;
3567 if (max_blocks
> DIO_MAX_BLOCKS
)
3568 max_blocks
= DIO_MAX_BLOCKS
;
3569 dio_credits
= ext4_chunk_trans_blocks(inode
, max_blocks
);
3570 handle
= ext4_journal_start(inode
, dio_credits
);
3571 if (IS_ERR(handle
)) {
3572 ret
= PTR_ERR(handle
);
3578 ret
= ext4_get_blocks(handle
, inode
, iblock
, max_blocks
, bh_result
,
3581 bh_result
->b_size
= (ret
<< inode
->i_blkbits
);
3585 ext4_journal_stop(handle
);
3590 static void dump_completed_IO(struct inode
* inode
)
3593 struct list_head
*cur
, *before
, *after
;
3594 ext4_io_end_t
*io
, *io0
, *io1
;
3595 unsigned long flags
;
3597 if (list_empty(&EXT4_I(inode
)->i_completed_io_list
)){
3598 ext4_debug("inode %lu completed_io list is empty\n", inode
->i_ino
);
3602 ext4_debug("Dump inode %lu completed_io list \n", inode
->i_ino
);
3603 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3604 list_for_each_entry(io
, &EXT4_I(inode
)->i_completed_io_list
, list
){
3607 io0
= container_of(before
, ext4_io_end_t
, list
);
3609 io1
= container_of(after
, ext4_io_end_t
, list
);
3611 ext4_debug("io 0x%p from inode %lu,prev 0x%p,next 0x%p\n",
3612 io
, inode
->i_ino
, io0
, io1
);
3614 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3619 * check a range of space and convert unwritten extents to written.
3621 static int ext4_end_io_nolock(ext4_io_end_t
*io
)
3623 struct inode
*inode
= io
->inode
;
3624 loff_t offset
= io
->offset
;
3625 ssize_t size
= io
->size
;
3628 ext4_debug("ext4_end_io_nolock: io 0x%p from inode %lu,list->next 0x%p,"
3629 "list->prev 0x%p\n",
3630 io
, inode
->i_ino
, io
->list
.next
, io
->list
.prev
);
3632 if (list_empty(&io
->list
))
3635 if (io
->flag
!= EXT4_IO_UNWRITTEN
)
3638 ret
= ext4_convert_unwritten_extents(inode
, offset
, size
);
3640 printk(KERN_EMERG
"%s: failed to convert unwritten"
3641 "extents to written extents, error is %d"
3642 " io is still on inode %lu aio dio list\n",
3643 __func__
, ret
, inode
->i_ino
);
3647 /* clear the DIO AIO unwritten flag */
3653 * work on completed aio dio IO, to convert unwritten extents to extents
3655 static void ext4_end_io_work(struct work_struct
*work
)
3657 ext4_io_end_t
*io
= container_of(work
, ext4_io_end_t
, work
);
3658 struct inode
*inode
= io
->inode
;
3659 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3660 unsigned long flags
;
3663 mutex_lock(&inode
->i_mutex
);
3664 ret
= ext4_end_io_nolock(io
);
3666 mutex_unlock(&inode
->i_mutex
);
3670 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3671 if (!list_empty(&io
->list
))
3672 list_del_init(&io
->list
);
3673 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3674 mutex_unlock(&inode
->i_mutex
);
3675 ext4_free_io_end(io
);
3679 * This function is called from ext4_sync_file().
3681 * When IO is completed, the work to convert unwritten extents to
3682 * written is queued on workqueue but may not get immediately
3683 * scheduled. When fsync is called, we need to ensure the
3684 * conversion is complete before fsync returns.
3685 * The inode keeps track of a list of pending/completed IO that
3686 * might needs to do the conversion. This function walks through
3687 * the list and convert the related unwritten extents for completed IO
3689 * The function return the number of pending IOs on success.
3691 int flush_completed_IO(struct inode
*inode
)
3694 struct ext4_inode_info
*ei
= EXT4_I(inode
);
3695 unsigned long flags
;
3699 if (list_empty(&ei
->i_completed_io_list
))
3702 dump_completed_IO(inode
);
3703 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3704 while (!list_empty(&ei
->i_completed_io_list
)){
3705 io
= list_entry(ei
->i_completed_io_list
.next
,
3706 ext4_io_end_t
, list
);
3708 * Calling ext4_end_io_nolock() to convert completed
3711 * When ext4_sync_file() is called, run_queue() may already
3712 * about to flush the work corresponding to this io structure.
3713 * It will be upset if it founds the io structure related
3714 * to the work-to-be schedule is freed.
3716 * Thus we need to keep the io structure still valid here after
3717 * convertion finished. The io structure has a flag to
3718 * avoid double converting from both fsync and background work
3721 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3722 ret
= ext4_end_io_nolock(io
);
3723 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3727 list_del_init(&io
->list
);
3729 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3730 return (ret2
< 0) ? ret2
: 0;
3733 static ext4_io_end_t
*ext4_init_io_end (struct inode
*inode
, gfp_t flags
)
3735 ext4_io_end_t
*io
= NULL
;
3737 io
= kmalloc(sizeof(*io
), flags
);
3746 INIT_WORK(&io
->work
, ext4_end_io_work
);
3747 INIT_LIST_HEAD(&io
->list
);
3753 static void ext4_end_io_dio(struct kiocb
*iocb
, loff_t offset
,
3754 ssize_t size
, void *private)
3756 ext4_io_end_t
*io_end
= iocb
->private;
3757 struct workqueue_struct
*wq
;
3758 unsigned long flags
;
3759 struct ext4_inode_info
*ei
;
3761 /* if not async direct IO or dio with 0 bytes write, just return */
3762 if (!io_end
|| !size
)
3765 ext_debug("ext4_end_io_dio(): io_end 0x%p"
3766 "for inode %lu, iocb 0x%p, offset %llu, size %llu\n",
3767 iocb
->private, io_end
->inode
->i_ino
, iocb
, offset
,
3770 /* if not aio dio with unwritten extents, just free io and return */
3771 if (io_end
->flag
!= EXT4_IO_UNWRITTEN
){
3772 ext4_free_io_end(io_end
);
3773 iocb
->private = NULL
;
3777 io_end
->offset
= offset
;
3778 io_end
->size
= size
;
3779 io_end
->flag
= EXT4_IO_UNWRITTEN
;
3780 wq
= EXT4_SB(io_end
->inode
->i_sb
)->dio_unwritten_wq
;
3782 /* queue the work to convert unwritten extents to written */
3783 queue_work(wq
, &io_end
->work
);
3785 /* Add the io_end to per-inode completed aio dio list*/
3786 ei
= EXT4_I(io_end
->inode
);
3787 spin_lock_irqsave(&ei
->i_completed_io_lock
, flags
);
3788 list_add_tail(&io_end
->list
, &ei
->i_completed_io_list
);
3789 spin_unlock_irqrestore(&ei
->i_completed_io_lock
, flags
);
3790 iocb
->private = NULL
;
3793 static void ext4_end_io_buffer_write(struct buffer_head
*bh
, int uptodate
)
3795 ext4_io_end_t
*io_end
= bh
->b_private
;
3796 struct workqueue_struct
*wq
;
3797 struct inode
*inode
;
3798 unsigned long flags
;
3800 if (!test_clear_buffer_uninit(bh
) || !io_end
)
3803 if (!(io_end
->inode
->i_sb
->s_flags
& MS_ACTIVE
)) {
3804 printk("sb umounted, discard end_io request for inode %lu\n",
3805 io_end
->inode
->i_ino
);
3806 ext4_free_io_end(io_end
);
3810 io_end
->flag
= EXT4_IO_UNWRITTEN
;
3811 inode
= io_end
->inode
;
3813 /* Add the io_end to per-inode completed io list*/
3814 spin_lock_irqsave(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3815 list_add_tail(&io_end
->list
, &EXT4_I(inode
)->i_completed_io_list
);
3816 spin_unlock_irqrestore(&EXT4_I(inode
)->i_completed_io_lock
, flags
);
3818 wq
= EXT4_SB(inode
->i_sb
)->dio_unwritten_wq
;
3819 /* queue the work to convert unwritten extents to written */
3820 queue_work(wq
, &io_end
->work
);
3822 bh
->b_private
= NULL
;
3823 bh
->b_end_io
= NULL
;
3824 clear_buffer_uninit(bh
);
3825 end_buffer_async_write(bh
, uptodate
);
3828 static int ext4_set_bh_endio(struct buffer_head
*bh
, struct inode
*inode
)
3830 ext4_io_end_t
*io_end
;
3831 struct page
*page
= bh
->b_page
;
3832 loff_t offset
= (sector_t
)page
->index
<< PAGE_CACHE_SHIFT
;
3833 size_t size
= bh
->b_size
;
3836 io_end
= ext4_init_io_end(inode
, GFP_ATOMIC
);
3838 if (printk_ratelimit())
3839 printk(KERN_WARNING
"%s: allocation fail\n", __func__
);
3843 io_end
->offset
= offset
;
3844 io_end
->size
= size
;
3846 * We need to hold a reference to the page to make sure it
3847 * doesn't get evicted before ext4_end_io_work() has a chance
3848 * to convert the extent from written to unwritten.
3850 io_end
->page
= page
;
3851 get_page(io_end
->page
);
3853 bh
->b_private
= io_end
;
3854 bh
->b_end_io
= ext4_end_io_buffer_write
;
3859 * For ext4 extent files, ext4 will do direct-io write to holes,
3860 * preallocated extents, and those write extend the file, no need to
3861 * fall back to buffered IO.
3863 * For holes, we fallocate those blocks, mark them as unintialized
3864 * If those blocks were preallocated, we mark sure they are splited, but
3865 * still keep the range to write as unintialized.
3867 * The unwrritten extents will be converted to written when DIO is completed.
3868 * For async direct IO, since the IO may still pending when return, we
3869 * set up an end_io call back function, which will do the convertion
3870 * when async direct IO completed.
3872 * If the O_DIRECT write will extend the file then add this inode to the
3873 * orphan list. So recovery will truncate it back to the original size
3874 * if the machine crashes during the write.
3877 static ssize_t
ext4_ext_direct_IO(int rw
, struct kiocb
*iocb
,
3878 const struct iovec
*iov
, loff_t offset
,
3879 unsigned long nr_segs
)
3881 struct file
*file
= iocb
->ki_filp
;
3882 struct inode
*inode
= file
->f_mapping
->host
;
3884 size_t count
= iov_length(iov
, nr_segs
);
3886 loff_t final_size
= offset
+ count
;
3887 if (rw
== WRITE
&& final_size
<= inode
->i_size
) {
3889 * We could direct write to holes and fallocate.
3891 * Allocated blocks to fill the hole are marked as uninitialized
3892 * to prevent paralel buffered read to expose the stale data
3893 * before DIO complete the data IO.
3895 * As to previously fallocated extents, ext4 get_block
3896 * will just simply mark the buffer mapped but still
3897 * keep the extents uninitialized.
3899 * for non AIO case, we will convert those unwritten extents
3900 * to written after return back from blockdev_direct_IO.
3902 * for async DIO, the conversion needs to be defered when
3903 * the IO is completed. The ext4 end_io callback function
3904 * will be called to take care of the conversion work.
3905 * Here for async case, we allocate an io_end structure to
3908 iocb
->private = NULL
;
3909 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3910 if (!is_sync_kiocb(iocb
)) {
3911 iocb
->private = ext4_init_io_end(inode
, GFP_NOFS
);
3915 * we save the io structure for current async
3916 * direct IO, so that later ext4_get_blocks()
3917 * could flag the io structure whether there
3918 * is a unwritten extents needs to be converted
3919 * when IO is completed.
3921 EXT4_I(inode
)->cur_aio_dio
= iocb
->private;
3924 ret
= blockdev_direct_IO(rw
, iocb
, inode
,
3925 inode
->i_sb
->s_bdev
, iov
,
3927 ext4_get_block_write
,
3930 EXT4_I(inode
)->cur_aio_dio
= NULL
;
3932 * The io_end structure takes a reference to the inode,
3933 * that structure needs to be destroyed and the
3934 * reference to the inode need to be dropped, when IO is
3935 * complete, even with 0 byte write, or failed.
3937 * In the successful AIO DIO case, the io_end structure will be
3938 * desctroyed and the reference to the inode will be dropped
3939 * after the end_io call back function is called.
3941 * In the case there is 0 byte write, or error case, since
3942 * VFS direct IO won't invoke the end_io call back function,
3943 * we need to free the end_io structure here.
3945 if (ret
!= -EIOCBQUEUED
&& ret
<= 0 && iocb
->private) {
3946 ext4_free_io_end(iocb
->private);
3947 iocb
->private = NULL
;
3948 } else if (ret
> 0 && ext4_test_inode_state(inode
,
3949 EXT4_STATE_DIO_UNWRITTEN
)) {
3952 * for non AIO case, since the IO is already
3953 * completed, we could do the convertion right here
3955 err
= ext4_convert_unwritten_extents(inode
,
3959 ext4_clear_inode_state(inode
, EXT4_STATE_DIO_UNWRITTEN
);
3964 /* for write the the end of file case, we fall back to old way */
3965 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3968 static ssize_t
ext4_direct_IO(int rw
, struct kiocb
*iocb
,
3969 const struct iovec
*iov
, loff_t offset
,
3970 unsigned long nr_segs
)
3972 struct file
*file
= iocb
->ki_filp
;
3973 struct inode
*inode
= file
->f_mapping
->host
;
3975 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)
3976 return ext4_ext_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3978 return ext4_ind_direct_IO(rw
, iocb
, iov
, offset
, nr_segs
);
3982 * Pages can be marked dirty completely asynchronously from ext4's journalling
3983 * activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
3984 * much here because ->set_page_dirty is called under VFS locks. The page is
3985 * not necessarily locked.
3987 * We cannot just dirty the page and leave attached buffers clean, because the
3988 * buffers' dirty state is "definitive". We cannot just set the buffers dirty
3989 * or jbddirty because all the journalling code will explode.
3991 * So what we do is to mark the page "pending dirty" and next time writepage
3992 * is called, propagate that into the buffers appropriately.
3994 static int ext4_journalled_set_page_dirty(struct page
*page
)
3996 SetPageChecked(page
);
3997 return __set_page_dirty_nobuffers(page
);
4000 static const struct address_space_operations ext4_ordered_aops
= {
4001 .readpage
= ext4_readpage
,
4002 .readpages
= ext4_readpages
,
4003 .writepage
= ext4_writepage
,
4004 .sync_page
= block_sync_page
,
4005 .write_begin
= ext4_write_begin
,
4006 .write_end
= ext4_ordered_write_end
,
4008 .invalidatepage
= ext4_invalidatepage
,
4009 .releasepage
= ext4_releasepage
,
4010 .direct_IO
= ext4_direct_IO
,
4011 .migratepage
= buffer_migrate_page
,
4012 .is_partially_uptodate
= block_is_partially_uptodate
,
4013 .error_remove_page
= generic_error_remove_page
,
4016 static const struct address_space_operations ext4_writeback_aops
= {
4017 .readpage
= ext4_readpage
,
4018 .readpages
= ext4_readpages
,
4019 .writepage
= ext4_writepage
,
4020 .sync_page
= block_sync_page
,
4021 .write_begin
= ext4_write_begin
,
4022 .write_end
= ext4_writeback_write_end
,
4024 .invalidatepage
= ext4_invalidatepage
,
4025 .releasepage
= ext4_releasepage
,
4026 .direct_IO
= ext4_direct_IO
,
4027 .migratepage
= buffer_migrate_page
,
4028 .is_partially_uptodate
= block_is_partially_uptodate
,
4029 .error_remove_page
= generic_error_remove_page
,
4032 static const struct address_space_operations ext4_journalled_aops
= {
4033 .readpage
= ext4_readpage
,
4034 .readpages
= ext4_readpages
,
4035 .writepage
= ext4_writepage
,
4036 .sync_page
= block_sync_page
,
4037 .write_begin
= ext4_write_begin
,
4038 .write_end
= ext4_journalled_write_end
,
4039 .set_page_dirty
= ext4_journalled_set_page_dirty
,
4041 .invalidatepage
= ext4_invalidatepage
,
4042 .releasepage
= ext4_releasepage
,
4043 .is_partially_uptodate
= block_is_partially_uptodate
,
4044 .error_remove_page
= generic_error_remove_page
,
4047 static const struct address_space_operations ext4_da_aops
= {
4048 .readpage
= ext4_readpage
,
4049 .readpages
= ext4_readpages
,
4050 .writepage
= ext4_writepage
,
4051 .writepages
= ext4_da_writepages
,
4052 .sync_page
= block_sync_page
,
4053 .write_begin
= ext4_da_write_begin
,
4054 .write_end
= ext4_da_write_end
,
4056 .invalidatepage
= ext4_da_invalidatepage
,
4057 .releasepage
= ext4_releasepage
,
4058 .direct_IO
= ext4_direct_IO
,
4059 .migratepage
= buffer_migrate_page
,
4060 .is_partially_uptodate
= block_is_partially_uptodate
,
4061 .error_remove_page
= generic_error_remove_page
,
4064 void ext4_set_aops(struct inode
*inode
)
4066 if (ext4_should_order_data(inode
) &&
4067 test_opt(inode
->i_sb
, DELALLOC
))
4068 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
4069 else if (ext4_should_order_data(inode
))
4070 inode
->i_mapping
->a_ops
= &ext4_ordered_aops
;
4071 else if (ext4_should_writeback_data(inode
) &&
4072 test_opt(inode
->i_sb
, DELALLOC
))
4073 inode
->i_mapping
->a_ops
= &ext4_da_aops
;
4074 else if (ext4_should_writeback_data(inode
))
4075 inode
->i_mapping
->a_ops
= &ext4_writeback_aops
;
4077 inode
->i_mapping
->a_ops
= &ext4_journalled_aops
;
4081 * ext4_block_truncate_page() zeroes out a mapping from file offset `from'
4082 * up to the end of the block which corresponds to `from'.
4083 * This required during truncate. We need to physically zero the tail end
4084 * of that block so it doesn't yield old data if the file is later grown.
4086 int ext4_block_truncate_page(handle_t
*handle
,
4087 struct address_space
*mapping
, loff_t from
)
4089 ext4_fsblk_t index
= from
>> PAGE_CACHE_SHIFT
;
4090 unsigned offset
= from
& (PAGE_CACHE_SIZE
-1);
4091 unsigned blocksize
, length
, pos
;
4093 struct inode
*inode
= mapping
->host
;
4094 struct buffer_head
*bh
;
4098 page
= find_or_create_page(mapping
, from
>> PAGE_CACHE_SHIFT
,
4099 mapping_gfp_mask(mapping
) & ~__GFP_FS
);
4103 blocksize
= inode
->i_sb
->s_blocksize
;
4104 length
= blocksize
- (offset
& (blocksize
- 1));
4105 iblock
= index
<< (PAGE_CACHE_SHIFT
- inode
->i_sb
->s_blocksize_bits
);
4108 * For "nobh" option, we can only work if we don't need to
4109 * read-in the page - otherwise we create buffers to do the IO.
4111 if (!page_has_buffers(page
) && test_opt(inode
->i_sb
, NOBH
) &&
4112 ext4_should_writeback_data(inode
) && PageUptodate(page
)) {
4113 zero_user(page
, offset
, length
);
4114 set_page_dirty(page
);
4118 if (!page_has_buffers(page
))
4119 create_empty_buffers(page
, blocksize
, 0);
4121 /* Find the buffer that contains "offset" */
4122 bh
= page_buffers(page
);
4124 while (offset
>= pos
) {
4125 bh
= bh
->b_this_page
;
4131 if (buffer_freed(bh
)) {
4132 BUFFER_TRACE(bh
, "freed: skip");
4136 if (!buffer_mapped(bh
)) {
4137 BUFFER_TRACE(bh
, "unmapped");
4138 ext4_get_block(inode
, iblock
, bh
, 0);
4139 /* unmapped? It's a hole - nothing to do */
4140 if (!buffer_mapped(bh
)) {
4141 BUFFER_TRACE(bh
, "still unmapped");
4146 /* Ok, it's mapped. Make sure it's up-to-date */
4147 if (PageUptodate(page
))
4148 set_buffer_uptodate(bh
);
4150 if (!buffer_uptodate(bh
)) {
4152 ll_rw_block(READ
, 1, &bh
);
4154 /* Uhhuh. Read error. Complain and punt. */
4155 if (!buffer_uptodate(bh
))
4159 if (ext4_should_journal_data(inode
)) {
4160 BUFFER_TRACE(bh
, "get write access");
4161 err
= ext4_journal_get_write_access(handle
, bh
);
4166 zero_user(page
, offset
, length
);
4168 BUFFER_TRACE(bh
, "zeroed end of block");
4171 if (ext4_should_journal_data(inode
)) {
4172 err
= ext4_handle_dirty_metadata(handle
, inode
, bh
);
4174 if (ext4_should_order_data(inode
))
4175 err
= ext4_jbd2_file_inode(handle
, inode
);
4176 mark_buffer_dirty(bh
);
4181 page_cache_release(page
);
4186 * Probably it should be a library function... search for first non-zero word
4187 * or memcmp with zero_page, whatever is better for particular architecture.
4190 static inline int all_zeroes(__le32
*p
, __le32
*q
)
4199 * ext4_find_shared - find the indirect blocks for partial truncation.
4200 * @inode: inode in question
4201 * @depth: depth of the affected branch
4202 * @offsets: offsets of pointers in that branch (see ext4_block_to_path)
4203 * @chain: place to store the pointers to partial indirect blocks
4204 * @top: place to the (detached) top of branch
4206 * This is a helper function used by ext4_truncate().
4208 * When we do truncate() we may have to clean the ends of several
4209 * indirect blocks but leave the blocks themselves alive. Block is
4210 * partially truncated if some data below the new i_size is refered
4211 * from it (and it is on the path to the first completely truncated
4212 * data block, indeed). We have to free the top of that path along
4213 * with everything to the right of the path. Since no allocation
4214 * past the truncation point is possible until ext4_truncate()
4215 * finishes, we may safely do the latter, but top of branch may
4216 * require special attention - pageout below the truncation point
4217 * might try to populate it.
4219 * We atomically detach the top of branch from the tree, store the
4220 * block number of its root in *@top, pointers to buffer_heads of
4221 * partially truncated blocks - in @chain[].bh and pointers to
4222 * their last elements that should not be removed - in
4223 * @chain[].p. Return value is the pointer to last filled element
4226 * The work left to caller to do the actual freeing of subtrees:
4227 * a) free the subtree starting from *@top
4228 * b) free the subtrees whose roots are stored in
4229 * (@chain[i].p+1 .. end of @chain[i].bh->b_data)
4230 * c) free the subtrees growing from the inode past the @chain[0].
4231 * (no partially truncated stuff there). */
4233 static Indirect
*ext4_find_shared(struct inode
*inode
, int depth
,
4234 ext4_lblk_t offsets
[4], Indirect chain
[4],
4237 Indirect
*partial
, *p
;
4241 /* Make k index the deepest non-null offset + 1 */
4242 for (k
= depth
; k
> 1 && !offsets
[k
-1]; k
--)
4244 partial
= ext4_get_branch(inode
, k
, offsets
, chain
, &err
);
4245 /* Writer: pointers */
4247 partial
= chain
+ k
-1;
4249 * If the branch acquired continuation since we've looked at it -
4250 * fine, it should all survive and (new) top doesn't belong to us.
4252 if (!partial
->key
&& *partial
->p
)
4255 for (p
= partial
; (p
> chain
) && all_zeroes((__le32
*) p
->bh
->b_data
, p
->p
); p
--)
4258 * OK, we've found the last block that must survive. The rest of our
4259 * branch should be detached before unlocking. However, if that rest
4260 * of branch is all ours and does not grow immediately from the inode
4261 * it's easier to cheat and just decrement partial->p.
4263 if (p
== chain
+ k
- 1 && p
> chain
) {
4267 /* Nope, don't do this in ext4. Must leave the tree intact */
4274 while (partial
> p
) {
4275 brelse(partial
->bh
);
4283 * Zero a number of block pointers in either an inode or an indirect block.
4284 * If we restart the transaction we must again get write access to the
4285 * indirect block for further modification.
4287 * We release `count' blocks on disk, but (last - first) may be greater
4288 * than `count' because there can be holes in there.
4290 static int ext4_clear_blocks(handle_t
*handle
, struct inode
*inode
,
4291 struct buffer_head
*bh
,
4292 ext4_fsblk_t block_to_free
,
4293 unsigned long count
, __le32
*first
,
4297 int flags
= EXT4_FREE_BLOCKS_FORGET
| EXT4_FREE_BLOCKS_VALIDATED
;
4299 if (S_ISDIR(inode
->i_mode
) || S_ISLNK(inode
->i_mode
))
4300 flags
|= EXT4_FREE_BLOCKS_METADATA
;
4302 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
), block_to_free
,
4304 ext4_error(inode
->i_sb
, "inode #%lu: "
4305 "attempt to clear blocks %llu len %lu, invalid",
4306 inode
->i_ino
, (unsigned long long) block_to_free
,
4311 if (try_to_extend_transaction(handle
, inode
)) {
4313 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
4314 ext4_handle_dirty_metadata(handle
, inode
, bh
);
4316 ext4_mark_inode_dirty(handle
, inode
);
4317 ext4_truncate_restart_trans(handle
, inode
,
4318 blocks_for_truncate(inode
));
4320 BUFFER_TRACE(bh
, "retaking write access");
4321 ext4_journal_get_write_access(handle
, bh
);
4325 for (p
= first
; p
< last
; p
++)
4328 ext4_free_blocks(handle
, inode
, 0, block_to_free
, count
, flags
);
4333 * ext4_free_data - free a list of data blocks
4334 * @handle: handle for this transaction
4335 * @inode: inode we are dealing with
4336 * @this_bh: indirect buffer_head which contains *@first and *@last
4337 * @first: array of block numbers
4338 * @last: points immediately past the end of array
4340 * We are freeing all blocks refered from that array (numbers are stored as
4341 * little-endian 32-bit) and updating @inode->i_blocks appropriately.
4343 * We accumulate contiguous runs of blocks to free. Conveniently, if these
4344 * blocks are contiguous then releasing them at one time will only affect one
4345 * or two bitmap blocks (+ group descriptor(s) and superblock) and we won't
4346 * actually use a lot of journal space.
4348 * @this_bh will be %NULL if @first and @last point into the inode's direct
4351 static void ext4_free_data(handle_t
*handle
, struct inode
*inode
,
4352 struct buffer_head
*this_bh
,
4353 __le32
*first
, __le32
*last
)
4355 ext4_fsblk_t block_to_free
= 0; /* Starting block # of a run */
4356 unsigned long count
= 0; /* Number of blocks in the run */
4357 __le32
*block_to_free_p
= NULL
; /* Pointer into inode/ind
4360 ext4_fsblk_t nr
; /* Current block # */
4361 __le32
*p
; /* Pointer into inode/ind
4362 for current block */
4365 if (this_bh
) { /* For indirect block */
4366 BUFFER_TRACE(this_bh
, "get_write_access");
4367 err
= ext4_journal_get_write_access(handle
, this_bh
);
4368 /* Important: if we can't update the indirect pointers
4369 * to the blocks, we can't free them. */
4374 for (p
= first
; p
< last
; p
++) {
4375 nr
= le32_to_cpu(*p
);
4377 /* accumulate blocks to free if they're contiguous */
4380 block_to_free_p
= p
;
4382 } else if (nr
== block_to_free
+ count
) {
4385 if (ext4_clear_blocks(handle
, inode
, this_bh
,
4386 block_to_free
, count
,
4387 block_to_free_p
, p
))
4390 block_to_free_p
= p
;
4397 ext4_clear_blocks(handle
, inode
, this_bh
, block_to_free
,
4398 count
, block_to_free_p
, p
);
4401 BUFFER_TRACE(this_bh
, "call ext4_handle_dirty_metadata");
4404 * The buffer head should have an attached journal head at this
4405 * point. However, if the data is corrupted and an indirect
4406 * block pointed to itself, it would have been detached when
4407 * the block was cleared. Check for this instead of OOPSing.
4409 if ((EXT4_JOURNAL(inode
) == NULL
) || bh2jh(this_bh
))
4410 ext4_handle_dirty_metadata(handle
, inode
, this_bh
);
4412 ext4_error(inode
->i_sb
,
4413 "circular indirect block detected, "
4414 "inode=%lu, block=%llu",
4416 (unsigned long long) this_bh
->b_blocknr
);
4421 * ext4_free_branches - free an array of branches
4422 * @handle: JBD handle for this transaction
4423 * @inode: inode we are dealing with
4424 * @parent_bh: the buffer_head which contains *@first and *@last
4425 * @first: array of block numbers
4426 * @last: pointer immediately past the end of array
4427 * @depth: depth of the branches to free
4429 * We are freeing all blocks refered from these branches (numbers are
4430 * stored as little-endian 32-bit) and updating @inode->i_blocks
4433 static void ext4_free_branches(handle_t
*handle
, struct inode
*inode
,
4434 struct buffer_head
*parent_bh
,
4435 __le32
*first
, __le32
*last
, int depth
)
4440 if (ext4_handle_is_aborted(handle
))
4444 struct buffer_head
*bh
;
4445 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4447 while (--p
>= first
) {
4448 nr
= le32_to_cpu(*p
);
4450 continue; /* A hole */
4452 if (!ext4_data_block_valid(EXT4_SB(inode
->i_sb
),
4454 ext4_error(inode
->i_sb
,
4455 "indirect mapped block in inode "
4456 "#%lu invalid (level %d, blk #%lu)",
4457 inode
->i_ino
, depth
,
4458 (unsigned long) nr
);
4462 /* Go read the buffer for the next level down */
4463 bh
= sb_bread(inode
->i_sb
, nr
);
4466 * A read failure? Report error and clear slot
4470 ext4_error(inode
->i_sb
,
4471 "Read failure, inode=%lu, block=%llu",
4476 /* This zaps the entire block. Bottom up. */
4477 BUFFER_TRACE(bh
, "free child branches");
4478 ext4_free_branches(handle
, inode
, bh
,
4479 (__le32
*) bh
->b_data
,
4480 (__le32
*) bh
->b_data
+ addr_per_block
,
4484 * We've probably journalled the indirect block several
4485 * times during the truncate. But it's no longer
4486 * needed and we now drop it from the transaction via
4487 * jbd2_journal_revoke().
4489 * That's easy if it's exclusively part of this
4490 * transaction. But if it's part of the committing
4491 * transaction then jbd2_journal_forget() will simply
4492 * brelse() it. That means that if the underlying
4493 * block is reallocated in ext4_get_block(),
4494 * unmap_underlying_metadata() will find this block
4495 * and will try to get rid of it. damn, damn.
4497 * If this block has already been committed to the
4498 * journal, a revoke record will be written. And
4499 * revoke records must be emitted *before* clearing
4500 * this block's bit in the bitmaps.
4502 ext4_forget(handle
, 1, inode
, bh
, bh
->b_blocknr
);
4505 * Everything below this this pointer has been
4506 * released. Now let this top-of-subtree go.
4508 * We want the freeing of this indirect block to be
4509 * atomic in the journal with the updating of the
4510 * bitmap block which owns it. So make some room in
4513 * We zero the parent pointer *after* freeing its
4514 * pointee in the bitmaps, so if extend_transaction()
4515 * for some reason fails to put the bitmap changes and
4516 * the release into the same transaction, recovery
4517 * will merely complain about releasing a free block,
4518 * rather than leaking blocks.
4520 if (ext4_handle_is_aborted(handle
))
4522 if (try_to_extend_transaction(handle
, inode
)) {
4523 ext4_mark_inode_dirty(handle
, inode
);
4524 ext4_truncate_restart_trans(handle
, inode
,
4525 blocks_for_truncate(inode
));
4528 ext4_free_blocks(handle
, inode
, 0, nr
, 1,
4529 EXT4_FREE_BLOCKS_METADATA
);
4533 * The block which we have just freed is
4534 * pointed to by an indirect block: journal it
4536 BUFFER_TRACE(parent_bh
, "get_write_access");
4537 if (!ext4_journal_get_write_access(handle
,
4540 BUFFER_TRACE(parent_bh
,
4541 "call ext4_handle_dirty_metadata");
4542 ext4_handle_dirty_metadata(handle
,
4549 /* We have reached the bottom of the tree. */
4550 BUFFER_TRACE(parent_bh
, "free data blocks");
4551 ext4_free_data(handle
, inode
, parent_bh
, first
, last
);
4555 int ext4_can_truncate(struct inode
*inode
)
4557 if (IS_APPEND(inode
) || IS_IMMUTABLE(inode
))
4559 if (S_ISREG(inode
->i_mode
))
4561 if (S_ISDIR(inode
->i_mode
))
4563 if (S_ISLNK(inode
->i_mode
))
4564 return !ext4_inode_is_fast_symlink(inode
);
4571 * We block out ext4_get_block() block instantiations across the entire
4572 * transaction, and VFS/VM ensures that ext4_truncate() cannot run
4573 * simultaneously on behalf of the same inode.
4575 * As we work through the truncate and commmit bits of it to the journal there
4576 * is one core, guiding principle: the file's tree must always be consistent on
4577 * disk. We must be able to restart the truncate after a crash.
4579 * The file's tree may be transiently inconsistent in memory (although it
4580 * probably isn't), but whenever we close off and commit a journal transaction,
4581 * the contents of (the filesystem + the journal) must be consistent and
4582 * restartable. It's pretty simple, really: bottom up, right to left (although
4583 * left-to-right works OK too).
4585 * Note that at recovery time, journal replay occurs *before* the restart of
4586 * truncate against the orphan inode list.
4588 * The committed inode has the new, desired i_size (which is the same as
4589 * i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
4590 * that this inode's truncate did not complete and it will again call
4591 * ext4_truncate() to have another go. So there will be instantiated blocks
4592 * to the right of the truncation point in a crashed ext4 filesystem. But
4593 * that's fine - as long as they are linked from the inode, the post-crash
4594 * ext4_truncate() run will find them and release them.
4596 void ext4_truncate(struct inode
*inode
)
4599 struct ext4_inode_info
*ei
= EXT4_I(inode
);
4600 __le32
*i_data
= ei
->i_data
;
4601 int addr_per_block
= EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
4602 struct address_space
*mapping
= inode
->i_mapping
;
4603 ext4_lblk_t offsets
[4];
4608 ext4_lblk_t last_block
;
4609 unsigned blocksize
= inode
->i_sb
->s_blocksize
;
4611 if (!ext4_can_truncate(inode
))
4614 EXT4_I(inode
)->i_flags
&= ~EXT4_EOFBLOCKS_FL
;
4616 if (inode
->i_size
== 0 && !test_opt(inode
->i_sb
, NO_AUTO_DA_ALLOC
))
4617 ext4_set_inode_state(inode
, EXT4_STATE_DA_ALLOC_CLOSE
);
4619 if (EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
) {
4620 ext4_ext_truncate(inode
);
4624 handle
= start_transaction(inode
);
4626 return; /* AKPM: return what? */
4628 last_block
= (inode
->i_size
+ blocksize
-1)
4629 >> EXT4_BLOCK_SIZE_BITS(inode
->i_sb
);
4631 if (inode
->i_size
& (blocksize
- 1))
4632 if (ext4_block_truncate_page(handle
, mapping
, inode
->i_size
))
4635 n
= ext4_block_to_path(inode
, last_block
, offsets
, NULL
);
4637 goto out_stop
; /* error */
4640 * OK. This truncate is going to happen. We add the inode to the
4641 * orphan list, so that if this truncate spans multiple transactions,
4642 * and we crash, we will resume the truncate when the filesystem
4643 * recovers. It also marks the inode dirty, to catch the new size.
4645 * Implication: the file must always be in a sane, consistent
4646 * truncatable state while each transaction commits.
4648 if (ext4_orphan_add(handle
, inode
))
4652 * From here we block out all ext4_get_block() callers who want to
4653 * modify the block allocation tree.
4655 down_write(&ei
->i_data_sem
);
4657 ext4_discard_preallocations(inode
);
4660 * The orphan list entry will now protect us from any crash which
4661 * occurs before the truncate completes, so it is now safe to propagate
4662 * the new, shorter inode size (held for now in i_size) into the
4663 * on-disk inode. We do this via i_disksize, which is the value which
4664 * ext4 *really* writes onto the disk inode.
4666 ei
->i_disksize
= inode
->i_size
;
4668 if (n
== 1) { /* direct blocks */
4669 ext4_free_data(handle
, inode
, NULL
, i_data
+offsets
[0],
4670 i_data
+ EXT4_NDIR_BLOCKS
);
4674 partial
= ext4_find_shared(inode
, n
, offsets
, chain
, &nr
);
4675 /* Kill the top of shared branch (not detached) */
4677 if (partial
== chain
) {
4678 /* Shared branch grows from the inode */
4679 ext4_free_branches(handle
, inode
, NULL
,
4680 &nr
, &nr
+1, (chain
+n
-1) - partial
);
4683 * We mark the inode dirty prior to restart,
4684 * and prior to stop. No need for it here.
4687 /* Shared branch grows from an indirect block */
4688 BUFFER_TRACE(partial
->bh
, "get_write_access");
4689 ext4_free_branches(handle
, inode
, partial
->bh
,
4691 partial
->p
+1, (chain
+n
-1) - partial
);
4694 /* Clear the ends of indirect blocks on the shared branch */
4695 while (partial
> chain
) {
4696 ext4_free_branches(handle
, inode
, partial
->bh
, partial
->p
+ 1,
4697 (__le32
*)partial
->bh
->b_data
+addr_per_block
,
4698 (chain
+n
-1) - partial
);
4699 BUFFER_TRACE(partial
->bh
, "call brelse");
4700 brelse(partial
->bh
);
4704 /* Kill the remaining (whole) subtrees */
4705 switch (offsets
[0]) {
4707 nr
= i_data
[EXT4_IND_BLOCK
];
4709 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 1);
4710 i_data
[EXT4_IND_BLOCK
] = 0;
4712 case EXT4_IND_BLOCK
:
4713 nr
= i_data
[EXT4_DIND_BLOCK
];
4715 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 2);
4716 i_data
[EXT4_DIND_BLOCK
] = 0;
4718 case EXT4_DIND_BLOCK
:
4719 nr
= i_data
[EXT4_TIND_BLOCK
];
4721 ext4_free_branches(handle
, inode
, NULL
, &nr
, &nr
+1, 3);
4722 i_data
[EXT4_TIND_BLOCK
] = 0;
4724 case EXT4_TIND_BLOCK
:
4728 up_write(&ei
->i_data_sem
);
4729 inode
->i_mtime
= inode
->i_ctime
= ext4_current_time(inode
);
4730 ext4_mark_inode_dirty(handle
, inode
);
4733 * In a multi-transaction truncate, we only make the final transaction
4737 ext4_handle_sync(handle
);
4740 * If this was a simple ftruncate(), and the file will remain alive
4741 * then we need to clear up the orphan record which we created above.
4742 * However, if this was a real unlink then we were called by
4743 * ext4_delete_inode(), and we allow that function to clean up the
4744 * orphan info for us.
4747 ext4_orphan_del(handle
, inode
);
4749 ext4_journal_stop(handle
);
4753 * ext4_get_inode_loc returns with an extra refcount against the inode's
4754 * underlying buffer_head on success. If 'in_mem' is true, we have all
4755 * data in memory that is needed to recreate the on-disk version of this
4758 static int __ext4_get_inode_loc(struct inode
*inode
,
4759 struct ext4_iloc
*iloc
, int in_mem
)
4761 struct ext4_group_desc
*gdp
;
4762 struct buffer_head
*bh
;
4763 struct super_block
*sb
= inode
->i_sb
;
4765 int inodes_per_block
, inode_offset
;
4768 if (!ext4_valid_inum(sb
, inode
->i_ino
))
4771 iloc
->block_group
= (inode
->i_ino
- 1) / EXT4_INODES_PER_GROUP(sb
);
4772 gdp
= ext4_get_group_desc(sb
, iloc
->block_group
, NULL
);
4777 * Figure out the offset within the block group inode table
4779 inodes_per_block
= (EXT4_BLOCK_SIZE(sb
) / EXT4_INODE_SIZE(sb
));
4780 inode_offset
= ((inode
->i_ino
- 1) %
4781 EXT4_INODES_PER_GROUP(sb
));
4782 block
= ext4_inode_table(sb
, gdp
) + (inode_offset
/ inodes_per_block
);
4783 iloc
->offset
= (inode_offset
% inodes_per_block
) * EXT4_INODE_SIZE(sb
);
4785 bh
= sb_getblk(sb
, block
);
4787 ext4_error(sb
, "unable to read inode block - "
4788 "inode=%lu, block=%llu", inode
->i_ino
, block
);
4791 if (!buffer_uptodate(bh
)) {
4795 * If the buffer has the write error flag, we have failed
4796 * to write out another inode in the same block. In this
4797 * case, we don't have to read the block because we may
4798 * read the old inode data successfully.
4800 if (buffer_write_io_error(bh
) && !buffer_uptodate(bh
))
4801 set_buffer_uptodate(bh
);
4803 if (buffer_uptodate(bh
)) {
4804 /* someone brought it uptodate while we waited */
4810 * If we have all information of the inode in memory and this
4811 * is the only valid inode in the block, we need not read the
4815 struct buffer_head
*bitmap_bh
;
4818 start
= inode_offset
& ~(inodes_per_block
- 1);
4820 /* Is the inode bitmap in cache? */
4821 bitmap_bh
= sb_getblk(sb
, ext4_inode_bitmap(sb
, gdp
));
4826 * If the inode bitmap isn't in cache then the
4827 * optimisation may end up performing two reads instead
4828 * of one, so skip it.
4830 if (!buffer_uptodate(bitmap_bh
)) {
4834 for (i
= start
; i
< start
+ inodes_per_block
; i
++) {
4835 if (i
== inode_offset
)
4837 if (ext4_test_bit(i
, bitmap_bh
->b_data
))
4841 if (i
== start
+ inodes_per_block
) {
4842 /* all other inodes are free, so skip I/O */
4843 memset(bh
->b_data
, 0, bh
->b_size
);
4844 set_buffer_uptodate(bh
);
4852 * If we need to do any I/O, try to pre-readahead extra
4853 * blocks from the inode table.
4855 if (EXT4_SB(sb
)->s_inode_readahead_blks
) {
4856 ext4_fsblk_t b
, end
, table
;
4859 table
= ext4_inode_table(sb
, gdp
);
4860 /* s_inode_readahead_blks is always a power of 2 */
4861 b
= block
& ~(EXT4_SB(sb
)->s_inode_readahead_blks
-1);
4864 end
= b
+ EXT4_SB(sb
)->s_inode_readahead_blks
;
4865 num
= EXT4_INODES_PER_GROUP(sb
);
4866 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4867 EXT4_FEATURE_RO_COMPAT_GDT_CSUM
))
4868 num
-= ext4_itable_unused_count(sb
, gdp
);
4869 table
+= num
/ inodes_per_block
;
4873 sb_breadahead(sb
, b
++);
4877 * There are other valid inodes in the buffer, this inode
4878 * has in-inode xattrs, or we don't have this inode in memory.
4879 * Read the block from disk.
4882 bh
->b_end_io
= end_buffer_read_sync
;
4883 submit_bh(READ_META
, bh
);
4885 if (!buffer_uptodate(bh
)) {
4886 ext4_error(sb
, "unable to read inode block - inode=%lu,"
4887 " block=%llu", inode
->i_ino
, block
);
4897 int ext4_get_inode_loc(struct inode
*inode
, struct ext4_iloc
*iloc
)
4899 /* We have all inode data except xattrs in memory here. */
4900 return __ext4_get_inode_loc(inode
, iloc
,
4901 !ext4_test_inode_state(inode
, EXT4_STATE_XATTR
));
4904 void ext4_set_inode_flags(struct inode
*inode
)
4906 unsigned int flags
= EXT4_I(inode
)->i_flags
;
4908 inode
->i_flags
&= ~(S_SYNC
|S_APPEND
|S_IMMUTABLE
|S_NOATIME
|S_DIRSYNC
);
4909 if (flags
& EXT4_SYNC_FL
)
4910 inode
->i_flags
|= S_SYNC
;
4911 if (flags
& EXT4_APPEND_FL
)
4912 inode
->i_flags
|= S_APPEND
;
4913 if (flags
& EXT4_IMMUTABLE_FL
)
4914 inode
->i_flags
|= S_IMMUTABLE
;
4915 if (flags
& EXT4_NOATIME_FL
)
4916 inode
->i_flags
|= S_NOATIME
;
4917 if (flags
& EXT4_DIRSYNC_FL
)
4918 inode
->i_flags
|= S_DIRSYNC
;
4921 /* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
4922 void ext4_get_inode_flags(struct ext4_inode_info
*ei
)
4924 unsigned int flags
= ei
->vfs_inode
.i_flags
;
4926 ei
->i_flags
&= ~(EXT4_SYNC_FL
|EXT4_APPEND_FL
|
4927 EXT4_IMMUTABLE_FL
|EXT4_NOATIME_FL
|EXT4_DIRSYNC_FL
);
4929 ei
->i_flags
|= EXT4_SYNC_FL
;
4930 if (flags
& S_APPEND
)
4931 ei
->i_flags
|= EXT4_APPEND_FL
;
4932 if (flags
& S_IMMUTABLE
)
4933 ei
->i_flags
|= EXT4_IMMUTABLE_FL
;
4934 if (flags
& S_NOATIME
)
4935 ei
->i_flags
|= EXT4_NOATIME_FL
;
4936 if (flags
& S_DIRSYNC
)
4937 ei
->i_flags
|= EXT4_DIRSYNC_FL
;
4940 static blkcnt_t
ext4_inode_blocks(struct ext4_inode
*raw_inode
,
4941 struct ext4_inode_info
*ei
)
4944 struct inode
*inode
= &(ei
->vfs_inode
);
4945 struct super_block
*sb
= inode
->i_sb
;
4947 if (EXT4_HAS_RO_COMPAT_FEATURE(sb
,
4948 EXT4_FEATURE_RO_COMPAT_HUGE_FILE
)) {
4949 /* we are using combined 48 bit field */
4950 i_blocks
= ((u64
)le16_to_cpu(raw_inode
->i_blocks_high
)) << 32 |
4951 le32_to_cpu(raw_inode
->i_blocks_lo
);
4952 if (ei
->i_flags
& EXT4_HUGE_FILE_FL
) {
4953 /* i_blocks represent file system block size */
4954 return i_blocks
<< (inode
->i_blkbits
- 9);
4959 return le32_to_cpu(raw_inode
->i_blocks_lo
);
4963 struct inode
*ext4_iget(struct super_block
*sb
, unsigned long ino
)
4965 struct ext4_iloc iloc
;
4966 struct ext4_inode
*raw_inode
;
4967 struct ext4_inode_info
*ei
;
4968 struct inode
*inode
;
4969 journal_t
*journal
= EXT4_SB(sb
)->s_journal
;
4973 inode
= iget_locked(sb
, ino
);
4975 return ERR_PTR(-ENOMEM
);
4976 if (!(inode
->i_state
& I_NEW
))
4982 ret
= __ext4_get_inode_loc(inode
, &iloc
, 0);
4985 raw_inode
= ext4_raw_inode(&iloc
);
4986 inode
->i_mode
= le16_to_cpu(raw_inode
->i_mode
);
4987 inode
->i_uid
= (uid_t
)le16_to_cpu(raw_inode
->i_uid_low
);
4988 inode
->i_gid
= (gid_t
)le16_to_cpu(raw_inode
->i_gid_low
);
4989 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
4990 inode
->i_uid
|= le16_to_cpu(raw_inode
->i_uid_high
) << 16;
4991 inode
->i_gid
|= le16_to_cpu(raw_inode
->i_gid_high
) << 16;
4993 inode
->i_nlink
= le16_to_cpu(raw_inode
->i_links_count
);
4995 ei
->i_state_flags
= 0;
4996 ei
->i_dir_start_lookup
= 0;
4997 ei
->i_dtime
= le32_to_cpu(raw_inode
->i_dtime
);
4998 /* We now have enough fields to check if the inode was active or not.
4999 * This is needed because nfsd might try to access dead inodes
5000 * the test is that same one that e2fsck uses
5001 * NeilBrown 1999oct15
5003 if (inode
->i_nlink
== 0) {
5004 if (inode
->i_mode
== 0 ||
5005 !(EXT4_SB(inode
->i_sb
)->s_mount_state
& EXT4_ORPHAN_FS
)) {
5006 /* this inode is deleted */
5010 /* The only unlinked inodes we let through here have
5011 * valid i_mode and are being read by the orphan
5012 * recovery code: that's fine, we're about to complete
5013 * the process of deleting those. */
5015 ei
->i_flags
= le32_to_cpu(raw_inode
->i_flags
);
5016 inode
->i_blocks
= ext4_inode_blocks(raw_inode
, ei
);
5017 ei
->i_file_acl
= le32_to_cpu(raw_inode
->i_file_acl_lo
);
5018 if (EXT4_HAS_INCOMPAT_FEATURE(sb
, EXT4_FEATURE_INCOMPAT_64BIT
))
5020 ((__u64
)le16_to_cpu(raw_inode
->i_file_acl_high
)) << 32;
5021 inode
->i_size
= ext4_isize(raw_inode
);
5022 ei
->i_disksize
= inode
->i_size
;
5024 ei
->i_reserved_quota
= 0;
5026 inode
->i_generation
= le32_to_cpu(raw_inode
->i_generation
);
5027 ei
->i_block_group
= iloc
.block_group
;
5028 ei
->i_last_alloc_group
= ~0;
5030 * NOTE! The in-memory inode i_data array is in little-endian order
5031 * even on big-endian machines: we do NOT byteswap the block numbers!
5033 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5034 ei
->i_data
[block
] = raw_inode
->i_block
[block
];
5035 INIT_LIST_HEAD(&ei
->i_orphan
);
5038 * Set transaction id's of transactions that have to be committed
5039 * to finish f[data]sync. We set them to currently running transaction
5040 * as we cannot be sure that the inode or some of its metadata isn't
5041 * part of the transaction - the inode could have been reclaimed and
5042 * now it is reread from disk.
5045 transaction_t
*transaction
;
5048 spin_lock(&journal
->j_state_lock
);
5049 if (journal
->j_running_transaction
)
5050 transaction
= journal
->j_running_transaction
;
5052 transaction
= journal
->j_committing_transaction
;
5054 tid
= transaction
->t_tid
;
5056 tid
= journal
->j_commit_sequence
;
5057 spin_unlock(&journal
->j_state_lock
);
5058 ei
->i_sync_tid
= tid
;
5059 ei
->i_datasync_tid
= tid
;
5062 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
5063 ei
->i_extra_isize
= le16_to_cpu(raw_inode
->i_extra_isize
);
5064 if (EXT4_GOOD_OLD_INODE_SIZE
+ ei
->i_extra_isize
>
5065 EXT4_INODE_SIZE(inode
->i_sb
)) {
5069 if (ei
->i_extra_isize
== 0) {
5070 /* The extra space is currently unused. Use it. */
5071 ei
->i_extra_isize
= sizeof(struct ext4_inode
) -
5072 EXT4_GOOD_OLD_INODE_SIZE
;
5074 __le32
*magic
= (void *)raw_inode
+
5075 EXT4_GOOD_OLD_INODE_SIZE
+
5077 if (*magic
== cpu_to_le32(EXT4_XATTR_MAGIC
))
5078 ext4_set_inode_state(inode
, EXT4_STATE_XATTR
);
5081 ei
->i_extra_isize
= 0;
5083 EXT4_INODE_GET_XTIME(i_ctime
, inode
, raw_inode
);
5084 EXT4_INODE_GET_XTIME(i_mtime
, inode
, raw_inode
);
5085 EXT4_INODE_GET_XTIME(i_atime
, inode
, raw_inode
);
5086 EXT4_EINODE_GET_XTIME(i_crtime
, ei
, raw_inode
);
5088 inode
->i_version
= le32_to_cpu(raw_inode
->i_disk_version
);
5089 if (EXT4_INODE_SIZE(inode
->i_sb
) > EXT4_GOOD_OLD_INODE_SIZE
) {
5090 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5092 (__u64
)(le32_to_cpu(raw_inode
->i_version_hi
)) << 32;
5096 if (ei
->i_file_acl
&&
5097 !ext4_data_block_valid(EXT4_SB(sb
), ei
->i_file_acl
, 1)) {
5098 ext4_error(sb
, "bad extended attribute block %llu inode #%lu",
5099 ei
->i_file_acl
, inode
->i_ino
);
5102 } else if (ei
->i_flags
& EXT4_EXTENTS_FL
) {
5103 if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5104 (S_ISLNK(inode
->i_mode
) &&
5105 !ext4_inode_is_fast_symlink(inode
)))
5106 /* Validate extent which is part of inode */
5107 ret
= ext4_ext_check_inode(inode
);
5108 } else if (S_ISREG(inode
->i_mode
) || S_ISDIR(inode
->i_mode
) ||
5109 (S_ISLNK(inode
->i_mode
) &&
5110 !ext4_inode_is_fast_symlink(inode
))) {
5111 /* Validate block references which are part of inode */
5112 ret
= ext4_check_inode_blockref(inode
);
5117 if (S_ISREG(inode
->i_mode
)) {
5118 inode
->i_op
= &ext4_file_inode_operations
;
5119 inode
->i_fop
= &ext4_file_operations
;
5120 ext4_set_aops(inode
);
5121 } else if (S_ISDIR(inode
->i_mode
)) {
5122 inode
->i_op
= &ext4_dir_inode_operations
;
5123 inode
->i_fop
= &ext4_dir_operations
;
5124 } else if (S_ISLNK(inode
->i_mode
)) {
5125 if (ext4_inode_is_fast_symlink(inode
)) {
5126 inode
->i_op
= &ext4_fast_symlink_inode_operations
;
5127 nd_terminate_link(ei
->i_data
, inode
->i_size
,
5128 sizeof(ei
->i_data
) - 1);
5130 inode
->i_op
= &ext4_symlink_inode_operations
;
5131 ext4_set_aops(inode
);
5133 } else if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
) ||
5134 S_ISFIFO(inode
->i_mode
) || S_ISSOCK(inode
->i_mode
)) {
5135 inode
->i_op
= &ext4_special_inode_operations
;
5136 if (raw_inode
->i_block
[0])
5137 init_special_inode(inode
, inode
->i_mode
,
5138 old_decode_dev(le32_to_cpu(raw_inode
->i_block
[0])));
5140 init_special_inode(inode
, inode
->i_mode
,
5141 new_decode_dev(le32_to_cpu(raw_inode
->i_block
[1])));
5144 ext4_error(inode
->i_sb
, "bogus i_mode (%o) for inode=%lu",
5145 inode
->i_mode
, inode
->i_ino
);
5149 ext4_set_inode_flags(inode
);
5150 unlock_new_inode(inode
);
5156 return ERR_PTR(ret
);
5159 static int ext4_inode_blocks_set(handle_t
*handle
,
5160 struct ext4_inode
*raw_inode
,
5161 struct ext4_inode_info
*ei
)
5163 struct inode
*inode
= &(ei
->vfs_inode
);
5164 u64 i_blocks
= inode
->i_blocks
;
5165 struct super_block
*sb
= inode
->i_sb
;
5167 if (i_blocks
<= ~0U) {
5169 * i_blocks can be represnted in a 32 bit variable
5170 * as multiple of 512 bytes
5172 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5173 raw_inode
->i_blocks_high
= 0;
5174 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5177 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
, EXT4_FEATURE_RO_COMPAT_HUGE_FILE
))
5180 if (i_blocks
<= 0xffffffffffffULL
) {
5182 * i_blocks can be represented in a 48 bit variable
5183 * as multiple of 512 bytes
5185 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5186 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5187 ei
->i_flags
&= ~EXT4_HUGE_FILE_FL
;
5189 ei
->i_flags
|= EXT4_HUGE_FILE_FL
;
5190 /* i_block is stored in file system block size */
5191 i_blocks
= i_blocks
>> (inode
->i_blkbits
- 9);
5192 raw_inode
->i_blocks_lo
= cpu_to_le32(i_blocks
);
5193 raw_inode
->i_blocks_high
= cpu_to_le16(i_blocks
>> 32);
5199 * Post the struct inode info into an on-disk inode location in the
5200 * buffer-cache. This gobbles the caller's reference to the
5201 * buffer_head in the inode location struct.
5203 * The caller must have write access to iloc->bh.
5205 static int ext4_do_update_inode(handle_t
*handle
,
5206 struct inode
*inode
,
5207 struct ext4_iloc
*iloc
)
5209 struct ext4_inode
*raw_inode
= ext4_raw_inode(iloc
);
5210 struct ext4_inode_info
*ei
= EXT4_I(inode
);
5211 struct buffer_head
*bh
= iloc
->bh
;
5212 int err
= 0, rc
, block
;
5214 /* For fields not not tracking in the in-memory inode,
5215 * initialise them to zero for new inodes. */
5216 if (ext4_test_inode_state(inode
, EXT4_STATE_NEW
))
5217 memset(raw_inode
, 0, EXT4_SB(inode
->i_sb
)->s_inode_size
);
5219 ext4_get_inode_flags(ei
);
5220 raw_inode
->i_mode
= cpu_to_le16(inode
->i_mode
);
5221 if (!(test_opt(inode
->i_sb
, NO_UID32
))) {
5222 raw_inode
->i_uid_low
= cpu_to_le16(low_16_bits(inode
->i_uid
));
5223 raw_inode
->i_gid_low
= cpu_to_le16(low_16_bits(inode
->i_gid
));
5225 * Fix up interoperability with old kernels. Otherwise, old inodes get
5226 * re-used with the upper 16 bits of the uid/gid intact
5229 raw_inode
->i_uid_high
=
5230 cpu_to_le16(high_16_bits(inode
->i_uid
));
5231 raw_inode
->i_gid_high
=
5232 cpu_to_le16(high_16_bits(inode
->i_gid
));
5234 raw_inode
->i_uid_high
= 0;
5235 raw_inode
->i_gid_high
= 0;
5238 raw_inode
->i_uid_low
=
5239 cpu_to_le16(fs_high2lowuid(inode
->i_uid
));
5240 raw_inode
->i_gid_low
=
5241 cpu_to_le16(fs_high2lowgid(inode
->i_gid
));
5242 raw_inode
->i_uid_high
= 0;
5243 raw_inode
->i_gid_high
= 0;
5245 raw_inode
->i_links_count
= cpu_to_le16(inode
->i_nlink
);
5247 EXT4_INODE_SET_XTIME(i_ctime
, inode
, raw_inode
);
5248 EXT4_INODE_SET_XTIME(i_mtime
, inode
, raw_inode
);
5249 EXT4_INODE_SET_XTIME(i_atime
, inode
, raw_inode
);
5250 EXT4_EINODE_SET_XTIME(i_crtime
, ei
, raw_inode
);
5252 if (ext4_inode_blocks_set(handle
, raw_inode
, ei
))
5254 raw_inode
->i_dtime
= cpu_to_le32(ei
->i_dtime
);
5255 raw_inode
->i_flags
= cpu_to_le32(ei
->i_flags
);
5256 if (EXT4_SB(inode
->i_sb
)->s_es
->s_creator_os
!=
5257 cpu_to_le32(EXT4_OS_HURD
))
5258 raw_inode
->i_file_acl_high
=
5259 cpu_to_le16(ei
->i_file_acl
>> 32);
5260 raw_inode
->i_file_acl_lo
= cpu_to_le32(ei
->i_file_acl
);
5261 ext4_isize_set(raw_inode
, ei
->i_disksize
);
5262 if (ei
->i_disksize
> 0x7fffffffULL
) {
5263 struct super_block
*sb
= inode
->i_sb
;
5264 if (!EXT4_HAS_RO_COMPAT_FEATURE(sb
,
5265 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
) ||
5266 EXT4_SB(sb
)->s_es
->s_rev_level
==
5267 cpu_to_le32(EXT4_GOOD_OLD_REV
)) {
5268 /* If this is the first large file
5269 * created, add a flag to the superblock.
5271 err
= ext4_journal_get_write_access(handle
,
5272 EXT4_SB(sb
)->s_sbh
);
5275 ext4_update_dynamic_rev(sb
);
5276 EXT4_SET_RO_COMPAT_FEATURE(sb
,
5277 EXT4_FEATURE_RO_COMPAT_LARGE_FILE
);
5279 ext4_handle_sync(handle
);
5280 err
= ext4_handle_dirty_metadata(handle
, NULL
,
5281 EXT4_SB(sb
)->s_sbh
);
5284 raw_inode
->i_generation
= cpu_to_le32(inode
->i_generation
);
5285 if (S_ISCHR(inode
->i_mode
) || S_ISBLK(inode
->i_mode
)) {
5286 if (old_valid_dev(inode
->i_rdev
)) {
5287 raw_inode
->i_block
[0] =
5288 cpu_to_le32(old_encode_dev(inode
->i_rdev
));
5289 raw_inode
->i_block
[1] = 0;
5291 raw_inode
->i_block
[0] = 0;
5292 raw_inode
->i_block
[1] =
5293 cpu_to_le32(new_encode_dev(inode
->i_rdev
));
5294 raw_inode
->i_block
[2] = 0;
5297 for (block
= 0; block
< EXT4_N_BLOCKS
; block
++)
5298 raw_inode
->i_block
[block
] = ei
->i_data
[block
];
5300 raw_inode
->i_disk_version
= cpu_to_le32(inode
->i_version
);
5301 if (ei
->i_extra_isize
) {
5302 if (EXT4_FITS_IN_INODE(raw_inode
, ei
, i_version_hi
))
5303 raw_inode
->i_version_hi
=
5304 cpu_to_le32(inode
->i_version
>> 32);
5305 raw_inode
->i_extra_isize
= cpu_to_le16(ei
->i_extra_isize
);
5308 BUFFER_TRACE(bh
, "call ext4_handle_dirty_metadata");
5309 rc
= ext4_handle_dirty_metadata(handle
, NULL
, bh
);
5312 ext4_clear_inode_state(inode
, EXT4_STATE_NEW
);
5314 ext4_update_inode_fsync_trans(handle
, inode
, 0);
5317 ext4_std_error(inode
->i_sb
, err
);
5322 * ext4_write_inode()
5324 * We are called from a few places:
5326 * - Within generic_file_write() for O_SYNC files.
5327 * Here, there will be no transaction running. We wait for any running
5328 * trasnaction to commit.
5330 * - Within sys_sync(), kupdate and such.
5331 * We wait on commit, if tol to.
5333 * - Within prune_icache() (PF_MEMALLOC == true)
5334 * Here we simply return. We can't afford to block kswapd on the
5337 * In all cases it is actually safe for us to return without doing anything,
5338 * because the inode has been copied into a raw inode buffer in
5339 * ext4_mark_inode_dirty(). This is a correctness thing for O_SYNC and for
5342 * Note that we are absolutely dependent upon all inode dirtiers doing the
5343 * right thing: they *must* call mark_inode_dirty() after dirtying info in
5344 * which we are interested.
5346 * It would be a bug for them to not do this. The code:
5348 * mark_inode_dirty(inode)
5350 * inode->i_size = expr;
5352 * is in error because a kswapd-driven write_inode() could occur while
5353 * `stuff()' is running, and the new i_size will be lost. Plus the inode
5354 * will no longer be on the superblock's dirty inode list.
5356 int ext4_write_inode(struct inode
*inode
, struct writeback_control
*wbc
)
5360 if (current
->flags
& PF_MEMALLOC
)
5363 if (EXT4_SB(inode
->i_sb
)->s_journal
) {
5364 if (ext4_journal_current_handle()) {
5365 jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
5370 if (wbc
->sync_mode
!= WB_SYNC_ALL
)
5373 err
= ext4_force_commit(inode
->i_sb
);
5375 struct ext4_iloc iloc
;
5377 err
= ext4_get_inode_loc(inode
, &iloc
);
5380 if (wbc
->sync_mode
== WB_SYNC_ALL
)
5381 sync_dirty_buffer(iloc
.bh
);
5382 if (buffer_req(iloc
.bh
) && !buffer_uptodate(iloc
.bh
)) {
5383 ext4_error(inode
->i_sb
, "IO error syncing inode, "
5384 "inode=%lu, block=%llu", inode
->i_ino
,
5385 (unsigned long long)iloc
.bh
->b_blocknr
);
5395 * Called from notify_change.
5397 * We want to trap VFS attempts to truncate the file as soon as
5398 * possible. In particular, we want to make sure that when the VFS
5399 * shrinks i_size, we put the inode on the orphan list and modify
5400 * i_disksize immediately, so that during the subsequent flushing of
5401 * dirty pages and freeing of disk blocks, we can guarantee that any
5402 * commit will leave the blocks being flushed in an unused state on
5403 * disk. (On recovery, the inode will get truncated and the blocks will
5404 * be freed, so we have a strong guarantee that no future commit will
5405 * leave these blocks visible to the user.)
5407 * Another thing we have to assure is that if we are in ordered mode
5408 * and inode is still attached to the committing transaction, we must
5409 * we start writeout of all the dirty pages which are being truncated.
5410 * This way we are sure that all the data written in the previous
5411 * transaction are already on disk (truncate waits for pages under
5414 * Called with inode->i_mutex down.
5416 int ext4_setattr(struct dentry
*dentry
, struct iattr
*attr
)
5418 struct inode
*inode
= dentry
->d_inode
;
5420 const unsigned int ia_valid
= attr
->ia_valid
;
5422 error
= inode_change_ok(inode
, attr
);
5426 if (ia_valid
& ATTR_SIZE
)
5427 dquot_initialize(inode
);
5428 if ((ia_valid
& ATTR_UID
&& attr
->ia_uid
!= inode
->i_uid
) ||
5429 (ia_valid
& ATTR_GID
&& attr
->ia_gid
!= inode
->i_gid
)) {
5432 /* (user+group)*(old+new) structure, inode write (sb,
5433 * inode block, ? - but truncate inode update has it) */
5434 handle
= ext4_journal_start(inode
, (EXT4_MAXQUOTAS_INIT_BLOCKS(inode
->i_sb
)+
5435 EXT4_MAXQUOTAS_DEL_BLOCKS(inode
->i_sb
))+3);
5436 if (IS_ERR(handle
)) {
5437 error
= PTR_ERR(handle
);
5440 error
= dquot_transfer(inode
, attr
);
5442 ext4_journal_stop(handle
);
5445 /* Update corresponding info in inode so that everything is in
5446 * one transaction */
5447 if (attr
->ia_valid
& ATTR_UID
)
5448 inode
->i_uid
= attr
->ia_uid
;
5449 if (attr
->ia_valid
& ATTR_GID
)
5450 inode
->i_gid
= attr
->ia_gid
;
5451 error
= ext4_mark_inode_dirty(handle
, inode
);
5452 ext4_journal_stop(handle
);
5455 if (attr
->ia_valid
& ATTR_SIZE
) {
5456 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
)) {
5457 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5459 if (attr
->ia_size
> sbi
->s_bitmap_maxbytes
) {
5466 if (S_ISREG(inode
->i_mode
) &&
5467 attr
->ia_valid
& ATTR_SIZE
&&
5468 (attr
->ia_size
< inode
->i_size
||
5469 (EXT4_I(inode
)->i_flags
& EXT4_EOFBLOCKS_FL
))) {
5472 handle
= ext4_journal_start(inode
, 3);
5473 if (IS_ERR(handle
)) {
5474 error
= PTR_ERR(handle
);
5478 error
= ext4_orphan_add(handle
, inode
);
5479 EXT4_I(inode
)->i_disksize
= attr
->ia_size
;
5480 rc
= ext4_mark_inode_dirty(handle
, inode
);
5483 ext4_journal_stop(handle
);
5485 if (ext4_should_order_data(inode
)) {
5486 error
= ext4_begin_ordered_truncate(inode
,
5489 /* Do as much error cleanup as possible */
5490 handle
= ext4_journal_start(inode
, 3);
5491 if (IS_ERR(handle
)) {
5492 ext4_orphan_del(NULL
, inode
);
5495 ext4_orphan_del(handle
, inode
);
5496 ext4_journal_stop(handle
);
5500 /* ext4_truncate will clear the flag */
5501 if ((EXT4_I(inode
)->i_flags
& EXT4_EOFBLOCKS_FL
))
5502 ext4_truncate(inode
);
5505 rc
= inode_setattr(inode
, attr
);
5507 /* If inode_setattr's call to ext4_truncate failed to get a
5508 * transaction handle at all, we need to clean up the in-core
5509 * orphan list manually. */
5511 ext4_orphan_del(NULL
, inode
);
5513 if (!rc
&& (ia_valid
& ATTR_MODE
))
5514 rc
= ext4_acl_chmod(inode
);
5517 ext4_std_error(inode
->i_sb
, error
);
5523 int ext4_getattr(struct vfsmount
*mnt
, struct dentry
*dentry
,
5526 struct inode
*inode
;
5527 unsigned long delalloc_blocks
;
5529 inode
= dentry
->d_inode
;
5530 generic_fillattr(inode
, stat
);
5533 * We can't update i_blocks if the block allocation is delayed
5534 * otherwise in the case of system crash before the real block
5535 * allocation is done, we will have i_blocks inconsistent with
5536 * on-disk file blocks.
5537 * We always keep i_blocks updated together with real
5538 * allocation. But to not confuse with user, stat
5539 * will return the blocks that include the delayed allocation
5540 * blocks for this file.
5542 spin_lock(&EXT4_I(inode
)->i_block_reservation_lock
);
5543 delalloc_blocks
= EXT4_I(inode
)->i_reserved_data_blocks
;
5544 spin_unlock(&EXT4_I(inode
)->i_block_reservation_lock
);
5546 stat
->blocks
+= (delalloc_blocks
<< inode
->i_sb
->s_blocksize_bits
)>>9;
5550 static int ext4_indirect_trans_blocks(struct inode
*inode
, int nrblocks
,
5555 /* if nrblocks are contiguous */
5558 * With N contiguous data blocks, it need at most
5559 * N/EXT4_ADDR_PER_BLOCK(inode->i_sb) indirect blocks
5560 * 2 dindirect blocks
5563 indirects
= nrblocks
/ EXT4_ADDR_PER_BLOCK(inode
->i_sb
);
5564 return indirects
+ 3;
5567 * if nrblocks are not contiguous, worse case, each block touch
5568 * a indirect block, and each indirect block touch a double indirect
5569 * block, plus a triple indirect block
5571 indirects
= nrblocks
* 2 + 1;
5575 static int ext4_index_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5577 if (!(EXT4_I(inode
)->i_flags
& EXT4_EXTENTS_FL
))
5578 return ext4_indirect_trans_blocks(inode
, nrblocks
, chunk
);
5579 return ext4_ext_index_trans_blocks(inode
, nrblocks
, chunk
);
5583 * Account for index blocks, block groups bitmaps and block group
5584 * descriptor blocks if modify datablocks and index blocks
5585 * worse case, the indexs blocks spread over different block groups
5587 * If datablocks are discontiguous, they are possible to spread over
5588 * different block groups too. If they are contiuguous, with flexbg,
5589 * they could still across block group boundary.
5591 * Also account for superblock, inode, quota and xattr blocks
5593 int ext4_meta_trans_blocks(struct inode
*inode
, int nrblocks
, int chunk
)
5595 ext4_group_t groups
, ngroups
= ext4_get_groups_count(inode
->i_sb
);
5601 * How many index blocks need to touch to modify nrblocks?
5602 * The "Chunk" flag indicating whether the nrblocks is
5603 * physically contiguous on disk
5605 * For Direct IO and fallocate, they calls get_block to allocate
5606 * one single extent at a time, so they could set the "Chunk" flag
5608 idxblocks
= ext4_index_trans_blocks(inode
, nrblocks
, chunk
);
5613 * Now let's see how many group bitmaps and group descriptors need
5623 if (groups
> ngroups
)
5625 if (groups
> EXT4_SB(inode
->i_sb
)->s_gdb_count
)
5626 gdpblocks
= EXT4_SB(inode
->i_sb
)->s_gdb_count
;
5628 /* bitmaps and block group descriptor blocks */
5629 ret
+= groups
+ gdpblocks
;
5631 /* Blocks for super block, inode, quota and xattr blocks */
5632 ret
+= EXT4_META_TRANS_BLOCKS(inode
->i_sb
);
5638 * Calulate the total number of credits to reserve to fit
5639 * the modification of a single pages into a single transaction,
5640 * which may include multiple chunks of block allocations.
5642 * This could be called via ext4_write_begin()
5644 * We need to consider the worse case, when
5645 * one new block per extent.
5647 int ext4_writepage_trans_blocks(struct inode
*inode
)
5649 int bpp
= ext4_journal_blocks_per_page(inode
);
5652 ret
= ext4_meta_trans_blocks(inode
, bpp
, 0);
5654 /* Account for data blocks for journalled mode */
5655 if (ext4_should_journal_data(inode
))
5661 * Calculate the journal credits for a chunk of data modification.
5663 * This is called from DIO, fallocate or whoever calling
5664 * ext4_get_blocks() to map/allocate a chunk of contiguous disk blocks.
5666 * journal buffers for data blocks are not included here, as DIO
5667 * and fallocate do no need to journal data buffers.
5669 int ext4_chunk_trans_blocks(struct inode
*inode
, int nrblocks
)
5671 return ext4_meta_trans_blocks(inode
, nrblocks
, 1);
5675 * The caller must have previously called ext4_reserve_inode_write().
5676 * Give this, we know that the caller already has write access to iloc->bh.
5678 int ext4_mark_iloc_dirty(handle_t
*handle
,
5679 struct inode
*inode
, struct ext4_iloc
*iloc
)
5683 if (test_opt(inode
->i_sb
, I_VERSION
))
5684 inode_inc_iversion(inode
);
5686 /* the do_update_inode consumes one bh->b_count */
5689 /* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
5690 err
= ext4_do_update_inode(handle
, inode
, iloc
);
5696 * On success, We end up with an outstanding reference count against
5697 * iloc->bh. This _must_ be cleaned up later.
5701 ext4_reserve_inode_write(handle_t
*handle
, struct inode
*inode
,
5702 struct ext4_iloc
*iloc
)
5706 err
= ext4_get_inode_loc(inode
, iloc
);
5708 BUFFER_TRACE(iloc
->bh
, "get_write_access");
5709 err
= ext4_journal_get_write_access(handle
, iloc
->bh
);
5715 ext4_std_error(inode
->i_sb
, err
);
5720 * Expand an inode by new_extra_isize bytes.
5721 * Returns 0 on success or negative error number on failure.
5723 static int ext4_expand_extra_isize(struct inode
*inode
,
5724 unsigned int new_extra_isize
,
5725 struct ext4_iloc iloc
,
5728 struct ext4_inode
*raw_inode
;
5729 struct ext4_xattr_ibody_header
*header
;
5730 struct ext4_xattr_entry
*entry
;
5732 if (EXT4_I(inode
)->i_extra_isize
>= new_extra_isize
)
5735 raw_inode
= ext4_raw_inode(&iloc
);
5737 header
= IHDR(inode
, raw_inode
);
5738 entry
= IFIRST(header
);
5740 /* No extended attributes present */
5741 if (!ext4_test_inode_state(inode
, EXT4_STATE_XATTR
) ||
5742 header
->h_magic
!= cpu_to_le32(EXT4_XATTR_MAGIC
)) {
5743 memset((void *)raw_inode
+ EXT4_GOOD_OLD_INODE_SIZE
, 0,
5745 EXT4_I(inode
)->i_extra_isize
= new_extra_isize
;
5749 /* try to expand with EAs present */
5750 return ext4_expand_extra_isize_ea(inode
, new_extra_isize
,
5755 * What we do here is to mark the in-core inode as clean with respect to inode
5756 * dirtiness (it may still be data-dirty).
5757 * This means that the in-core inode may be reaped by prune_icache
5758 * without having to perform any I/O. This is a very good thing,
5759 * because *any* task may call prune_icache - even ones which
5760 * have a transaction open against a different journal.
5762 * Is this cheating? Not really. Sure, we haven't written the
5763 * inode out, but prune_icache isn't a user-visible syncing function.
5764 * Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
5765 * we start and wait on commits.
5767 * Is this efficient/effective? Well, we're being nice to the system
5768 * by cleaning up our inodes proactively so they can be reaped
5769 * without I/O. But we are potentially leaving up to five seconds'
5770 * worth of inodes floating about which prune_icache wants us to
5771 * write out. One way to fix that would be to get prune_icache()
5772 * to do a write_super() to free up some memory. It has the desired
5775 int ext4_mark_inode_dirty(handle_t
*handle
, struct inode
*inode
)
5777 struct ext4_iloc iloc
;
5778 struct ext4_sb_info
*sbi
= EXT4_SB(inode
->i_sb
);
5779 static unsigned int mnt_count
;
5783 err
= ext4_reserve_inode_write(handle
, inode
, &iloc
);
5784 if (ext4_handle_valid(handle
) &&
5785 EXT4_I(inode
)->i_extra_isize
< sbi
->s_want_extra_isize
&&
5786 !ext4_test_inode_state(inode
, EXT4_STATE_NO_EXPAND
)) {
5788 * We need extra buffer credits since we may write into EA block
5789 * with this same handle. If journal_extend fails, then it will
5790 * only result in a minor loss of functionality for that inode.
5791 * If this is felt to be critical, then e2fsck should be run to
5792 * force a large enough s_min_extra_isize.
5794 if ((jbd2_journal_extend(handle
,
5795 EXT4_DATA_TRANS_BLOCKS(inode
->i_sb
))) == 0) {
5796 ret
= ext4_expand_extra_isize(inode
,
5797 sbi
->s_want_extra_isize
,
5800 ext4_set_inode_state(inode
,
5801 EXT4_STATE_NO_EXPAND
);
5803 le16_to_cpu(sbi
->s_es
->s_mnt_count
)) {
5804 ext4_warning(inode
->i_sb
,
5805 "Unable to expand inode %lu. Delete"
5806 " some EAs or run e2fsck.",
5809 le16_to_cpu(sbi
->s_es
->s_mnt_count
);
5815 err
= ext4_mark_iloc_dirty(handle
, inode
, &iloc
);
5820 * ext4_dirty_inode() is called from __mark_inode_dirty()
5822 * We're really interested in the case where a file is being extended.
5823 * i_size has been changed by generic_commit_write() and we thus need
5824 * to include the updated inode in the current transaction.
5826 * Also, dquot_alloc_block() will always dirty the inode when blocks
5827 * are allocated to the file.
5829 * If the inode is marked synchronous, we don't honour that here - doing
5830 * so would cause a commit on atime updates, which we don't bother doing.
5831 * We handle synchronous inodes at the highest possible level.
5833 void ext4_dirty_inode(struct inode
*inode
)
5837 handle
= ext4_journal_start(inode
, 2);
5841 ext4_mark_inode_dirty(handle
, inode
);
5843 ext4_journal_stop(handle
);
5850 * Bind an inode's backing buffer_head into this transaction, to prevent
5851 * it from being flushed to disk early. Unlike
5852 * ext4_reserve_inode_write, this leaves behind no bh reference and
5853 * returns no iloc structure, so the caller needs to repeat the iloc
5854 * lookup to mark the inode dirty later.
5856 static int ext4_pin_inode(handle_t
*handle
, struct inode
*inode
)
5858 struct ext4_iloc iloc
;
5862 err
= ext4_get_inode_loc(inode
, &iloc
);
5864 BUFFER_TRACE(iloc
.bh
, "get_write_access");
5865 err
= jbd2_journal_get_write_access(handle
, iloc
.bh
);
5867 err
= ext4_handle_dirty_metadata(handle
,
5873 ext4_std_error(inode
->i_sb
, err
);
5878 int ext4_change_inode_journal_flag(struct inode
*inode
, int val
)
5885 * We have to be very careful here: changing a data block's
5886 * journaling status dynamically is dangerous. If we write a
5887 * data block to the journal, change the status and then delete
5888 * that block, we risk forgetting to revoke the old log record
5889 * from the journal and so a subsequent replay can corrupt data.
5890 * So, first we make sure that the journal is empty and that
5891 * nobody is changing anything.
5894 journal
= EXT4_JOURNAL(inode
);
5897 if (is_journal_aborted(journal
))
5900 jbd2_journal_lock_updates(journal
);
5901 jbd2_journal_flush(journal
);
5904 * OK, there are no updates running now, and all cached data is
5905 * synced to disk. We are now in a completely consistent state
5906 * which doesn't have anything in the journal, and we know that
5907 * no filesystem updates are running, so it is safe to modify
5908 * the inode's in-core data-journaling state flag now.
5912 EXT4_I(inode
)->i_flags
|= EXT4_JOURNAL_DATA_FL
;
5914 EXT4_I(inode
)->i_flags
&= ~EXT4_JOURNAL_DATA_FL
;
5915 ext4_set_aops(inode
);
5917 jbd2_journal_unlock_updates(journal
);
5919 /* Finally we can mark the inode as dirty. */
5921 handle
= ext4_journal_start(inode
, 1);
5923 return PTR_ERR(handle
);
5925 err
= ext4_mark_inode_dirty(handle
, inode
);
5926 ext4_handle_sync(handle
);
5927 ext4_journal_stop(handle
);
5928 ext4_std_error(inode
->i_sb
, err
);
5933 static int ext4_bh_unmapped(handle_t
*handle
, struct buffer_head
*bh
)
5935 return !buffer_mapped(bh
);
5938 int ext4_page_mkwrite(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
5940 struct page
*page
= vmf
->page
;
5945 struct file
*file
= vma
->vm_file
;
5946 struct inode
*inode
= file
->f_path
.dentry
->d_inode
;
5947 struct address_space
*mapping
= inode
->i_mapping
;
5950 * Get i_alloc_sem to stop truncates messing with the inode. We cannot
5951 * get i_mutex because we are already holding mmap_sem.
5953 down_read(&inode
->i_alloc_sem
);
5954 size
= i_size_read(inode
);
5955 if (page
->mapping
!= mapping
|| size
<= page_offset(page
)
5956 || !PageUptodate(page
)) {
5957 /* page got truncated from under us? */
5961 if (PageMappedToDisk(page
))
5964 if (page
->index
== size
>> PAGE_CACHE_SHIFT
)
5965 len
= size
& ~PAGE_CACHE_MASK
;
5967 len
= PAGE_CACHE_SIZE
;
5971 * return if we have all the buffers mapped. This avoid
5972 * the need to call write_begin/write_end which does a
5973 * journal_start/journal_stop which can block and take
5976 if (page_has_buffers(page
)) {
5977 if (!walk_page_buffers(NULL
, page_buffers(page
), 0, len
, NULL
,
5978 ext4_bh_unmapped
)) {
5985 * OK, we need to fill the hole... Do write_begin write_end
5986 * to do block allocation/reservation.We are not holding
5987 * inode.i__mutex here. That allow * parallel write_begin,
5988 * write_end call. lock_page prevent this from happening
5989 * on the same page though
5991 ret
= mapping
->a_ops
->write_begin(file
, mapping
, page_offset(page
),
5992 len
, AOP_FLAG_UNINTERRUPTIBLE
, &page
, &fsdata
);
5995 ret
= mapping
->a_ops
->write_end(file
, mapping
, page_offset(page
),
5996 len
, len
, page
, fsdata
);
6002 ret
= VM_FAULT_SIGBUS
;
6003 up_read(&inode
->i_alloc_sem
);