1 /****************************************************************************
2 * Driver for Solarflare Solarstorm network controllers and boards
3 * Copyright 2005-2006 Fen Systems Ltd.
4 * Copyright 2005-2008 Solarflare Communications Inc.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published
8 * by the Free Software Foundation, incorporated herein by reference.
11 #include <linux/module.h>
12 #include <linux/pci.h>
13 #include <linux/netdevice.h>
14 #include <linux/etherdevice.h>
15 #include <linux/delay.h>
16 #include <linux/notifier.h>
18 #include <linux/tcp.h>
20 #include <linux/crc32.h>
21 #include <linux/ethtool.h>
22 #include <linux/topology.h>
23 #include "net_driver.h"
31 #define EFX_MAX_MTU (9 * 1024)
33 /* RX slow fill workqueue. If memory allocation fails in the fast path,
34 * a work item is pushed onto this work queue to retry the allocation later,
35 * to avoid the NIC being starved of RX buffers. Since this is a per cpu
36 * workqueue, there is nothing to be gained in making it per NIC
38 static struct workqueue_struct
*refill_workqueue
;
40 /* Reset workqueue. If any NIC has a hardware failure then a reset will be
41 * queued onto this work queue. This is not a per-nic work queue, because
42 * efx_reset_work() acquires the rtnl lock, so resets are naturally serialised.
44 static struct workqueue_struct
*reset_workqueue
;
46 /**************************************************************************
50 *************************************************************************/
53 * Use separate channels for TX and RX events
55 * Set this to 1 to use separate channels for TX and RX. It allows us
56 * to control interrupt affinity separately for TX and RX.
58 * This is only used in MSI-X interrupt mode
60 static unsigned int separate_tx_channels
;
61 module_param(separate_tx_channels
, uint
, 0644);
62 MODULE_PARM_DESC(separate_tx_channels
,
63 "Use separate channels for TX and RX");
65 /* This is the weight assigned to each of the (per-channel) virtual
68 static int napi_weight
= 64;
70 /* This is the time (in jiffies) between invocations of the hardware
71 * monitor, which checks for known hardware bugs and resets the
72 * hardware and driver as necessary.
74 unsigned int efx_monitor_interval
= 1 * HZ
;
76 /* This controls whether or not the driver will initialise devices
77 * with invalid MAC addresses stored in the EEPROM or flash. If true,
78 * such devices will be initialised with a random locally-generated
79 * MAC address. This allows for loading the sfc_mtd driver to
80 * reprogram the flash, even if the flash contents (including the MAC
81 * address) have previously been erased.
83 static unsigned int allow_bad_hwaddr
;
85 /* Initial interrupt moderation settings. They can be modified after
86 * module load with ethtool.
88 * The default for RX should strike a balance between increasing the
89 * round-trip latency and reducing overhead.
91 static unsigned int rx_irq_mod_usec
= 60;
93 /* Initial interrupt moderation settings. They can be modified after
94 * module load with ethtool.
96 * This default is chosen to ensure that a 10G link does not go idle
97 * while a TX queue is stopped after it has become full. A queue is
98 * restarted when it drops below half full. The time this takes (assuming
99 * worst case 3 descriptors per packet and 1024 descriptors) is
100 * 512 / 3 * 1.2 = 205 usec.
102 static unsigned int tx_irq_mod_usec
= 150;
104 /* This is the first interrupt mode to try out of:
109 static unsigned int interrupt_mode
;
111 /* This is the requested number of CPUs to use for Receive-Side Scaling (RSS),
112 * i.e. the number of CPUs among which we may distribute simultaneous
113 * interrupt handling.
115 * Cards without MSI-X will only target one CPU via legacy or MSI interrupt.
116 * The default (0) means to assign an interrupt to each package (level II cache)
118 static unsigned int rss_cpus
;
119 module_param(rss_cpus
, uint
, 0444);
120 MODULE_PARM_DESC(rss_cpus
, "Number of CPUs to use for Receive-Side Scaling");
122 static int phy_flash_cfg
;
123 module_param(phy_flash_cfg
, int, 0644);
124 MODULE_PARM_DESC(phy_flash_cfg
, "Set PHYs into reflash mode initially");
126 static unsigned irq_adapt_low_thresh
= 10000;
127 module_param(irq_adapt_low_thresh
, uint
, 0644);
128 MODULE_PARM_DESC(irq_adapt_low_thresh
,
129 "Threshold score for reducing IRQ moderation");
131 static unsigned irq_adapt_high_thresh
= 20000;
132 module_param(irq_adapt_high_thresh
, uint
, 0644);
133 MODULE_PARM_DESC(irq_adapt_high_thresh
,
134 "Threshold score for increasing IRQ moderation");
136 /**************************************************************************
138 * Utility functions and prototypes
140 *************************************************************************/
141 static void efx_remove_channel(struct efx_channel
*channel
);
142 static void efx_remove_port(struct efx_nic
*efx
);
143 static void efx_fini_napi(struct efx_nic
*efx
);
144 static void efx_fini_channels(struct efx_nic
*efx
);
146 #define EFX_ASSERT_RESET_SERIALISED(efx) \
148 if (efx->state == STATE_RUNNING) \
152 /**************************************************************************
154 * Event queue processing
156 *************************************************************************/
158 /* Process channel's event queue
160 * This function is responsible for processing the event queue of a
161 * single channel. The caller must guarantee that this function will
162 * never be concurrently called more than once on the same channel,
163 * though different channels may be being processed concurrently.
165 static int efx_process_channel(struct efx_channel
*channel
, int rx_quota
)
167 struct efx_nic
*efx
= channel
->efx
;
170 if (unlikely(efx
->reset_pending
!= RESET_TYPE_NONE
||
174 rx_packets
= falcon_process_eventq(channel
, rx_quota
);
178 /* Deliver last RX packet. */
179 if (channel
->rx_pkt
) {
180 __efx_rx_packet(channel
, channel
->rx_pkt
,
181 channel
->rx_pkt_csummed
);
182 channel
->rx_pkt
= NULL
;
185 efx_rx_strategy(channel
);
187 efx_fast_push_rx_descriptors(&efx
->rx_queue
[channel
->channel
]);
192 /* Mark channel as finished processing
194 * Note that since we will not receive further interrupts for this
195 * channel before we finish processing and call the eventq_read_ack()
196 * method, there is no need to use the interrupt hold-off timers.
198 static inline void efx_channel_processed(struct efx_channel
*channel
)
200 /* The interrupt handler for this channel may set work_pending
201 * as soon as we acknowledge the events we've seen. Make sure
202 * it's cleared before then. */
203 channel
->work_pending
= false;
206 falcon_eventq_read_ack(channel
);
211 * NAPI guarantees serialisation of polls of the same device, which
212 * provides the guarantee required by efx_process_channel().
214 static int efx_poll(struct napi_struct
*napi
, int budget
)
216 struct efx_channel
*channel
=
217 container_of(napi
, struct efx_channel
, napi_str
);
220 EFX_TRACE(channel
->efx
, "channel %d NAPI poll executing on CPU %d\n",
221 channel
->channel
, raw_smp_processor_id());
223 rx_packets
= efx_process_channel(channel
, budget
);
225 if (rx_packets
< budget
) {
226 struct efx_nic
*efx
= channel
->efx
;
228 if (channel
->used_flags
& EFX_USED_BY_RX
&&
229 efx
->irq_rx_adaptive
&&
230 unlikely(++channel
->irq_count
== 1000)) {
231 if (unlikely(channel
->irq_mod_score
<
232 irq_adapt_low_thresh
)) {
233 if (channel
->irq_moderation
> 1) {
234 channel
->irq_moderation
-= 1;
235 falcon_set_int_moderation(channel
);
237 } else if (unlikely(channel
->irq_mod_score
>
238 irq_adapt_high_thresh
)) {
239 if (channel
->irq_moderation
<
240 efx
->irq_rx_moderation
) {
241 channel
->irq_moderation
+= 1;
242 falcon_set_int_moderation(channel
);
245 channel
->irq_count
= 0;
246 channel
->irq_mod_score
= 0;
249 /* There is no race here; although napi_disable() will
250 * only wait for napi_complete(), this isn't a problem
251 * since efx_channel_processed() will have no effect if
252 * interrupts have already been disabled.
255 efx_channel_processed(channel
);
261 /* Process the eventq of the specified channel immediately on this CPU
263 * Disable hardware generated interrupts, wait for any existing
264 * processing to finish, then directly poll (and ack ) the eventq.
265 * Finally reenable NAPI and interrupts.
267 * Since we are touching interrupts the caller should hold the suspend lock
269 void efx_process_channel_now(struct efx_channel
*channel
)
271 struct efx_nic
*efx
= channel
->efx
;
273 BUG_ON(!channel
->used_flags
);
274 BUG_ON(!channel
->enabled
);
276 /* Disable interrupts and wait for ISRs to complete */
277 falcon_disable_interrupts(efx
);
279 synchronize_irq(efx
->legacy_irq
);
281 synchronize_irq(channel
->irq
);
283 /* Wait for any NAPI processing to complete */
284 napi_disable(&channel
->napi_str
);
286 /* Poll the channel */
287 efx_process_channel(channel
, EFX_EVQ_SIZE
);
289 /* Ack the eventq. This may cause an interrupt to be generated
290 * when they are reenabled */
291 efx_channel_processed(channel
);
293 napi_enable(&channel
->napi_str
);
294 falcon_enable_interrupts(efx
);
297 /* Create event queue
298 * Event queue memory allocations are done only once. If the channel
299 * is reset, the memory buffer will be reused; this guards against
300 * errors during channel reset and also simplifies interrupt handling.
302 static int efx_probe_eventq(struct efx_channel
*channel
)
304 EFX_LOG(channel
->efx
, "chan %d create event queue\n", channel
->channel
);
306 return falcon_probe_eventq(channel
);
309 /* Prepare channel's event queue */
310 static void efx_init_eventq(struct efx_channel
*channel
)
312 EFX_LOG(channel
->efx
, "chan %d init event queue\n", channel
->channel
);
314 channel
->eventq_read_ptr
= 0;
316 falcon_init_eventq(channel
);
319 static void efx_fini_eventq(struct efx_channel
*channel
)
321 EFX_LOG(channel
->efx
, "chan %d fini event queue\n", channel
->channel
);
323 falcon_fini_eventq(channel
);
326 static void efx_remove_eventq(struct efx_channel
*channel
)
328 EFX_LOG(channel
->efx
, "chan %d remove event queue\n", channel
->channel
);
330 falcon_remove_eventq(channel
);
333 /**************************************************************************
337 *************************************************************************/
339 static int efx_probe_channel(struct efx_channel
*channel
)
341 struct efx_tx_queue
*tx_queue
;
342 struct efx_rx_queue
*rx_queue
;
345 EFX_LOG(channel
->efx
, "creating channel %d\n", channel
->channel
);
347 rc
= efx_probe_eventq(channel
);
351 efx_for_each_channel_tx_queue(tx_queue
, channel
) {
352 rc
= efx_probe_tx_queue(tx_queue
);
357 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
358 rc
= efx_probe_rx_queue(rx_queue
);
363 channel
->n_rx_frm_trunc
= 0;
368 efx_for_each_channel_rx_queue(rx_queue
, channel
)
369 efx_remove_rx_queue(rx_queue
);
371 efx_for_each_channel_tx_queue(tx_queue
, channel
)
372 efx_remove_tx_queue(tx_queue
);
378 static void efx_set_channel_names(struct efx_nic
*efx
)
380 struct efx_channel
*channel
;
381 const char *type
= "";
384 efx_for_each_channel(channel
, efx
) {
385 number
= channel
->channel
;
386 if (efx
->n_channels
> efx
->n_rx_queues
) {
387 if (channel
->channel
< efx
->n_rx_queues
) {
391 number
-= efx
->n_rx_queues
;
394 snprintf(channel
->name
, sizeof(channel
->name
),
395 "%s%s-%d", efx
->name
, type
, number
);
399 /* Channels are shutdown and reinitialised whilst the NIC is running
400 * to propagate configuration changes (mtu, checksum offload), or
401 * to clear hardware error conditions
403 static void efx_init_channels(struct efx_nic
*efx
)
405 struct efx_tx_queue
*tx_queue
;
406 struct efx_rx_queue
*rx_queue
;
407 struct efx_channel
*channel
;
409 /* Calculate the rx buffer allocation parameters required to
410 * support the current MTU, including padding for header
411 * alignment and overruns.
413 efx
->rx_buffer_len
= (max(EFX_PAGE_IP_ALIGN
, NET_IP_ALIGN
) +
414 EFX_MAX_FRAME_LEN(efx
->net_dev
->mtu
) +
415 efx
->type
->rx_buffer_padding
);
416 efx
->rx_buffer_order
= get_order(efx
->rx_buffer_len
);
418 /* Initialise the channels */
419 efx_for_each_channel(channel
, efx
) {
420 EFX_LOG(channel
->efx
, "init chan %d\n", channel
->channel
);
422 efx_init_eventq(channel
);
424 efx_for_each_channel_tx_queue(tx_queue
, channel
)
425 efx_init_tx_queue(tx_queue
);
427 /* The rx buffer allocation strategy is MTU dependent */
428 efx_rx_strategy(channel
);
430 efx_for_each_channel_rx_queue(rx_queue
, channel
)
431 efx_init_rx_queue(rx_queue
);
433 WARN_ON(channel
->rx_pkt
!= NULL
);
434 efx_rx_strategy(channel
);
438 /* This enables event queue processing and packet transmission.
440 * Note that this function is not allowed to fail, since that would
441 * introduce too much complexity into the suspend/resume path.
443 static void efx_start_channel(struct efx_channel
*channel
)
445 struct efx_rx_queue
*rx_queue
;
447 EFX_LOG(channel
->efx
, "starting chan %d\n", channel
->channel
);
449 /* The interrupt handler for this channel may set work_pending
450 * as soon as we enable it. Make sure it's cleared before
451 * then. Similarly, make sure it sees the enabled flag set. */
452 channel
->work_pending
= false;
453 channel
->enabled
= true;
456 napi_enable(&channel
->napi_str
);
458 /* Load up RX descriptors */
459 efx_for_each_channel_rx_queue(rx_queue
, channel
)
460 efx_fast_push_rx_descriptors(rx_queue
);
463 /* This disables event queue processing and packet transmission.
464 * This function does not guarantee that all queue processing
465 * (e.g. RX refill) is complete.
467 static void efx_stop_channel(struct efx_channel
*channel
)
469 struct efx_rx_queue
*rx_queue
;
471 if (!channel
->enabled
)
474 EFX_LOG(channel
->efx
, "stop chan %d\n", channel
->channel
);
476 channel
->enabled
= false;
477 napi_disable(&channel
->napi_str
);
479 /* Ensure that any worker threads have exited or will be no-ops */
480 efx_for_each_channel_rx_queue(rx_queue
, channel
) {
481 spin_lock_bh(&rx_queue
->add_lock
);
482 spin_unlock_bh(&rx_queue
->add_lock
);
486 static void efx_fini_channels(struct efx_nic
*efx
)
488 struct efx_channel
*channel
;
489 struct efx_tx_queue
*tx_queue
;
490 struct efx_rx_queue
*rx_queue
;
493 EFX_ASSERT_RESET_SERIALISED(efx
);
494 BUG_ON(efx
->port_enabled
);
496 rc
= falcon_flush_queues(efx
);
498 EFX_ERR(efx
, "failed to flush queues\n");
500 EFX_LOG(efx
, "successfully flushed all queues\n");
502 efx_for_each_channel(channel
, efx
) {
503 EFX_LOG(channel
->efx
, "shut down chan %d\n", channel
->channel
);
505 efx_for_each_channel_rx_queue(rx_queue
, channel
)
506 efx_fini_rx_queue(rx_queue
);
507 efx_for_each_channel_tx_queue(tx_queue
, channel
)
508 efx_fini_tx_queue(tx_queue
);
509 efx_fini_eventq(channel
);
513 static void efx_remove_channel(struct efx_channel
*channel
)
515 struct efx_tx_queue
*tx_queue
;
516 struct efx_rx_queue
*rx_queue
;
518 EFX_LOG(channel
->efx
, "destroy chan %d\n", channel
->channel
);
520 efx_for_each_channel_rx_queue(rx_queue
, channel
)
521 efx_remove_rx_queue(rx_queue
);
522 efx_for_each_channel_tx_queue(tx_queue
, channel
)
523 efx_remove_tx_queue(tx_queue
);
524 efx_remove_eventq(channel
);
526 channel
->used_flags
= 0;
529 void efx_schedule_slow_fill(struct efx_rx_queue
*rx_queue
, int delay
)
531 queue_delayed_work(refill_workqueue
, &rx_queue
->work
, delay
);
534 /**************************************************************************
538 **************************************************************************/
540 /* This ensures that the kernel is kept informed (via
541 * netif_carrier_on/off) of the link status, and also maintains the
542 * link status's stop on the port's TX queue.
544 static void efx_link_status_changed(struct efx_nic
*efx
)
546 /* SFC Bug 5356: A net_dev notifier is registered, so we must ensure
547 * that no events are triggered between unregister_netdev() and the
548 * driver unloading. A more general condition is that NETDEV_CHANGE
549 * can only be generated between NETDEV_UP and NETDEV_DOWN */
550 if (!netif_running(efx
->net_dev
))
553 if (efx
->port_inhibited
) {
554 netif_carrier_off(efx
->net_dev
);
558 if (efx
->link_up
!= netif_carrier_ok(efx
->net_dev
)) {
559 efx
->n_link_state_changes
++;
562 netif_carrier_on(efx
->net_dev
);
564 netif_carrier_off(efx
->net_dev
);
567 /* Status message for kernel log */
569 EFX_INFO(efx
, "link up at %uMbps %s-duplex (MTU %d)%s\n",
570 efx
->link_speed
, efx
->link_fd
? "full" : "half",
572 (efx
->promiscuous
? " [PROMISC]" : ""));
574 EFX_INFO(efx
, "link down\n");
579 static void efx_fini_port(struct efx_nic
*efx
);
581 /* This call reinitialises the MAC to pick up new PHY settings. The
582 * caller must hold the mac_lock */
583 void __efx_reconfigure_port(struct efx_nic
*efx
)
585 WARN_ON(!mutex_is_locked(&efx
->mac_lock
));
587 EFX_LOG(efx
, "reconfiguring MAC from PHY settings on CPU %d\n",
588 raw_smp_processor_id());
590 /* Serialise the promiscuous flag with efx_set_multicast_list. */
591 if (efx_dev_registered(efx
)) {
592 netif_addr_lock_bh(efx
->net_dev
);
593 netif_addr_unlock_bh(efx
->net_dev
);
596 falcon_deconfigure_mac_wrapper(efx
);
598 /* Reconfigure the PHY, disabling transmit in mac level loopback. */
599 if (LOOPBACK_INTERNAL(efx
))
600 efx
->phy_mode
|= PHY_MODE_TX_DISABLED
;
602 efx
->phy_mode
&= ~PHY_MODE_TX_DISABLED
;
603 efx
->phy_op
->reconfigure(efx
);
605 if (falcon_switch_mac(efx
))
608 efx
->mac_op
->reconfigure(efx
);
610 /* Inform kernel of loss/gain of carrier */
611 efx_link_status_changed(efx
);
615 EFX_ERR(efx
, "failed to reconfigure MAC\n");
616 efx
->port_enabled
= false;
620 /* Reinitialise the MAC to pick up new PHY settings, even if the port is
622 void efx_reconfigure_port(struct efx_nic
*efx
)
624 EFX_ASSERT_RESET_SERIALISED(efx
);
626 mutex_lock(&efx
->mac_lock
);
627 __efx_reconfigure_port(efx
);
628 mutex_unlock(&efx
->mac_lock
);
631 /* Asynchronous efx_reconfigure_port work item. To speed up efx_flush_all()
632 * we don't efx_reconfigure_port() if the port is disabled. Care is taken
633 * in efx_stop_all() and efx_start_port() to prevent PHY events being lost */
634 static void efx_phy_work(struct work_struct
*data
)
636 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, phy_work
);
638 mutex_lock(&efx
->mac_lock
);
639 if (efx
->port_enabled
)
640 __efx_reconfigure_port(efx
);
641 mutex_unlock(&efx
->mac_lock
);
644 static void efx_mac_work(struct work_struct
*data
)
646 struct efx_nic
*efx
= container_of(data
, struct efx_nic
, mac_work
);
648 mutex_lock(&efx
->mac_lock
);
649 if (efx
->port_enabled
)
650 efx
->mac_op
->irq(efx
);
651 mutex_unlock(&efx
->mac_lock
);
654 static int efx_probe_port(struct efx_nic
*efx
)
658 EFX_LOG(efx
, "create port\n");
660 /* Connect up MAC/PHY operations table and read MAC address */
661 rc
= falcon_probe_port(efx
);
666 efx
->phy_mode
= PHY_MODE_SPECIAL
;
668 /* Sanity check MAC address */
669 if (is_valid_ether_addr(efx
->mac_address
)) {
670 memcpy(efx
->net_dev
->dev_addr
, efx
->mac_address
, ETH_ALEN
);
672 EFX_ERR(efx
, "invalid MAC address %pM\n",
674 if (!allow_bad_hwaddr
) {
678 random_ether_addr(efx
->net_dev
->dev_addr
);
679 EFX_INFO(efx
, "using locally-generated MAC %pM\n",
680 efx
->net_dev
->dev_addr
);
686 efx_remove_port(efx
);
690 static int efx_init_port(struct efx_nic
*efx
)
694 EFX_LOG(efx
, "init port\n");
696 rc
= efx
->phy_op
->init(efx
);
699 mutex_lock(&efx
->mac_lock
);
700 efx
->phy_op
->reconfigure(efx
);
701 rc
= falcon_switch_mac(efx
);
702 mutex_unlock(&efx
->mac_lock
);
705 efx
->mac_op
->reconfigure(efx
);
707 efx
->port_initialized
= true;
708 efx_stats_enable(efx
);
712 efx
->phy_op
->fini(efx
);
716 /* Allow efx_reconfigure_port() to be scheduled, and close the window
717 * between efx_stop_port and efx_flush_all whereby a previously scheduled
718 * efx_phy_work()/efx_mac_work() may have been cancelled */
719 static void efx_start_port(struct efx_nic
*efx
)
721 EFX_LOG(efx
, "start port\n");
722 BUG_ON(efx
->port_enabled
);
724 mutex_lock(&efx
->mac_lock
);
725 efx
->port_enabled
= true;
726 __efx_reconfigure_port(efx
);
727 efx
->mac_op
->irq(efx
);
728 mutex_unlock(&efx
->mac_lock
);
731 /* Prevent efx_phy_work, efx_mac_work, and efx_monitor() from executing,
732 * and efx_set_multicast_list() from scheduling efx_phy_work. efx_phy_work
733 * and efx_mac_work may still be scheduled via NAPI processing until
734 * efx_flush_all() is called */
735 static void efx_stop_port(struct efx_nic
*efx
)
737 EFX_LOG(efx
, "stop port\n");
739 mutex_lock(&efx
->mac_lock
);
740 efx
->port_enabled
= false;
741 mutex_unlock(&efx
->mac_lock
);
743 /* Serialise against efx_set_multicast_list() */
744 if (efx_dev_registered(efx
)) {
745 netif_addr_lock_bh(efx
->net_dev
);
746 netif_addr_unlock_bh(efx
->net_dev
);
750 static void efx_fini_port(struct efx_nic
*efx
)
752 EFX_LOG(efx
, "shut down port\n");
754 if (!efx
->port_initialized
)
757 efx_stats_disable(efx
);
758 efx
->phy_op
->fini(efx
);
759 efx
->port_initialized
= false;
761 efx
->link_up
= false;
762 efx_link_status_changed(efx
);
765 static void efx_remove_port(struct efx_nic
*efx
)
767 EFX_LOG(efx
, "destroying port\n");
769 falcon_remove_port(efx
);
772 /**************************************************************************
776 **************************************************************************/
778 /* This configures the PCI device to enable I/O and DMA. */
779 static int efx_init_io(struct efx_nic
*efx
)
781 struct pci_dev
*pci_dev
= efx
->pci_dev
;
782 dma_addr_t dma_mask
= efx
->type
->max_dma_mask
;
785 EFX_LOG(efx
, "initialising I/O\n");
787 rc
= pci_enable_device(pci_dev
);
789 EFX_ERR(efx
, "failed to enable PCI device\n");
793 pci_set_master(pci_dev
);
795 /* Set the PCI DMA mask. Try all possibilities from our
796 * genuine mask down to 32 bits, because some architectures
797 * (e.g. x86_64 with iommu_sac_force set) will allow 40 bit
798 * masks event though they reject 46 bit masks.
800 while (dma_mask
> 0x7fffffffUL
) {
801 if (pci_dma_supported(pci_dev
, dma_mask
) &&
802 ((rc
= pci_set_dma_mask(pci_dev
, dma_mask
)) == 0))
807 EFX_ERR(efx
, "could not find a suitable DMA mask\n");
810 EFX_LOG(efx
, "using DMA mask %llx\n", (unsigned long long) dma_mask
);
811 rc
= pci_set_consistent_dma_mask(pci_dev
, dma_mask
);
813 /* pci_set_consistent_dma_mask() is not *allowed* to
814 * fail with a mask that pci_set_dma_mask() accepted,
815 * but just in case...
817 EFX_ERR(efx
, "failed to set consistent DMA mask\n");
821 efx
->membase_phys
= pci_resource_start(efx
->pci_dev
, EFX_MEM_BAR
);
822 rc
= pci_request_region(pci_dev
, EFX_MEM_BAR
, "sfc");
824 EFX_ERR(efx
, "request for memory BAR failed\n");
828 efx
->membase
= ioremap_nocache(efx
->membase_phys
,
829 efx
->type
->mem_map_size
);
831 EFX_ERR(efx
, "could not map memory BAR at %llx+%x\n",
832 (unsigned long long)efx
->membase_phys
,
833 efx
->type
->mem_map_size
);
837 EFX_LOG(efx
, "memory BAR at %llx+%x (virtual %p)\n",
838 (unsigned long long)efx
->membase_phys
,
839 efx
->type
->mem_map_size
, efx
->membase
);
844 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
846 efx
->membase_phys
= 0;
848 pci_disable_device(efx
->pci_dev
);
853 static void efx_fini_io(struct efx_nic
*efx
)
855 EFX_LOG(efx
, "shutting down I/O\n");
858 iounmap(efx
->membase
);
862 if (efx
->membase_phys
) {
863 pci_release_region(efx
->pci_dev
, EFX_MEM_BAR
);
864 efx
->membase_phys
= 0;
867 pci_disable_device(efx
->pci_dev
);
870 /* Get number of RX queues wanted. Return number of online CPU
871 * packages in the expectation that an IRQ balancer will spread
872 * interrupts across them. */
873 static int efx_wanted_rx_queues(void)
875 cpumask_var_t core_mask
;
879 if (unlikely(!zalloc_cpumask_var(&core_mask
, GFP_KERNEL
))) {
881 "sfc: RSS disabled due to allocation failure\n");
886 for_each_online_cpu(cpu
) {
887 if (!cpumask_test_cpu(cpu
, core_mask
)) {
889 cpumask_or(core_mask
, core_mask
,
890 topology_core_cpumask(cpu
));
894 free_cpumask_var(core_mask
);
898 /* Probe the number and type of interrupts we are able to obtain, and
899 * the resulting numbers of channels and RX queues.
901 static void efx_probe_interrupts(struct efx_nic
*efx
)
904 min_t(int, efx
->type
->phys_addr_channels
, EFX_MAX_CHANNELS
);
907 if (efx
->interrupt_mode
== EFX_INT_MODE_MSIX
) {
908 struct msix_entry xentries
[EFX_MAX_CHANNELS
];
912 /* We want one RX queue and interrupt per CPU package
913 * (or as specified by the rss_cpus module parameter).
914 * We will need one channel per interrupt.
916 rx_queues
= rss_cpus
? rss_cpus
: efx_wanted_rx_queues();
917 wanted_ints
= rx_queues
+ (separate_tx_channels
? 1 : 0);
918 wanted_ints
= min(wanted_ints
, max_channels
);
920 for (i
= 0; i
< wanted_ints
; i
++)
921 xentries
[i
].entry
= i
;
922 rc
= pci_enable_msix(efx
->pci_dev
, xentries
, wanted_ints
);
924 EFX_ERR(efx
, "WARNING: Insufficient MSI-X vectors"
925 " available (%d < %d).\n", rc
, wanted_ints
);
926 EFX_ERR(efx
, "WARNING: Performance may be reduced.\n");
927 EFX_BUG_ON_PARANOID(rc
>= wanted_ints
);
929 rc
= pci_enable_msix(efx
->pci_dev
, xentries
,
934 efx
->n_rx_queues
= min(rx_queues
, wanted_ints
);
935 efx
->n_channels
= wanted_ints
;
936 for (i
= 0; i
< wanted_ints
; i
++)
937 efx
->channel
[i
].irq
= xentries
[i
].vector
;
939 /* Fall back to single channel MSI */
940 efx
->interrupt_mode
= EFX_INT_MODE_MSI
;
941 EFX_ERR(efx
, "could not enable MSI-X\n");
945 /* Try single interrupt MSI */
946 if (efx
->interrupt_mode
== EFX_INT_MODE_MSI
) {
947 efx
->n_rx_queues
= 1;
949 rc
= pci_enable_msi(efx
->pci_dev
);
951 efx
->channel
[0].irq
= efx
->pci_dev
->irq
;
953 EFX_ERR(efx
, "could not enable MSI\n");
954 efx
->interrupt_mode
= EFX_INT_MODE_LEGACY
;
958 /* Assume legacy interrupts */
959 if (efx
->interrupt_mode
== EFX_INT_MODE_LEGACY
) {
960 efx
->n_rx_queues
= 1;
961 efx
->n_channels
= 1 + (separate_tx_channels
? 1 : 0);
962 efx
->legacy_irq
= efx
->pci_dev
->irq
;
966 static void efx_remove_interrupts(struct efx_nic
*efx
)
968 struct efx_channel
*channel
;
970 /* Remove MSI/MSI-X interrupts */
971 efx_for_each_channel(channel
, efx
)
973 pci_disable_msi(efx
->pci_dev
);
974 pci_disable_msix(efx
->pci_dev
);
976 /* Remove legacy interrupt */
980 static void efx_set_channels(struct efx_nic
*efx
)
982 struct efx_tx_queue
*tx_queue
;
983 struct efx_rx_queue
*rx_queue
;
985 efx_for_each_tx_queue(tx_queue
, efx
) {
986 if (separate_tx_channels
)
987 tx_queue
->channel
= &efx
->channel
[efx
->n_channels
-1];
989 tx_queue
->channel
= &efx
->channel
[0];
990 tx_queue
->channel
->used_flags
|= EFX_USED_BY_TX
;
993 efx_for_each_rx_queue(rx_queue
, efx
) {
994 rx_queue
->channel
= &efx
->channel
[rx_queue
->queue
];
995 rx_queue
->channel
->used_flags
|= EFX_USED_BY_RX
;
999 static int efx_probe_nic(struct efx_nic
*efx
)
1003 EFX_LOG(efx
, "creating NIC\n");
1005 /* Carry out hardware-type specific initialisation */
1006 rc
= falcon_probe_nic(efx
);
1010 /* Determine the number of channels and RX queues by trying to hook
1011 * in MSI-X interrupts. */
1012 efx_probe_interrupts(efx
);
1014 efx_set_channels(efx
);
1016 /* Initialise the interrupt moderation settings */
1017 efx_init_irq_moderation(efx
, tx_irq_mod_usec
, rx_irq_mod_usec
, true);
1022 static void efx_remove_nic(struct efx_nic
*efx
)
1024 EFX_LOG(efx
, "destroying NIC\n");
1026 efx_remove_interrupts(efx
);
1027 falcon_remove_nic(efx
);
1030 /**************************************************************************
1032 * NIC startup/shutdown
1034 *************************************************************************/
1036 static int efx_probe_all(struct efx_nic
*efx
)
1038 struct efx_channel
*channel
;
1042 rc
= efx_probe_nic(efx
);
1044 EFX_ERR(efx
, "failed to create NIC\n");
1049 rc
= efx_probe_port(efx
);
1051 EFX_ERR(efx
, "failed to create port\n");
1055 /* Create channels */
1056 efx_for_each_channel(channel
, efx
) {
1057 rc
= efx_probe_channel(channel
);
1059 EFX_ERR(efx
, "failed to create channel %d\n",
1064 efx_set_channel_names(efx
);
1069 efx_for_each_channel(channel
, efx
)
1070 efx_remove_channel(channel
);
1071 efx_remove_port(efx
);
1073 efx_remove_nic(efx
);
1078 /* Called after previous invocation(s) of efx_stop_all, restarts the
1079 * port, kernel transmit queue, NAPI processing and hardware interrupts,
1080 * and ensures that the port is scheduled to be reconfigured.
1081 * This function is safe to call multiple times when the NIC is in any
1083 static void efx_start_all(struct efx_nic
*efx
)
1085 struct efx_channel
*channel
;
1087 EFX_ASSERT_RESET_SERIALISED(efx
);
1089 /* Check that it is appropriate to restart the interface. All
1090 * of these flags are safe to read under just the rtnl lock */
1091 if (efx
->port_enabled
)
1093 if ((efx
->state
!= STATE_RUNNING
) && (efx
->state
!= STATE_INIT
))
1095 if (efx_dev_registered(efx
) && !netif_running(efx
->net_dev
))
1098 /* Mark the port as enabled so port reconfigurations can start, then
1099 * restart the transmit interface early so the watchdog timer stops */
1100 efx_start_port(efx
);
1101 if (efx_dev_registered(efx
))
1102 efx_wake_queue(efx
);
1104 efx_for_each_channel(channel
, efx
)
1105 efx_start_channel(channel
);
1107 falcon_enable_interrupts(efx
);
1109 /* Start hardware monitor if we're in RUNNING */
1110 if (efx
->state
== STATE_RUNNING
)
1111 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1112 efx_monitor_interval
);
1115 /* Flush all delayed work. Should only be called when no more delayed work
1116 * will be scheduled. This doesn't flush pending online resets (efx_reset),
1117 * since we're holding the rtnl_lock at this point. */
1118 static void efx_flush_all(struct efx_nic
*efx
)
1120 struct efx_rx_queue
*rx_queue
;
1122 /* Make sure the hardware monitor is stopped */
1123 cancel_delayed_work_sync(&efx
->monitor_work
);
1125 /* Ensure that all RX slow refills are complete. */
1126 efx_for_each_rx_queue(rx_queue
, efx
)
1127 cancel_delayed_work_sync(&rx_queue
->work
);
1129 /* Stop scheduled port reconfigurations */
1130 cancel_work_sync(&efx
->mac_work
);
1131 cancel_work_sync(&efx
->phy_work
);
1135 /* Quiesce hardware and software without bringing the link down.
1136 * Safe to call multiple times, when the nic and interface is in any
1137 * state. The caller is guaranteed to subsequently be in a position
1138 * to modify any hardware and software state they see fit without
1140 static void efx_stop_all(struct efx_nic
*efx
)
1142 struct efx_channel
*channel
;
1144 EFX_ASSERT_RESET_SERIALISED(efx
);
1146 /* port_enabled can be read safely under the rtnl lock */
1147 if (!efx
->port_enabled
)
1150 /* Disable interrupts and wait for ISR to complete */
1151 falcon_disable_interrupts(efx
);
1152 if (efx
->legacy_irq
)
1153 synchronize_irq(efx
->legacy_irq
);
1154 efx_for_each_channel(channel
, efx
) {
1156 synchronize_irq(channel
->irq
);
1159 /* Stop all NAPI processing and synchronous rx refills */
1160 efx_for_each_channel(channel
, efx
)
1161 efx_stop_channel(channel
);
1163 /* Stop all asynchronous port reconfigurations. Since all
1164 * event processing has already been stopped, there is no
1165 * window to loose phy events */
1168 /* Flush efx_phy_work, efx_mac_work, refill_workqueue, monitor_work */
1171 /* Isolate the MAC from the TX and RX engines, so that queue
1172 * flushes will complete in a timely fashion. */
1173 falcon_deconfigure_mac_wrapper(efx
);
1174 msleep(10); /* Let the Rx FIFO drain */
1175 falcon_drain_tx_fifo(efx
);
1177 /* Stop the kernel transmit interface late, so the watchdog
1178 * timer isn't ticking over the flush */
1179 if (efx_dev_registered(efx
)) {
1180 efx_stop_queue(efx
);
1181 netif_tx_lock_bh(efx
->net_dev
);
1182 netif_tx_unlock_bh(efx
->net_dev
);
1186 static void efx_remove_all(struct efx_nic
*efx
)
1188 struct efx_channel
*channel
;
1190 efx_for_each_channel(channel
, efx
)
1191 efx_remove_channel(channel
);
1192 efx_remove_port(efx
);
1193 efx_remove_nic(efx
);
1196 /* A convinience function to safely flush all the queues */
1197 void efx_flush_queues(struct efx_nic
*efx
)
1199 EFX_ASSERT_RESET_SERIALISED(efx
);
1203 efx_fini_channels(efx
);
1204 efx_init_channels(efx
);
1209 /**************************************************************************
1211 * Interrupt moderation
1213 **************************************************************************/
1215 static unsigned irq_mod_ticks(int usecs
, int resolution
)
1218 return 0; /* cannot receive interrupts ahead of time :-) */
1219 if (usecs
< resolution
)
1220 return 1; /* never round down to 0 */
1221 return usecs
/ resolution
;
1224 /* Set interrupt moderation parameters */
1225 void efx_init_irq_moderation(struct efx_nic
*efx
, int tx_usecs
, int rx_usecs
,
1228 struct efx_tx_queue
*tx_queue
;
1229 struct efx_rx_queue
*rx_queue
;
1230 unsigned tx_ticks
= irq_mod_ticks(tx_usecs
, FALCON_IRQ_MOD_RESOLUTION
);
1231 unsigned rx_ticks
= irq_mod_ticks(rx_usecs
, FALCON_IRQ_MOD_RESOLUTION
);
1233 EFX_ASSERT_RESET_SERIALISED(efx
);
1235 efx_for_each_tx_queue(tx_queue
, efx
)
1236 tx_queue
->channel
->irq_moderation
= tx_ticks
;
1238 efx
->irq_rx_adaptive
= rx_adaptive
;
1239 efx
->irq_rx_moderation
= rx_ticks
;
1240 efx_for_each_rx_queue(rx_queue
, efx
)
1241 rx_queue
->channel
->irq_moderation
= rx_ticks
;
1244 /**************************************************************************
1248 **************************************************************************/
1250 /* Run periodically off the general workqueue. Serialised against
1251 * efx_reconfigure_port via the mac_lock */
1252 static void efx_monitor(struct work_struct
*data
)
1254 struct efx_nic
*efx
= container_of(data
, struct efx_nic
,
1258 EFX_TRACE(efx
, "hardware monitor executing on CPU %d\n",
1259 raw_smp_processor_id());
1261 /* If the mac_lock is already held then it is likely a port
1262 * reconfiguration is already in place, which will likely do
1263 * most of the work of check_hw() anyway. */
1264 if (!mutex_trylock(&efx
->mac_lock
))
1266 if (!efx
->port_enabled
)
1268 rc
= falcon_board(efx
)->monitor(efx
);
1270 EFX_ERR(efx
, "Board sensor %s; shutting down PHY\n",
1271 (rc
== -ERANGE
) ? "reported fault" : "failed");
1272 efx
->phy_mode
|= PHY_MODE_LOW_POWER
;
1273 falcon_sim_phy_event(efx
);
1275 efx
->phy_op
->poll(efx
);
1276 efx
->mac_op
->poll(efx
);
1279 mutex_unlock(&efx
->mac_lock
);
1281 queue_delayed_work(efx
->workqueue
, &efx
->monitor_work
,
1282 efx_monitor_interval
);
1285 /**************************************************************************
1289 *************************************************************************/
1292 * Context: process, rtnl_lock() held.
1294 static int efx_ioctl(struct net_device
*net_dev
, struct ifreq
*ifr
, int cmd
)
1296 struct efx_nic
*efx
= netdev_priv(net_dev
);
1297 struct mii_ioctl_data
*data
= if_mii(ifr
);
1299 EFX_ASSERT_RESET_SERIALISED(efx
);
1301 /* Convert phy_id from older PRTAD/DEVAD format */
1302 if ((cmd
== SIOCGMIIREG
|| cmd
== SIOCSMIIREG
) &&
1303 (data
->phy_id
& 0xfc00) == 0x0400)
1304 data
->phy_id
^= MDIO_PHY_ID_C45
| 0x0400;
1306 return mdio_mii_ioctl(&efx
->mdio
, data
, cmd
);
1309 /**************************************************************************
1313 **************************************************************************/
1315 static int efx_init_napi(struct efx_nic
*efx
)
1317 struct efx_channel
*channel
;
1319 efx_for_each_channel(channel
, efx
) {
1320 channel
->napi_dev
= efx
->net_dev
;
1321 netif_napi_add(channel
->napi_dev
, &channel
->napi_str
,
1322 efx_poll
, napi_weight
);
1327 static void efx_fini_napi(struct efx_nic
*efx
)
1329 struct efx_channel
*channel
;
1331 efx_for_each_channel(channel
, efx
) {
1332 if (channel
->napi_dev
)
1333 netif_napi_del(&channel
->napi_str
);
1334 channel
->napi_dev
= NULL
;
1338 /**************************************************************************
1340 * Kernel netpoll interface
1342 *************************************************************************/
1344 #ifdef CONFIG_NET_POLL_CONTROLLER
1346 /* Although in the common case interrupts will be disabled, this is not
1347 * guaranteed. However, all our work happens inside the NAPI callback,
1348 * so no locking is required.
1350 static void efx_netpoll(struct net_device
*net_dev
)
1352 struct efx_nic
*efx
= netdev_priv(net_dev
);
1353 struct efx_channel
*channel
;
1355 efx_for_each_channel(channel
, efx
)
1356 efx_schedule_channel(channel
);
1361 /**************************************************************************
1363 * Kernel net device interface
1365 *************************************************************************/
1367 /* Context: process, rtnl_lock() held. */
1368 static int efx_net_open(struct net_device
*net_dev
)
1370 struct efx_nic
*efx
= netdev_priv(net_dev
);
1371 EFX_ASSERT_RESET_SERIALISED(efx
);
1373 EFX_LOG(efx
, "opening device %s on CPU %d\n", net_dev
->name
,
1374 raw_smp_processor_id());
1376 if (efx
->state
== STATE_DISABLED
)
1378 if (efx
->phy_mode
& PHY_MODE_SPECIAL
)
1385 /* Context: process, rtnl_lock() held.
1386 * Note that the kernel will ignore our return code; this method
1387 * should really be a void.
1389 static int efx_net_stop(struct net_device
*net_dev
)
1391 struct efx_nic
*efx
= netdev_priv(net_dev
);
1393 EFX_LOG(efx
, "closing %s on CPU %d\n", net_dev
->name
,
1394 raw_smp_processor_id());
1396 if (efx
->state
!= STATE_DISABLED
) {
1397 /* Stop the device and flush all the channels */
1399 efx_fini_channels(efx
);
1400 efx_init_channels(efx
);
1406 void efx_stats_disable(struct efx_nic
*efx
)
1408 spin_lock(&efx
->stats_lock
);
1409 ++efx
->stats_disable_count
;
1410 spin_unlock(&efx
->stats_lock
);
1413 void efx_stats_enable(struct efx_nic
*efx
)
1415 spin_lock(&efx
->stats_lock
);
1416 --efx
->stats_disable_count
;
1417 spin_unlock(&efx
->stats_lock
);
1420 /* Context: process, dev_base_lock or RTNL held, non-blocking. */
1421 static struct net_device_stats
*efx_net_stats(struct net_device
*net_dev
)
1423 struct efx_nic
*efx
= netdev_priv(net_dev
);
1424 struct efx_mac_stats
*mac_stats
= &efx
->mac_stats
;
1425 struct net_device_stats
*stats
= &net_dev
->stats
;
1427 /* Update stats if possible, but do not wait if another thread
1428 * is updating them or if MAC stats fetches are temporarily
1429 * disabled; slightly stale stats are acceptable.
1431 if (!spin_trylock(&efx
->stats_lock
))
1433 if (!efx
->stats_disable_count
) {
1434 efx
->mac_op
->update_stats(efx
);
1435 falcon_update_nic_stats(efx
);
1437 spin_unlock(&efx
->stats_lock
);
1439 stats
->rx_packets
= mac_stats
->rx_packets
;
1440 stats
->tx_packets
= mac_stats
->tx_packets
;
1441 stats
->rx_bytes
= mac_stats
->rx_bytes
;
1442 stats
->tx_bytes
= mac_stats
->tx_bytes
;
1443 stats
->multicast
= mac_stats
->rx_multicast
;
1444 stats
->collisions
= mac_stats
->tx_collision
;
1445 stats
->rx_length_errors
= (mac_stats
->rx_gtjumbo
+
1446 mac_stats
->rx_length_error
);
1447 stats
->rx_over_errors
= efx
->n_rx_nodesc_drop_cnt
;
1448 stats
->rx_crc_errors
= mac_stats
->rx_bad
;
1449 stats
->rx_frame_errors
= mac_stats
->rx_align_error
;
1450 stats
->rx_fifo_errors
= mac_stats
->rx_overflow
;
1451 stats
->rx_missed_errors
= mac_stats
->rx_missed
;
1452 stats
->tx_window_errors
= mac_stats
->tx_late_collision
;
1454 stats
->rx_errors
= (stats
->rx_length_errors
+
1455 stats
->rx_over_errors
+
1456 stats
->rx_crc_errors
+
1457 stats
->rx_frame_errors
+
1458 stats
->rx_fifo_errors
+
1459 stats
->rx_missed_errors
+
1460 mac_stats
->rx_symbol_error
);
1461 stats
->tx_errors
= (stats
->tx_window_errors
+
1467 /* Context: netif_tx_lock held, BHs disabled. */
1468 static void efx_watchdog(struct net_device
*net_dev
)
1470 struct efx_nic
*efx
= netdev_priv(net_dev
);
1472 EFX_ERR(efx
, "TX stuck with stop_count=%d port_enabled=%d:"
1473 " resetting channels\n",
1474 atomic_read(&efx
->netif_stop_count
), efx
->port_enabled
);
1476 efx_schedule_reset(efx
, RESET_TYPE_TX_WATCHDOG
);
1480 /* Context: process, rtnl_lock() held. */
1481 static int efx_change_mtu(struct net_device
*net_dev
, int new_mtu
)
1483 struct efx_nic
*efx
= netdev_priv(net_dev
);
1486 EFX_ASSERT_RESET_SERIALISED(efx
);
1488 if (new_mtu
> EFX_MAX_MTU
)
1493 EFX_LOG(efx
, "changing MTU to %d\n", new_mtu
);
1495 efx_fini_channels(efx
);
1496 net_dev
->mtu
= new_mtu
;
1497 efx_init_channels(efx
);
1503 static int efx_set_mac_address(struct net_device
*net_dev
, void *data
)
1505 struct efx_nic
*efx
= netdev_priv(net_dev
);
1506 struct sockaddr
*addr
= data
;
1507 char *new_addr
= addr
->sa_data
;
1509 EFX_ASSERT_RESET_SERIALISED(efx
);
1511 if (!is_valid_ether_addr(new_addr
)) {
1512 EFX_ERR(efx
, "invalid ethernet MAC address requested: %pM\n",
1517 memcpy(net_dev
->dev_addr
, new_addr
, net_dev
->addr_len
);
1519 /* Reconfigure the MAC */
1520 efx_reconfigure_port(efx
);
1525 /* Context: netif_addr_lock held, BHs disabled. */
1526 static void efx_set_multicast_list(struct net_device
*net_dev
)
1528 struct efx_nic
*efx
= netdev_priv(net_dev
);
1529 struct dev_mc_list
*mc_list
= net_dev
->mc_list
;
1530 union efx_multicast_hash
*mc_hash
= &efx
->multicast_hash
;
1531 bool promiscuous
= !!(net_dev
->flags
& IFF_PROMISC
);
1532 bool changed
= (efx
->promiscuous
!= promiscuous
);
1537 efx
->promiscuous
= promiscuous
;
1539 /* Build multicast hash table */
1540 if (promiscuous
|| (net_dev
->flags
& IFF_ALLMULTI
)) {
1541 memset(mc_hash
, 0xff, sizeof(*mc_hash
));
1543 memset(mc_hash
, 0x00, sizeof(*mc_hash
));
1544 for (i
= 0; i
< net_dev
->mc_count
; i
++) {
1545 crc
= ether_crc_le(ETH_ALEN
, mc_list
->dmi_addr
);
1546 bit
= crc
& (EFX_MCAST_HASH_ENTRIES
- 1);
1547 set_bit_le(bit
, mc_hash
->byte
);
1548 mc_list
= mc_list
->next
;
1552 if (!efx
->port_enabled
)
1553 /* Delay pushing settings until efx_start_port() */
1557 queue_work(efx
->workqueue
, &efx
->phy_work
);
1559 /* Create and activate new global multicast hash table */
1560 falcon_set_multicast_hash(efx
);
1563 static const struct net_device_ops efx_netdev_ops
= {
1564 .ndo_open
= efx_net_open
,
1565 .ndo_stop
= efx_net_stop
,
1566 .ndo_get_stats
= efx_net_stats
,
1567 .ndo_tx_timeout
= efx_watchdog
,
1568 .ndo_start_xmit
= efx_hard_start_xmit
,
1569 .ndo_validate_addr
= eth_validate_addr
,
1570 .ndo_do_ioctl
= efx_ioctl
,
1571 .ndo_change_mtu
= efx_change_mtu
,
1572 .ndo_set_mac_address
= efx_set_mac_address
,
1573 .ndo_set_multicast_list
= efx_set_multicast_list
,
1574 #ifdef CONFIG_NET_POLL_CONTROLLER
1575 .ndo_poll_controller
= efx_netpoll
,
1579 static void efx_update_name(struct efx_nic
*efx
)
1581 strcpy(efx
->name
, efx
->net_dev
->name
);
1582 efx_mtd_rename(efx
);
1583 efx_set_channel_names(efx
);
1586 static int efx_netdev_event(struct notifier_block
*this,
1587 unsigned long event
, void *ptr
)
1589 struct net_device
*net_dev
= ptr
;
1591 if (net_dev
->netdev_ops
== &efx_netdev_ops
&&
1592 event
== NETDEV_CHANGENAME
)
1593 efx_update_name(netdev_priv(net_dev
));
1598 static struct notifier_block efx_netdev_notifier
= {
1599 .notifier_call
= efx_netdev_event
,
1603 show_phy_type(struct device
*dev
, struct device_attribute
*attr
, char *buf
)
1605 struct efx_nic
*efx
= pci_get_drvdata(to_pci_dev(dev
));
1606 return sprintf(buf
, "%d\n", efx
->phy_type
);
1608 static DEVICE_ATTR(phy_type
, 0644, show_phy_type
, NULL
);
1610 static int efx_register_netdev(struct efx_nic
*efx
)
1612 struct net_device
*net_dev
= efx
->net_dev
;
1615 net_dev
->watchdog_timeo
= 5 * HZ
;
1616 net_dev
->irq
= efx
->pci_dev
->irq
;
1617 net_dev
->netdev_ops
= &efx_netdev_ops
;
1618 SET_NETDEV_DEV(net_dev
, &efx
->pci_dev
->dev
);
1619 SET_ETHTOOL_OPS(net_dev
, &efx_ethtool_ops
);
1621 /* Clear MAC statistics */
1622 efx
->mac_op
->update_stats(efx
);
1623 memset(&efx
->mac_stats
, 0, sizeof(efx
->mac_stats
));
1627 rc
= dev_alloc_name(net_dev
, net_dev
->name
);
1630 efx_update_name(efx
);
1632 rc
= register_netdevice(net_dev
);
1636 /* Always start with carrier off; PHY events will detect the link */
1637 netif_carrier_off(efx
->net_dev
);
1641 rc
= device_create_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1643 EFX_ERR(efx
, "failed to init net dev attributes\n");
1644 goto fail_registered
;
1651 EFX_ERR(efx
, "could not register net dev\n");
1655 unregister_netdev(net_dev
);
1659 static void efx_unregister_netdev(struct efx_nic
*efx
)
1661 struct efx_tx_queue
*tx_queue
;
1666 BUG_ON(netdev_priv(efx
->net_dev
) != efx
);
1668 /* Free up any skbs still remaining. This has to happen before
1669 * we try to unregister the netdev as running their destructors
1670 * may be needed to get the device ref. count to 0. */
1671 efx_for_each_tx_queue(tx_queue
, efx
)
1672 efx_release_tx_buffers(tx_queue
);
1674 if (efx_dev_registered(efx
)) {
1675 strlcpy(efx
->name
, pci_name(efx
->pci_dev
), sizeof(efx
->name
));
1676 device_remove_file(&efx
->pci_dev
->dev
, &dev_attr_phy_type
);
1677 unregister_netdev(efx
->net_dev
);
1681 /**************************************************************************
1683 * Device reset and suspend
1685 **************************************************************************/
1687 /* Tears down the entire software state and most of the hardware state
1689 void efx_reset_down(struct efx_nic
*efx
, enum reset_type method
,
1690 struct ethtool_cmd
*ecmd
)
1692 EFX_ASSERT_RESET_SERIALISED(efx
);
1694 efx_stats_disable(efx
);
1696 mutex_lock(&efx
->mac_lock
);
1697 mutex_lock(&efx
->spi_lock
);
1699 efx
->phy_op
->get_settings(efx
, ecmd
);
1701 efx_fini_channels(efx
);
1702 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
)
1703 efx
->phy_op
->fini(efx
);
1706 /* This function will always ensure that the locks acquired in
1707 * efx_reset_down() are released. A failure return code indicates
1708 * that we were unable to reinitialise the hardware, and the
1709 * driver should be disabled. If ok is false, then the rx and tx
1710 * engines are not restarted, pending a RESET_DISABLE. */
1711 int efx_reset_up(struct efx_nic
*efx
, enum reset_type method
,
1712 struct ethtool_cmd
*ecmd
, bool ok
)
1716 EFX_ASSERT_RESET_SERIALISED(efx
);
1718 rc
= falcon_init_nic(efx
);
1720 EFX_ERR(efx
, "failed to initialise NIC\n");
1724 if (efx
->port_initialized
&& method
!= RESET_TYPE_INVISIBLE
) {
1726 rc
= efx
->phy_op
->init(efx
);
1731 efx
->port_initialized
= false;
1735 efx_init_channels(efx
);
1737 if (efx
->phy_op
->set_settings(efx
, ecmd
))
1738 EFX_ERR(efx
, "could not restore PHY settings\n");
1741 mutex_unlock(&efx
->spi_lock
);
1742 mutex_unlock(&efx
->mac_lock
);
1746 efx_stats_enable(efx
);
1751 /* Reset the NIC as transparently as possible. Do not reset the PHY
1752 * Note that the reset may fail, in which case the card will be left
1753 * in a most-probably-unusable state.
1755 * This function will sleep. You cannot reset from within an atomic
1756 * state; use efx_schedule_reset() instead.
1758 * Grabs the rtnl_lock.
1760 static int efx_reset(struct efx_nic
*efx
)
1762 struct ethtool_cmd ecmd
;
1763 enum reset_type method
= efx
->reset_pending
;
1766 /* Serialise with kernel interfaces */
1769 /* If we're not RUNNING then don't reset. Leave the reset_pending
1770 * flag set so that efx_pci_probe_main will be retried */
1771 if (efx
->state
!= STATE_RUNNING
) {
1772 EFX_INFO(efx
, "scheduled reset quenched. NIC not RUNNING\n");
1776 EFX_INFO(efx
, "resetting (%d)\n", method
);
1778 efx_reset_down(efx
, method
, &ecmd
);
1780 rc
= falcon_reset_hw(efx
, method
);
1782 EFX_ERR(efx
, "failed to reset hardware\n");
1786 /* Allow resets to be rescheduled. */
1787 efx
->reset_pending
= RESET_TYPE_NONE
;
1789 /* Reinitialise bus-mastering, which may have been turned off before
1790 * the reset was scheduled. This is still appropriate, even in the
1791 * RESET_TYPE_DISABLE since this driver generally assumes the hardware
1792 * can respond to requests. */
1793 pci_set_master(efx
->pci_dev
);
1795 /* Leave device stopped if necessary */
1796 if (method
== RESET_TYPE_DISABLE
) {
1797 efx_reset_up(efx
, method
, &ecmd
, false);
1800 rc
= efx_reset_up(efx
, method
, &ecmd
, true);
1805 EFX_ERR(efx
, "has been disabled\n");
1806 efx
->state
= STATE_DISABLED
;
1807 dev_close(efx
->net_dev
);
1809 EFX_LOG(efx
, "reset complete\n");
1817 /* The worker thread exists so that code that cannot sleep can
1818 * schedule a reset for later.
1820 static void efx_reset_work(struct work_struct
*data
)
1822 struct efx_nic
*nic
= container_of(data
, struct efx_nic
, reset_work
);
1827 void efx_schedule_reset(struct efx_nic
*efx
, enum reset_type type
)
1829 enum reset_type method
;
1831 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
1832 EFX_INFO(efx
, "quenching already scheduled reset\n");
1837 case RESET_TYPE_INVISIBLE
:
1838 case RESET_TYPE_ALL
:
1839 case RESET_TYPE_WORLD
:
1840 case RESET_TYPE_DISABLE
:
1843 case RESET_TYPE_RX_RECOVERY
:
1844 case RESET_TYPE_RX_DESC_FETCH
:
1845 case RESET_TYPE_TX_DESC_FETCH
:
1846 case RESET_TYPE_TX_SKIP
:
1847 method
= RESET_TYPE_INVISIBLE
;
1850 method
= RESET_TYPE_ALL
;
1855 EFX_LOG(efx
, "scheduling reset (%d:%d)\n", type
, method
);
1857 EFX_LOG(efx
, "scheduling reset (%d)\n", method
);
1859 efx
->reset_pending
= method
;
1861 queue_work(reset_workqueue
, &efx
->reset_work
);
1864 /**************************************************************************
1866 * List of NICs we support
1868 **************************************************************************/
1870 /* PCI device ID table */
1871 static struct pci_device_id efx_pci_table
[] __devinitdata
= {
1872 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_A_P_DEVID
),
1873 .driver_data
= (unsigned long) &falcon_a_nic_type
},
1874 {PCI_DEVICE(EFX_VENDID_SFC
, FALCON_B_P_DEVID
),
1875 .driver_data
= (unsigned long) &falcon_b_nic_type
},
1876 {0} /* end of list */
1879 /**************************************************************************
1881 * Dummy PHY/MAC/Board operations
1883 * Can be used for some unimplemented operations
1884 * Needed so all function pointers are valid and do not have to be tested
1887 **************************************************************************/
1888 int efx_port_dummy_op_int(struct efx_nic
*efx
)
1892 void efx_port_dummy_op_void(struct efx_nic
*efx
) {}
1893 void efx_port_dummy_op_set_id_led(struct efx_nic
*efx
, enum efx_led_mode mode
)
1897 static struct efx_mac_operations efx_dummy_mac_operations
= {
1898 .reconfigure
= efx_port_dummy_op_void
,
1899 .poll
= efx_port_dummy_op_void
,
1900 .irq
= efx_port_dummy_op_void
,
1903 static struct efx_phy_operations efx_dummy_phy_operations
= {
1904 .init
= efx_port_dummy_op_int
,
1905 .reconfigure
= efx_port_dummy_op_void
,
1906 .poll
= efx_port_dummy_op_void
,
1907 .fini
= efx_port_dummy_op_void
,
1908 .clear_interrupt
= efx_port_dummy_op_void
,
1911 static struct falcon_board efx_dummy_board_info
= {
1912 .init
= efx_port_dummy_op_int
,
1913 .init_phy
= efx_port_dummy_op_void
,
1914 .set_id_led
= efx_port_dummy_op_set_id_led
,
1915 .monitor
= efx_port_dummy_op_int
,
1916 .fini
= efx_port_dummy_op_void
,
1919 /**************************************************************************
1923 **************************************************************************/
1925 /* This zeroes out and then fills in the invariants in a struct
1926 * efx_nic (including all sub-structures).
1928 static int efx_init_struct(struct efx_nic
*efx
, struct efx_nic_type
*type
,
1929 struct pci_dev
*pci_dev
, struct net_device
*net_dev
)
1931 struct efx_channel
*channel
;
1932 struct efx_tx_queue
*tx_queue
;
1933 struct efx_rx_queue
*rx_queue
;
1936 /* Initialise common structures */
1937 memset(efx
, 0, sizeof(*efx
));
1938 spin_lock_init(&efx
->biu_lock
);
1939 spin_lock_init(&efx
->phy_lock
);
1940 mutex_init(&efx
->spi_lock
);
1941 INIT_WORK(&efx
->reset_work
, efx_reset_work
);
1942 INIT_DELAYED_WORK(&efx
->monitor_work
, efx_monitor
);
1943 efx
->pci_dev
= pci_dev
;
1944 efx
->state
= STATE_INIT
;
1945 efx
->reset_pending
= RESET_TYPE_NONE
;
1946 strlcpy(efx
->name
, pci_name(pci_dev
), sizeof(efx
->name
));
1947 efx
->board_info
= efx_dummy_board_info
;
1949 efx
->net_dev
= net_dev
;
1950 efx
->rx_checksum_enabled
= true;
1951 spin_lock_init(&efx
->netif_stop_lock
);
1952 spin_lock_init(&efx
->stats_lock
);
1953 efx
->stats_disable_count
= 1;
1954 mutex_init(&efx
->mac_lock
);
1955 efx
->mac_op
= &efx_dummy_mac_operations
;
1956 efx
->phy_op
= &efx_dummy_phy_operations
;
1957 efx
->mdio
.dev
= net_dev
;
1958 INIT_WORK(&efx
->phy_work
, efx_phy_work
);
1959 INIT_WORK(&efx
->mac_work
, efx_mac_work
);
1960 atomic_set(&efx
->netif_stop_count
, 1);
1962 for (i
= 0; i
< EFX_MAX_CHANNELS
; i
++) {
1963 channel
= &efx
->channel
[i
];
1965 channel
->channel
= i
;
1966 channel
->work_pending
= false;
1968 for (i
= 0; i
< EFX_TX_QUEUE_COUNT
; i
++) {
1969 tx_queue
= &efx
->tx_queue
[i
];
1970 tx_queue
->efx
= efx
;
1971 tx_queue
->queue
= i
;
1972 tx_queue
->buffer
= NULL
;
1973 tx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1974 tx_queue
->tso_headers_free
= NULL
;
1976 for (i
= 0; i
< EFX_MAX_RX_QUEUES
; i
++) {
1977 rx_queue
= &efx
->rx_queue
[i
];
1978 rx_queue
->efx
= efx
;
1979 rx_queue
->queue
= i
;
1980 rx_queue
->channel
= &efx
->channel
[0]; /* for safety */
1981 rx_queue
->buffer
= NULL
;
1982 spin_lock_init(&rx_queue
->add_lock
);
1983 INIT_DELAYED_WORK(&rx_queue
->work
, efx_rx_work
);
1988 /* As close as we can get to guaranteeing that we don't overflow */
1989 BUILD_BUG_ON(EFX_EVQ_SIZE
< EFX_TXQ_SIZE
+ EFX_RXQ_SIZE
);
1991 EFX_BUG_ON_PARANOID(efx
->type
->phys_addr_channels
> EFX_MAX_CHANNELS
);
1993 /* Higher numbered interrupt modes are less capable! */
1994 efx
->interrupt_mode
= max(efx
->type
->max_interrupt_mode
,
1997 /* Would be good to use the net_dev name, but we're too early */
1998 snprintf(efx
->workqueue_name
, sizeof(efx
->workqueue_name
), "sfc%s",
2000 efx
->workqueue
= create_singlethread_workqueue(efx
->workqueue_name
);
2001 if (!efx
->workqueue
)
2007 static void efx_fini_struct(struct efx_nic
*efx
)
2009 if (efx
->workqueue
) {
2010 destroy_workqueue(efx
->workqueue
);
2011 efx
->workqueue
= NULL
;
2015 /**************************************************************************
2019 **************************************************************************/
2021 /* Main body of final NIC shutdown code
2022 * This is called only at module unload (or hotplug removal).
2024 static void efx_pci_remove_main(struct efx_nic
*efx
)
2026 falcon_fini_interrupt(efx
);
2027 efx_fini_channels(efx
);
2030 efx_remove_all(efx
);
2033 /* Final NIC shutdown
2034 * This is called only at module unload (or hotplug removal).
2036 static void efx_pci_remove(struct pci_dev
*pci_dev
)
2038 struct efx_nic
*efx
;
2040 efx
= pci_get_drvdata(pci_dev
);
2044 /* Mark the NIC as fini, then stop the interface */
2046 efx
->state
= STATE_FINI
;
2047 dev_close(efx
->net_dev
);
2049 /* Allow any queued efx_resets() to complete */
2052 efx_unregister_netdev(efx
);
2054 efx_mtd_remove(efx
);
2056 /* Wait for any scheduled resets to complete. No more will be
2057 * scheduled from this point because efx_stop_all() has been
2058 * called, we are no longer registered with driverlink, and
2059 * the net_device's have been removed. */
2060 cancel_work_sync(&efx
->reset_work
);
2062 efx_pci_remove_main(efx
);
2065 EFX_LOG(efx
, "shutdown successful\n");
2067 pci_set_drvdata(pci_dev
, NULL
);
2068 efx_fini_struct(efx
);
2069 free_netdev(efx
->net_dev
);
2072 /* Main body of NIC initialisation
2073 * This is called at module load (or hotplug insertion, theoretically).
2075 static int efx_pci_probe_main(struct efx_nic
*efx
)
2079 /* Do start-of-day initialisation */
2080 rc
= efx_probe_all(efx
);
2084 rc
= efx_init_napi(efx
);
2088 rc
= falcon_init_nic(efx
);
2090 EFX_ERR(efx
, "failed to initialise NIC\n");
2094 rc
= efx_init_port(efx
);
2096 EFX_ERR(efx
, "failed to initialise port\n");
2100 efx_init_channels(efx
);
2102 rc
= falcon_init_interrupt(efx
);
2109 efx_fini_channels(efx
);
2115 efx_remove_all(efx
);
2120 /* NIC initialisation
2122 * This is called at module load (or hotplug insertion,
2123 * theoretically). It sets up PCI mappings, tests and resets the NIC,
2124 * sets up and registers the network devices with the kernel and hooks
2125 * the interrupt service routine. It does not prepare the device for
2126 * transmission; this is left to the first time one of the network
2127 * interfaces is brought up (i.e. efx_net_open).
2129 static int __devinit
efx_pci_probe(struct pci_dev
*pci_dev
,
2130 const struct pci_device_id
*entry
)
2132 struct efx_nic_type
*type
= (struct efx_nic_type
*) entry
->driver_data
;
2133 struct net_device
*net_dev
;
2134 struct efx_nic
*efx
;
2137 /* Allocate and initialise a struct net_device and struct efx_nic */
2138 net_dev
= alloc_etherdev(sizeof(*efx
));
2141 net_dev
->features
|= (NETIF_F_IP_CSUM
| NETIF_F_SG
|
2142 NETIF_F_HIGHDMA
| NETIF_F_TSO
|
2144 /* Mask for features that also apply to VLAN devices */
2145 net_dev
->vlan_features
|= (NETIF_F_ALL_CSUM
| NETIF_F_SG
|
2146 NETIF_F_HIGHDMA
| NETIF_F_TSO
);
2147 efx
= netdev_priv(net_dev
);
2148 pci_set_drvdata(pci_dev
, efx
);
2149 rc
= efx_init_struct(efx
, type
, pci_dev
, net_dev
);
2153 EFX_INFO(efx
, "Solarflare Communications NIC detected\n");
2155 /* Set up basic I/O (BAR mappings etc) */
2156 rc
= efx_init_io(efx
);
2160 /* No serialisation is required with the reset path because
2161 * we're in STATE_INIT. */
2162 for (i
= 0; i
< 5; i
++) {
2163 rc
= efx_pci_probe_main(efx
);
2165 /* Serialise against efx_reset(). No more resets will be
2166 * scheduled since efx_stop_all() has been called, and we
2167 * have not and never have been registered with either
2168 * the rtnetlink or driverlink layers. */
2169 cancel_work_sync(&efx
->reset_work
);
2172 if (efx
->reset_pending
!= RESET_TYPE_NONE
) {
2173 /* If there was a scheduled reset during
2174 * probe, the NIC is probably hosed anyway */
2175 efx_pci_remove_main(efx
);
2182 /* Retry if a recoverably reset event has been scheduled */
2183 if ((efx
->reset_pending
!= RESET_TYPE_INVISIBLE
) &&
2184 (efx
->reset_pending
!= RESET_TYPE_ALL
))
2187 efx
->reset_pending
= RESET_TYPE_NONE
;
2191 EFX_ERR(efx
, "Could not reset NIC\n");
2195 /* Switch to the running state before we expose the device to
2196 * the OS. This is to ensure that the initial gathering of
2197 * MAC stats succeeds. */
2198 efx
->state
= STATE_RUNNING
;
2200 rc
= efx_register_netdev(efx
);
2204 EFX_LOG(efx
, "initialisation successful\n");
2207 efx_mtd_probe(efx
); /* allowed to fail */
2212 efx_pci_remove_main(efx
);
2217 efx_fini_struct(efx
);
2219 EFX_LOG(efx
, "initialisation failed. rc=%d\n", rc
);
2220 free_netdev(net_dev
);
2224 static struct pci_driver efx_pci_driver
= {
2225 .name
= EFX_DRIVER_NAME
,
2226 .id_table
= efx_pci_table
,
2227 .probe
= efx_pci_probe
,
2228 .remove
= efx_pci_remove
,
2231 /**************************************************************************
2233 * Kernel module interface
2235 *************************************************************************/
2237 module_param(interrupt_mode
, uint
, 0444);
2238 MODULE_PARM_DESC(interrupt_mode
,
2239 "Interrupt mode (0=>MSIX 1=>MSI 2=>legacy)");
2241 static int __init
efx_init_module(void)
2245 printk(KERN_INFO
"Solarflare NET driver v" EFX_DRIVER_VERSION
"\n");
2247 rc
= register_netdevice_notifier(&efx_netdev_notifier
);
2251 refill_workqueue
= create_workqueue("sfc_refill");
2252 if (!refill_workqueue
) {
2256 reset_workqueue
= create_singlethread_workqueue("sfc_reset");
2257 if (!reset_workqueue
) {
2262 rc
= pci_register_driver(&efx_pci_driver
);
2269 destroy_workqueue(reset_workqueue
);
2271 destroy_workqueue(refill_workqueue
);
2273 unregister_netdevice_notifier(&efx_netdev_notifier
);
2278 static void __exit
efx_exit_module(void)
2280 printk(KERN_INFO
"Solarflare NET driver unloading\n");
2282 pci_unregister_driver(&efx_pci_driver
);
2283 destroy_workqueue(reset_workqueue
);
2284 destroy_workqueue(refill_workqueue
);
2285 unregister_netdevice_notifier(&efx_netdev_notifier
);
2289 module_init(efx_init_module
);
2290 module_exit(efx_exit_module
);
2292 MODULE_AUTHOR("Michael Brown <mbrown@fensystems.co.uk> and "
2293 "Solarflare Communications");
2294 MODULE_DESCRIPTION("Solarflare Communications network driver");
2295 MODULE_LICENSE("GPL");
2296 MODULE_DEVICE_TABLE(pci
, efx_pci_table
);