2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * The Internet Protocol (IP) output module.
9 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
10 * Donald Becker, <becker@super.org>
11 * Alan Cox, <Alan.Cox@linux.org>
13 * Stefan Becker, <stefanb@yello.ping.de>
14 * Jorge Cwik, <jorge@laser.satlink.net>
15 * Arnt Gulbrandsen, <agulbra@nvg.unit.no>
16 * Hirokazu Takahashi, <taka@valinux.co.jp>
18 * See ip_input.c for original log
21 * Alan Cox : Missing nonblock feature in ip_build_xmit.
22 * Mike Kilburn : htons() missing in ip_build_xmit.
23 * Bradford Johnson: Fix faulty handling of some frames when
25 * Alexander Demenshin: Missing sk/skb free in ip_queue_xmit
26 * (in case if packet not accepted by
27 * output firewall rules)
28 * Mike McLagan : Routing by source
29 * Alexey Kuznetsov: use new route cache
30 * Andi Kleen: Fix broken PMTU recovery and remove
31 * some redundant tests.
32 * Vitaly E. Lavrov : Transparent proxy revived after year coma.
33 * Andi Kleen : Replace ip_reply with ip_send_reply.
34 * Andi Kleen : Split fast and slow ip_build_xmit path
35 * for decreased register pressure on x86
36 * and more readibility.
37 * Marc Boucher : When call_out_firewall returns FW_QUEUE,
38 * silently drop skb instead of failing with -EPERM.
39 * Detlev Wengorz : Copy protocol for fragments.
40 * Hirokazu Takahashi: HW checksumming for outgoing UDP
42 * Hirokazu Takahashi: sendfile() on UDP works now.
45 #include <asm/uaccess.h>
46 #include <asm/system.h>
47 #include <linux/module.h>
48 #include <linux/types.h>
49 #include <linux/kernel.h>
51 #include <linux/string.h>
52 #include <linux/errno.h>
53 #include <linux/highmem.h>
54 #include <linux/slab.h>
56 #include <linux/socket.h>
57 #include <linux/sockios.h>
59 #include <linux/inet.h>
60 #include <linux/netdevice.h>
61 #include <linux/etherdevice.h>
62 #include <linux/proc_fs.h>
63 #include <linux/stat.h>
64 #include <linux/init.h>
68 #include <net/protocol.h>
69 #include <net/route.h>
71 #include <linux/skbuff.h>
75 #include <net/checksum.h>
76 #include <net/inetpeer.h>
77 #include <linux/igmp.h>
78 #include <linux/netfilter_ipv4.h>
79 #include <linux/netfilter_bridge.h>
80 #include <linux/mroute.h>
81 #include <linux/netlink.h>
82 #include <linux/tcp.h>
84 int sysctl_ip_default_ttl __read_mostly
= IPDEFTTL
;
85 EXPORT_SYMBOL(sysctl_ip_default_ttl
);
87 /* Generate a checksum for an outgoing IP datagram. */
88 __inline__
void ip_send_check(struct iphdr
*iph
)
91 iph
->check
= ip_fast_csum((unsigned char *)iph
, iph
->ihl
);
93 EXPORT_SYMBOL(ip_send_check
);
95 int __ip_local_out(struct sk_buff
*skb
)
97 struct iphdr
*iph
= ip_hdr(skb
);
99 iph
->tot_len
= htons(skb
->len
);
101 return nf_hook(NFPROTO_IPV4
, NF_INET_LOCAL_OUT
, skb
, NULL
,
102 skb_dst(skb
)->dev
, dst_output
);
105 int ip_local_out(struct sk_buff
*skb
)
109 err
= __ip_local_out(skb
);
110 if (likely(err
== 1))
111 err
= dst_output(skb
);
115 EXPORT_SYMBOL_GPL(ip_local_out
);
117 /* dev_loopback_xmit for use with netfilter. */
118 static int ip_dev_loopback_xmit(struct sk_buff
*newskb
)
120 skb_reset_mac_header(newskb
);
121 __skb_pull(newskb
, skb_network_offset(newskb
));
122 newskb
->pkt_type
= PACKET_LOOPBACK
;
123 newskb
->ip_summed
= CHECKSUM_UNNECESSARY
;
124 WARN_ON(!skb_dst(newskb
));
129 static inline int ip_select_ttl(struct inet_sock
*inet
, struct dst_entry
*dst
)
131 int ttl
= inet
->uc_ttl
;
134 ttl
= ip4_dst_hoplimit(dst
);
139 * Add an ip header to a skbuff and send it out.
142 int ip_build_and_send_pkt(struct sk_buff
*skb
, struct sock
*sk
,
143 __be32 saddr
, __be32 daddr
, struct ip_options
*opt
)
145 struct inet_sock
*inet
= inet_sk(sk
);
146 struct rtable
*rt
= skb_rtable(skb
);
149 /* Build the IP header. */
150 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
151 skb_reset_network_header(skb
);
155 iph
->tos
= inet
->tos
;
156 if (ip_dont_fragment(sk
, &rt
->dst
))
157 iph
->frag_off
= htons(IP_DF
);
160 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
161 iph
->daddr
= rt
->rt_dst
;
162 iph
->saddr
= rt
->rt_src
;
163 iph
->protocol
= sk
->sk_protocol
;
164 ip_select_ident(iph
, &rt
->dst
, sk
);
166 if (opt
&& opt
->optlen
) {
167 iph
->ihl
+= opt
->optlen
>>2;
168 ip_options_build(skb
, opt
, daddr
, rt
, 0);
171 skb
->priority
= sk
->sk_priority
;
172 skb
->mark
= sk
->sk_mark
;
175 return ip_local_out(skb
);
177 EXPORT_SYMBOL_GPL(ip_build_and_send_pkt
);
179 static inline int ip_finish_output2(struct sk_buff
*skb
)
181 struct dst_entry
*dst
= skb_dst(skb
);
182 struct rtable
*rt
= (struct rtable
*)dst
;
183 struct net_device
*dev
= dst
->dev
;
184 unsigned int hh_len
= LL_RESERVED_SPACE(dev
);
186 if (rt
->rt_type
== RTN_MULTICAST
) {
187 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTMCAST
, skb
->len
);
188 } else if (rt
->rt_type
== RTN_BROADCAST
)
189 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUTBCAST
, skb
->len
);
191 /* Be paranoid, rather than too clever. */
192 if (unlikely(skb_headroom(skb
) < hh_len
&& dev
->header_ops
)) {
193 struct sk_buff
*skb2
;
195 skb2
= skb_realloc_headroom(skb
, LL_RESERVED_SPACE(dev
));
201 skb_set_owner_w(skb2
, skb
->sk
);
207 return neigh_hh_output(dst
->hh
, skb
);
208 else if (dst
->neighbour
)
209 return dst
->neighbour
->output(skb
);
212 printk(KERN_DEBUG
"ip_finish_output2: No header cache and no neighbour!\n");
217 static inline int ip_skb_dst_mtu(struct sk_buff
*skb
)
219 struct inet_sock
*inet
= skb
->sk
? inet_sk(skb
->sk
) : NULL
;
221 return (inet
&& inet
->pmtudisc
== IP_PMTUDISC_PROBE
) ?
222 skb_dst(skb
)->dev
->mtu
: dst_mtu(skb_dst(skb
));
225 static int ip_finish_output(struct sk_buff
*skb
)
227 #if defined(CONFIG_NETFILTER) && defined(CONFIG_XFRM)
228 /* Policy lookup after SNAT yielded a new policy */
229 if (skb_dst(skb
)->xfrm
!= NULL
) {
230 IPCB(skb
)->flags
|= IPSKB_REROUTED
;
231 return dst_output(skb
);
234 if (skb
->len
> ip_skb_dst_mtu(skb
) && !skb_is_gso(skb
))
235 return ip_fragment(skb
, ip_finish_output2
);
237 return ip_finish_output2(skb
);
240 int ip_mc_output(struct sk_buff
*skb
)
242 struct sock
*sk
= skb
->sk
;
243 struct rtable
*rt
= skb_rtable(skb
);
244 struct net_device
*dev
= rt
->dst
.dev
;
247 * If the indicated interface is up and running, send the packet.
249 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
252 skb
->protocol
= htons(ETH_P_IP
);
255 * Multicasts are looped back for other local users
258 if (rt
->rt_flags
&RTCF_MULTICAST
) {
260 #ifdef CONFIG_IP_MROUTE
261 /* Small optimization: do not loopback not local frames,
262 which returned after forwarding; they will be dropped
263 by ip_mr_input in any case.
264 Note, that local frames are looped back to be delivered
267 This check is duplicated in ip_mr_input at the moment.
270 ((rt
->rt_flags
& RTCF_LOCAL
) ||
271 !(IPCB(skb
)->flags
& IPSKB_FORWARDED
))
274 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
276 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
,
277 newskb
, NULL
, newskb
->dev
,
278 ip_dev_loopback_xmit
);
281 /* Multicasts with ttl 0 must not go beyond the host */
283 if (ip_hdr(skb
)->ttl
== 0) {
289 if (rt
->rt_flags
&RTCF_BROADCAST
) {
290 struct sk_buff
*newskb
= skb_clone(skb
, GFP_ATOMIC
);
292 NF_HOOK(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, newskb
,
293 NULL
, newskb
->dev
, ip_dev_loopback_xmit
);
296 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
,
297 skb
->dev
, ip_finish_output
,
298 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
301 int ip_output(struct sk_buff
*skb
)
303 struct net_device
*dev
= skb_dst(skb
)->dev
;
305 IP_UPD_PO_STATS(dev_net(dev
), IPSTATS_MIB_OUT
, skb
->len
);
308 skb
->protocol
= htons(ETH_P_IP
);
310 return NF_HOOK_COND(NFPROTO_IPV4
, NF_INET_POST_ROUTING
, skb
, NULL
, dev
,
312 !(IPCB(skb
)->flags
& IPSKB_REROUTED
));
315 int ip_queue_xmit(struct sk_buff
*skb
)
317 struct sock
*sk
= skb
->sk
;
318 struct inet_sock
*inet
= inet_sk(sk
);
319 struct ip_options
*opt
= inet
->opt
;
324 /* Skip all of this if the packet is already routed,
325 * f.e. by something like SCTP.
328 rt
= skb_rtable(skb
);
332 /* Make sure we can route this packet. */
333 rt
= (struct rtable
*)__sk_dst_check(sk
, 0);
337 /* Use correct destination address if we have options. */
338 daddr
= inet
->inet_daddr
;
343 struct flowi fl
= { .oif
= sk
->sk_bound_dev_if
,
346 .fl4_src
= inet
->inet_saddr
,
347 .fl4_tos
= RT_CONN_FLAGS(sk
),
348 .proto
= sk
->sk_protocol
,
349 .flags
= inet_sk_flowi_flags(sk
),
350 .fl_ip_sport
= inet
->inet_sport
,
351 .fl_ip_dport
= inet
->inet_dport
};
353 /* If this fails, retransmit mechanism of transport layer will
354 * keep trying until route appears or the connection times
357 security_sk_classify_flow(sk
, &fl
);
358 if (ip_route_output_flow(sock_net(sk
), &rt
, &fl
, sk
))
361 sk_setup_caps(sk
, &rt
->dst
);
363 skb_dst_set_noref(skb
, &rt
->dst
);
366 if (opt
&& opt
->is_strictroute
&& rt
->rt_dst
!= rt
->rt_gateway
)
369 /* OK, we know where to send it, allocate and build IP header. */
370 skb_push(skb
, sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0));
371 skb_reset_network_header(skb
);
373 *((__be16
*)iph
) = htons((4 << 12) | (5 << 8) | (inet
->tos
& 0xff));
374 if (ip_dont_fragment(sk
, &rt
->dst
) && !skb
->local_df
)
375 iph
->frag_off
= htons(IP_DF
);
378 iph
->ttl
= ip_select_ttl(inet
, &rt
->dst
);
379 iph
->protocol
= sk
->sk_protocol
;
380 iph
->saddr
= rt
->rt_src
;
381 iph
->daddr
= rt
->rt_dst
;
382 /* Transport layer set skb->h.foo itself. */
384 if (opt
&& opt
->optlen
) {
385 iph
->ihl
+= opt
->optlen
>> 2;
386 ip_options_build(skb
, opt
, inet
->inet_daddr
, rt
, 0);
389 ip_select_ident_more(iph
, &rt
->dst
, sk
,
390 (skb_shinfo(skb
)->gso_segs
?: 1) - 1);
392 skb
->priority
= sk
->sk_priority
;
393 skb
->mark
= sk
->sk_mark
;
395 res
= ip_local_out(skb
);
401 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTNOROUTES
);
403 return -EHOSTUNREACH
;
405 EXPORT_SYMBOL(ip_queue_xmit
);
408 static void ip_copy_metadata(struct sk_buff
*to
, struct sk_buff
*from
)
410 to
->pkt_type
= from
->pkt_type
;
411 to
->priority
= from
->priority
;
412 to
->protocol
= from
->protocol
;
414 skb_dst_copy(to
, from
);
416 to
->mark
= from
->mark
;
418 /* Copy the flags to each fragment. */
419 IPCB(to
)->flags
= IPCB(from
)->flags
;
421 #ifdef CONFIG_NET_SCHED
422 to
->tc_index
= from
->tc_index
;
425 #if defined(CONFIG_NETFILTER_XT_TARGET_TRACE) || \
426 defined(CONFIG_NETFILTER_XT_TARGET_TRACE_MODULE)
427 to
->nf_trace
= from
->nf_trace
;
429 #if defined(CONFIG_IP_VS) || defined(CONFIG_IP_VS_MODULE)
430 to
->ipvs_property
= from
->ipvs_property
;
432 skb_copy_secmark(to
, from
);
436 * This IP datagram is too large to be sent in one piece. Break it up into
437 * smaller pieces (each of size equal to IP header plus
438 * a block of the data of the original IP data part) that will yet fit in a
439 * single device frame, and queue such a frame for sending.
442 int ip_fragment(struct sk_buff
*skb
, int (*output
)(struct sk_buff
*))
446 struct net_device
*dev
;
447 struct sk_buff
*skb2
;
448 unsigned int mtu
, hlen
, left
, len
, ll_rs
;
450 __be16 not_last_frag
;
451 struct rtable
*rt
= skb_rtable(skb
);
457 * Point into the IP datagram header.
462 if (unlikely((iph
->frag_off
& htons(IP_DF
)) && !skb
->local_df
)) {
463 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
464 icmp_send(skb
, ICMP_DEST_UNREACH
, ICMP_FRAG_NEEDED
,
465 htonl(ip_skb_dst_mtu(skb
)));
471 * Setup starting values.
475 mtu
= dst_mtu(&rt
->dst
) - hlen
; /* Size of data space */
476 #ifdef CONFIG_BRIDGE_NETFILTER
478 mtu
-= nf_bridge_mtu_reduction(skb
);
480 IPCB(skb
)->flags
|= IPSKB_FRAG_COMPLETE
;
482 /* When frag_list is given, use it. First, check its validity:
483 * some transformers could create wrong frag_list or break existing
484 * one, it is not prohibited. In this case fall back to copying.
486 * LATER: this step can be merged to real generation of fragments,
487 * we can switch to copy when see the first bad fragment.
489 if (skb_has_frag_list(skb
)) {
490 struct sk_buff
*frag
, *frag2
;
491 int first_len
= skb_pagelen(skb
);
493 if (first_len
- hlen
> mtu
||
494 ((first_len
- hlen
) & 7) ||
495 (iph
->frag_off
& htons(IP_MF
|IP_OFFSET
)) ||
499 skb_walk_frags(skb
, frag
) {
500 /* Correct geometry. */
501 if (frag
->len
> mtu
||
502 ((frag
->len
& 7) && frag
->next
) ||
503 skb_headroom(frag
) < hlen
)
504 goto slow_path_clean
;
506 /* Partially cloned skb? */
507 if (skb_shared(frag
))
508 goto slow_path_clean
;
513 frag
->destructor
= sock_wfree
;
515 skb
->truesize
-= frag
->truesize
;
518 /* Everything is OK. Generate! */
522 frag
= skb_shinfo(skb
)->frag_list
;
523 skb_frag_list_init(skb
);
524 skb
->data_len
= first_len
- skb_headlen(skb
);
525 skb
->len
= first_len
;
526 iph
->tot_len
= htons(first_len
);
527 iph
->frag_off
= htons(IP_MF
);
531 /* Prepare header of the next frame,
532 * before previous one went down. */
534 frag
->ip_summed
= CHECKSUM_NONE
;
535 skb_reset_transport_header(frag
);
536 __skb_push(frag
, hlen
);
537 skb_reset_network_header(frag
);
538 memcpy(skb_network_header(frag
), iph
, hlen
);
540 iph
->tot_len
= htons(frag
->len
);
541 ip_copy_metadata(frag
, skb
);
543 ip_options_fragment(frag
);
544 offset
+= skb
->len
- hlen
;
545 iph
->frag_off
= htons(offset
>>3);
546 if (frag
->next
!= NULL
)
547 iph
->frag_off
|= htons(IP_MF
);
548 /* Ready, complete checksum */
555 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
565 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
574 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
578 skb_walk_frags(skb
, frag2
) {
582 frag2
->destructor
= NULL
;
583 skb
->truesize
+= frag2
->truesize
;
588 left
= skb
->len
- hlen
; /* Space per frame */
589 ptr
= hlen
; /* Where to start from */
591 /* for bridged IP traffic encapsulated inside f.e. a vlan header,
592 * we need to make room for the encapsulating header
594 ll_rs
= LL_RESERVED_SPACE_EXTRA(rt
->dst
.dev
, nf_bridge_pad(skb
));
597 * Fragment the datagram.
600 offset
= (ntohs(iph
->frag_off
) & IP_OFFSET
) << 3;
601 not_last_frag
= iph
->frag_off
& htons(IP_MF
);
604 * Keep copying data until we run out.
609 /* IF: it doesn't fit, use 'mtu' - the data space left */
612 /* IF: we are not sending upto and including the packet end
613 then align the next start on an eight byte boundary */
621 if ((skb2
= alloc_skb(len
+hlen
+ll_rs
, GFP_ATOMIC
)) == NULL
) {
622 NETDEBUG(KERN_INFO
"IP: frag: no memory for new fragment!\n");
628 * Set up data on packet
631 ip_copy_metadata(skb2
, skb
);
632 skb_reserve(skb2
, ll_rs
);
633 skb_put(skb2
, len
+ hlen
);
634 skb_reset_network_header(skb2
);
635 skb2
->transport_header
= skb2
->network_header
+ hlen
;
638 * Charge the memory for the fragment to any owner
643 skb_set_owner_w(skb2
, skb
->sk
);
646 * Copy the packet header into the new buffer.
649 skb_copy_from_linear_data(skb
, skb_network_header(skb2
), hlen
);
652 * Copy a block of the IP datagram.
654 if (skb_copy_bits(skb
, ptr
, skb_transport_header(skb2
), len
))
659 * Fill in the new header fields.
662 iph
->frag_off
= htons((offset
>> 3));
664 /* ANK: dirty, but effective trick. Upgrade options only if
665 * the segment to be fragmented was THE FIRST (otherwise,
666 * options are already fixed) and make it ONCE
667 * on the initial skb, so that all the following fragments
668 * will inherit fixed options.
671 ip_options_fragment(skb
);
674 * Added AC : If we are fragmenting a fragment that's not the
675 * last fragment then keep MF on each bit
677 if (left
> 0 || not_last_frag
)
678 iph
->frag_off
|= htons(IP_MF
);
683 * Put this fragment into the sending queue.
685 iph
->tot_len
= htons(len
+ hlen
);
693 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGCREATES
);
696 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGOKS
);
701 IP_INC_STATS(dev_net(dev
), IPSTATS_MIB_FRAGFAILS
);
704 EXPORT_SYMBOL(ip_fragment
);
707 ip_generic_getfrag(void *from
, char *to
, int offset
, int len
, int odd
, struct sk_buff
*skb
)
709 struct iovec
*iov
= from
;
711 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
712 if (memcpy_fromiovecend(to
, iov
, offset
, len
) < 0)
716 if (csum_partial_copy_fromiovecend(to
, iov
, offset
, len
, &csum
) < 0)
718 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
722 EXPORT_SYMBOL(ip_generic_getfrag
);
725 csum_page(struct page
*page
, int offset
, int copy
)
730 csum
= csum_partial(kaddr
+ offset
, copy
, 0);
735 static inline int ip_ufo_append_data(struct sock
*sk
,
736 struct sk_buff_head
*queue
,
737 int getfrag(void *from
, char *to
, int offset
, int len
,
738 int odd
, struct sk_buff
*skb
),
739 void *from
, int length
, int hh_len
, int fragheaderlen
,
740 int transhdrlen
, int mtu
, unsigned int flags
)
745 /* There is support for UDP fragmentation offload by network
746 * device, so create one single skb packet containing complete
749 if ((skb
= skb_peek_tail(queue
)) == NULL
) {
750 skb
= sock_alloc_send_skb(sk
,
751 hh_len
+ fragheaderlen
+ transhdrlen
+ 20,
752 (flags
& MSG_DONTWAIT
), &err
);
757 /* reserve space for Hardware header */
758 skb_reserve(skb
, hh_len
);
760 /* create space for UDP/IP header */
761 skb_put(skb
, fragheaderlen
+ transhdrlen
);
763 /* initialize network header pointer */
764 skb_reset_network_header(skb
);
766 /* initialize protocol header pointer */
767 skb
->transport_header
= skb
->network_header
+ fragheaderlen
;
769 skb
->ip_summed
= CHECKSUM_PARTIAL
;
772 /* specify the length of each IP datagram fragment */
773 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
774 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
775 __skb_queue_tail(queue
, skb
);
778 return skb_append_datato_frags(sk
, skb
, getfrag
, from
,
779 (length
- transhdrlen
));
782 static int __ip_append_data(struct sock
*sk
, struct sk_buff_head
*queue
,
783 struct inet_cork
*cork
,
784 int getfrag(void *from
, char *to
, int offset
,
785 int len
, int odd
, struct sk_buff
*skb
),
786 void *from
, int length
, int transhdrlen
,
789 struct inet_sock
*inet
= inet_sk(sk
);
792 struct ip_options
*opt
= inet
->cork
.opt
;
799 unsigned int maxfraglen
, fragheaderlen
;
800 int csummode
= CHECKSUM_NONE
;
801 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
803 exthdrlen
= transhdrlen
? rt
->dst
.header_len
: 0;
805 transhdrlen
+= exthdrlen
;
806 mtu
= inet
->cork
.fragsize
;
808 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
810 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
811 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
813 if (cork
->length
+ length
> 0xFFFF - fragheaderlen
) {
814 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
,
820 * transhdrlen > 0 means that this is the first fragment and we wish
821 * it won't be fragmented in the future.
824 length
+ fragheaderlen
<= mtu
&&
825 rt
->dst
.dev
->features
& NETIF_F_V4_CSUM
&&
827 csummode
= CHECKSUM_PARTIAL
;
829 skb
= skb_peek_tail(queue
);
831 cork
->length
+= length
;
832 if (((length
> mtu
) || (skb
&& skb_is_gso(skb
))) &&
833 (sk
->sk_protocol
== IPPROTO_UDP
) &&
834 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
835 err
= ip_ufo_append_data(sk
, queue
, getfrag
, from
, length
,
836 hh_len
, fragheaderlen
, transhdrlen
,
843 /* So, what's going on in the loop below?
845 * We use calculated fragment length to generate chained skb,
846 * each of segments is IP fragment ready for sending to network after
847 * adding appropriate IP header.
854 /* Check if the remaining data fits into current packet. */
855 copy
= mtu
- skb
->len
;
857 copy
= maxfraglen
- skb
->len
;
860 unsigned int datalen
;
861 unsigned int fraglen
;
862 unsigned int fraggap
;
863 unsigned int alloclen
;
864 struct sk_buff
*skb_prev
;
868 fraggap
= skb_prev
->len
- maxfraglen
;
873 * If remaining data exceeds the mtu,
874 * we know we need more fragment(s).
876 datalen
= length
+ fraggap
;
877 if (datalen
> mtu
- fragheaderlen
)
878 datalen
= maxfraglen
- fragheaderlen
;
879 fraglen
= datalen
+ fragheaderlen
;
881 if ((flags
& MSG_MORE
) &&
882 !(rt
->dst
.dev
->features
&NETIF_F_SG
))
887 /* The last fragment gets additional space at tail.
888 * Note, with MSG_MORE we overallocate on fragments,
889 * because we have no idea what fragment will be
892 if (datalen
== length
+ fraggap
) {
893 alloclen
+= rt
->dst
.trailer_len
;
894 /* make sure mtu is not reached */
895 if (datalen
> mtu
- fragheaderlen
- rt
->dst
.trailer_len
)
896 datalen
-= ALIGN(rt
->dst
.trailer_len
, 8);
899 skb
= sock_alloc_send_skb(sk
,
900 alloclen
+ hh_len
+ 15,
901 (flags
& MSG_DONTWAIT
), &err
);
904 if (atomic_read(&sk
->sk_wmem_alloc
) <=
906 skb
= sock_wmalloc(sk
,
907 alloclen
+ hh_len
+ 15, 1,
909 if (unlikely(skb
== NULL
))
912 /* only the initial fragment is
920 * Fill in the control structures
922 skb
->ip_summed
= csummode
;
924 skb_reserve(skb
, hh_len
);
925 skb_shinfo(skb
)->tx_flags
= cork
->tx_flags
;
928 * Find where to start putting bytes.
930 data
= skb_put(skb
, fraglen
);
931 skb_set_network_header(skb
, exthdrlen
);
932 skb
->transport_header
= (skb
->network_header
+
934 data
+= fragheaderlen
;
937 skb
->csum
= skb_copy_and_csum_bits(
938 skb_prev
, maxfraglen
,
939 data
+ transhdrlen
, fraggap
, 0);
940 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
943 pskb_trim_unique(skb_prev
, maxfraglen
);
946 copy
= datalen
- transhdrlen
- fraggap
;
947 if (copy
> 0 && getfrag(from
, data
+ transhdrlen
, offset
, copy
, fraggap
, skb
) < 0) {
954 length
-= datalen
- fraggap
;
957 csummode
= CHECKSUM_NONE
;
960 * Put the packet on the pending queue.
962 __skb_queue_tail(queue
, skb
);
969 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
)) {
973 if (getfrag(from
, skb_put(skb
, copy
),
974 offset
, copy
, off
, skb
) < 0) {
975 __skb_trim(skb
, off
);
980 int i
= skb_shinfo(skb
)->nr_frags
;
981 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
-1];
982 struct page
*page
= cork
->page
;
986 if (page
&& (left
= PAGE_SIZE
- off
) > 0) {
989 if (page
!= frag
->page
) {
990 if (i
== MAX_SKB_FRAGS
) {
995 skb_fill_page_desc(skb
, i
, page
, off
, 0);
996 frag
= &skb_shinfo(skb
)->frags
[i
];
998 } else if (i
< MAX_SKB_FRAGS
) {
999 if (copy
> PAGE_SIZE
)
1001 page
= alloc_pages(sk
->sk_allocation
, 0);
1009 skb_fill_page_desc(skb
, i
, page
, 0, 0);
1010 frag
= &skb_shinfo(skb
)->frags
[i
];
1015 if (getfrag(from
, page_address(frag
->page
)+frag
->page_offset
+frag
->size
, offset
, copy
, skb
->len
, skb
) < 0) {
1022 skb
->data_len
+= copy
;
1023 skb
->truesize
+= copy
;
1024 atomic_add(copy
, &sk
->sk_wmem_alloc
);
1033 cork
->length
-= length
;
1034 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1038 static int ip_setup_cork(struct sock
*sk
, struct inet_cork
*cork
,
1039 struct ipcm_cookie
*ipc
, struct rtable
**rtp
)
1041 struct inet_sock
*inet
= inet_sk(sk
);
1042 struct ip_options
*opt
;
1046 * setup for corking.
1050 if (cork
->opt
== NULL
) {
1051 cork
->opt
= kmalloc(sizeof(struct ip_options
) + 40,
1053 if (unlikely(cork
->opt
== NULL
))
1056 memcpy(cork
->opt
, opt
, sizeof(struct ip_options
) + opt
->optlen
);
1057 cork
->flags
|= IPCORK_OPT
;
1058 cork
->addr
= ipc
->addr
;
1064 * We steal reference to this route, caller should not release it
1067 cork
->fragsize
= inet
->pmtudisc
== IP_PMTUDISC_PROBE
?
1068 rt
->dst
.dev
->mtu
: dst_mtu(rt
->dst
.path
);
1069 cork
->dst
= &rt
->dst
;
1071 cork
->tx_flags
= ipc
->tx_flags
;
1079 * ip_append_data() and ip_append_page() can make one large IP datagram
1080 * from many pieces of data. Each pieces will be holded on the socket
1081 * until ip_push_pending_frames() is called. Each piece can be a page
1084 * Not only UDP, other transport protocols - e.g. raw sockets - can use
1085 * this interface potentially.
1087 * LATER: length must be adjusted by pad at tail, when it is required.
1089 int ip_append_data(struct sock
*sk
,
1090 int getfrag(void *from
, char *to
, int offset
, int len
,
1091 int odd
, struct sk_buff
*skb
),
1092 void *from
, int length
, int transhdrlen
,
1093 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1096 struct inet_sock
*inet
= inet_sk(sk
);
1099 if (flags
&MSG_PROBE
)
1102 if (skb_queue_empty(&sk
->sk_write_queue
)) {
1103 err
= ip_setup_cork(sk
, &inet
->cork
, ipc
, rtp
);
1110 return __ip_append_data(sk
, &sk
->sk_write_queue
, &inet
->cork
, getfrag
,
1111 from
, length
, transhdrlen
, flags
);
1114 ssize_t
ip_append_page(struct sock
*sk
, struct page
*page
,
1115 int offset
, size_t size
, int flags
)
1117 struct inet_sock
*inet
= inet_sk(sk
);
1118 struct sk_buff
*skb
;
1120 struct ip_options
*opt
= NULL
;
1125 unsigned int maxfraglen
, fragheaderlen
, fraggap
;
1130 if (flags
&MSG_PROBE
)
1133 if (skb_queue_empty(&sk
->sk_write_queue
))
1136 rt
= (struct rtable
*)inet
->cork
.dst
;
1137 if (inet
->cork
.flags
& IPCORK_OPT
)
1138 opt
= inet
->cork
.opt
;
1140 if (!(rt
->dst
.dev
->features
&NETIF_F_SG
))
1143 hh_len
= LL_RESERVED_SPACE(rt
->dst
.dev
);
1144 mtu
= inet
->cork
.fragsize
;
1146 fragheaderlen
= sizeof(struct iphdr
) + (opt
? opt
->optlen
: 0);
1147 maxfraglen
= ((mtu
- fragheaderlen
) & ~7) + fragheaderlen
;
1149 if (inet
->cork
.length
+ size
> 0xFFFF - fragheaderlen
) {
1150 ip_local_error(sk
, EMSGSIZE
, rt
->rt_dst
, inet
->inet_dport
, mtu
);
1154 if ((skb
= skb_peek_tail(&sk
->sk_write_queue
)) == NULL
)
1157 inet
->cork
.length
+= size
;
1158 if ((size
+ skb
->len
> mtu
) &&
1159 (sk
->sk_protocol
== IPPROTO_UDP
) &&
1160 (rt
->dst
.dev
->features
& NETIF_F_UFO
)) {
1161 skb_shinfo(skb
)->gso_size
= mtu
- fragheaderlen
;
1162 skb_shinfo(skb
)->gso_type
= SKB_GSO_UDP
;
1169 if (skb_is_gso(skb
))
1173 /* Check if the remaining data fits into current packet. */
1174 len
= mtu
- skb
->len
;
1176 len
= maxfraglen
- skb
->len
;
1179 struct sk_buff
*skb_prev
;
1183 fraggap
= skb_prev
->len
- maxfraglen
;
1185 alloclen
= fragheaderlen
+ hh_len
+ fraggap
+ 15;
1186 skb
= sock_wmalloc(sk
, alloclen
, 1, sk
->sk_allocation
);
1187 if (unlikely(!skb
)) {
1193 * Fill in the control structures
1195 skb
->ip_summed
= CHECKSUM_NONE
;
1197 skb_reserve(skb
, hh_len
);
1200 * Find where to start putting bytes.
1202 skb_put(skb
, fragheaderlen
+ fraggap
);
1203 skb_reset_network_header(skb
);
1204 skb
->transport_header
= (skb
->network_header
+
1207 skb
->csum
= skb_copy_and_csum_bits(skb_prev
,
1209 skb_transport_header(skb
),
1211 skb_prev
->csum
= csum_sub(skb_prev
->csum
,
1213 pskb_trim_unique(skb_prev
, maxfraglen
);
1217 * Put the packet on the pending queue.
1219 __skb_queue_tail(&sk
->sk_write_queue
, skb
);
1223 i
= skb_shinfo(skb
)->nr_frags
;
1226 if (skb_can_coalesce(skb
, i
, page
, offset
)) {
1227 skb_shinfo(skb
)->frags
[i
-1].size
+= len
;
1228 } else if (i
< MAX_SKB_FRAGS
) {
1230 skb_fill_page_desc(skb
, i
, page
, offset
, len
);
1236 if (skb
->ip_summed
== CHECKSUM_NONE
) {
1238 csum
= csum_page(page
, offset
, len
);
1239 skb
->csum
= csum_block_add(skb
->csum
, csum
, skb
->len
);
1243 skb
->data_len
+= len
;
1244 skb
->truesize
+= len
;
1245 atomic_add(len
, &sk
->sk_wmem_alloc
);
1252 inet
->cork
.length
-= size
;
1253 IP_INC_STATS(sock_net(sk
), IPSTATS_MIB_OUTDISCARDS
);
1257 static void ip_cork_release(struct inet_cork
*cork
)
1259 cork
->flags
&= ~IPCORK_OPT
;
1262 dst_release(cork
->dst
);
1267 * Combined all pending IP fragments on the socket as one IP datagram
1268 * and push them out.
1270 struct sk_buff
*__ip_make_skb(struct sock
*sk
,
1271 struct sk_buff_head
*queue
,
1272 struct inet_cork
*cork
)
1274 struct sk_buff
*skb
, *tmp_skb
;
1275 struct sk_buff
**tail_skb
;
1276 struct inet_sock
*inet
= inet_sk(sk
);
1277 struct net
*net
= sock_net(sk
);
1278 struct ip_options
*opt
= NULL
;
1279 struct rtable
*rt
= (struct rtable
*)cork
->dst
;
1284 if ((skb
= __skb_dequeue(queue
)) == NULL
)
1286 tail_skb
= &(skb_shinfo(skb
)->frag_list
);
1288 /* move skb->data to ip header from ext header */
1289 if (skb
->data
< skb_network_header(skb
))
1290 __skb_pull(skb
, skb_network_offset(skb
));
1291 while ((tmp_skb
= __skb_dequeue(queue
)) != NULL
) {
1292 __skb_pull(tmp_skb
, skb_network_header_len(skb
));
1293 *tail_skb
= tmp_skb
;
1294 tail_skb
= &(tmp_skb
->next
);
1295 skb
->len
+= tmp_skb
->len
;
1296 skb
->data_len
+= tmp_skb
->len
;
1297 skb
->truesize
+= tmp_skb
->truesize
;
1298 tmp_skb
->destructor
= NULL
;
1302 /* Unless user demanded real pmtu discovery (IP_PMTUDISC_DO), we allow
1303 * to fragment the frame generated here. No matter, what transforms
1304 * how transforms change size of the packet, it will come out.
1306 if (inet
->pmtudisc
< IP_PMTUDISC_DO
)
1309 /* DF bit is set when we want to see DF on outgoing frames.
1310 * If local_df is set too, we still allow to fragment this frame
1312 if (inet
->pmtudisc
>= IP_PMTUDISC_DO
||
1313 (skb
->len
<= dst_mtu(&rt
->dst
) &&
1314 ip_dont_fragment(sk
, &rt
->dst
)))
1317 if (cork
->flags
& IPCORK_OPT
)
1320 if (rt
->rt_type
== RTN_MULTICAST
)
1323 ttl
= ip_select_ttl(inet
, &rt
->dst
);
1325 iph
= (struct iphdr
*)skb
->data
;
1329 iph
->ihl
+= opt
->optlen
>>2;
1330 ip_options_build(skb
, opt
, cork
->addr
, rt
, 0);
1332 iph
->tos
= inet
->tos
;
1334 ip_select_ident(iph
, &rt
->dst
, sk
);
1336 iph
->protocol
= sk
->sk_protocol
;
1337 iph
->saddr
= rt
->rt_src
;
1338 iph
->daddr
= rt
->rt_dst
;
1340 skb
->priority
= sk
->sk_priority
;
1341 skb
->mark
= sk
->sk_mark
;
1343 * Steal rt from cork.dst to avoid a pair of atomic_inc/atomic_dec
1347 skb_dst_set(skb
, &rt
->dst
);
1349 if (iph
->protocol
== IPPROTO_ICMP
)
1350 icmp_out_count(net
, ((struct icmphdr
*)
1351 skb_transport_header(skb
))->type
);
1353 ip_cork_release(cork
);
1358 int ip_send_skb(struct sk_buff
*skb
)
1360 struct net
*net
= sock_net(skb
->sk
);
1363 err
= ip_local_out(skb
);
1366 err
= net_xmit_errno(err
);
1368 IP_INC_STATS(net
, IPSTATS_MIB_OUTDISCARDS
);
1374 int ip_push_pending_frames(struct sock
*sk
)
1376 struct sk_buff
*skb
;
1378 skb
= ip_finish_skb(sk
);
1382 /* Netfilter gets whole the not fragmented skb. */
1383 return ip_send_skb(skb
);
1387 * Throw away all pending data on the socket.
1389 static void __ip_flush_pending_frames(struct sock
*sk
,
1390 struct sk_buff_head
*queue
,
1391 struct inet_cork
*cork
)
1393 struct sk_buff
*skb
;
1395 while ((skb
= __skb_dequeue_tail(queue
)) != NULL
)
1398 ip_cork_release(cork
);
1401 void ip_flush_pending_frames(struct sock
*sk
)
1403 __ip_flush_pending_frames(sk
, &sk
->sk_write_queue
, &inet_sk(sk
)->cork
);
1406 struct sk_buff
*ip_make_skb(struct sock
*sk
,
1407 int getfrag(void *from
, char *to
, int offset
,
1408 int len
, int odd
, struct sk_buff
*skb
),
1409 void *from
, int length
, int transhdrlen
,
1410 struct ipcm_cookie
*ipc
, struct rtable
**rtp
,
1413 struct inet_cork cork
= {};
1414 struct sk_buff_head queue
;
1417 if (flags
& MSG_PROBE
)
1420 __skb_queue_head_init(&queue
);
1422 err
= ip_setup_cork(sk
, &cork
, ipc
, rtp
);
1424 return ERR_PTR(err
);
1426 err
= __ip_append_data(sk
, &queue
, &cork
, getfrag
,
1427 from
, length
, transhdrlen
, flags
);
1429 __ip_flush_pending_frames(sk
, &queue
, &cork
);
1430 return ERR_PTR(err
);
1433 return __ip_make_skb(sk
, &queue
, &cork
);
1437 * Fetch data from kernel space and fill in checksum if needed.
1439 static int ip_reply_glue_bits(void *dptr
, char *to
, int offset
,
1440 int len
, int odd
, struct sk_buff
*skb
)
1444 csum
= csum_partial_copy_nocheck(dptr
+offset
, to
, len
, 0);
1445 skb
->csum
= csum_block_add(skb
->csum
, csum
, odd
);
1450 * Generic function to send a packet as reply to another packet.
1451 * Used to send TCP resets so far. ICMP should use this function too.
1453 * Should run single threaded per socket because it uses the sock
1454 * structure to pass arguments.
1456 void ip_send_reply(struct sock
*sk
, struct sk_buff
*skb
, struct ip_reply_arg
*arg
,
1459 struct inet_sock
*inet
= inet_sk(sk
);
1461 struct ip_options opt
;
1464 struct ipcm_cookie ipc
;
1466 struct rtable
*rt
= skb_rtable(skb
);
1468 if (ip_options_echo(&replyopts
.opt
, skb
))
1471 daddr
= ipc
.addr
= rt
->rt_src
;
1475 if (replyopts
.opt
.optlen
) {
1476 ipc
.opt
= &replyopts
.opt
;
1479 daddr
= replyopts
.opt
.faddr
;
1483 struct flowi fl
= { .oif
= arg
->bound_dev_if
,
1485 .fl4_src
= rt
->rt_spec_dst
,
1486 .fl4_tos
= RT_TOS(ip_hdr(skb
)->tos
),
1487 .fl_ip_sport
= tcp_hdr(skb
)->dest
,
1488 .fl_ip_dport
= tcp_hdr(skb
)->source
,
1489 .proto
= sk
->sk_protocol
,
1490 .flags
= ip_reply_arg_flowi_flags(arg
) };
1491 security_skb_classify_flow(skb
, &fl
);
1492 if (ip_route_output_key(sock_net(sk
), &rt
, &fl
))
1496 /* And let IP do all the hard work.
1498 This chunk is not reenterable, hence spinlock.
1499 Note that it uses the fact, that this function is called
1500 with locally disabled BH and that sk cannot be already spinlocked.
1503 inet
->tos
= ip_hdr(skb
)->tos
;
1504 sk
->sk_priority
= skb
->priority
;
1505 sk
->sk_protocol
= ip_hdr(skb
)->protocol
;
1506 sk
->sk_bound_dev_if
= arg
->bound_dev_if
;
1507 ip_append_data(sk
, ip_reply_glue_bits
, arg
->iov
->iov_base
, len
, 0,
1508 &ipc
, &rt
, MSG_DONTWAIT
);
1509 if ((skb
= skb_peek(&sk
->sk_write_queue
)) != NULL
) {
1510 if (arg
->csumoffset
>= 0)
1511 *((__sum16
*)skb_transport_header(skb
) +
1512 arg
->csumoffset
) = csum_fold(csum_add(skb
->csum
,
1514 skb
->ip_summed
= CHECKSUM_NONE
;
1515 ip_push_pending_frames(sk
);
1523 void __init
ip_init(void)
1528 #if defined(CONFIG_IP_MULTICAST) && defined(CONFIG_PROC_FS)
1529 igmp_mc_proc_init();