ipv4: Kill can_sleep arg to ip_route_output_flow()
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / infiniband / hw / cxgb3 / iwch_cm.c
blobe654285aa6ba2abda2fe9ee469d47cc2e38290e6
1 /*
2 * Copyright (c) 2006 Chelsio, Inc. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
32 #include <linux/module.h>
33 #include <linux/list.h>
34 #include <linux/slab.h>
35 #include <linux/workqueue.h>
36 #include <linux/skbuff.h>
37 #include <linux/timer.h>
38 #include <linux/notifier.h>
39 #include <linux/inetdevice.h>
41 #include <net/neighbour.h>
42 #include <net/netevent.h>
43 #include <net/route.h>
45 #include "tcb.h"
46 #include "cxgb3_offload.h"
47 #include "iwch.h"
48 #include "iwch_provider.h"
49 #include "iwch_cm.h"
51 static char *states[] = {
52 "idle",
53 "listen",
54 "connecting",
55 "mpa_wait_req",
56 "mpa_req_sent",
57 "mpa_req_rcvd",
58 "mpa_rep_sent",
59 "fpdu_mode",
60 "aborting",
61 "closing",
62 "moribund",
63 "dead",
64 NULL,
67 int peer2peer = 0;
68 module_param(peer2peer, int, 0644);
69 MODULE_PARM_DESC(peer2peer, "Support peer2peer ULPs (default=0)");
71 static int ep_timeout_secs = 60;
72 module_param(ep_timeout_secs, int, 0644);
73 MODULE_PARM_DESC(ep_timeout_secs, "CM Endpoint operation timeout "
74 "in seconds (default=60)");
76 static int mpa_rev = 1;
77 module_param(mpa_rev, int, 0644);
78 MODULE_PARM_DESC(mpa_rev, "MPA Revision, 0 supports amso1100, "
79 "1 is spec compliant. (default=1)");
81 static int markers_enabled = 0;
82 module_param(markers_enabled, int, 0644);
83 MODULE_PARM_DESC(markers_enabled, "Enable MPA MARKERS (default(0)=disabled)");
85 static int crc_enabled = 1;
86 module_param(crc_enabled, int, 0644);
87 MODULE_PARM_DESC(crc_enabled, "Enable MPA CRC (default(1)=enabled)");
89 static int rcv_win = 256 * 1024;
90 module_param(rcv_win, int, 0644);
91 MODULE_PARM_DESC(rcv_win, "TCP receive window in bytes (default=256)");
93 static int snd_win = 32 * 1024;
94 module_param(snd_win, int, 0644);
95 MODULE_PARM_DESC(snd_win, "TCP send window in bytes (default=32KB)");
97 static unsigned int nocong = 0;
98 module_param(nocong, uint, 0644);
99 MODULE_PARM_DESC(nocong, "Turn off congestion control (default=0)");
101 static unsigned int cong_flavor = 1;
102 module_param(cong_flavor, uint, 0644);
103 MODULE_PARM_DESC(cong_flavor, "TCP Congestion control flavor (default=1)");
105 static struct workqueue_struct *workq;
107 static struct sk_buff_head rxq;
109 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp);
110 static void ep_timeout(unsigned long arg);
111 static void connect_reply_upcall(struct iwch_ep *ep, int status);
113 static void start_ep_timer(struct iwch_ep *ep)
115 PDBG("%s ep %p\n", __func__, ep);
116 if (timer_pending(&ep->timer)) {
117 PDBG("%s stopped / restarted timer ep %p\n", __func__, ep);
118 del_timer_sync(&ep->timer);
119 } else
120 get_ep(&ep->com);
121 ep->timer.expires = jiffies + ep_timeout_secs * HZ;
122 ep->timer.data = (unsigned long)ep;
123 ep->timer.function = ep_timeout;
124 add_timer(&ep->timer);
127 static void stop_ep_timer(struct iwch_ep *ep)
129 PDBG("%s ep %p\n", __func__, ep);
130 if (!timer_pending(&ep->timer)) {
131 printk(KERN_ERR "%s timer stopped when its not running! ep %p state %u\n",
132 __func__, ep, ep->com.state);
133 WARN_ON(1);
134 return;
136 del_timer_sync(&ep->timer);
137 put_ep(&ep->com);
140 static int iwch_l2t_send(struct t3cdev *tdev, struct sk_buff *skb, struct l2t_entry *l2e)
142 int error = 0;
143 struct cxio_rdev *rdev;
145 rdev = (struct cxio_rdev *)tdev->ulp;
146 if (cxio_fatal_error(rdev)) {
147 kfree_skb(skb);
148 return -EIO;
150 error = l2t_send(tdev, skb, l2e);
151 if (error < 0)
152 kfree_skb(skb);
153 return error;
156 int iwch_cxgb3_ofld_send(struct t3cdev *tdev, struct sk_buff *skb)
158 int error = 0;
159 struct cxio_rdev *rdev;
161 rdev = (struct cxio_rdev *)tdev->ulp;
162 if (cxio_fatal_error(rdev)) {
163 kfree_skb(skb);
164 return -EIO;
166 error = cxgb3_ofld_send(tdev, skb);
167 if (error < 0)
168 kfree_skb(skb);
169 return error;
172 static void release_tid(struct t3cdev *tdev, u32 hwtid, struct sk_buff *skb)
174 struct cpl_tid_release *req;
176 skb = get_skb(skb, sizeof *req, GFP_KERNEL);
177 if (!skb)
178 return;
179 req = (struct cpl_tid_release *) skb_put(skb, sizeof(*req));
180 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
181 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_TID_RELEASE, hwtid));
182 skb->priority = CPL_PRIORITY_SETUP;
183 iwch_cxgb3_ofld_send(tdev, skb);
184 return;
187 int iwch_quiesce_tid(struct iwch_ep *ep)
189 struct cpl_set_tcb_field *req;
190 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
192 if (!skb)
193 return -ENOMEM;
194 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
195 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
196 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
197 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
198 req->reply = 0;
199 req->cpu_idx = 0;
200 req->word = htons(W_TCB_RX_QUIESCE);
201 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
202 req->val = cpu_to_be64(1 << S_TCB_RX_QUIESCE);
204 skb->priority = CPL_PRIORITY_DATA;
205 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
208 int iwch_resume_tid(struct iwch_ep *ep)
210 struct cpl_set_tcb_field *req;
211 struct sk_buff *skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
213 if (!skb)
214 return -ENOMEM;
215 req = (struct cpl_set_tcb_field *) skb_put(skb, sizeof(*req));
216 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
217 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
218 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_SET_TCB_FIELD, ep->hwtid));
219 req->reply = 0;
220 req->cpu_idx = 0;
221 req->word = htons(W_TCB_RX_QUIESCE);
222 req->mask = cpu_to_be64(1ULL << S_TCB_RX_QUIESCE);
223 req->val = 0;
225 skb->priority = CPL_PRIORITY_DATA;
226 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
229 static void set_emss(struct iwch_ep *ep, u16 opt)
231 PDBG("%s ep %p opt %u\n", __func__, ep, opt);
232 ep->emss = T3C_DATA(ep->com.tdev)->mtus[G_TCPOPT_MSS(opt)] - 40;
233 if (G_TCPOPT_TSTAMP(opt))
234 ep->emss -= 12;
235 if (ep->emss < 128)
236 ep->emss = 128;
237 PDBG("emss=%d\n", ep->emss);
240 static enum iwch_ep_state state_read(struct iwch_ep_common *epc)
242 unsigned long flags;
243 enum iwch_ep_state state;
245 spin_lock_irqsave(&epc->lock, flags);
246 state = epc->state;
247 spin_unlock_irqrestore(&epc->lock, flags);
248 return state;
251 static void __state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
253 epc->state = new;
256 static void state_set(struct iwch_ep_common *epc, enum iwch_ep_state new)
258 unsigned long flags;
260 spin_lock_irqsave(&epc->lock, flags);
261 PDBG("%s - %s -> %s\n", __func__, states[epc->state], states[new]);
262 __state_set(epc, new);
263 spin_unlock_irqrestore(&epc->lock, flags);
264 return;
267 static void *alloc_ep(int size, gfp_t gfp)
269 struct iwch_ep_common *epc;
271 epc = kzalloc(size, gfp);
272 if (epc) {
273 kref_init(&epc->kref);
274 spin_lock_init(&epc->lock);
275 init_waitqueue_head(&epc->waitq);
277 PDBG("%s alloc ep %p\n", __func__, epc);
278 return epc;
281 void __free_ep(struct kref *kref)
283 struct iwch_ep *ep;
284 ep = container_of(container_of(kref, struct iwch_ep_common, kref),
285 struct iwch_ep, com);
286 PDBG("%s ep %p state %s\n", __func__, ep, states[state_read(&ep->com)]);
287 if (test_bit(RELEASE_RESOURCES, &ep->com.flags)) {
288 cxgb3_remove_tid(ep->com.tdev, (void *)ep, ep->hwtid);
289 dst_release(ep->dst);
290 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
292 kfree(ep);
295 static void release_ep_resources(struct iwch_ep *ep)
297 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
298 set_bit(RELEASE_RESOURCES, &ep->com.flags);
299 put_ep(&ep->com);
302 static int status2errno(int status)
304 switch (status) {
305 case CPL_ERR_NONE:
306 return 0;
307 case CPL_ERR_CONN_RESET:
308 return -ECONNRESET;
309 case CPL_ERR_ARP_MISS:
310 return -EHOSTUNREACH;
311 case CPL_ERR_CONN_TIMEDOUT:
312 return -ETIMEDOUT;
313 case CPL_ERR_TCAM_FULL:
314 return -ENOMEM;
315 case CPL_ERR_CONN_EXIST:
316 return -EADDRINUSE;
317 default:
318 return -EIO;
323 * Try and reuse skbs already allocated...
325 static struct sk_buff *get_skb(struct sk_buff *skb, int len, gfp_t gfp)
327 if (skb && !skb_is_nonlinear(skb) && !skb_cloned(skb)) {
328 skb_trim(skb, 0);
329 skb_get(skb);
330 } else {
331 skb = alloc_skb(len, gfp);
333 return skb;
336 static struct rtable *find_route(struct t3cdev *dev, __be32 local_ip,
337 __be32 peer_ip, __be16 local_port,
338 __be16 peer_port, u8 tos)
340 struct rtable *rt;
341 struct flowi fl = {
342 .oif = 0,
343 .nl_u = {
344 .ip4_u = {
345 .daddr = peer_ip,
346 .saddr = local_ip,
347 .tos = tos}
349 .proto = IPPROTO_TCP,
350 .uli_u = {
351 .ports = {
352 .sport = local_port,
353 .dport = peer_port}
357 if (ip_route_output_flow(&init_net, &rt, &fl, NULL))
358 return NULL;
359 return rt;
362 static unsigned int find_best_mtu(const struct t3c_data *d, unsigned short mtu)
364 int i = 0;
366 while (i < d->nmtus - 1 && d->mtus[i + 1] <= mtu)
367 ++i;
368 return i;
371 static void arp_failure_discard(struct t3cdev *dev, struct sk_buff *skb)
373 PDBG("%s t3cdev %p\n", __func__, dev);
374 kfree_skb(skb);
378 * Handle an ARP failure for an active open.
380 static void act_open_req_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
382 printk(KERN_ERR MOD "ARP failure duing connect\n");
383 kfree_skb(skb);
387 * Handle an ARP failure for a CPL_ABORT_REQ. Change it into a no RST variant
388 * and send it along.
390 static void abort_arp_failure(struct t3cdev *dev, struct sk_buff *skb)
392 struct cpl_abort_req *req = cplhdr(skb);
394 PDBG("%s t3cdev %p\n", __func__, dev);
395 req->cmd = CPL_ABORT_NO_RST;
396 iwch_cxgb3_ofld_send(dev, skb);
399 static int send_halfclose(struct iwch_ep *ep, gfp_t gfp)
401 struct cpl_close_con_req *req;
402 struct sk_buff *skb;
404 PDBG("%s ep %p\n", __func__, ep);
405 skb = get_skb(NULL, sizeof(*req), gfp);
406 if (!skb) {
407 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
408 return -ENOMEM;
410 skb->priority = CPL_PRIORITY_DATA;
411 set_arp_failure_handler(skb, arp_failure_discard);
412 req = (struct cpl_close_con_req *) skb_put(skb, sizeof(*req));
413 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_CLOSE_CON));
414 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
415 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_CON_REQ, ep->hwtid));
416 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
419 static int send_abort(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
421 struct cpl_abort_req *req;
423 PDBG("%s ep %p\n", __func__, ep);
424 skb = get_skb(skb, sizeof(*req), gfp);
425 if (!skb) {
426 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
427 __func__);
428 return -ENOMEM;
430 skb->priority = CPL_PRIORITY_DATA;
431 set_arp_failure_handler(skb, abort_arp_failure);
432 req = (struct cpl_abort_req *) skb_put(skb, sizeof(*req));
433 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_REQ));
434 req->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
435 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ABORT_REQ, ep->hwtid));
436 req->cmd = CPL_ABORT_SEND_RST;
437 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
440 static int send_connect(struct iwch_ep *ep)
442 struct cpl_act_open_req *req;
443 struct sk_buff *skb;
444 u32 opt0h, opt0l, opt2;
445 unsigned int mtu_idx;
446 int wscale;
448 PDBG("%s ep %p\n", __func__, ep);
450 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
451 if (!skb) {
452 printk(KERN_ERR MOD "%s - failed to alloc skb.\n",
453 __func__);
454 return -ENOMEM;
456 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
457 wscale = compute_wscale(rcv_win);
458 opt0h = V_NAGLE(0) |
459 V_NO_CONG(nocong) |
460 V_KEEP_ALIVE(1) |
461 F_TCAM_BYPASS |
462 V_WND_SCALE(wscale) |
463 V_MSS_IDX(mtu_idx) |
464 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
465 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
466 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
467 V_CONG_CONTROL_FLAVOR(cong_flavor);
468 skb->priority = CPL_PRIORITY_SETUP;
469 set_arp_failure_handler(skb, act_open_req_arp_failure);
471 req = (struct cpl_act_open_req *) skb_put(skb, sizeof(*req));
472 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
473 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_ACT_OPEN_REQ, ep->atid));
474 req->local_port = ep->com.local_addr.sin_port;
475 req->peer_port = ep->com.remote_addr.sin_port;
476 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
477 req->peer_ip = ep->com.remote_addr.sin_addr.s_addr;
478 req->opt0h = htonl(opt0h);
479 req->opt0l = htonl(opt0l);
480 req->params = 0;
481 req->opt2 = htonl(opt2);
482 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
485 static void send_mpa_req(struct iwch_ep *ep, struct sk_buff *skb)
487 int mpalen;
488 struct tx_data_wr *req;
489 struct mpa_message *mpa;
490 int len;
492 PDBG("%s ep %p pd_len %d\n", __func__, ep, ep->plen);
494 BUG_ON(skb_cloned(skb));
496 mpalen = sizeof(*mpa) + ep->plen;
497 if (skb->data + mpalen + sizeof(*req) > skb_end_pointer(skb)) {
498 kfree_skb(skb);
499 skb=alloc_skb(mpalen + sizeof(*req), GFP_KERNEL);
500 if (!skb) {
501 connect_reply_upcall(ep, -ENOMEM);
502 return;
505 skb_trim(skb, 0);
506 skb_reserve(skb, sizeof(*req));
507 skb_put(skb, mpalen);
508 skb->priority = CPL_PRIORITY_DATA;
509 mpa = (struct mpa_message *) skb->data;
510 memset(mpa, 0, sizeof(*mpa));
511 memcpy(mpa->key, MPA_KEY_REQ, sizeof(mpa->key));
512 mpa->flags = (crc_enabled ? MPA_CRC : 0) |
513 (markers_enabled ? MPA_MARKERS : 0);
514 mpa->private_data_size = htons(ep->plen);
515 mpa->revision = mpa_rev;
517 if (ep->plen)
518 memcpy(mpa->private_data, ep->mpa_pkt + sizeof(*mpa), ep->plen);
521 * Reference the mpa skb. This ensures the data area
522 * will remain in memory until the hw acks the tx.
523 * Function tx_ack() will deref it.
525 skb_get(skb);
526 set_arp_failure_handler(skb, arp_failure_discard);
527 skb_reset_transport_header(skb);
528 len = skb->len;
529 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
530 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
531 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
532 req->len = htonl(len);
533 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
534 V_TX_SNDBUF(snd_win>>15));
535 req->flags = htonl(F_TX_INIT);
536 req->sndseq = htonl(ep->snd_seq);
537 BUG_ON(ep->mpa_skb);
538 ep->mpa_skb = skb;
539 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
540 start_ep_timer(ep);
541 state_set(&ep->com, MPA_REQ_SENT);
542 return;
545 static int send_mpa_reject(struct iwch_ep *ep, const void *pdata, u8 plen)
547 int mpalen;
548 struct tx_data_wr *req;
549 struct mpa_message *mpa;
550 struct sk_buff *skb;
552 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
554 mpalen = sizeof(*mpa) + plen;
556 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
557 if (!skb) {
558 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
559 return -ENOMEM;
561 skb_reserve(skb, sizeof(*req));
562 mpa = (struct mpa_message *) skb_put(skb, mpalen);
563 memset(mpa, 0, sizeof(*mpa));
564 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
565 mpa->flags = MPA_REJECT;
566 mpa->revision = mpa_rev;
567 mpa->private_data_size = htons(plen);
568 if (plen)
569 memcpy(mpa->private_data, pdata, plen);
572 * Reference the mpa skb again. This ensures the data area
573 * will remain in memory until the hw acks the tx.
574 * Function tx_ack() will deref it.
576 skb_get(skb);
577 skb->priority = CPL_PRIORITY_DATA;
578 set_arp_failure_handler(skb, arp_failure_discard);
579 skb_reset_transport_header(skb);
580 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
581 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
582 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
583 req->len = htonl(mpalen);
584 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
585 V_TX_SNDBUF(snd_win>>15));
586 req->flags = htonl(F_TX_INIT);
587 req->sndseq = htonl(ep->snd_seq);
588 BUG_ON(ep->mpa_skb);
589 ep->mpa_skb = skb;
590 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
593 static int send_mpa_reply(struct iwch_ep *ep, const void *pdata, u8 plen)
595 int mpalen;
596 struct tx_data_wr *req;
597 struct mpa_message *mpa;
598 int len;
599 struct sk_buff *skb;
601 PDBG("%s ep %p plen %d\n", __func__, ep, plen);
603 mpalen = sizeof(*mpa) + plen;
605 skb = get_skb(NULL, mpalen + sizeof(*req), GFP_KERNEL);
606 if (!skb) {
607 printk(KERN_ERR MOD "%s - cannot alloc skb!\n", __func__);
608 return -ENOMEM;
610 skb->priority = CPL_PRIORITY_DATA;
611 skb_reserve(skb, sizeof(*req));
612 mpa = (struct mpa_message *) skb_put(skb, mpalen);
613 memset(mpa, 0, sizeof(*mpa));
614 memcpy(mpa->key, MPA_KEY_REP, sizeof(mpa->key));
615 mpa->flags = (ep->mpa_attr.crc_enabled ? MPA_CRC : 0) |
616 (markers_enabled ? MPA_MARKERS : 0);
617 mpa->revision = mpa_rev;
618 mpa->private_data_size = htons(plen);
619 if (plen)
620 memcpy(mpa->private_data, pdata, plen);
623 * Reference the mpa skb. This ensures the data area
624 * will remain in memory until the hw acks the tx.
625 * Function tx_ack() will deref it.
627 skb_get(skb);
628 set_arp_failure_handler(skb, arp_failure_discard);
629 skb_reset_transport_header(skb);
630 len = skb->len;
631 req = (struct tx_data_wr *) skb_push(skb, sizeof(*req));
632 req->wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_TX_DATA)|F_WR_COMPL);
633 req->wr_lo = htonl(V_WR_TID(ep->hwtid));
634 req->len = htonl(len);
635 req->param = htonl(V_TX_PORT(ep->l2t->smt_idx) |
636 V_TX_SNDBUF(snd_win>>15));
637 req->flags = htonl(F_TX_INIT);
638 req->sndseq = htonl(ep->snd_seq);
639 ep->mpa_skb = skb;
640 state_set(&ep->com, MPA_REP_SENT);
641 return iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
644 static int act_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
646 struct iwch_ep *ep = ctx;
647 struct cpl_act_establish *req = cplhdr(skb);
648 unsigned int tid = GET_TID(req);
650 PDBG("%s ep %p tid %d\n", __func__, ep, tid);
652 dst_confirm(ep->dst);
654 /* setup the hwtid for this connection */
655 ep->hwtid = tid;
656 cxgb3_insert_tid(ep->com.tdev, &t3c_client, ep, tid);
658 ep->snd_seq = ntohl(req->snd_isn);
659 ep->rcv_seq = ntohl(req->rcv_isn);
661 set_emss(ep, ntohs(req->tcp_opt));
663 /* dealloc the atid */
664 cxgb3_free_atid(ep->com.tdev, ep->atid);
666 /* start MPA negotiation */
667 send_mpa_req(ep, skb);
669 return 0;
672 static void abort_connection(struct iwch_ep *ep, struct sk_buff *skb, gfp_t gfp)
674 PDBG("%s ep %p\n", __FILE__, ep);
675 state_set(&ep->com, ABORTING);
676 send_abort(ep, skb, gfp);
679 static void close_complete_upcall(struct iwch_ep *ep)
681 struct iw_cm_event event;
683 PDBG("%s ep %p\n", __func__, ep);
684 memset(&event, 0, sizeof(event));
685 event.event = IW_CM_EVENT_CLOSE;
686 if (ep->com.cm_id) {
687 PDBG("close complete delivered ep %p cm_id %p tid %d\n",
688 ep, ep->com.cm_id, ep->hwtid);
689 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
690 ep->com.cm_id->rem_ref(ep->com.cm_id);
691 ep->com.cm_id = NULL;
692 ep->com.qp = NULL;
696 static void peer_close_upcall(struct iwch_ep *ep)
698 struct iw_cm_event event;
700 PDBG("%s ep %p\n", __func__, ep);
701 memset(&event, 0, sizeof(event));
702 event.event = IW_CM_EVENT_DISCONNECT;
703 if (ep->com.cm_id) {
704 PDBG("peer close delivered ep %p cm_id %p tid %d\n",
705 ep, ep->com.cm_id, ep->hwtid);
706 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
710 static void peer_abort_upcall(struct iwch_ep *ep)
712 struct iw_cm_event event;
714 PDBG("%s ep %p\n", __func__, ep);
715 memset(&event, 0, sizeof(event));
716 event.event = IW_CM_EVENT_CLOSE;
717 event.status = -ECONNRESET;
718 if (ep->com.cm_id) {
719 PDBG("abort delivered ep %p cm_id %p tid %d\n", ep,
720 ep->com.cm_id, ep->hwtid);
721 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
722 ep->com.cm_id->rem_ref(ep->com.cm_id);
723 ep->com.cm_id = NULL;
724 ep->com.qp = NULL;
728 static void connect_reply_upcall(struct iwch_ep *ep, int status)
730 struct iw_cm_event event;
732 PDBG("%s ep %p status %d\n", __func__, ep, status);
733 memset(&event, 0, sizeof(event));
734 event.event = IW_CM_EVENT_CONNECT_REPLY;
735 event.status = status;
736 event.local_addr = ep->com.local_addr;
737 event.remote_addr = ep->com.remote_addr;
739 if ((status == 0) || (status == -ECONNREFUSED)) {
740 event.private_data_len = ep->plen;
741 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
743 if (ep->com.cm_id) {
744 PDBG("%s ep %p tid %d status %d\n", __func__, ep,
745 ep->hwtid, status);
746 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
748 if (status < 0) {
749 ep->com.cm_id->rem_ref(ep->com.cm_id);
750 ep->com.cm_id = NULL;
751 ep->com.qp = NULL;
755 static void connect_request_upcall(struct iwch_ep *ep)
757 struct iw_cm_event event;
759 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
760 memset(&event, 0, sizeof(event));
761 event.event = IW_CM_EVENT_CONNECT_REQUEST;
762 event.local_addr = ep->com.local_addr;
763 event.remote_addr = ep->com.remote_addr;
764 event.private_data_len = ep->plen;
765 event.private_data = ep->mpa_pkt + sizeof(struct mpa_message);
766 event.provider_data = ep;
767 if (state_read(&ep->parent_ep->com) != DEAD) {
768 get_ep(&ep->com);
769 ep->parent_ep->com.cm_id->event_handler(
770 ep->parent_ep->com.cm_id,
771 &event);
773 put_ep(&ep->parent_ep->com);
774 ep->parent_ep = NULL;
777 static void established_upcall(struct iwch_ep *ep)
779 struct iw_cm_event event;
781 PDBG("%s ep %p\n", __func__, ep);
782 memset(&event, 0, sizeof(event));
783 event.event = IW_CM_EVENT_ESTABLISHED;
784 if (ep->com.cm_id) {
785 PDBG("%s ep %p tid %d\n", __func__, ep, ep->hwtid);
786 ep->com.cm_id->event_handler(ep->com.cm_id, &event);
790 static int update_rx_credits(struct iwch_ep *ep, u32 credits)
792 struct cpl_rx_data_ack *req;
793 struct sk_buff *skb;
795 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
796 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
797 if (!skb) {
798 printk(KERN_ERR MOD "update_rx_credits - cannot alloc skb!\n");
799 return 0;
802 req = (struct cpl_rx_data_ack *) skb_put(skb, sizeof(*req));
803 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
804 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_RX_DATA_ACK, ep->hwtid));
805 req->credit_dack = htonl(V_RX_CREDITS(credits) | V_RX_FORCE_ACK(1));
806 skb->priority = CPL_PRIORITY_ACK;
807 iwch_cxgb3_ofld_send(ep->com.tdev, skb);
808 return credits;
811 static void process_mpa_reply(struct iwch_ep *ep, struct sk_buff *skb)
813 struct mpa_message *mpa;
814 u16 plen;
815 struct iwch_qp_attributes attrs;
816 enum iwch_qp_attr_mask mask;
817 int err;
819 PDBG("%s ep %p\n", __func__, ep);
822 * Stop mpa timer. If it expired, then the state has
823 * changed and we bail since ep_timeout already aborted
824 * the connection.
826 stop_ep_timer(ep);
827 if (state_read(&ep->com) != MPA_REQ_SENT)
828 return;
831 * If we get more than the supported amount of private data
832 * then we must fail this connection.
834 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
835 err = -EINVAL;
836 goto err;
840 * copy the new data into our accumulation buffer.
842 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
843 skb->len);
844 ep->mpa_pkt_len += skb->len;
847 * if we don't even have the mpa message, then bail.
849 if (ep->mpa_pkt_len < sizeof(*mpa))
850 return;
851 mpa = (struct mpa_message *) ep->mpa_pkt;
853 /* Validate MPA header. */
854 if (mpa->revision != mpa_rev) {
855 err = -EPROTO;
856 goto err;
858 if (memcmp(mpa->key, MPA_KEY_REP, sizeof(mpa->key))) {
859 err = -EPROTO;
860 goto err;
863 plen = ntohs(mpa->private_data_size);
866 * Fail if there's too much private data.
868 if (plen > MPA_MAX_PRIVATE_DATA) {
869 err = -EPROTO;
870 goto err;
874 * If plen does not account for pkt size
876 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
877 err = -EPROTO;
878 goto err;
881 ep->plen = (u8) plen;
884 * If we don't have all the pdata yet, then bail.
885 * We'll continue process when more data arrives.
887 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
888 return;
890 if (mpa->flags & MPA_REJECT) {
891 err = -ECONNREFUSED;
892 goto err;
896 * If we get here we have accumulated the entire mpa
897 * start reply message including private data. And
898 * the MPA header is valid.
900 state_set(&ep->com, FPDU_MODE);
901 ep->mpa_attr.initiator = 1;
902 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
903 ep->mpa_attr.recv_marker_enabled = markers_enabled;
904 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
905 ep->mpa_attr.version = mpa_rev;
906 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
907 "xmit_marker_enabled=%d, version=%d\n", __func__,
908 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
909 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
911 attrs.mpa_attr = ep->mpa_attr;
912 attrs.max_ird = ep->ird;
913 attrs.max_ord = ep->ord;
914 attrs.llp_stream_handle = ep;
915 attrs.next_state = IWCH_QP_STATE_RTS;
917 mask = IWCH_QP_ATTR_NEXT_STATE |
918 IWCH_QP_ATTR_LLP_STREAM_HANDLE | IWCH_QP_ATTR_MPA_ATTR |
919 IWCH_QP_ATTR_MAX_IRD | IWCH_QP_ATTR_MAX_ORD;
921 /* bind QP and TID with INIT_WR */
922 err = iwch_modify_qp(ep->com.qp->rhp,
923 ep->com.qp, mask, &attrs, 1);
924 if (err)
925 goto err;
927 if (peer2peer && iwch_rqes_posted(ep->com.qp) == 0) {
928 iwch_post_zb_read(ep->com.qp);
931 goto out;
932 err:
933 abort_connection(ep, skb, GFP_KERNEL);
934 out:
935 connect_reply_upcall(ep, err);
936 return;
939 static void process_mpa_request(struct iwch_ep *ep, struct sk_buff *skb)
941 struct mpa_message *mpa;
942 u16 plen;
944 PDBG("%s ep %p\n", __func__, ep);
947 * Stop mpa timer. If it expired, then the state has
948 * changed and we bail since ep_timeout already aborted
949 * the connection.
951 stop_ep_timer(ep);
952 if (state_read(&ep->com) != MPA_REQ_WAIT)
953 return;
956 * If we get more than the supported amount of private data
957 * then we must fail this connection.
959 if (ep->mpa_pkt_len + skb->len > sizeof(ep->mpa_pkt)) {
960 abort_connection(ep, skb, GFP_KERNEL);
961 return;
964 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
967 * Copy the new data into our accumulation buffer.
969 skb_copy_from_linear_data(skb, &(ep->mpa_pkt[ep->mpa_pkt_len]),
970 skb->len);
971 ep->mpa_pkt_len += skb->len;
974 * If we don't even have the mpa message, then bail.
975 * We'll continue process when more data arrives.
977 if (ep->mpa_pkt_len < sizeof(*mpa))
978 return;
979 PDBG("%s enter (%s line %u)\n", __func__, __FILE__, __LINE__);
980 mpa = (struct mpa_message *) ep->mpa_pkt;
983 * Validate MPA Header.
985 if (mpa->revision != mpa_rev) {
986 abort_connection(ep, skb, GFP_KERNEL);
987 return;
990 if (memcmp(mpa->key, MPA_KEY_REQ, sizeof(mpa->key))) {
991 abort_connection(ep, skb, GFP_KERNEL);
992 return;
995 plen = ntohs(mpa->private_data_size);
998 * Fail if there's too much private data.
1000 if (plen > MPA_MAX_PRIVATE_DATA) {
1001 abort_connection(ep, skb, GFP_KERNEL);
1002 return;
1006 * If plen does not account for pkt size
1008 if (ep->mpa_pkt_len > (sizeof(*mpa) + plen)) {
1009 abort_connection(ep, skb, GFP_KERNEL);
1010 return;
1012 ep->plen = (u8) plen;
1015 * If we don't have all the pdata yet, then bail.
1017 if (ep->mpa_pkt_len < (sizeof(*mpa) + plen))
1018 return;
1021 * If we get here we have accumulated the entire mpa
1022 * start reply message including private data.
1024 ep->mpa_attr.initiator = 0;
1025 ep->mpa_attr.crc_enabled = (mpa->flags & MPA_CRC) | crc_enabled ? 1 : 0;
1026 ep->mpa_attr.recv_marker_enabled = markers_enabled;
1027 ep->mpa_attr.xmit_marker_enabled = mpa->flags & MPA_MARKERS ? 1 : 0;
1028 ep->mpa_attr.version = mpa_rev;
1029 PDBG("%s - crc_enabled=%d, recv_marker_enabled=%d, "
1030 "xmit_marker_enabled=%d, version=%d\n", __func__,
1031 ep->mpa_attr.crc_enabled, ep->mpa_attr.recv_marker_enabled,
1032 ep->mpa_attr.xmit_marker_enabled, ep->mpa_attr.version);
1034 state_set(&ep->com, MPA_REQ_RCVD);
1036 /* drive upcall */
1037 connect_request_upcall(ep);
1038 return;
1041 static int rx_data(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1043 struct iwch_ep *ep = ctx;
1044 struct cpl_rx_data *hdr = cplhdr(skb);
1045 unsigned int dlen = ntohs(hdr->len);
1047 PDBG("%s ep %p dlen %u\n", __func__, ep, dlen);
1049 skb_pull(skb, sizeof(*hdr));
1050 skb_trim(skb, dlen);
1052 ep->rcv_seq += dlen;
1053 BUG_ON(ep->rcv_seq != (ntohl(hdr->seq) + dlen));
1055 switch (state_read(&ep->com)) {
1056 case MPA_REQ_SENT:
1057 process_mpa_reply(ep, skb);
1058 break;
1059 case MPA_REQ_WAIT:
1060 process_mpa_request(ep, skb);
1061 break;
1062 case MPA_REP_SENT:
1063 break;
1064 default:
1065 printk(KERN_ERR MOD "%s Unexpected streaming data."
1066 " ep %p state %d tid %d\n",
1067 __func__, ep, state_read(&ep->com), ep->hwtid);
1070 * The ep will timeout and inform the ULP of the failure.
1071 * See ep_timeout().
1073 break;
1076 /* update RX credits */
1077 update_rx_credits(ep, dlen);
1079 return CPL_RET_BUF_DONE;
1083 * Upcall from the adapter indicating data has been transmitted.
1084 * For us its just the single MPA request or reply. We can now free
1085 * the skb holding the mpa message.
1087 static int tx_ack(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1089 struct iwch_ep *ep = ctx;
1090 struct cpl_wr_ack *hdr = cplhdr(skb);
1091 unsigned int credits = ntohs(hdr->credits);
1093 PDBG("%s ep %p credits %u\n", __func__, ep, credits);
1095 if (credits == 0) {
1096 PDBG("%s 0 credit ack ep %p state %u\n",
1097 __func__, ep, state_read(&ep->com));
1098 return CPL_RET_BUF_DONE;
1101 BUG_ON(credits != 1);
1102 dst_confirm(ep->dst);
1103 if (!ep->mpa_skb) {
1104 PDBG("%s rdma_init wr_ack ep %p state %u\n",
1105 __func__, ep, state_read(&ep->com));
1106 if (ep->mpa_attr.initiator) {
1107 PDBG("%s initiator ep %p state %u\n",
1108 __func__, ep, state_read(&ep->com));
1109 if (peer2peer)
1110 iwch_post_zb_read(ep->com.qp);
1111 } else {
1112 PDBG("%s responder ep %p state %u\n",
1113 __func__, ep, state_read(&ep->com));
1114 ep->com.rpl_done = 1;
1115 wake_up(&ep->com.waitq);
1117 } else {
1118 PDBG("%s lsm ack ep %p state %u freeing skb\n",
1119 __func__, ep, state_read(&ep->com));
1120 kfree_skb(ep->mpa_skb);
1121 ep->mpa_skb = NULL;
1123 return CPL_RET_BUF_DONE;
1126 static int abort_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1128 struct iwch_ep *ep = ctx;
1129 unsigned long flags;
1130 int release = 0;
1132 PDBG("%s ep %p\n", __func__, ep);
1133 BUG_ON(!ep);
1136 * We get 2 abort replies from the HW. The first one must
1137 * be ignored except for scribbling that we need one more.
1139 if (!test_and_set_bit(ABORT_REQ_IN_PROGRESS, &ep->com.flags)) {
1140 return CPL_RET_BUF_DONE;
1143 spin_lock_irqsave(&ep->com.lock, flags);
1144 switch (ep->com.state) {
1145 case ABORTING:
1146 close_complete_upcall(ep);
1147 __state_set(&ep->com, DEAD);
1148 release = 1;
1149 break;
1150 default:
1151 printk(KERN_ERR "%s ep %p state %d\n",
1152 __func__, ep, ep->com.state);
1153 break;
1155 spin_unlock_irqrestore(&ep->com.lock, flags);
1157 if (release)
1158 release_ep_resources(ep);
1159 return CPL_RET_BUF_DONE;
1163 * Return whether a failed active open has allocated a TID
1165 static inline int act_open_has_tid(int status)
1167 return status != CPL_ERR_TCAM_FULL && status != CPL_ERR_CONN_EXIST &&
1168 status != CPL_ERR_ARP_MISS;
1171 static int act_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1173 struct iwch_ep *ep = ctx;
1174 struct cpl_act_open_rpl *rpl = cplhdr(skb);
1176 PDBG("%s ep %p status %u errno %d\n", __func__, ep, rpl->status,
1177 status2errno(rpl->status));
1178 connect_reply_upcall(ep, status2errno(rpl->status));
1179 state_set(&ep->com, DEAD);
1180 if (ep->com.tdev->type != T3A && act_open_has_tid(rpl->status))
1181 release_tid(ep->com.tdev, GET_TID(rpl), NULL);
1182 cxgb3_free_atid(ep->com.tdev, ep->atid);
1183 dst_release(ep->dst);
1184 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
1185 put_ep(&ep->com);
1186 return CPL_RET_BUF_DONE;
1189 static int listen_start(struct iwch_listen_ep *ep)
1191 struct sk_buff *skb;
1192 struct cpl_pass_open_req *req;
1194 PDBG("%s ep %p\n", __func__, ep);
1195 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1196 if (!skb) {
1197 printk(KERN_ERR MOD "t3c_listen_start failed to alloc skb!\n");
1198 return -ENOMEM;
1201 req = (struct cpl_pass_open_req *) skb_put(skb, sizeof(*req));
1202 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1203 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_PASS_OPEN_REQ, ep->stid));
1204 req->local_port = ep->com.local_addr.sin_port;
1205 req->local_ip = ep->com.local_addr.sin_addr.s_addr;
1206 req->peer_port = 0;
1207 req->peer_ip = 0;
1208 req->peer_netmask = 0;
1209 req->opt0h = htonl(F_DELACK | F_TCAM_BYPASS);
1210 req->opt0l = htonl(V_RCV_BUFSIZ(rcv_win>>10));
1211 req->opt1 = htonl(V_CONN_POLICY(CPL_CONN_POLICY_ASK));
1213 skb->priority = 1;
1214 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1217 static int pass_open_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1219 struct iwch_listen_ep *ep = ctx;
1220 struct cpl_pass_open_rpl *rpl = cplhdr(skb);
1222 PDBG("%s ep %p status %d error %d\n", __func__, ep,
1223 rpl->status, status2errno(rpl->status));
1224 ep->com.rpl_err = status2errno(rpl->status);
1225 ep->com.rpl_done = 1;
1226 wake_up(&ep->com.waitq);
1228 return CPL_RET_BUF_DONE;
1231 static int listen_stop(struct iwch_listen_ep *ep)
1233 struct sk_buff *skb;
1234 struct cpl_close_listserv_req *req;
1236 PDBG("%s ep %p\n", __func__, ep);
1237 skb = get_skb(NULL, sizeof(*req), GFP_KERNEL);
1238 if (!skb) {
1239 printk(KERN_ERR MOD "%s - failed to alloc skb\n", __func__);
1240 return -ENOMEM;
1242 req = (struct cpl_close_listserv_req *) skb_put(skb, sizeof(*req));
1243 req->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1244 req->cpu_idx = 0;
1245 OPCODE_TID(req) = htonl(MK_OPCODE_TID(CPL_CLOSE_LISTSRV_REQ, ep->stid));
1246 skb->priority = 1;
1247 return iwch_cxgb3_ofld_send(ep->com.tdev, skb);
1250 static int close_listsrv_rpl(struct t3cdev *tdev, struct sk_buff *skb,
1251 void *ctx)
1253 struct iwch_listen_ep *ep = ctx;
1254 struct cpl_close_listserv_rpl *rpl = cplhdr(skb);
1256 PDBG("%s ep %p\n", __func__, ep);
1257 ep->com.rpl_err = status2errno(rpl->status);
1258 ep->com.rpl_done = 1;
1259 wake_up(&ep->com.waitq);
1260 return CPL_RET_BUF_DONE;
1263 static void accept_cr(struct iwch_ep *ep, __be32 peer_ip, struct sk_buff *skb)
1265 struct cpl_pass_accept_rpl *rpl;
1266 unsigned int mtu_idx;
1267 u32 opt0h, opt0l, opt2;
1268 int wscale;
1270 PDBG("%s ep %p\n", __func__, ep);
1271 BUG_ON(skb_cloned(skb));
1272 skb_trim(skb, sizeof(*rpl));
1273 skb_get(skb);
1274 mtu_idx = find_best_mtu(T3C_DATA(ep->com.tdev), dst_mtu(ep->dst));
1275 wscale = compute_wscale(rcv_win);
1276 opt0h = V_NAGLE(0) |
1277 V_NO_CONG(nocong) |
1278 V_KEEP_ALIVE(1) |
1279 F_TCAM_BYPASS |
1280 V_WND_SCALE(wscale) |
1281 V_MSS_IDX(mtu_idx) |
1282 V_L2T_IDX(ep->l2t->idx) | V_TX_CHANNEL(ep->l2t->smt_idx);
1283 opt0l = V_TOS((ep->tos >> 2) & M_TOS) | V_RCV_BUFSIZ(rcv_win>>10);
1284 opt2 = F_RX_COALESCE_VALID | V_RX_COALESCE(0) | V_FLAVORS_VALID(1) |
1285 V_CONG_CONTROL_FLAVOR(cong_flavor);
1287 rpl = cplhdr(skb);
1288 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1289 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL, ep->hwtid));
1290 rpl->peer_ip = peer_ip;
1291 rpl->opt0h = htonl(opt0h);
1292 rpl->opt0l_status = htonl(opt0l | CPL_PASS_OPEN_ACCEPT);
1293 rpl->opt2 = htonl(opt2);
1294 rpl->rsvd = rpl->opt2; /* workaround for HW bug */
1295 skb->priority = CPL_PRIORITY_SETUP;
1296 iwch_l2t_send(ep->com.tdev, skb, ep->l2t);
1298 return;
1301 static void reject_cr(struct t3cdev *tdev, u32 hwtid, __be32 peer_ip,
1302 struct sk_buff *skb)
1304 PDBG("%s t3cdev %p tid %u peer_ip %x\n", __func__, tdev, hwtid,
1305 peer_ip);
1306 BUG_ON(skb_cloned(skb));
1307 skb_trim(skb, sizeof(struct cpl_tid_release));
1308 skb_get(skb);
1310 if (tdev->type != T3A)
1311 release_tid(tdev, hwtid, skb);
1312 else {
1313 struct cpl_pass_accept_rpl *rpl;
1315 rpl = cplhdr(skb);
1316 skb->priority = CPL_PRIORITY_SETUP;
1317 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_FORWARD));
1318 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_PASS_ACCEPT_RPL,
1319 hwtid));
1320 rpl->peer_ip = peer_ip;
1321 rpl->opt0h = htonl(F_TCAM_BYPASS);
1322 rpl->opt0l_status = htonl(CPL_PASS_OPEN_REJECT);
1323 rpl->opt2 = 0;
1324 rpl->rsvd = rpl->opt2;
1325 iwch_cxgb3_ofld_send(tdev, skb);
1329 static int pass_accept_req(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1331 struct iwch_ep *child_ep, *parent_ep = ctx;
1332 struct cpl_pass_accept_req *req = cplhdr(skb);
1333 unsigned int hwtid = GET_TID(req);
1334 struct dst_entry *dst;
1335 struct l2t_entry *l2t;
1336 struct rtable *rt;
1337 struct iff_mac tim;
1339 PDBG("%s parent ep %p tid %u\n", __func__, parent_ep, hwtid);
1341 if (state_read(&parent_ep->com) != LISTEN) {
1342 printk(KERN_ERR "%s - listening ep not in LISTEN\n",
1343 __func__);
1344 goto reject;
1348 * Find the netdev for this connection request.
1350 tim.mac_addr = req->dst_mac;
1351 tim.vlan_tag = ntohs(req->vlan_tag);
1352 if (tdev->ctl(tdev, GET_IFF_FROM_MAC, &tim) < 0 || !tim.dev) {
1353 printk(KERN_ERR "%s bad dst mac %pM\n",
1354 __func__, req->dst_mac);
1355 goto reject;
1358 /* Find output route */
1359 rt = find_route(tdev,
1360 req->local_ip,
1361 req->peer_ip,
1362 req->local_port,
1363 req->peer_port, G_PASS_OPEN_TOS(ntohl(req->tos_tid)));
1364 if (!rt) {
1365 printk(KERN_ERR MOD "%s - failed to find dst entry!\n",
1366 __func__);
1367 goto reject;
1369 dst = &rt->dst;
1370 l2t = t3_l2t_get(tdev, dst->neighbour, dst->neighbour->dev);
1371 if (!l2t) {
1372 printk(KERN_ERR MOD "%s - failed to allocate l2t entry!\n",
1373 __func__);
1374 dst_release(dst);
1375 goto reject;
1377 child_ep = alloc_ep(sizeof(*child_ep), GFP_KERNEL);
1378 if (!child_ep) {
1379 printk(KERN_ERR MOD "%s - failed to allocate ep entry!\n",
1380 __func__);
1381 l2t_release(L2DATA(tdev), l2t);
1382 dst_release(dst);
1383 goto reject;
1385 state_set(&child_ep->com, CONNECTING);
1386 child_ep->com.tdev = tdev;
1387 child_ep->com.cm_id = NULL;
1388 child_ep->com.local_addr.sin_family = PF_INET;
1389 child_ep->com.local_addr.sin_port = req->local_port;
1390 child_ep->com.local_addr.sin_addr.s_addr = req->local_ip;
1391 child_ep->com.remote_addr.sin_family = PF_INET;
1392 child_ep->com.remote_addr.sin_port = req->peer_port;
1393 child_ep->com.remote_addr.sin_addr.s_addr = req->peer_ip;
1394 get_ep(&parent_ep->com);
1395 child_ep->parent_ep = parent_ep;
1396 child_ep->tos = G_PASS_OPEN_TOS(ntohl(req->tos_tid));
1397 child_ep->l2t = l2t;
1398 child_ep->dst = dst;
1399 child_ep->hwtid = hwtid;
1400 init_timer(&child_ep->timer);
1401 cxgb3_insert_tid(tdev, &t3c_client, child_ep, hwtid);
1402 accept_cr(child_ep, req->peer_ip, skb);
1403 goto out;
1404 reject:
1405 reject_cr(tdev, hwtid, req->peer_ip, skb);
1406 out:
1407 return CPL_RET_BUF_DONE;
1410 static int pass_establish(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1412 struct iwch_ep *ep = ctx;
1413 struct cpl_pass_establish *req = cplhdr(skb);
1415 PDBG("%s ep %p\n", __func__, ep);
1416 ep->snd_seq = ntohl(req->snd_isn);
1417 ep->rcv_seq = ntohl(req->rcv_isn);
1419 set_emss(ep, ntohs(req->tcp_opt));
1421 dst_confirm(ep->dst);
1422 state_set(&ep->com, MPA_REQ_WAIT);
1423 start_ep_timer(ep);
1425 return CPL_RET_BUF_DONE;
1428 static int peer_close(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1430 struct iwch_ep *ep = ctx;
1431 struct iwch_qp_attributes attrs;
1432 unsigned long flags;
1433 int disconnect = 1;
1434 int release = 0;
1436 PDBG("%s ep %p\n", __func__, ep);
1437 dst_confirm(ep->dst);
1439 spin_lock_irqsave(&ep->com.lock, flags);
1440 switch (ep->com.state) {
1441 case MPA_REQ_WAIT:
1442 __state_set(&ep->com, CLOSING);
1443 break;
1444 case MPA_REQ_SENT:
1445 __state_set(&ep->com, CLOSING);
1446 connect_reply_upcall(ep, -ECONNRESET);
1447 break;
1448 case MPA_REQ_RCVD:
1451 * We're gonna mark this puppy DEAD, but keep
1452 * the reference on it until the ULP accepts or
1453 * rejects the CR. Also wake up anyone waiting
1454 * in rdma connection migration (see iwch_accept_cr()).
1456 __state_set(&ep->com, CLOSING);
1457 ep->com.rpl_done = 1;
1458 ep->com.rpl_err = -ECONNRESET;
1459 PDBG("waking up ep %p\n", ep);
1460 wake_up(&ep->com.waitq);
1461 break;
1462 case MPA_REP_SENT:
1463 __state_set(&ep->com, CLOSING);
1464 ep->com.rpl_done = 1;
1465 ep->com.rpl_err = -ECONNRESET;
1466 PDBG("waking up ep %p\n", ep);
1467 wake_up(&ep->com.waitq);
1468 break;
1469 case FPDU_MODE:
1470 start_ep_timer(ep);
1471 __state_set(&ep->com, CLOSING);
1472 attrs.next_state = IWCH_QP_STATE_CLOSING;
1473 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1474 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1475 peer_close_upcall(ep);
1476 break;
1477 case ABORTING:
1478 disconnect = 0;
1479 break;
1480 case CLOSING:
1481 __state_set(&ep->com, MORIBUND);
1482 disconnect = 0;
1483 break;
1484 case MORIBUND:
1485 stop_ep_timer(ep);
1486 if (ep->com.cm_id && ep->com.qp) {
1487 attrs.next_state = IWCH_QP_STATE_IDLE;
1488 iwch_modify_qp(ep->com.qp->rhp, ep->com.qp,
1489 IWCH_QP_ATTR_NEXT_STATE, &attrs, 1);
1491 close_complete_upcall(ep);
1492 __state_set(&ep->com, DEAD);
1493 release = 1;
1494 disconnect = 0;
1495 break;
1496 case DEAD:
1497 disconnect = 0;
1498 break;
1499 default:
1500 BUG_ON(1);
1502 spin_unlock_irqrestore(&ep->com.lock, flags);
1503 if (disconnect)
1504 iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1505 if (release)
1506 release_ep_resources(ep);
1507 return CPL_RET_BUF_DONE;
1511 * Returns whether an ABORT_REQ_RSS message is a negative advice.
1513 static int is_neg_adv_abort(unsigned int status)
1515 return status == CPL_ERR_RTX_NEG_ADVICE ||
1516 status == CPL_ERR_PERSIST_NEG_ADVICE;
1519 static int peer_abort(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1521 struct cpl_abort_req_rss *req = cplhdr(skb);
1522 struct iwch_ep *ep = ctx;
1523 struct cpl_abort_rpl *rpl;
1524 struct sk_buff *rpl_skb;
1525 struct iwch_qp_attributes attrs;
1526 int ret;
1527 int release = 0;
1528 unsigned long flags;
1530 if (is_neg_adv_abort(req->status)) {
1531 PDBG("%s neg_adv_abort ep %p tid %d\n", __func__, ep,
1532 ep->hwtid);
1533 t3_l2t_send_event(ep->com.tdev, ep->l2t);
1534 return CPL_RET_BUF_DONE;
1538 * We get 2 peer aborts from the HW. The first one must
1539 * be ignored except for scribbling that we need one more.
1541 if (!test_and_set_bit(PEER_ABORT_IN_PROGRESS, &ep->com.flags)) {
1542 return CPL_RET_BUF_DONE;
1545 spin_lock_irqsave(&ep->com.lock, flags);
1546 PDBG("%s ep %p state %u\n", __func__, ep, ep->com.state);
1547 switch (ep->com.state) {
1548 case CONNECTING:
1549 break;
1550 case MPA_REQ_WAIT:
1551 stop_ep_timer(ep);
1552 break;
1553 case MPA_REQ_SENT:
1554 stop_ep_timer(ep);
1555 connect_reply_upcall(ep, -ECONNRESET);
1556 break;
1557 case MPA_REP_SENT:
1558 ep->com.rpl_done = 1;
1559 ep->com.rpl_err = -ECONNRESET;
1560 PDBG("waking up ep %p\n", ep);
1561 wake_up(&ep->com.waitq);
1562 break;
1563 case MPA_REQ_RCVD:
1566 * We're gonna mark this puppy DEAD, but keep
1567 * the reference on it until the ULP accepts or
1568 * rejects the CR. Also wake up anyone waiting
1569 * in rdma connection migration (see iwch_accept_cr()).
1571 ep->com.rpl_done = 1;
1572 ep->com.rpl_err = -ECONNRESET;
1573 PDBG("waking up ep %p\n", ep);
1574 wake_up(&ep->com.waitq);
1575 break;
1576 case MORIBUND:
1577 case CLOSING:
1578 stop_ep_timer(ep);
1579 /*FALLTHROUGH*/
1580 case FPDU_MODE:
1581 if (ep->com.cm_id && ep->com.qp) {
1582 attrs.next_state = IWCH_QP_STATE_ERROR;
1583 ret = iwch_modify_qp(ep->com.qp->rhp,
1584 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1585 &attrs, 1);
1586 if (ret)
1587 printk(KERN_ERR MOD
1588 "%s - qp <- error failed!\n",
1589 __func__);
1591 peer_abort_upcall(ep);
1592 break;
1593 case ABORTING:
1594 break;
1595 case DEAD:
1596 PDBG("%s PEER_ABORT IN DEAD STATE!!!!\n", __func__);
1597 spin_unlock_irqrestore(&ep->com.lock, flags);
1598 return CPL_RET_BUF_DONE;
1599 default:
1600 BUG_ON(1);
1601 break;
1603 dst_confirm(ep->dst);
1604 if (ep->com.state != ABORTING) {
1605 __state_set(&ep->com, DEAD);
1606 release = 1;
1608 spin_unlock_irqrestore(&ep->com.lock, flags);
1610 rpl_skb = get_skb(skb, sizeof(*rpl), GFP_KERNEL);
1611 if (!rpl_skb) {
1612 printk(KERN_ERR MOD "%s - cannot allocate skb!\n",
1613 __func__);
1614 release = 1;
1615 goto out;
1617 rpl_skb->priority = CPL_PRIORITY_DATA;
1618 rpl = (struct cpl_abort_rpl *) skb_put(rpl_skb, sizeof(*rpl));
1619 rpl->wr.wr_hi = htonl(V_WR_OP(FW_WROPCODE_OFLD_HOST_ABORT_CON_RPL));
1620 rpl->wr.wr_lo = htonl(V_WR_TID(ep->hwtid));
1621 OPCODE_TID(rpl) = htonl(MK_OPCODE_TID(CPL_ABORT_RPL, ep->hwtid));
1622 rpl->cmd = CPL_ABORT_NO_RST;
1623 iwch_cxgb3_ofld_send(ep->com.tdev, rpl_skb);
1624 out:
1625 if (release)
1626 release_ep_resources(ep);
1627 return CPL_RET_BUF_DONE;
1630 static int close_con_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1632 struct iwch_ep *ep = ctx;
1633 struct iwch_qp_attributes attrs;
1634 unsigned long flags;
1635 int release = 0;
1637 PDBG("%s ep %p\n", __func__, ep);
1638 BUG_ON(!ep);
1640 /* The cm_id may be null if we failed to connect */
1641 spin_lock_irqsave(&ep->com.lock, flags);
1642 switch (ep->com.state) {
1643 case CLOSING:
1644 __state_set(&ep->com, MORIBUND);
1645 break;
1646 case MORIBUND:
1647 stop_ep_timer(ep);
1648 if ((ep->com.cm_id) && (ep->com.qp)) {
1649 attrs.next_state = IWCH_QP_STATE_IDLE;
1650 iwch_modify_qp(ep->com.qp->rhp,
1651 ep->com.qp,
1652 IWCH_QP_ATTR_NEXT_STATE,
1653 &attrs, 1);
1655 close_complete_upcall(ep);
1656 __state_set(&ep->com, DEAD);
1657 release = 1;
1658 break;
1659 case ABORTING:
1660 case DEAD:
1661 break;
1662 default:
1663 BUG_ON(1);
1664 break;
1666 spin_unlock_irqrestore(&ep->com.lock, flags);
1667 if (release)
1668 release_ep_resources(ep);
1669 return CPL_RET_BUF_DONE;
1673 * T3A does 3 things when a TERM is received:
1674 * 1) send up a CPL_RDMA_TERMINATE message with the TERM packet
1675 * 2) generate an async event on the QP with the TERMINATE opcode
1676 * 3) post a TERMINATE opcde cqe into the associated CQ.
1678 * For (1), we save the message in the qp for later consumer consumption.
1679 * For (2), we move the QP into TERMINATE, post a QP event and disconnect.
1680 * For (3), we toss the CQE in cxio_poll_cq().
1682 * terminate() handles case (1)...
1684 static int terminate(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1686 struct iwch_ep *ep = ctx;
1688 if (state_read(&ep->com) != FPDU_MODE)
1689 return CPL_RET_BUF_DONE;
1691 PDBG("%s ep %p\n", __func__, ep);
1692 skb_pull(skb, sizeof(struct cpl_rdma_terminate));
1693 PDBG("%s saving %d bytes of term msg\n", __func__, skb->len);
1694 skb_copy_from_linear_data(skb, ep->com.qp->attr.terminate_buffer,
1695 skb->len);
1696 ep->com.qp->attr.terminate_msg_len = skb->len;
1697 ep->com.qp->attr.is_terminate_local = 0;
1698 return CPL_RET_BUF_DONE;
1701 static int ec_status(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
1703 struct cpl_rdma_ec_status *rep = cplhdr(skb);
1704 struct iwch_ep *ep = ctx;
1706 PDBG("%s ep %p tid %u status %d\n", __func__, ep, ep->hwtid,
1707 rep->status);
1708 if (rep->status) {
1709 struct iwch_qp_attributes attrs;
1711 printk(KERN_ERR MOD "%s BAD CLOSE - Aborting tid %u\n",
1712 __func__, ep->hwtid);
1713 stop_ep_timer(ep);
1714 attrs.next_state = IWCH_QP_STATE_ERROR;
1715 iwch_modify_qp(ep->com.qp->rhp,
1716 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1717 &attrs, 1);
1718 abort_connection(ep, NULL, GFP_KERNEL);
1720 return CPL_RET_BUF_DONE;
1723 static void ep_timeout(unsigned long arg)
1725 struct iwch_ep *ep = (struct iwch_ep *)arg;
1726 struct iwch_qp_attributes attrs;
1727 unsigned long flags;
1728 int abort = 1;
1730 spin_lock_irqsave(&ep->com.lock, flags);
1731 PDBG("%s ep %p tid %u state %d\n", __func__, ep, ep->hwtid,
1732 ep->com.state);
1733 switch (ep->com.state) {
1734 case MPA_REQ_SENT:
1735 __state_set(&ep->com, ABORTING);
1736 connect_reply_upcall(ep, -ETIMEDOUT);
1737 break;
1738 case MPA_REQ_WAIT:
1739 __state_set(&ep->com, ABORTING);
1740 break;
1741 case CLOSING:
1742 case MORIBUND:
1743 if (ep->com.cm_id && ep->com.qp) {
1744 attrs.next_state = IWCH_QP_STATE_ERROR;
1745 iwch_modify_qp(ep->com.qp->rhp,
1746 ep->com.qp, IWCH_QP_ATTR_NEXT_STATE,
1747 &attrs, 1);
1749 __state_set(&ep->com, ABORTING);
1750 break;
1751 default:
1752 printk(KERN_ERR "%s unexpected state ep %p state %u\n",
1753 __func__, ep, ep->com.state);
1754 WARN_ON(1);
1755 abort = 0;
1757 spin_unlock_irqrestore(&ep->com.lock, flags);
1758 if (abort)
1759 abort_connection(ep, NULL, GFP_ATOMIC);
1760 put_ep(&ep->com);
1763 int iwch_reject_cr(struct iw_cm_id *cm_id, const void *pdata, u8 pdata_len)
1765 int err;
1766 struct iwch_ep *ep = to_ep(cm_id);
1767 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1769 if (state_read(&ep->com) == DEAD) {
1770 put_ep(&ep->com);
1771 return -ECONNRESET;
1773 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1774 if (mpa_rev == 0)
1775 abort_connection(ep, NULL, GFP_KERNEL);
1776 else {
1777 err = send_mpa_reject(ep, pdata, pdata_len);
1778 err = iwch_ep_disconnect(ep, 0, GFP_KERNEL);
1780 put_ep(&ep->com);
1781 return 0;
1784 int iwch_accept_cr(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1786 int err;
1787 struct iwch_qp_attributes attrs;
1788 enum iwch_qp_attr_mask mask;
1789 struct iwch_ep *ep = to_ep(cm_id);
1790 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1791 struct iwch_qp *qp = get_qhp(h, conn_param->qpn);
1793 PDBG("%s ep %p tid %u\n", __func__, ep, ep->hwtid);
1794 if (state_read(&ep->com) == DEAD) {
1795 err = -ECONNRESET;
1796 goto err;
1799 BUG_ON(state_read(&ep->com) != MPA_REQ_RCVD);
1800 BUG_ON(!qp);
1802 if ((conn_param->ord > qp->rhp->attr.max_rdma_read_qp_depth) ||
1803 (conn_param->ird > qp->rhp->attr.max_rdma_reads_per_qp)) {
1804 abort_connection(ep, NULL, GFP_KERNEL);
1805 err = -EINVAL;
1806 goto err;
1809 cm_id->add_ref(cm_id);
1810 ep->com.cm_id = cm_id;
1811 ep->com.qp = qp;
1813 ep->ird = conn_param->ird;
1814 ep->ord = conn_param->ord;
1816 if (peer2peer && ep->ird == 0)
1817 ep->ird = 1;
1819 PDBG("%s %d ird %d ord %d\n", __func__, __LINE__, ep->ird, ep->ord);
1821 /* bind QP to EP and move to RTS */
1822 attrs.mpa_attr = ep->mpa_attr;
1823 attrs.max_ird = ep->ird;
1824 attrs.max_ord = ep->ord;
1825 attrs.llp_stream_handle = ep;
1826 attrs.next_state = IWCH_QP_STATE_RTS;
1828 /* bind QP and TID with INIT_WR */
1829 mask = IWCH_QP_ATTR_NEXT_STATE |
1830 IWCH_QP_ATTR_LLP_STREAM_HANDLE |
1831 IWCH_QP_ATTR_MPA_ATTR |
1832 IWCH_QP_ATTR_MAX_IRD |
1833 IWCH_QP_ATTR_MAX_ORD;
1835 err = iwch_modify_qp(ep->com.qp->rhp,
1836 ep->com.qp, mask, &attrs, 1);
1837 if (err)
1838 goto err1;
1840 /* if needed, wait for wr_ack */
1841 if (iwch_rqes_posted(qp)) {
1842 wait_event(ep->com.waitq, ep->com.rpl_done);
1843 err = ep->com.rpl_err;
1844 if (err)
1845 goto err1;
1848 err = send_mpa_reply(ep, conn_param->private_data,
1849 conn_param->private_data_len);
1850 if (err)
1851 goto err1;
1854 state_set(&ep->com, FPDU_MODE);
1855 established_upcall(ep);
1856 put_ep(&ep->com);
1857 return 0;
1858 err1:
1859 ep->com.cm_id = NULL;
1860 ep->com.qp = NULL;
1861 cm_id->rem_ref(cm_id);
1862 err:
1863 put_ep(&ep->com);
1864 return err;
1867 static int is_loopback_dst(struct iw_cm_id *cm_id)
1869 struct net_device *dev;
1871 dev = ip_dev_find(&init_net, cm_id->remote_addr.sin_addr.s_addr);
1872 if (!dev)
1873 return 0;
1874 dev_put(dev);
1875 return 1;
1878 int iwch_connect(struct iw_cm_id *cm_id, struct iw_cm_conn_param *conn_param)
1880 int err = 0;
1881 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1882 struct iwch_ep *ep;
1883 struct rtable *rt;
1885 if (is_loopback_dst(cm_id)) {
1886 err = -ENOSYS;
1887 goto out;
1890 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1891 if (!ep) {
1892 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1893 err = -ENOMEM;
1894 goto out;
1896 init_timer(&ep->timer);
1897 ep->plen = conn_param->private_data_len;
1898 if (ep->plen)
1899 memcpy(ep->mpa_pkt + sizeof(struct mpa_message),
1900 conn_param->private_data, ep->plen);
1901 ep->ird = conn_param->ird;
1902 ep->ord = conn_param->ord;
1904 if (peer2peer && ep->ord == 0)
1905 ep->ord = 1;
1907 ep->com.tdev = h->rdev.t3cdev_p;
1909 cm_id->add_ref(cm_id);
1910 ep->com.cm_id = cm_id;
1911 ep->com.qp = get_qhp(h, conn_param->qpn);
1912 BUG_ON(!ep->com.qp);
1913 PDBG("%s qpn 0x%x qp %p cm_id %p\n", __func__, conn_param->qpn,
1914 ep->com.qp, cm_id);
1917 * Allocate an active TID to initiate a TCP connection.
1919 ep->atid = cxgb3_alloc_atid(h->rdev.t3cdev_p, &t3c_client, ep);
1920 if (ep->atid == -1) {
1921 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1922 err = -ENOMEM;
1923 goto fail2;
1926 /* find a route */
1927 rt = find_route(h->rdev.t3cdev_p,
1928 cm_id->local_addr.sin_addr.s_addr,
1929 cm_id->remote_addr.sin_addr.s_addr,
1930 cm_id->local_addr.sin_port,
1931 cm_id->remote_addr.sin_port, IPTOS_LOWDELAY);
1932 if (!rt) {
1933 printk(KERN_ERR MOD "%s - cannot find route.\n", __func__);
1934 err = -EHOSTUNREACH;
1935 goto fail3;
1937 ep->dst = &rt->dst;
1939 /* get a l2t entry */
1940 ep->l2t = t3_l2t_get(ep->com.tdev, ep->dst->neighbour,
1941 ep->dst->neighbour->dev);
1942 if (!ep->l2t) {
1943 printk(KERN_ERR MOD "%s - cannot alloc l2e.\n", __func__);
1944 err = -ENOMEM;
1945 goto fail4;
1948 state_set(&ep->com, CONNECTING);
1949 ep->tos = IPTOS_LOWDELAY;
1950 ep->com.local_addr = cm_id->local_addr;
1951 ep->com.remote_addr = cm_id->remote_addr;
1953 /* send connect request to rnic */
1954 err = send_connect(ep);
1955 if (!err)
1956 goto out;
1958 l2t_release(L2DATA(h->rdev.t3cdev_p), ep->l2t);
1959 fail4:
1960 dst_release(ep->dst);
1961 fail3:
1962 cxgb3_free_atid(ep->com.tdev, ep->atid);
1963 fail2:
1964 cm_id->rem_ref(cm_id);
1965 put_ep(&ep->com);
1966 out:
1967 return err;
1970 int iwch_create_listen(struct iw_cm_id *cm_id, int backlog)
1972 int err = 0;
1973 struct iwch_dev *h = to_iwch_dev(cm_id->device);
1974 struct iwch_listen_ep *ep;
1977 might_sleep();
1979 ep = alloc_ep(sizeof(*ep), GFP_KERNEL);
1980 if (!ep) {
1981 printk(KERN_ERR MOD "%s - cannot alloc ep.\n", __func__);
1982 err = -ENOMEM;
1983 goto fail1;
1985 PDBG("%s ep %p\n", __func__, ep);
1986 ep->com.tdev = h->rdev.t3cdev_p;
1987 cm_id->add_ref(cm_id);
1988 ep->com.cm_id = cm_id;
1989 ep->backlog = backlog;
1990 ep->com.local_addr = cm_id->local_addr;
1993 * Allocate a server TID.
1995 ep->stid = cxgb3_alloc_stid(h->rdev.t3cdev_p, &t3c_client, ep);
1996 if (ep->stid == -1) {
1997 printk(KERN_ERR MOD "%s - cannot alloc atid.\n", __func__);
1998 err = -ENOMEM;
1999 goto fail2;
2002 state_set(&ep->com, LISTEN);
2003 err = listen_start(ep);
2004 if (err)
2005 goto fail3;
2007 /* wait for pass_open_rpl */
2008 wait_event(ep->com.waitq, ep->com.rpl_done);
2009 err = ep->com.rpl_err;
2010 if (!err) {
2011 cm_id->provider_data = ep;
2012 goto out;
2014 fail3:
2015 cxgb3_free_stid(ep->com.tdev, ep->stid);
2016 fail2:
2017 cm_id->rem_ref(cm_id);
2018 put_ep(&ep->com);
2019 fail1:
2020 out:
2021 return err;
2024 int iwch_destroy_listen(struct iw_cm_id *cm_id)
2026 int err;
2027 struct iwch_listen_ep *ep = to_listen_ep(cm_id);
2029 PDBG("%s ep %p\n", __func__, ep);
2031 might_sleep();
2032 state_set(&ep->com, DEAD);
2033 ep->com.rpl_done = 0;
2034 ep->com.rpl_err = 0;
2035 err = listen_stop(ep);
2036 if (err)
2037 goto done;
2038 wait_event(ep->com.waitq, ep->com.rpl_done);
2039 cxgb3_free_stid(ep->com.tdev, ep->stid);
2040 done:
2041 err = ep->com.rpl_err;
2042 cm_id->rem_ref(cm_id);
2043 put_ep(&ep->com);
2044 return err;
2047 int iwch_ep_disconnect(struct iwch_ep *ep, int abrupt, gfp_t gfp)
2049 int ret=0;
2050 unsigned long flags;
2051 int close = 0;
2052 int fatal = 0;
2053 struct t3cdev *tdev;
2054 struct cxio_rdev *rdev;
2056 spin_lock_irqsave(&ep->com.lock, flags);
2058 PDBG("%s ep %p state %s, abrupt %d\n", __func__, ep,
2059 states[ep->com.state], abrupt);
2061 tdev = (struct t3cdev *)ep->com.tdev;
2062 rdev = (struct cxio_rdev *)tdev->ulp;
2063 if (cxio_fatal_error(rdev)) {
2064 fatal = 1;
2065 close_complete_upcall(ep);
2066 ep->com.state = DEAD;
2068 switch (ep->com.state) {
2069 case MPA_REQ_WAIT:
2070 case MPA_REQ_SENT:
2071 case MPA_REQ_RCVD:
2072 case MPA_REP_SENT:
2073 case FPDU_MODE:
2074 close = 1;
2075 if (abrupt)
2076 ep->com.state = ABORTING;
2077 else {
2078 ep->com.state = CLOSING;
2079 start_ep_timer(ep);
2081 set_bit(CLOSE_SENT, &ep->com.flags);
2082 break;
2083 case CLOSING:
2084 if (!test_and_set_bit(CLOSE_SENT, &ep->com.flags)) {
2085 close = 1;
2086 if (abrupt) {
2087 stop_ep_timer(ep);
2088 ep->com.state = ABORTING;
2089 } else
2090 ep->com.state = MORIBUND;
2092 break;
2093 case MORIBUND:
2094 case ABORTING:
2095 case DEAD:
2096 PDBG("%s ignoring disconnect ep %p state %u\n",
2097 __func__, ep, ep->com.state);
2098 break;
2099 default:
2100 BUG();
2101 break;
2104 spin_unlock_irqrestore(&ep->com.lock, flags);
2105 if (close) {
2106 if (abrupt)
2107 ret = send_abort(ep, NULL, gfp);
2108 else
2109 ret = send_halfclose(ep, gfp);
2110 if (ret)
2111 fatal = 1;
2113 if (fatal)
2114 release_ep_resources(ep);
2115 return ret;
2118 int iwch_ep_redirect(void *ctx, struct dst_entry *old, struct dst_entry *new,
2119 struct l2t_entry *l2t)
2121 struct iwch_ep *ep = ctx;
2123 if (ep->dst != old)
2124 return 0;
2126 PDBG("%s ep %p redirect to dst %p l2t %p\n", __func__, ep, new,
2127 l2t);
2128 dst_hold(new);
2129 l2t_release(L2DATA(ep->com.tdev), ep->l2t);
2130 ep->l2t = l2t;
2131 dst_release(old);
2132 ep->dst = new;
2133 return 1;
2137 * All the CM events are handled on a work queue to have a safe context.
2138 * These are the real handlers that are called from the work queue.
2140 static const cxgb3_cpl_handler_func work_handlers[NUM_CPL_CMDS] = {
2141 [CPL_ACT_ESTABLISH] = act_establish,
2142 [CPL_ACT_OPEN_RPL] = act_open_rpl,
2143 [CPL_RX_DATA] = rx_data,
2144 [CPL_TX_DMA_ACK] = tx_ack,
2145 [CPL_ABORT_RPL_RSS] = abort_rpl,
2146 [CPL_ABORT_RPL] = abort_rpl,
2147 [CPL_PASS_OPEN_RPL] = pass_open_rpl,
2148 [CPL_CLOSE_LISTSRV_RPL] = close_listsrv_rpl,
2149 [CPL_PASS_ACCEPT_REQ] = pass_accept_req,
2150 [CPL_PASS_ESTABLISH] = pass_establish,
2151 [CPL_PEER_CLOSE] = peer_close,
2152 [CPL_ABORT_REQ_RSS] = peer_abort,
2153 [CPL_CLOSE_CON_RPL] = close_con_rpl,
2154 [CPL_RDMA_TERMINATE] = terminate,
2155 [CPL_RDMA_EC_STATUS] = ec_status,
2158 static void process_work(struct work_struct *work)
2160 struct sk_buff *skb = NULL;
2161 void *ep;
2162 struct t3cdev *tdev;
2163 int ret;
2165 while ((skb = skb_dequeue(&rxq))) {
2166 ep = *((void **) (skb->cb));
2167 tdev = *((struct t3cdev **) (skb->cb + sizeof(void *)));
2168 ret = work_handlers[G_OPCODE(ntohl((__force __be32)skb->csum))](tdev, skb, ep);
2169 if (ret & CPL_RET_BUF_DONE)
2170 kfree_skb(skb);
2173 * ep was referenced in sched(), and is freed here.
2175 put_ep((struct iwch_ep_common *)ep);
2179 static DECLARE_WORK(skb_work, process_work);
2181 static int sched(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2183 struct iwch_ep_common *epc = ctx;
2185 get_ep(epc);
2188 * Save ctx and tdev in the skb->cb area.
2190 *((void **) skb->cb) = ctx;
2191 *((struct t3cdev **) (skb->cb + sizeof(void *))) = tdev;
2194 * Queue the skb and schedule the worker thread.
2196 skb_queue_tail(&rxq, skb);
2197 queue_work(workq, &skb_work);
2198 return 0;
2201 static int set_tcb_rpl(struct t3cdev *tdev, struct sk_buff *skb, void *ctx)
2203 struct cpl_set_tcb_rpl *rpl = cplhdr(skb);
2205 if (rpl->status != CPL_ERR_NONE) {
2206 printk(KERN_ERR MOD "Unexpected SET_TCB_RPL status %u "
2207 "for tid %u\n", rpl->status, GET_TID(rpl));
2209 return CPL_RET_BUF_DONE;
2213 * All upcalls from the T3 Core go to sched() to schedule the
2214 * processing on a work queue.
2216 cxgb3_cpl_handler_func t3c_handlers[NUM_CPL_CMDS] = {
2217 [CPL_ACT_ESTABLISH] = sched,
2218 [CPL_ACT_OPEN_RPL] = sched,
2219 [CPL_RX_DATA] = sched,
2220 [CPL_TX_DMA_ACK] = sched,
2221 [CPL_ABORT_RPL_RSS] = sched,
2222 [CPL_ABORT_RPL] = sched,
2223 [CPL_PASS_OPEN_RPL] = sched,
2224 [CPL_CLOSE_LISTSRV_RPL] = sched,
2225 [CPL_PASS_ACCEPT_REQ] = sched,
2226 [CPL_PASS_ESTABLISH] = sched,
2227 [CPL_PEER_CLOSE] = sched,
2228 [CPL_CLOSE_CON_RPL] = sched,
2229 [CPL_ABORT_REQ_RSS] = sched,
2230 [CPL_RDMA_TERMINATE] = sched,
2231 [CPL_RDMA_EC_STATUS] = sched,
2232 [CPL_SET_TCB_RPL] = set_tcb_rpl,
2235 int __init iwch_cm_init(void)
2237 skb_queue_head_init(&rxq);
2239 workq = create_singlethread_workqueue("iw_cxgb3");
2240 if (!workq)
2241 return -ENOMEM;
2243 return 0;
2246 void __exit iwch_cm_term(void)
2248 flush_workqueue(workq);
2249 destroy_workqueue(workq);