ASoC: Set codec->dev for AC97 devices
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / sound / soc / soc-core.c
blobca89c782132df6f7fa58ed998f32ef2411d5bd96
1 /*
2 * soc-core.c -- ALSA SoC Audio Layer
4 * Copyright 2005 Wolfson Microelectronics PLC.
5 * Copyright 2005 Openedhand Ltd.
7 * Author: Liam Girdwood <lrg@slimlogic.co.uk>
8 * with code, comments and ideas from :-
9 * Richard Purdie <richard@openedhand.com>
11 * This program is free software; you can redistribute it and/or modify it
12 * under the terms of the GNU General Public License as published by the
13 * Free Software Foundation; either version 2 of the License, or (at your
14 * option) any later version.
16 * TODO:
17 * o Add hw rules to enforce rates, etc.
18 * o More testing with other codecs/machines.
19 * o Add more codecs and platforms to ensure good API coverage.
20 * o Support TDM on PCM and I2S
23 #include <linux/module.h>
24 #include <linux/moduleparam.h>
25 #include <linux/init.h>
26 #include <linux/delay.h>
27 #include <linux/pm.h>
28 #include <linux/bitops.h>
29 #include <linux/debugfs.h>
30 #include <linux/platform_device.h>
31 #include <sound/ac97_codec.h>
32 #include <sound/core.h>
33 #include <sound/pcm.h>
34 #include <sound/pcm_params.h>
35 #include <sound/soc.h>
36 #include <sound/soc-dapm.h>
37 #include <sound/initval.h>
39 static DEFINE_MUTEX(pcm_mutex);
40 static DECLARE_WAIT_QUEUE_HEAD(soc_pm_waitq);
42 #ifdef CONFIG_DEBUG_FS
43 static struct dentry *debugfs_root;
44 #endif
46 static DEFINE_MUTEX(client_mutex);
47 static LIST_HEAD(card_list);
48 static LIST_HEAD(dai_list);
49 static LIST_HEAD(platform_list);
50 static LIST_HEAD(codec_list);
52 static int snd_soc_register_card(struct snd_soc_card *card);
53 static int snd_soc_unregister_card(struct snd_soc_card *card);
56 * This is a timeout to do a DAPM powerdown after a stream is closed().
57 * It can be used to eliminate pops between different playback streams, e.g.
58 * between two audio tracks.
60 static int pmdown_time = 5000;
61 module_param(pmdown_time, int, 0);
62 MODULE_PARM_DESC(pmdown_time, "DAPM stream powerdown time (msecs)");
65 * This function forces any delayed work to be queued and run.
67 static int run_delayed_work(struct delayed_work *dwork)
69 int ret;
71 /* cancel any work waiting to be queued. */
72 ret = cancel_delayed_work(dwork);
74 /* if there was any work waiting then we run it now and
75 * wait for it's completion */
76 if (ret) {
77 schedule_delayed_work(dwork, 0);
78 flush_scheduled_work();
80 return ret;
83 /* codec register dump */
84 static ssize_t soc_codec_reg_show(struct snd_soc_codec *codec, char *buf)
86 int i, step = 1, count = 0;
88 if (!codec->reg_cache_size)
89 return 0;
91 if (codec->reg_cache_step)
92 step = codec->reg_cache_step;
94 count += sprintf(buf, "%s registers\n", codec->name);
95 for (i = 0; i < codec->reg_cache_size; i += step) {
96 if (codec->readable_register && !codec->readable_register(i))
97 continue;
99 count += sprintf(buf + count, "%2x: ", i);
100 if (count >= PAGE_SIZE - 1)
101 break;
103 if (codec->display_register)
104 count += codec->display_register(codec, buf + count,
105 PAGE_SIZE - count, i);
106 else
107 count += snprintf(buf + count, PAGE_SIZE - count,
108 "%4x", codec->read(codec, i));
110 if (count >= PAGE_SIZE - 1)
111 break;
113 count += snprintf(buf + count, PAGE_SIZE - count, "\n");
114 if (count >= PAGE_SIZE - 1)
115 break;
118 /* Truncate count; min() would cause a warning */
119 if (count >= PAGE_SIZE)
120 count = PAGE_SIZE - 1;
122 return count;
124 static ssize_t codec_reg_show(struct device *dev,
125 struct device_attribute *attr, char *buf)
127 struct snd_soc_device *devdata = dev_get_drvdata(dev);
128 return soc_codec_reg_show(devdata->card->codec, buf);
131 static DEVICE_ATTR(codec_reg, 0444, codec_reg_show, NULL);
133 #ifdef CONFIG_DEBUG_FS
134 static int codec_reg_open_file(struct inode *inode, struct file *file)
136 file->private_data = inode->i_private;
137 return 0;
140 static ssize_t codec_reg_read_file(struct file *file, char __user *user_buf,
141 size_t count, loff_t *ppos)
143 ssize_t ret;
144 struct snd_soc_codec *codec = file->private_data;
145 char *buf = kmalloc(PAGE_SIZE, GFP_KERNEL);
146 if (!buf)
147 return -ENOMEM;
148 ret = soc_codec_reg_show(codec, buf);
149 if (ret >= 0)
150 ret = simple_read_from_buffer(user_buf, count, ppos, buf, ret);
151 kfree(buf);
152 return ret;
155 static ssize_t codec_reg_write_file(struct file *file,
156 const char __user *user_buf, size_t count, loff_t *ppos)
158 char buf[32];
159 int buf_size;
160 char *start = buf;
161 unsigned long reg, value;
162 int step = 1;
163 struct snd_soc_codec *codec = file->private_data;
165 buf_size = min(count, (sizeof(buf)-1));
166 if (copy_from_user(buf, user_buf, buf_size))
167 return -EFAULT;
168 buf[buf_size] = 0;
170 if (codec->reg_cache_step)
171 step = codec->reg_cache_step;
173 while (*start == ' ')
174 start++;
175 reg = simple_strtoul(start, &start, 16);
176 if ((reg >= codec->reg_cache_size) || (reg % step))
177 return -EINVAL;
178 while (*start == ' ')
179 start++;
180 if (strict_strtoul(start, 16, &value))
181 return -EINVAL;
182 codec->write(codec, reg, value);
183 return buf_size;
186 static const struct file_operations codec_reg_fops = {
187 .open = codec_reg_open_file,
188 .read = codec_reg_read_file,
189 .write = codec_reg_write_file,
192 static void soc_init_codec_debugfs(struct snd_soc_codec *codec)
194 char codec_root[128];
196 if (codec->dev)
197 snprintf(codec_root, sizeof(codec_root),
198 "%s.%s", codec->name, dev_name(codec->dev));
199 else
200 snprintf(codec_root, sizeof(codec_root),
201 "%s", codec->name);
203 codec->debugfs_codec_root = debugfs_create_dir(codec_root,
204 debugfs_root);
205 if (!codec->debugfs_codec_root) {
206 printk(KERN_WARNING
207 "ASoC: Failed to create codec debugfs directory\n");
208 return;
211 codec->debugfs_reg = debugfs_create_file("codec_reg", 0644,
212 codec->debugfs_codec_root,
213 codec, &codec_reg_fops);
214 if (!codec->debugfs_reg)
215 printk(KERN_WARNING
216 "ASoC: Failed to create codec register debugfs file\n");
218 codec->debugfs_pop_time = debugfs_create_u32("dapm_pop_time", 0744,
219 codec->debugfs_codec_root,
220 &codec->pop_time);
221 if (!codec->debugfs_pop_time)
222 printk(KERN_WARNING
223 "Failed to create pop time debugfs file\n");
225 codec->debugfs_dapm = debugfs_create_dir("dapm",
226 codec->debugfs_codec_root);
227 if (!codec->debugfs_dapm)
228 printk(KERN_WARNING
229 "Failed to create DAPM debugfs directory\n");
231 snd_soc_dapm_debugfs_init(codec);
234 static void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
236 debugfs_remove_recursive(codec->debugfs_codec_root);
239 #else
241 static inline void soc_init_codec_debugfs(struct snd_soc_codec *codec)
245 static inline void soc_cleanup_codec_debugfs(struct snd_soc_codec *codec)
248 #endif
250 #ifdef CONFIG_SND_SOC_AC97_BUS
251 /* unregister ac97 codec */
252 static int soc_ac97_dev_unregister(struct snd_soc_codec *codec)
254 if (codec->ac97->dev.bus)
255 device_unregister(&codec->ac97->dev);
256 return 0;
259 /* stop no dev release warning */
260 static void soc_ac97_device_release(struct device *dev){}
262 /* register ac97 codec to bus */
263 static int soc_ac97_dev_register(struct snd_soc_codec *codec)
265 int err;
267 codec->ac97->dev.bus = &ac97_bus_type;
268 codec->ac97->dev.parent = codec->card->dev;
269 codec->ac97->dev.release = soc_ac97_device_release;
271 dev_set_name(&codec->ac97->dev, "%d-%d:%s",
272 codec->card->number, 0, codec->name);
273 err = device_register(&codec->ac97->dev);
274 if (err < 0) {
275 snd_printk(KERN_ERR "Can't register ac97 bus\n");
276 codec->ac97->dev.bus = NULL;
277 return err;
279 return 0;
281 #endif
283 static int soc_pcm_apply_symmetry(struct snd_pcm_substream *substream)
285 struct snd_soc_pcm_runtime *rtd = substream->private_data;
286 struct snd_soc_device *socdev = rtd->socdev;
287 struct snd_soc_card *card = socdev->card;
288 struct snd_soc_dai_link *machine = rtd->dai;
289 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
290 struct snd_soc_dai *codec_dai = machine->codec_dai;
291 int ret;
293 if (codec_dai->symmetric_rates || cpu_dai->symmetric_rates ||
294 machine->symmetric_rates) {
295 dev_dbg(card->dev, "Symmetry forces %dHz rate\n",
296 machine->rate);
298 ret = snd_pcm_hw_constraint_minmax(substream->runtime,
299 SNDRV_PCM_HW_PARAM_RATE,
300 machine->rate,
301 machine->rate);
302 if (ret < 0) {
303 dev_err(card->dev,
304 "Unable to apply rate symmetry constraint: %d\n", ret);
305 return ret;
309 return 0;
313 * Called by ALSA when a PCM substream is opened, the runtime->hw record is
314 * then initialized and any private data can be allocated. This also calls
315 * startup for the cpu DAI, platform, machine and codec DAI.
317 static int soc_pcm_open(struct snd_pcm_substream *substream)
319 struct snd_soc_pcm_runtime *rtd = substream->private_data;
320 struct snd_soc_device *socdev = rtd->socdev;
321 struct snd_soc_card *card = socdev->card;
322 struct snd_pcm_runtime *runtime = substream->runtime;
323 struct snd_soc_dai_link *machine = rtd->dai;
324 struct snd_soc_platform *platform = card->platform;
325 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
326 struct snd_soc_dai *codec_dai = machine->codec_dai;
327 int ret = 0;
329 mutex_lock(&pcm_mutex);
331 /* startup the audio subsystem */
332 if (cpu_dai->ops->startup) {
333 ret = cpu_dai->ops->startup(substream, cpu_dai);
334 if (ret < 0) {
335 printk(KERN_ERR "asoc: can't open interface %s\n",
336 cpu_dai->name);
337 goto out;
341 if (platform->pcm_ops->open) {
342 ret = platform->pcm_ops->open(substream);
343 if (ret < 0) {
344 printk(KERN_ERR "asoc: can't open platform %s\n", platform->name);
345 goto platform_err;
349 if (codec_dai->ops->startup) {
350 ret = codec_dai->ops->startup(substream, codec_dai);
351 if (ret < 0) {
352 printk(KERN_ERR "asoc: can't open codec %s\n",
353 codec_dai->name);
354 goto codec_dai_err;
358 if (machine->ops && machine->ops->startup) {
359 ret = machine->ops->startup(substream);
360 if (ret < 0) {
361 printk(KERN_ERR "asoc: %s startup failed\n", machine->name);
362 goto machine_err;
366 /* Check that the codec and cpu DAI's are compatible */
367 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
368 runtime->hw.rate_min =
369 max(codec_dai->playback.rate_min,
370 cpu_dai->playback.rate_min);
371 runtime->hw.rate_max =
372 min(codec_dai->playback.rate_max,
373 cpu_dai->playback.rate_max);
374 runtime->hw.channels_min =
375 max(codec_dai->playback.channels_min,
376 cpu_dai->playback.channels_min);
377 runtime->hw.channels_max =
378 min(codec_dai->playback.channels_max,
379 cpu_dai->playback.channels_max);
380 runtime->hw.formats =
381 codec_dai->playback.formats & cpu_dai->playback.formats;
382 runtime->hw.rates =
383 codec_dai->playback.rates & cpu_dai->playback.rates;
384 } else {
385 runtime->hw.rate_min =
386 max(codec_dai->capture.rate_min,
387 cpu_dai->capture.rate_min);
388 runtime->hw.rate_max =
389 min(codec_dai->capture.rate_max,
390 cpu_dai->capture.rate_max);
391 runtime->hw.channels_min =
392 max(codec_dai->capture.channels_min,
393 cpu_dai->capture.channels_min);
394 runtime->hw.channels_max =
395 min(codec_dai->capture.channels_max,
396 cpu_dai->capture.channels_max);
397 runtime->hw.formats =
398 codec_dai->capture.formats & cpu_dai->capture.formats;
399 runtime->hw.rates =
400 codec_dai->capture.rates & cpu_dai->capture.rates;
403 snd_pcm_limit_hw_rates(runtime);
404 if (!runtime->hw.rates) {
405 printk(KERN_ERR "asoc: %s <-> %s No matching rates\n",
406 codec_dai->name, cpu_dai->name);
407 goto machine_err;
409 if (!runtime->hw.formats) {
410 printk(KERN_ERR "asoc: %s <-> %s No matching formats\n",
411 codec_dai->name, cpu_dai->name);
412 goto machine_err;
414 if (!runtime->hw.channels_min || !runtime->hw.channels_max) {
415 printk(KERN_ERR "asoc: %s <-> %s No matching channels\n",
416 codec_dai->name, cpu_dai->name);
417 goto machine_err;
420 /* Symmetry only applies if we've already got an active stream. */
421 if (cpu_dai->active || codec_dai->active) {
422 ret = soc_pcm_apply_symmetry(substream);
423 if (ret != 0)
424 goto machine_err;
427 pr_debug("asoc: %s <-> %s info:\n", codec_dai->name, cpu_dai->name);
428 pr_debug("asoc: rate mask 0x%x\n", runtime->hw.rates);
429 pr_debug("asoc: min ch %d max ch %d\n", runtime->hw.channels_min,
430 runtime->hw.channels_max);
431 pr_debug("asoc: min rate %d max rate %d\n", runtime->hw.rate_min,
432 runtime->hw.rate_max);
434 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
435 cpu_dai->playback.active = codec_dai->playback.active = 1;
436 else
437 cpu_dai->capture.active = codec_dai->capture.active = 1;
438 cpu_dai->active = codec_dai->active = 1;
439 cpu_dai->runtime = runtime;
440 card->codec->active++;
441 mutex_unlock(&pcm_mutex);
442 return 0;
444 machine_err:
445 if (machine->ops && machine->ops->shutdown)
446 machine->ops->shutdown(substream);
448 codec_dai_err:
449 if (platform->pcm_ops->close)
450 platform->pcm_ops->close(substream);
452 platform_err:
453 if (cpu_dai->ops->shutdown)
454 cpu_dai->ops->shutdown(substream, cpu_dai);
455 out:
456 mutex_unlock(&pcm_mutex);
457 return ret;
461 * Power down the audio subsystem pmdown_time msecs after close is called.
462 * This is to ensure there are no pops or clicks in between any music tracks
463 * due to DAPM power cycling.
465 static void close_delayed_work(struct work_struct *work)
467 struct snd_soc_card *card = container_of(work, struct snd_soc_card,
468 delayed_work.work);
469 struct snd_soc_codec *codec = card->codec;
470 struct snd_soc_dai *codec_dai;
471 int i;
473 mutex_lock(&pcm_mutex);
474 for (i = 0; i < codec->num_dai; i++) {
475 codec_dai = &codec->dai[i];
477 pr_debug("pop wq checking: %s status: %s waiting: %s\n",
478 codec_dai->playback.stream_name,
479 codec_dai->playback.active ? "active" : "inactive",
480 codec_dai->pop_wait ? "yes" : "no");
482 /* are we waiting on this codec DAI stream */
483 if (codec_dai->pop_wait == 1) {
484 codec_dai->pop_wait = 0;
485 snd_soc_dapm_stream_event(codec,
486 codec_dai->playback.stream_name,
487 SND_SOC_DAPM_STREAM_STOP);
490 mutex_unlock(&pcm_mutex);
494 * Called by ALSA when a PCM substream is closed. Private data can be
495 * freed here. The cpu DAI, codec DAI, machine and platform are also
496 * shutdown.
498 static int soc_codec_close(struct snd_pcm_substream *substream)
500 struct snd_soc_pcm_runtime *rtd = substream->private_data;
501 struct snd_soc_device *socdev = rtd->socdev;
502 struct snd_soc_card *card = socdev->card;
503 struct snd_soc_dai_link *machine = rtd->dai;
504 struct snd_soc_platform *platform = card->platform;
505 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
506 struct snd_soc_dai *codec_dai = machine->codec_dai;
507 struct snd_soc_codec *codec = card->codec;
509 mutex_lock(&pcm_mutex);
511 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
512 cpu_dai->playback.active = codec_dai->playback.active = 0;
513 else
514 cpu_dai->capture.active = codec_dai->capture.active = 0;
516 if (codec_dai->playback.active == 0 &&
517 codec_dai->capture.active == 0) {
518 cpu_dai->active = codec_dai->active = 0;
520 codec->active--;
522 /* Muting the DAC suppresses artifacts caused during digital
523 * shutdown, for example from stopping clocks.
525 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
526 snd_soc_dai_digital_mute(codec_dai, 1);
528 if (cpu_dai->ops->shutdown)
529 cpu_dai->ops->shutdown(substream, cpu_dai);
531 if (codec_dai->ops->shutdown)
532 codec_dai->ops->shutdown(substream, codec_dai);
534 if (machine->ops && machine->ops->shutdown)
535 machine->ops->shutdown(substream);
537 if (platform->pcm_ops->close)
538 platform->pcm_ops->close(substream);
539 cpu_dai->runtime = NULL;
541 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK) {
542 /* start delayed pop wq here for playback streams */
543 codec_dai->pop_wait = 1;
544 schedule_delayed_work(&card->delayed_work,
545 msecs_to_jiffies(pmdown_time));
546 } else {
547 /* capture streams can be powered down now */
548 snd_soc_dapm_stream_event(codec,
549 codec_dai->capture.stream_name,
550 SND_SOC_DAPM_STREAM_STOP);
553 mutex_unlock(&pcm_mutex);
554 return 0;
558 * Called by ALSA when the PCM substream is prepared, can set format, sample
559 * rate, etc. This function is non atomic and can be called multiple times,
560 * it can refer to the runtime info.
562 static int soc_pcm_prepare(struct snd_pcm_substream *substream)
564 struct snd_soc_pcm_runtime *rtd = substream->private_data;
565 struct snd_soc_device *socdev = rtd->socdev;
566 struct snd_soc_card *card = socdev->card;
567 struct snd_soc_dai_link *machine = rtd->dai;
568 struct snd_soc_platform *platform = card->platform;
569 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
570 struct snd_soc_dai *codec_dai = machine->codec_dai;
571 struct snd_soc_codec *codec = card->codec;
572 int ret = 0;
574 mutex_lock(&pcm_mutex);
576 if (machine->ops && machine->ops->prepare) {
577 ret = machine->ops->prepare(substream);
578 if (ret < 0) {
579 printk(KERN_ERR "asoc: machine prepare error\n");
580 goto out;
584 if (platform->pcm_ops->prepare) {
585 ret = platform->pcm_ops->prepare(substream);
586 if (ret < 0) {
587 printk(KERN_ERR "asoc: platform prepare error\n");
588 goto out;
592 if (codec_dai->ops->prepare) {
593 ret = codec_dai->ops->prepare(substream, codec_dai);
594 if (ret < 0) {
595 printk(KERN_ERR "asoc: codec DAI prepare error\n");
596 goto out;
600 if (cpu_dai->ops->prepare) {
601 ret = cpu_dai->ops->prepare(substream, cpu_dai);
602 if (ret < 0) {
603 printk(KERN_ERR "asoc: cpu DAI prepare error\n");
604 goto out;
608 /* cancel any delayed stream shutdown that is pending */
609 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK &&
610 codec_dai->pop_wait) {
611 codec_dai->pop_wait = 0;
612 cancel_delayed_work(&card->delayed_work);
615 if (substream->stream == SNDRV_PCM_STREAM_PLAYBACK)
616 snd_soc_dapm_stream_event(codec,
617 codec_dai->playback.stream_name,
618 SND_SOC_DAPM_STREAM_START);
619 else
620 snd_soc_dapm_stream_event(codec,
621 codec_dai->capture.stream_name,
622 SND_SOC_DAPM_STREAM_START);
624 snd_soc_dai_digital_mute(codec_dai, 0);
626 out:
627 mutex_unlock(&pcm_mutex);
628 return ret;
632 * Called by ALSA when the hardware params are set by application. This
633 * function can also be called multiple times and can allocate buffers
634 * (using snd_pcm_lib_* ). It's non-atomic.
636 static int soc_pcm_hw_params(struct snd_pcm_substream *substream,
637 struct snd_pcm_hw_params *params)
639 struct snd_soc_pcm_runtime *rtd = substream->private_data;
640 struct snd_soc_device *socdev = rtd->socdev;
641 struct snd_soc_dai_link *machine = rtd->dai;
642 struct snd_soc_card *card = socdev->card;
643 struct snd_soc_platform *platform = card->platform;
644 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
645 struct snd_soc_dai *codec_dai = machine->codec_dai;
646 int ret = 0;
648 mutex_lock(&pcm_mutex);
650 if (machine->ops && machine->ops->hw_params) {
651 ret = machine->ops->hw_params(substream, params);
652 if (ret < 0) {
653 printk(KERN_ERR "asoc: machine hw_params failed\n");
654 goto out;
658 if (codec_dai->ops->hw_params) {
659 ret = codec_dai->ops->hw_params(substream, params, codec_dai);
660 if (ret < 0) {
661 printk(KERN_ERR "asoc: can't set codec %s hw params\n",
662 codec_dai->name);
663 goto codec_err;
667 if (cpu_dai->ops->hw_params) {
668 ret = cpu_dai->ops->hw_params(substream, params, cpu_dai);
669 if (ret < 0) {
670 printk(KERN_ERR "asoc: interface %s hw params failed\n",
671 cpu_dai->name);
672 goto interface_err;
676 if (platform->pcm_ops->hw_params) {
677 ret = platform->pcm_ops->hw_params(substream, params);
678 if (ret < 0) {
679 printk(KERN_ERR "asoc: platform %s hw params failed\n",
680 platform->name);
681 goto platform_err;
685 machine->rate = params_rate(params);
687 out:
688 mutex_unlock(&pcm_mutex);
689 return ret;
691 platform_err:
692 if (cpu_dai->ops->hw_free)
693 cpu_dai->ops->hw_free(substream, cpu_dai);
695 interface_err:
696 if (codec_dai->ops->hw_free)
697 codec_dai->ops->hw_free(substream, codec_dai);
699 codec_err:
700 if (machine->ops && machine->ops->hw_free)
701 machine->ops->hw_free(substream);
703 mutex_unlock(&pcm_mutex);
704 return ret;
708 * Free's resources allocated by hw_params, can be called multiple times
710 static int soc_pcm_hw_free(struct snd_pcm_substream *substream)
712 struct snd_soc_pcm_runtime *rtd = substream->private_data;
713 struct snd_soc_device *socdev = rtd->socdev;
714 struct snd_soc_dai_link *machine = rtd->dai;
715 struct snd_soc_card *card = socdev->card;
716 struct snd_soc_platform *platform = card->platform;
717 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
718 struct snd_soc_dai *codec_dai = machine->codec_dai;
719 struct snd_soc_codec *codec = card->codec;
721 mutex_lock(&pcm_mutex);
723 /* apply codec digital mute */
724 if (!codec->active)
725 snd_soc_dai_digital_mute(codec_dai, 1);
727 /* free any machine hw params */
728 if (machine->ops && machine->ops->hw_free)
729 machine->ops->hw_free(substream);
731 /* free any DMA resources */
732 if (platform->pcm_ops->hw_free)
733 platform->pcm_ops->hw_free(substream);
735 /* now free hw params for the DAI's */
736 if (codec_dai->ops->hw_free)
737 codec_dai->ops->hw_free(substream, codec_dai);
739 if (cpu_dai->ops->hw_free)
740 cpu_dai->ops->hw_free(substream, cpu_dai);
742 mutex_unlock(&pcm_mutex);
743 return 0;
746 static int soc_pcm_trigger(struct snd_pcm_substream *substream, int cmd)
748 struct snd_soc_pcm_runtime *rtd = substream->private_data;
749 struct snd_soc_device *socdev = rtd->socdev;
750 struct snd_soc_card *card= socdev->card;
751 struct snd_soc_dai_link *machine = rtd->dai;
752 struct snd_soc_platform *platform = card->platform;
753 struct snd_soc_dai *cpu_dai = machine->cpu_dai;
754 struct snd_soc_dai *codec_dai = machine->codec_dai;
755 int ret;
757 if (codec_dai->ops->trigger) {
758 ret = codec_dai->ops->trigger(substream, cmd, codec_dai);
759 if (ret < 0)
760 return ret;
763 if (platform->pcm_ops->trigger) {
764 ret = platform->pcm_ops->trigger(substream, cmd);
765 if (ret < 0)
766 return ret;
769 if (cpu_dai->ops->trigger) {
770 ret = cpu_dai->ops->trigger(substream, cmd, cpu_dai);
771 if (ret < 0)
772 return ret;
774 return 0;
777 /* ASoC PCM operations */
778 static struct snd_pcm_ops soc_pcm_ops = {
779 .open = soc_pcm_open,
780 .close = soc_codec_close,
781 .hw_params = soc_pcm_hw_params,
782 .hw_free = soc_pcm_hw_free,
783 .prepare = soc_pcm_prepare,
784 .trigger = soc_pcm_trigger,
787 #ifdef CONFIG_PM
788 /* powers down audio subsystem for suspend */
789 static int soc_suspend(struct device *dev)
791 struct platform_device *pdev = to_platform_device(dev);
792 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
793 struct snd_soc_card *card = socdev->card;
794 struct snd_soc_platform *platform = card->platform;
795 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
796 struct snd_soc_codec *codec = card->codec;
797 int i;
799 /* If the initialization of this soc device failed, there is no codec
800 * associated with it. Just bail out in this case.
802 if (!codec)
803 return 0;
805 /* Due to the resume being scheduled into a workqueue we could
806 * suspend before that's finished - wait for it to complete.
808 snd_power_lock(codec->card);
809 snd_power_wait(codec->card, SNDRV_CTL_POWER_D0);
810 snd_power_unlock(codec->card);
812 /* we're going to block userspace touching us until resume completes */
813 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D3hot);
815 /* mute any active DAC's */
816 for (i = 0; i < card->num_links; i++) {
817 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
818 if (dai->ops->digital_mute && dai->playback.active)
819 dai->ops->digital_mute(dai, 1);
822 /* suspend all pcms */
823 for (i = 0; i < card->num_links; i++)
824 snd_pcm_suspend_all(card->dai_link[i].pcm);
826 if (card->suspend_pre)
827 card->suspend_pre(pdev, PMSG_SUSPEND);
829 for (i = 0; i < card->num_links; i++) {
830 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
831 if (cpu_dai->suspend && !cpu_dai->ac97_control)
832 cpu_dai->suspend(cpu_dai);
833 if (platform->suspend)
834 platform->suspend(cpu_dai);
837 /* close any waiting streams and save state */
838 run_delayed_work(&card->delayed_work);
839 codec->suspend_bias_level = codec->bias_level;
841 for (i = 0; i < codec->num_dai; i++) {
842 char *stream = codec->dai[i].playback.stream_name;
843 if (stream != NULL)
844 snd_soc_dapm_stream_event(codec, stream,
845 SND_SOC_DAPM_STREAM_SUSPEND);
846 stream = codec->dai[i].capture.stream_name;
847 if (stream != NULL)
848 snd_soc_dapm_stream_event(codec, stream,
849 SND_SOC_DAPM_STREAM_SUSPEND);
852 if (codec_dev->suspend)
853 codec_dev->suspend(pdev, PMSG_SUSPEND);
855 for (i = 0; i < card->num_links; i++) {
856 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
857 if (cpu_dai->suspend && cpu_dai->ac97_control)
858 cpu_dai->suspend(cpu_dai);
861 if (card->suspend_post)
862 card->suspend_post(pdev, PMSG_SUSPEND);
864 return 0;
867 /* deferred resume work, so resume can complete before we finished
868 * setting our codec back up, which can be very slow on I2C
870 static void soc_resume_deferred(struct work_struct *work)
872 struct snd_soc_card *card = container_of(work,
873 struct snd_soc_card,
874 deferred_resume_work);
875 struct snd_soc_device *socdev = card->socdev;
876 struct snd_soc_platform *platform = card->platform;
877 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
878 struct snd_soc_codec *codec = card->codec;
879 struct platform_device *pdev = to_platform_device(socdev->dev);
880 int i;
882 /* our power state is still SNDRV_CTL_POWER_D3hot from suspend time,
883 * so userspace apps are blocked from touching us
886 dev_dbg(socdev->dev, "starting resume work\n");
888 if (card->resume_pre)
889 card->resume_pre(pdev);
891 for (i = 0; i < card->num_links; i++) {
892 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
893 if (cpu_dai->resume && cpu_dai->ac97_control)
894 cpu_dai->resume(cpu_dai);
897 if (codec_dev->resume)
898 codec_dev->resume(pdev);
900 for (i = 0; i < codec->num_dai; i++) {
901 char *stream = codec->dai[i].playback.stream_name;
902 if (stream != NULL)
903 snd_soc_dapm_stream_event(codec, stream,
904 SND_SOC_DAPM_STREAM_RESUME);
905 stream = codec->dai[i].capture.stream_name;
906 if (stream != NULL)
907 snd_soc_dapm_stream_event(codec, stream,
908 SND_SOC_DAPM_STREAM_RESUME);
911 /* unmute any active DACs */
912 for (i = 0; i < card->num_links; i++) {
913 struct snd_soc_dai *dai = card->dai_link[i].codec_dai;
914 if (dai->ops->digital_mute && dai->playback.active)
915 dai->ops->digital_mute(dai, 0);
918 for (i = 0; i < card->num_links; i++) {
919 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
920 if (cpu_dai->resume && !cpu_dai->ac97_control)
921 cpu_dai->resume(cpu_dai);
922 if (platform->resume)
923 platform->resume(cpu_dai);
926 if (card->resume_post)
927 card->resume_post(pdev);
929 dev_dbg(socdev->dev, "resume work completed\n");
931 /* userspace can access us now we are back as we were before */
932 snd_power_change_state(codec->card, SNDRV_CTL_POWER_D0);
935 /* powers up audio subsystem after a suspend */
936 static int soc_resume(struct device *dev)
938 struct platform_device *pdev = to_platform_device(dev);
939 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
940 struct snd_soc_card *card = socdev->card;
941 struct snd_soc_dai *cpu_dai = card->dai_link[0].cpu_dai;
943 /* AC97 devices might have other drivers hanging off them so
944 * need to resume immediately. Other drivers don't have that
945 * problem and may take a substantial amount of time to resume
946 * due to I/O costs and anti-pop so handle them out of line.
948 if (cpu_dai->ac97_control) {
949 dev_dbg(socdev->dev, "Resuming AC97 immediately\n");
950 soc_resume_deferred(&card->deferred_resume_work);
951 } else {
952 dev_dbg(socdev->dev, "Scheduling resume work\n");
953 if (!schedule_work(&card->deferred_resume_work))
954 dev_err(socdev->dev, "resume work item may be lost\n");
957 return 0;
959 #else
960 #define soc_suspend NULL
961 #define soc_resume NULL
962 #endif
964 static struct snd_soc_dai_ops null_dai_ops = {
967 static void snd_soc_instantiate_card(struct snd_soc_card *card)
969 struct platform_device *pdev = container_of(card->dev,
970 struct platform_device,
971 dev);
972 struct snd_soc_codec_device *codec_dev = card->socdev->codec_dev;
973 struct snd_soc_codec *codec;
974 struct snd_soc_platform *platform;
975 struct snd_soc_dai *dai;
976 int i, found, ret, ac97;
978 if (card->instantiated)
979 return;
981 found = 0;
982 list_for_each_entry(platform, &platform_list, list)
983 if (card->platform == platform) {
984 found = 1;
985 break;
987 if (!found) {
988 dev_dbg(card->dev, "Platform %s not registered\n",
989 card->platform->name);
990 return;
993 ac97 = 0;
994 for (i = 0; i < card->num_links; i++) {
995 found = 0;
996 list_for_each_entry(dai, &dai_list, list)
997 if (card->dai_link[i].cpu_dai == dai) {
998 found = 1;
999 break;
1001 if (!found) {
1002 dev_dbg(card->dev, "DAI %s not registered\n",
1003 card->dai_link[i].cpu_dai->name);
1004 return;
1007 if (card->dai_link[i].cpu_dai->ac97_control)
1008 ac97 = 1;
1011 for (i = 0; i < card->num_links; i++) {
1012 if (!card->dai_link[i].codec_dai->ops)
1013 card->dai_link[i].codec_dai->ops = &null_dai_ops;
1016 /* If we have AC97 in the system then don't wait for the
1017 * codec. This will need revisiting if we have to handle
1018 * systems with mixed AC97 and non-AC97 parts. Only check for
1019 * DAIs currently; we can't do this per link since some AC97
1020 * codecs have non-AC97 DAIs.
1022 if (!ac97)
1023 for (i = 0; i < card->num_links; i++) {
1024 found = 0;
1025 list_for_each_entry(dai, &dai_list, list)
1026 if (card->dai_link[i].codec_dai == dai) {
1027 found = 1;
1028 break;
1030 if (!found) {
1031 dev_dbg(card->dev, "DAI %s not registered\n",
1032 card->dai_link[i].codec_dai->name);
1033 return;
1037 /* Note that we do not current check for codec components */
1039 dev_dbg(card->dev, "All components present, instantiating\n");
1041 /* Found everything, bring it up */
1042 if (card->probe) {
1043 ret = card->probe(pdev);
1044 if (ret < 0)
1045 return;
1048 for (i = 0; i < card->num_links; i++) {
1049 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1050 if (cpu_dai->probe) {
1051 ret = cpu_dai->probe(pdev, cpu_dai);
1052 if (ret < 0)
1053 goto cpu_dai_err;
1057 if (codec_dev->probe) {
1058 ret = codec_dev->probe(pdev);
1059 if (ret < 0)
1060 goto cpu_dai_err;
1062 codec = card->codec;
1064 if (platform->probe) {
1065 ret = platform->probe(pdev);
1066 if (ret < 0)
1067 goto platform_err;
1070 /* DAPM stream work */
1071 INIT_DELAYED_WORK(&card->delayed_work, close_delayed_work);
1072 #ifdef CONFIG_PM
1073 /* deferred resume work */
1074 INIT_WORK(&card->deferred_resume_work, soc_resume_deferred);
1075 #endif
1077 for (i = 0; i < card->num_links; i++) {
1078 if (card->dai_link[i].init) {
1079 ret = card->dai_link[i].init(codec);
1080 if (ret < 0) {
1081 printk(KERN_ERR "asoc: failed to init %s\n",
1082 card->dai_link[i].stream_name);
1083 continue;
1086 if (card->dai_link[i].codec_dai->ac97_control)
1087 ac97 = 1;
1090 snprintf(codec->card->shortname, sizeof(codec->card->shortname),
1091 "%s", card->name);
1092 snprintf(codec->card->longname, sizeof(codec->card->longname),
1093 "%s (%s)", card->name, codec->name);
1095 /* Make sure all DAPM widgets are instantiated */
1096 snd_soc_dapm_new_widgets(codec);
1098 ret = snd_card_register(codec->card);
1099 if (ret < 0) {
1100 printk(KERN_ERR "asoc: failed to register soundcard for %s\n",
1101 codec->name);
1102 goto card_err;
1105 mutex_lock(&codec->mutex);
1106 #ifdef CONFIG_SND_SOC_AC97_BUS
1107 /* Only instantiate AC97 if not already done by the adaptor
1108 * for the generic AC97 subsystem.
1110 if (ac97 && strcmp(codec->name, "AC97") != 0) {
1111 ret = soc_ac97_dev_register(codec);
1112 if (ret < 0) {
1113 printk(KERN_ERR "asoc: AC97 device register failed\n");
1114 snd_card_free(codec->card);
1115 mutex_unlock(&codec->mutex);
1116 goto card_err;
1119 #endif
1121 ret = snd_soc_dapm_sys_add(card->socdev->dev);
1122 if (ret < 0)
1123 printk(KERN_WARNING "asoc: failed to add dapm sysfs entries\n");
1125 ret = device_create_file(card->socdev->dev, &dev_attr_codec_reg);
1126 if (ret < 0)
1127 printk(KERN_WARNING "asoc: failed to add codec sysfs files\n");
1129 soc_init_codec_debugfs(codec);
1130 mutex_unlock(&codec->mutex);
1132 card->instantiated = 1;
1134 return;
1136 card_err:
1137 if (platform->remove)
1138 platform->remove(pdev);
1140 platform_err:
1141 if (codec_dev->remove)
1142 codec_dev->remove(pdev);
1144 cpu_dai_err:
1145 for (i--; i >= 0; i--) {
1146 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1147 if (cpu_dai->remove)
1148 cpu_dai->remove(pdev, cpu_dai);
1151 if (card->remove)
1152 card->remove(pdev);
1156 * Attempt to initialise any uninitalised cards. Must be called with
1157 * client_mutex.
1159 static void snd_soc_instantiate_cards(void)
1161 struct snd_soc_card *card;
1162 list_for_each_entry(card, &card_list, list)
1163 snd_soc_instantiate_card(card);
1166 /* probes a new socdev */
1167 static int soc_probe(struct platform_device *pdev)
1169 int ret = 0;
1170 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1171 struct snd_soc_card *card = socdev->card;
1173 /* Bodge while we push things out of socdev */
1174 card->socdev = socdev;
1176 /* Bodge while we unpick instantiation */
1177 card->dev = &pdev->dev;
1178 ret = snd_soc_register_card(card);
1179 if (ret != 0) {
1180 dev_err(&pdev->dev, "Failed to register card\n");
1181 return ret;
1184 return 0;
1187 /* removes a socdev */
1188 static int soc_remove(struct platform_device *pdev)
1190 int i;
1191 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1192 struct snd_soc_card *card = socdev->card;
1193 struct snd_soc_platform *platform = card->platform;
1194 struct snd_soc_codec_device *codec_dev = socdev->codec_dev;
1196 if (!card->instantiated)
1197 return 0;
1199 run_delayed_work(&card->delayed_work);
1201 if (platform->remove)
1202 platform->remove(pdev);
1204 if (codec_dev->remove)
1205 codec_dev->remove(pdev);
1207 for (i = 0; i < card->num_links; i++) {
1208 struct snd_soc_dai *cpu_dai = card->dai_link[i].cpu_dai;
1209 if (cpu_dai->remove)
1210 cpu_dai->remove(pdev, cpu_dai);
1213 if (card->remove)
1214 card->remove(pdev);
1216 snd_soc_unregister_card(card);
1218 return 0;
1221 static int soc_poweroff(struct device *dev)
1223 struct platform_device *pdev = to_platform_device(dev);
1224 struct snd_soc_device *socdev = platform_get_drvdata(pdev);
1225 struct snd_soc_card *card = socdev->card;
1227 if (!card->instantiated)
1228 return 0;
1230 /* Flush out pmdown_time work - we actually do want to run it
1231 * now, we're shutting down so no imminent restart. */
1232 run_delayed_work(&card->delayed_work);
1234 snd_soc_dapm_shutdown(socdev);
1236 return 0;
1239 static const struct dev_pm_ops soc_pm_ops = {
1240 .suspend = soc_suspend,
1241 .resume = soc_resume,
1242 .poweroff = soc_poweroff,
1245 /* ASoC platform driver */
1246 static struct platform_driver soc_driver = {
1247 .driver = {
1248 .name = "soc-audio",
1249 .owner = THIS_MODULE,
1250 .pm = &soc_pm_ops,
1252 .probe = soc_probe,
1253 .remove = soc_remove,
1256 /* create a new pcm */
1257 static int soc_new_pcm(struct snd_soc_device *socdev,
1258 struct snd_soc_dai_link *dai_link, int num)
1260 struct snd_soc_card *card = socdev->card;
1261 struct snd_soc_codec *codec = card->codec;
1262 struct snd_soc_platform *platform = card->platform;
1263 struct snd_soc_dai *codec_dai = dai_link->codec_dai;
1264 struct snd_soc_dai *cpu_dai = dai_link->cpu_dai;
1265 struct snd_soc_pcm_runtime *rtd;
1266 struct snd_pcm *pcm;
1267 char new_name[64];
1268 int ret = 0, playback = 0, capture = 0;
1270 rtd = kzalloc(sizeof(struct snd_soc_pcm_runtime), GFP_KERNEL);
1271 if (rtd == NULL)
1272 return -ENOMEM;
1274 rtd->dai = dai_link;
1275 rtd->socdev = socdev;
1276 codec_dai->codec = card->codec;
1278 /* check client and interface hw capabilities */
1279 snprintf(new_name, sizeof(new_name), "%s %s-%d",
1280 dai_link->stream_name, codec_dai->name, num);
1282 if (codec_dai->playback.channels_min)
1283 playback = 1;
1284 if (codec_dai->capture.channels_min)
1285 capture = 1;
1287 ret = snd_pcm_new(codec->card, new_name, codec->pcm_devs++, playback,
1288 capture, &pcm);
1289 if (ret < 0) {
1290 printk(KERN_ERR "asoc: can't create pcm for codec %s\n",
1291 codec->name);
1292 kfree(rtd);
1293 return ret;
1296 dai_link->pcm = pcm;
1297 pcm->private_data = rtd;
1298 soc_pcm_ops.mmap = platform->pcm_ops->mmap;
1299 soc_pcm_ops.pointer = platform->pcm_ops->pointer;
1300 soc_pcm_ops.ioctl = platform->pcm_ops->ioctl;
1301 soc_pcm_ops.copy = platform->pcm_ops->copy;
1302 soc_pcm_ops.silence = platform->pcm_ops->silence;
1303 soc_pcm_ops.ack = platform->pcm_ops->ack;
1304 soc_pcm_ops.page = platform->pcm_ops->page;
1306 if (playback)
1307 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_PLAYBACK, &soc_pcm_ops);
1309 if (capture)
1310 snd_pcm_set_ops(pcm, SNDRV_PCM_STREAM_CAPTURE, &soc_pcm_ops);
1312 ret = platform->pcm_new(codec->card, codec_dai, pcm);
1313 if (ret < 0) {
1314 printk(KERN_ERR "asoc: platform pcm constructor failed\n");
1315 kfree(rtd);
1316 return ret;
1319 pcm->private_free = platform->pcm_free;
1320 printk(KERN_INFO "asoc: %s <-> %s mapping ok\n", codec_dai->name,
1321 cpu_dai->name);
1322 return ret;
1326 * snd_soc_codec_volatile_register: Report if a register is volatile.
1328 * @codec: CODEC to query.
1329 * @reg: Register to query.
1331 * Boolean function indiciating if a CODEC register is volatile.
1333 int snd_soc_codec_volatile_register(struct snd_soc_codec *codec, int reg)
1335 if (codec->volatile_register)
1336 return codec->volatile_register(reg);
1337 else
1338 return 0;
1340 EXPORT_SYMBOL_GPL(snd_soc_codec_volatile_register);
1343 * snd_soc_new_ac97_codec - initailise AC97 device
1344 * @codec: audio codec
1345 * @ops: AC97 bus operations
1346 * @num: AC97 codec number
1348 * Initialises AC97 codec resources for use by ad-hoc devices only.
1350 int snd_soc_new_ac97_codec(struct snd_soc_codec *codec,
1351 struct snd_ac97_bus_ops *ops, int num)
1353 mutex_lock(&codec->mutex);
1355 codec->ac97 = kzalloc(sizeof(struct snd_ac97), GFP_KERNEL);
1356 if (codec->ac97 == NULL) {
1357 mutex_unlock(&codec->mutex);
1358 return -ENOMEM;
1361 codec->ac97->bus = kzalloc(sizeof(struct snd_ac97_bus), GFP_KERNEL);
1362 if (codec->ac97->bus == NULL) {
1363 kfree(codec->ac97);
1364 codec->ac97 = NULL;
1365 mutex_unlock(&codec->mutex);
1366 return -ENOMEM;
1369 codec->ac97->bus->ops = ops;
1370 codec->ac97->num = num;
1371 codec->dev = &codec->ac97->dev;
1372 mutex_unlock(&codec->mutex);
1373 return 0;
1375 EXPORT_SYMBOL_GPL(snd_soc_new_ac97_codec);
1378 * snd_soc_free_ac97_codec - free AC97 codec device
1379 * @codec: audio codec
1381 * Frees AC97 codec device resources.
1383 void snd_soc_free_ac97_codec(struct snd_soc_codec *codec)
1385 mutex_lock(&codec->mutex);
1386 kfree(codec->ac97->bus);
1387 kfree(codec->ac97);
1388 codec->ac97 = NULL;
1389 mutex_unlock(&codec->mutex);
1391 EXPORT_SYMBOL_GPL(snd_soc_free_ac97_codec);
1394 * snd_soc_update_bits - update codec register bits
1395 * @codec: audio codec
1396 * @reg: codec register
1397 * @mask: register mask
1398 * @value: new value
1400 * Writes new register value.
1402 * Returns 1 for change else 0.
1404 int snd_soc_update_bits(struct snd_soc_codec *codec, unsigned short reg,
1405 unsigned int mask, unsigned int value)
1407 int change;
1408 unsigned int old, new;
1410 old = snd_soc_read(codec, reg);
1411 new = (old & ~mask) | value;
1412 change = old != new;
1413 if (change)
1414 snd_soc_write(codec, reg, new);
1416 return change;
1418 EXPORT_SYMBOL_GPL(snd_soc_update_bits);
1421 * snd_soc_update_bits_locked - update codec register bits
1422 * @codec: audio codec
1423 * @reg: codec register
1424 * @mask: register mask
1425 * @value: new value
1427 * Writes new register value, and takes the codec mutex.
1429 * Returns 1 for change else 0.
1431 int snd_soc_update_bits_locked(struct snd_soc_codec *codec,
1432 unsigned short reg, unsigned int mask,
1433 unsigned int value)
1435 int change;
1437 mutex_lock(&codec->mutex);
1438 change = snd_soc_update_bits(codec, reg, mask, value);
1439 mutex_unlock(&codec->mutex);
1441 return change;
1443 EXPORT_SYMBOL_GPL(snd_soc_update_bits_locked);
1446 * snd_soc_test_bits - test register for change
1447 * @codec: audio codec
1448 * @reg: codec register
1449 * @mask: register mask
1450 * @value: new value
1452 * Tests a register with a new value and checks if the new value is
1453 * different from the old value.
1455 * Returns 1 for change else 0.
1457 int snd_soc_test_bits(struct snd_soc_codec *codec, unsigned short reg,
1458 unsigned int mask, unsigned int value)
1460 int change;
1461 unsigned int old, new;
1463 old = snd_soc_read(codec, reg);
1464 new = (old & ~mask) | value;
1465 change = old != new;
1467 return change;
1469 EXPORT_SYMBOL_GPL(snd_soc_test_bits);
1472 * snd_soc_new_pcms - create new sound card and pcms
1473 * @socdev: the SoC audio device
1474 * @idx: ALSA card index
1475 * @xid: card identification
1477 * Create a new sound card based upon the codec and interface pcms.
1479 * Returns 0 for success, else error.
1481 int snd_soc_new_pcms(struct snd_soc_device *socdev, int idx, const char *xid)
1483 struct snd_soc_card *card = socdev->card;
1484 struct snd_soc_codec *codec = card->codec;
1485 int ret, i;
1487 mutex_lock(&codec->mutex);
1489 /* register a sound card */
1490 ret = snd_card_create(idx, xid, codec->owner, 0, &codec->card);
1491 if (ret < 0) {
1492 printk(KERN_ERR "asoc: can't create sound card for codec %s\n",
1493 codec->name);
1494 mutex_unlock(&codec->mutex);
1495 return ret;
1498 codec->socdev = socdev;
1499 codec->card->dev = socdev->dev;
1500 codec->card->private_data = codec;
1501 strncpy(codec->card->driver, codec->name, sizeof(codec->card->driver));
1503 /* create the pcms */
1504 for (i = 0; i < card->num_links; i++) {
1505 ret = soc_new_pcm(socdev, &card->dai_link[i], i);
1506 if (ret < 0) {
1507 printk(KERN_ERR "asoc: can't create pcm %s\n",
1508 card->dai_link[i].stream_name);
1509 mutex_unlock(&codec->mutex);
1510 return ret;
1512 if (card->dai_link[i].codec_dai->ac97_control) {
1513 snd_ac97_dev_add_pdata(codec->ac97,
1514 card->dai_link[i].cpu_dai->ac97_pdata);
1518 mutex_unlock(&codec->mutex);
1519 return ret;
1521 EXPORT_SYMBOL_GPL(snd_soc_new_pcms);
1524 * snd_soc_free_pcms - free sound card and pcms
1525 * @socdev: the SoC audio device
1527 * Frees sound card and pcms associated with the socdev.
1528 * Also unregister the codec if it is an AC97 device.
1530 void snd_soc_free_pcms(struct snd_soc_device *socdev)
1532 struct snd_soc_codec *codec = socdev->card->codec;
1533 #ifdef CONFIG_SND_SOC_AC97_BUS
1534 struct snd_soc_dai *codec_dai;
1535 int i;
1536 #endif
1538 mutex_lock(&codec->mutex);
1539 soc_cleanup_codec_debugfs(codec);
1540 #ifdef CONFIG_SND_SOC_AC97_BUS
1541 for (i = 0; i < codec->num_dai; i++) {
1542 codec_dai = &codec->dai[i];
1543 if (codec_dai->ac97_control && codec->ac97 &&
1544 strcmp(codec->name, "AC97") != 0) {
1545 soc_ac97_dev_unregister(codec);
1546 goto free_card;
1549 free_card:
1550 #endif
1552 if (codec->card)
1553 snd_card_free(codec->card);
1554 device_remove_file(socdev->dev, &dev_attr_codec_reg);
1555 mutex_unlock(&codec->mutex);
1557 EXPORT_SYMBOL_GPL(snd_soc_free_pcms);
1560 * snd_soc_set_runtime_hwparams - set the runtime hardware parameters
1561 * @substream: the pcm substream
1562 * @hw: the hardware parameters
1564 * Sets the substream runtime hardware parameters.
1566 int snd_soc_set_runtime_hwparams(struct snd_pcm_substream *substream,
1567 const struct snd_pcm_hardware *hw)
1569 struct snd_pcm_runtime *runtime = substream->runtime;
1570 runtime->hw.info = hw->info;
1571 runtime->hw.formats = hw->formats;
1572 runtime->hw.period_bytes_min = hw->period_bytes_min;
1573 runtime->hw.period_bytes_max = hw->period_bytes_max;
1574 runtime->hw.periods_min = hw->periods_min;
1575 runtime->hw.periods_max = hw->periods_max;
1576 runtime->hw.buffer_bytes_max = hw->buffer_bytes_max;
1577 runtime->hw.fifo_size = hw->fifo_size;
1578 return 0;
1580 EXPORT_SYMBOL_GPL(snd_soc_set_runtime_hwparams);
1583 * snd_soc_cnew - create new control
1584 * @_template: control template
1585 * @data: control private data
1586 * @long_name: control long name
1588 * Create a new mixer control from a template control.
1590 * Returns 0 for success, else error.
1592 struct snd_kcontrol *snd_soc_cnew(const struct snd_kcontrol_new *_template,
1593 void *data, char *long_name)
1595 struct snd_kcontrol_new template;
1597 memcpy(&template, _template, sizeof(template));
1598 if (long_name)
1599 template.name = long_name;
1600 template.index = 0;
1602 return snd_ctl_new1(&template, data);
1604 EXPORT_SYMBOL_GPL(snd_soc_cnew);
1607 * snd_soc_add_controls - add an array of controls to a codec.
1608 * Convienience function to add a list of controls. Many codecs were
1609 * duplicating this code.
1611 * @codec: codec to add controls to
1612 * @controls: array of controls to add
1613 * @num_controls: number of elements in the array
1615 * Return 0 for success, else error.
1617 int snd_soc_add_controls(struct snd_soc_codec *codec,
1618 const struct snd_kcontrol_new *controls, int num_controls)
1620 struct snd_card *card = codec->card;
1621 int err, i;
1623 for (i = 0; i < num_controls; i++) {
1624 const struct snd_kcontrol_new *control = &controls[i];
1625 err = snd_ctl_add(card, snd_soc_cnew(control, codec, NULL));
1626 if (err < 0) {
1627 dev_err(codec->dev, "%s: Failed to add %s\n",
1628 codec->name, control->name);
1629 return err;
1633 return 0;
1635 EXPORT_SYMBOL_GPL(snd_soc_add_controls);
1638 * snd_soc_info_enum_double - enumerated double mixer info callback
1639 * @kcontrol: mixer control
1640 * @uinfo: control element information
1642 * Callback to provide information about a double enumerated
1643 * mixer control.
1645 * Returns 0 for success.
1647 int snd_soc_info_enum_double(struct snd_kcontrol *kcontrol,
1648 struct snd_ctl_elem_info *uinfo)
1650 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1652 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1653 uinfo->count = e->shift_l == e->shift_r ? 1 : 2;
1654 uinfo->value.enumerated.items = e->max;
1656 if (uinfo->value.enumerated.item > e->max - 1)
1657 uinfo->value.enumerated.item = e->max - 1;
1658 strcpy(uinfo->value.enumerated.name,
1659 e->texts[uinfo->value.enumerated.item]);
1660 return 0;
1662 EXPORT_SYMBOL_GPL(snd_soc_info_enum_double);
1665 * snd_soc_get_enum_double - enumerated double mixer get callback
1666 * @kcontrol: mixer control
1667 * @ucontrol: control element information
1669 * Callback to get the value of a double enumerated mixer.
1671 * Returns 0 for success.
1673 int snd_soc_get_enum_double(struct snd_kcontrol *kcontrol,
1674 struct snd_ctl_elem_value *ucontrol)
1676 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1677 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1678 unsigned int val, bitmask;
1680 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1682 val = snd_soc_read(codec, e->reg);
1683 ucontrol->value.enumerated.item[0]
1684 = (val >> e->shift_l) & (bitmask - 1);
1685 if (e->shift_l != e->shift_r)
1686 ucontrol->value.enumerated.item[1] =
1687 (val >> e->shift_r) & (bitmask - 1);
1689 return 0;
1691 EXPORT_SYMBOL_GPL(snd_soc_get_enum_double);
1694 * snd_soc_put_enum_double - enumerated double mixer put callback
1695 * @kcontrol: mixer control
1696 * @ucontrol: control element information
1698 * Callback to set the value of a double enumerated mixer.
1700 * Returns 0 for success.
1702 int snd_soc_put_enum_double(struct snd_kcontrol *kcontrol,
1703 struct snd_ctl_elem_value *ucontrol)
1705 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1706 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1707 unsigned int val;
1708 unsigned int mask, bitmask;
1710 for (bitmask = 1; bitmask < e->max; bitmask <<= 1)
1712 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1713 return -EINVAL;
1714 val = ucontrol->value.enumerated.item[0] << e->shift_l;
1715 mask = (bitmask - 1) << e->shift_l;
1716 if (e->shift_l != e->shift_r) {
1717 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1718 return -EINVAL;
1719 val |= ucontrol->value.enumerated.item[1] << e->shift_r;
1720 mask |= (bitmask - 1) << e->shift_r;
1723 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1725 EXPORT_SYMBOL_GPL(snd_soc_put_enum_double);
1728 * snd_soc_get_value_enum_double - semi enumerated double mixer get callback
1729 * @kcontrol: mixer control
1730 * @ucontrol: control element information
1732 * Callback to get the value of a double semi enumerated mixer.
1734 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1735 * used for handling bitfield coded enumeration for example.
1737 * Returns 0 for success.
1739 int snd_soc_get_value_enum_double(struct snd_kcontrol *kcontrol,
1740 struct snd_ctl_elem_value *ucontrol)
1742 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1743 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1744 unsigned int reg_val, val, mux;
1746 reg_val = snd_soc_read(codec, e->reg);
1747 val = (reg_val >> e->shift_l) & e->mask;
1748 for (mux = 0; mux < e->max; mux++) {
1749 if (val == e->values[mux])
1750 break;
1752 ucontrol->value.enumerated.item[0] = mux;
1753 if (e->shift_l != e->shift_r) {
1754 val = (reg_val >> e->shift_r) & e->mask;
1755 for (mux = 0; mux < e->max; mux++) {
1756 if (val == e->values[mux])
1757 break;
1759 ucontrol->value.enumerated.item[1] = mux;
1762 return 0;
1764 EXPORT_SYMBOL_GPL(snd_soc_get_value_enum_double);
1767 * snd_soc_put_value_enum_double - semi enumerated double mixer put callback
1768 * @kcontrol: mixer control
1769 * @ucontrol: control element information
1771 * Callback to set the value of a double semi enumerated mixer.
1773 * Semi enumerated mixer: the enumerated items are referred as values. Can be
1774 * used for handling bitfield coded enumeration for example.
1776 * Returns 0 for success.
1778 int snd_soc_put_value_enum_double(struct snd_kcontrol *kcontrol,
1779 struct snd_ctl_elem_value *ucontrol)
1781 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1782 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1783 unsigned int val;
1784 unsigned int mask;
1786 if (ucontrol->value.enumerated.item[0] > e->max - 1)
1787 return -EINVAL;
1788 val = e->values[ucontrol->value.enumerated.item[0]] << e->shift_l;
1789 mask = e->mask << e->shift_l;
1790 if (e->shift_l != e->shift_r) {
1791 if (ucontrol->value.enumerated.item[1] > e->max - 1)
1792 return -EINVAL;
1793 val |= e->values[ucontrol->value.enumerated.item[1]] << e->shift_r;
1794 mask |= e->mask << e->shift_r;
1797 return snd_soc_update_bits_locked(codec, e->reg, mask, val);
1799 EXPORT_SYMBOL_GPL(snd_soc_put_value_enum_double);
1802 * snd_soc_info_enum_ext - external enumerated single mixer info callback
1803 * @kcontrol: mixer control
1804 * @uinfo: control element information
1806 * Callback to provide information about an external enumerated
1807 * single mixer.
1809 * Returns 0 for success.
1811 int snd_soc_info_enum_ext(struct snd_kcontrol *kcontrol,
1812 struct snd_ctl_elem_info *uinfo)
1814 struct soc_enum *e = (struct soc_enum *)kcontrol->private_value;
1816 uinfo->type = SNDRV_CTL_ELEM_TYPE_ENUMERATED;
1817 uinfo->count = 1;
1818 uinfo->value.enumerated.items = e->max;
1820 if (uinfo->value.enumerated.item > e->max - 1)
1821 uinfo->value.enumerated.item = e->max - 1;
1822 strcpy(uinfo->value.enumerated.name,
1823 e->texts[uinfo->value.enumerated.item]);
1824 return 0;
1826 EXPORT_SYMBOL_GPL(snd_soc_info_enum_ext);
1829 * snd_soc_info_volsw_ext - external single mixer info callback
1830 * @kcontrol: mixer control
1831 * @uinfo: control element information
1833 * Callback to provide information about a single external mixer control.
1835 * Returns 0 for success.
1837 int snd_soc_info_volsw_ext(struct snd_kcontrol *kcontrol,
1838 struct snd_ctl_elem_info *uinfo)
1840 int max = kcontrol->private_value;
1842 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1843 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1844 else
1845 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1847 uinfo->count = 1;
1848 uinfo->value.integer.min = 0;
1849 uinfo->value.integer.max = max;
1850 return 0;
1852 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_ext);
1855 * snd_soc_info_volsw - single mixer info callback
1856 * @kcontrol: mixer control
1857 * @uinfo: control element information
1859 * Callback to provide information about a single mixer control.
1861 * Returns 0 for success.
1863 int snd_soc_info_volsw(struct snd_kcontrol *kcontrol,
1864 struct snd_ctl_elem_info *uinfo)
1866 struct soc_mixer_control *mc =
1867 (struct soc_mixer_control *)kcontrol->private_value;
1868 int max = mc->max;
1869 unsigned int shift = mc->shift;
1870 unsigned int rshift = mc->rshift;
1872 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1873 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1874 else
1875 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1877 uinfo->count = shift == rshift ? 1 : 2;
1878 uinfo->value.integer.min = 0;
1879 uinfo->value.integer.max = max;
1880 return 0;
1882 EXPORT_SYMBOL_GPL(snd_soc_info_volsw);
1885 * snd_soc_get_volsw - single mixer get callback
1886 * @kcontrol: mixer control
1887 * @ucontrol: control element information
1889 * Callback to get the value of a single mixer control.
1891 * Returns 0 for success.
1893 int snd_soc_get_volsw(struct snd_kcontrol *kcontrol,
1894 struct snd_ctl_elem_value *ucontrol)
1896 struct soc_mixer_control *mc =
1897 (struct soc_mixer_control *)kcontrol->private_value;
1898 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1899 unsigned int reg = mc->reg;
1900 unsigned int shift = mc->shift;
1901 unsigned int rshift = mc->rshift;
1902 int max = mc->max;
1903 unsigned int mask = (1 << fls(max)) - 1;
1904 unsigned int invert = mc->invert;
1906 ucontrol->value.integer.value[0] =
1907 (snd_soc_read(codec, reg) >> shift) & mask;
1908 if (shift != rshift)
1909 ucontrol->value.integer.value[1] =
1910 (snd_soc_read(codec, reg) >> rshift) & mask;
1911 if (invert) {
1912 ucontrol->value.integer.value[0] =
1913 max - ucontrol->value.integer.value[0];
1914 if (shift != rshift)
1915 ucontrol->value.integer.value[1] =
1916 max - ucontrol->value.integer.value[1];
1919 return 0;
1921 EXPORT_SYMBOL_GPL(snd_soc_get_volsw);
1924 * snd_soc_put_volsw - single mixer put callback
1925 * @kcontrol: mixer control
1926 * @ucontrol: control element information
1928 * Callback to set the value of a single mixer control.
1930 * Returns 0 for success.
1932 int snd_soc_put_volsw(struct snd_kcontrol *kcontrol,
1933 struct snd_ctl_elem_value *ucontrol)
1935 struct soc_mixer_control *mc =
1936 (struct soc_mixer_control *)kcontrol->private_value;
1937 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
1938 unsigned int reg = mc->reg;
1939 unsigned int shift = mc->shift;
1940 unsigned int rshift = mc->rshift;
1941 int max = mc->max;
1942 unsigned int mask = (1 << fls(max)) - 1;
1943 unsigned int invert = mc->invert;
1944 unsigned int val, val2, val_mask;
1946 val = (ucontrol->value.integer.value[0] & mask);
1947 if (invert)
1948 val = max - val;
1949 val_mask = mask << shift;
1950 val = val << shift;
1951 if (shift != rshift) {
1952 val2 = (ucontrol->value.integer.value[1] & mask);
1953 if (invert)
1954 val2 = max - val2;
1955 val_mask |= mask << rshift;
1956 val |= val2 << rshift;
1958 return snd_soc_update_bits_locked(codec, reg, val_mask, val);
1960 EXPORT_SYMBOL_GPL(snd_soc_put_volsw);
1963 * snd_soc_info_volsw_2r - double mixer info callback
1964 * @kcontrol: mixer control
1965 * @uinfo: control element information
1967 * Callback to provide information about a double mixer control that
1968 * spans 2 codec registers.
1970 * Returns 0 for success.
1972 int snd_soc_info_volsw_2r(struct snd_kcontrol *kcontrol,
1973 struct snd_ctl_elem_info *uinfo)
1975 struct soc_mixer_control *mc =
1976 (struct soc_mixer_control *)kcontrol->private_value;
1977 int max = mc->max;
1979 if (max == 1 && !strstr(kcontrol->id.name, " Volume"))
1980 uinfo->type = SNDRV_CTL_ELEM_TYPE_BOOLEAN;
1981 else
1982 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
1984 uinfo->count = 2;
1985 uinfo->value.integer.min = 0;
1986 uinfo->value.integer.max = max;
1987 return 0;
1989 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_2r);
1992 * snd_soc_get_volsw_2r - double mixer get callback
1993 * @kcontrol: mixer control
1994 * @ucontrol: control element information
1996 * Callback to get the value of a double mixer control that spans 2 registers.
1998 * Returns 0 for success.
2000 int snd_soc_get_volsw_2r(struct snd_kcontrol *kcontrol,
2001 struct snd_ctl_elem_value *ucontrol)
2003 struct soc_mixer_control *mc =
2004 (struct soc_mixer_control *)kcontrol->private_value;
2005 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2006 unsigned int reg = mc->reg;
2007 unsigned int reg2 = mc->rreg;
2008 unsigned int shift = mc->shift;
2009 int max = mc->max;
2010 unsigned int mask = (1 << fls(max)) - 1;
2011 unsigned int invert = mc->invert;
2013 ucontrol->value.integer.value[0] =
2014 (snd_soc_read(codec, reg) >> shift) & mask;
2015 ucontrol->value.integer.value[1] =
2016 (snd_soc_read(codec, reg2) >> shift) & mask;
2017 if (invert) {
2018 ucontrol->value.integer.value[0] =
2019 max - ucontrol->value.integer.value[0];
2020 ucontrol->value.integer.value[1] =
2021 max - ucontrol->value.integer.value[1];
2024 return 0;
2026 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_2r);
2029 * snd_soc_put_volsw_2r - double mixer set callback
2030 * @kcontrol: mixer control
2031 * @ucontrol: control element information
2033 * Callback to set the value of a double mixer control that spans 2 registers.
2035 * Returns 0 for success.
2037 int snd_soc_put_volsw_2r(struct snd_kcontrol *kcontrol,
2038 struct snd_ctl_elem_value *ucontrol)
2040 struct soc_mixer_control *mc =
2041 (struct soc_mixer_control *)kcontrol->private_value;
2042 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2043 unsigned int reg = mc->reg;
2044 unsigned int reg2 = mc->rreg;
2045 unsigned int shift = mc->shift;
2046 int max = mc->max;
2047 unsigned int mask = (1 << fls(max)) - 1;
2048 unsigned int invert = mc->invert;
2049 int err;
2050 unsigned int val, val2, val_mask;
2052 val_mask = mask << shift;
2053 val = (ucontrol->value.integer.value[0] & mask);
2054 val2 = (ucontrol->value.integer.value[1] & mask);
2056 if (invert) {
2057 val = max - val;
2058 val2 = max - val2;
2061 val = val << shift;
2062 val2 = val2 << shift;
2064 err = snd_soc_update_bits_locked(codec, reg, val_mask, val);
2065 if (err < 0)
2066 return err;
2068 err = snd_soc_update_bits_locked(codec, reg2, val_mask, val2);
2069 return err;
2071 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_2r);
2074 * snd_soc_info_volsw_s8 - signed mixer info callback
2075 * @kcontrol: mixer control
2076 * @uinfo: control element information
2078 * Callback to provide information about a signed mixer control.
2080 * Returns 0 for success.
2082 int snd_soc_info_volsw_s8(struct snd_kcontrol *kcontrol,
2083 struct snd_ctl_elem_info *uinfo)
2085 struct soc_mixer_control *mc =
2086 (struct soc_mixer_control *)kcontrol->private_value;
2087 int max = mc->max;
2088 int min = mc->min;
2090 uinfo->type = SNDRV_CTL_ELEM_TYPE_INTEGER;
2091 uinfo->count = 2;
2092 uinfo->value.integer.min = 0;
2093 uinfo->value.integer.max = max-min;
2094 return 0;
2096 EXPORT_SYMBOL_GPL(snd_soc_info_volsw_s8);
2099 * snd_soc_get_volsw_s8 - signed mixer get callback
2100 * @kcontrol: mixer control
2101 * @ucontrol: control element information
2103 * Callback to get the value of a signed mixer control.
2105 * Returns 0 for success.
2107 int snd_soc_get_volsw_s8(struct snd_kcontrol *kcontrol,
2108 struct snd_ctl_elem_value *ucontrol)
2110 struct soc_mixer_control *mc =
2111 (struct soc_mixer_control *)kcontrol->private_value;
2112 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2113 unsigned int reg = mc->reg;
2114 int min = mc->min;
2115 int val = snd_soc_read(codec, reg);
2117 ucontrol->value.integer.value[0] =
2118 ((signed char)(val & 0xff))-min;
2119 ucontrol->value.integer.value[1] =
2120 ((signed char)((val >> 8) & 0xff))-min;
2121 return 0;
2123 EXPORT_SYMBOL_GPL(snd_soc_get_volsw_s8);
2126 * snd_soc_put_volsw_sgn - signed mixer put callback
2127 * @kcontrol: mixer control
2128 * @ucontrol: control element information
2130 * Callback to set the value of a signed mixer control.
2132 * Returns 0 for success.
2134 int snd_soc_put_volsw_s8(struct snd_kcontrol *kcontrol,
2135 struct snd_ctl_elem_value *ucontrol)
2137 struct soc_mixer_control *mc =
2138 (struct soc_mixer_control *)kcontrol->private_value;
2139 struct snd_soc_codec *codec = snd_kcontrol_chip(kcontrol);
2140 unsigned int reg = mc->reg;
2141 int min = mc->min;
2142 unsigned int val;
2144 val = (ucontrol->value.integer.value[0]+min) & 0xff;
2145 val |= ((ucontrol->value.integer.value[1]+min) & 0xff) << 8;
2147 return snd_soc_update_bits_locked(codec, reg, 0xffff, val);
2149 EXPORT_SYMBOL_GPL(snd_soc_put_volsw_s8);
2152 * snd_soc_dai_set_sysclk - configure DAI system or master clock.
2153 * @dai: DAI
2154 * @clk_id: DAI specific clock ID
2155 * @freq: new clock frequency in Hz
2156 * @dir: new clock direction - input/output.
2158 * Configures the DAI master (MCLK) or system (SYSCLK) clocking.
2160 int snd_soc_dai_set_sysclk(struct snd_soc_dai *dai, int clk_id,
2161 unsigned int freq, int dir)
2163 if (dai->ops && dai->ops->set_sysclk)
2164 return dai->ops->set_sysclk(dai, clk_id, freq, dir);
2165 else
2166 return -EINVAL;
2168 EXPORT_SYMBOL_GPL(snd_soc_dai_set_sysclk);
2171 * snd_soc_dai_set_clkdiv - configure DAI clock dividers.
2172 * @dai: DAI
2173 * @div_id: DAI specific clock divider ID
2174 * @div: new clock divisor.
2176 * Configures the clock dividers. This is used to derive the best DAI bit and
2177 * frame clocks from the system or master clock. It's best to set the DAI bit
2178 * and frame clocks as low as possible to save system power.
2180 int snd_soc_dai_set_clkdiv(struct snd_soc_dai *dai,
2181 int div_id, int div)
2183 if (dai->ops && dai->ops->set_clkdiv)
2184 return dai->ops->set_clkdiv(dai, div_id, div);
2185 else
2186 return -EINVAL;
2188 EXPORT_SYMBOL_GPL(snd_soc_dai_set_clkdiv);
2191 * snd_soc_dai_set_pll - configure DAI PLL.
2192 * @dai: DAI
2193 * @pll_id: DAI specific PLL ID
2194 * @source: DAI specific source for the PLL
2195 * @freq_in: PLL input clock frequency in Hz
2196 * @freq_out: requested PLL output clock frequency in Hz
2198 * Configures and enables PLL to generate output clock based on input clock.
2200 int snd_soc_dai_set_pll(struct snd_soc_dai *dai, int pll_id, int source,
2201 unsigned int freq_in, unsigned int freq_out)
2203 if (dai->ops && dai->ops->set_pll)
2204 return dai->ops->set_pll(dai, pll_id, source,
2205 freq_in, freq_out);
2206 else
2207 return -EINVAL;
2209 EXPORT_SYMBOL_GPL(snd_soc_dai_set_pll);
2212 * snd_soc_dai_set_fmt - configure DAI hardware audio format.
2213 * @dai: DAI
2214 * @fmt: SND_SOC_DAIFMT_ format value.
2216 * Configures the DAI hardware format and clocking.
2218 int snd_soc_dai_set_fmt(struct snd_soc_dai *dai, unsigned int fmt)
2220 if (dai->ops && dai->ops->set_fmt)
2221 return dai->ops->set_fmt(dai, fmt);
2222 else
2223 return -EINVAL;
2225 EXPORT_SYMBOL_GPL(snd_soc_dai_set_fmt);
2228 * snd_soc_dai_set_tdm_slot - configure DAI TDM.
2229 * @dai: DAI
2230 * @tx_mask: bitmask representing active TX slots.
2231 * @rx_mask: bitmask representing active RX slots.
2232 * @slots: Number of slots in use.
2233 * @slot_width: Width in bits for each slot.
2235 * Configures a DAI for TDM operation. Both mask and slots are codec and DAI
2236 * specific.
2238 int snd_soc_dai_set_tdm_slot(struct snd_soc_dai *dai,
2239 unsigned int tx_mask, unsigned int rx_mask, int slots, int slot_width)
2241 if (dai->ops && dai->ops->set_tdm_slot)
2242 return dai->ops->set_tdm_slot(dai, tx_mask, rx_mask,
2243 slots, slot_width);
2244 else
2245 return -EINVAL;
2247 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tdm_slot);
2250 * snd_soc_dai_set_channel_map - configure DAI audio channel map
2251 * @dai: DAI
2252 * @tx_num: how many TX channels
2253 * @tx_slot: pointer to an array which imply the TX slot number channel
2254 * 0~num-1 uses
2255 * @rx_num: how many RX channels
2256 * @rx_slot: pointer to an array which imply the RX slot number channel
2257 * 0~num-1 uses
2259 * configure the relationship between channel number and TDM slot number.
2261 int snd_soc_dai_set_channel_map(struct snd_soc_dai *dai,
2262 unsigned int tx_num, unsigned int *tx_slot,
2263 unsigned int rx_num, unsigned int *rx_slot)
2265 if (dai->ops && dai->ops->set_channel_map)
2266 return dai->ops->set_channel_map(dai, tx_num, tx_slot,
2267 rx_num, rx_slot);
2268 else
2269 return -EINVAL;
2271 EXPORT_SYMBOL_GPL(snd_soc_dai_set_channel_map);
2274 * snd_soc_dai_set_tristate - configure DAI system or master clock.
2275 * @dai: DAI
2276 * @tristate: tristate enable
2278 * Tristates the DAI so that others can use it.
2280 int snd_soc_dai_set_tristate(struct snd_soc_dai *dai, int tristate)
2282 if (dai->ops && dai->ops->set_tristate)
2283 return dai->ops->set_tristate(dai, tristate);
2284 else
2285 return -EINVAL;
2287 EXPORT_SYMBOL_GPL(snd_soc_dai_set_tristate);
2290 * snd_soc_dai_digital_mute - configure DAI system or master clock.
2291 * @dai: DAI
2292 * @mute: mute enable
2294 * Mutes the DAI DAC.
2296 int snd_soc_dai_digital_mute(struct snd_soc_dai *dai, int mute)
2298 if (dai->ops && dai->ops->digital_mute)
2299 return dai->ops->digital_mute(dai, mute);
2300 else
2301 return -EINVAL;
2303 EXPORT_SYMBOL_GPL(snd_soc_dai_digital_mute);
2306 * snd_soc_register_card - Register a card with the ASoC core
2308 * @card: Card to register
2310 * Note that currently this is an internal only function: it will be
2311 * exposed to machine drivers after further backporting of ASoC v2
2312 * registration APIs.
2314 static int snd_soc_register_card(struct snd_soc_card *card)
2316 if (!card->name || !card->dev)
2317 return -EINVAL;
2319 INIT_LIST_HEAD(&card->list);
2320 card->instantiated = 0;
2322 mutex_lock(&client_mutex);
2323 list_add(&card->list, &card_list);
2324 snd_soc_instantiate_cards();
2325 mutex_unlock(&client_mutex);
2327 dev_dbg(card->dev, "Registered card '%s'\n", card->name);
2329 return 0;
2333 * snd_soc_unregister_card - Unregister a card with the ASoC core
2335 * @card: Card to unregister
2337 * Note that currently this is an internal only function: it will be
2338 * exposed to machine drivers after further backporting of ASoC v2
2339 * registration APIs.
2341 static int snd_soc_unregister_card(struct snd_soc_card *card)
2343 mutex_lock(&client_mutex);
2344 list_del(&card->list);
2345 mutex_unlock(&client_mutex);
2347 dev_dbg(card->dev, "Unregistered card '%s'\n", card->name);
2349 return 0;
2353 * snd_soc_register_dai - Register a DAI with the ASoC core
2355 * @dai: DAI to register
2357 int snd_soc_register_dai(struct snd_soc_dai *dai)
2359 if (!dai->name)
2360 return -EINVAL;
2362 /* The device should become mandatory over time */
2363 if (!dai->dev)
2364 printk(KERN_WARNING "No device for DAI %s\n", dai->name);
2366 if (!dai->ops)
2367 dai->ops = &null_dai_ops;
2369 INIT_LIST_HEAD(&dai->list);
2371 mutex_lock(&client_mutex);
2372 list_add(&dai->list, &dai_list);
2373 snd_soc_instantiate_cards();
2374 mutex_unlock(&client_mutex);
2376 pr_debug("Registered DAI '%s'\n", dai->name);
2378 return 0;
2380 EXPORT_SYMBOL_GPL(snd_soc_register_dai);
2383 * snd_soc_unregister_dai - Unregister a DAI from the ASoC core
2385 * @dai: DAI to unregister
2387 void snd_soc_unregister_dai(struct snd_soc_dai *dai)
2389 mutex_lock(&client_mutex);
2390 list_del(&dai->list);
2391 mutex_unlock(&client_mutex);
2393 pr_debug("Unregistered DAI '%s'\n", dai->name);
2395 EXPORT_SYMBOL_GPL(snd_soc_unregister_dai);
2398 * snd_soc_register_dais - Register multiple DAIs with the ASoC core
2400 * @dai: Array of DAIs to register
2401 * @count: Number of DAIs
2403 int snd_soc_register_dais(struct snd_soc_dai *dai, size_t count)
2405 int i, ret;
2407 for (i = 0; i < count; i++) {
2408 ret = snd_soc_register_dai(&dai[i]);
2409 if (ret != 0)
2410 goto err;
2413 return 0;
2415 err:
2416 for (i--; i >= 0; i--)
2417 snd_soc_unregister_dai(&dai[i]);
2419 return ret;
2421 EXPORT_SYMBOL_GPL(snd_soc_register_dais);
2424 * snd_soc_unregister_dais - Unregister multiple DAIs from the ASoC core
2426 * @dai: Array of DAIs to unregister
2427 * @count: Number of DAIs
2429 void snd_soc_unregister_dais(struct snd_soc_dai *dai, size_t count)
2431 int i;
2433 for (i = 0; i < count; i++)
2434 snd_soc_unregister_dai(&dai[i]);
2436 EXPORT_SYMBOL_GPL(snd_soc_unregister_dais);
2439 * snd_soc_register_platform - Register a platform with the ASoC core
2441 * @platform: platform to register
2443 int snd_soc_register_platform(struct snd_soc_platform *platform)
2445 if (!platform->name)
2446 return -EINVAL;
2448 INIT_LIST_HEAD(&platform->list);
2450 mutex_lock(&client_mutex);
2451 list_add(&platform->list, &platform_list);
2452 snd_soc_instantiate_cards();
2453 mutex_unlock(&client_mutex);
2455 pr_debug("Registered platform '%s'\n", platform->name);
2457 return 0;
2459 EXPORT_SYMBOL_GPL(snd_soc_register_platform);
2462 * snd_soc_unregister_platform - Unregister a platform from the ASoC core
2464 * @platform: platform to unregister
2466 void snd_soc_unregister_platform(struct snd_soc_platform *platform)
2468 mutex_lock(&client_mutex);
2469 list_del(&platform->list);
2470 mutex_unlock(&client_mutex);
2472 pr_debug("Unregistered platform '%s'\n", platform->name);
2474 EXPORT_SYMBOL_GPL(snd_soc_unregister_platform);
2476 static u64 codec_format_map[] = {
2477 SNDRV_PCM_FMTBIT_S16_LE | SNDRV_PCM_FMTBIT_S16_BE,
2478 SNDRV_PCM_FMTBIT_U16_LE | SNDRV_PCM_FMTBIT_U16_BE,
2479 SNDRV_PCM_FMTBIT_S24_LE | SNDRV_PCM_FMTBIT_S24_BE,
2480 SNDRV_PCM_FMTBIT_U24_LE | SNDRV_PCM_FMTBIT_U24_BE,
2481 SNDRV_PCM_FMTBIT_S32_LE | SNDRV_PCM_FMTBIT_S32_BE,
2482 SNDRV_PCM_FMTBIT_U32_LE | SNDRV_PCM_FMTBIT_U32_BE,
2483 SNDRV_PCM_FMTBIT_S24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2484 SNDRV_PCM_FMTBIT_U24_3LE | SNDRV_PCM_FMTBIT_U24_3BE,
2485 SNDRV_PCM_FMTBIT_S20_3LE | SNDRV_PCM_FMTBIT_S20_3BE,
2486 SNDRV_PCM_FMTBIT_U20_3LE | SNDRV_PCM_FMTBIT_U20_3BE,
2487 SNDRV_PCM_FMTBIT_S18_3LE | SNDRV_PCM_FMTBIT_S18_3BE,
2488 SNDRV_PCM_FMTBIT_U18_3LE | SNDRV_PCM_FMTBIT_U18_3BE,
2489 SNDRV_PCM_FMTBIT_FLOAT_LE | SNDRV_PCM_FMTBIT_FLOAT_BE,
2490 SNDRV_PCM_FMTBIT_FLOAT64_LE | SNDRV_PCM_FMTBIT_FLOAT64_BE,
2491 SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_LE
2492 | SNDRV_PCM_FMTBIT_IEC958_SUBFRAME_BE,
2495 /* Fix up the DAI formats for endianness: codecs don't actually see
2496 * the endianness of the data but we're using the CPU format
2497 * definitions which do need to include endianness so we ensure that
2498 * codec DAIs always have both big and little endian variants set.
2500 static void fixup_codec_formats(struct snd_soc_pcm_stream *stream)
2502 int i;
2504 for (i = 0; i < ARRAY_SIZE(codec_format_map); i++)
2505 if (stream->formats & codec_format_map[i])
2506 stream->formats |= codec_format_map[i];
2510 * snd_soc_register_codec - Register a codec with the ASoC core
2512 * @codec: codec to register
2514 int snd_soc_register_codec(struct snd_soc_codec *codec)
2516 int i;
2518 if (!codec->name)
2519 return -EINVAL;
2521 /* The device should become mandatory over time */
2522 if (!codec->dev)
2523 printk(KERN_WARNING "No device for codec %s\n", codec->name);
2525 INIT_LIST_HEAD(&codec->list);
2527 for (i = 0; i < codec->num_dai; i++) {
2528 fixup_codec_formats(&codec->dai[i].playback);
2529 fixup_codec_formats(&codec->dai[i].capture);
2532 mutex_lock(&client_mutex);
2533 list_add(&codec->list, &codec_list);
2534 snd_soc_instantiate_cards();
2535 mutex_unlock(&client_mutex);
2537 pr_debug("Registered codec '%s'\n", codec->name);
2539 return 0;
2541 EXPORT_SYMBOL_GPL(snd_soc_register_codec);
2544 * snd_soc_unregister_codec - Unregister a codec from the ASoC core
2546 * @codec: codec to unregister
2548 void snd_soc_unregister_codec(struct snd_soc_codec *codec)
2550 mutex_lock(&client_mutex);
2551 list_del(&codec->list);
2552 mutex_unlock(&client_mutex);
2554 pr_debug("Unregistered codec '%s'\n", codec->name);
2556 EXPORT_SYMBOL_GPL(snd_soc_unregister_codec);
2558 static int __init snd_soc_init(void)
2560 #ifdef CONFIG_DEBUG_FS
2561 debugfs_root = debugfs_create_dir("asoc", NULL);
2562 if (IS_ERR(debugfs_root) || !debugfs_root) {
2563 printk(KERN_WARNING
2564 "ASoC: Failed to create debugfs directory\n");
2565 debugfs_root = NULL;
2567 #endif
2569 return platform_driver_register(&soc_driver);
2572 static void __exit snd_soc_exit(void)
2574 #ifdef CONFIG_DEBUG_FS
2575 debugfs_remove_recursive(debugfs_root);
2576 #endif
2577 platform_driver_unregister(&soc_driver);
2580 module_init(snd_soc_init);
2581 module_exit(snd_soc_exit);
2583 /* Module information */
2584 MODULE_AUTHOR("Liam Girdwood, lrg@slimlogic.co.uk");
2585 MODULE_DESCRIPTION("ALSA SoC Core");
2586 MODULE_LICENSE("GPL");
2587 MODULE_ALIAS("platform:soc-audio");