4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
11 #include <linux/syscalls.h>
12 #include <linux/slab.h>
13 #include <linux/sched.h>
14 #include <linux/spinlock.h>
15 #include <linux/percpu.h>
16 #include <linux/init.h>
17 #include <linux/kernel.h>
18 #include <linux/acct.h>
19 #include <linux/capability.h>
20 #include <linux/cpumask.h>
21 #include <linux/module.h>
22 #include <linux/sysfs.h>
23 #include <linux/seq_file.h>
24 #include <linux/mnt_namespace.h>
25 #include <linux/namei.h>
26 #include <linux/nsproxy.h>
27 #include <linux/security.h>
28 #include <linux/mount.h>
29 #include <linux/ramfs.h>
30 #include <linux/log2.h>
31 #include <linux/idr.h>
32 #include <linux/fs_struct.h>
33 #include <linux/fsnotify.h>
34 #include <asm/uaccess.h>
35 #include <asm/unistd.h>
39 #define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40 #define HASH_SIZE (1UL << HASH_SHIFT)
43 static DEFINE_IDA(mnt_id_ida
);
44 static DEFINE_IDA(mnt_group_ida
);
45 static DEFINE_SPINLOCK(mnt_id_lock
);
46 static int mnt_id_start
= 0;
47 static int mnt_group_start
= 1;
49 static struct list_head
*mount_hashtable __read_mostly
;
50 static struct kmem_cache
*mnt_cache __read_mostly
;
51 static struct rw_semaphore namespace_sem
;
54 struct kobject
*fs_kobj
;
55 EXPORT_SYMBOL_GPL(fs_kobj
);
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
65 DEFINE_BRLOCK(vfsmount_lock
);
67 static inline unsigned long hash(struct vfsmount
*mnt
, struct dentry
*dentry
)
69 unsigned long tmp
= ((unsigned long)mnt
/ L1_CACHE_BYTES
);
70 tmp
+= ((unsigned long)dentry
/ L1_CACHE_BYTES
);
71 tmp
= tmp
+ (tmp
>> HASH_SHIFT
);
72 return tmp
& (HASH_SIZE
- 1);
75 #define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
81 static int mnt_alloc_id(struct vfsmount
*mnt
)
86 ida_pre_get(&mnt_id_ida
, GFP_KERNEL
);
87 spin_lock(&mnt_id_lock
);
88 res
= ida_get_new_above(&mnt_id_ida
, mnt_id_start
, &mnt
->mnt_id
);
90 mnt_id_start
= mnt
->mnt_id
+ 1;
91 spin_unlock(&mnt_id_lock
);
98 static void mnt_free_id(struct vfsmount
*mnt
)
100 int id
= mnt
->mnt_id
;
101 spin_lock(&mnt_id_lock
);
102 ida_remove(&mnt_id_ida
, id
);
103 if (mnt_id_start
> id
)
105 spin_unlock(&mnt_id_lock
);
109 * Allocate a new peer group ID
111 * mnt_group_ida is protected by namespace_sem
113 static int mnt_alloc_group_id(struct vfsmount
*mnt
)
117 if (!ida_pre_get(&mnt_group_ida
, GFP_KERNEL
))
120 res
= ida_get_new_above(&mnt_group_ida
,
124 mnt_group_start
= mnt
->mnt_group_id
+ 1;
130 * Release a peer group ID
132 void mnt_release_group_id(struct vfsmount
*mnt
)
134 int id
= mnt
->mnt_group_id
;
135 ida_remove(&mnt_group_ida
, id
);
136 if (mnt_group_start
> id
)
137 mnt_group_start
= id
;
138 mnt
->mnt_group_id
= 0;
142 * vfsmount lock must be held for read
144 static inline void mnt_add_count(struct vfsmount
*mnt
, int n
)
147 this_cpu_add(mnt
->mnt_pcp
->mnt_count
, n
);
155 static inline void mnt_set_count(struct vfsmount
*mnt
, int n
)
158 this_cpu_write(mnt
->mnt_pcp
->mnt_count
, n
);
165 * vfsmount lock must be held for read
167 static inline void mnt_inc_count(struct vfsmount
*mnt
)
169 mnt_add_count(mnt
, 1);
173 * vfsmount lock must be held for read
175 static inline void mnt_dec_count(struct vfsmount
*mnt
)
177 mnt_add_count(mnt
, -1);
181 * vfsmount lock must be held for write
183 unsigned int mnt_get_count(struct vfsmount
*mnt
)
186 unsigned int count
= atomic_read(&mnt
->mnt_longrefs
);
189 for_each_possible_cpu(cpu
) {
190 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_count
;
195 return mnt
->mnt_count
;
199 struct vfsmount
*alloc_vfsmnt(const char *name
)
201 struct vfsmount
*mnt
= kmem_cache_zalloc(mnt_cache
, GFP_KERNEL
);
205 err
= mnt_alloc_id(mnt
);
210 mnt
->mnt_devname
= kstrdup(name
, GFP_KERNEL
);
211 if (!mnt
->mnt_devname
)
216 mnt
->mnt_pcp
= alloc_percpu(struct mnt_pcp
);
218 goto out_free_devname
;
220 atomic_set(&mnt
->mnt_longrefs
, 1);
223 mnt
->mnt_writers
= 0;
226 INIT_LIST_HEAD(&mnt
->mnt_hash
);
227 INIT_LIST_HEAD(&mnt
->mnt_child
);
228 INIT_LIST_HEAD(&mnt
->mnt_mounts
);
229 INIT_LIST_HEAD(&mnt
->mnt_list
);
230 INIT_LIST_HEAD(&mnt
->mnt_expire
);
231 INIT_LIST_HEAD(&mnt
->mnt_share
);
232 INIT_LIST_HEAD(&mnt
->mnt_slave_list
);
233 INIT_LIST_HEAD(&mnt
->mnt_slave
);
234 #ifdef CONFIG_FSNOTIFY
235 INIT_HLIST_HEAD(&mnt
->mnt_fsnotify_marks
);
242 kfree(mnt
->mnt_devname
);
247 kmem_cache_free(mnt_cache
, mnt
);
252 * Most r/o checks on a fs are for operations that take
253 * discrete amounts of time, like a write() or unlink().
254 * We must keep track of when those operations start
255 * (for permission checks) and when they end, so that
256 * we can determine when writes are able to occur to
260 * __mnt_is_readonly: check whether a mount is read-only
261 * @mnt: the mount to check for its write status
263 * This shouldn't be used directly ouside of the VFS.
264 * It does not guarantee that the filesystem will stay
265 * r/w, just that it is right *now*. This can not and
266 * should not be used in place of IS_RDONLY(inode).
267 * mnt_want/drop_write() will _keep_ the filesystem
270 int __mnt_is_readonly(struct vfsmount
*mnt
)
272 if (mnt
->mnt_flags
& MNT_READONLY
)
274 if (mnt
->mnt_sb
->s_flags
& MS_RDONLY
)
278 EXPORT_SYMBOL_GPL(__mnt_is_readonly
);
280 static inline void mnt_inc_writers(struct vfsmount
*mnt
)
283 this_cpu_inc(mnt
->mnt_pcp
->mnt_writers
);
289 static inline void mnt_dec_writers(struct vfsmount
*mnt
)
292 this_cpu_dec(mnt
->mnt_pcp
->mnt_writers
);
298 static unsigned int mnt_get_writers(struct vfsmount
*mnt
)
301 unsigned int count
= 0;
304 for_each_possible_cpu(cpu
) {
305 count
+= per_cpu_ptr(mnt
->mnt_pcp
, cpu
)->mnt_writers
;
310 return mnt
->mnt_writers
;
315 * Most r/o checks on a fs are for operations that take
316 * discrete amounts of time, like a write() or unlink().
317 * We must keep track of when those operations start
318 * (for permission checks) and when they end, so that
319 * we can determine when writes are able to occur to
323 * mnt_want_write - get write access to a mount
324 * @mnt: the mount on which to take a write
326 * This tells the low-level filesystem that a write is
327 * about to be performed to it, and makes sure that
328 * writes are allowed before returning success. When
329 * the write operation is finished, mnt_drop_write()
330 * must be called. This is effectively a refcount.
332 int mnt_want_write(struct vfsmount
*mnt
)
337 mnt_inc_writers(mnt
);
339 * The store to mnt_inc_writers must be visible before we pass
340 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
341 * incremented count after it has set MNT_WRITE_HOLD.
344 while (mnt
->mnt_flags
& MNT_WRITE_HOLD
)
347 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
348 * be set to match its requirements. So we must not load that until
349 * MNT_WRITE_HOLD is cleared.
352 if (__mnt_is_readonly(mnt
)) {
353 mnt_dec_writers(mnt
);
361 EXPORT_SYMBOL_GPL(mnt_want_write
);
364 * mnt_clone_write - get write access to a mount
365 * @mnt: the mount on which to take a write
367 * This is effectively like mnt_want_write, except
368 * it must only be used to take an extra write reference
369 * on a mountpoint that we already know has a write reference
370 * on it. This allows some optimisation.
372 * After finished, mnt_drop_write must be called as usual to
373 * drop the reference.
375 int mnt_clone_write(struct vfsmount
*mnt
)
377 /* superblock may be r/o */
378 if (__mnt_is_readonly(mnt
))
381 mnt_inc_writers(mnt
);
385 EXPORT_SYMBOL_GPL(mnt_clone_write
);
388 * mnt_want_write_file - get write access to a file's mount
389 * @file: the file who's mount on which to take a write
391 * This is like mnt_want_write, but it takes a file and can
392 * do some optimisations if the file is open for write already
394 int mnt_want_write_file(struct file
*file
)
396 struct inode
*inode
= file
->f_dentry
->d_inode
;
397 if (!(file
->f_mode
& FMODE_WRITE
) || special_file(inode
->i_mode
))
398 return mnt_want_write(file
->f_path
.mnt
);
400 return mnt_clone_write(file
->f_path
.mnt
);
402 EXPORT_SYMBOL_GPL(mnt_want_write_file
);
405 * mnt_drop_write - give up write access to a mount
406 * @mnt: the mount on which to give up write access
408 * Tells the low-level filesystem that we are done
409 * performing writes to it. Must be matched with
410 * mnt_want_write() call above.
412 void mnt_drop_write(struct vfsmount
*mnt
)
415 mnt_dec_writers(mnt
);
418 EXPORT_SYMBOL_GPL(mnt_drop_write
);
420 static int mnt_make_readonly(struct vfsmount
*mnt
)
424 br_write_lock(vfsmount_lock
);
425 mnt
->mnt_flags
|= MNT_WRITE_HOLD
;
427 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
428 * should be visible before we do.
433 * With writers on hold, if this value is zero, then there are
434 * definitely no active writers (although held writers may subsequently
435 * increment the count, they'll have to wait, and decrement it after
436 * seeing MNT_READONLY).
438 * It is OK to have counter incremented on one CPU and decremented on
439 * another: the sum will add up correctly. The danger would be when we
440 * sum up each counter, if we read a counter before it is incremented,
441 * but then read another CPU's count which it has been subsequently
442 * decremented from -- we would see more decrements than we should.
443 * MNT_WRITE_HOLD protects against this scenario, because
444 * mnt_want_write first increments count, then smp_mb, then spins on
445 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
446 * we're counting up here.
448 if (mnt_get_writers(mnt
) > 0)
451 mnt
->mnt_flags
|= MNT_READONLY
;
453 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
454 * that become unheld will see MNT_READONLY.
457 mnt
->mnt_flags
&= ~MNT_WRITE_HOLD
;
458 br_write_unlock(vfsmount_lock
);
462 static void __mnt_unmake_readonly(struct vfsmount
*mnt
)
464 br_write_lock(vfsmount_lock
);
465 mnt
->mnt_flags
&= ~MNT_READONLY
;
466 br_write_unlock(vfsmount_lock
);
469 void simple_set_mnt(struct vfsmount
*mnt
, struct super_block
*sb
)
472 mnt
->mnt_root
= dget(sb
->s_root
);
475 EXPORT_SYMBOL(simple_set_mnt
);
477 void free_vfsmnt(struct vfsmount
*mnt
)
479 kfree(mnt
->mnt_devname
);
482 free_percpu(mnt
->mnt_pcp
);
484 kmem_cache_free(mnt_cache
, mnt
);
488 * find the first or last mount at @dentry on vfsmount @mnt depending on
489 * @dir. If @dir is set return the first mount else return the last mount.
490 * vfsmount_lock must be held for read or write.
492 struct vfsmount
*__lookup_mnt(struct vfsmount
*mnt
, struct dentry
*dentry
,
495 struct list_head
*head
= mount_hashtable
+ hash(mnt
, dentry
);
496 struct list_head
*tmp
= head
;
497 struct vfsmount
*p
, *found
= NULL
;
500 tmp
= dir
? tmp
->next
: tmp
->prev
;
504 p
= list_entry(tmp
, struct vfsmount
, mnt_hash
);
505 if (p
->mnt_parent
== mnt
&& p
->mnt_mountpoint
== dentry
) {
514 * lookup_mnt increments the ref count before returning
515 * the vfsmount struct.
517 struct vfsmount
*lookup_mnt(struct path
*path
)
519 struct vfsmount
*child_mnt
;
521 br_read_lock(vfsmount_lock
);
522 if ((child_mnt
= __lookup_mnt(path
->mnt
, path
->dentry
, 1)))
524 br_read_unlock(vfsmount_lock
);
528 static inline int check_mnt(struct vfsmount
*mnt
)
530 return mnt
->mnt_ns
== current
->nsproxy
->mnt_ns
;
534 * vfsmount lock must be held for write
536 static void touch_mnt_namespace(struct mnt_namespace
*ns
)
540 wake_up_interruptible(&ns
->poll
);
545 * vfsmount lock must be held for write
547 static void __touch_mnt_namespace(struct mnt_namespace
*ns
)
549 if (ns
&& ns
->event
!= event
) {
551 wake_up_interruptible(&ns
->poll
);
556 * Clear dentry's mounted state if it has no remaining mounts.
557 * vfsmount_lock must be held for write.
559 static void dentry_reset_mounted(struct vfsmount
*mnt
, struct dentry
*dentry
)
563 for (u
= 0; u
< HASH_SIZE
; u
++) {
566 list_for_each_entry(p
, &mount_hashtable
[u
], mnt_hash
) {
567 if (p
->mnt_mountpoint
== dentry
)
571 spin_lock(&dentry
->d_lock
);
572 dentry
->d_flags
&= ~DCACHE_MOUNTED
;
573 spin_unlock(&dentry
->d_lock
);
577 * vfsmount lock must be held for write
579 static void detach_mnt(struct vfsmount
*mnt
, struct path
*old_path
)
581 old_path
->dentry
= mnt
->mnt_mountpoint
;
582 old_path
->mnt
= mnt
->mnt_parent
;
583 mnt
->mnt_parent
= mnt
;
584 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
585 list_del_init(&mnt
->mnt_child
);
586 list_del_init(&mnt
->mnt_hash
);
587 dentry_reset_mounted(old_path
->mnt
, old_path
->dentry
);
591 * vfsmount lock must be held for write
593 void mnt_set_mountpoint(struct vfsmount
*mnt
, struct dentry
*dentry
,
594 struct vfsmount
*child_mnt
)
596 child_mnt
->mnt_parent
= mntget(mnt
);
597 child_mnt
->mnt_mountpoint
= dget(dentry
);
598 spin_lock(&dentry
->d_lock
);
599 dentry
->d_flags
|= DCACHE_MOUNTED
;
600 spin_unlock(&dentry
->d_lock
);
604 * vfsmount lock must be held for write
606 static void attach_mnt(struct vfsmount
*mnt
, struct path
*path
)
608 mnt_set_mountpoint(path
->mnt
, path
->dentry
, mnt
);
609 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
610 hash(path
->mnt
, path
->dentry
));
611 list_add_tail(&mnt
->mnt_child
, &path
->mnt
->mnt_mounts
);
615 * vfsmount lock must be held for write
617 static void commit_tree(struct vfsmount
*mnt
)
619 struct vfsmount
*parent
= mnt
->mnt_parent
;
622 struct mnt_namespace
*n
= parent
->mnt_ns
;
624 BUG_ON(parent
== mnt
);
626 list_add_tail(&head
, &mnt
->mnt_list
);
627 list_for_each_entry(m
, &head
, mnt_list
)
629 list_splice(&head
, n
->list
.prev
);
631 list_add_tail(&mnt
->mnt_hash
, mount_hashtable
+
632 hash(parent
, mnt
->mnt_mountpoint
));
633 list_add_tail(&mnt
->mnt_child
, &parent
->mnt_mounts
);
634 touch_mnt_namespace(n
);
637 static struct vfsmount
*next_mnt(struct vfsmount
*p
, struct vfsmount
*root
)
639 struct list_head
*next
= p
->mnt_mounts
.next
;
640 if (next
== &p
->mnt_mounts
) {
644 next
= p
->mnt_child
.next
;
645 if (next
!= &p
->mnt_parent
->mnt_mounts
)
650 return list_entry(next
, struct vfsmount
, mnt_child
);
653 static struct vfsmount
*skip_mnt_tree(struct vfsmount
*p
)
655 struct list_head
*prev
= p
->mnt_mounts
.prev
;
656 while (prev
!= &p
->mnt_mounts
) {
657 p
= list_entry(prev
, struct vfsmount
, mnt_child
);
658 prev
= p
->mnt_mounts
.prev
;
663 static struct vfsmount
*clone_mnt(struct vfsmount
*old
, struct dentry
*root
,
666 struct super_block
*sb
= old
->mnt_sb
;
667 struct vfsmount
*mnt
= alloc_vfsmnt(old
->mnt_devname
);
670 if (flag
& (CL_SLAVE
| CL_PRIVATE
))
671 mnt
->mnt_group_id
= 0; /* not a peer of original */
673 mnt
->mnt_group_id
= old
->mnt_group_id
;
675 if ((flag
& CL_MAKE_SHARED
) && !mnt
->mnt_group_id
) {
676 int err
= mnt_alloc_group_id(mnt
);
681 mnt
->mnt_flags
= old
->mnt_flags
& ~MNT_WRITE_HOLD
;
682 atomic_inc(&sb
->s_active
);
684 mnt
->mnt_root
= dget(root
);
685 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
686 mnt
->mnt_parent
= mnt
;
688 if (flag
& CL_SLAVE
) {
689 list_add(&mnt
->mnt_slave
, &old
->mnt_slave_list
);
690 mnt
->mnt_master
= old
;
691 CLEAR_MNT_SHARED(mnt
);
692 } else if (!(flag
& CL_PRIVATE
)) {
693 if ((flag
& CL_MAKE_SHARED
) || IS_MNT_SHARED(old
))
694 list_add(&mnt
->mnt_share
, &old
->mnt_share
);
695 if (IS_MNT_SLAVE(old
))
696 list_add(&mnt
->mnt_slave
, &old
->mnt_slave
);
697 mnt
->mnt_master
= old
->mnt_master
;
699 if (flag
& CL_MAKE_SHARED
)
702 /* stick the duplicate mount on the same expiry list
703 * as the original if that was on one */
704 if (flag
& CL_EXPIRE
) {
705 if (!list_empty(&old
->mnt_expire
))
706 list_add(&mnt
->mnt_expire
, &old
->mnt_expire
);
716 static inline void mntfree(struct vfsmount
*mnt
)
718 struct super_block
*sb
= mnt
->mnt_sb
;
721 * This probably indicates that somebody messed
722 * up a mnt_want/drop_write() pair. If this
723 * happens, the filesystem was probably unable
724 * to make r/w->r/o transitions.
727 * The locking used to deal with mnt_count decrement provides barriers,
728 * so mnt_get_writers() below is safe.
730 WARN_ON(mnt_get_writers(mnt
));
731 fsnotify_vfsmount_delete(mnt
);
734 deactivate_super(sb
);
738 static inline void __mntput(struct vfsmount
*mnt
, int longrefs
)
742 br_read_lock(vfsmount_lock
);
743 if (likely(atomic_read(&mnt
->mnt_longrefs
))) {
745 br_read_unlock(vfsmount_lock
);
748 br_read_unlock(vfsmount_lock
);
750 BUG_ON(!atomic_read(&mnt
->mnt_longrefs
));
751 if (atomic_add_unless(&mnt
->mnt_longrefs
, -1, 1))
755 br_write_lock(vfsmount_lock
);
759 atomic_dec(&mnt
->mnt_longrefs
);
760 if (mnt_get_count(mnt
)) {
761 br_write_unlock(vfsmount_lock
);
764 if (unlikely(mnt
->mnt_pinned
)) {
765 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
767 br_write_unlock(vfsmount_lock
);
768 acct_auto_close_mnt(mnt
);
771 br_write_unlock(vfsmount_lock
);
775 static inline void __mntput(struct vfsmount
*mnt
, int longrefs
)
779 if (likely(mnt_get_count(mnt
)))
781 br_write_lock(vfsmount_lock
);
782 if (unlikely(mnt
->mnt_pinned
)) {
783 mnt_add_count(mnt
, mnt
->mnt_pinned
+ 1);
785 br_write_unlock(vfsmount_lock
);
786 acct_auto_close_mnt(mnt
);
789 br_write_unlock(vfsmount_lock
);
794 static void mntput_no_expire(struct vfsmount
*mnt
)
799 void mntput(struct vfsmount
*mnt
)
802 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
803 if (unlikely(mnt
->mnt_expiry_mark
))
804 mnt
->mnt_expiry_mark
= 0;
808 EXPORT_SYMBOL(mntput
);
810 struct vfsmount
*mntget(struct vfsmount
*mnt
)
816 EXPORT_SYMBOL(mntget
);
818 void mntput_long(struct vfsmount
*mnt
)
822 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
823 if (unlikely(mnt
->mnt_expiry_mark
))
824 mnt
->mnt_expiry_mark
= 0;
831 EXPORT_SYMBOL(mntput_long
);
833 struct vfsmount
*mntget_long(struct vfsmount
*mnt
)
837 atomic_inc(&mnt
->mnt_longrefs
);
843 EXPORT_SYMBOL(mntget_long
);
845 void mnt_pin(struct vfsmount
*mnt
)
847 br_write_lock(vfsmount_lock
);
849 br_write_unlock(vfsmount_lock
);
851 EXPORT_SYMBOL(mnt_pin
);
853 void mnt_unpin(struct vfsmount
*mnt
)
855 br_write_lock(vfsmount_lock
);
856 if (mnt
->mnt_pinned
) {
860 br_write_unlock(vfsmount_lock
);
862 EXPORT_SYMBOL(mnt_unpin
);
864 static inline void mangle(struct seq_file
*m
, const char *s
)
866 seq_escape(m
, s
, " \t\n\\");
870 * Simple .show_options callback for filesystems which don't want to
871 * implement more complex mount option showing.
873 * See also save_mount_options().
875 int generic_show_options(struct seq_file
*m
, struct vfsmount
*mnt
)
880 options
= rcu_dereference(mnt
->mnt_sb
->s_options
);
882 if (options
!= NULL
&& options
[0]) {
890 EXPORT_SYMBOL(generic_show_options
);
893 * If filesystem uses generic_show_options(), this function should be
894 * called from the fill_super() callback.
896 * The .remount_fs callback usually needs to be handled in a special
897 * way, to make sure, that previous options are not overwritten if the
900 * Also note, that if the filesystem's .remount_fs function doesn't
901 * reset all options to their default value, but changes only newly
902 * given options, then the displayed options will not reflect reality
905 void save_mount_options(struct super_block
*sb
, char *options
)
907 BUG_ON(sb
->s_options
);
908 rcu_assign_pointer(sb
->s_options
, kstrdup(options
, GFP_KERNEL
));
910 EXPORT_SYMBOL(save_mount_options
);
912 void replace_mount_options(struct super_block
*sb
, char *options
)
914 char *old
= sb
->s_options
;
915 rcu_assign_pointer(sb
->s_options
, options
);
921 EXPORT_SYMBOL(replace_mount_options
);
923 #ifdef CONFIG_PROC_FS
925 static void *m_start(struct seq_file
*m
, loff_t
*pos
)
927 struct proc_mounts
*p
= m
->private;
929 down_read(&namespace_sem
);
930 return seq_list_start(&p
->ns
->list
, *pos
);
933 static void *m_next(struct seq_file
*m
, void *v
, loff_t
*pos
)
935 struct proc_mounts
*p
= m
->private;
937 return seq_list_next(v
, &p
->ns
->list
, pos
);
940 static void m_stop(struct seq_file
*m
, void *v
)
942 up_read(&namespace_sem
);
945 int mnt_had_events(struct proc_mounts
*p
)
947 struct mnt_namespace
*ns
= p
->ns
;
950 br_read_lock(vfsmount_lock
);
951 if (p
->event
!= ns
->event
) {
952 p
->event
= ns
->event
;
955 br_read_unlock(vfsmount_lock
);
960 struct proc_fs_info
{
965 static int show_sb_opts(struct seq_file
*m
, struct super_block
*sb
)
967 static const struct proc_fs_info fs_info
[] = {
968 { MS_SYNCHRONOUS
, ",sync" },
969 { MS_DIRSYNC
, ",dirsync" },
970 { MS_MANDLOCK
, ",mand" },
973 const struct proc_fs_info
*fs_infop
;
975 for (fs_infop
= fs_info
; fs_infop
->flag
; fs_infop
++) {
976 if (sb
->s_flags
& fs_infop
->flag
)
977 seq_puts(m
, fs_infop
->str
);
980 return security_sb_show_options(m
, sb
);
983 static void show_mnt_opts(struct seq_file
*m
, struct vfsmount
*mnt
)
985 static const struct proc_fs_info mnt_info
[] = {
986 { MNT_NOSUID
, ",nosuid" },
987 { MNT_NODEV
, ",nodev" },
988 { MNT_NOEXEC
, ",noexec" },
989 { MNT_NOATIME
, ",noatime" },
990 { MNT_NODIRATIME
, ",nodiratime" },
991 { MNT_RELATIME
, ",relatime" },
994 const struct proc_fs_info
*fs_infop
;
996 for (fs_infop
= mnt_info
; fs_infop
->flag
; fs_infop
++) {
997 if (mnt
->mnt_flags
& fs_infop
->flag
)
998 seq_puts(m
, fs_infop
->str
);
1002 static void show_type(struct seq_file
*m
, struct super_block
*sb
)
1004 mangle(m
, sb
->s_type
->name
);
1005 if (sb
->s_subtype
&& sb
->s_subtype
[0]) {
1007 mangle(m
, sb
->s_subtype
);
1011 static int show_vfsmnt(struct seq_file
*m
, void *v
)
1013 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
1015 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
1017 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
1019 seq_path(m
, &mnt_path
, " \t\n\\");
1021 show_type(m
, mnt
->mnt_sb
);
1022 seq_puts(m
, __mnt_is_readonly(mnt
) ? " ro" : " rw");
1023 err
= show_sb_opts(m
, mnt
->mnt_sb
);
1026 show_mnt_opts(m
, mnt
);
1027 if (mnt
->mnt_sb
->s_op
->show_options
)
1028 err
= mnt
->mnt_sb
->s_op
->show_options(m
, mnt
);
1029 seq_puts(m
, " 0 0\n");
1034 const struct seq_operations mounts_op
= {
1041 static int show_mountinfo(struct seq_file
*m
, void *v
)
1043 struct proc_mounts
*p
= m
->private;
1044 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
1045 struct super_block
*sb
= mnt
->mnt_sb
;
1046 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
1047 struct path root
= p
->root
;
1050 seq_printf(m
, "%i %i %u:%u ", mnt
->mnt_id
, mnt
->mnt_parent
->mnt_id
,
1051 MAJOR(sb
->s_dev
), MINOR(sb
->s_dev
));
1052 seq_dentry(m
, mnt
->mnt_root
, " \t\n\\");
1054 seq_path_root(m
, &mnt_path
, &root
, " \t\n\\");
1055 if (root
.mnt
!= p
->root
.mnt
|| root
.dentry
!= p
->root
.dentry
) {
1057 * Mountpoint is outside root, discard that one. Ugly,
1058 * but less so than trying to do that in iterator in a
1059 * race-free way (due to renames).
1063 seq_puts(m
, mnt
->mnt_flags
& MNT_READONLY
? " ro" : " rw");
1064 show_mnt_opts(m
, mnt
);
1066 /* Tagged fields ("foo:X" or "bar") */
1067 if (IS_MNT_SHARED(mnt
))
1068 seq_printf(m
, " shared:%i", mnt
->mnt_group_id
);
1069 if (IS_MNT_SLAVE(mnt
)) {
1070 int master
= mnt
->mnt_master
->mnt_group_id
;
1071 int dom
= get_dominating_id(mnt
, &p
->root
);
1072 seq_printf(m
, " master:%i", master
);
1073 if (dom
&& dom
!= master
)
1074 seq_printf(m
, " propagate_from:%i", dom
);
1076 if (IS_MNT_UNBINDABLE(mnt
))
1077 seq_puts(m
, " unbindable");
1079 /* Filesystem specific data */
1083 mangle(m
, mnt
->mnt_devname
? mnt
->mnt_devname
: "none");
1084 seq_puts(m
, sb
->s_flags
& MS_RDONLY
? " ro" : " rw");
1085 err
= show_sb_opts(m
, sb
);
1088 if (sb
->s_op
->show_options
)
1089 err
= sb
->s_op
->show_options(m
, mnt
);
1095 const struct seq_operations mountinfo_op
= {
1099 .show
= show_mountinfo
,
1102 static int show_vfsstat(struct seq_file
*m
, void *v
)
1104 struct vfsmount
*mnt
= list_entry(v
, struct vfsmount
, mnt_list
);
1105 struct path mnt_path
= { .dentry
= mnt
->mnt_root
, .mnt
= mnt
};
1109 if (mnt
->mnt_devname
) {
1110 seq_puts(m
, "device ");
1111 mangle(m
, mnt
->mnt_devname
);
1113 seq_puts(m
, "no device");
1116 seq_puts(m
, " mounted on ");
1117 seq_path(m
, &mnt_path
, " \t\n\\");
1120 /* file system type */
1121 seq_puts(m
, "with fstype ");
1122 show_type(m
, mnt
->mnt_sb
);
1124 /* optional statistics */
1125 if (mnt
->mnt_sb
->s_op
->show_stats
) {
1127 err
= mnt
->mnt_sb
->s_op
->show_stats(m
, mnt
);
1134 const struct seq_operations mountstats_op
= {
1138 .show
= show_vfsstat
,
1140 #endif /* CONFIG_PROC_FS */
1143 * may_umount_tree - check if a mount tree is busy
1144 * @mnt: root of mount tree
1146 * This is called to check if a tree of mounts has any
1147 * open files, pwds, chroots or sub mounts that are
1150 int may_umount_tree(struct vfsmount
*mnt
)
1152 int actual_refs
= 0;
1153 int minimum_refs
= 0;
1156 /* write lock needed for mnt_get_count */
1157 br_write_lock(vfsmount_lock
);
1158 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1159 actual_refs
+= mnt_get_count(p
);
1162 br_write_unlock(vfsmount_lock
);
1164 if (actual_refs
> minimum_refs
)
1170 EXPORT_SYMBOL(may_umount_tree
);
1173 * may_umount - check if a mount point is busy
1174 * @mnt: root of mount
1176 * This is called to check if a mount point has any
1177 * open files, pwds, chroots or sub mounts. If the
1178 * mount has sub mounts this will return busy
1179 * regardless of whether the sub mounts are busy.
1181 * Doesn't take quota and stuff into account. IOW, in some cases it will
1182 * give false negatives. The main reason why it's here is that we need
1183 * a non-destructive way to look for easily umountable filesystems.
1185 int may_umount(struct vfsmount
*mnt
)
1188 down_read(&namespace_sem
);
1189 br_write_lock(vfsmount_lock
);
1190 if (propagate_mount_busy(mnt
, 2))
1192 br_write_unlock(vfsmount_lock
);
1193 up_read(&namespace_sem
);
1197 EXPORT_SYMBOL(may_umount
);
1199 void release_mounts(struct list_head
*head
)
1201 struct vfsmount
*mnt
;
1202 while (!list_empty(head
)) {
1203 mnt
= list_first_entry(head
, struct vfsmount
, mnt_hash
);
1204 list_del_init(&mnt
->mnt_hash
);
1205 if (mnt
->mnt_parent
!= mnt
) {
1206 struct dentry
*dentry
;
1209 br_write_lock(vfsmount_lock
);
1210 dentry
= mnt
->mnt_mountpoint
;
1211 m
= mnt
->mnt_parent
;
1212 mnt
->mnt_mountpoint
= mnt
->mnt_root
;
1213 mnt
->mnt_parent
= mnt
;
1215 br_write_unlock(vfsmount_lock
);
1224 * vfsmount lock must be held for write
1225 * namespace_sem must be held for write
1227 void umount_tree(struct vfsmount
*mnt
, int propagate
, struct list_head
*kill
)
1231 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
))
1232 list_move(&p
->mnt_hash
, kill
);
1235 propagate_umount(kill
);
1237 list_for_each_entry(p
, kill
, mnt_hash
) {
1238 list_del_init(&p
->mnt_expire
);
1239 list_del_init(&p
->mnt_list
);
1240 __touch_mnt_namespace(p
->mnt_ns
);
1242 list_del_init(&p
->mnt_child
);
1243 if (p
->mnt_parent
!= p
) {
1244 p
->mnt_parent
->mnt_ghosts
++;
1245 dentry_reset_mounted(p
->mnt_parent
, p
->mnt_mountpoint
);
1247 change_mnt_propagation(p
, MS_PRIVATE
);
1251 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
);
1253 static int do_umount(struct vfsmount
*mnt
, int flags
)
1255 struct super_block
*sb
= mnt
->mnt_sb
;
1257 LIST_HEAD(umount_list
);
1259 retval
= security_sb_umount(mnt
, flags
);
1264 * Allow userspace to request a mountpoint be expired rather than
1265 * unmounting unconditionally. Unmount only happens if:
1266 * (1) the mark is already set (the mark is cleared by mntput())
1267 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1269 if (flags
& MNT_EXPIRE
) {
1270 if (mnt
== current
->fs
->root
.mnt
||
1271 flags
& (MNT_FORCE
| MNT_DETACH
))
1275 * probably don't strictly need the lock here if we examined
1276 * all race cases, but it's a slowpath.
1278 br_write_lock(vfsmount_lock
);
1279 if (mnt_get_count(mnt
) != 2) {
1280 br_write_lock(vfsmount_lock
);
1283 br_write_unlock(vfsmount_lock
);
1285 if (!xchg(&mnt
->mnt_expiry_mark
, 1))
1290 * If we may have to abort operations to get out of this
1291 * mount, and they will themselves hold resources we must
1292 * allow the fs to do things. In the Unix tradition of
1293 * 'Gee thats tricky lets do it in userspace' the umount_begin
1294 * might fail to complete on the first run through as other tasks
1295 * must return, and the like. Thats for the mount program to worry
1296 * about for the moment.
1299 if (flags
& MNT_FORCE
&& sb
->s_op
->umount_begin
) {
1300 sb
->s_op
->umount_begin(sb
);
1304 * No sense to grab the lock for this test, but test itself looks
1305 * somewhat bogus. Suggestions for better replacement?
1306 * Ho-hum... In principle, we might treat that as umount + switch
1307 * to rootfs. GC would eventually take care of the old vfsmount.
1308 * Actually it makes sense, especially if rootfs would contain a
1309 * /reboot - static binary that would close all descriptors and
1310 * call reboot(9). Then init(8) could umount root and exec /reboot.
1312 if (mnt
== current
->fs
->root
.mnt
&& !(flags
& MNT_DETACH
)) {
1314 * Special case for "unmounting" root ...
1315 * we just try to remount it readonly.
1317 down_write(&sb
->s_umount
);
1318 if (!(sb
->s_flags
& MS_RDONLY
))
1319 retval
= do_remount_sb(sb
, MS_RDONLY
, NULL
, 0);
1320 up_write(&sb
->s_umount
);
1324 down_write(&namespace_sem
);
1325 br_write_lock(vfsmount_lock
);
1328 if (!(flags
& MNT_DETACH
))
1329 shrink_submounts(mnt
, &umount_list
);
1332 if (flags
& MNT_DETACH
|| !propagate_mount_busy(mnt
, 2)) {
1333 if (!list_empty(&mnt
->mnt_list
))
1334 umount_tree(mnt
, 1, &umount_list
);
1337 br_write_unlock(vfsmount_lock
);
1338 up_write(&namespace_sem
);
1339 release_mounts(&umount_list
);
1344 * Now umount can handle mount points as well as block devices.
1345 * This is important for filesystems which use unnamed block devices.
1347 * We now support a flag for forced unmount like the other 'big iron'
1348 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1351 SYSCALL_DEFINE2(umount
, char __user
*, name
, int, flags
)
1355 int lookup_flags
= 0;
1357 if (flags
& ~(MNT_FORCE
| MNT_DETACH
| MNT_EXPIRE
| UMOUNT_NOFOLLOW
))
1360 if (!(flags
& UMOUNT_NOFOLLOW
))
1361 lookup_flags
|= LOOKUP_FOLLOW
;
1363 retval
= user_path_at(AT_FDCWD
, name
, lookup_flags
, &path
);
1367 if (path
.dentry
!= path
.mnt
->mnt_root
)
1369 if (!check_mnt(path
.mnt
))
1373 if (!capable(CAP_SYS_ADMIN
))
1376 retval
= do_umount(path
.mnt
, flags
);
1378 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
1380 mntput_no_expire(path
.mnt
);
1385 #ifdef __ARCH_WANT_SYS_OLDUMOUNT
1388 * The 2.0 compatible umount. No flags.
1390 SYSCALL_DEFINE1(oldumount
, char __user
*, name
)
1392 return sys_umount(name
, 0);
1397 static int mount_is_safe(struct path
*path
)
1399 if (capable(CAP_SYS_ADMIN
))
1403 if (S_ISLNK(path
->dentry
->d_inode
->i_mode
))
1405 if (path
->dentry
->d_inode
->i_mode
& S_ISVTX
) {
1406 if (current_uid() != path
->dentry
->d_inode
->i_uid
)
1409 if (inode_permission(path
->dentry
->d_inode
, MAY_WRITE
))
1415 struct vfsmount
*copy_tree(struct vfsmount
*mnt
, struct dentry
*dentry
,
1418 struct vfsmount
*res
, *p
, *q
, *r
, *s
;
1421 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(mnt
))
1424 res
= q
= clone_mnt(mnt
, dentry
, flag
);
1427 q
->mnt_mountpoint
= mnt
->mnt_mountpoint
;
1430 list_for_each_entry(r
, &mnt
->mnt_mounts
, mnt_child
) {
1431 if (!is_subdir(r
->mnt_mountpoint
, dentry
))
1434 for (s
= r
; s
; s
= next_mnt(s
, r
)) {
1435 if (!(flag
& CL_COPY_ALL
) && IS_MNT_UNBINDABLE(s
)) {
1436 s
= skip_mnt_tree(s
);
1439 while (p
!= s
->mnt_parent
) {
1445 path
.dentry
= p
->mnt_mountpoint
;
1446 q
= clone_mnt(p
, p
->mnt_root
, flag
);
1449 br_write_lock(vfsmount_lock
);
1450 list_add_tail(&q
->mnt_list
, &res
->mnt_list
);
1451 attach_mnt(q
, &path
);
1452 br_write_unlock(vfsmount_lock
);
1458 LIST_HEAD(umount_list
);
1459 br_write_lock(vfsmount_lock
);
1460 umount_tree(res
, 0, &umount_list
);
1461 br_write_unlock(vfsmount_lock
);
1462 release_mounts(&umount_list
);
1467 struct vfsmount
*collect_mounts(struct path
*path
)
1469 struct vfsmount
*tree
;
1470 down_write(&namespace_sem
);
1471 tree
= copy_tree(path
->mnt
, path
->dentry
, CL_COPY_ALL
| CL_PRIVATE
);
1472 up_write(&namespace_sem
);
1476 void drop_collected_mounts(struct vfsmount
*mnt
)
1478 LIST_HEAD(umount_list
);
1479 down_write(&namespace_sem
);
1480 br_write_lock(vfsmount_lock
);
1481 umount_tree(mnt
, 0, &umount_list
);
1482 br_write_unlock(vfsmount_lock
);
1483 up_write(&namespace_sem
);
1484 release_mounts(&umount_list
);
1487 int iterate_mounts(int (*f
)(struct vfsmount
*, void *), void *arg
,
1488 struct vfsmount
*root
)
1490 struct vfsmount
*mnt
;
1491 int res
= f(root
, arg
);
1494 list_for_each_entry(mnt
, &root
->mnt_list
, mnt_list
) {
1502 static void cleanup_group_ids(struct vfsmount
*mnt
, struct vfsmount
*end
)
1506 for (p
= mnt
; p
!= end
; p
= next_mnt(p
, mnt
)) {
1507 if (p
->mnt_group_id
&& !IS_MNT_SHARED(p
))
1508 mnt_release_group_id(p
);
1512 static int invent_group_ids(struct vfsmount
*mnt
, bool recurse
)
1516 for (p
= mnt
; p
; p
= recurse
? next_mnt(p
, mnt
) : NULL
) {
1517 if (!p
->mnt_group_id
&& !IS_MNT_SHARED(p
)) {
1518 int err
= mnt_alloc_group_id(p
);
1520 cleanup_group_ids(mnt
, p
);
1530 * @source_mnt : mount tree to be attached
1531 * @nd : place the mount tree @source_mnt is attached
1532 * @parent_nd : if non-null, detach the source_mnt from its parent and
1533 * store the parent mount and mountpoint dentry.
1534 * (done when source_mnt is moved)
1536 * NOTE: in the table below explains the semantics when a source mount
1537 * of a given type is attached to a destination mount of a given type.
1538 * ---------------------------------------------------------------------------
1539 * | BIND MOUNT OPERATION |
1540 * |**************************************************************************
1541 * | source-->| shared | private | slave | unbindable |
1545 * |**************************************************************************
1546 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1548 * |non-shared| shared (+) | private | slave (*) | invalid |
1549 * ***************************************************************************
1550 * A bind operation clones the source mount and mounts the clone on the
1551 * destination mount.
1553 * (++) the cloned mount is propagated to all the mounts in the propagation
1554 * tree of the destination mount and the cloned mount is added to
1555 * the peer group of the source mount.
1556 * (+) the cloned mount is created under the destination mount and is marked
1557 * as shared. The cloned mount is added to the peer group of the source
1559 * (+++) the mount is propagated to all the mounts in the propagation tree
1560 * of the destination mount and the cloned mount is made slave
1561 * of the same master as that of the source mount. The cloned mount
1562 * is marked as 'shared and slave'.
1563 * (*) the cloned mount is made a slave of the same master as that of the
1566 * ---------------------------------------------------------------------------
1567 * | MOVE MOUNT OPERATION |
1568 * |**************************************************************************
1569 * | source-->| shared | private | slave | unbindable |
1573 * |**************************************************************************
1574 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1576 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1577 * ***************************************************************************
1579 * (+) the mount is moved to the destination. And is then propagated to
1580 * all the mounts in the propagation tree of the destination mount.
1581 * (+*) the mount is moved to the destination.
1582 * (+++) the mount is moved to the destination and is then propagated to
1583 * all the mounts belonging to the destination mount's propagation tree.
1584 * the mount is marked as 'shared and slave'.
1585 * (*) the mount continues to be a slave at the new location.
1587 * if the source mount is a tree, the operations explained above is
1588 * applied to each mount in the tree.
1589 * Must be called without spinlocks held, since this function can sleep
1592 static int attach_recursive_mnt(struct vfsmount
*source_mnt
,
1593 struct path
*path
, struct path
*parent_path
)
1595 LIST_HEAD(tree_list
);
1596 struct vfsmount
*dest_mnt
= path
->mnt
;
1597 struct dentry
*dest_dentry
= path
->dentry
;
1598 struct vfsmount
*child
, *p
;
1601 if (IS_MNT_SHARED(dest_mnt
)) {
1602 err
= invent_group_ids(source_mnt
, true);
1606 err
= propagate_mnt(dest_mnt
, dest_dentry
, source_mnt
, &tree_list
);
1608 goto out_cleanup_ids
;
1610 br_write_lock(vfsmount_lock
);
1612 if (IS_MNT_SHARED(dest_mnt
)) {
1613 for (p
= source_mnt
; p
; p
= next_mnt(p
, source_mnt
))
1617 detach_mnt(source_mnt
, parent_path
);
1618 attach_mnt(source_mnt
, path
);
1619 touch_mnt_namespace(parent_path
->mnt
->mnt_ns
);
1621 mnt_set_mountpoint(dest_mnt
, dest_dentry
, source_mnt
);
1622 commit_tree(source_mnt
);
1625 list_for_each_entry_safe(child
, p
, &tree_list
, mnt_hash
) {
1626 list_del_init(&child
->mnt_hash
);
1629 br_write_unlock(vfsmount_lock
);
1634 if (IS_MNT_SHARED(dest_mnt
))
1635 cleanup_group_ids(source_mnt
, NULL
);
1640 static int graft_tree(struct vfsmount
*mnt
, struct path
*path
)
1643 if (mnt
->mnt_sb
->s_flags
& MS_NOUSER
)
1646 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1647 S_ISDIR(mnt
->mnt_root
->d_inode
->i_mode
))
1651 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1652 if (cant_mount(path
->dentry
))
1655 if (!d_unlinked(path
->dentry
))
1656 err
= attach_recursive_mnt(mnt
, path
, NULL
);
1658 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1663 * Sanity check the flags to change_mnt_propagation.
1666 static int flags_to_propagation_type(int flags
)
1668 int type
= flags
& ~MS_REC
;
1670 /* Fail if any non-propagation flags are set */
1671 if (type
& ~(MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
1673 /* Only one propagation flag should be set */
1674 if (!is_power_of_2(type
))
1680 * recursively change the type of the mountpoint.
1682 static int do_change_type(struct path
*path
, int flag
)
1684 struct vfsmount
*m
, *mnt
= path
->mnt
;
1685 int recurse
= flag
& MS_REC
;
1689 if (!capable(CAP_SYS_ADMIN
))
1692 if (path
->dentry
!= path
->mnt
->mnt_root
)
1695 type
= flags_to_propagation_type(flag
);
1699 down_write(&namespace_sem
);
1700 if (type
== MS_SHARED
) {
1701 err
= invent_group_ids(mnt
, recurse
);
1706 br_write_lock(vfsmount_lock
);
1707 for (m
= mnt
; m
; m
= (recurse
? next_mnt(m
, mnt
) : NULL
))
1708 change_mnt_propagation(m
, type
);
1709 br_write_unlock(vfsmount_lock
);
1712 up_write(&namespace_sem
);
1717 * do loopback mount.
1719 static int do_loopback(struct path
*path
, char *old_name
,
1722 struct path old_path
;
1723 struct vfsmount
*mnt
= NULL
;
1724 int err
= mount_is_safe(path
);
1727 if (!old_name
|| !*old_name
)
1729 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1733 down_write(&namespace_sem
);
1735 if (IS_MNT_UNBINDABLE(old_path
.mnt
))
1738 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1743 mnt
= copy_tree(old_path
.mnt
, old_path
.dentry
, 0);
1745 mnt
= clone_mnt(old_path
.mnt
, old_path
.dentry
, 0);
1750 err
= graft_tree(mnt
, path
);
1752 LIST_HEAD(umount_list
);
1754 br_write_lock(vfsmount_lock
);
1755 umount_tree(mnt
, 0, &umount_list
);
1756 br_write_unlock(vfsmount_lock
);
1757 release_mounts(&umount_list
);
1761 up_write(&namespace_sem
);
1762 path_put(&old_path
);
1766 static int change_mount_flags(struct vfsmount
*mnt
, int ms_flags
)
1769 int readonly_request
= 0;
1771 if (ms_flags
& MS_RDONLY
)
1772 readonly_request
= 1;
1773 if (readonly_request
== __mnt_is_readonly(mnt
))
1776 if (readonly_request
)
1777 error
= mnt_make_readonly(mnt
);
1779 __mnt_unmake_readonly(mnt
);
1784 * change filesystem flags. dir should be a physical root of filesystem.
1785 * If you've mounted a non-root directory somewhere and want to do remount
1786 * on it - tough luck.
1788 static int do_remount(struct path
*path
, int flags
, int mnt_flags
,
1792 struct super_block
*sb
= path
->mnt
->mnt_sb
;
1794 if (!capable(CAP_SYS_ADMIN
))
1797 if (!check_mnt(path
->mnt
))
1800 if (path
->dentry
!= path
->mnt
->mnt_root
)
1803 down_write(&sb
->s_umount
);
1804 if (flags
& MS_BIND
)
1805 err
= change_mount_flags(path
->mnt
, flags
);
1807 err
= do_remount_sb(sb
, flags
, data
, 0);
1809 br_write_lock(vfsmount_lock
);
1810 mnt_flags
|= path
->mnt
->mnt_flags
& MNT_PROPAGATION_MASK
;
1811 path
->mnt
->mnt_flags
= mnt_flags
;
1812 br_write_unlock(vfsmount_lock
);
1814 up_write(&sb
->s_umount
);
1816 br_write_lock(vfsmount_lock
);
1817 touch_mnt_namespace(path
->mnt
->mnt_ns
);
1818 br_write_unlock(vfsmount_lock
);
1823 static inline int tree_contains_unbindable(struct vfsmount
*mnt
)
1826 for (p
= mnt
; p
; p
= next_mnt(p
, mnt
)) {
1827 if (IS_MNT_UNBINDABLE(p
))
1833 static int do_move_mount(struct path
*path
, char *old_name
)
1835 struct path old_path
, parent_path
;
1838 if (!capable(CAP_SYS_ADMIN
))
1840 if (!old_name
|| !*old_name
)
1842 err
= kern_path(old_name
, LOOKUP_FOLLOW
, &old_path
);
1846 down_write(&namespace_sem
);
1847 while (d_mountpoint(path
->dentry
) &&
1851 if (!check_mnt(path
->mnt
) || !check_mnt(old_path
.mnt
))
1855 mutex_lock(&path
->dentry
->d_inode
->i_mutex
);
1856 if (cant_mount(path
->dentry
))
1859 if (d_unlinked(path
->dentry
))
1863 if (old_path
.dentry
!= old_path
.mnt
->mnt_root
)
1866 if (old_path
.mnt
== old_path
.mnt
->mnt_parent
)
1869 if (S_ISDIR(path
->dentry
->d_inode
->i_mode
) !=
1870 S_ISDIR(old_path
.dentry
->d_inode
->i_mode
))
1873 * Don't move a mount residing in a shared parent.
1875 if (old_path
.mnt
->mnt_parent
&&
1876 IS_MNT_SHARED(old_path
.mnt
->mnt_parent
))
1879 * Don't move a mount tree containing unbindable mounts to a destination
1880 * mount which is shared.
1882 if (IS_MNT_SHARED(path
->mnt
) &&
1883 tree_contains_unbindable(old_path
.mnt
))
1886 for (p
= path
->mnt
; p
->mnt_parent
!= p
; p
= p
->mnt_parent
)
1887 if (p
== old_path
.mnt
)
1890 err
= attach_recursive_mnt(old_path
.mnt
, path
, &parent_path
);
1894 /* if the mount is moved, it should no longer be expire
1896 list_del_init(&old_path
.mnt
->mnt_expire
);
1898 mutex_unlock(&path
->dentry
->d_inode
->i_mutex
);
1900 up_write(&namespace_sem
);
1902 path_put(&parent_path
);
1903 path_put(&old_path
);
1908 * create a new mount for userspace and request it to be added into the
1911 static int do_new_mount(struct path
*path
, char *type
, int flags
,
1912 int mnt_flags
, char *name
, void *data
)
1914 struct vfsmount
*mnt
;
1919 /* we need capabilities... */
1920 if (!capable(CAP_SYS_ADMIN
))
1923 mnt
= do_kern_mount(type
, flags
, name
, data
);
1925 return PTR_ERR(mnt
);
1927 return do_add_mount(mnt
, path
, mnt_flags
, NULL
);
1931 * add a mount into a namespace's mount tree
1932 * - provide the option of adding the new mount to an expiration list
1934 int do_add_mount(struct vfsmount
*newmnt
, struct path
*path
,
1935 int mnt_flags
, struct list_head
*fslist
)
1939 mnt_flags
&= ~(MNT_SHARED
| MNT_WRITE_HOLD
| MNT_INTERNAL
);
1941 down_write(&namespace_sem
);
1942 /* Something was mounted here while we slept */
1943 while (d_mountpoint(path
->dentry
) &&
1947 if (!(mnt_flags
& MNT_SHRINKABLE
) && !check_mnt(path
->mnt
))
1950 /* Refuse the same filesystem on the same mount point */
1952 if (path
->mnt
->mnt_sb
== newmnt
->mnt_sb
&&
1953 path
->mnt
->mnt_root
== path
->dentry
)
1957 if (S_ISLNK(newmnt
->mnt_root
->d_inode
->i_mode
))
1960 newmnt
->mnt_flags
= mnt_flags
;
1961 if ((err
= graft_tree(newmnt
, path
)))
1964 if (fslist
) /* add to the specified expiration list */
1965 list_add_tail(&newmnt
->mnt_expire
, fslist
);
1967 up_write(&namespace_sem
);
1971 up_write(&namespace_sem
);
1972 mntput_long(newmnt
);
1976 EXPORT_SYMBOL_GPL(do_add_mount
);
1979 * process a list of expirable mountpoints with the intent of discarding any
1980 * mountpoints that aren't in use and haven't been touched since last we came
1983 void mark_mounts_for_expiry(struct list_head
*mounts
)
1985 struct vfsmount
*mnt
, *next
;
1986 LIST_HEAD(graveyard
);
1989 if (list_empty(mounts
))
1992 down_write(&namespace_sem
);
1993 br_write_lock(vfsmount_lock
);
1995 /* extract from the expiration list every vfsmount that matches the
1996 * following criteria:
1997 * - only referenced by its parent vfsmount
1998 * - still marked for expiry (marked on the last call here; marks are
1999 * cleared by mntput())
2001 list_for_each_entry_safe(mnt
, next
, mounts
, mnt_expire
) {
2002 if (!xchg(&mnt
->mnt_expiry_mark
, 1) ||
2003 propagate_mount_busy(mnt
, 1))
2005 list_move(&mnt
->mnt_expire
, &graveyard
);
2007 while (!list_empty(&graveyard
)) {
2008 mnt
= list_first_entry(&graveyard
, struct vfsmount
, mnt_expire
);
2009 touch_mnt_namespace(mnt
->mnt_ns
);
2010 umount_tree(mnt
, 1, &umounts
);
2012 br_write_unlock(vfsmount_lock
);
2013 up_write(&namespace_sem
);
2015 release_mounts(&umounts
);
2018 EXPORT_SYMBOL_GPL(mark_mounts_for_expiry
);
2021 * Ripoff of 'select_parent()'
2023 * search the list of submounts for a given mountpoint, and move any
2024 * shrinkable submounts to the 'graveyard' list.
2026 static int select_submounts(struct vfsmount
*parent
, struct list_head
*graveyard
)
2028 struct vfsmount
*this_parent
= parent
;
2029 struct list_head
*next
;
2033 next
= this_parent
->mnt_mounts
.next
;
2035 while (next
!= &this_parent
->mnt_mounts
) {
2036 struct list_head
*tmp
= next
;
2037 struct vfsmount
*mnt
= list_entry(tmp
, struct vfsmount
, mnt_child
);
2040 if (!(mnt
->mnt_flags
& MNT_SHRINKABLE
))
2043 * Descend a level if the d_mounts list is non-empty.
2045 if (!list_empty(&mnt
->mnt_mounts
)) {
2050 if (!propagate_mount_busy(mnt
, 1)) {
2051 list_move_tail(&mnt
->mnt_expire
, graveyard
);
2056 * All done at this level ... ascend and resume the search
2058 if (this_parent
!= parent
) {
2059 next
= this_parent
->mnt_child
.next
;
2060 this_parent
= this_parent
->mnt_parent
;
2067 * process a list of expirable mountpoints with the intent of discarding any
2068 * submounts of a specific parent mountpoint
2070 * vfsmount_lock must be held for write
2072 static void shrink_submounts(struct vfsmount
*mnt
, struct list_head
*umounts
)
2074 LIST_HEAD(graveyard
);
2077 /* extract submounts of 'mountpoint' from the expiration list */
2078 while (select_submounts(mnt
, &graveyard
)) {
2079 while (!list_empty(&graveyard
)) {
2080 m
= list_first_entry(&graveyard
, struct vfsmount
,
2082 touch_mnt_namespace(m
->mnt_ns
);
2083 umount_tree(m
, 1, umounts
);
2089 * Some copy_from_user() implementations do not return the exact number of
2090 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2091 * Note that this function differs from copy_from_user() in that it will oops
2092 * on bad values of `to', rather than returning a short copy.
2094 static long exact_copy_from_user(void *to
, const void __user
* from
,
2098 const char __user
*f
= from
;
2101 if (!access_ok(VERIFY_READ
, from
, n
))
2105 if (__get_user(c
, f
)) {
2116 int copy_mount_options(const void __user
* data
, unsigned long *where
)
2126 if (!(page
= __get_free_page(GFP_KERNEL
)))
2129 /* We only care that *some* data at the address the user
2130 * gave us is valid. Just in case, we'll zero
2131 * the remainder of the page.
2133 /* copy_from_user cannot cross TASK_SIZE ! */
2134 size
= TASK_SIZE
- (unsigned long)data
;
2135 if (size
> PAGE_SIZE
)
2138 i
= size
- exact_copy_from_user((void *)page
, data
, size
);
2144 memset((char *)page
+ i
, 0, PAGE_SIZE
- i
);
2149 int copy_mount_string(const void __user
*data
, char **where
)
2158 tmp
= strndup_user(data
, PAGE_SIZE
);
2160 return PTR_ERR(tmp
);
2167 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2168 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2170 * data is a (void *) that can point to any structure up to
2171 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2172 * information (or be NULL).
2174 * Pre-0.97 versions of mount() didn't have a flags word.
2175 * When the flags word was introduced its top half was required
2176 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2177 * Therefore, if this magic number is present, it carries no information
2178 * and must be discarded.
2180 long do_mount(char *dev_name
, char *dir_name
, char *type_page
,
2181 unsigned long flags
, void *data_page
)
2188 if ((flags
& MS_MGC_MSK
) == MS_MGC_VAL
)
2189 flags
&= ~MS_MGC_MSK
;
2191 /* Basic sanity checks */
2193 if (!dir_name
|| !*dir_name
|| !memchr(dir_name
, 0, PAGE_SIZE
))
2197 ((char *)data_page
)[PAGE_SIZE
- 1] = 0;
2199 /* ... and get the mountpoint */
2200 retval
= kern_path(dir_name
, LOOKUP_FOLLOW
, &path
);
2204 retval
= security_sb_mount(dev_name
, &path
,
2205 type_page
, flags
, data_page
);
2209 /* Default to relatime unless overriden */
2210 if (!(flags
& MS_NOATIME
))
2211 mnt_flags
|= MNT_RELATIME
;
2213 /* Separate the per-mountpoint flags */
2214 if (flags
& MS_NOSUID
)
2215 mnt_flags
|= MNT_NOSUID
;
2216 if (flags
& MS_NODEV
)
2217 mnt_flags
|= MNT_NODEV
;
2218 if (flags
& MS_NOEXEC
)
2219 mnt_flags
|= MNT_NOEXEC
;
2220 if (flags
& MS_NOATIME
)
2221 mnt_flags
|= MNT_NOATIME
;
2222 if (flags
& MS_NODIRATIME
)
2223 mnt_flags
|= MNT_NODIRATIME
;
2224 if (flags
& MS_STRICTATIME
)
2225 mnt_flags
&= ~(MNT_RELATIME
| MNT_NOATIME
);
2226 if (flags
& MS_RDONLY
)
2227 mnt_flags
|= MNT_READONLY
;
2229 flags
&= ~(MS_NOSUID
| MS_NOEXEC
| MS_NODEV
| MS_ACTIVE
| MS_BORN
|
2230 MS_NOATIME
| MS_NODIRATIME
| MS_RELATIME
| MS_KERNMOUNT
|
2233 if (flags
& MS_REMOUNT
)
2234 retval
= do_remount(&path
, flags
& ~MS_REMOUNT
, mnt_flags
,
2236 else if (flags
& MS_BIND
)
2237 retval
= do_loopback(&path
, dev_name
, flags
& MS_REC
);
2238 else if (flags
& (MS_SHARED
| MS_PRIVATE
| MS_SLAVE
| MS_UNBINDABLE
))
2239 retval
= do_change_type(&path
, flags
);
2240 else if (flags
& MS_MOVE
)
2241 retval
= do_move_mount(&path
, dev_name
);
2243 retval
= do_new_mount(&path
, type_page
, flags
, mnt_flags
,
2244 dev_name
, data_page
);
2250 static struct mnt_namespace
*alloc_mnt_ns(void)
2252 struct mnt_namespace
*new_ns
;
2254 new_ns
= kmalloc(sizeof(struct mnt_namespace
), GFP_KERNEL
);
2256 return ERR_PTR(-ENOMEM
);
2257 atomic_set(&new_ns
->count
, 1);
2258 new_ns
->root
= NULL
;
2259 INIT_LIST_HEAD(&new_ns
->list
);
2260 init_waitqueue_head(&new_ns
->poll
);
2266 * Allocate a new namespace structure and populate it with contents
2267 * copied from the namespace of the passed in task structure.
2269 static struct mnt_namespace
*dup_mnt_ns(struct mnt_namespace
*mnt_ns
,
2270 struct fs_struct
*fs
)
2272 struct mnt_namespace
*new_ns
;
2273 struct vfsmount
*rootmnt
= NULL
, *pwdmnt
= NULL
;
2274 struct vfsmount
*p
, *q
;
2276 new_ns
= alloc_mnt_ns();
2280 down_write(&namespace_sem
);
2281 /* First pass: copy the tree topology */
2282 new_ns
->root
= copy_tree(mnt_ns
->root
, mnt_ns
->root
->mnt_root
,
2283 CL_COPY_ALL
| CL_EXPIRE
);
2284 if (!new_ns
->root
) {
2285 up_write(&namespace_sem
);
2287 return ERR_PTR(-ENOMEM
);
2289 br_write_lock(vfsmount_lock
);
2290 list_add_tail(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2291 br_write_unlock(vfsmount_lock
);
2294 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2295 * as belonging to new namespace. We have already acquired a private
2296 * fs_struct, so tsk->fs->lock is not needed.
2303 if (p
== fs
->root
.mnt
) {
2305 fs
->root
.mnt
= mntget_long(q
);
2307 if (p
== fs
->pwd
.mnt
) {
2309 fs
->pwd
.mnt
= mntget_long(q
);
2312 p
= next_mnt(p
, mnt_ns
->root
);
2313 q
= next_mnt(q
, new_ns
->root
);
2315 up_write(&namespace_sem
);
2318 mntput_long(rootmnt
);
2320 mntput_long(pwdmnt
);
2325 struct mnt_namespace
*copy_mnt_ns(unsigned long flags
, struct mnt_namespace
*ns
,
2326 struct fs_struct
*new_fs
)
2328 struct mnt_namespace
*new_ns
;
2333 if (!(flags
& CLONE_NEWNS
))
2336 new_ns
= dup_mnt_ns(ns
, new_fs
);
2343 * create_mnt_ns - creates a private namespace and adds a root filesystem
2344 * @mnt: pointer to the new root filesystem mountpoint
2346 struct mnt_namespace
*create_mnt_ns(struct vfsmount
*mnt
)
2348 struct mnt_namespace
*new_ns
;
2350 new_ns
= alloc_mnt_ns();
2351 if (!IS_ERR(new_ns
)) {
2352 mnt
->mnt_ns
= new_ns
;
2354 list_add(&new_ns
->list
, &new_ns
->root
->mnt_list
);
2358 EXPORT_SYMBOL(create_mnt_ns
);
2360 SYSCALL_DEFINE5(mount
, char __user
*, dev_name
, char __user
*, dir_name
,
2361 char __user
*, type
, unsigned long, flags
, void __user
*, data
)
2367 unsigned long data_page
;
2369 ret
= copy_mount_string(type
, &kernel_type
);
2373 kernel_dir
= getname(dir_name
);
2374 if (IS_ERR(kernel_dir
)) {
2375 ret
= PTR_ERR(kernel_dir
);
2379 ret
= copy_mount_string(dev_name
, &kernel_dev
);
2383 ret
= copy_mount_options(data
, &data_page
);
2387 ret
= do_mount(kernel_dev
, kernel_dir
, kernel_type
, flags
,
2388 (void *) data_page
);
2390 free_page(data_page
);
2394 putname(kernel_dir
);
2402 * pivot_root Semantics:
2403 * Moves the root file system of the current process to the directory put_old,
2404 * makes new_root as the new root file system of the current process, and sets
2405 * root/cwd of all processes which had them on the current root to new_root.
2408 * The new_root and put_old must be directories, and must not be on the
2409 * same file system as the current process root. The put_old must be
2410 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2411 * pointed to by put_old must yield the same directory as new_root. No other
2412 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2414 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2415 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2416 * in this situation.
2419 * - we don't move root/cwd if they are not at the root (reason: if something
2420 * cared enough to change them, it's probably wrong to force them elsewhere)
2421 * - it's okay to pick a root that isn't the root of a file system, e.g.
2422 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2423 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2426 SYSCALL_DEFINE2(pivot_root
, const char __user
*, new_root
,
2427 const char __user
*, put_old
)
2429 struct vfsmount
*tmp
;
2430 struct path
new, old
, parent_path
, root_parent
, root
;
2433 if (!capable(CAP_SYS_ADMIN
))
2436 error
= user_path_dir(new_root
, &new);
2440 if (!check_mnt(new.mnt
))
2443 error
= user_path_dir(put_old
, &old
);
2447 error
= security_sb_pivotroot(&old
, &new);
2453 get_fs_root(current
->fs
, &root
);
2454 down_write(&namespace_sem
);
2455 mutex_lock(&old
.dentry
->d_inode
->i_mutex
);
2457 if (IS_MNT_SHARED(old
.mnt
) ||
2458 IS_MNT_SHARED(new.mnt
->mnt_parent
) ||
2459 IS_MNT_SHARED(root
.mnt
->mnt_parent
))
2461 if (!check_mnt(root
.mnt
))
2464 if (cant_mount(old
.dentry
))
2466 if (d_unlinked(new.dentry
))
2468 if (d_unlinked(old
.dentry
))
2471 if (new.mnt
== root
.mnt
||
2472 old
.mnt
== root
.mnt
)
2473 goto out2
; /* loop, on the same file system */
2475 if (root
.mnt
->mnt_root
!= root
.dentry
)
2476 goto out2
; /* not a mountpoint */
2477 if (root
.mnt
->mnt_parent
== root
.mnt
)
2478 goto out2
; /* not attached */
2479 if (new.mnt
->mnt_root
!= new.dentry
)
2480 goto out2
; /* not a mountpoint */
2481 if (new.mnt
->mnt_parent
== new.mnt
)
2482 goto out2
; /* not attached */
2483 /* make sure we can reach put_old from new_root */
2485 br_write_lock(vfsmount_lock
);
2486 if (tmp
!= new.mnt
) {
2488 if (tmp
->mnt_parent
== tmp
)
2489 goto out3
; /* already mounted on put_old */
2490 if (tmp
->mnt_parent
== new.mnt
)
2492 tmp
= tmp
->mnt_parent
;
2494 if (!is_subdir(tmp
->mnt_mountpoint
, new.dentry
))
2496 } else if (!is_subdir(old
.dentry
, new.dentry
))
2498 detach_mnt(new.mnt
, &parent_path
);
2499 detach_mnt(root
.mnt
, &root_parent
);
2500 /* mount old root on put_old */
2501 attach_mnt(root
.mnt
, &old
);
2502 /* mount new_root on / */
2503 attach_mnt(new.mnt
, &root_parent
);
2504 touch_mnt_namespace(current
->nsproxy
->mnt_ns
);
2505 br_write_unlock(vfsmount_lock
);
2506 chroot_fs_refs(&root
, &new);
2509 path_put(&root_parent
);
2510 path_put(&parent_path
);
2512 mutex_unlock(&old
.dentry
->d_inode
->i_mutex
);
2513 up_write(&namespace_sem
);
2521 br_write_unlock(vfsmount_lock
);
2525 static void __init
init_mount_tree(void)
2527 struct vfsmount
*mnt
;
2528 struct mnt_namespace
*ns
;
2531 mnt
= do_kern_mount("rootfs", 0, "rootfs", NULL
);
2533 panic("Can't create rootfs");
2535 ns
= create_mnt_ns(mnt
);
2537 panic("Can't allocate initial namespace");
2539 init_task
.nsproxy
->mnt_ns
= ns
;
2542 root
.mnt
= ns
->root
;
2543 root
.dentry
= ns
->root
->mnt_root
;
2545 set_fs_pwd(current
->fs
, &root
);
2546 set_fs_root(current
->fs
, &root
);
2549 void __init
mnt_init(void)
2554 init_rwsem(&namespace_sem
);
2556 mnt_cache
= kmem_cache_create("mnt_cache", sizeof(struct vfsmount
),
2557 0, SLAB_HWCACHE_ALIGN
| SLAB_PANIC
, NULL
);
2559 mount_hashtable
= (struct list_head
*)__get_free_page(GFP_ATOMIC
);
2561 if (!mount_hashtable
)
2562 panic("Failed to allocate mount hash table\n");
2564 printk("Mount-cache hash table entries: %lu\n", HASH_SIZE
);
2566 for (u
= 0; u
< HASH_SIZE
; u
++)
2567 INIT_LIST_HEAD(&mount_hashtable
[u
]);
2569 br_lock_init(vfsmount_lock
);
2573 printk(KERN_WARNING
"%s: sysfs_init error: %d\n",
2575 fs_kobj
= kobject_create_and_add("fs", NULL
);
2577 printk(KERN_WARNING
"%s: kobj create error\n", __func__
);
2582 void put_mnt_ns(struct mnt_namespace
*ns
)
2584 LIST_HEAD(umount_list
);
2586 if (!atomic_dec_and_test(&ns
->count
))
2588 down_write(&namespace_sem
);
2589 br_write_lock(vfsmount_lock
);
2590 umount_tree(ns
->root
, 0, &umount_list
);
2591 br_write_unlock(vfsmount_lock
);
2592 up_write(&namespace_sem
);
2593 release_mounts(&umount_list
);
2596 EXPORT_SYMBOL(put_mnt_ns
);