2 * linux/kernel/workqueue.c
4 * Generic mechanism for defining kernel helper threads for running
5 * arbitrary tasks in process context.
7 * Started by Ingo Molnar, Copyright (C) 2002
9 * Derived from the taskqueue/keventd code by:
11 * David Woodhouse <dwmw2@infradead.org>
13 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
14 * Theodore Ts'o <tytso@mit.edu>
16 * Made to use alloc_percpu by Christoph Lameter.
19 #include <linux/module.h>
20 #include <linux/kernel.h>
21 #include <linux/sched.h>
22 #include <linux/init.h>
23 #include <linux/signal.h>
24 #include <linux/completion.h>
25 #include <linux/workqueue.h>
26 #include <linux/slab.h>
27 #include <linux/cpu.h>
28 #include <linux/notifier.h>
29 #include <linux/kthread.h>
30 #include <linux/hardirq.h>
31 #include <linux/mempolicy.h>
32 #include <linux/freezer.h>
33 #include <linux/kallsyms.h>
34 #include <linux/debug_locks.h>
35 #include <linux/lockdep.h>
36 #define CREATE_TRACE_POINTS
37 #include <trace/events/workqueue.h>
40 * The per-CPU workqueue (if single thread, we always use the first
43 struct cpu_workqueue_struct
{
47 struct list_head worklist
;
48 wait_queue_head_t more_work
;
49 struct work_struct
*current_work
;
51 struct workqueue_struct
*wq
;
52 struct task_struct
*thread
;
53 } ____cacheline_aligned
;
56 * The externally visible workqueue abstraction is an array of
59 struct workqueue_struct
{
60 struct cpu_workqueue_struct
*cpu_wq
;
61 struct list_head list
;
64 int freezeable
; /* Freeze threads during suspend */
67 struct lockdep_map lockdep_map
;
71 #ifdef CONFIG_DEBUG_OBJECTS_WORK
73 static struct debug_obj_descr work_debug_descr
;
76 * fixup_init is called when:
77 * - an active object is initialized
79 static int work_fixup_init(void *addr
, enum debug_obj_state state
)
81 struct work_struct
*work
= addr
;
84 case ODEBUG_STATE_ACTIVE
:
85 cancel_work_sync(work
);
86 debug_object_init(work
, &work_debug_descr
);
94 * fixup_activate is called when:
95 * - an active object is activated
96 * - an unknown object is activated (might be a statically initialized object)
98 static int work_fixup_activate(void *addr
, enum debug_obj_state state
)
100 struct work_struct
*work
= addr
;
104 case ODEBUG_STATE_NOTAVAILABLE
:
106 * This is not really a fixup. The work struct was
107 * statically initialized. We just make sure that it
108 * is tracked in the object tracker.
110 if (test_bit(WORK_STRUCT_STATIC
, work_data_bits(work
))) {
111 debug_object_init(work
, &work_debug_descr
);
112 debug_object_activate(work
, &work_debug_descr
);
118 case ODEBUG_STATE_ACTIVE
:
127 * fixup_free is called when:
128 * - an active object is freed
130 static int work_fixup_free(void *addr
, enum debug_obj_state state
)
132 struct work_struct
*work
= addr
;
135 case ODEBUG_STATE_ACTIVE
:
136 cancel_work_sync(work
);
137 debug_object_free(work
, &work_debug_descr
);
144 static struct debug_obj_descr work_debug_descr
= {
145 .name
= "work_struct",
146 .fixup_init
= work_fixup_init
,
147 .fixup_activate
= work_fixup_activate
,
148 .fixup_free
= work_fixup_free
,
151 static inline void debug_work_activate(struct work_struct
*work
)
153 debug_object_activate(work
, &work_debug_descr
);
156 static inline void debug_work_deactivate(struct work_struct
*work
)
158 debug_object_deactivate(work
, &work_debug_descr
);
161 void __init_work(struct work_struct
*work
, int onstack
)
164 debug_object_init_on_stack(work
, &work_debug_descr
);
166 debug_object_init(work
, &work_debug_descr
);
168 EXPORT_SYMBOL_GPL(__init_work
);
170 void destroy_work_on_stack(struct work_struct
*work
)
172 debug_object_free(work
, &work_debug_descr
);
174 EXPORT_SYMBOL_GPL(destroy_work_on_stack
);
177 static inline void debug_work_activate(struct work_struct
*work
) { }
178 static inline void debug_work_deactivate(struct work_struct
*work
) { }
181 /* Serializes the accesses to the list of workqueues. */
182 static DEFINE_SPINLOCK(workqueue_lock
);
183 static LIST_HEAD(workqueues
);
185 static int singlethread_cpu __read_mostly
;
186 static const struct cpumask
*cpu_singlethread_map __read_mostly
;
188 * _cpu_down() first removes CPU from cpu_online_map, then CPU_DEAD
189 * flushes cwq->worklist. This means that flush_workqueue/wait_on_work
190 * which comes in between can't use for_each_online_cpu(). We could
191 * use cpu_possible_map, the cpumask below is more a documentation
194 static cpumask_var_t cpu_populated_map __read_mostly
;
196 /* If it's single threaded, it isn't in the list of workqueues. */
197 static inline int is_wq_single_threaded(struct workqueue_struct
*wq
)
199 return wq
->singlethread
;
202 static const struct cpumask
*wq_cpu_map(struct workqueue_struct
*wq
)
204 return is_wq_single_threaded(wq
)
205 ? cpu_singlethread_map
: cpu_populated_map
;
209 struct cpu_workqueue_struct
*wq_per_cpu(struct workqueue_struct
*wq
, int cpu
)
211 if (unlikely(is_wq_single_threaded(wq
)))
212 cpu
= singlethread_cpu
;
213 return per_cpu_ptr(wq
->cpu_wq
, cpu
);
217 * Set the workqueue on which a work item is to be run
218 * - Must *only* be called if the pending flag is set
220 static inline void set_wq_data(struct work_struct
*work
,
221 struct cpu_workqueue_struct
*cwq
)
225 BUG_ON(!work_pending(work
));
227 new = (unsigned long) cwq
| (1UL << WORK_STRUCT_PENDING
);
228 new |= WORK_STRUCT_FLAG_MASK
& *work_data_bits(work
);
229 atomic_long_set(&work
->data
, new);
233 struct cpu_workqueue_struct
*get_wq_data(struct work_struct
*work
)
235 return (void *) (atomic_long_read(&work
->data
) & WORK_STRUCT_WQ_DATA_MASK
);
238 static void insert_work(struct cpu_workqueue_struct
*cwq
,
239 struct work_struct
*work
, struct list_head
*head
)
241 trace_workqueue_insertion(cwq
->thread
, work
);
243 set_wq_data(work
, cwq
);
245 * Ensure that we get the right work->data if we see the
246 * result of list_add() below, see try_to_grab_pending().
249 list_add_tail(&work
->entry
, head
);
250 wake_up(&cwq
->more_work
);
253 static void __queue_work(struct cpu_workqueue_struct
*cwq
,
254 struct work_struct
*work
)
258 debug_work_activate(work
);
259 spin_lock_irqsave(&cwq
->lock
, flags
);
260 insert_work(cwq
, work
, &cwq
->worklist
);
261 spin_unlock_irqrestore(&cwq
->lock
, flags
);
265 * queue_work - queue work on a workqueue
266 * @wq: workqueue to use
267 * @work: work to queue
269 * Returns 0 if @work was already on a queue, non-zero otherwise.
271 * We queue the work to the CPU on which it was submitted, but if the CPU dies
272 * it can be processed by another CPU.
274 int queue_work(struct workqueue_struct
*wq
, struct work_struct
*work
)
278 ret
= queue_work_on(get_cpu(), wq
, work
);
283 EXPORT_SYMBOL_GPL(queue_work
);
286 * queue_work_on - queue work on specific cpu
287 * @cpu: CPU number to execute work on
288 * @wq: workqueue to use
289 * @work: work to queue
291 * Returns 0 if @work was already on a queue, non-zero otherwise.
293 * We queue the work to a specific CPU, the caller must ensure it
297 queue_work_on(int cpu
, struct workqueue_struct
*wq
, struct work_struct
*work
)
301 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
302 BUG_ON(!list_empty(&work
->entry
));
303 __queue_work(wq_per_cpu(wq
, cpu
), work
);
308 EXPORT_SYMBOL_GPL(queue_work_on
);
310 static void delayed_work_timer_fn(unsigned long __data
)
312 struct delayed_work
*dwork
= (struct delayed_work
*)__data
;
313 struct cpu_workqueue_struct
*cwq
= get_wq_data(&dwork
->work
);
314 struct workqueue_struct
*wq
= cwq
->wq
;
316 __queue_work(wq_per_cpu(wq
, smp_processor_id()), &dwork
->work
);
320 * queue_delayed_work - queue work on a workqueue after delay
321 * @wq: workqueue to use
322 * @dwork: delayable work to queue
323 * @delay: number of jiffies to wait before queueing
325 * Returns 0 if @work was already on a queue, non-zero otherwise.
327 int queue_delayed_work(struct workqueue_struct
*wq
,
328 struct delayed_work
*dwork
, unsigned long delay
)
331 return queue_work(wq
, &dwork
->work
);
333 return queue_delayed_work_on(-1, wq
, dwork
, delay
);
335 EXPORT_SYMBOL_GPL(queue_delayed_work
);
338 * queue_delayed_work_on - queue work on specific CPU after delay
339 * @cpu: CPU number to execute work on
340 * @wq: workqueue to use
341 * @dwork: work to queue
342 * @delay: number of jiffies to wait before queueing
344 * Returns 0 if @work was already on a queue, non-zero otherwise.
346 int queue_delayed_work_on(int cpu
, struct workqueue_struct
*wq
,
347 struct delayed_work
*dwork
, unsigned long delay
)
350 struct timer_list
*timer
= &dwork
->timer
;
351 struct work_struct
*work
= &dwork
->work
;
353 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
))) {
354 BUG_ON(timer_pending(timer
));
355 BUG_ON(!list_empty(&work
->entry
));
357 timer_stats_timer_set_start_info(&dwork
->timer
);
359 /* This stores cwq for the moment, for the timer_fn */
360 set_wq_data(work
, wq_per_cpu(wq
, raw_smp_processor_id()));
361 timer
->expires
= jiffies
+ delay
;
362 timer
->data
= (unsigned long)dwork
;
363 timer
->function
= delayed_work_timer_fn
;
365 if (unlikely(cpu
>= 0))
366 add_timer_on(timer
, cpu
);
373 EXPORT_SYMBOL_GPL(queue_delayed_work_on
);
375 static void run_workqueue(struct cpu_workqueue_struct
*cwq
)
377 spin_lock_irq(&cwq
->lock
);
378 while (!list_empty(&cwq
->worklist
)) {
379 struct work_struct
*work
= list_entry(cwq
->worklist
.next
,
380 struct work_struct
, entry
);
381 work_func_t f
= work
->func
;
382 #ifdef CONFIG_LOCKDEP
384 * It is permissible to free the struct work_struct
385 * from inside the function that is called from it,
386 * this we need to take into account for lockdep too.
387 * To avoid bogus "held lock freed" warnings as well
388 * as problems when looking into work->lockdep_map,
389 * make a copy and use that here.
391 struct lockdep_map lockdep_map
= work
->lockdep_map
;
393 trace_workqueue_execution(cwq
->thread
, work
);
394 debug_work_deactivate(work
);
395 cwq
->current_work
= work
;
396 list_del_init(cwq
->worklist
.next
);
397 spin_unlock_irq(&cwq
->lock
);
399 BUG_ON(get_wq_data(work
) != cwq
);
400 work_clear_pending(work
);
401 lock_map_acquire(&cwq
->wq
->lockdep_map
);
402 lock_map_acquire(&lockdep_map
);
404 lock_map_release(&lockdep_map
);
405 lock_map_release(&cwq
->wq
->lockdep_map
);
407 if (unlikely(in_atomic() || lockdep_depth(current
) > 0)) {
408 printk(KERN_ERR
"BUG: workqueue leaked lock or atomic: "
410 current
->comm
, preempt_count(),
411 task_pid_nr(current
));
412 printk(KERN_ERR
" last function: ");
413 print_symbol("%s\n", (unsigned long)f
);
414 debug_show_held_locks(current
);
418 spin_lock_irq(&cwq
->lock
);
419 cwq
->current_work
= NULL
;
421 spin_unlock_irq(&cwq
->lock
);
424 static int worker_thread(void *__cwq
)
426 struct cpu_workqueue_struct
*cwq
= __cwq
;
429 if (cwq
->wq
->freezeable
)
433 prepare_to_wait(&cwq
->more_work
, &wait
, TASK_INTERRUPTIBLE
);
434 if (!freezing(current
) &&
435 !kthread_should_stop() &&
436 list_empty(&cwq
->worklist
))
438 finish_wait(&cwq
->more_work
, &wait
);
442 if (kthread_should_stop())
452 struct work_struct work
;
453 struct completion done
;
456 static void wq_barrier_func(struct work_struct
*work
)
458 struct wq_barrier
*barr
= container_of(work
, struct wq_barrier
, work
);
459 complete(&barr
->done
);
462 static void insert_wq_barrier(struct cpu_workqueue_struct
*cwq
,
463 struct wq_barrier
*barr
, struct list_head
*head
)
466 * debugobject calls are safe here even with cwq->lock locked
467 * as we know for sure that this will not trigger any of the
468 * checks and call back into the fixup functions where we
471 INIT_WORK_ON_STACK(&barr
->work
, wq_barrier_func
);
472 __set_bit(WORK_STRUCT_PENDING
, work_data_bits(&barr
->work
));
474 init_completion(&barr
->done
);
476 debug_work_activate(&barr
->work
);
477 insert_work(cwq
, &barr
->work
, head
);
480 static int flush_cpu_workqueue(struct cpu_workqueue_struct
*cwq
)
483 struct wq_barrier barr
;
485 WARN_ON(cwq
->thread
== current
);
487 spin_lock_irq(&cwq
->lock
);
488 if (!list_empty(&cwq
->worklist
) || cwq
->current_work
!= NULL
) {
489 insert_wq_barrier(cwq
, &barr
, &cwq
->worklist
);
492 spin_unlock_irq(&cwq
->lock
);
495 wait_for_completion(&barr
.done
);
496 destroy_work_on_stack(&barr
.work
);
503 * flush_workqueue - ensure that any scheduled work has run to completion.
504 * @wq: workqueue to flush
506 * Forces execution of the workqueue and blocks until its completion.
507 * This is typically used in driver shutdown handlers.
509 * We sleep until all works which were queued on entry have been handled,
510 * but we are not livelocked by new incoming ones.
512 * This function used to run the workqueues itself. Now we just wait for the
513 * helper threads to do it.
515 void flush_workqueue(struct workqueue_struct
*wq
)
517 const struct cpumask
*cpu_map
= wq_cpu_map(wq
);
521 lock_map_acquire(&wq
->lockdep_map
);
522 lock_map_release(&wq
->lockdep_map
);
523 for_each_cpu(cpu
, cpu_map
)
524 flush_cpu_workqueue(per_cpu_ptr(wq
->cpu_wq
, cpu
));
526 EXPORT_SYMBOL_GPL(flush_workqueue
);
529 * flush_work - block until a work_struct's callback has terminated
530 * @work: the work which is to be flushed
532 * Returns false if @work has already terminated.
534 * It is expected that, prior to calling flush_work(), the caller has
535 * arranged for the work to not be requeued, otherwise it doesn't make
536 * sense to use this function.
538 int flush_work(struct work_struct
*work
)
540 struct cpu_workqueue_struct
*cwq
;
541 struct list_head
*prev
;
542 struct wq_barrier barr
;
545 cwq
= get_wq_data(work
);
549 lock_map_acquire(&cwq
->wq
->lockdep_map
);
550 lock_map_release(&cwq
->wq
->lockdep_map
);
553 spin_lock_irq(&cwq
->lock
);
554 if (!list_empty(&work
->entry
)) {
556 * See the comment near try_to_grab_pending()->smp_rmb().
557 * If it was re-queued under us we are not going to wait.
560 if (unlikely(cwq
!= get_wq_data(work
)))
564 if (cwq
->current_work
!= work
)
566 prev
= &cwq
->worklist
;
568 insert_wq_barrier(cwq
, &barr
, prev
->next
);
570 spin_unlock_irq(&cwq
->lock
);
574 wait_for_completion(&barr
.done
);
575 destroy_work_on_stack(&barr
.work
);
578 EXPORT_SYMBOL_GPL(flush_work
);
581 * Upon a successful return (>= 0), the caller "owns" WORK_STRUCT_PENDING bit,
582 * so this work can't be re-armed in any way.
584 static int try_to_grab_pending(struct work_struct
*work
)
586 struct cpu_workqueue_struct
*cwq
;
589 if (!test_and_set_bit(WORK_STRUCT_PENDING
, work_data_bits(work
)))
593 * The queueing is in progress, or it is already queued. Try to
594 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
597 cwq
= get_wq_data(work
);
601 spin_lock_irq(&cwq
->lock
);
602 if (!list_empty(&work
->entry
)) {
604 * This work is queued, but perhaps we locked the wrong cwq.
605 * In that case we must see the new value after rmb(), see
606 * insert_work()->wmb().
609 if (cwq
== get_wq_data(work
)) {
610 debug_work_deactivate(work
);
611 list_del_init(&work
->entry
);
615 spin_unlock_irq(&cwq
->lock
);
620 static void wait_on_cpu_work(struct cpu_workqueue_struct
*cwq
,
621 struct work_struct
*work
)
623 struct wq_barrier barr
;
626 spin_lock_irq(&cwq
->lock
);
627 if (unlikely(cwq
->current_work
== work
)) {
628 insert_wq_barrier(cwq
, &barr
, cwq
->worklist
.next
);
631 spin_unlock_irq(&cwq
->lock
);
633 if (unlikely(running
)) {
634 wait_for_completion(&barr
.done
);
635 destroy_work_on_stack(&barr
.work
);
639 static void wait_on_work(struct work_struct
*work
)
641 struct cpu_workqueue_struct
*cwq
;
642 struct workqueue_struct
*wq
;
643 const struct cpumask
*cpu_map
;
648 lock_map_acquire(&work
->lockdep_map
);
649 lock_map_release(&work
->lockdep_map
);
651 cwq
= get_wq_data(work
);
656 cpu_map
= wq_cpu_map(wq
);
658 for_each_cpu(cpu
, cpu_map
)
659 wait_on_cpu_work(per_cpu_ptr(wq
->cpu_wq
, cpu
), work
);
662 static int __cancel_work_timer(struct work_struct
*work
,
663 struct timer_list
* timer
)
668 ret
= (timer
&& likely(del_timer(timer
)));
670 ret
= try_to_grab_pending(work
);
672 } while (unlikely(ret
< 0));
674 work_clear_pending(work
);
679 * cancel_work_sync - block until a work_struct's callback has terminated
680 * @work: the work which is to be flushed
682 * Returns true if @work was pending.
684 * cancel_work_sync() will cancel the work if it is queued. If the work's
685 * callback appears to be running, cancel_work_sync() will block until it
688 * It is possible to use this function if the work re-queues itself. It can
689 * cancel the work even if it migrates to another workqueue, however in that
690 * case it only guarantees that work->func() has completed on the last queued
693 * cancel_work_sync(&delayed_work->work) should be used only if ->timer is not
694 * pending, otherwise it goes into a busy-wait loop until the timer expires.
696 * The caller must ensure that workqueue_struct on which this work was last
697 * queued can't be destroyed before this function returns.
699 int cancel_work_sync(struct work_struct
*work
)
701 return __cancel_work_timer(work
, NULL
);
703 EXPORT_SYMBOL_GPL(cancel_work_sync
);
706 * cancel_delayed_work_sync - reliably kill off a delayed work.
707 * @dwork: the delayed work struct
709 * Returns true if @dwork was pending.
711 * It is possible to use this function if @dwork rearms itself via queue_work()
712 * or queue_delayed_work(). See also the comment for cancel_work_sync().
714 int cancel_delayed_work_sync(struct delayed_work
*dwork
)
716 return __cancel_work_timer(&dwork
->work
, &dwork
->timer
);
718 EXPORT_SYMBOL(cancel_delayed_work_sync
);
720 static struct workqueue_struct
*keventd_wq __read_mostly
;
723 * schedule_work - put work task in global workqueue
724 * @work: job to be done
726 * Returns zero if @work was already on the kernel-global workqueue and
727 * non-zero otherwise.
729 * This puts a job in the kernel-global workqueue if it was not already
730 * queued and leaves it in the same position on the kernel-global
731 * workqueue otherwise.
733 int schedule_work(struct work_struct
*work
)
735 return queue_work(keventd_wq
, work
);
737 EXPORT_SYMBOL(schedule_work
);
740 * schedule_work_on - put work task on a specific cpu
741 * @cpu: cpu to put the work task on
742 * @work: job to be done
744 * This puts a job on a specific cpu
746 int schedule_work_on(int cpu
, struct work_struct
*work
)
748 return queue_work_on(cpu
, keventd_wq
, work
);
750 EXPORT_SYMBOL(schedule_work_on
);
753 * schedule_delayed_work - put work task in global workqueue after delay
754 * @dwork: job to be done
755 * @delay: number of jiffies to wait or 0 for immediate execution
757 * After waiting for a given time this puts a job in the kernel-global
760 int schedule_delayed_work(struct delayed_work
*dwork
,
763 return queue_delayed_work(keventd_wq
, dwork
, delay
);
765 EXPORT_SYMBOL(schedule_delayed_work
);
768 * flush_delayed_work - block until a dwork_struct's callback has terminated
769 * @dwork: the delayed work which is to be flushed
771 * Any timeout is cancelled, and any pending work is run immediately.
773 void flush_delayed_work(struct delayed_work
*dwork
)
775 if (del_timer_sync(&dwork
->timer
)) {
776 struct cpu_workqueue_struct
*cwq
;
777 cwq
= wq_per_cpu(keventd_wq
, get_cpu());
778 __queue_work(cwq
, &dwork
->work
);
781 flush_work(&dwork
->work
);
783 EXPORT_SYMBOL(flush_delayed_work
);
786 * schedule_delayed_work_on - queue work in global workqueue on CPU after delay
788 * @dwork: job to be done
789 * @delay: number of jiffies to wait
791 * After waiting for a given time this puts a job in the kernel-global
792 * workqueue on the specified CPU.
794 int schedule_delayed_work_on(int cpu
,
795 struct delayed_work
*dwork
, unsigned long delay
)
797 return queue_delayed_work_on(cpu
, keventd_wq
, dwork
, delay
);
799 EXPORT_SYMBOL(schedule_delayed_work_on
);
802 * schedule_on_each_cpu - call a function on each online CPU from keventd
803 * @func: the function to call
805 * Returns zero on success.
806 * Returns -ve errno on failure.
808 * schedule_on_each_cpu() is very slow.
810 int schedule_on_each_cpu(work_func_t func
)
814 struct work_struct
*works
;
816 works
= alloc_percpu(struct work_struct
);
823 * When running in keventd don't schedule a work item on
824 * itself. Can just call directly because the work queue is
825 * already bound. This also is faster.
827 if (current_is_keventd())
828 orig
= raw_smp_processor_id();
830 for_each_online_cpu(cpu
) {
831 struct work_struct
*work
= per_cpu_ptr(works
, cpu
);
833 INIT_WORK(work
, func
);
835 schedule_work_on(cpu
, work
);
838 func(per_cpu_ptr(works
, orig
));
840 for_each_online_cpu(cpu
)
841 flush_work(per_cpu_ptr(works
, cpu
));
848 void flush_scheduled_work(void)
850 flush_workqueue(keventd_wq
);
852 EXPORT_SYMBOL(flush_scheduled_work
);
855 * execute_in_process_context - reliably execute the routine with user context
856 * @fn: the function to execute
857 * @ew: guaranteed storage for the execute work structure (must
858 * be available when the work executes)
860 * Executes the function immediately if process context is available,
861 * otherwise schedules the function for delayed execution.
863 * Returns: 0 - function was executed
864 * 1 - function was scheduled for execution
866 int execute_in_process_context(work_func_t fn
, struct execute_work
*ew
)
868 if (!in_interrupt()) {
873 INIT_WORK(&ew
->work
, fn
);
874 schedule_work(&ew
->work
);
878 EXPORT_SYMBOL_GPL(execute_in_process_context
);
882 return keventd_wq
!= NULL
;
885 int current_is_keventd(void)
887 struct cpu_workqueue_struct
*cwq
;
888 int cpu
= raw_smp_processor_id(); /* preempt-safe: keventd is per-cpu */
893 cwq
= per_cpu_ptr(keventd_wq
->cpu_wq
, cpu
);
894 if (current
== cwq
->thread
)
901 static struct cpu_workqueue_struct
*
902 init_cpu_workqueue(struct workqueue_struct
*wq
, int cpu
)
904 struct cpu_workqueue_struct
*cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
907 spin_lock_init(&cwq
->lock
);
908 INIT_LIST_HEAD(&cwq
->worklist
);
909 init_waitqueue_head(&cwq
->more_work
);
914 static int create_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
916 struct sched_param param
= { .sched_priority
= MAX_RT_PRIO
-1 };
917 struct workqueue_struct
*wq
= cwq
->wq
;
918 const char *fmt
= is_wq_single_threaded(wq
) ? "%s" : "%s/%d";
919 struct task_struct
*p
;
921 p
= kthread_create(worker_thread
, cwq
, fmt
, wq
->name
, cpu
);
923 * Nobody can add the work_struct to this cwq,
924 * if (caller is __create_workqueue)
925 * nobody should see this wq
926 * else // caller is CPU_UP_PREPARE
927 * cpu is not on cpu_online_map
928 * so we can abort safely.
933 sched_setscheduler_nocheck(p
, SCHED_FIFO
, ¶m
);
936 trace_workqueue_creation(cwq
->thread
, cpu
);
941 static void start_workqueue_thread(struct cpu_workqueue_struct
*cwq
, int cpu
)
943 struct task_struct
*p
= cwq
->thread
;
947 kthread_bind(p
, cpu
);
952 struct workqueue_struct
*__create_workqueue_key(const char *name
,
956 struct lock_class_key
*key
,
957 const char *lock_name
)
959 struct workqueue_struct
*wq
;
960 struct cpu_workqueue_struct
*cwq
;
963 wq
= kzalloc(sizeof(*wq
), GFP_KERNEL
);
967 wq
->cpu_wq
= alloc_percpu(struct cpu_workqueue_struct
);
974 lockdep_init_map(&wq
->lockdep_map
, lock_name
, key
, 0);
975 wq
->singlethread
= singlethread
;
976 wq
->freezeable
= freezeable
;
978 INIT_LIST_HEAD(&wq
->list
);
981 cwq
= init_cpu_workqueue(wq
, singlethread_cpu
);
982 err
= create_workqueue_thread(cwq
, singlethread_cpu
);
983 start_workqueue_thread(cwq
, -1);
985 cpu_maps_update_begin();
987 * We must place this wq on list even if the code below fails.
988 * cpu_down(cpu) can remove cpu from cpu_populated_map before
989 * destroy_workqueue() takes the lock, in that case we leak
992 spin_lock(&workqueue_lock
);
993 list_add(&wq
->list
, &workqueues
);
994 spin_unlock(&workqueue_lock
);
996 * We must initialize cwqs for each possible cpu even if we
997 * are going to call destroy_workqueue() finally. Otherwise
998 * cpu_up() can hit the uninitialized cwq once we drop the
1001 for_each_possible_cpu(cpu
) {
1002 cwq
= init_cpu_workqueue(wq
, cpu
);
1003 if (err
|| !cpu_online(cpu
))
1005 err
= create_workqueue_thread(cwq
, cpu
);
1006 start_workqueue_thread(cwq
, cpu
);
1008 cpu_maps_update_done();
1012 destroy_workqueue(wq
);
1017 EXPORT_SYMBOL_GPL(__create_workqueue_key
);
1019 static void cleanup_workqueue_thread(struct cpu_workqueue_struct
*cwq
)
1022 * Our caller is either destroy_workqueue() or CPU_POST_DEAD,
1023 * cpu_add_remove_lock protects cwq->thread.
1025 if (cwq
->thread
== NULL
)
1028 lock_map_acquire(&cwq
->wq
->lockdep_map
);
1029 lock_map_release(&cwq
->wq
->lockdep_map
);
1031 flush_cpu_workqueue(cwq
);
1033 * If the caller is CPU_POST_DEAD and cwq->worklist was not empty,
1034 * a concurrent flush_workqueue() can insert a barrier after us.
1035 * However, in that case run_workqueue() won't return and check
1036 * kthread_should_stop() until it flushes all work_struct's.
1037 * When ->worklist becomes empty it is safe to exit because no
1038 * more work_structs can be queued on this cwq: flush_workqueue
1039 * checks list_empty(), and a "normal" queue_work() can't use
1042 trace_workqueue_destruction(cwq
->thread
);
1043 kthread_stop(cwq
->thread
);
1048 * destroy_workqueue - safely terminate a workqueue
1049 * @wq: target workqueue
1051 * Safely destroy a workqueue. All work currently pending will be done first.
1053 void destroy_workqueue(struct workqueue_struct
*wq
)
1055 const struct cpumask
*cpu_map
= wq_cpu_map(wq
);
1058 cpu_maps_update_begin();
1059 spin_lock(&workqueue_lock
);
1060 list_del(&wq
->list
);
1061 spin_unlock(&workqueue_lock
);
1063 for_each_cpu(cpu
, cpu_map
)
1064 cleanup_workqueue_thread(per_cpu_ptr(wq
->cpu_wq
, cpu
));
1065 cpu_maps_update_done();
1067 free_percpu(wq
->cpu_wq
);
1070 EXPORT_SYMBOL_GPL(destroy_workqueue
);
1072 static int __devinit
workqueue_cpu_callback(struct notifier_block
*nfb
,
1073 unsigned long action
,
1076 unsigned int cpu
= (unsigned long)hcpu
;
1077 struct cpu_workqueue_struct
*cwq
;
1078 struct workqueue_struct
*wq
;
1079 int ret
= NOTIFY_OK
;
1081 action
&= ~CPU_TASKS_FROZEN
;
1084 case CPU_UP_PREPARE
:
1085 cpumask_set_cpu(cpu
, cpu_populated_map
);
1088 list_for_each_entry(wq
, &workqueues
, list
) {
1089 cwq
= per_cpu_ptr(wq
->cpu_wq
, cpu
);
1092 case CPU_UP_PREPARE
:
1093 if (!create_workqueue_thread(cwq
, cpu
))
1095 printk(KERN_ERR
"workqueue [%s] for %i failed\n",
1097 action
= CPU_UP_CANCELED
;
1102 start_workqueue_thread(cwq
, cpu
);
1105 case CPU_UP_CANCELED
:
1106 start_workqueue_thread(cwq
, -1);
1108 cleanup_workqueue_thread(cwq
);
1114 case CPU_UP_CANCELED
:
1116 cpumask_clear_cpu(cpu
, cpu_populated_map
);
1124 struct work_for_cpu
{
1125 struct completion completion
;
1131 static int do_work_for_cpu(void *_wfc
)
1133 struct work_for_cpu
*wfc
= _wfc
;
1134 wfc
->ret
= wfc
->fn(wfc
->arg
);
1135 complete(&wfc
->completion
);
1140 * work_on_cpu - run a function in user context on a particular cpu
1141 * @cpu: the cpu to run on
1142 * @fn: the function to run
1143 * @arg: the function arg
1145 * This will return the value @fn returns.
1146 * It is up to the caller to ensure that the cpu doesn't go offline.
1147 * The caller must not hold any locks which would prevent @fn from completing.
1149 long work_on_cpu(unsigned int cpu
, long (*fn
)(void *), void *arg
)
1151 struct task_struct
*sub_thread
;
1152 struct work_for_cpu wfc
= {
1153 .completion
= COMPLETION_INITIALIZER_ONSTACK(wfc
.completion
),
1158 sub_thread
= kthread_create(do_work_for_cpu
, &wfc
, "work_for_cpu");
1159 if (IS_ERR(sub_thread
))
1160 return PTR_ERR(sub_thread
);
1161 kthread_bind(sub_thread
, cpu
);
1162 wake_up_process(sub_thread
);
1163 wait_for_completion(&wfc
.completion
);
1166 EXPORT_SYMBOL_GPL(work_on_cpu
);
1167 #endif /* CONFIG_SMP */
1169 void __init
init_workqueues(void)
1171 alloc_cpumask_var(&cpu_populated_map
, GFP_KERNEL
);
1173 cpumask_copy(cpu_populated_map
, cpu_online_mask
);
1174 singlethread_cpu
= cpumask_first(cpu_possible_mask
);
1175 cpu_singlethread_map
= cpumask_of(singlethread_cpu
);
1176 hotcpu_notifier(workqueue_cpu_callback
, 0);
1177 keventd_wq
= create_workqueue("events");
1178 BUG_ON(!keventd_wq
);