2 * Copyright (C) 2003 Christophe Saout <christophe@saout.de>
3 * Copyright (C) 2004 Clemens Fruhwirth <clemens@endorphin.org>
5 * This file is released under the GPL.
8 #include <linux/module.h>
9 #include <linux/init.h>
10 #include <linux/kernel.h>
11 #include <linux/bio.h>
12 #include <linux/blkdev.h>
13 #include <linux/mempool.h>
14 #include <linux/slab.h>
15 #include <linux/crypto.h>
16 #include <linux/workqueue.h>
17 #include <asm/atomic.h>
18 #include <linux/scatterlist.h>
26 * per bio private data
29 struct dm_target
*target
;
31 struct bio
*first_clone
;
32 struct work_struct work
;
38 * context holding the current state of a multi-part conversion
40 struct convert_context
{
43 unsigned int offset_in
;
44 unsigned int offset_out
;
53 struct crypt_iv_operations
{
54 int (*ctr
)(struct crypt_config
*cc
, struct dm_target
*ti
,
56 void (*dtr
)(struct crypt_config
*cc
);
57 const char *(*status
)(struct crypt_config
*cc
);
58 int (*generator
)(struct crypt_config
*cc
, u8
*iv
, sector_t sector
);
62 * Crypt: maps a linear range of a block device
63 * and encrypts / decrypts at the same time.
70 * pool for per bio private data and
71 * for encryption buffer pages
79 struct crypt_iv_operations
*iv_gen_ops
;
85 struct crypto_tfm
*tfm
;
86 unsigned int key_size
;
91 #define MIN_POOL_PAGES 32
92 #define MIN_BIO_PAGES 8
94 static kmem_cache_t
*_crypt_io_pool
;
97 * Mempool alloc and free functions for the page
99 static void *mempool_alloc_page(gfp_t gfp_mask
, void *data
)
101 return alloc_page(gfp_mask
);
104 static void mempool_free_page(void *page
, void *data
)
111 * Different IV generation algorithms:
113 * plain: the initial vector is the 32-bit low-endian version of the sector
114 * number, padded with zeros if neccessary.
116 * ess_iv: "encrypted sector|salt initial vector", the sector number is
117 * encrypted with the bulk cipher using a salt as key. The salt
118 * should be derived from the bulk cipher's key via hashing.
120 * plumb: unimplemented, see:
121 * http://article.gmane.org/gmane.linux.kernel.device-mapper.dm-crypt/454
124 static int crypt_iv_plain_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
126 memset(iv
, 0, cc
->iv_size
);
127 *(u32
*)iv
= cpu_to_le32(sector
& 0xffffffff);
132 static int crypt_iv_essiv_ctr(struct crypt_config
*cc
, struct dm_target
*ti
,
135 struct crypto_tfm
*essiv_tfm
;
136 struct crypto_tfm
*hash_tfm
;
137 struct scatterlist sg
;
138 unsigned int saltsize
;
142 ti
->error
= PFX
"Digest algorithm missing for ESSIV mode";
146 /* Hash the cipher key with the given hash algorithm */
147 hash_tfm
= crypto_alloc_tfm(opts
, CRYPTO_TFM_REQ_MAY_SLEEP
);
148 if (hash_tfm
== NULL
) {
149 ti
->error
= PFX
"Error initializing ESSIV hash";
153 if (crypto_tfm_alg_type(hash_tfm
) != CRYPTO_ALG_TYPE_DIGEST
) {
154 ti
->error
= PFX
"Expected digest algorithm for ESSIV hash";
155 crypto_free_tfm(hash_tfm
);
159 saltsize
= crypto_tfm_alg_digestsize(hash_tfm
);
160 salt
= kmalloc(saltsize
, GFP_KERNEL
);
162 ti
->error
= PFX
"Error kmallocing salt storage in ESSIV";
163 crypto_free_tfm(hash_tfm
);
167 sg_set_buf(&sg
, cc
->key
, cc
->key_size
);
168 crypto_digest_digest(hash_tfm
, &sg
, 1, salt
);
169 crypto_free_tfm(hash_tfm
);
171 /* Setup the essiv_tfm with the given salt */
172 essiv_tfm
= crypto_alloc_tfm(crypto_tfm_alg_name(cc
->tfm
),
173 CRYPTO_TFM_MODE_ECB
|
174 CRYPTO_TFM_REQ_MAY_SLEEP
);
175 if (essiv_tfm
== NULL
) {
176 ti
->error
= PFX
"Error allocating crypto tfm for ESSIV";
180 if (crypto_tfm_alg_blocksize(essiv_tfm
)
181 != crypto_tfm_alg_ivsize(cc
->tfm
)) {
182 ti
->error
= PFX
"Block size of ESSIV cipher does "
183 "not match IV size of block cipher";
184 crypto_free_tfm(essiv_tfm
);
188 if (crypto_cipher_setkey(essiv_tfm
, salt
, saltsize
) < 0) {
189 ti
->error
= PFX
"Failed to set key for ESSIV cipher";
190 crypto_free_tfm(essiv_tfm
);
196 cc
->iv_gen_private
= (void *)essiv_tfm
;
200 static void crypt_iv_essiv_dtr(struct crypt_config
*cc
)
202 crypto_free_tfm((struct crypto_tfm
*)cc
->iv_gen_private
);
203 cc
->iv_gen_private
= NULL
;
206 static int crypt_iv_essiv_gen(struct crypt_config
*cc
, u8
*iv
, sector_t sector
)
208 struct scatterlist sg
;
210 memset(iv
, 0, cc
->iv_size
);
211 *(u64
*)iv
= cpu_to_le64(sector
);
213 sg_set_buf(&sg
, iv
, cc
->iv_size
);
214 crypto_cipher_encrypt((struct crypto_tfm
*)cc
->iv_gen_private
,
215 &sg
, &sg
, cc
->iv_size
);
220 static struct crypt_iv_operations crypt_iv_plain_ops
= {
221 .generator
= crypt_iv_plain_gen
224 static struct crypt_iv_operations crypt_iv_essiv_ops
= {
225 .ctr
= crypt_iv_essiv_ctr
,
226 .dtr
= crypt_iv_essiv_dtr
,
227 .generator
= crypt_iv_essiv_gen
232 crypt_convert_scatterlist(struct crypt_config
*cc
, struct scatterlist
*out
,
233 struct scatterlist
*in
, unsigned int length
,
234 int write
, sector_t sector
)
239 if (cc
->iv_gen_ops
) {
240 r
= cc
->iv_gen_ops
->generator(cc
, iv
, sector
);
245 r
= crypto_cipher_encrypt_iv(cc
->tfm
, out
, in
, length
, iv
);
247 r
= crypto_cipher_decrypt_iv(cc
->tfm
, out
, in
, length
, iv
);
250 r
= crypto_cipher_encrypt(cc
->tfm
, out
, in
, length
);
252 r
= crypto_cipher_decrypt(cc
->tfm
, out
, in
, length
);
259 crypt_convert_init(struct crypt_config
*cc
, struct convert_context
*ctx
,
260 struct bio
*bio_out
, struct bio
*bio_in
,
261 sector_t sector
, int write
)
263 ctx
->bio_in
= bio_in
;
264 ctx
->bio_out
= bio_out
;
267 ctx
->idx_in
= bio_in
? bio_in
->bi_idx
: 0;
268 ctx
->idx_out
= bio_out
? bio_out
->bi_idx
: 0;
269 ctx
->sector
= sector
+ cc
->iv_offset
;
274 * Encrypt / decrypt data from one bio to another one (can be the same one)
276 static int crypt_convert(struct crypt_config
*cc
,
277 struct convert_context
*ctx
)
281 while(ctx
->idx_in
< ctx
->bio_in
->bi_vcnt
&&
282 ctx
->idx_out
< ctx
->bio_out
->bi_vcnt
) {
283 struct bio_vec
*bv_in
= bio_iovec_idx(ctx
->bio_in
, ctx
->idx_in
);
284 struct bio_vec
*bv_out
= bio_iovec_idx(ctx
->bio_out
, ctx
->idx_out
);
285 struct scatterlist sg_in
= {
286 .page
= bv_in
->bv_page
,
287 .offset
= bv_in
->bv_offset
+ ctx
->offset_in
,
288 .length
= 1 << SECTOR_SHIFT
290 struct scatterlist sg_out
= {
291 .page
= bv_out
->bv_page
,
292 .offset
= bv_out
->bv_offset
+ ctx
->offset_out
,
293 .length
= 1 << SECTOR_SHIFT
296 ctx
->offset_in
+= sg_in
.length
;
297 if (ctx
->offset_in
>= bv_in
->bv_len
) {
302 ctx
->offset_out
+= sg_out
.length
;
303 if (ctx
->offset_out
>= bv_out
->bv_len
) {
308 r
= crypt_convert_scatterlist(cc
, &sg_out
, &sg_in
, sg_in
.length
,
309 ctx
->write
, ctx
->sector
);
320 * Generate a new unfragmented bio with the given size
321 * This should never violate the device limitations
322 * May return a smaller bio when running out of pages
325 crypt_alloc_buffer(struct crypt_config
*cc
, unsigned int size
,
326 struct bio
*base_bio
, unsigned int *bio_vec_idx
)
329 unsigned int nr_iovecs
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
330 gfp_t gfp_mask
= GFP_NOIO
| __GFP_HIGHMEM
;
334 * Use __GFP_NOMEMALLOC to tell the VM to act less aggressively and
335 * to fail earlier. This is not necessary but increases throughput.
336 * FIXME: Is this really intelligent?
339 bio
= bio_clone(base_bio
, GFP_NOIO
|__GFP_NOMEMALLOC
);
341 bio
= bio_alloc(GFP_NOIO
|__GFP_NOMEMALLOC
, nr_iovecs
);
345 /* if the last bio was not complete, continue where that one ended */
346 bio
->bi_idx
= *bio_vec_idx
;
347 bio
->bi_vcnt
= *bio_vec_idx
;
349 bio
->bi_flags
&= ~(1 << BIO_SEG_VALID
);
351 /* bio->bi_idx pages have already been allocated */
352 size
-= bio
->bi_idx
* PAGE_SIZE
;
354 for(i
= bio
->bi_idx
; i
< nr_iovecs
; i
++) {
355 struct bio_vec
*bv
= bio_iovec_idx(bio
, i
);
357 bv
->bv_page
= mempool_alloc(cc
->page_pool
, gfp_mask
);
362 * if additional pages cannot be allocated without waiting,
363 * return a partially allocated bio, the caller will then try
364 * to allocate additional bios while submitting this partial bio
366 if ((i
- bio
->bi_idx
) == (MIN_BIO_PAGES
- 1))
367 gfp_mask
= (gfp_mask
| __GFP_NOWARN
) & ~__GFP_WAIT
;
370 if (size
> PAGE_SIZE
)
371 bv
->bv_len
= PAGE_SIZE
;
375 bio
->bi_size
+= bv
->bv_len
;
386 * Remember the last bio_vec allocated to be able
387 * to correctly continue after the splitting.
389 *bio_vec_idx
= bio
->bi_vcnt
;
394 static void crypt_free_buffer_pages(struct crypt_config
*cc
,
395 struct bio
*bio
, unsigned int bytes
)
397 unsigned int i
, start
, end
;
401 * This is ugly, but Jens Axboe thinks that using bi_idx in the
402 * endio function is too dangerous at the moment, so I calculate the
403 * correct position using bi_vcnt and bi_size.
404 * The bv_offset and bv_len fields might already be modified but we
405 * know that we always allocated whole pages.
406 * A fix to the bi_idx issue in the kernel is in the works, so
407 * we will hopefully be able to revert to the cleaner solution soon.
409 i
= bio
->bi_vcnt
- 1;
410 bv
= bio_iovec_idx(bio
, i
);
411 end
= (i
<< PAGE_SHIFT
) + (bv
->bv_offset
+ bv
->bv_len
) - bio
->bi_size
;
414 start
>>= PAGE_SHIFT
;
420 for(i
= start
; i
< end
; i
++) {
421 bv
= bio_iovec_idx(bio
, i
);
422 BUG_ON(!bv
->bv_page
);
423 mempool_free(bv
->bv_page
, cc
->page_pool
);
429 * One of the bios was finished. Check for completion of
430 * the whole request and correctly clean up the buffer.
432 static void dec_pending(struct crypt_io
*io
, int error
)
434 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
439 if (!atomic_dec_and_test(&io
->pending
))
443 bio_put(io
->first_clone
);
445 bio_endio(io
->bio
, io
->bio
->bi_size
, io
->error
);
447 mempool_free(io
, cc
->io_pool
);
453 * Needed because it would be very unwise to do decryption in an
454 * interrupt context, so bios returning from read requests get
457 static struct workqueue_struct
*_kcryptd_workqueue
;
459 static void kcryptd_do_work(void *data
)
461 struct crypt_io
*io
= (struct crypt_io
*) data
;
462 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
463 struct convert_context ctx
;
466 crypt_convert_init(cc
, &ctx
, io
->bio
, io
->bio
,
467 io
->bio
->bi_sector
- io
->target
->begin
, 0);
468 r
= crypt_convert(cc
, &ctx
);
473 static void kcryptd_queue_io(struct crypt_io
*io
)
475 INIT_WORK(&io
->work
, kcryptd_do_work
, io
);
476 queue_work(_kcryptd_workqueue
, &io
->work
);
480 * Decode key from its hex representation
482 static int crypt_decode_key(u8
*key
, char *hex
, unsigned int size
)
490 for(i
= 0; i
< size
; i
++) {
494 key
[i
] = (u8
)simple_strtoul(buffer
, &endp
, 16);
496 if (endp
!= &buffer
[2])
507 * Encode key into its hex representation
509 static void crypt_encode_key(char *hex
, u8
*key
, unsigned int size
)
513 for(i
= 0; i
< size
; i
++) {
514 sprintf(hex
, "%02x", *key
);
521 * Construct an encryption mapping:
522 * <cipher> <key> <iv_offset> <dev_path> <start>
524 static int crypt_ctr(struct dm_target
*ti
, unsigned int argc
, char **argv
)
526 struct crypt_config
*cc
;
527 struct crypto_tfm
*tfm
;
533 unsigned int crypto_flags
;
534 unsigned int key_size
;
537 ti
->error
= PFX
"Not enough arguments";
542 cipher
= strsep(&tmp
, "-");
543 chainmode
= strsep(&tmp
, "-");
544 ivopts
= strsep(&tmp
, "-");
545 ivmode
= strsep(&ivopts
, ":");
548 DMWARN(PFX
"Unexpected additional cipher options");
550 key_size
= strlen(argv
[1]) >> 1;
552 cc
= kmalloc(sizeof(*cc
) + key_size
* sizeof(u8
), GFP_KERNEL
);
555 PFX
"Cannot allocate transparent encryption context";
559 cc
->key_size
= key_size
;
560 if ((!key_size
&& strcmp(argv
[1], "-") != 0) ||
561 (key_size
&& crypt_decode_key(cc
->key
, argv
[1], key_size
) < 0)) {
562 ti
->error
= PFX
"Error decoding key";
566 /* Compatiblity mode for old dm-crypt cipher strings */
567 if (!chainmode
|| (strcmp(chainmode
, "plain") == 0 && !ivmode
)) {
572 /* Choose crypto_flags according to chainmode */
573 if (strcmp(chainmode
, "cbc") == 0)
574 crypto_flags
= CRYPTO_TFM_MODE_CBC
;
575 else if (strcmp(chainmode
, "ecb") == 0)
576 crypto_flags
= CRYPTO_TFM_MODE_ECB
;
578 ti
->error
= PFX
"Unknown chaining mode";
582 if (crypto_flags
!= CRYPTO_TFM_MODE_ECB
&& !ivmode
) {
583 ti
->error
= PFX
"This chaining mode requires an IV mechanism";
587 tfm
= crypto_alloc_tfm(cipher
, crypto_flags
| CRYPTO_TFM_REQ_MAY_SLEEP
);
589 ti
->error
= PFX
"Error allocating crypto tfm";
592 if (crypto_tfm_alg_type(tfm
) != CRYPTO_ALG_TYPE_CIPHER
) {
593 ti
->error
= PFX
"Expected cipher algorithm";
600 * Choose ivmode. Valid modes: "plain", "essiv:<esshash>".
601 * See comments at iv code
605 cc
->iv_gen_ops
= NULL
;
606 else if (strcmp(ivmode
, "plain") == 0)
607 cc
->iv_gen_ops
= &crypt_iv_plain_ops
;
608 else if (strcmp(ivmode
, "essiv") == 0)
609 cc
->iv_gen_ops
= &crypt_iv_essiv_ops
;
611 ti
->error
= PFX
"Invalid IV mode";
615 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->ctr
&&
616 cc
->iv_gen_ops
->ctr(cc
, ti
, ivopts
) < 0)
619 if (tfm
->crt_cipher
.cit_decrypt_iv
&& tfm
->crt_cipher
.cit_encrypt_iv
)
620 /* at least a 64 bit sector number should fit in our buffer */
621 cc
->iv_size
= max(crypto_tfm_alg_ivsize(tfm
),
622 (unsigned int)(sizeof(u64
) / sizeof(u8
)));
625 if (cc
->iv_gen_ops
) {
626 DMWARN(PFX
"Selected cipher does not support IVs");
627 if (cc
->iv_gen_ops
->dtr
)
628 cc
->iv_gen_ops
->dtr(cc
);
629 cc
->iv_gen_ops
= NULL
;
633 cc
->io_pool
= mempool_create(MIN_IOS
, mempool_alloc_slab
,
634 mempool_free_slab
, _crypt_io_pool
);
636 ti
->error
= PFX
"Cannot allocate crypt io mempool";
640 cc
->page_pool
= mempool_create(MIN_POOL_PAGES
, mempool_alloc_page
,
641 mempool_free_page
, NULL
);
642 if (!cc
->page_pool
) {
643 ti
->error
= PFX
"Cannot allocate page mempool";
647 if (tfm
->crt_cipher
.cit_setkey(tfm
, cc
->key
, key_size
) < 0) {
648 ti
->error
= PFX
"Error setting key";
652 if (sscanf(argv
[2], SECTOR_FORMAT
, &cc
->iv_offset
) != 1) {
653 ti
->error
= PFX
"Invalid iv_offset sector";
657 if (sscanf(argv
[4], SECTOR_FORMAT
, &cc
->start
) != 1) {
658 ti
->error
= PFX
"Invalid device sector";
662 if (dm_get_device(ti
, argv
[3], cc
->start
, ti
->len
,
663 dm_table_get_mode(ti
->table
), &cc
->dev
)) {
664 ti
->error
= PFX
"Device lookup failed";
668 if (ivmode
&& cc
->iv_gen_ops
) {
671 cc
->iv_mode
= kmalloc(strlen(ivmode
) + 1, GFP_KERNEL
);
673 ti
->error
= PFX
"Error kmallocing iv_mode string";
676 strcpy(cc
->iv_mode
, ivmode
);
684 mempool_destroy(cc
->page_pool
);
686 mempool_destroy(cc
->io_pool
);
688 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
689 cc
->iv_gen_ops
->dtr(cc
);
691 crypto_free_tfm(tfm
);
693 /* Must zero key material before freeing */
694 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
699 static void crypt_dtr(struct dm_target
*ti
)
701 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
703 mempool_destroy(cc
->page_pool
);
704 mempool_destroy(cc
->io_pool
);
707 if (cc
->iv_gen_ops
&& cc
->iv_gen_ops
->dtr
)
708 cc
->iv_gen_ops
->dtr(cc
);
709 crypto_free_tfm(cc
->tfm
);
710 dm_put_device(ti
, cc
->dev
);
712 /* Must zero key material before freeing */
713 memset(cc
, 0, sizeof(*cc
) + cc
->key_size
* sizeof(u8
));
717 static int crypt_endio(struct bio
*bio
, unsigned int done
, int error
)
719 struct crypt_io
*io
= (struct crypt_io
*) bio
->bi_private
;
720 struct crypt_config
*cc
= (struct crypt_config
*) io
->target
->private;
722 if (bio_data_dir(bio
) == WRITE
) {
724 * free the processed pages, even if
725 * it's only a partially completed write
727 crypt_free_buffer_pages(cc
, bio
, done
);
736 * successful reads are decrypted by the worker thread
738 if ((bio_data_dir(bio
) == READ
)
739 && bio_flagged(bio
, BIO_UPTODATE
)) {
740 kcryptd_queue_io(io
);
744 dec_pending(io
, error
);
748 static inline struct bio
*
749 crypt_clone(struct crypt_config
*cc
, struct crypt_io
*io
, struct bio
*bio
,
750 sector_t sector
, unsigned int *bvec_idx
,
751 struct convert_context
*ctx
)
755 if (bio_data_dir(bio
) == WRITE
) {
756 clone
= crypt_alloc_buffer(cc
, bio
->bi_size
,
757 io
->first_clone
, bvec_idx
);
759 ctx
->bio_out
= clone
;
760 if (crypt_convert(cc
, ctx
) < 0) {
761 crypt_free_buffer_pages(cc
, clone
,
769 * The block layer might modify the bvec array, so always
770 * copy the required bvecs because we need the original
771 * one in order to decrypt the whole bio data *afterwards*.
773 clone
= bio_alloc(GFP_NOIO
, bio_segments(bio
));
776 clone
->bi_vcnt
= bio_segments(bio
);
777 clone
->bi_size
= bio
->bi_size
;
778 memcpy(clone
->bi_io_vec
, bio_iovec(bio
),
779 sizeof(struct bio_vec
) * clone
->bi_vcnt
);
786 clone
->bi_private
= io
;
787 clone
->bi_end_io
= crypt_endio
;
788 clone
->bi_bdev
= cc
->dev
->bdev
;
789 clone
->bi_sector
= cc
->start
+ sector
;
790 clone
->bi_rw
= bio
->bi_rw
;
795 static int crypt_map(struct dm_target
*ti
, struct bio
*bio
,
796 union map_info
*map_context
)
798 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
799 struct crypt_io
*io
= mempool_alloc(cc
->io_pool
, GFP_NOIO
);
800 struct convert_context ctx
;
802 unsigned int remaining
= bio
->bi_size
;
803 sector_t sector
= bio
->bi_sector
- ti
->begin
;
804 unsigned int bvec_idx
= 0;
808 io
->first_clone
= NULL
;
810 atomic_set(&io
->pending
, 1); /* hold a reference */
812 if (bio_data_dir(bio
) == WRITE
)
813 crypt_convert_init(cc
, &ctx
, NULL
, bio
, sector
, 1);
816 * The allocated buffers can be smaller than the whole bio,
817 * so repeat the whole process until all the data can be handled.
820 clone
= crypt_clone(cc
, io
, bio
, sector
, &bvec_idx
, &ctx
);
824 if (!io
->first_clone
) {
826 * hold a reference to the first clone, because it
827 * holds the bio_vec array and that can't be freed
828 * before all other clones are released
831 io
->first_clone
= clone
;
833 atomic_inc(&io
->pending
);
835 remaining
-= clone
->bi_size
;
836 sector
+= bio_sectors(clone
);
838 generic_make_request(clone
);
840 /* out of memory -> run queues */
842 blk_congestion_wait(bio_data_dir(clone
), HZ
/100);
845 /* drop reference, clones could have returned before we reach this */
850 if (io
->first_clone
) {
851 dec_pending(io
, -ENOMEM
);
855 /* if no bio has been dispatched yet, we can directly return the error */
856 mempool_free(io
, cc
->io_pool
);
860 static int crypt_status(struct dm_target
*ti
, status_type_t type
,
861 char *result
, unsigned int maxlen
)
863 struct crypt_config
*cc
= (struct crypt_config
*) ti
->private;
865 const char *chainmode
= NULL
;
869 case STATUSTYPE_INFO
:
873 case STATUSTYPE_TABLE
:
874 cipher
= crypto_tfm_alg_name(cc
->tfm
);
876 switch(cc
->tfm
->crt_cipher
.cit_mode
) {
877 case CRYPTO_TFM_MODE_CBC
:
880 case CRYPTO_TFM_MODE_ECB
:
888 DMEMIT("%s-%s-%s ", cipher
, chainmode
, cc
->iv_mode
);
890 DMEMIT("%s-%s ", cipher
, chainmode
);
892 if (cc
->key_size
> 0) {
893 if ((maxlen
- sz
) < ((cc
->key_size
<< 1) + 1))
896 crypt_encode_key(result
+ sz
, cc
->key
, cc
->key_size
);
897 sz
+= cc
->key_size
<< 1;
904 DMEMIT(" " SECTOR_FORMAT
" %s " SECTOR_FORMAT
,
905 cc
->iv_offset
, cc
->dev
->name
, cc
->start
);
911 static struct target_type crypt_target
= {
914 .module
= THIS_MODULE
,
918 .status
= crypt_status
,
921 static int __init
dm_crypt_init(void)
925 _crypt_io_pool
= kmem_cache_create("dm-crypt_io",
926 sizeof(struct crypt_io
),
931 _kcryptd_workqueue
= create_workqueue("kcryptd");
932 if (!_kcryptd_workqueue
) {
934 DMERR(PFX
"couldn't create kcryptd");
938 r
= dm_register_target(&crypt_target
);
940 DMERR(PFX
"register failed %d", r
);
947 destroy_workqueue(_kcryptd_workqueue
);
949 kmem_cache_destroy(_crypt_io_pool
);
953 static void __exit
dm_crypt_exit(void)
955 int r
= dm_unregister_target(&crypt_target
);
958 DMERR(PFX
"unregister failed %d", r
);
960 destroy_workqueue(_kcryptd_workqueue
);
961 kmem_cache_destroy(_crypt_io_pool
);
964 module_init(dm_crypt_init
);
965 module_exit(dm_crypt_exit
);
967 MODULE_AUTHOR("Christophe Saout <christophe@saout.de>");
968 MODULE_DESCRIPTION(DM_NAME
" target for transparent encryption / decryption");
969 MODULE_LICENSE("GPL");