4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
10 * Notes on the allocation strategy:
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
17 #include <linux/syscalls.h>
18 #include <linux/string.h>
21 #include <linux/fsnotify.h>
22 #include <linux/slab.h>
23 #include <linux/init.h>
24 #include <linux/hash.h>
25 #include <linux/cache.h>
26 #include <linux/module.h>
27 #include <linux/mount.h>
28 #include <linux/file.h>
29 #include <asm/uaccess.h>
30 #include <linux/security.h>
31 #include <linux/seqlock.h>
32 #include <linux/swap.h>
33 #include <linux/bootmem.h>
34 #include <linux/fs_struct.h>
35 #include <linux/hardirq.h>
38 int sysctl_vfs_cache_pressure __read_mostly
= 100;
39 EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure
);
41 __cacheline_aligned_in_smp
DEFINE_SPINLOCK(dcache_lock
);
42 __cacheline_aligned_in_smp
DEFINE_SEQLOCK(rename_lock
);
44 EXPORT_SYMBOL(dcache_lock
);
46 static struct kmem_cache
*dentry_cache __read_mostly
;
48 #define DNAME_INLINE_LEN (sizeof(struct dentry)-offsetof(struct dentry,d_iname))
51 * This is the single most critical data structure when it comes
52 * to the dcache: the hashtable for lookups. Somebody should try
53 * to make this good - I've just made it work.
55 * This hash-function tries to avoid losing too many bits of hash
56 * information, yet avoid using a prime hash-size or similar.
58 #define D_HASHBITS d_hash_shift
59 #define D_HASHMASK d_hash_mask
61 static unsigned int d_hash_mask __read_mostly
;
62 static unsigned int d_hash_shift __read_mostly
;
63 static struct hlist_head
*dentry_hashtable __read_mostly
;
65 /* Statistics gathering. */
66 struct dentry_stat_t dentry_stat
= {
70 static void __d_free(struct dentry
*dentry
)
72 WARN_ON(!list_empty(&dentry
->d_alias
));
73 if (dname_external(dentry
))
74 kfree(dentry
->d_name
.name
);
75 kmem_cache_free(dentry_cache
, dentry
);
78 static void d_callback(struct rcu_head
*head
)
80 struct dentry
* dentry
= container_of(head
, struct dentry
, d_u
.d_rcu
);
85 * no dcache_lock, please. The caller must decrement dentry_stat.nr_dentry
88 static void d_free(struct dentry
*dentry
)
90 if (dentry
->d_op
&& dentry
->d_op
->d_release
)
91 dentry
->d_op
->d_release(dentry
);
92 /* if dentry was never inserted into hash, immediate free is OK */
93 if (hlist_unhashed(&dentry
->d_hash
))
96 call_rcu(&dentry
->d_u
.d_rcu
, d_callback
);
100 * Release the dentry's inode, using the filesystem
101 * d_iput() operation if defined.
103 static void dentry_iput(struct dentry
* dentry
)
104 __releases(dentry
->d_lock
)
105 __releases(dcache_lock
)
107 struct inode
*inode
= dentry
->d_inode
;
109 dentry
->d_inode
= NULL
;
110 list_del_init(&dentry
->d_alias
);
111 spin_unlock(&dentry
->d_lock
);
112 spin_unlock(&dcache_lock
);
114 fsnotify_inoderemove(inode
);
115 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
116 dentry
->d_op
->d_iput(dentry
, inode
);
120 spin_unlock(&dentry
->d_lock
);
121 spin_unlock(&dcache_lock
);
126 * dentry_lru_(add|add_tail|del|del_init) must be called with dcache_lock held.
128 static void dentry_lru_add(struct dentry
*dentry
)
130 list_add(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
131 dentry
->d_sb
->s_nr_dentry_unused
++;
132 dentry_stat
.nr_unused
++;
135 static void dentry_lru_add_tail(struct dentry
*dentry
)
137 list_add_tail(&dentry
->d_lru
, &dentry
->d_sb
->s_dentry_lru
);
138 dentry
->d_sb
->s_nr_dentry_unused
++;
139 dentry_stat
.nr_unused
++;
142 static void dentry_lru_del(struct dentry
*dentry
)
144 if (!list_empty(&dentry
->d_lru
)) {
145 list_del(&dentry
->d_lru
);
146 dentry
->d_sb
->s_nr_dentry_unused
--;
147 dentry_stat
.nr_unused
--;
151 static void dentry_lru_del_init(struct dentry
*dentry
)
153 if (likely(!list_empty(&dentry
->d_lru
))) {
154 list_del_init(&dentry
->d_lru
);
155 dentry
->d_sb
->s_nr_dentry_unused
--;
156 dentry_stat
.nr_unused
--;
161 * d_kill - kill dentry and return parent
162 * @dentry: dentry to kill
164 * The dentry must already be unhashed and removed from the LRU.
166 * If this is the root of the dentry tree, return NULL.
168 static struct dentry
*d_kill(struct dentry
*dentry
)
169 __releases(dentry
->d_lock
)
170 __releases(dcache_lock
)
172 struct dentry
*parent
;
174 list_del(&dentry
->d_u
.d_child
);
175 dentry_stat
.nr_dentry
--; /* For d_free, below */
176 /*drops the locks, at that point nobody can reach this dentry */
181 parent
= dentry
->d_parent
;
189 * This is complicated by the fact that we do not want to put
190 * dentries that are no longer on any hash chain on the unused
191 * list: we'd much rather just get rid of them immediately.
193 * However, that implies that we have to traverse the dentry
194 * tree upwards to the parents which might _also_ now be
195 * scheduled for deletion (it may have been only waiting for
196 * its last child to go away).
198 * This tail recursion is done by hand as we don't want to depend
199 * on the compiler to always get this right (gcc generally doesn't).
200 * Real recursion would eat up our stack space.
204 * dput - release a dentry
205 * @dentry: dentry to release
207 * Release a dentry. This will drop the usage count and if appropriate
208 * call the dentry unlink method as well as removing it from the queues and
209 * releasing its resources. If the parent dentries were scheduled for release
210 * they too may now get deleted.
212 * no dcache lock, please.
215 void dput(struct dentry
*dentry
)
221 if (atomic_read(&dentry
->d_count
) == 1)
223 if (!atomic_dec_and_lock(&dentry
->d_count
, &dcache_lock
))
226 spin_lock(&dentry
->d_lock
);
227 if (atomic_read(&dentry
->d_count
)) {
228 spin_unlock(&dentry
->d_lock
);
229 spin_unlock(&dcache_lock
);
234 * AV: ->d_delete() is _NOT_ allowed to block now.
236 if (dentry
->d_op
&& dentry
->d_op
->d_delete
) {
237 if (dentry
->d_op
->d_delete(dentry
))
240 /* Unreachable? Get rid of it */
241 if (d_unhashed(dentry
))
243 if (list_empty(&dentry
->d_lru
)) {
244 dentry
->d_flags
|= DCACHE_REFERENCED
;
245 dentry_lru_add(dentry
);
247 spin_unlock(&dentry
->d_lock
);
248 spin_unlock(&dcache_lock
);
254 /* if dentry was on the d_lru list delete it from there */
255 dentry_lru_del(dentry
);
256 dentry
= d_kill(dentry
);
263 * d_invalidate - invalidate a dentry
264 * @dentry: dentry to invalidate
266 * Try to invalidate the dentry if it turns out to be
267 * possible. If there are other dentries that can be
268 * reached through this one we can't delete it and we
269 * return -EBUSY. On success we return 0.
274 int d_invalidate(struct dentry
* dentry
)
277 * If it's already been dropped, return OK.
279 spin_lock(&dcache_lock
);
280 if (d_unhashed(dentry
)) {
281 spin_unlock(&dcache_lock
);
285 * Check whether to do a partial shrink_dcache
286 * to get rid of unused child entries.
288 if (!list_empty(&dentry
->d_subdirs
)) {
289 spin_unlock(&dcache_lock
);
290 shrink_dcache_parent(dentry
);
291 spin_lock(&dcache_lock
);
295 * Somebody else still using it?
297 * If it's a directory, we can't drop it
298 * for fear of somebody re-populating it
299 * with children (even though dropping it
300 * would make it unreachable from the root,
301 * we might still populate it if it was a
302 * working directory or similar).
304 spin_lock(&dentry
->d_lock
);
305 if (atomic_read(&dentry
->d_count
) > 1) {
306 if (dentry
->d_inode
&& S_ISDIR(dentry
->d_inode
->i_mode
)) {
307 spin_unlock(&dentry
->d_lock
);
308 spin_unlock(&dcache_lock
);
314 spin_unlock(&dentry
->d_lock
);
315 spin_unlock(&dcache_lock
);
318 EXPORT_SYMBOL(d_invalidate
);
320 /* This should be called _only_ with dcache_lock held */
322 static inline struct dentry
* __dget_locked(struct dentry
*dentry
)
324 atomic_inc(&dentry
->d_count
);
325 dentry_lru_del_init(dentry
);
329 struct dentry
* dget_locked(struct dentry
*dentry
)
331 return __dget_locked(dentry
);
333 EXPORT_SYMBOL(dget_locked
);
336 * d_find_alias - grab a hashed alias of inode
337 * @inode: inode in question
338 * @want_discon: flag, used by d_splice_alias, to request
339 * that only a DISCONNECTED alias be returned.
341 * If inode has a hashed alias, or is a directory and has any alias,
342 * acquire the reference to alias and return it. Otherwise return NULL.
343 * Notice that if inode is a directory there can be only one alias and
344 * it can be unhashed only if it has no children, or if it is the root
347 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
348 * any other hashed alias over that one unless @want_discon is set,
349 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
352 static struct dentry
* __d_find_alias(struct inode
*inode
, int want_discon
)
354 struct list_head
*head
, *next
, *tmp
;
355 struct dentry
*alias
, *discon_alias
=NULL
;
357 head
= &inode
->i_dentry
;
358 next
= inode
->i_dentry
.next
;
359 while (next
!= head
) {
363 alias
= list_entry(tmp
, struct dentry
, d_alias
);
364 if (S_ISDIR(inode
->i_mode
) || !d_unhashed(alias
)) {
365 if (IS_ROOT(alias
) &&
366 (alias
->d_flags
& DCACHE_DISCONNECTED
))
367 discon_alias
= alias
;
368 else if (!want_discon
) {
369 __dget_locked(alias
);
375 __dget_locked(discon_alias
);
379 struct dentry
* d_find_alias(struct inode
*inode
)
381 struct dentry
*de
= NULL
;
383 if (!list_empty(&inode
->i_dentry
)) {
384 spin_lock(&dcache_lock
);
385 de
= __d_find_alias(inode
, 0);
386 spin_unlock(&dcache_lock
);
390 EXPORT_SYMBOL(d_find_alias
);
393 * Try to kill dentries associated with this inode.
394 * WARNING: you must own a reference to inode.
396 void d_prune_aliases(struct inode
*inode
)
398 struct dentry
*dentry
;
400 spin_lock(&dcache_lock
);
401 list_for_each_entry(dentry
, &inode
->i_dentry
, d_alias
) {
402 spin_lock(&dentry
->d_lock
);
403 if (!atomic_read(&dentry
->d_count
)) {
404 __dget_locked(dentry
);
406 spin_unlock(&dentry
->d_lock
);
407 spin_unlock(&dcache_lock
);
411 spin_unlock(&dentry
->d_lock
);
413 spin_unlock(&dcache_lock
);
415 EXPORT_SYMBOL(d_prune_aliases
);
418 * Throw away a dentry - free the inode, dput the parent. This requires that
419 * the LRU list has already been removed.
421 * Try to prune ancestors as well. This is necessary to prevent
422 * quadratic behavior of shrink_dcache_parent(), but is also expected
423 * to be beneficial in reducing dentry cache fragmentation.
425 static void prune_one_dentry(struct dentry
* dentry
)
426 __releases(dentry
->d_lock
)
427 __releases(dcache_lock
)
428 __acquires(dcache_lock
)
431 dentry
= d_kill(dentry
);
434 * Prune ancestors. Locking is simpler than in dput(),
435 * because dcache_lock needs to be taken anyway.
437 spin_lock(&dcache_lock
);
439 if (!atomic_dec_and_lock(&dentry
->d_count
, &dentry
->d_lock
))
442 if (dentry
->d_op
&& dentry
->d_op
->d_delete
)
443 dentry
->d_op
->d_delete(dentry
);
444 dentry_lru_del_init(dentry
);
446 dentry
= d_kill(dentry
);
447 spin_lock(&dcache_lock
);
452 * Shrink the dentry LRU on a given superblock.
453 * @sb : superblock to shrink dentry LRU.
454 * @count: If count is NULL, we prune all dentries on superblock.
455 * @flags: If flags is non-zero, we need to do special processing based on
456 * which flags are set. This means we don't need to maintain multiple
457 * similar copies of this loop.
459 static void __shrink_dcache_sb(struct super_block
*sb
, int *count
, int flags
)
461 LIST_HEAD(referenced
);
463 struct dentry
*dentry
;
467 BUG_ON((flags
& DCACHE_REFERENCED
) && count
== NULL
);
468 spin_lock(&dcache_lock
);
470 /* called from prune_dcache() and shrink_dcache_parent() */
474 list_splice_init(&sb
->s_dentry_lru
, &tmp
);
476 while (!list_empty(&sb
->s_dentry_lru
)) {
477 dentry
= list_entry(sb
->s_dentry_lru
.prev
,
478 struct dentry
, d_lru
);
479 BUG_ON(dentry
->d_sb
!= sb
);
481 spin_lock(&dentry
->d_lock
);
483 * If we are honouring the DCACHE_REFERENCED flag and
484 * the dentry has this flag set, don't free it. Clear
485 * the flag and put it back on the LRU.
487 if ((flags
& DCACHE_REFERENCED
)
488 && (dentry
->d_flags
& DCACHE_REFERENCED
)) {
489 dentry
->d_flags
&= ~DCACHE_REFERENCED
;
490 list_move(&dentry
->d_lru
, &referenced
);
491 spin_unlock(&dentry
->d_lock
);
493 list_move_tail(&dentry
->d_lru
, &tmp
);
494 spin_unlock(&dentry
->d_lock
);
499 cond_resched_lock(&dcache_lock
);
502 while (!list_empty(&tmp
)) {
503 dentry
= list_entry(tmp
.prev
, struct dentry
, d_lru
);
504 dentry_lru_del_init(dentry
);
505 spin_lock(&dentry
->d_lock
);
507 * We found an inuse dentry which was not removed from
508 * the LRU because of laziness during lookup. Do not free
509 * it - just keep it off the LRU list.
511 if (atomic_read(&dentry
->d_count
)) {
512 spin_unlock(&dentry
->d_lock
);
515 prune_one_dentry(dentry
);
516 /* dentry->d_lock was dropped in prune_one_dentry() */
517 cond_resched_lock(&dcache_lock
);
519 if (count
== NULL
&& !list_empty(&sb
->s_dentry_lru
))
523 if (!list_empty(&referenced
))
524 list_splice(&referenced
, &sb
->s_dentry_lru
);
525 spin_unlock(&dcache_lock
);
529 * prune_dcache - shrink the dcache
530 * @count: number of entries to try to free
532 * Shrink the dcache. This is done when we need more memory, or simply when we
533 * need to unmount something (at which point we need to unuse all dentries).
535 * This function may fail to free any resources if all the dentries are in use.
537 static void prune_dcache(int count
)
539 struct super_block
*sb
;
541 int unused
= dentry_stat
.nr_unused
;
545 if (unused
== 0 || count
== 0)
547 spin_lock(&dcache_lock
);
552 prune_ratio
= unused
/ count
;
554 list_for_each_entry(sb
, &super_blocks
, s_list
) {
555 if (sb
->s_nr_dentry_unused
== 0)
558 /* Now, we reclaim unused dentrins with fairness.
559 * We reclaim them same percentage from each superblock.
560 * We calculate number of dentries to scan on this sb
561 * as follows, but the implementation is arranged to avoid
563 * number of dentries to scan on this sb =
564 * count * (number of dentries on this sb /
565 * number of dentries in the machine)
567 spin_unlock(&sb_lock
);
568 if (prune_ratio
!= 1)
569 w_count
= (sb
->s_nr_dentry_unused
/ prune_ratio
) + 1;
571 w_count
= sb
->s_nr_dentry_unused
;
574 * We need to be sure this filesystem isn't being unmounted,
575 * otherwise we could race with generic_shutdown_super(), and
576 * end up holding a reference to an inode while the filesystem
577 * is unmounted. So we try to get s_umount, and make sure
580 if (down_read_trylock(&sb
->s_umount
)) {
581 if ((sb
->s_root
!= NULL
) &&
582 (!list_empty(&sb
->s_dentry_lru
))) {
583 spin_unlock(&dcache_lock
);
584 __shrink_dcache_sb(sb
, &w_count
,
587 spin_lock(&dcache_lock
);
589 up_read(&sb
->s_umount
);
594 * restart only when sb is no longer on the list and
595 * we have more work to do.
597 if (__put_super_and_need_restart(sb
) && count
> 0) {
598 spin_unlock(&sb_lock
);
602 spin_unlock(&sb_lock
);
603 spin_unlock(&dcache_lock
);
607 * shrink_dcache_sb - shrink dcache for a superblock
610 * Shrink the dcache for the specified super block. This
611 * is used to free the dcache before unmounting a file
614 void shrink_dcache_sb(struct super_block
* sb
)
616 __shrink_dcache_sb(sb
, NULL
, 0);
618 EXPORT_SYMBOL(shrink_dcache_sb
);
621 * destroy a single subtree of dentries for unmount
622 * - see the comments on shrink_dcache_for_umount() for a description of the
625 static void shrink_dcache_for_umount_subtree(struct dentry
*dentry
)
627 struct dentry
*parent
;
628 unsigned detached
= 0;
630 BUG_ON(!IS_ROOT(dentry
));
632 /* detach this root from the system */
633 spin_lock(&dcache_lock
);
634 dentry_lru_del_init(dentry
);
636 spin_unlock(&dcache_lock
);
639 /* descend to the first leaf in the current subtree */
640 while (!list_empty(&dentry
->d_subdirs
)) {
643 /* this is a branch with children - detach all of them
644 * from the system in one go */
645 spin_lock(&dcache_lock
);
646 list_for_each_entry(loop
, &dentry
->d_subdirs
,
648 dentry_lru_del_init(loop
);
650 cond_resched_lock(&dcache_lock
);
652 spin_unlock(&dcache_lock
);
654 /* move to the first child */
655 dentry
= list_entry(dentry
->d_subdirs
.next
,
656 struct dentry
, d_u
.d_child
);
659 /* consume the dentries from this leaf up through its parents
660 * until we find one with children or run out altogether */
664 if (atomic_read(&dentry
->d_count
) != 0) {
666 "BUG: Dentry %p{i=%lx,n=%s}"
668 " [unmount of %s %s]\n",
671 dentry
->d_inode
->i_ino
: 0UL,
673 atomic_read(&dentry
->d_count
),
674 dentry
->d_sb
->s_type
->name
,
682 parent
= dentry
->d_parent
;
683 atomic_dec(&parent
->d_count
);
686 list_del(&dentry
->d_u
.d_child
);
689 inode
= dentry
->d_inode
;
691 dentry
->d_inode
= NULL
;
692 list_del_init(&dentry
->d_alias
);
693 if (dentry
->d_op
&& dentry
->d_op
->d_iput
)
694 dentry
->d_op
->d_iput(dentry
, inode
);
701 /* finished when we fall off the top of the tree,
702 * otherwise we ascend to the parent and move to the
703 * next sibling if there is one */
709 } while (list_empty(&dentry
->d_subdirs
));
711 dentry
= list_entry(dentry
->d_subdirs
.next
,
712 struct dentry
, d_u
.d_child
);
715 /* several dentries were freed, need to correct nr_dentry */
716 spin_lock(&dcache_lock
);
717 dentry_stat
.nr_dentry
-= detached
;
718 spin_unlock(&dcache_lock
);
722 * destroy the dentries attached to a superblock on unmounting
723 * - we don't need to use dentry->d_lock, and only need dcache_lock when
724 * removing the dentry from the system lists and hashes because:
725 * - the superblock is detached from all mountings and open files, so the
726 * dentry trees will not be rearranged by the VFS
727 * - s_umount is write-locked, so the memory pressure shrinker will ignore
728 * any dentries belonging to this superblock that it comes across
729 * - the filesystem itself is no longer permitted to rearrange the dentries
732 void shrink_dcache_for_umount(struct super_block
*sb
)
734 struct dentry
*dentry
;
736 if (down_read_trylock(&sb
->s_umount
))
741 atomic_dec(&dentry
->d_count
);
742 shrink_dcache_for_umount_subtree(dentry
);
744 while (!hlist_empty(&sb
->s_anon
)) {
745 dentry
= hlist_entry(sb
->s_anon
.first
, struct dentry
, d_hash
);
746 shrink_dcache_for_umount_subtree(dentry
);
751 * Search for at least 1 mount point in the dentry's subdirs.
752 * We descend to the next level whenever the d_subdirs
753 * list is non-empty and continue searching.
757 * have_submounts - check for mounts over a dentry
758 * @parent: dentry to check.
760 * Return true if the parent or its subdirectories contain
764 int have_submounts(struct dentry
*parent
)
766 struct dentry
*this_parent
= parent
;
767 struct list_head
*next
;
769 spin_lock(&dcache_lock
);
770 if (d_mountpoint(parent
))
773 next
= this_parent
->d_subdirs
.next
;
775 while (next
!= &this_parent
->d_subdirs
) {
776 struct list_head
*tmp
= next
;
777 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
779 /* Have we found a mount point ? */
780 if (d_mountpoint(dentry
))
782 if (!list_empty(&dentry
->d_subdirs
)) {
783 this_parent
= dentry
;
788 * All done at this level ... ascend and resume the search.
790 if (this_parent
!= parent
) {
791 next
= this_parent
->d_u
.d_child
.next
;
792 this_parent
= this_parent
->d_parent
;
795 spin_unlock(&dcache_lock
);
796 return 0; /* No mount points found in tree */
798 spin_unlock(&dcache_lock
);
801 EXPORT_SYMBOL(have_submounts
);
804 * Search the dentry child list for the specified parent,
805 * and move any unused dentries to the end of the unused
806 * list for prune_dcache(). We descend to the next level
807 * whenever the d_subdirs list is non-empty and continue
810 * It returns zero iff there are no unused children,
811 * otherwise it returns the number of children moved to
812 * the end of the unused list. This may not be the total
813 * number of unused children, because select_parent can
814 * drop the lock and return early due to latency
817 static int select_parent(struct dentry
* parent
)
819 struct dentry
*this_parent
= parent
;
820 struct list_head
*next
;
823 spin_lock(&dcache_lock
);
825 next
= this_parent
->d_subdirs
.next
;
827 while (next
!= &this_parent
->d_subdirs
) {
828 struct list_head
*tmp
= next
;
829 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
832 dentry_lru_del_init(dentry
);
834 * move only zero ref count dentries to the end
835 * of the unused list for prune_dcache
837 if (!atomic_read(&dentry
->d_count
)) {
838 dentry_lru_add_tail(dentry
);
843 * We can return to the caller if we have found some (this
844 * ensures forward progress). We'll be coming back to find
847 if (found
&& need_resched())
851 * Descend a level if the d_subdirs list is non-empty.
853 if (!list_empty(&dentry
->d_subdirs
)) {
854 this_parent
= dentry
;
859 * All done at this level ... ascend and resume the search.
861 if (this_parent
!= parent
) {
862 next
= this_parent
->d_u
.d_child
.next
;
863 this_parent
= this_parent
->d_parent
;
867 spin_unlock(&dcache_lock
);
872 * shrink_dcache_parent - prune dcache
873 * @parent: parent of entries to prune
875 * Prune the dcache to remove unused children of the parent dentry.
878 void shrink_dcache_parent(struct dentry
* parent
)
880 struct super_block
*sb
= parent
->d_sb
;
883 while ((found
= select_parent(parent
)) != 0)
884 __shrink_dcache_sb(sb
, &found
, 0);
886 EXPORT_SYMBOL(shrink_dcache_parent
);
889 * Scan `nr' dentries and return the number which remain.
891 * We need to avoid reentering the filesystem if the caller is performing a
892 * GFP_NOFS allocation attempt. One example deadlock is:
894 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
895 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
896 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
898 * In this case we return -1 to tell the caller that we baled.
900 static int shrink_dcache_memory(int nr
, gfp_t gfp_mask
)
903 if (!(gfp_mask
& __GFP_FS
))
907 return (dentry_stat
.nr_unused
/ 100) * sysctl_vfs_cache_pressure
;
910 static struct shrinker dcache_shrinker
= {
911 .shrink
= shrink_dcache_memory
,
912 .seeks
= DEFAULT_SEEKS
,
916 * d_alloc - allocate a dcache entry
917 * @parent: parent of entry to allocate
918 * @name: qstr of the name
920 * Allocates a dentry. It returns %NULL if there is insufficient memory
921 * available. On a success the dentry is returned. The name passed in is
922 * copied and the copy passed in may be reused after this call.
925 struct dentry
*d_alloc(struct dentry
* parent
, const struct qstr
*name
)
927 struct dentry
*dentry
;
930 dentry
= kmem_cache_alloc(dentry_cache
, GFP_KERNEL
);
934 if (name
->len
> DNAME_INLINE_LEN
-1) {
935 dname
= kmalloc(name
->len
+ 1, GFP_KERNEL
);
937 kmem_cache_free(dentry_cache
, dentry
);
941 dname
= dentry
->d_iname
;
943 dentry
->d_name
.name
= dname
;
945 dentry
->d_name
.len
= name
->len
;
946 dentry
->d_name
.hash
= name
->hash
;
947 memcpy(dname
, name
->name
, name
->len
);
948 dname
[name
->len
] = 0;
950 atomic_set(&dentry
->d_count
, 1);
951 dentry
->d_flags
= DCACHE_UNHASHED
;
952 spin_lock_init(&dentry
->d_lock
);
953 dentry
->d_inode
= NULL
;
954 dentry
->d_parent
= NULL
;
957 dentry
->d_fsdata
= NULL
;
958 dentry
->d_mounted
= 0;
959 INIT_HLIST_NODE(&dentry
->d_hash
);
960 INIT_LIST_HEAD(&dentry
->d_lru
);
961 INIT_LIST_HEAD(&dentry
->d_subdirs
);
962 INIT_LIST_HEAD(&dentry
->d_alias
);
965 dentry
->d_parent
= dget(parent
);
966 dentry
->d_sb
= parent
->d_sb
;
968 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
971 spin_lock(&dcache_lock
);
973 list_add(&dentry
->d_u
.d_child
, &parent
->d_subdirs
);
974 dentry_stat
.nr_dentry
++;
975 spin_unlock(&dcache_lock
);
979 EXPORT_SYMBOL(d_alloc
);
981 struct dentry
*d_alloc_name(struct dentry
*parent
, const char *name
)
986 q
.len
= strlen(name
);
987 q
.hash
= full_name_hash(q
.name
, q
.len
);
988 return d_alloc(parent
, &q
);
990 EXPORT_SYMBOL(d_alloc_name
);
992 /* the caller must hold dcache_lock */
993 static void __d_instantiate(struct dentry
*dentry
, struct inode
*inode
)
996 list_add(&dentry
->d_alias
, &inode
->i_dentry
);
997 dentry
->d_inode
= inode
;
998 fsnotify_d_instantiate(dentry
, inode
);
1002 * d_instantiate - fill in inode information for a dentry
1003 * @entry: dentry to complete
1004 * @inode: inode to attach to this dentry
1006 * Fill in inode information in the entry.
1008 * This turns negative dentries into productive full members
1011 * NOTE! This assumes that the inode count has been incremented
1012 * (or otherwise set) by the caller to indicate that it is now
1013 * in use by the dcache.
1016 void d_instantiate(struct dentry
*entry
, struct inode
* inode
)
1018 BUG_ON(!list_empty(&entry
->d_alias
));
1019 spin_lock(&dcache_lock
);
1020 __d_instantiate(entry
, inode
);
1021 spin_unlock(&dcache_lock
);
1022 security_d_instantiate(entry
, inode
);
1024 EXPORT_SYMBOL(d_instantiate
);
1027 * d_instantiate_unique - instantiate a non-aliased dentry
1028 * @entry: dentry to instantiate
1029 * @inode: inode to attach to this dentry
1031 * Fill in inode information in the entry. On success, it returns NULL.
1032 * If an unhashed alias of "entry" already exists, then we return the
1033 * aliased dentry instead and drop one reference to inode.
1035 * Note that in order to avoid conflicts with rename() etc, the caller
1036 * had better be holding the parent directory semaphore.
1038 * This also assumes that the inode count has been incremented
1039 * (or otherwise set) by the caller to indicate that it is now
1040 * in use by the dcache.
1042 static struct dentry
*__d_instantiate_unique(struct dentry
*entry
,
1043 struct inode
*inode
)
1045 struct dentry
*alias
;
1046 int len
= entry
->d_name
.len
;
1047 const char *name
= entry
->d_name
.name
;
1048 unsigned int hash
= entry
->d_name
.hash
;
1051 __d_instantiate(entry
, NULL
);
1055 list_for_each_entry(alias
, &inode
->i_dentry
, d_alias
) {
1056 struct qstr
*qstr
= &alias
->d_name
;
1058 if (qstr
->hash
!= hash
)
1060 if (alias
->d_parent
!= entry
->d_parent
)
1062 if (qstr
->len
!= len
)
1064 if (memcmp(qstr
->name
, name
, len
))
1070 __d_instantiate(entry
, inode
);
1074 struct dentry
*d_instantiate_unique(struct dentry
*entry
, struct inode
*inode
)
1076 struct dentry
*result
;
1078 BUG_ON(!list_empty(&entry
->d_alias
));
1080 spin_lock(&dcache_lock
);
1081 result
= __d_instantiate_unique(entry
, inode
);
1082 spin_unlock(&dcache_lock
);
1085 security_d_instantiate(entry
, inode
);
1089 BUG_ON(!d_unhashed(result
));
1094 EXPORT_SYMBOL(d_instantiate_unique
);
1097 * d_alloc_root - allocate root dentry
1098 * @root_inode: inode to allocate the root for
1100 * Allocate a root ("/") dentry for the inode given. The inode is
1101 * instantiated and returned. %NULL is returned if there is insufficient
1102 * memory or the inode passed is %NULL.
1105 struct dentry
* d_alloc_root(struct inode
* root_inode
)
1107 struct dentry
*res
= NULL
;
1110 static const struct qstr name
= { .name
= "/", .len
= 1 };
1112 res
= d_alloc(NULL
, &name
);
1114 res
->d_sb
= root_inode
->i_sb
;
1115 res
->d_parent
= res
;
1116 d_instantiate(res
, root_inode
);
1121 EXPORT_SYMBOL(d_alloc_root
);
1123 static inline struct hlist_head
*d_hash(struct dentry
*parent
,
1126 hash
+= ((unsigned long) parent
^ GOLDEN_RATIO_PRIME
) / L1_CACHE_BYTES
;
1127 hash
= hash
^ ((hash
^ GOLDEN_RATIO_PRIME
) >> D_HASHBITS
);
1128 return dentry_hashtable
+ (hash
& D_HASHMASK
);
1132 * d_obtain_alias - find or allocate a dentry for a given inode
1133 * @inode: inode to allocate the dentry for
1135 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1136 * similar open by handle operations. The returned dentry may be anonymous,
1137 * or may have a full name (if the inode was already in the cache).
1139 * When called on a directory inode, we must ensure that the inode only ever
1140 * has one dentry. If a dentry is found, that is returned instead of
1141 * allocating a new one.
1143 * On successful return, the reference to the inode has been transferred
1144 * to the dentry. In case of an error the reference on the inode is released.
1145 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1146 * be passed in and will be the error will be propagate to the return value,
1147 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
1149 struct dentry
*d_obtain_alias(struct inode
*inode
)
1151 static const struct qstr anonstring
= { .name
= "" };
1156 return ERR_PTR(-ESTALE
);
1158 return ERR_CAST(inode
);
1160 res
= d_find_alias(inode
);
1164 tmp
= d_alloc(NULL
, &anonstring
);
1166 res
= ERR_PTR(-ENOMEM
);
1169 tmp
->d_parent
= tmp
; /* make sure dput doesn't croak */
1171 spin_lock(&dcache_lock
);
1172 res
= __d_find_alias(inode
, 0);
1174 spin_unlock(&dcache_lock
);
1179 /* attach a disconnected dentry */
1180 spin_lock(&tmp
->d_lock
);
1181 tmp
->d_sb
= inode
->i_sb
;
1182 tmp
->d_inode
= inode
;
1183 tmp
->d_flags
|= DCACHE_DISCONNECTED
;
1184 tmp
->d_flags
&= ~DCACHE_UNHASHED
;
1185 list_add(&tmp
->d_alias
, &inode
->i_dentry
);
1186 hlist_add_head(&tmp
->d_hash
, &inode
->i_sb
->s_anon
);
1187 spin_unlock(&tmp
->d_lock
);
1189 spin_unlock(&dcache_lock
);
1196 EXPORT_SYMBOL(d_obtain_alias
);
1199 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1200 * @inode: the inode which may have a disconnected dentry
1201 * @dentry: a negative dentry which we want to point to the inode.
1203 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1204 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1205 * and return it, else simply d_add the inode to the dentry and return NULL.
1207 * This is needed in the lookup routine of any filesystem that is exportable
1208 * (via knfsd) so that we can build dcache paths to directories effectively.
1210 * If a dentry was found and moved, then it is returned. Otherwise NULL
1211 * is returned. This matches the expected return value of ->lookup.
1214 struct dentry
*d_splice_alias(struct inode
*inode
, struct dentry
*dentry
)
1216 struct dentry
*new = NULL
;
1218 if (inode
&& S_ISDIR(inode
->i_mode
)) {
1219 spin_lock(&dcache_lock
);
1220 new = __d_find_alias(inode
, 1);
1222 BUG_ON(!(new->d_flags
& DCACHE_DISCONNECTED
));
1223 spin_unlock(&dcache_lock
);
1224 security_d_instantiate(new, inode
);
1225 d_move(new, dentry
);
1228 /* already taking dcache_lock, so d_add() by hand */
1229 __d_instantiate(dentry
, inode
);
1230 spin_unlock(&dcache_lock
);
1231 security_d_instantiate(dentry
, inode
);
1235 d_add(dentry
, inode
);
1238 EXPORT_SYMBOL(d_splice_alias
);
1241 * d_add_ci - lookup or allocate new dentry with case-exact name
1242 * @inode: the inode case-insensitive lookup has found
1243 * @dentry: the negative dentry that was passed to the parent's lookup func
1244 * @name: the case-exact name to be associated with the returned dentry
1246 * This is to avoid filling the dcache with case-insensitive names to the
1247 * same inode, only the actual correct case is stored in the dcache for
1248 * case-insensitive filesystems.
1250 * For a case-insensitive lookup match and if the the case-exact dentry
1251 * already exists in in the dcache, use it and return it.
1253 * If no entry exists with the exact case name, allocate new dentry with
1254 * the exact case, and return the spliced entry.
1256 struct dentry
*d_add_ci(struct dentry
*dentry
, struct inode
*inode
,
1260 struct dentry
*found
;
1264 * First check if a dentry matching the name already exists,
1265 * if not go ahead and create it now.
1267 found
= d_hash_and_lookup(dentry
->d_parent
, name
);
1269 new = d_alloc(dentry
->d_parent
, name
);
1275 found
= d_splice_alias(inode
, new);
1284 * If a matching dentry exists, and it's not negative use it.
1286 * Decrement the reference count to balance the iget() done
1289 if (found
->d_inode
) {
1290 if (unlikely(found
->d_inode
!= inode
)) {
1291 /* This can't happen because bad inodes are unhashed. */
1292 BUG_ON(!is_bad_inode(inode
));
1293 BUG_ON(!is_bad_inode(found
->d_inode
));
1300 * Negative dentry: instantiate it unless the inode is a directory and
1301 * already has a dentry.
1303 spin_lock(&dcache_lock
);
1304 if (!S_ISDIR(inode
->i_mode
) || list_empty(&inode
->i_dentry
)) {
1305 __d_instantiate(found
, inode
);
1306 spin_unlock(&dcache_lock
);
1307 security_d_instantiate(found
, inode
);
1312 * In case a directory already has a (disconnected) entry grab a
1313 * reference to it, move it in place and use it.
1315 new = list_entry(inode
->i_dentry
.next
, struct dentry
, d_alias
);
1317 spin_unlock(&dcache_lock
);
1318 security_d_instantiate(found
, inode
);
1326 return ERR_PTR(error
);
1328 EXPORT_SYMBOL(d_add_ci
);
1331 * d_lookup - search for a dentry
1332 * @parent: parent dentry
1333 * @name: qstr of name we wish to find
1335 * Searches the children of the parent dentry for the name in question. If
1336 * the dentry is found its reference count is incremented and the dentry
1337 * is returned. The caller must use dput to free the entry when it has
1338 * finished using it. %NULL is returned on failure.
1340 * __d_lookup is dcache_lock free. The hash list is protected using RCU.
1341 * Memory barriers are used while updating and doing lockless traversal.
1342 * To avoid races with d_move while rename is happening, d_lock is used.
1344 * Overflows in memcmp(), while d_move, are avoided by keeping the length
1345 * and name pointer in one structure pointed by d_qstr.
1347 * rcu_read_lock() and rcu_read_unlock() are used to disable preemption while
1348 * lookup is going on.
1350 * The dentry unused LRU is not updated even if lookup finds the required dentry
1351 * in there. It is updated in places such as prune_dcache, shrink_dcache_sb,
1352 * select_parent and __dget_locked. This laziness saves lookup from dcache_lock
1355 * d_lookup() is protected against the concurrent renames in some unrelated
1356 * directory using the seqlockt_t rename_lock.
1359 struct dentry
* d_lookup(struct dentry
* parent
, struct qstr
* name
)
1361 struct dentry
* dentry
= NULL
;
1365 seq
= read_seqbegin(&rename_lock
);
1366 dentry
= __d_lookup(parent
, name
);
1369 } while (read_seqretry(&rename_lock
, seq
));
1372 EXPORT_SYMBOL(d_lookup
);
1374 struct dentry
* __d_lookup(struct dentry
* parent
, struct qstr
* name
)
1376 unsigned int len
= name
->len
;
1377 unsigned int hash
= name
->hash
;
1378 const unsigned char *str
= name
->name
;
1379 struct hlist_head
*head
= d_hash(parent
,hash
);
1380 struct dentry
*found
= NULL
;
1381 struct hlist_node
*node
;
1382 struct dentry
*dentry
;
1386 hlist_for_each_entry_rcu(dentry
, node
, head
, d_hash
) {
1389 if (dentry
->d_name
.hash
!= hash
)
1391 if (dentry
->d_parent
!= parent
)
1394 spin_lock(&dentry
->d_lock
);
1397 * Recheck the dentry after taking the lock - d_move may have
1398 * changed things. Don't bother checking the hash because we're
1399 * about to compare the whole name anyway.
1401 if (dentry
->d_parent
!= parent
)
1404 /* non-existing due to RCU? */
1405 if (d_unhashed(dentry
))
1409 * It is safe to compare names since d_move() cannot
1410 * change the qstr (protected by d_lock).
1412 qstr
= &dentry
->d_name
;
1413 if (parent
->d_op
&& parent
->d_op
->d_compare
) {
1414 if (parent
->d_op
->d_compare(parent
, qstr
, name
))
1417 if (qstr
->len
!= len
)
1419 if (memcmp(qstr
->name
, str
, len
))
1423 atomic_inc(&dentry
->d_count
);
1425 spin_unlock(&dentry
->d_lock
);
1428 spin_unlock(&dentry
->d_lock
);
1436 * d_hash_and_lookup - hash the qstr then search for a dentry
1437 * @dir: Directory to search in
1438 * @name: qstr of name we wish to find
1440 * On hash failure or on lookup failure NULL is returned.
1442 struct dentry
*d_hash_and_lookup(struct dentry
*dir
, struct qstr
*name
)
1444 struct dentry
*dentry
= NULL
;
1447 * Check for a fs-specific hash function. Note that we must
1448 * calculate the standard hash first, as the d_op->d_hash()
1449 * routine may choose to leave the hash value unchanged.
1451 name
->hash
= full_name_hash(name
->name
, name
->len
);
1452 if (dir
->d_op
&& dir
->d_op
->d_hash
) {
1453 if (dir
->d_op
->d_hash(dir
, name
) < 0)
1456 dentry
= d_lookup(dir
, name
);
1462 * d_validate - verify dentry provided from insecure source
1463 * @dentry: The dentry alleged to be valid child of @dparent
1464 * @dparent: The parent dentry (known to be valid)
1466 * An insecure source has sent us a dentry, here we verify it and dget() it.
1467 * This is used by ncpfs in its readdir implementation.
1468 * Zero is returned in the dentry is invalid.
1471 int d_validate(struct dentry
*dentry
, struct dentry
*dparent
)
1473 struct hlist_head
*base
;
1474 struct hlist_node
*lhp
;
1476 /* Check whether the ptr might be valid at all.. */
1477 if (!kmem_ptr_validate(dentry_cache
, dentry
))
1480 if (dentry
->d_parent
!= dparent
)
1483 spin_lock(&dcache_lock
);
1484 base
= d_hash(dparent
, dentry
->d_name
.hash
);
1485 hlist_for_each(lhp
,base
) {
1486 /* hlist_for_each_entry_rcu() not required for d_hash list
1487 * as it is parsed under dcache_lock
1489 if (dentry
== hlist_entry(lhp
, struct dentry
, d_hash
)) {
1490 __dget_locked(dentry
);
1491 spin_unlock(&dcache_lock
);
1495 spin_unlock(&dcache_lock
);
1499 EXPORT_SYMBOL(d_validate
);
1502 * When a file is deleted, we have two options:
1503 * - turn this dentry into a negative dentry
1504 * - unhash this dentry and free it.
1506 * Usually, we want to just turn this into
1507 * a negative dentry, but if anybody else is
1508 * currently using the dentry or the inode
1509 * we can't do that and we fall back on removing
1510 * it from the hash queues and waiting for
1511 * it to be deleted later when it has no users
1515 * d_delete - delete a dentry
1516 * @dentry: The dentry to delete
1518 * Turn the dentry into a negative dentry if possible, otherwise
1519 * remove it from the hash queues so it can be deleted later
1522 void d_delete(struct dentry
* dentry
)
1526 * Are we the only user?
1528 spin_lock(&dcache_lock
);
1529 spin_lock(&dentry
->d_lock
);
1530 isdir
= S_ISDIR(dentry
->d_inode
->i_mode
);
1531 if (atomic_read(&dentry
->d_count
) == 1) {
1532 dentry_iput(dentry
);
1533 fsnotify_nameremove(dentry
, isdir
);
1537 if (!d_unhashed(dentry
))
1540 spin_unlock(&dentry
->d_lock
);
1541 spin_unlock(&dcache_lock
);
1543 fsnotify_nameremove(dentry
, isdir
);
1545 EXPORT_SYMBOL(d_delete
);
1547 static void __d_rehash(struct dentry
* entry
, struct hlist_head
*list
)
1550 entry
->d_flags
&= ~DCACHE_UNHASHED
;
1551 hlist_add_head_rcu(&entry
->d_hash
, list
);
1554 static void _d_rehash(struct dentry
* entry
)
1556 __d_rehash(entry
, d_hash(entry
->d_parent
, entry
->d_name
.hash
));
1560 * d_rehash - add an entry back to the hash
1561 * @entry: dentry to add to the hash
1563 * Adds a dentry to the hash according to its name.
1566 void d_rehash(struct dentry
* entry
)
1568 spin_lock(&dcache_lock
);
1569 spin_lock(&entry
->d_lock
);
1571 spin_unlock(&entry
->d_lock
);
1572 spin_unlock(&dcache_lock
);
1574 EXPORT_SYMBOL(d_rehash
);
1577 * When switching names, the actual string doesn't strictly have to
1578 * be preserved in the target - because we're dropping the target
1579 * anyway. As such, we can just do a simple memcpy() to copy over
1580 * the new name before we switch.
1582 * Note that we have to be a lot more careful about getting the hash
1583 * switched - we have to switch the hash value properly even if it
1584 * then no longer matches the actual (corrupted) string of the target.
1585 * The hash value has to match the hash queue that the dentry is on..
1587 static void switch_names(struct dentry
*dentry
, struct dentry
*target
)
1589 if (dname_external(target
)) {
1590 if (dname_external(dentry
)) {
1592 * Both external: swap the pointers
1594 swap(target
->d_name
.name
, dentry
->d_name
.name
);
1597 * dentry:internal, target:external. Steal target's
1598 * storage and make target internal.
1600 memcpy(target
->d_iname
, dentry
->d_name
.name
,
1601 dentry
->d_name
.len
+ 1);
1602 dentry
->d_name
.name
= target
->d_name
.name
;
1603 target
->d_name
.name
= target
->d_iname
;
1606 if (dname_external(dentry
)) {
1608 * dentry:external, target:internal. Give dentry's
1609 * storage to target and make dentry internal
1611 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1612 target
->d_name
.len
+ 1);
1613 target
->d_name
.name
= dentry
->d_name
.name
;
1614 dentry
->d_name
.name
= dentry
->d_iname
;
1617 * Both are internal. Just copy target to dentry
1619 memcpy(dentry
->d_iname
, target
->d_name
.name
,
1620 target
->d_name
.len
+ 1);
1621 dentry
->d_name
.len
= target
->d_name
.len
;
1625 swap(dentry
->d_name
.len
, target
->d_name
.len
);
1629 * We cannibalize "target" when moving dentry on top of it,
1630 * because it's going to be thrown away anyway. We could be more
1631 * polite about it, though.
1633 * This forceful removal will result in ugly /proc output if
1634 * somebody holds a file open that got deleted due to a rename.
1635 * We could be nicer about the deleted file, and let it show
1636 * up under the name it had before it was deleted rather than
1637 * under the original name of the file that was moved on top of it.
1641 * d_move_locked - move a dentry
1642 * @dentry: entry to move
1643 * @target: new dentry
1645 * Update the dcache to reflect the move of a file name. Negative
1646 * dcache entries should not be moved in this way.
1648 static void d_move_locked(struct dentry
* dentry
, struct dentry
* target
)
1650 struct hlist_head
*list
;
1652 if (!dentry
->d_inode
)
1653 printk(KERN_WARNING
"VFS: moving negative dcache entry\n");
1655 write_seqlock(&rename_lock
);
1657 * XXXX: do we really need to take target->d_lock?
1659 if (target
< dentry
) {
1660 spin_lock(&target
->d_lock
);
1661 spin_lock_nested(&dentry
->d_lock
, DENTRY_D_LOCK_NESTED
);
1663 spin_lock(&dentry
->d_lock
);
1664 spin_lock_nested(&target
->d_lock
, DENTRY_D_LOCK_NESTED
);
1667 /* Move the dentry to the target hash queue, if on different bucket */
1668 if (d_unhashed(dentry
))
1669 goto already_unhashed
;
1671 hlist_del_rcu(&dentry
->d_hash
);
1674 list
= d_hash(target
->d_parent
, target
->d_name
.hash
);
1675 __d_rehash(dentry
, list
);
1677 /* Unhash the target: dput() will then get rid of it */
1680 list_del(&dentry
->d_u
.d_child
);
1681 list_del(&target
->d_u
.d_child
);
1683 /* Switch the names.. */
1684 switch_names(dentry
, target
);
1685 swap(dentry
->d_name
.hash
, target
->d_name
.hash
);
1687 /* ... and switch the parents */
1688 if (IS_ROOT(dentry
)) {
1689 dentry
->d_parent
= target
->d_parent
;
1690 target
->d_parent
= target
;
1691 INIT_LIST_HEAD(&target
->d_u
.d_child
);
1693 swap(dentry
->d_parent
, target
->d_parent
);
1695 /* And add them back to the (new) parent lists */
1696 list_add(&target
->d_u
.d_child
, &target
->d_parent
->d_subdirs
);
1699 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1700 spin_unlock(&target
->d_lock
);
1701 fsnotify_d_move(dentry
);
1702 spin_unlock(&dentry
->d_lock
);
1703 write_sequnlock(&rename_lock
);
1707 * d_move - move a dentry
1708 * @dentry: entry to move
1709 * @target: new dentry
1711 * Update the dcache to reflect the move of a file name. Negative
1712 * dcache entries should not be moved in this way.
1715 void d_move(struct dentry
* dentry
, struct dentry
* target
)
1717 spin_lock(&dcache_lock
);
1718 d_move_locked(dentry
, target
);
1719 spin_unlock(&dcache_lock
);
1721 EXPORT_SYMBOL(d_move
);
1724 * d_ancestor - search for an ancestor
1725 * @p1: ancestor dentry
1728 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
1729 * an ancestor of p2, else NULL.
1731 struct dentry
*d_ancestor(struct dentry
*p1
, struct dentry
*p2
)
1735 for (p
= p2
; !IS_ROOT(p
); p
= p
->d_parent
) {
1736 if (p
->d_parent
== p1
)
1743 * This helper attempts to cope with remotely renamed directories
1745 * It assumes that the caller is already holding
1746 * dentry->d_parent->d_inode->i_mutex and the dcache_lock
1748 * Note: If ever the locking in lock_rename() changes, then please
1749 * remember to update this too...
1751 static struct dentry
*__d_unalias(struct dentry
*dentry
, struct dentry
*alias
)
1752 __releases(dcache_lock
)
1754 struct mutex
*m1
= NULL
, *m2
= NULL
;
1757 /* If alias and dentry share a parent, then no extra locks required */
1758 if (alias
->d_parent
== dentry
->d_parent
)
1761 /* Check for loops */
1762 ret
= ERR_PTR(-ELOOP
);
1763 if (d_ancestor(alias
, dentry
))
1766 /* See lock_rename() */
1767 ret
= ERR_PTR(-EBUSY
);
1768 if (!mutex_trylock(&dentry
->d_sb
->s_vfs_rename_mutex
))
1770 m1
= &dentry
->d_sb
->s_vfs_rename_mutex
;
1771 if (!mutex_trylock(&alias
->d_parent
->d_inode
->i_mutex
))
1773 m2
= &alias
->d_parent
->d_inode
->i_mutex
;
1775 d_move_locked(alias
, dentry
);
1778 spin_unlock(&dcache_lock
);
1787 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
1788 * named dentry in place of the dentry to be replaced.
1790 static void __d_materialise_dentry(struct dentry
*dentry
, struct dentry
*anon
)
1792 struct dentry
*dparent
, *aparent
;
1794 switch_names(dentry
, anon
);
1795 swap(dentry
->d_name
.hash
, anon
->d_name
.hash
);
1797 dparent
= dentry
->d_parent
;
1798 aparent
= anon
->d_parent
;
1800 dentry
->d_parent
= (aparent
== anon
) ? dentry
: aparent
;
1801 list_del(&dentry
->d_u
.d_child
);
1802 if (!IS_ROOT(dentry
))
1803 list_add(&dentry
->d_u
.d_child
, &dentry
->d_parent
->d_subdirs
);
1805 INIT_LIST_HEAD(&dentry
->d_u
.d_child
);
1807 anon
->d_parent
= (dparent
== dentry
) ? anon
: dparent
;
1808 list_del(&anon
->d_u
.d_child
);
1810 list_add(&anon
->d_u
.d_child
, &anon
->d_parent
->d_subdirs
);
1812 INIT_LIST_HEAD(&anon
->d_u
.d_child
);
1814 anon
->d_flags
&= ~DCACHE_DISCONNECTED
;
1818 * d_materialise_unique - introduce an inode into the tree
1819 * @dentry: candidate dentry
1820 * @inode: inode to bind to the dentry, to which aliases may be attached
1822 * Introduces an dentry into the tree, substituting an extant disconnected
1823 * root directory alias in its place if there is one
1825 struct dentry
*d_materialise_unique(struct dentry
*dentry
, struct inode
*inode
)
1827 struct dentry
*actual
;
1829 BUG_ON(!d_unhashed(dentry
));
1831 spin_lock(&dcache_lock
);
1835 __d_instantiate(dentry
, NULL
);
1839 if (S_ISDIR(inode
->i_mode
)) {
1840 struct dentry
*alias
;
1842 /* Does an aliased dentry already exist? */
1843 alias
= __d_find_alias(inode
, 0);
1846 /* Is this an anonymous mountpoint that we could splice
1848 if (IS_ROOT(alias
)) {
1849 spin_lock(&alias
->d_lock
);
1850 __d_materialise_dentry(dentry
, alias
);
1854 /* Nope, but we must(!) avoid directory aliasing */
1855 actual
= __d_unalias(dentry
, alias
);
1862 /* Add a unique reference */
1863 actual
= __d_instantiate_unique(dentry
, inode
);
1866 else if (unlikely(!d_unhashed(actual
)))
1867 goto shouldnt_be_hashed
;
1870 spin_lock(&actual
->d_lock
);
1873 spin_unlock(&actual
->d_lock
);
1874 spin_unlock(&dcache_lock
);
1876 if (actual
== dentry
) {
1877 security_d_instantiate(dentry
, inode
);
1885 spin_unlock(&dcache_lock
);
1888 EXPORT_SYMBOL_GPL(d_materialise_unique
);
1890 static int prepend(char **buffer
, int *buflen
, const char *str
, int namelen
)
1894 return -ENAMETOOLONG
;
1896 memcpy(*buffer
, str
, namelen
);
1900 static int prepend_name(char **buffer
, int *buflen
, struct qstr
*name
)
1902 return prepend(buffer
, buflen
, name
->name
, name
->len
);
1906 * __d_path - return the path of a dentry
1907 * @path: the dentry/vfsmount to report
1908 * @root: root vfsmnt/dentry (may be modified by this function)
1909 * @buffer: buffer to return value in
1910 * @buflen: buffer length
1912 * Convert a dentry into an ASCII path name. If the entry has been deleted
1913 * the string " (deleted)" is appended. Note that this is ambiguous.
1915 * Returns a pointer into the buffer or an error code if the
1916 * path was too long.
1918 * "buflen" should be positive. Caller holds the dcache_lock.
1920 * If path is not reachable from the supplied root, then the value of
1921 * root is changed (without modifying refcounts).
1923 char *__d_path(const struct path
*path
, struct path
*root
,
1924 char *buffer
, int buflen
)
1926 struct dentry
*dentry
= path
->dentry
;
1927 struct vfsmount
*vfsmnt
= path
->mnt
;
1928 char *end
= buffer
+ buflen
;
1931 spin_lock(&vfsmount_lock
);
1932 prepend(&end
, &buflen
, "\0", 1);
1933 if (d_unlinked(dentry
) &&
1934 (prepend(&end
, &buflen
, " (deleted)", 10) != 0))
1944 struct dentry
* parent
;
1946 if (dentry
== root
->dentry
&& vfsmnt
== root
->mnt
)
1948 if (dentry
== vfsmnt
->mnt_root
|| IS_ROOT(dentry
)) {
1950 if (vfsmnt
->mnt_parent
== vfsmnt
) {
1953 dentry
= vfsmnt
->mnt_mountpoint
;
1954 vfsmnt
= vfsmnt
->mnt_parent
;
1957 parent
= dentry
->d_parent
;
1959 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
1960 (prepend(&end
, &buflen
, "/", 1) != 0))
1967 spin_unlock(&vfsmount_lock
);
1971 retval
+= 1; /* hit the slash */
1972 if (prepend_name(&retval
, &buflen
, &dentry
->d_name
) != 0)
1975 root
->dentry
= dentry
;
1979 retval
= ERR_PTR(-ENAMETOOLONG
);
1984 * d_path - return the path of a dentry
1985 * @path: path to report
1986 * @buf: buffer to return value in
1987 * @buflen: buffer length
1989 * Convert a dentry into an ASCII path name. If the entry has been deleted
1990 * the string " (deleted)" is appended. Note that this is ambiguous.
1992 * Returns a pointer into the buffer or an error code if the path was
1993 * too long. Note: Callers should use the returned pointer, not the passed
1994 * in buffer, to use the name! The implementation often starts at an offset
1995 * into the buffer, and may leave 0 bytes at the start.
1997 * "buflen" should be positive.
1999 char *d_path(const struct path
*path
, char *buf
, int buflen
)
2006 * We have various synthetic filesystems that never get mounted. On
2007 * these filesystems dentries are never used for lookup purposes, and
2008 * thus don't need to be hashed. They also don't need a name until a
2009 * user wants to identify the object in /proc/pid/fd/. The little hack
2010 * below allows us to generate a name for these objects on demand:
2012 if (path
->dentry
->d_op
&& path
->dentry
->d_op
->d_dname
)
2013 return path
->dentry
->d_op
->d_dname(path
->dentry
, buf
, buflen
);
2015 read_lock(¤t
->fs
->lock
);
2016 root
= current
->fs
->root
;
2018 read_unlock(¤t
->fs
->lock
);
2019 spin_lock(&dcache_lock
);
2021 res
= __d_path(path
, &tmp
, buf
, buflen
);
2022 spin_unlock(&dcache_lock
);
2026 EXPORT_SYMBOL(d_path
);
2029 * Helper function for dentry_operations.d_dname() members
2031 char *dynamic_dname(struct dentry
*dentry
, char *buffer
, int buflen
,
2032 const char *fmt
, ...)
2038 va_start(args
, fmt
);
2039 sz
= vsnprintf(temp
, sizeof(temp
), fmt
, args
) + 1;
2042 if (sz
> sizeof(temp
) || sz
> buflen
)
2043 return ERR_PTR(-ENAMETOOLONG
);
2045 buffer
+= buflen
- sz
;
2046 return memcpy(buffer
, temp
, sz
);
2050 * Write full pathname from the root of the filesystem into the buffer.
2052 char *dentry_path(struct dentry
*dentry
, char *buf
, int buflen
)
2054 char *end
= buf
+ buflen
;
2057 spin_lock(&dcache_lock
);
2058 prepend(&end
, &buflen
, "\0", 1);
2059 if (d_unlinked(dentry
) &&
2060 (prepend(&end
, &buflen
, "//deleted", 9) != 0))
2068 while (!IS_ROOT(dentry
)) {
2069 struct dentry
*parent
= dentry
->d_parent
;
2072 if ((prepend_name(&end
, &buflen
, &dentry
->d_name
) != 0) ||
2073 (prepend(&end
, &buflen
, "/", 1) != 0))
2079 spin_unlock(&dcache_lock
);
2082 spin_unlock(&dcache_lock
);
2083 return ERR_PTR(-ENAMETOOLONG
);
2087 * NOTE! The user-level library version returns a
2088 * character pointer. The kernel system call just
2089 * returns the length of the buffer filled (which
2090 * includes the ending '\0' character), or a negative
2091 * error value. So libc would do something like
2093 * char *getcwd(char * buf, size_t size)
2097 * retval = sys_getcwd(buf, size);
2104 SYSCALL_DEFINE2(getcwd
, char __user
*, buf
, unsigned long, size
)
2107 struct path pwd
, root
;
2108 char *page
= (char *) __get_free_page(GFP_USER
);
2113 read_lock(¤t
->fs
->lock
);
2114 pwd
= current
->fs
->pwd
;
2116 root
= current
->fs
->root
;
2118 read_unlock(¤t
->fs
->lock
);
2121 spin_lock(&dcache_lock
);
2122 if (!d_unlinked(pwd
.dentry
)) {
2124 struct path tmp
= root
;
2127 cwd
= __d_path(&pwd
, &tmp
, page
, PAGE_SIZE
);
2128 spin_unlock(&dcache_lock
);
2130 error
= PTR_ERR(cwd
);
2135 len
= PAGE_SIZE
+ page
- cwd
;
2138 if (copy_to_user(buf
, cwd
, len
))
2142 spin_unlock(&dcache_lock
);
2147 free_page((unsigned long) page
);
2152 * Test whether new_dentry is a subdirectory of old_dentry.
2154 * Trivially implemented using the dcache structure
2158 * is_subdir - is new dentry a subdirectory of old_dentry
2159 * @new_dentry: new dentry
2160 * @old_dentry: old dentry
2162 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2163 * Returns 0 otherwise.
2164 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2167 int is_subdir(struct dentry
*new_dentry
, struct dentry
*old_dentry
)
2172 if (new_dentry
== old_dentry
)
2176 * Need rcu_readlock to protect against the d_parent trashing
2181 /* for restarting inner loop in case of seq retry */
2182 seq
= read_seqbegin(&rename_lock
);
2183 if (d_ancestor(old_dentry
, new_dentry
))
2187 } while (read_seqretry(&rename_lock
, seq
));
2193 int path_is_under(struct path
*path1
, struct path
*path2
)
2195 struct vfsmount
*mnt
= path1
->mnt
;
2196 struct dentry
*dentry
= path1
->dentry
;
2198 spin_lock(&vfsmount_lock
);
2199 if (mnt
!= path2
->mnt
) {
2201 if (mnt
->mnt_parent
== mnt
) {
2202 spin_unlock(&vfsmount_lock
);
2205 if (mnt
->mnt_parent
== path2
->mnt
)
2207 mnt
= mnt
->mnt_parent
;
2209 dentry
= mnt
->mnt_mountpoint
;
2211 res
= is_subdir(dentry
, path2
->dentry
);
2212 spin_unlock(&vfsmount_lock
);
2215 EXPORT_SYMBOL(path_is_under
);
2217 void d_genocide(struct dentry
*root
)
2219 struct dentry
*this_parent
= root
;
2220 struct list_head
*next
;
2222 spin_lock(&dcache_lock
);
2224 next
= this_parent
->d_subdirs
.next
;
2226 while (next
!= &this_parent
->d_subdirs
) {
2227 struct list_head
*tmp
= next
;
2228 struct dentry
*dentry
= list_entry(tmp
, struct dentry
, d_u
.d_child
);
2230 if (d_unhashed(dentry
)||!dentry
->d_inode
)
2232 if (!list_empty(&dentry
->d_subdirs
)) {
2233 this_parent
= dentry
;
2236 atomic_dec(&dentry
->d_count
);
2238 if (this_parent
!= root
) {
2239 next
= this_parent
->d_u
.d_child
.next
;
2240 atomic_dec(&this_parent
->d_count
);
2241 this_parent
= this_parent
->d_parent
;
2244 spin_unlock(&dcache_lock
);
2248 * find_inode_number - check for dentry with name
2249 * @dir: directory to check
2250 * @name: Name to find.
2252 * Check whether a dentry already exists for the given name,
2253 * and return the inode number if it has an inode. Otherwise
2256 * This routine is used to post-process directory listings for
2257 * filesystems using synthetic inode numbers, and is necessary
2258 * to keep getcwd() working.
2261 ino_t
find_inode_number(struct dentry
*dir
, struct qstr
*name
)
2263 struct dentry
* dentry
;
2266 dentry
= d_hash_and_lookup(dir
, name
);
2268 if (dentry
->d_inode
)
2269 ino
= dentry
->d_inode
->i_ino
;
2274 EXPORT_SYMBOL(find_inode_number
);
2276 static __initdata
unsigned long dhash_entries
;
2277 static int __init
set_dhash_entries(char *str
)
2281 dhash_entries
= simple_strtoul(str
, &str
, 0);
2284 __setup("dhash_entries=", set_dhash_entries
);
2286 static void __init
dcache_init_early(void)
2290 /* If hashes are distributed across NUMA nodes, defer
2291 * hash allocation until vmalloc space is available.
2297 alloc_large_system_hash("Dentry cache",
2298 sizeof(struct hlist_head
),
2306 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2307 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2310 static void __init
dcache_init(void)
2315 * A constructor could be added for stable state like the lists,
2316 * but it is probably not worth it because of the cache nature
2319 dentry_cache
= KMEM_CACHE(dentry
,
2320 SLAB_RECLAIM_ACCOUNT
|SLAB_PANIC
|SLAB_MEM_SPREAD
);
2322 register_shrinker(&dcache_shrinker
);
2324 /* Hash may have been set up in dcache_init_early */
2329 alloc_large_system_hash("Dentry cache",
2330 sizeof(struct hlist_head
),
2338 for (loop
= 0; loop
< (1 << d_hash_shift
); loop
++)
2339 INIT_HLIST_HEAD(&dentry_hashtable
[loop
]);
2342 /* SLAB cache for __getname() consumers */
2343 struct kmem_cache
*names_cachep __read_mostly
;
2344 EXPORT_SYMBOL(names_cachep
);
2346 EXPORT_SYMBOL(d_genocide
);
2348 void __init
vfs_caches_init_early(void)
2350 dcache_init_early();
2354 void __init
vfs_caches_init(unsigned long mempages
)
2356 unsigned long reserve
;
2358 /* Base hash sizes on available memory, with a reserve equal to
2359 150% of current kernel size */
2361 reserve
= min((mempages
- nr_free_pages()) * 3/2, mempages
- 1);
2362 mempages
-= reserve
;
2364 names_cachep
= kmem_cache_create("names_cache", PATH_MAX
, 0,
2365 SLAB_HWCACHE_ALIGN
|SLAB_PANIC
, NULL
);
2369 files_init(mempages
);