Cleaned up AMD Au1200 IDE driver:
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / hugetlb.c
blob61d380678030312f453c44e86631c3f9c0e49028
1 /*
2 * Generic hugetlb support.
3 * (C) William Irwin, April 2004
4 */
5 #include <linux/gfp.h>
6 #include <linux/list.h>
7 #include <linux/init.h>
8 #include <linux/module.h>
9 #include <linux/mm.h>
10 #include <linux/sysctl.h>
11 #include <linux/highmem.h>
12 #include <linux/nodemask.h>
13 #include <linux/pagemap.h>
14 #include <asm/page.h>
15 #include <asm/pgtable.h>
17 #include <linux/hugetlb.h>
19 const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
20 static unsigned long nr_huge_pages, free_huge_pages;
21 unsigned long max_huge_pages;
22 static struct list_head hugepage_freelists[MAX_NUMNODES];
23 static unsigned int nr_huge_pages_node[MAX_NUMNODES];
24 static unsigned int free_huge_pages_node[MAX_NUMNODES];
25 static DEFINE_SPINLOCK(hugetlb_lock);
27 static void enqueue_huge_page(struct page *page)
29 int nid = page_to_nid(page);
30 list_add(&page->lru, &hugepage_freelists[nid]);
31 free_huge_pages++;
32 free_huge_pages_node[nid]++;
35 static struct page *dequeue_huge_page(void)
37 int nid = numa_node_id();
38 struct page *page = NULL;
40 if (list_empty(&hugepage_freelists[nid])) {
41 for (nid = 0; nid < MAX_NUMNODES; ++nid)
42 if (!list_empty(&hugepage_freelists[nid]))
43 break;
45 if (nid >= 0 && nid < MAX_NUMNODES &&
46 !list_empty(&hugepage_freelists[nid])) {
47 page = list_entry(hugepage_freelists[nid].next,
48 struct page, lru);
49 list_del(&page->lru);
50 free_huge_pages--;
51 free_huge_pages_node[nid]--;
53 return page;
56 static struct page *alloc_fresh_huge_page(void)
58 static int nid = 0;
59 struct page *page;
60 page = alloc_pages_node(nid, GFP_HIGHUSER|__GFP_COMP|__GFP_NOWARN,
61 HUGETLB_PAGE_ORDER);
62 nid = (nid + 1) % num_online_nodes();
63 if (page) {
64 nr_huge_pages++;
65 nr_huge_pages_node[page_to_nid(page)]++;
67 return page;
70 void free_huge_page(struct page *page)
72 BUG_ON(page_count(page));
74 INIT_LIST_HEAD(&page->lru);
75 page[1].mapping = NULL;
77 spin_lock(&hugetlb_lock);
78 enqueue_huge_page(page);
79 spin_unlock(&hugetlb_lock);
82 struct page *alloc_huge_page(void)
84 struct page *page;
85 int i;
87 spin_lock(&hugetlb_lock);
88 page = dequeue_huge_page();
89 if (!page) {
90 spin_unlock(&hugetlb_lock);
91 return NULL;
93 spin_unlock(&hugetlb_lock);
94 set_page_count(page, 1);
95 page[1].mapping = (void *)free_huge_page;
96 for (i = 0; i < (HPAGE_SIZE/PAGE_SIZE); ++i)
97 clear_highpage(&page[i]);
98 return page;
101 static int __init hugetlb_init(void)
103 unsigned long i;
104 struct page *page;
106 for (i = 0; i < MAX_NUMNODES; ++i)
107 INIT_LIST_HEAD(&hugepage_freelists[i]);
109 for (i = 0; i < max_huge_pages; ++i) {
110 page = alloc_fresh_huge_page();
111 if (!page)
112 break;
113 spin_lock(&hugetlb_lock);
114 enqueue_huge_page(page);
115 spin_unlock(&hugetlb_lock);
117 max_huge_pages = free_huge_pages = nr_huge_pages = i;
118 printk("Total HugeTLB memory allocated, %ld\n", free_huge_pages);
119 return 0;
121 module_init(hugetlb_init);
123 static int __init hugetlb_setup(char *s)
125 if (sscanf(s, "%lu", &max_huge_pages) <= 0)
126 max_huge_pages = 0;
127 return 1;
129 __setup("hugepages=", hugetlb_setup);
131 #ifdef CONFIG_SYSCTL
132 static void update_and_free_page(struct page *page)
134 int i;
135 nr_huge_pages--;
136 nr_huge_pages_node[page_zone(page)->zone_pgdat->node_id]--;
137 for (i = 0; i < (HPAGE_SIZE / PAGE_SIZE); i++) {
138 page[i].flags &= ~(1 << PG_locked | 1 << PG_error | 1 << PG_referenced |
139 1 << PG_dirty | 1 << PG_active | 1 << PG_reserved |
140 1 << PG_private | 1<< PG_writeback);
141 set_page_count(&page[i], 0);
143 set_page_count(page, 1);
144 __free_pages(page, HUGETLB_PAGE_ORDER);
147 #ifdef CONFIG_HIGHMEM
148 static void try_to_free_low(unsigned long count)
150 int i, nid;
151 for (i = 0; i < MAX_NUMNODES; ++i) {
152 struct page *page, *next;
153 list_for_each_entry_safe(page, next, &hugepage_freelists[i], lru) {
154 if (PageHighMem(page))
155 continue;
156 list_del(&page->lru);
157 update_and_free_page(page);
158 nid = page_zone(page)->zone_pgdat->node_id;
159 free_huge_pages--;
160 free_huge_pages_node[nid]--;
161 if (count >= nr_huge_pages)
162 return;
166 #else
167 static inline void try_to_free_low(unsigned long count)
170 #endif
172 static unsigned long set_max_huge_pages(unsigned long count)
174 while (count > nr_huge_pages) {
175 struct page *page = alloc_fresh_huge_page();
176 if (!page)
177 return nr_huge_pages;
178 spin_lock(&hugetlb_lock);
179 enqueue_huge_page(page);
180 spin_unlock(&hugetlb_lock);
182 if (count >= nr_huge_pages)
183 return nr_huge_pages;
185 spin_lock(&hugetlb_lock);
186 try_to_free_low(count);
187 while (count < nr_huge_pages) {
188 struct page *page = dequeue_huge_page();
189 if (!page)
190 break;
191 update_and_free_page(page);
193 spin_unlock(&hugetlb_lock);
194 return nr_huge_pages;
197 int hugetlb_sysctl_handler(struct ctl_table *table, int write,
198 struct file *file, void __user *buffer,
199 size_t *length, loff_t *ppos)
201 proc_doulongvec_minmax(table, write, file, buffer, length, ppos);
202 max_huge_pages = set_max_huge_pages(max_huge_pages);
203 return 0;
205 #endif /* CONFIG_SYSCTL */
207 int hugetlb_report_meminfo(char *buf)
209 return sprintf(buf,
210 "HugePages_Total: %5lu\n"
211 "HugePages_Free: %5lu\n"
212 "Hugepagesize: %5lu kB\n",
213 nr_huge_pages,
214 free_huge_pages,
215 HPAGE_SIZE/1024);
218 int hugetlb_report_node_meminfo(int nid, char *buf)
220 return sprintf(buf,
221 "Node %d HugePages_Total: %5u\n"
222 "Node %d HugePages_Free: %5u\n",
223 nid, nr_huge_pages_node[nid],
224 nid, free_huge_pages_node[nid]);
227 int is_hugepage_mem_enough(size_t size)
229 return (size + ~HPAGE_MASK)/HPAGE_SIZE <= free_huge_pages;
232 /* Return the number pages of memory we physically have, in PAGE_SIZE units. */
233 unsigned long hugetlb_total_pages(void)
235 return nr_huge_pages * (HPAGE_SIZE / PAGE_SIZE);
237 EXPORT_SYMBOL(hugetlb_total_pages);
240 * We cannot handle pagefaults against hugetlb pages at all. They cause
241 * handle_mm_fault() to try to instantiate regular-sized pages in the
242 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
243 * this far.
245 static struct page *hugetlb_nopage(struct vm_area_struct *vma,
246 unsigned long address, int *unused)
248 BUG();
249 return NULL;
252 struct vm_operations_struct hugetlb_vm_ops = {
253 .nopage = hugetlb_nopage,
256 static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page)
258 pte_t entry;
260 if (vma->vm_flags & VM_WRITE) {
261 entry =
262 pte_mkwrite(pte_mkdirty(mk_pte(page, vma->vm_page_prot)));
263 } else {
264 entry = pte_wrprotect(mk_pte(page, vma->vm_page_prot));
266 entry = pte_mkyoung(entry);
267 entry = pte_mkhuge(entry);
269 return entry;
272 int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
273 struct vm_area_struct *vma)
275 pte_t *src_pte, *dst_pte, entry;
276 struct page *ptepage;
277 unsigned long addr;
279 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
280 dst_pte = huge_pte_alloc(dst, addr);
281 if (!dst_pte)
282 goto nomem;
283 spin_lock(&src->page_table_lock);
284 src_pte = huge_pte_offset(src, addr);
285 if (src_pte && !pte_none(*src_pte)) {
286 entry = *src_pte;
287 ptepage = pte_page(entry);
288 get_page(ptepage);
289 add_mm_counter(dst, rss, HPAGE_SIZE / PAGE_SIZE);
290 set_huge_pte_at(dst, addr, dst_pte, entry);
292 spin_unlock(&src->page_table_lock);
294 return 0;
296 nomem:
297 return -ENOMEM;
300 void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
301 unsigned long end)
303 struct mm_struct *mm = vma->vm_mm;
304 unsigned long address;
305 pte_t *ptep;
306 pte_t pte;
307 struct page *page;
309 WARN_ON(!is_vm_hugetlb_page(vma));
310 BUG_ON(start & ~HPAGE_MASK);
311 BUG_ON(end & ~HPAGE_MASK);
313 for (address = start; address < end; address += HPAGE_SIZE) {
314 ptep = huge_pte_offset(mm, address);
315 if (! ptep)
316 /* This can happen on truncate, or if an
317 * mmap() is aborted due to an error before
318 * the prefault */
319 continue;
321 pte = huge_ptep_get_and_clear(mm, address, ptep);
322 if (pte_none(pte))
323 continue;
325 page = pte_page(pte);
326 put_page(page);
327 add_mm_counter(mm, rss, - (HPAGE_SIZE / PAGE_SIZE));
329 flush_tlb_range(vma, start, end);
332 void zap_hugepage_range(struct vm_area_struct *vma,
333 unsigned long start, unsigned long length)
335 struct mm_struct *mm = vma->vm_mm;
337 spin_lock(&mm->page_table_lock);
338 unmap_hugepage_range(vma, start, start + length);
339 spin_unlock(&mm->page_table_lock);
342 int hugetlb_prefault(struct address_space *mapping, struct vm_area_struct *vma)
344 struct mm_struct *mm = current->mm;
345 unsigned long addr;
346 int ret = 0;
348 WARN_ON(!is_vm_hugetlb_page(vma));
349 BUG_ON(vma->vm_start & ~HPAGE_MASK);
350 BUG_ON(vma->vm_end & ~HPAGE_MASK);
352 hugetlb_prefault_arch_hook(mm);
354 spin_lock(&mm->page_table_lock);
355 for (addr = vma->vm_start; addr < vma->vm_end; addr += HPAGE_SIZE) {
356 unsigned long idx;
357 pte_t *pte = huge_pte_alloc(mm, addr);
358 struct page *page;
360 if (!pte) {
361 ret = -ENOMEM;
362 goto out;
365 idx = ((addr - vma->vm_start) >> HPAGE_SHIFT)
366 + (vma->vm_pgoff >> (HPAGE_SHIFT - PAGE_SHIFT));
367 page = find_get_page(mapping, idx);
368 if (!page) {
369 /* charge the fs quota first */
370 if (hugetlb_get_quota(mapping)) {
371 ret = -ENOMEM;
372 goto out;
374 page = alloc_huge_page();
375 if (!page) {
376 hugetlb_put_quota(mapping);
377 ret = -ENOMEM;
378 goto out;
380 ret = add_to_page_cache(page, mapping, idx, GFP_ATOMIC);
381 if (! ret) {
382 unlock_page(page);
383 } else {
384 hugetlb_put_quota(mapping);
385 free_huge_page(page);
386 goto out;
389 add_mm_counter(mm, rss, HPAGE_SIZE / PAGE_SIZE);
390 set_huge_pte_at(mm, addr, pte, make_huge_pte(vma, page));
392 out:
393 spin_unlock(&mm->page_table_lock);
394 return ret;
398 * On ia64 at least, it is possible to receive a hugetlb fault from a
399 * stale zero entry left in the TLB from earlier hardware prefetching.
400 * Low-level arch code should already have flushed the stale entry as
401 * part of its fault handling, but we do need to accept this minor fault
402 * and return successfully. Whereas the "normal" case is that this is
403 * an access to a hugetlb page which has been truncated off since mmap.
405 int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
406 unsigned long address, int write_access)
408 int ret = VM_FAULT_SIGBUS;
409 pte_t *pte;
411 spin_lock(&mm->page_table_lock);
412 pte = huge_pte_offset(mm, address);
413 if (pte && !pte_none(*pte))
414 ret = VM_FAULT_MINOR;
415 spin_unlock(&mm->page_table_lock);
416 return ret;
419 int follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
420 struct page **pages, struct vm_area_struct **vmas,
421 unsigned long *position, int *length, int i)
423 unsigned long vpfn, vaddr = *position;
424 int remainder = *length;
426 BUG_ON(!is_vm_hugetlb_page(vma));
428 vpfn = vaddr/PAGE_SIZE;
429 spin_lock(&mm->page_table_lock);
430 while (vaddr < vma->vm_end && remainder) {
432 if (pages) {
433 pte_t *pte;
434 struct page *page;
436 /* Some archs (sparc64, sh*) have multiple
437 * pte_ts to each hugepage. We have to make
438 * sure we get the first, for the page
439 * indexing below to work. */
440 pte = huge_pte_offset(mm, vaddr & HPAGE_MASK);
442 /* the hugetlb file might have been truncated */
443 if (!pte || pte_none(*pte)) {
444 remainder = 0;
445 if (!i)
446 i = -EFAULT;
447 break;
450 page = &pte_page(*pte)[vpfn % (HPAGE_SIZE/PAGE_SIZE)];
452 WARN_ON(!PageCompound(page));
454 get_page(page);
455 pages[i] = page;
458 if (vmas)
459 vmas[i] = vma;
461 vaddr += PAGE_SIZE;
462 ++vpfn;
463 --remainder;
464 ++i;
466 spin_unlock(&mm->page_table_lock);
467 *length = remainder;
468 *position = vaddr;
470 return i;