rt2x00: Use IEEE80211_TX_CTL_MORE_FRAMES flag
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / rt2x00 / rt2x00queue.c
blob65435c9fe4bcee7a39fa3d1ad7576a5c49c8f848
1 /*
2 Copyright (C) 2004 - 2009 rt2x00 SourceForge Project
3 <http://rt2x00.serialmonkey.com>
5 This program is free software; you can redistribute it and/or modify
6 it under the terms of the GNU General Public License as published by
7 the Free Software Foundation; either version 2 of the License, or
8 (at your option) any later version.
10 This program is distributed in the hope that it will be useful,
11 but WITHOUT ANY WARRANTY; without even the implied warranty of
12 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 GNU General Public License for more details.
15 You should have received a copy of the GNU General Public License
16 along with this program; if not, write to the
17 Free Software Foundation, Inc.,
18 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
22 Module: rt2x00lib
23 Abstract: rt2x00 queue specific routines.
26 #include <linux/kernel.h>
27 #include <linux/module.h>
28 #include <linux/dma-mapping.h>
30 #include "rt2x00.h"
31 #include "rt2x00lib.h"
33 struct sk_buff *rt2x00queue_alloc_rxskb(struct rt2x00_dev *rt2x00dev,
34 struct queue_entry *entry)
36 struct sk_buff *skb;
37 struct skb_frame_desc *skbdesc;
38 unsigned int frame_size;
39 unsigned int head_size = 0;
40 unsigned int tail_size = 0;
43 * The frame size includes descriptor size, because the
44 * hardware directly receive the frame into the skbuffer.
46 frame_size = entry->queue->data_size + entry->queue->desc_size;
49 * The payload should be aligned to a 4-byte boundary,
50 * this means we need at least 3 bytes for moving the frame
51 * into the correct offset.
53 head_size = 4;
56 * For IV/EIV/ICV assembly we must make sure there is
57 * at least 8 bytes bytes available in headroom for IV/EIV
58 * and 8 bytes for ICV data as tailroon.
60 if (test_bit(CONFIG_SUPPORT_HW_CRYPTO, &rt2x00dev->flags)) {
61 head_size += 8;
62 tail_size += 8;
66 * Allocate skbuffer.
68 skb = dev_alloc_skb(frame_size + head_size + tail_size);
69 if (!skb)
70 return NULL;
73 * Make sure we not have a frame with the requested bytes
74 * available in the head and tail.
76 skb_reserve(skb, head_size);
77 skb_put(skb, frame_size);
80 * Populate skbdesc.
82 skbdesc = get_skb_frame_desc(skb);
83 memset(skbdesc, 0, sizeof(*skbdesc));
84 skbdesc->entry = entry;
86 if (test_bit(DRIVER_REQUIRE_DMA, &rt2x00dev->flags)) {
87 skbdesc->skb_dma = dma_map_single(rt2x00dev->dev,
88 skb->data,
89 skb->len,
90 DMA_FROM_DEVICE);
91 skbdesc->flags |= SKBDESC_DMA_MAPPED_RX;
94 return skb;
97 void rt2x00queue_map_txskb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
99 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
102 * If device has requested headroom, we should make sure that
103 * is also mapped to the DMA so it can be used for transfering
104 * additional descriptor information to the hardware.
106 skb_push(skb, rt2x00dev->hw->extra_tx_headroom);
108 skbdesc->skb_dma =
109 dma_map_single(rt2x00dev->dev, skb->data, skb->len, DMA_TO_DEVICE);
112 * Restore data pointer to original location again.
114 skb_pull(skb, rt2x00dev->hw->extra_tx_headroom);
116 skbdesc->flags |= SKBDESC_DMA_MAPPED_TX;
118 EXPORT_SYMBOL_GPL(rt2x00queue_map_txskb);
120 void rt2x00queue_unmap_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
122 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
124 if (skbdesc->flags & SKBDESC_DMA_MAPPED_RX) {
125 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma, skb->len,
126 DMA_FROM_DEVICE);
127 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_RX;
130 if (skbdesc->flags & SKBDESC_DMA_MAPPED_TX) {
132 * Add headroom to the skb length, it has been removed
133 * by the driver, but it was actually mapped to DMA.
135 dma_unmap_single(rt2x00dev->dev, skbdesc->skb_dma,
136 skb->len + rt2x00dev->hw->extra_tx_headroom,
137 DMA_TO_DEVICE);
138 skbdesc->flags &= ~SKBDESC_DMA_MAPPED_TX;
142 void rt2x00queue_free_skb(struct rt2x00_dev *rt2x00dev, struct sk_buff *skb)
144 if (!skb)
145 return;
147 rt2x00queue_unmap_skb(rt2x00dev, skb);
148 dev_kfree_skb_any(skb);
151 void rt2x00queue_payload_align(struct sk_buff *skb,
152 bool l2pad, unsigned int header_length)
154 struct skb_frame_desc *skbdesc = get_skb_frame_desc(skb);
155 unsigned int frame_length = skb->len;
156 unsigned int align = ALIGN_SIZE(skb, header_length);
158 if (!align)
159 return;
161 if (l2pad) {
162 if (skbdesc->flags & SKBDESC_L2_PADDED) {
163 /* Remove L2 padding */
164 memmove(skb->data + align, skb->data, header_length);
165 skb_pull(skb, align);
166 skbdesc->flags &= ~SKBDESC_L2_PADDED;
167 } else {
168 /* Add L2 padding */
169 skb_push(skb, align);
170 memmove(skb->data, skb->data + align, header_length);
171 skbdesc->flags |= SKBDESC_L2_PADDED;
173 } else {
174 /* Generic payload alignment to 4-byte boundary */
175 skb_push(skb, align);
176 memmove(skb->data, skb->data + align, frame_length);
180 static void rt2x00queue_create_tx_descriptor_seq(struct queue_entry *entry,
181 struct txentry_desc *txdesc)
183 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
184 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
185 struct rt2x00_intf *intf = vif_to_intf(tx_info->control.vif);
186 unsigned long irqflags;
188 if (!(tx_info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) ||
189 unlikely(!tx_info->control.vif))
190 return;
193 * Hardware should insert sequence counter.
194 * FIXME: We insert a software sequence counter first for
195 * hardware that doesn't support hardware sequence counting.
197 * This is wrong because beacons are not getting sequence
198 * numbers assigned properly.
200 * A secondary problem exists for drivers that cannot toggle
201 * sequence counting per-frame, since those will override the
202 * sequence counter given by mac80211.
204 spin_lock_irqsave(&intf->seqlock, irqflags);
206 if (test_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags))
207 intf->seqno += 0x10;
208 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
209 hdr->seq_ctrl |= cpu_to_le16(intf->seqno);
211 spin_unlock_irqrestore(&intf->seqlock, irqflags);
213 __set_bit(ENTRY_TXD_GENERATE_SEQ, &txdesc->flags);
216 static void rt2x00queue_create_tx_descriptor_plcp(struct queue_entry *entry,
217 struct txentry_desc *txdesc,
218 const struct rt2x00_rate *hwrate)
220 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
221 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
222 struct ieee80211_tx_rate *txrate = &tx_info->control.rates[0];
223 unsigned int data_length;
224 unsigned int duration;
225 unsigned int residual;
227 /* Data length + CRC + Crypto overhead (IV/EIV/ICV/MIC) */
228 data_length = entry->skb->len + 4;
229 data_length += rt2x00crypto_tx_overhead(rt2x00dev, entry->skb);
232 * PLCP setup
233 * Length calculation depends on OFDM/CCK rate.
235 txdesc->signal = hwrate->plcp;
236 txdesc->service = 0x04;
238 if (hwrate->flags & DEV_RATE_OFDM) {
239 txdesc->length_high = (data_length >> 6) & 0x3f;
240 txdesc->length_low = data_length & 0x3f;
241 } else {
243 * Convert length to microseconds.
245 residual = GET_DURATION_RES(data_length, hwrate->bitrate);
246 duration = GET_DURATION(data_length, hwrate->bitrate);
248 if (residual != 0) {
249 duration++;
252 * Check if we need to set the Length Extension
254 if (hwrate->bitrate == 110 && residual <= 30)
255 txdesc->service |= 0x80;
258 txdesc->length_high = (duration >> 8) & 0xff;
259 txdesc->length_low = duration & 0xff;
262 * When preamble is enabled we should set the
263 * preamble bit for the signal.
265 if (txrate->flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
266 txdesc->signal |= 0x08;
270 static void rt2x00queue_create_tx_descriptor(struct queue_entry *entry,
271 struct txentry_desc *txdesc)
273 struct rt2x00_dev *rt2x00dev = entry->queue->rt2x00dev;
274 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(entry->skb);
275 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)entry->skb->data;
276 struct ieee80211_rate *rate =
277 ieee80211_get_tx_rate(rt2x00dev->hw, tx_info);
278 const struct rt2x00_rate *hwrate;
280 memset(txdesc, 0, sizeof(*txdesc));
283 * Initialize information from queue
285 txdesc->queue = entry->queue->qid;
286 txdesc->cw_min = entry->queue->cw_min;
287 txdesc->cw_max = entry->queue->cw_max;
288 txdesc->aifs = entry->queue->aifs;
291 * Header and alignment information.
293 txdesc->header_length = ieee80211_get_hdrlen_from_skb(entry->skb);
294 txdesc->l2pad = ALIGN_SIZE(entry->skb, txdesc->header_length);
297 * Check whether this frame is to be acked.
299 if (!(tx_info->flags & IEEE80211_TX_CTL_NO_ACK))
300 __set_bit(ENTRY_TXD_ACK, &txdesc->flags);
303 * Check if this is a RTS/CTS frame
305 if (ieee80211_is_rts(hdr->frame_control) ||
306 ieee80211_is_cts(hdr->frame_control)) {
307 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
308 if (ieee80211_is_rts(hdr->frame_control))
309 __set_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags);
310 else
311 __set_bit(ENTRY_TXD_CTS_FRAME, &txdesc->flags);
312 if (tx_info->control.rts_cts_rate_idx >= 0)
313 rate =
314 ieee80211_get_rts_cts_rate(rt2x00dev->hw, tx_info);
318 * Determine retry information.
320 txdesc->retry_limit = tx_info->control.rates[0].count - 1;
321 if (txdesc->retry_limit >= rt2x00dev->long_retry)
322 __set_bit(ENTRY_TXD_RETRY_MODE, &txdesc->flags);
325 * Check if more fragments are pending
327 if (ieee80211_has_morefrags(hdr->frame_control) ||
328 (tx_info->flags & IEEE80211_TX_CTL_MORE_FRAMES)) {
329 __set_bit(ENTRY_TXD_BURST, &txdesc->flags);
330 __set_bit(ENTRY_TXD_MORE_FRAG, &txdesc->flags);
334 * Beacons and probe responses require the tsf timestamp
335 * to be inserted into the frame.
337 if (ieee80211_is_beacon(hdr->frame_control) ||
338 ieee80211_is_probe_resp(hdr->frame_control))
339 __set_bit(ENTRY_TXD_REQ_TIMESTAMP, &txdesc->flags);
342 * Determine with what IFS priority this frame should be send.
343 * Set ifs to IFS_SIFS when the this is not the first fragment,
344 * or this fragment came after RTS/CTS.
346 if ((tx_info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) &&
347 !test_bit(ENTRY_TXD_RTS_FRAME, &txdesc->flags)) {
348 __set_bit(ENTRY_TXD_FIRST_FRAGMENT, &txdesc->flags);
349 txdesc->ifs = IFS_BACKOFF;
350 } else
351 txdesc->ifs = IFS_SIFS;
354 * Determine rate modulation.
356 hwrate = rt2x00_get_rate(rate->hw_value);
357 txdesc->rate_mode = RATE_MODE_CCK;
358 if (hwrate->flags & DEV_RATE_OFDM)
359 txdesc->rate_mode = RATE_MODE_OFDM;
362 * Apply TX descriptor handling by components
364 rt2x00crypto_create_tx_descriptor(entry, txdesc);
365 rt2x00ht_create_tx_descriptor(entry, txdesc, hwrate);
366 rt2x00queue_create_tx_descriptor_seq(entry, txdesc);
367 rt2x00queue_create_tx_descriptor_plcp(entry, txdesc, hwrate);
370 static void rt2x00queue_write_tx_descriptor(struct queue_entry *entry,
371 struct txentry_desc *txdesc)
373 struct data_queue *queue = entry->queue;
374 struct rt2x00_dev *rt2x00dev = queue->rt2x00dev;
376 rt2x00dev->ops->lib->write_tx_desc(rt2x00dev, entry->skb, txdesc);
379 * All processing on the frame has been completed, this means
380 * it is now ready to be dumped to userspace through debugfs.
382 rt2x00debug_dump_frame(rt2x00dev, DUMP_FRAME_TX, entry->skb);
385 * Check if we need to kick the queue, there are however a few rules
386 * 1) Don't kick beacon queue
387 * 2) Don't kick unless this is the last in frame in a burst.
388 * When the burst flag is set, this frame is always followed
389 * by another frame which in some way are related to eachother.
390 * This is true for fragments, RTS or CTS-to-self frames.
391 * 3) Rule 2 can be broken when the available entries
392 * in the queue are less then a certain threshold.
394 if (entry->queue->qid == QID_BEACON)
395 return;
397 if (rt2x00queue_threshold(queue) ||
398 !test_bit(ENTRY_TXD_BURST, &txdesc->flags))
399 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, queue->qid);
402 int rt2x00queue_write_tx_frame(struct data_queue *queue, struct sk_buff *skb)
404 struct ieee80211_tx_info *tx_info;
405 struct queue_entry *entry = rt2x00queue_get_entry(queue, Q_INDEX);
406 struct txentry_desc txdesc;
407 struct skb_frame_desc *skbdesc;
408 u8 rate_idx, rate_flags;
410 if (unlikely(rt2x00queue_full(queue)))
411 return -ENOBUFS;
413 if (test_and_set_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags)) {
414 ERROR(queue->rt2x00dev,
415 "Arrived at non-free entry in the non-full queue %d.\n"
416 "Please file bug report to %s.\n",
417 queue->qid, DRV_PROJECT);
418 return -EINVAL;
422 * Copy all TX descriptor information into txdesc,
423 * after that we are free to use the skb->cb array
424 * for our information.
426 entry->skb = skb;
427 rt2x00queue_create_tx_descriptor(entry, &txdesc);
430 * All information is retrieved from the skb->cb array,
431 * now we should claim ownership of the driver part of that
432 * array, preserving the bitrate index and flags.
434 tx_info = IEEE80211_SKB_CB(skb);
435 rate_idx = tx_info->control.rates[0].idx;
436 rate_flags = tx_info->control.rates[0].flags;
437 skbdesc = get_skb_frame_desc(skb);
438 memset(skbdesc, 0, sizeof(*skbdesc));
439 skbdesc->entry = entry;
440 skbdesc->tx_rate_idx = rate_idx;
441 skbdesc->tx_rate_flags = rate_flags;
444 * When hardware encryption is supported, and this frame
445 * is to be encrypted, we should strip the IV/EIV data from
446 * the frame so we can provide it to the driver seperately.
448 if (test_bit(ENTRY_TXD_ENCRYPT, &txdesc.flags) &&
449 !test_bit(ENTRY_TXD_ENCRYPT_IV, &txdesc.flags)) {
450 if (test_bit(DRIVER_REQUIRE_COPY_IV, &queue->rt2x00dev->flags))
451 rt2x00crypto_tx_copy_iv(skb, &txdesc);
452 else
453 rt2x00crypto_tx_remove_iv(skb, &txdesc);
456 if (test_bit(DRIVER_REQUIRE_L2PAD, &queue->rt2x00dev->flags))
457 rt2x00queue_payload_align(entry->skb, true,
458 txdesc.header_length);
461 * It could be possible that the queue was corrupted and this
462 * call failed. Since we always return NETDEV_TX_OK to mac80211,
463 * this frame will simply be dropped.
465 if (unlikely(queue->rt2x00dev->ops->lib->write_tx_data(entry))) {
466 clear_bit(ENTRY_OWNER_DEVICE_DATA, &entry->flags);
467 entry->skb = NULL;
468 return -EIO;
471 if (test_bit(DRIVER_REQUIRE_DMA, &queue->rt2x00dev->flags))
472 rt2x00queue_map_txskb(queue->rt2x00dev, skb);
474 set_bit(ENTRY_DATA_PENDING, &entry->flags);
476 rt2x00queue_index_inc(queue, Q_INDEX);
477 rt2x00queue_write_tx_descriptor(entry, &txdesc);
479 return 0;
482 int rt2x00queue_update_beacon(struct rt2x00_dev *rt2x00dev,
483 struct ieee80211_vif *vif,
484 const bool enable_beacon)
486 struct rt2x00_intf *intf = vif_to_intf(vif);
487 struct skb_frame_desc *skbdesc;
488 struct txentry_desc txdesc;
489 __le32 desc[16];
491 if (unlikely(!intf->beacon))
492 return -ENOBUFS;
494 if (!enable_beacon) {
495 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, QID_BEACON);
496 return 0;
499 intf->beacon->skb = ieee80211_beacon_get(rt2x00dev->hw, vif);
500 if (!intf->beacon->skb)
501 return -ENOMEM;
504 * Copy all TX descriptor information into txdesc,
505 * after that we are free to use the skb->cb array
506 * for our information.
508 rt2x00queue_create_tx_descriptor(intf->beacon, &txdesc);
511 * For the descriptor we use a local array from where the
512 * driver can move it to the correct location required for
513 * the hardware.
515 memset(desc, 0, sizeof(desc));
518 * Fill in skb descriptor
520 skbdesc = get_skb_frame_desc(intf->beacon->skb);
521 memset(skbdesc, 0, sizeof(*skbdesc));
522 skbdesc->desc = desc;
523 skbdesc->desc_len = intf->beacon->queue->desc_size;
524 skbdesc->entry = intf->beacon;
527 * Write TX descriptor into reserved room in front of the beacon.
529 rt2x00queue_write_tx_descriptor(intf->beacon, &txdesc);
532 * Send beacon to hardware.
533 * Also enable beacon generation, which might have been disabled
534 * by the driver during the config_beacon() callback function.
536 rt2x00dev->ops->lib->write_beacon(intf->beacon);
537 rt2x00dev->ops->lib->kick_tx_queue(rt2x00dev, QID_BEACON);
539 return 0;
542 struct data_queue *rt2x00queue_get_queue(struct rt2x00_dev *rt2x00dev,
543 const enum data_queue_qid queue)
545 int atim = test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
547 if (queue == QID_RX)
548 return rt2x00dev->rx;
550 if (queue < rt2x00dev->ops->tx_queues && rt2x00dev->tx)
551 return &rt2x00dev->tx[queue];
553 if (!rt2x00dev->bcn)
554 return NULL;
556 if (queue == QID_BEACON)
557 return &rt2x00dev->bcn[0];
558 else if (queue == QID_ATIM && atim)
559 return &rt2x00dev->bcn[1];
561 return NULL;
563 EXPORT_SYMBOL_GPL(rt2x00queue_get_queue);
565 struct queue_entry *rt2x00queue_get_entry(struct data_queue *queue,
566 enum queue_index index)
568 struct queue_entry *entry;
569 unsigned long irqflags;
571 if (unlikely(index >= Q_INDEX_MAX)) {
572 ERROR(queue->rt2x00dev,
573 "Entry requested from invalid index type (%d)\n", index);
574 return NULL;
577 spin_lock_irqsave(&queue->lock, irqflags);
579 entry = &queue->entries[queue->index[index]];
581 spin_unlock_irqrestore(&queue->lock, irqflags);
583 return entry;
585 EXPORT_SYMBOL_GPL(rt2x00queue_get_entry);
587 void rt2x00queue_index_inc(struct data_queue *queue, enum queue_index index)
589 unsigned long irqflags;
591 if (unlikely(index >= Q_INDEX_MAX)) {
592 ERROR(queue->rt2x00dev,
593 "Index change on invalid index type (%d)\n", index);
594 return;
597 spin_lock_irqsave(&queue->lock, irqflags);
599 queue->index[index]++;
600 if (queue->index[index] >= queue->limit)
601 queue->index[index] = 0;
603 if (index == Q_INDEX) {
604 queue->length++;
605 } else if (index == Q_INDEX_DONE) {
606 queue->length--;
607 queue->count++;
610 spin_unlock_irqrestore(&queue->lock, irqflags);
613 static void rt2x00queue_reset(struct data_queue *queue)
615 unsigned long irqflags;
617 spin_lock_irqsave(&queue->lock, irqflags);
619 queue->count = 0;
620 queue->length = 0;
621 memset(queue->index, 0, sizeof(queue->index));
623 spin_unlock_irqrestore(&queue->lock, irqflags);
626 void rt2x00queue_stop_queues(struct rt2x00_dev *rt2x00dev)
628 struct data_queue *queue;
630 txall_queue_for_each(rt2x00dev, queue)
631 rt2x00dev->ops->lib->kill_tx_queue(rt2x00dev, queue->qid);
634 void rt2x00queue_init_queues(struct rt2x00_dev *rt2x00dev)
636 struct data_queue *queue;
637 unsigned int i;
639 queue_for_each(rt2x00dev, queue) {
640 rt2x00queue_reset(queue);
642 for (i = 0; i < queue->limit; i++) {
643 queue->entries[i].flags = 0;
645 rt2x00dev->ops->lib->clear_entry(&queue->entries[i]);
650 static int rt2x00queue_alloc_entries(struct data_queue *queue,
651 const struct data_queue_desc *qdesc)
653 struct queue_entry *entries;
654 unsigned int entry_size;
655 unsigned int i;
657 rt2x00queue_reset(queue);
659 queue->limit = qdesc->entry_num;
660 queue->threshold = DIV_ROUND_UP(qdesc->entry_num, 10);
661 queue->data_size = qdesc->data_size;
662 queue->desc_size = qdesc->desc_size;
665 * Allocate all queue entries.
667 entry_size = sizeof(*entries) + qdesc->priv_size;
668 entries = kzalloc(queue->limit * entry_size, GFP_KERNEL);
669 if (!entries)
670 return -ENOMEM;
672 #define QUEUE_ENTRY_PRIV_OFFSET(__base, __index, __limit, __esize, __psize) \
673 ( ((char *)(__base)) + ((__limit) * (__esize)) + \
674 ((__index) * (__psize)) )
676 for (i = 0; i < queue->limit; i++) {
677 entries[i].flags = 0;
678 entries[i].queue = queue;
679 entries[i].skb = NULL;
680 entries[i].entry_idx = i;
681 entries[i].priv_data =
682 QUEUE_ENTRY_PRIV_OFFSET(entries, i, queue->limit,
683 sizeof(*entries), qdesc->priv_size);
686 #undef QUEUE_ENTRY_PRIV_OFFSET
688 queue->entries = entries;
690 return 0;
693 static void rt2x00queue_free_skbs(struct rt2x00_dev *rt2x00dev,
694 struct data_queue *queue)
696 unsigned int i;
698 if (!queue->entries)
699 return;
701 for (i = 0; i < queue->limit; i++) {
702 if (queue->entries[i].skb)
703 rt2x00queue_free_skb(rt2x00dev, queue->entries[i].skb);
707 static int rt2x00queue_alloc_rxskbs(struct rt2x00_dev *rt2x00dev,
708 struct data_queue *queue)
710 unsigned int i;
711 struct sk_buff *skb;
713 for (i = 0; i < queue->limit; i++) {
714 skb = rt2x00queue_alloc_rxskb(rt2x00dev, &queue->entries[i]);
715 if (!skb)
716 return -ENOMEM;
717 queue->entries[i].skb = skb;
720 return 0;
723 int rt2x00queue_initialize(struct rt2x00_dev *rt2x00dev)
725 struct data_queue *queue;
726 int status;
728 status = rt2x00queue_alloc_entries(rt2x00dev->rx, rt2x00dev->ops->rx);
729 if (status)
730 goto exit;
732 tx_queue_for_each(rt2x00dev, queue) {
733 status = rt2x00queue_alloc_entries(queue, rt2x00dev->ops->tx);
734 if (status)
735 goto exit;
738 status = rt2x00queue_alloc_entries(rt2x00dev->bcn, rt2x00dev->ops->bcn);
739 if (status)
740 goto exit;
742 if (test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags)) {
743 status = rt2x00queue_alloc_entries(&rt2x00dev->bcn[1],
744 rt2x00dev->ops->atim);
745 if (status)
746 goto exit;
749 status = rt2x00queue_alloc_rxskbs(rt2x00dev, rt2x00dev->rx);
750 if (status)
751 goto exit;
753 return 0;
755 exit:
756 ERROR(rt2x00dev, "Queue entries allocation failed.\n");
758 rt2x00queue_uninitialize(rt2x00dev);
760 return status;
763 void rt2x00queue_uninitialize(struct rt2x00_dev *rt2x00dev)
765 struct data_queue *queue;
767 rt2x00queue_free_skbs(rt2x00dev, rt2x00dev->rx);
769 queue_for_each(rt2x00dev, queue) {
770 kfree(queue->entries);
771 queue->entries = NULL;
775 static void rt2x00queue_init(struct rt2x00_dev *rt2x00dev,
776 struct data_queue *queue, enum data_queue_qid qid)
778 spin_lock_init(&queue->lock);
780 queue->rt2x00dev = rt2x00dev;
781 queue->qid = qid;
782 queue->txop = 0;
783 queue->aifs = 2;
784 queue->cw_min = 5;
785 queue->cw_max = 10;
788 int rt2x00queue_allocate(struct rt2x00_dev *rt2x00dev)
790 struct data_queue *queue;
791 enum data_queue_qid qid;
792 unsigned int req_atim =
793 !!test_bit(DRIVER_REQUIRE_ATIM_QUEUE, &rt2x00dev->flags);
796 * We need the following queues:
797 * RX: 1
798 * TX: ops->tx_queues
799 * Beacon: 1
800 * Atim: 1 (if required)
802 rt2x00dev->data_queues = 2 + rt2x00dev->ops->tx_queues + req_atim;
804 queue = kzalloc(rt2x00dev->data_queues * sizeof(*queue), GFP_KERNEL);
805 if (!queue) {
806 ERROR(rt2x00dev, "Queue allocation failed.\n");
807 return -ENOMEM;
811 * Initialize pointers
813 rt2x00dev->rx = queue;
814 rt2x00dev->tx = &queue[1];
815 rt2x00dev->bcn = &queue[1 + rt2x00dev->ops->tx_queues];
818 * Initialize queue parameters.
819 * RX: qid = QID_RX
820 * TX: qid = QID_AC_BE + index
821 * TX: cw_min: 2^5 = 32.
822 * TX: cw_max: 2^10 = 1024.
823 * BCN: qid = QID_BEACON
824 * ATIM: qid = QID_ATIM
826 rt2x00queue_init(rt2x00dev, rt2x00dev->rx, QID_RX);
828 qid = QID_AC_BE;
829 tx_queue_for_each(rt2x00dev, queue)
830 rt2x00queue_init(rt2x00dev, queue, qid++);
832 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[0], QID_BEACON);
833 if (req_atim)
834 rt2x00queue_init(rt2x00dev, &rt2x00dev->bcn[1], QID_ATIM);
836 return 0;
839 void rt2x00queue_free(struct rt2x00_dev *rt2x00dev)
841 kfree(rt2x00dev->rx);
842 rt2x00dev->rx = NULL;
843 rt2x00dev->tx = NULL;
844 rt2x00dev->bcn = NULL;