2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file implements most of the debugging stuff which is compiled in only
25 * when it is enabled. But some debugging check functions are implemented in
26 * corresponding subsystem, just because they are closely related and utilize
27 * various local functions of those subsystems.
30 #include <linux/module.h>
31 #include <linux/debugfs.h>
32 #include <linux/math64.h>
33 #include <linux/uaccess.h>
34 #include <linux/random.h>
37 #ifdef CONFIG_UBIFS_FS_DEBUG
39 DEFINE_SPINLOCK(dbg_lock
);
41 static char dbg_key_buf0
[128];
42 static char dbg_key_buf1
[128];
44 static const char *get_key_fmt(int fmt
)
47 case UBIFS_SIMPLE_KEY_FMT
:
50 return "unknown/invalid format";
54 static const char *get_key_hash(int hash
)
57 case UBIFS_KEY_HASH_R5
:
59 case UBIFS_KEY_HASH_TEST
:
62 return "unknown/invalid name hash";
66 static const char *get_key_type(int type
)
80 return "unknown/invalid key";
84 static const char *get_dent_type(int type
)
97 case UBIFS_ITYPE_FIFO
:
99 case UBIFS_ITYPE_SOCK
:
102 return "unknown/invalid type";
106 static void sprintf_key(const struct ubifs_info
*c
, const union ubifs_key
*key
,
110 int type
= key_type(c
, key
);
112 if (c
->key_fmt
== UBIFS_SIMPLE_KEY_FMT
) {
115 sprintf(p
, "(%lu, %s)", (unsigned long)key_inum(c
, key
),
120 sprintf(p
, "(%lu, %s, %#08x)",
121 (unsigned long)key_inum(c
, key
),
122 get_key_type(type
), key_hash(c
, key
));
125 sprintf(p
, "(%lu, %s, %u)",
126 (unsigned long)key_inum(c
, key
),
127 get_key_type(type
), key_block(c
, key
));
130 sprintf(p
, "(%lu, %s)",
131 (unsigned long)key_inum(c
, key
),
135 sprintf(p
, "(bad key type: %#08x, %#08x)",
136 key
->u32
[0], key
->u32
[1]);
139 sprintf(p
, "bad key format %d", c
->key_fmt
);
142 const char *dbg_key_str0(const struct ubifs_info
*c
, const union ubifs_key
*key
)
144 /* dbg_lock must be held */
145 sprintf_key(c
, key
, dbg_key_buf0
);
149 const char *dbg_key_str1(const struct ubifs_info
*c
, const union ubifs_key
*key
)
151 /* dbg_lock must be held */
152 sprintf_key(c
, key
, dbg_key_buf1
);
156 const char *dbg_ntype(int type
)
160 return "padding node";
162 return "superblock node";
164 return "master node";
166 return "reference node";
169 case UBIFS_DENT_NODE
:
170 return "direntry node";
171 case UBIFS_XENT_NODE
:
172 return "xentry node";
173 case UBIFS_DATA_NODE
:
175 case UBIFS_TRUN_NODE
:
176 return "truncate node";
178 return "indexing node";
180 return "commit start node";
181 case UBIFS_ORPH_NODE
:
182 return "orphan node";
184 return "unknown node";
188 static const char *dbg_gtype(int type
)
191 case UBIFS_NO_NODE_GROUP
:
192 return "no node group";
193 case UBIFS_IN_NODE_GROUP
:
194 return "in node group";
195 case UBIFS_LAST_OF_NODE_GROUP
:
196 return "last of node group";
202 const char *dbg_cstate(int cmt_state
)
206 return "commit resting";
207 case COMMIT_BACKGROUND
:
208 return "background commit requested";
209 case COMMIT_REQUIRED
:
210 return "commit required";
211 case COMMIT_RUNNING_BACKGROUND
:
212 return "BACKGROUND commit running";
213 case COMMIT_RUNNING_REQUIRED
:
214 return "commit running and required";
216 return "broken commit";
218 return "unknown commit state";
222 const char *dbg_jhead(int jhead
)
232 return "unknown journal head";
236 static void dump_ch(const struct ubifs_ch
*ch
)
238 printk(KERN_DEBUG
"\tmagic %#x\n", le32_to_cpu(ch
->magic
));
239 printk(KERN_DEBUG
"\tcrc %#x\n", le32_to_cpu(ch
->crc
));
240 printk(KERN_DEBUG
"\tnode_type %d (%s)\n", ch
->node_type
,
241 dbg_ntype(ch
->node_type
));
242 printk(KERN_DEBUG
"\tgroup_type %d (%s)\n", ch
->group_type
,
243 dbg_gtype(ch
->group_type
));
244 printk(KERN_DEBUG
"\tsqnum %llu\n",
245 (unsigned long long)le64_to_cpu(ch
->sqnum
));
246 printk(KERN_DEBUG
"\tlen %u\n", le32_to_cpu(ch
->len
));
249 void dbg_dump_inode(struct ubifs_info
*c
, const struct inode
*inode
)
251 const struct ubifs_inode
*ui
= ubifs_inode(inode
);
252 struct qstr nm
= { .name
= NULL
};
254 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
257 printk(KERN_DEBUG
"Dump in-memory inode:");
258 printk(KERN_DEBUG
"\tinode %lu\n", inode
->i_ino
);
259 printk(KERN_DEBUG
"\tsize %llu\n",
260 (unsigned long long)i_size_read(inode
));
261 printk(KERN_DEBUG
"\tnlink %u\n", inode
->i_nlink
);
262 printk(KERN_DEBUG
"\tuid %u\n", (unsigned int)inode
->i_uid
);
263 printk(KERN_DEBUG
"\tgid %u\n", (unsigned int)inode
->i_gid
);
264 printk(KERN_DEBUG
"\tatime %u.%u\n",
265 (unsigned int)inode
->i_atime
.tv_sec
,
266 (unsigned int)inode
->i_atime
.tv_nsec
);
267 printk(KERN_DEBUG
"\tmtime %u.%u\n",
268 (unsigned int)inode
->i_mtime
.tv_sec
,
269 (unsigned int)inode
->i_mtime
.tv_nsec
);
270 printk(KERN_DEBUG
"\tctime %u.%u\n",
271 (unsigned int)inode
->i_ctime
.tv_sec
,
272 (unsigned int)inode
->i_ctime
.tv_nsec
);
273 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n", ui
->creat_sqnum
);
274 printk(KERN_DEBUG
"\txattr_size %u\n", ui
->xattr_size
);
275 printk(KERN_DEBUG
"\txattr_cnt %u\n", ui
->xattr_cnt
);
276 printk(KERN_DEBUG
"\txattr_names %u\n", ui
->xattr_names
);
277 printk(KERN_DEBUG
"\tdirty %u\n", ui
->dirty
);
278 printk(KERN_DEBUG
"\txattr %u\n", ui
->xattr
);
279 printk(KERN_DEBUG
"\tbulk_read %u\n", ui
->xattr
);
280 printk(KERN_DEBUG
"\tsynced_i_size %llu\n",
281 (unsigned long long)ui
->synced_i_size
);
282 printk(KERN_DEBUG
"\tui_size %llu\n",
283 (unsigned long long)ui
->ui_size
);
284 printk(KERN_DEBUG
"\tflags %d\n", ui
->flags
);
285 printk(KERN_DEBUG
"\tcompr_type %d\n", ui
->compr_type
);
286 printk(KERN_DEBUG
"\tlast_page_read %lu\n", ui
->last_page_read
);
287 printk(KERN_DEBUG
"\tread_in_a_row %lu\n", ui
->read_in_a_row
);
288 printk(KERN_DEBUG
"\tdata_len %d\n", ui
->data_len
);
290 if (!S_ISDIR(inode
->i_mode
))
293 printk(KERN_DEBUG
"List of directory entries:\n");
294 ubifs_assert(!mutex_is_locked(&c
->tnc_mutex
));
296 lowest_dent_key(c
, &key
, inode
->i_ino
);
298 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
300 if (PTR_ERR(dent
) != -ENOENT
)
301 printk(KERN_DEBUG
"error %ld\n", PTR_ERR(dent
));
305 printk(KERN_DEBUG
"\t%d: %s (%s)\n",
306 count
++, dent
->name
, get_dent_type(dent
->type
));
308 nm
.name
= dent
->name
;
309 nm
.len
= le16_to_cpu(dent
->nlen
);
312 key_read(c
, &dent
->key
, &key
);
317 void dbg_dump_node(const struct ubifs_info
*c
, const void *node
)
321 const struct ubifs_ch
*ch
= node
;
323 if (dbg_is_tst_rcvry(c
))
326 /* If the magic is incorrect, just hexdump the first bytes */
327 if (le32_to_cpu(ch
->magic
) != UBIFS_NODE_MAGIC
) {
328 printk(KERN_DEBUG
"Not a node, first %zu bytes:", UBIFS_CH_SZ
);
329 print_hex_dump(KERN_DEBUG
, "", DUMP_PREFIX_OFFSET
, 32, 1,
330 (void *)node
, UBIFS_CH_SZ
, 1);
334 spin_lock(&dbg_lock
);
337 switch (ch
->node_type
) {
340 const struct ubifs_pad_node
*pad
= node
;
342 printk(KERN_DEBUG
"\tpad_len %u\n",
343 le32_to_cpu(pad
->pad_len
));
348 const struct ubifs_sb_node
*sup
= node
;
349 unsigned int sup_flags
= le32_to_cpu(sup
->flags
);
351 printk(KERN_DEBUG
"\tkey_hash %d (%s)\n",
352 (int)sup
->key_hash
, get_key_hash(sup
->key_hash
));
353 printk(KERN_DEBUG
"\tkey_fmt %d (%s)\n",
354 (int)sup
->key_fmt
, get_key_fmt(sup
->key_fmt
));
355 printk(KERN_DEBUG
"\tflags %#x\n", sup_flags
);
356 printk(KERN_DEBUG
"\t big_lpt %u\n",
357 !!(sup_flags
& UBIFS_FLG_BIGLPT
));
358 printk(KERN_DEBUG
"\t space_fixup %u\n",
359 !!(sup_flags
& UBIFS_FLG_SPACE_FIXUP
));
360 printk(KERN_DEBUG
"\tmin_io_size %u\n",
361 le32_to_cpu(sup
->min_io_size
));
362 printk(KERN_DEBUG
"\tleb_size %u\n",
363 le32_to_cpu(sup
->leb_size
));
364 printk(KERN_DEBUG
"\tleb_cnt %u\n",
365 le32_to_cpu(sup
->leb_cnt
));
366 printk(KERN_DEBUG
"\tmax_leb_cnt %u\n",
367 le32_to_cpu(sup
->max_leb_cnt
));
368 printk(KERN_DEBUG
"\tmax_bud_bytes %llu\n",
369 (unsigned long long)le64_to_cpu(sup
->max_bud_bytes
));
370 printk(KERN_DEBUG
"\tlog_lebs %u\n",
371 le32_to_cpu(sup
->log_lebs
));
372 printk(KERN_DEBUG
"\tlpt_lebs %u\n",
373 le32_to_cpu(sup
->lpt_lebs
));
374 printk(KERN_DEBUG
"\torph_lebs %u\n",
375 le32_to_cpu(sup
->orph_lebs
));
376 printk(KERN_DEBUG
"\tjhead_cnt %u\n",
377 le32_to_cpu(sup
->jhead_cnt
));
378 printk(KERN_DEBUG
"\tfanout %u\n",
379 le32_to_cpu(sup
->fanout
));
380 printk(KERN_DEBUG
"\tlsave_cnt %u\n",
381 le32_to_cpu(sup
->lsave_cnt
));
382 printk(KERN_DEBUG
"\tdefault_compr %u\n",
383 (int)le16_to_cpu(sup
->default_compr
));
384 printk(KERN_DEBUG
"\trp_size %llu\n",
385 (unsigned long long)le64_to_cpu(sup
->rp_size
));
386 printk(KERN_DEBUG
"\trp_uid %u\n",
387 le32_to_cpu(sup
->rp_uid
));
388 printk(KERN_DEBUG
"\trp_gid %u\n",
389 le32_to_cpu(sup
->rp_gid
));
390 printk(KERN_DEBUG
"\tfmt_version %u\n",
391 le32_to_cpu(sup
->fmt_version
));
392 printk(KERN_DEBUG
"\ttime_gran %u\n",
393 le32_to_cpu(sup
->time_gran
));
394 printk(KERN_DEBUG
"\tUUID %pUB\n",
400 const struct ubifs_mst_node
*mst
= node
;
402 printk(KERN_DEBUG
"\thighest_inum %llu\n",
403 (unsigned long long)le64_to_cpu(mst
->highest_inum
));
404 printk(KERN_DEBUG
"\tcommit number %llu\n",
405 (unsigned long long)le64_to_cpu(mst
->cmt_no
));
406 printk(KERN_DEBUG
"\tflags %#x\n",
407 le32_to_cpu(mst
->flags
));
408 printk(KERN_DEBUG
"\tlog_lnum %u\n",
409 le32_to_cpu(mst
->log_lnum
));
410 printk(KERN_DEBUG
"\troot_lnum %u\n",
411 le32_to_cpu(mst
->root_lnum
));
412 printk(KERN_DEBUG
"\troot_offs %u\n",
413 le32_to_cpu(mst
->root_offs
));
414 printk(KERN_DEBUG
"\troot_len %u\n",
415 le32_to_cpu(mst
->root_len
));
416 printk(KERN_DEBUG
"\tgc_lnum %u\n",
417 le32_to_cpu(mst
->gc_lnum
));
418 printk(KERN_DEBUG
"\tihead_lnum %u\n",
419 le32_to_cpu(mst
->ihead_lnum
));
420 printk(KERN_DEBUG
"\tihead_offs %u\n",
421 le32_to_cpu(mst
->ihead_offs
));
422 printk(KERN_DEBUG
"\tindex_size %llu\n",
423 (unsigned long long)le64_to_cpu(mst
->index_size
));
424 printk(KERN_DEBUG
"\tlpt_lnum %u\n",
425 le32_to_cpu(mst
->lpt_lnum
));
426 printk(KERN_DEBUG
"\tlpt_offs %u\n",
427 le32_to_cpu(mst
->lpt_offs
));
428 printk(KERN_DEBUG
"\tnhead_lnum %u\n",
429 le32_to_cpu(mst
->nhead_lnum
));
430 printk(KERN_DEBUG
"\tnhead_offs %u\n",
431 le32_to_cpu(mst
->nhead_offs
));
432 printk(KERN_DEBUG
"\tltab_lnum %u\n",
433 le32_to_cpu(mst
->ltab_lnum
));
434 printk(KERN_DEBUG
"\tltab_offs %u\n",
435 le32_to_cpu(mst
->ltab_offs
));
436 printk(KERN_DEBUG
"\tlsave_lnum %u\n",
437 le32_to_cpu(mst
->lsave_lnum
));
438 printk(KERN_DEBUG
"\tlsave_offs %u\n",
439 le32_to_cpu(mst
->lsave_offs
));
440 printk(KERN_DEBUG
"\tlscan_lnum %u\n",
441 le32_to_cpu(mst
->lscan_lnum
));
442 printk(KERN_DEBUG
"\tleb_cnt %u\n",
443 le32_to_cpu(mst
->leb_cnt
));
444 printk(KERN_DEBUG
"\tempty_lebs %u\n",
445 le32_to_cpu(mst
->empty_lebs
));
446 printk(KERN_DEBUG
"\tidx_lebs %u\n",
447 le32_to_cpu(mst
->idx_lebs
));
448 printk(KERN_DEBUG
"\ttotal_free %llu\n",
449 (unsigned long long)le64_to_cpu(mst
->total_free
));
450 printk(KERN_DEBUG
"\ttotal_dirty %llu\n",
451 (unsigned long long)le64_to_cpu(mst
->total_dirty
));
452 printk(KERN_DEBUG
"\ttotal_used %llu\n",
453 (unsigned long long)le64_to_cpu(mst
->total_used
));
454 printk(KERN_DEBUG
"\ttotal_dead %llu\n",
455 (unsigned long long)le64_to_cpu(mst
->total_dead
));
456 printk(KERN_DEBUG
"\ttotal_dark %llu\n",
457 (unsigned long long)le64_to_cpu(mst
->total_dark
));
462 const struct ubifs_ref_node
*ref
= node
;
464 printk(KERN_DEBUG
"\tlnum %u\n",
465 le32_to_cpu(ref
->lnum
));
466 printk(KERN_DEBUG
"\toffs %u\n",
467 le32_to_cpu(ref
->offs
));
468 printk(KERN_DEBUG
"\tjhead %u\n",
469 le32_to_cpu(ref
->jhead
));
474 const struct ubifs_ino_node
*ino
= node
;
476 key_read(c
, &ino
->key
, &key
);
477 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
478 printk(KERN_DEBUG
"\tcreat_sqnum %llu\n",
479 (unsigned long long)le64_to_cpu(ino
->creat_sqnum
));
480 printk(KERN_DEBUG
"\tsize %llu\n",
481 (unsigned long long)le64_to_cpu(ino
->size
));
482 printk(KERN_DEBUG
"\tnlink %u\n",
483 le32_to_cpu(ino
->nlink
));
484 printk(KERN_DEBUG
"\tatime %lld.%u\n",
485 (long long)le64_to_cpu(ino
->atime_sec
),
486 le32_to_cpu(ino
->atime_nsec
));
487 printk(KERN_DEBUG
"\tmtime %lld.%u\n",
488 (long long)le64_to_cpu(ino
->mtime_sec
),
489 le32_to_cpu(ino
->mtime_nsec
));
490 printk(KERN_DEBUG
"\tctime %lld.%u\n",
491 (long long)le64_to_cpu(ino
->ctime_sec
),
492 le32_to_cpu(ino
->ctime_nsec
));
493 printk(KERN_DEBUG
"\tuid %u\n",
494 le32_to_cpu(ino
->uid
));
495 printk(KERN_DEBUG
"\tgid %u\n",
496 le32_to_cpu(ino
->gid
));
497 printk(KERN_DEBUG
"\tmode %u\n",
498 le32_to_cpu(ino
->mode
));
499 printk(KERN_DEBUG
"\tflags %#x\n",
500 le32_to_cpu(ino
->flags
));
501 printk(KERN_DEBUG
"\txattr_cnt %u\n",
502 le32_to_cpu(ino
->xattr_cnt
));
503 printk(KERN_DEBUG
"\txattr_size %u\n",
504 le32_to_cpu(ino
->xattr_size
));
505 printk(KERN_DEBUG
"\txattr_names %u\n",
506 le32_to_cpu(ino
->xattr_names
));
507 printk(KERN_DEBUG
"\tcompr_type %#x\n",
508 (int)le16_to_cpu(ino
->compr_type
));
509 printk(KERN_DEBUG
"\tdata len %u\n",
510 le32_to_cpu(ino
->data_len
));
513 case UBIFS_DENT_NODE
:
514 case UBIFS_XENT_NODE
:
516 const struct ubifs_dent_node
*dent
= node
;
517 int nlen
= le16_to_cpu(dent
->nlen
);
519 key_read(c
, &dent
->key
, &key
);
520 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
521 printk(KERN_DEBUG
"\tinum %llu\n",
522 (unsigned long long)le64_to_cpu(dent
->inum
));
523 printk(KERN_DEBUG
"\ttype %d\n", (int)dent
->type
);
524 printk(KERN_DEBUG
"\tnlen %d\n", nlen
);
525 printk(KERN_DEBUG
"\tname ");
527 if (nlen
> UBIFS_MAX_NLEN
)
528 printk(KERN_DEBUG
"(bad name length, not printing, "
529 "bad or corrupted node)");
531 for (i
= 0; i
< nlen
&& dent
->name
[i
]; i
++)
532 printk(KERN_CONT
"%c", dent
->name
[i
]);
534 printk(KERN_CONT
"\n");
538 case UBIFS_DATA_NODE
:
540 const struct ubifs_data_node
*dn
= node
;
541 int dlen
= le32_to_cpu(ch
->len
) - UBIFS_DATA_NODE_SZ
;
543 key_read(c
, &dn
->key
, &key
);
544 printk(KERN_DEBUG
"\tkey %s\n", DBGKEY(&key
));
545 printk(KERN_DEBUG
"\tsize %u\n",
546 le32_to_cpu(dn
->size
));
547 printk(KERN_DEBUG
"\tcompr_typ %d\n",
548 (int)le16_to_cpu(dn
->compr_type
));
549 printk(KERN_DEBUG
"\tdata size %d\n",
551 printk(KERN_DEBUG
"\tdata:\n");
552 print_hex_dump(KERN_DEBUG
, "\t", DUMP_PREFIX_OFFSET
, 32, 1,
553 (void *)&dn
->data
, dlen
, 0);
556 case UBIFS_TRUN_NODE
:
558 const struct ubifs_trun_node
*trun
= node
;
560 printk(KERN_DEBUG
"\tinum %u\n",
561 le32_to_cpu(trun
->inum
));
562 printk(KERN_DEBUG
"\told_size %llu\n",
563 (unsigned long long)le64_to_cpu(trun
->old_size
));
564 printk(KERN_DEBUG
"\tnew_size %llu\n",
565 (unsigned long long)le64_to_cpu(trun
->new_size
));
570 const struct ubifs_idx_node
*idx
= node
;
572 n
= le16_to_cpu(idx
->child_cnt
);
573 printk(KERN_DEBUG
"\tchild_cnt %d\n", n
);
574 printk(KERN_DEBUG
"\tlevel %d\n",
575 (int)le16_to_cpu(idx
->level
));
576 printk(KERN_DEBUG
"\tBranches:\n");
578 for (i
= 0; i
< n
&& i
< c
->fanout
- 1; i
++) {
579 const struct ubifs_branch
*br
;
581 br
= ubifs_idx_branch(c
, idx
, i
);
582 key_read(c
, &br
->key
, &key
);
583 printk(KERN_DEBUG
"\t%d: LEB %d:%d len %d key %s\n",
584 i
, le32_to_cpu(br
->lnum
), le32_to_cpu(br
->offs
),
585 le32_to_cpu(br
->len
), DBGKEY(&key
));
591 case UBIFS_ORPH_NODE
:
593 const struct ubifs_orph_node
*orph
= node
;
595 printk(KERN_DEBUG
"\tcommit number %llu\n",
597 le64_to_cpu(orph
->cmt_no
) & LLONG_MAX
);
598 printk(KERN_DEBUG
"\tlast node flag %llu\n",
599 (unsigned long long)(le64_to_cpu(orph
->cmt_no
)) >> 63);
600 n
= (le32_to_cpu(ch
->len
) - UBIFS_ORPH_NODE_SZ
) >> 3;
601 printk(KERN_DEBUG
"\t%d orphan inode numbers:\n", n
);
602 for (i
= 0; i
< n
; i
++)
603 printk(KERN_DEBUG
"\t ino %llu\n",
604 (unsigned long long)le64_to_cpu(orph
->inos
[i
]));
608 printk(KERN_DEBUG
"node type %d was not recognized\n",
611 spin_unlock(&dbg_lock
);
614 void dbg_dump_budget_req(const struct ubifs_budget_req
*req
)
616 spin_lock(&dbg_lock
);
617 printk(KERN_DEBUG
"Budgeting request: new_ino %d, dirtied_ino %d\n",
618 req
->new_ino
, req
->dirtied_ino
);
619 printk(KERN_DEBUG
"\tnew_ino_d %d, dirtied_ino_d %d\n",
620 req
->new_ino_d
, req
->dirtied_ino_d
);
621 printk(KERN_DEBUG
"\tnew_page %d, dirtied_page %d\n",
622 req
->new_page
, req
->dirtied_page
);
623 printk(KERN_DEBUG
"\tnew_dent %d, mod_dent %d\n",
624 req
->new_dent
, req
->mod_dent
);
625 printk(KERN_DEBUG
"\tidx_growth %d\n", req
->idx_growth
);
626 printk(KERN_DEBUG
"\tdata_growth %d dd_growth %d\n",
627 req
->data_growth
, req
->dd_growth
);
628 spin_unlock(&dbg_lock
);
631 void dbg_dump_lstats(const struct ubifs_lp_stats
*lst
)
633 spin_lock(&dbg_lock
);
634 printk(KERN_DEBUG
"(pid %d) Lprops statistics: empty_lebs %d, "
635 "idx_lebs %d\n", current
->pid
, lst
->empty_lebs
, lst
->idx_lebs
);
636 printk(KERN_DEBUG
"\ttaken_empty_lebs %d, total_free %lld, "
637 "total_dirty %lld\n", lst
->taken_empty_lebs
, lst
->total_free
,
639 printk(KERN_DEBUG
"\ttotal_used %lld, total_dark %lld, "
640 "total_dead %lld\n", lst
->total_used
, lst
->total_dark
,
642 spin_unlock(&dbg_lock
);
645 void dbg_dump_budg(struct ubifs_info
*c
, const struct ubifs_budg_info
*bi
)
649 struct ubifs_bud
*bud
;
650 struct ubifs_gced_idx_leb
*idx_gc
;
651 long long available
, outstanding
, free
;
653 spin_lock(&c
->space_lock
);
654 spin_lock(&dbg_lock
);
655 printk(KERN_DEBUG
"(pid %d) Budgeting info: data budget sum %lld, "
656 "total budget sum %lld\n", current
->pid
,
657 bi
->data_growth
+ bi
->dd_growth
,
658 bi
->data_growth
+ bi
->dd_growth
+ bi
->idx_growth
);
659 printk(KERN_DEBUG
"\tbudg_data_growth %lld, budg_dd_growth %lld, "
660 "budg_idx_growth %lld\n", bi
->data_growth
, bi
->dd_growth
,
662 printk(KERN_DEBUG
"\tmin_idx_lebs %d, old_idx_sz %llu, "
663 "uncommitted_idx %lld\n", bi
->min_idx_lebs
, bi
->old_idx_sz
,
664 bi
->uncommitted_idx
);
665 printk(KERN_DEBUG
"\tpage_budget %d, inode_budget %d, dent_budget %d\n",
666 bi
->page_budget
, bi
->inode_budget
, bi
->dent_budget
);
667 printk(KERN_DEBUG
"\tnospace %u, nospace_rp %u\n",
668 bi
->nospace
, bi
->nospace_rp
);
669 printk(KERN_DEBUG
"\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
670 c
->dark_wm
, c
->dead_wm
, c
->max_idx_node_sz
);
674 * If we are dumping saved budgeting data, do not print
675 * additional information which is about the current state, not
676 * the old one which corresponded to the saved budgeting data.
680 printk(KERN_DEBUG
"\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
681 c
->freeable_cnt
, c
->calc_idx_sz
, c
->idx_gc_cnt
);
682 printk(KERN_DEBUG
"\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
683 "clean_zn_cnt %ld\n", atomic_long_read(&c
->dirty_pg_cnt
),
684 atomic_long_read(&c
->dirty_zn_cnt
),
685 atomic_long_read(&c
->clean_zn_cnt
));
686 printk(KERN_DEBUG
"\tgc_lnum %d, ihead_lnum %d\n",
687 c
->gc_lnum
, c
->ihead_lnum
);
689 /* If we are in R/O mode, journal heads do not exist */
691 for (i
= 0; i
< c
->jhead_cnt
; i
++)
692 printk(KERN_DEBUG
"\tjhead %s\t LEB %d\n",
693 dbg_jhead(c
->jheads
[i
].wbuf
.jhead
),
694 c
->jheads
[i
].wbuf
.lnum
);
695 for (rb
= rb_first(&c
->buds
); rb
; rb
= rb_next(rb
)) {
696 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
697 printk(KERN_DEBUG
"\tbud LEB %d\n", bud
->lnum
);
699 list_for_each_entry(bud
, &c
->old_buds
, list
)
700 printk(KERN_DEBUG
"\told bud LEB %d\n", bud
->lnum
);
701 list_for_each_entry(idx_gc
, &c
->idx_gc
, list
)
702 printk(KERN_DEBUG
"\tGC'ed idx LEB %d unmap %d\n",
703 idx_gc
->lnum
, idx_gc
->unmap
);
704 printk(KERN_DEBUG
"\tcommit state %d\n", c
->cmt_state
);
706 /* Print budgeting predictions */
707 available
= ubifs_calc_available(c
, c
->bi
.min_idx_lebs
);
708 outstanding
= c
->bi
.data_growth
+ c
->bi
.dd_growth
;
709 free
= ubifs_get_free_space_nolock(c
);
710 printk(KERN_DEBUG
"Budgeting predictions:\n");
711 printk(KERN_DEBUG
"\tavailable: %lld, outstanding %lld, free %lld\n",
712 available
, outstanding
, free
);
714 spin_unlock(&dbg_lock
);
715 spin_unlock(&c
->space_lock
);
718 void dbg_dump_lprop(const struct ubifs_info
*c
, const struct ubifs_lprops
*lp
)
720 int i
, spc
, dark
= 0, dead
= 0;
722 struct ubifs_bud
*bud
;
724 spc
= lp
->free
+ lp
->dirty
;
725 if (spc
< c
->dead_wm
)
728 dark
= ubifs_calc_dark(c
, spc
);
730 if (lp
->flags
& LPROPS_INDEX
)
731 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
732 "free + dirty %-8d flags %#x (", lp
->lnum
, lp
->free
,
733 lp
->dirty
, c
->leb_size
- spc
, spc
, lp
->flags
);
735 printk(KERN_DEBUG
"LEB %-7d free %-8d dirty %-8d used %-8d "
736 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d "
737 "flags %#-4x (", lp
->lnum
, lp
->free
, lp
->dirty
,
738 c
->leb_size
- spc
, spc
, dark
, dead
,
739 (int)(spc
/ UBIFS_MAX_NODE_SZ
), lp
->flags
);
741 if (lp
->flags
& LPROPS_TAKEN
) {
742 if (lp
->flags
& LPROPS_INDEX
)
743 printk(KERN_CONT
"index, taken");
745 printk(KERN_CONT
"taken");
749 if (lp
->flags
& LPROPS_INDEX
) {
750 switch (lp
->flags
& LPROPS_CAT_MASK
) {
751 case LPROPS_DIRTY_IDX
:
754 case LPROPS_FRDI_IDX
:
755 s
= "freeable index";
761 switch (lp
->flags
& LPROPS_CAT_MASK
) {
763 s
= "not categorized";
774 case LPROPS_FREEABLE
:
782 printk(KERN_CONT
"%s", s
);
785 for (rb
= rb_first((struct rb_root
*)&c
->buds
); rb
; rb
= rb_next(rb
)) {
786 bud
= rb_entry(rb
, struct ubifs_bud
, rb
);
787 if (bud
->lnum
== lp
->lnum
) {
789 for (i
= 0; i
< c
->jhead_cnt
; i
++) {
791 * Note, if we are in R/O mode or in the middle
792 * of mounting/re-mounting, the write-buffers do
796 lp
->lnum
== c
->jheads
[i
].wbuf
.lnum
) {
797 printk(KERN_CONT
", jhead %s",
803 printk(KERN_CONT
", bud of jhead %s",
804 dbg_jhead(bud
->jhead
));
807 if (lp
->lnum
== c
->gc_lnum
)
808 printk(KERN_CONT
", GC LEB");
809 printk(KERN_CONT
")\n");
812 void dbg_dump_lprops(struct ubifs_info
*c
)
815 struct ubifs_lprops lp
;
816 struct ubifs_lp_stats lst
;
818 printk(KERN_DEBUG
"(pid %d) start dumping LEB properties\n",
820 ubifs_get_lp_stats(c
, &lst
);
821 dbg_dump_lstats(&lst
);
823 for (lnum
= c
->main_first
; lnum
< c
->leb_cnt
; lnum
++) {
824 err
= ubifs_read_one_lp(c
, lnum
, &lp
);
826 ubifs_err("cannot read lprops for LEB %d", lnum
);
828 dbg_dump_lprop(c
, &lp
);
830 printk(KERN_DEBUG
"(pid %d) finish dumping LEB properties\n",
834 void dbg_dump_lpt_info(struct ubifs_info
*c
)
838 spin_lock(&dbg_lock
);
839 printk(KERN_DEBUG
"(pid %d) dumping LPT information\n", current
->pid
);
840 printk(KERN_DEBUG
"\tlpt_sz: %lld\n", c
->lpt_sz
);
841 printk(KERN_DEBUG
"\tpnode_sz: %d\n", c
->pnode_sz
);
842 printk(KERN_DEBUG
"\tnnode_sz: %d\n", c
->nnode_sz
);
843 printk(KERN_DEBUG
"\tltab_sz: %d\n", c
->ltab_sz
);
844 printk(KERN_DEBUG
"\tlsave_sz: %d\n", c
->lsave_sz
);
845 printk(KERN_DEBUG
"\tbig_lpt: %d\n", c
->big_lpt
);
846 printk(KERN_DEBUG
"\tlpt_hght: %d\n", c
->lpt_hght
);
847 printk(KERN_DEBUG
"\tpnode_cnt: %d\n", c
->pnode_cnt
);
848 printk(KERN_DEBUG
"\tnnode_cnt: %d\n", c
->nnode_cnt
);
849 printk(KERN_DEBUG
"\tdirty_pn_cnt: %d\n", c
->dirty_pn_cnt
);
850 printk(KERN_DEBUG
"\tdirty_nn_cnt: %d\n", c
->dirty_nn_cnt
);
851 printk(KERN_DEBUG
"\tlsave_cnt: %d\n", c
->lsave_cnt
);
852 printk(KERN_DEBUG
"\tspace_bits: %d\n", c
->space_bits
);
853 printk(KERN_DEBUG
"\tlpt_lnum_bits: %d\n", c
->lpt_lnum_bits
);
854 printk(KERN_DEBUG
"\tlpt_offs_bits: %d\n", c
->lpt_offs_bits
);
855 printk(KERN_DEBUG
"\tlpt_spc_bits: %d\n", c
->lpt_spc_bits
);
856 printk(KERN_DEBUG
"\tpcnt_bits: %d\n", c
->pcnt_bits
);
857 printk(KERN_DEBUG
"\tlnum_bits: %d\n", c
->lnum_bits
);
858 printk(KERN_DEBUG
"\tLPT root is at %d:%d\n", c
->lpt_lnum
, c
->lpt_offs
);
859 printk(KERN_DEBUG
"\tLPT head is at %d:%d\n",
860 c
->nhead_lnum
, c
->nhead_offs
);
861 printk(KERN_DEBUG
"\tLPT ltab is at %d:%d\n",
862 c
->ltab_lnum
, c
->ltab_offs
);
864 printk(KERN_DEBUG
"\tLPT lsave is at %d:%d\n",
865 c
->lsave_lnum
, c
->lsave_offs
);
866 for (i
= 0; i
< c
->lpt_lebs
; i
++)
867 printk(KERN_DEBUG
"\tLPT LEB %d free %d dirty %d tgc %d "
868 "cmt %d\n", i
+ c
->lpt_first
, c
->ltab
[i
].free
,
869 c
->ltab
[i
].dirty
, c
->ltab
[i
].tgc
, c
->ltab
[i
].cmt
);
870 spin_unlock(&dbg_lock
);
873 void dbg_dump_leb(const struct ubifs_info
*c
, int lnum
)
875 struct ubifs_scan_leb
*sleb
;
876 struct ubifs_scan_node
*snod
;
879 if (dbg_is_tst_rcvry(c
))
882 printk(KERN_DEBUG
"(pid %d) start dumping LEB %d\n",
885 buf
= __vmalloc(c
->leb_size
, GFP_NOFS
, PAGE_KERNEL
);
887 ubifs_err("cannot allocate memory for dumping LEB %d", lnum
);
891 sleb
= ubifs_scan(c
, lnum
, 0, buf
, 0);
893 ubifs_err("scan error %d", (int)PTR_ERR(sleb
));
897 printk(KERN_DEBUG
"LEB %d has %d nodes ending at %d\n", lnum
,
898 sleb
->nodes_cnt
, sleb
->endpt
);
900 list_for_each_entry(snod
, &sleb
->nodes
, list
) {
902 printk(KERN_DEBUG
"Dumping node at LEB %d:%d len %d\n", lnum
,
903 snod
->offs
, snod
->len
);
904 dbg_dump_node(c
, snod
->node
);
907 printk(KERN_DEBUG
"(pid %d) finish dumping LEB %d\n",
909 ubifs_scan_destroy(sleb
);
916 void dbg_dump_znode(const struct ubifs_info
*c
,
917 const struct ubifs_znode
*znode
)
920 const struct ubifs_zbranch
*zbr
;
922 spin_lock(&dbg_lock
);
924 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
928 printk(KERN_DEBUG
"znode %p, LEB %d:%d len %d parent %p iip %d level %d"
929 " child_cnt %d flags %lx\n", znode
, zbr
->lnum
, zbr
->offs
,
930 zbr
->len
, znode
->parent
, znode
->iip
, znode
->level
,
931 znode
->child_cnt
, znode
->flags
);
933 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
934 spin_unlock(&dbg_lock
);
938 printk(KERN_DEBUG
"zbranches:\n");
939 for (n
= 0; n
< znode
->child_cnt
; n
++) {
940 zbr
= &znode
->zbranch
[n
];
941 if (znode
->level
> 0)
942 printk(KERN_DEBUG
"\t%d: znode %p LEB %d:%d len %d key "
943 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
947 printk(KERN_DEBUG
"\t%d: LNC %p LEB %d:%d len %d key "
948 "%s\n", n
, zbr
->znode
, zbr
->lnum
,
952 spin_unlock(&dbg_lock
);
955 void dbg_dump_heap(struct ubifs_info
*c
, struct ubifs_lpt_heap
*heap
, int cat
)
959 printk(KERN_DEBUG
"(pid %d) start dumping heap cat %d (%d elements)\n",
960 current
->pid
, cat
, heap
->cnt
);
961 for (i
= 0; i
< heap
->cnt
; i
++) {
962 struct ubifs_lprops
*lprops
= heap
->arr
[i
];
964 printk(KERN_DEBUG
"\t%d. LEB %d hpos %d free %d dirty %d "
965 "flags %d\n", i
, lprops
->lnum
, lprops
->hpos
,
966 lprops
->free
, lprops
->dirty
, lprops
->flags
);
968 printk(KERN_DEBUG
"(pid %d) finish dumping heap\n", current
->pid
);
971 void dbg_dump_pnode(struct ubifs_info
*c
, struct ubifs_pnode
*pnode
,
972 struct ubifs_nnode
*parent
, int iip
)
976 printk(KERN_DEBUG
"(pid %d) dumping pnode:\n", current
->pid
);
977 printk(KERN_DEBUG
"\taddress %zx parent %zx cnext %zx\n",
978 (size_t)pnode
, (size_t)parent
, (size_t)pnode
->cnext
);
979 printk(KERN_DEBUG
"\tflags %lu iip %d level %d num %d\n",
980 pnode
->flags
, iip
, pnode
->level
, pnode
->num
);
981 for (i
= 0; i
< UBIFS_LPT_FANOUT
; i
++) {
982 struct ubifs_lprops
*lp
= &pnode
->lprops
[i
];
984 printk(KERN_DEBUG
"\t%d: free %d dirty %d flags %d lnum %d\n",
985 i
, lp
->free
, lp
->dirty
, lp
->flags
, lp
->lnum
);
989 void dbg_dump_tnc(struct ubifs_info
*c
)
991 struct ubifs_znode
*znode
;
994 printk(KERN_DEBUG
"\n");
995 printk(KERN_DEBUG
"(pid %d) start dumping TNC tree\n", current
->pid
);
996 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, NULL
);
997 level
= znode
->level
;
998 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1000 if (level
!= znode
->level
) {
1001 level
= znode
->level
;
1002 printk(KERN_DEBUG
"== Level %d ==\n", level
);
1004 dbg_dump_znode(c
, znode
);
1005 znode
= ubifs_tnc_levelorder_next(c
->zroot
.znode
, znode
);
1007 printk(KERN_DEBUG
"(pid %d) finish dumping TNC tree\n", current
->pid
);
1010 static int dump_znode(struct ubifs_info
*c
, struct ubifs_znode
*znode
,
1013 dbg_dump_znode(c
, znode
);
1018 * dbg_dump_index - dump the on-flash index.
1019 * @c: UBIFS file-system description object
1021 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
1022 * which dumps only in-memory znodes and does not read znodes which from flash.
1024 void dbg_dump_index(struct ubifs_info
*c
)
1026 dbg_walk_index(c
, NULL
, dump_znode
, NULL
);
1030 * dbg_save_space_info - save information about flash space.
1031 * @c: UBIFS file-system description object
1033 * This function saves information about UBIFS free space, dirty space, etc, in
1034 * order to check it later.
1036 void dbg_save_space_info(struct ubifs_info
*c
)
1038 struct ubifs_debug_info
*d
= c
->dbg
;
1041 spin_lock(&c
->space_lock
);
1042 memcpy(&d
->saved_lst
, &c
->lst
, sizeof(struct ubifs_lp_stats
));
1043 memcpy(&d
->saved_bi
, &c
->bi
, sizeof(struct ubifs_budg_info
));
1044 d
->saved_idx_gc_cnt
= c
->idx_gc_cnt
;
1047 * We use a dirty hack here and zero out @c->freeable_cnt, because it
1048 * affects the free space calculations, and UBIFS might not know about
1049 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
1050 * only when we read their lprops, and we do this only lazily, upon the
1051 * need. So at any given point of time @c->freeable_cnt might be not
1054 * Just one example about the issue we hit when we did not zero
1056 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
1057 * amount of free space in @d->saved_free
1058 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
1059 * information from flash, where we cache LEBs from various
1060 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
1061 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
1062 * -> 'ubifs_get_pnode()' -> 'update_cats()'
1063 * -> 'ubifs_add_to_cat()').
1064 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
1066 * 4. We calculate the amount of free space when the re-mount is
1067 * finished in 'dbg_check_space_info()' and it does not match
1070 freeable_cnt
= c
->freeable_cnt
;
1071 c
->freeable_cnt
= 0;
1072 d
->saved_free
= ubifs_get_free_space_nolock(c
);
1073 c
->freeable_cnt
= freeable_cnt
;
1074 spin_unlock(&c
->space_lock
);
1078 * dbg_check_space_info - check flash space information.
1079 * @c: UBIFS file-system description object
1081 * This function compares current flash space information with the information
1082 * which was saved when the 'dbg_save_space_info()' function was called.
1083 * Returns zero if the information has not changed, and %-EINVAL it it has
1086 int dbg_check_space_info(struct ubifs_info
*c
)
1088 struct ubifs_debug_info
*d
= c
->dbg
;
1089 struct ubifs_lp_stats lst
;
1093 spin_lock(&c
->space_lock
);
1094 freeable_cnt
= c
->freeable_cnt
;
1095 c
->freeable_cnt
= 0;
1096 free
= ubifs_get_free_space_nolock(c
);
1097 c
->freeable_cnt
= freeable_cnt
;
1098 spin_unlock(&c
->space_lock
);
1100 if (free
!= d
->saved_free
) {
1101 ubifs_err("free space changed from %lld to %lld",
1102 d
->saved_free
, free
);
1109 ubifs_msg("saved lprops statistics dump");
1110 dbg_dump_lstats(&d
->saved_lst
);
1111 ubifs_msg("saved budgeting info dump");
1112 dbg_dump_budg(c
, &d
->saved_bi
);
1113 ubifs_msg("saved idx_gc_cnt %d", d
->saved_idx_gc_cnt
);
1114 ubifs_msg("current lprops statistics dump");
1115 ubifs_get_lp_stats(c
, &lst
);
1116 dbg_dump_lstats(&lst
);
1117 ubifs_msg("current budgeting info dump");
1118 dbg_dump_budg(c
, &c
->bi
);
1124 * dbg_check_synced_i_size - check synchronized inode size.
1125 * @c: UBIFS file-system description object
1126 * @inode: inode to check
1128 * If inode is clean, synchronized inode size has to be equivalent to current
1129 * inode size. This function has to be called only for locked inodes (@i_mutex
1130 * has to be locked). Returns %0 if synchronized inode size if correct, and
1133 int dbg_check_synced_i_size(const struct ubifs_info
*c
, struct inode
*inode
)
1136 struct ubifs_inode
*ui
= ubifs_inode(inode
);
1138 if (!dbg_is_chk_gen(c
))
1140 if (!S_ISREG(inode
->i_mode
))
1143 mutex_lock(&ui
->ui_mutex
);
1144 spin_lock(&ui
->ui_lock
);
1145 if (ui
->ui_size
!= ui
->synced_i_size
&& !ui
->dirty
) {
1146 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
1147 "is clean", ui
->ui_size
, ui
->synced_i_size
);
1148 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode
->i_ino
,
1149 inode
->i_mode
, i_size_read(inode
));
1153 spin_unlock(&ui
->ui_lock
);
1154 mutex_unlock(&ui
->ui_mutex
);
1159 * dbg_check_dir - check directory inode size and link count.
1160 * @c: UBIFS file-system description object
1161 * @dir: the directory to calculate size for
1162 * @size: the result is returned here
1164 * This function makes sure that directory size and link count are correct.
1165 * Returns zero in case of success and a negative error code in case of
1168 * Note, it is good idea to make sure the @dir->i_mutex is locked before
1169 * calling this function.
1171 int dbg_check_dir(struct ubifs_info
*c
, const struct inode
*dir
)
1173 unsigned int nlink
= 2;
1174 union ubifs_key key
;
1175 struct ubifs_dent_node
*dent
, *pdent
= NULL
;
1176 struct qstr nm
= { .name
= NULL
};
1177 loff_t size
= UBIFS_INO_NODE_SZ
;
1179 if (!dbg_is_chk_gen(c
))
1182 if (!S_ISDIR(dir
->i_mode
))
1185 lowest_dent_key(c
, &key
, dir
->i_ino
);
1189 dent
= ubifs_tnc_next_ent(c
, &key
, &nm
);
1191 err
= PTR_ERR(dent
);
1197 nm
.name
= dent
->name
;
1198 nm
.len
= le16_to_cpu(dent
->nlen
);
1199 size
+= CALC_DENT_SIZE(nm
.len
);
1200 if (dent
->type
== UBIFS_ITYPE_DIR
)
1204 key_read(c
, &dent
->key
, &key
);
1208 if (i_size_read(dir
) != size
) {
1209 ubifs_err("directory inode %lu has size %llu, "
1210 "but calculated size is %llu", dir
->i_ino
,
1211 (unsigned long long)i_size_read(dir
),
1212 (unsigned long long)size
);
1213 dbg_dump_inode(c
, dir
);
1217 if (dir
->i_nlink
!= nlink
) {
1218 ubifs_err("directory inode %lu has nlink %u, but calculated "
1219 "nlink is %u", dir
->i_ino
, dir
->i_nlink
, nlink
);
1220 dbg_dump_inode(c
, dir
);
1229 * dbg_check_key_order - make sure that colliding keys are properly ordered.
1230 * @c: UBIFS file-system description object
1231 * @zbr1: first zbranch
1232 * @zbr2: following zbranch
1234 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1235 * names of the direntries/xentries which are referred by the keys. This
1236 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1237 * sure the name of direntry/xentry referred by @zbr1 is less than
1238 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1239 * and a negative error code in case of failure.
1241 static int dbg_check_key_order(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr1
,
1242 struct ubifs_zbranch
*zbr2
)
1244 int err
, nlen1
, nlen2
, cmp
;
1245 struct ubifs_dent_node
*dent1
, *dent2
;
1246 union ubifs_key key
;
1248 ubifs_assert(!keys_cmp(c
, &zbr1
->key
, &zbr2
->key
));
1249 dent1
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1252 dent2
= kmalloc(UBIFS_MAX_DENT_NODE_SZ
, GFP_NOFS
);
1258 err
= ubifs_tnc_read_node(c
, zbr1
, dent1
);
1261 err
= ubifs_validate_entry(c
, dent1
);
1265 err
= ubifs_tnc_read_node(c
, zbr2
, dent2
);
1268 err
= ubifs_validate_entry(c
, dent2
);
1272 /* Make sure node keys are the same as in zbranch */
1274 key_read(c
, &dent1
->key
, &key
);
1275 if (keys_cmp(c
, &zbr1
->key
, &key
)) {
1276 dbg_err("1st entry at %d:%d has key %s", zbr1
->lnum
,
1277 zbr1
->offs
, DBGKEY(&key
));
1278 dbg_err("but it should have key %s according to tnc",
1279 DBGKEY(&zbr1
->key
));
1280 dbg_dump_node(c
, dent1
);
1284 key_read(c
, &dent2
->key
, &key
);
1285 if (keys_cmp(c
, &zbr2
->key
, &key
)) {
1286 dbg_err("2nd entry at %d:%d has key %s", zbr1
->lnum
,
1287 zbr1
->offs
, DBGKEY(&key
));
1288 dbg_err("but it should have key %s according to tnc",
1289 DBGKEY(&zbr2
->key
));
1290 dbg_dump_node(c
, dent2
);
1294 nlen1
= le16_to_cpu(dent1
->nlen
);
1295 nlen2
= le16_to_cpu(dent2
->nlen
);
1297 cmp
= memcmp(dent1
->name
, dent2
->name
, min_t(int, nlen1
, nlen2
));
1298 if (cmp
< 0 || (cmp
== 0 && nlen1
< nlen2
)) {
1302 if (cmp
== 0 && nlen1
== nlen2
)
1303 dbg_err("2 xent/dent nodes with the same name");
1305 dbg_err("bad order of colliding key %s",
1308 ubifs_msg("first node at %d:%d\n", zbr1
->lnum
, zbr1
->offs
);
1309 dbg_dump_node(c
, dent1
);
1310 ubifs_msg("second node at %d:%d\n", zbr2
->lnum
, zbr2
->offs
);
1311 dbg_dump_node(c
, dent2
);
1320 * dbg_check_znode - check if znode is all right.
1321 * @c: UBIFS file-system description object
1322 * @zbr: zbranch which points to this znode
1324 * This function makes sure that znode referred to by @zbr is all right.
1325 * Returns zero if it is, and %-EINVAL if it is not.
1327 static int dbg_check_znode(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
)
1329 struct ubifs_znode
*znode
= zbr
->znode
;
1330 struct ubifs_znode
*zp
= znode
->parent
;
1333 if (znode
->child_cnt
<= 0 || znode
->child_cnt
> c
->fanout
) {
1337 if (znode
->level
< 0) {
1341 if (znode
->iip
< 0 || znode
->iip
>= c
->fanout
) {
1347 /* Only dirty zbranch may have no on-flash nodes */
1348 if (!ubifs_zn_dirty(znode
)) {
1353 if (ubifs_zn_dirty(znode
)) {
1355 * If znode is dirty, its parent has to be dirty as well. The
1356 * order of the operation is important, so we have to have
1360 if (zp
&& !ubifs_zn_dirty(zp
)) {
1362 * The dirty flag is atomic and is cleared outside the
1363 * TNC mutex, so znode's dirty flag may now have
1364 * been cleared. The child is always cleared before the
1365 * parent, so we just need to check again.
1368 if (ubifs_zn_dirty(znode
)) {
1376 const union ubifs_key
*min
, *max
;
1378 if (znode
->level
!= zp
->level
- 1) {
1383 /* Make sure the 'parent' pointer in our znode is correct */
1384 err
= ubifs_search_zbranch(c
, zp
, &zbr
->key
, &n
);
1386 /* This zbranch does not exist in the parent */
1391 if (znode
->iip
>= zp
->child_cnt
) {
1396 if (znode
->iip
!= n
) {
1397 /* This may happen only in case of collisions */
1398 if (keys_cmp(c
, &zp
->zbranch
[n
].key
,
1399 &zp
->zbranch
[znode
->iip
].key
)) {
1407 * Make sure that the first key in our znode is greater than or
1408 * equal to the key in the pointing zbranch.
1411 cmp
= keys_cmp(c
, min
, &znode
->zbranch
[0].key
);
1417 if (n
+ 1 < zp
->child_cnt
) {
1418 max
= &zp
->zbranch
[n
+ 1].key
;
1421 * Make sure the last key in our znode is less or
1422 * equivalent than the key in the zbranch which goes
1423 * after our pointing zbranch.
1425 cmp
= keys_cmp(c
, max
,
1426 &znode
->zbranch
[znode
->child_cnt
- 1].key
);
1433 /* This may only be root znode */
1434 if (zbr
!= &c
->zroot
) {
1441 * Make sure that next key is greater or equivalent then the previous
1444 for (n
= 1; n
< znode
->child_cnt
; n
++) {
1445 cmp
= keys_cmp(c
, &znode
->zbranch
[n
- 1].key
,
1446 &znode
->zbranch
[n
].key
);
1452 /* This can only be keys with colliding hash */
1453 if (!is_hash_key(c
, &znode
->zbranch
[n
].key
)) {
1458 if (znode
->level
!= 0 || c
->replaying
)
1462 * Colliding keys should follow binary order of
1463 * corresponding xentry/dentry names.
1465 err
= dbg_check_key_order(c
, &znode
->zbranch
[n
- 1],
1466 &znode
->zbranch
[n
]);
1476 for (n
= 0; n
< znode
->child_cnt
; n
++) {
1477 if (!znode
->zbranch
[n
].znode
&&
1478 (znode
->zbranch
[n
].lnum
== 0 ||
1479 znode
->zbranch
[n
].len
== 0)) {
1484 if (znode
->zbranch
[n
].lnum
!= 0 &&
1485 znode
->zbranch
[n
].len
== 0) {
1490 if (znode
->zbranch
[n
].lnum
== 0 &&
1491 znode
->zbranch
[n
].len
!= 0) {
1496 if (znode
->zbranch
[n
].lnum
== 0 &&
1497 znode
->zbranch
[n
].offs
!= 0) {
1502 if (znode
->level
!= 0 && znode
->zbranch
[n
].znode
)
1503 if (znode
->zbranch
[n
].znode
->parent
!= znode
) {
1512 ubifs_err("failed, error %d", err
);
1513 ubifs_msg("dump of the znode");
1514 dbg_dump_znode(c
, znode
);
1516 ubifs_msg("dump of the parent znode");
1517 dbg_dump_znode(c
, zp
);
1524 * dbg_check_tnc - check TNC tree.
1525 * @c: UBIFS file-system description object
1526 * @extra: do extra checks that are possible at start commit
1528 * This function traverses whole TNC tree and checks every znode. Returns zero
1529 * if everything is all right and %-EINVAL if something is wrong with TNC.
1531 int dbg_check_tnc(struct ubifs_info
*c
, int extra
)
1533 struct ubifs_znode
*znode
;
1534 long clean_cnt
= 0, dirty_cnt
= 0;
1537 if (!dbg_is_chk_index(c
))
1540 ubifs_assert(mutex_is_locked(&c
->tnc_mutex
));
1541 if (!c
->zroot
.znode
)
1544 znode
= ubifs_tnc_postorder_first(c
->zroot
.znode
);
1546 struct ubifs_znode
*prev
;
1547 struct ubifs_zbranch
*zbr
;
1552 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1554 err
= dbg_check_znode(c
, zbr
);
1559 if (ubifs_zn_dirty(znode
))
1566 znode
= ubifs_tnc_postorder_next(znode
);
1571 * If the last key of this znode is equivalent to the first key
1572 * of the next znode (collision), then check order of the keys.
1574 last
= prev
->child_cnt
- 1;
1575 if (prev
->level
== 0 && znode
->level
== 0 && !c
->replaying
&&
1576 !keys_cmp(c
, &prev
->zbranch
[last
].key
,
1577 &znode
->zbranch
[0].key
)) {
1578 err
= dbg_check_key_order(c
, &prev
->zbranch
[last
],
1579 &znode
->zbranch
[0]);
1583 ubifs_msg("first znode");
1584 dbg_dump_znode(c
, prev
);
1585 ubifs_msg("second znode");
1586 dbg_dump_znode(c
, znode
);
1593 if (clean_cnt
!= atomic_long_read(&c
->clean_zn_cnt
)) {
1594 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1595 atomic_long_read(&c
->clean_zn_cnt
),
1599 if (dirty_cnt
!= atomic_long_read(&c
->dirty_zn_cnt
)) {
1600 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1601 atomic_long_read(&c
->dirty_zn_cnt
),
1611 * dbg_walk_index - walk the on-flash index.
1612 * @c: UBIFS file-system description object
1613 * @leaf_cb: called for each leaf node
1614 * @znode_cb: called for each indexing node
1615 * @priv: private data which is passed to callbacks
1617 * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1618 * node and @znode_cb for each indexing node. Returns zero in case of success
1619 * and a negative error code in case of failure.
1621 * It would be better if this function removed every znode it pulled to into
1622 * the TNC, so that the behavior more closely matched the non-debugging
1625 int dbg_walk_index(struct ubifs_info
*c
, dbg_leaf_callback leaf_cb
,
1626 dbg_znode_callback znode_cb
, void *priv
)
1629 struct ubifs_zbranch
*zbr
;
1630 struct ubifs_znode
*znode
, *child
;
1632 mutex_lock(&c
->tnc_mutex
);
1633 /* If the root indexing node is not in TNC - pull it */
1634 if (!c
->zroot
.znode
) {
1635 c
->zroot
.znode
= ubifs_load_znode(c
, &c
->zroot
, NULL
, 0);
1636 if (IS_ERR(c
->zroot
.znode
)) {
1637 err
= PTR_ERR(c
->zroot
.znode
);
1638 c
->zroot
.znode
= NULL
;
1644 * We are going to traverse the indexing tree in the postorder manner.
1645 * Go down and find the leftmost indexing node where we are going to
1648 znode
= c
->zroot
.znode
;
1649 while (znode
->level
> 0) {
1650 zbr
= &znode
->zbranch
[0];
1653 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1654 if (IS_ERR(child
)) {
1655 err
= PTR_ERR(child
);
1664 /* Iterate over all indexing nodes */
1671 err
= znode_cb(c
, znode
, priv
);
1673 ubifs_err("znode checking function returned "
1675 dbg_dump_znode(c
, znode
);
1679 if (leaf_cb
&& znode
->level
== 0) {
1680 for (idx
= 0; idx
< znode
->child_cnt
; idx
++) {
1681 zbr
= &znode
->zbranch
[idx
];
1682 err
= leaf_cb(c
, zbr
, priv
);
1684 ubifs_err("leaf checking function "
1685 "returned error %d, for leaf "
1687 err
, zbr
->lnum
, zbr
->offs
);
1696 idx
= znode
->iip
+ 1;
1697 znode
= znode
->parent
;
1698 if (idx
< znode
->child_cnt
) {
1699 /* Switch to the next index in the parent */
1700 zbr
= &znode
->zbranch
[idx
];
1703 child
= ubifs_load_znode(c
, zbr
, znode
, idx
);
1704 if (IS_ERR(child
)) {
1705 err
= PTR_ERR(child
);
1713 * This is the last child, switch to the parent and
1718 /* Go to the lowest leftmost znode in the new sub-tree */
1719 while (znode
->level
> 0) {
1720 zbr
= &znode
->zbranch
[0];
1723 child
= ubifs_load_znode(c
, zbr
, znode
, 0);
1724 if (IS_ERR(child
)) {
1725 err
= PTR_ERR(child
);
1734 mutex_unlock(&c
->tnc_mutex
);
1739 zbr
= &znode
->parent
->zbranch
[znode
->iip
];
1742 ubifs_msg("dump of znode at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
1743 dbg_dump_znode(c
, znode
);
1745 mutex_unlock(&c
->tnc_mutex
);
1750 * add_size - add znode size to partially calculated index size.
1751 * @c: UBIFS file-system description object
1752 * @znode: znode to add size for
1753 * @priv: partially calculated index size
1755 * This is a helper function for 'dbg_check_idx_size()' which is called for
1756 * every indexing node and adds its size to the 'long long' variable pointed to
1759 static int add_size(struct ubifs_info
*c
, struct ubifs_znode
*znode
, void *priv
)
1761 long long *idx_size
= priv
;
1764 add
= ubifs_idx_node_sz(c
, znode
->child_cnt
);
1765 add
= ALIGN(add
, 8);
1771 * dbg_check_idx_size - check index size.
1772 * @c: UBIFS file-system description object
1773 * @idx_size: size to check
1775 * This function walks the UBIFS index, calculates its size and checks that the
1776 * size is equivalent to @idx_size. Returns zero in case of success and a
1777 * negative error code in case of failure.
1779 int dbg_check_idx_size(struct ubifs_info
*c
, long long idx_size
)
1784 if (!dbg_is_chk_index(c
))
1787 err
= dbg_walk_index(c
, NULL
, add_size
, &calc
);
1789 ubifs_err("error %d while walking the index", err
);
1793 if (calc
!= idx_size
) {
1794 ubifs_err("index size check failed: calculated size is %lld, "
1795 "should be %lld", calc
, idx_size
);
1804 * struct fsck_inode - information about an inode used when checking the file-system.
1805 * @rb: link in the RB-tree of inodes
1806 * @inum: inode number
1807 * @mode: inode type, permissions, etc
1808 * @nlink: inode link count
1809 * @xattr_cnt: count of extended attributes
1810 * @references: how many directory/xattr entries refer this inode (calculated
1811 * while walking the index)
1812 * @calc_cnt: for directory inode count of child directories
1813 * @size: inode size (read from on-flash inode)
1814 * @xattr_sz: summary size of all extended attributes (read from on-flash
1816 * @calc_sz: for directories calculated directory size
1817 * @calc_xcnt: count of extended attributes
1818 * @calc_xsz: calculated summary size of all extended attributes
1819 * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1820 * inode (read from on-flash inode)
1821 * @calc_xnms: calculated sum of lengths of all extended attribute names
1828 unsigned int xattr_cnt
;
1832 unsigned int xattr_sz
;
1834 long long calc_xcnt
;
1836 unsigned int xattr_nms
;
1837 long long calc_xnms
;
1841 * struct fsck_data - private FS checking information.
1842 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1845 struct rb_root inodes
;
1849 * add_inode - add inode information to RB-tree of inodes.
1850 * @c: UBIFS file-system description object
1851 * @fsckd: FS checking information
1852 * @ino: raw UBIFS inode to add
1854 * This is a helper function for 'check_leaf()' which adds information about
1855 * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1856 * case of success and a negative error code in case of failure.
1858 static struct fsck_inode
*add_inode(struct ubifs_info
*c
,
1859 struct fsck_data
*fsckd
,
1860 struct ubifs_ino_node
*ino
)
1862 struct rb_node
**p
, *parent
= NULL
;
1863 struct fsck_inode
*fscki
;
1864 ino_t inum
= key_inum_flash(c
, &ino
->key
);
1865 struct inode
*inode
;
1866 struct ubifs_inode
*ui
;
1868 p
= &fsckd
->inodes
.rb_node
;
1871 fscki
= rb_entry(parent
, struct fsck_inode
, rb
);
1872 if (inum
< fscki
->inum
)
1874 else if (inum
> fscki
->inum
)
1875 p
= &(*p
)->rb_right
;
1880 if (inum
> c
->highest_inum
) {
1881 ubifs_err("too high inode number, max. is %lu",
1882 (unsigned long)c
->highest_inum
);
1883 return ERR_PTR(-EINVAL
);
1886 fscki
= kzalloc(sizeof(struct fsck_inode
), GFP_NOFS
);
1888 return ERR_PTR(-ENOMEM
);
1890 inode
= ilookup(c
->vfs_sb
, inum
);
1894 * If the inode is present in the VFS inode cache, use it instead of
1895 * the on-flash inode which might be out-of-date. E.g., the size might
1896 * be out-of-date. If we do not do this, the following may happen, for
1898 * 1. A power cut happens
1899 * 2. We mount the file-system R/O, the replay process fixes up the
1900 * inode size in the VFS cache, but on on-flash.
1901 * 3. 'check_leaf()' fails because it hits a data node beyond inode
1905 fscki
->nlink
= le32_to_cpu(ino
->nlink
);
1906 fscki
->size
= le64_to_cpu(ino
->size
);
1907 fscki
->xattr_cnt
= le32_to_cpu(ino
->xattr_cnt
);
1908 fscki
->xattr_sz
= le32_to_cpu(ino
->xattr_size
);
1909 fscki
->xattr_nms
= le32_to_cpu(ino
->xattr_names
);
1910 fscki
->mode
= le32_to_cpu(ino
->mode
);
1912 ui
= ubifs_inode(inode
);
1913 fscki
->nlink
= inode
->i_nlink
;
1914 fscki
->size
= inode
->i_size
;
1915 fscki
->xattr_cnt
= ui
->xattr_cnt
;
1916 fscki
->xattr_sz
= ui
->xattr_size
;
1917 fscki
->xattr_nms
= ui
->xattr_names
;
1918 fscki
->mode
= inode
->i_mode
;
1922 if (S_ISDIR(fscki
->mode
)) {
1923 fscki
->calc_sz
= UBIFS_INO_NODE_SZ
;
1924 fscki
->calc_cnt
= 2;
1927 rb_link_node(&fscki
->rb
, parent
, p
);
1928 rb_insert_color(&fscki
->rb
, &fsckd
->inodes
);
1934 * search_inode - search inode in the RB-tree of inodes.
1935 * @fsckd: FS checking information
1936 * @inum: inode number to search
1938 * This is a helper function for 'check_leaf()' which searches inode @inum in
1939 * the RB-tree of inodes and returns an inode information pointer or %NULL if
1940 * the inode was not found.
1942 static struct fsck_inode
*search_inode(struct fsck_data
*fsckd
, ino_t inum
)
1945 struct fsck_inode
*fscki
;
1947 p
= fsckd
->inodes
.rb_node
;
1949 fscki
= rb_entry(p
, struct fsck_inode
, rb
);
1950 if (inum
< fscki
->inum
)
1952 else if (inum
> fscki
->inum
)
1961 * read_add_inode - read inode node and add it to RB-tree of inodes.
1962 * @c: UBIFS file-system description object
1963 * @fsckd: FS checking information
1964 * @inum: inode number to read
1966 * This is a helper function for 'check_leaf()' which finds inode node @inum in
1967 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1968 * information pointer in case of success and a negative error code in case of
1971 static struct fsck_inode
*read_add_inode(struct ubifs_info
*c
,
1972 struct fsck_data
*fsckd
, ino_t inum
)
1975 union ubifs_key key
;
1976 struct ubifs_znode
*znode
;
1977 struct ubifs_zbranch
*zbr
;
1978 struct ubifs_ino_node
*ino
;
1979 struct fsck_inode
*fscki
;
1981 fscki
= search_inode(fsckd
, inum
);
1985 ino_key_init(c
, &key
, inum
);
1986 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
1988 ubifs_err("inode %lu not found in index", (unsigned long)inum
);
1989 return ERR_PTR(-ENOENT
);
1990 } else if (err
< 0) {
1991 ubifs_err("error %d while looking up inode %lu",
1992 err
, (unsigned long)inum
);
1993 return ERR_PTR(err
);
1996 zbr
= &znode
->zbranch
[n
];
1997 if (zbr
->len
< UBIFS_INO_NODE_SZ
) {
1998 ubifs_err("bad node %lu node length %d",
1999 (unsigned long)inum
, zbr
->len
);
2000 return ERR_PTR(-EINVAL
);
2003 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2005 return ERR_PTR(-ENOMEM
);
2007 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2009 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2010 zbr
->lnum
, zbr
->offs
, err
);
2012 return ERR_PTR(err
);
2015 fscki
= add_inode(c
, fsckd
, ino
);
2017 if (IS_ERR(fscki
)) {
2018 ubifs_err("error %ld while adding inode %lu node",
2019 PTR_ERR(fscki
), (unsigned long)inum
);
2027 * check_leaf - check leaf node.
2028 * @c: UBIFS file-system description object
2029 * @zbr: zbranch of the leaf node to check
2030 * @priv: FS checking information
2032 * This is a helper function for 'dbg_check_filesystem()' which is called for
2033 * every single leaf node while walking the indexing tree. It checks that the
2034 * leaf node referred from the indexing tree exists, has correct CRC, and does
2035 * some other basic validation. This function is also responsible for building
2036 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
2037 * calculates reference count, size, etc for each inode in order to later
2038 * compare them to the information stored inside the inodes and detect possible
2039 * inconsistencies. Returns zero in case of success and a negative error code
2040 * in case of failure.
2042 static int check_leaf(struct ubifs_info
*c
, struct ubifs_zbranch
*zbr
,
2047 struct ubifs_ch
*ch
;
2048 int err
, type
= key_type(c
, &zbr
->key
);
2049 struct fsck_inode
*fscki
;
2051 if (zbr
->len
< UBIFS_CH_SZ
) {
2052 ubifs_err("bad leaf length %d (LEB %d:%d)",
2053 zbr
->len
, zbr
->lnum
, zbr
->offs
);
2057 node
= kmalloc(zbr
->len
, GFP_NOFS
);
2061 err
= ubifs_tnc_read_node(c
, zbr
, node
);
2063 ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
2064 zbr
->lnum
, zbr
->offs
, err
);
2068 /* If this is an inode node, add it to RB-tree of inodes */
2069 if (type
== UBIFS_INO_KEY
) {
2070 fscki
= add_inode(c
, priv
, node
);
2071 if (IS_ERR(fscki
)) {
2072 err
= PTR_ERR(fscki
);
2073 ubifs_err("error %d while adding inode node", err
);
2079 if (type
!= UBIFS_DENT_KEY
&& type
!= UBIFS_XENT_KEY
&&
2080 type
!= UBIFS_DATA_KEY
) {
2081 ubifs_err("unexpected node type %d at LEB %d:%d",
2082 type
, zbr
->lnum
, zbr
->offs
);
2088 if (le64_to_cpu(ch
->sqnum
) > c
->max_sqnum
) {
2089 ubifs_err("too high sequence number, max. is %llu",
2095 if (type
== UBIFS_DATA_KEY
) {
2097 struct ubifs_data_node
*dn
= node
;
2100 * Search the inode node this data node belongs to and insert
2101 * it to the RB-tree of inodes.
2103 inum
= key_inum_flash(c
, &dn
->key
);
2104 fscki
= read_add_inode(c
, priv
, inum
);
2105 if (IS_ERR(fscki
)) {
2106 err
= PTR_ERR(fscki
);
2107 ubifs_err("error %d while processing data node and "
2108 "trying to find inode node %lu",
2109 err
, (unsigned long)inum
);
2113 /* Make sure the data node is within inode size */
2114 blk_offs
= key_block_flash(c
, &dn
->key
);
2115 blk_offs
<<= UBIFS_BLOCK_SHIFT
;
2116 blk_offs
+= le32_to_cpu(dn
->size
);
2117 if (blk_offs
> fscki
->size
) {
2118 ubifs_err("data node at LEB %d:%d is not within inode "
2119 "size %lld", zbr
->lnum
, zbr
->offs
,
2126 struct ubifs_dent_node
*dent
= node
;
2127 struct fsck_inode
*fscki1
;
2129 err
= ubifs_validate_entry(c
, dent
);
2134 * Search the inode node this entry refers to and the parent
2135 * inode node and insert them to the RB-tree of inodes.
2137 inum
= le64_to_cpu(dent
->inum
);
2138 fscki
= read_add_inode(c
, priv
, inum
);
2139 if (IS_ERR(fscki
)) {
2140 err
= PTR_ERR(fscki
);
2141 ubifs_err("error %d while processing entry node and "
2142 "trying to find inode node %lu",
2143 err
, (unsigned long)inum
);
2147 /* Count how many direntries or xentries refers this inode */
2148 fscki
->references
+= 1;
2150 inum
= key_inum_flash(c
, &dent
->key
);
2151 fscki1
= read_add_inode(c
, priv
, inum
);
2152 if (IS_ERR(fscki1
)) {
2153 err
= PTR_ERR(fscki1
);
2154 ubifs_err("error %d while processing entry node and "
2155 "trying to find parent inode node %lu",
2156 err
, (unsigned long)inum
);
2160 nlen
= le16_to_cpu(dent
->nlen
);
2161 if (type
== UBIFS_XENT_KEY
) {
2162 fscki1
->calc_xcnt
+= 1;
2163 fscki1
->calc_xsz
+= CALC_DENT_SIZE(nlen
);
2164 fscki1
->calc_xsz
+= CALC_XATTR_BYTES(fscki
->size
);
2165 fscki1
->calc_xnms
+= nlen
;
2167 fscki1
->calc_sz
+= CALC_DENT_SIZE(nlen
);
2168 if (dent
->type
== UBIFS_ITYPE_DIR
)
2169 fscki1
->calc_cnt
+= 1;
2178 ubifs_msg("dump of node at LEB %d:%d", zbr
->lnum
, zbr
->offs
);
2179 dbg_dump_node(c
, node
);
2186 * free_inodes - free RB-tree of inodes.
2187 * @fsckd: FS checking information
2189 static void free_inodes(struct fsck_data
*fsckd
)
2191 struct rb_node
*this = fsckd
->inodes
.rb_node
;
2192 struct fsck_inode
*fscki
;
2196 this = this->rb_left
;
2197 else if (this->rb_right
)
2198 this = this->rb_right
;
2200 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2201 this = rb_parent(this);
2203 if (this->rb_left
== &fscki
->rb
)
2204 this->rb_left
= NULL
;
2206 this->rb_right
= NULL
;
2214 * check_inodes - checks all inodes.
2215 * @c: UBIFS file-system description object
2216 * @fsckd: FS checking information
2218 * This is a helper function for 'dbg_check_filesystem()' which walks the
2219 * RB-tree of inodes after the index scan has been finished, and checks that
2220 * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2221 * %-EINVAL if not, and a negative error code in case of failure.
2223 static int check_inodes(struct ubifs_info
*c
, struct fsck_data
*fsckd
)
2226 union ubifs_key key
;
2227 struct ubifs_znode
*znode
;
2228 struct ubifs_zbranch
*zbr
;
2229 struct ubifs_ino_node
*ino
;
2230 struct fsck_inode
*fscki
;
2231 struct rb_node
*this = rb_first(&fsckd
->inodes
);
2234 fscki
= rb_entry(this, struct fsck_inode
, rb
);
2235 this = rb_next(this);
2237 if (S_ISDIR(fscki
->mode
)) {
2239 * Directories have to have exactly one reference (they
2240 * cannot have hardlinks), although root inode is an
2243 if (fscki
->inum
!= UBIFS_ROOT_INO
&&
2244 fscki
->references
!= 1) {
2245 ubifs_err("directory inode %lu has %d "
2246 "direntries which refer it, but "
2248 (unsigned long)fscki
->inum
,
2252 if (fscki
->inum
== UBIFS_ROOT_INO
&&
2253 fscki
->references
!= 0) {
2254 ubifs_err("root inode %lu has non-zero (%d) "
2255 "direntries which refer it",
2256 (unsigned long)fscki
->inum
,
2260 if (fscki
->calc_sz
!= fscki
->size
) {
2261 ubifs_err("directory inode %lu size is %lld, "
2262 "but calculated size is %lld",
2263 (unsigned long)fscki
->inum
,
2264 fscki
->size
, fscki
->calc_sz
);
2267 if (fscki
->calc_cnt
!= fscki
->nlink
) {
2268 ubifs_err("directory inode %lu nlink is %d, "
2269 "but calculated nlink is %d",
2270 (unsigned long)fscki
->inum
,
2271 fscki
->nlink
, fscki
->calc_cnt
);
2275 if (fscki
->references
!= fscki
->nlink
) {
2276 ubifs_err("inode %lu nlink is %d, but "
2277 "calculated nlink is %d",
2278 (unsigned long)fscki
->inum
,
2279 fscki
->nlink
, fscki
->references
);
2283 if (fscki
->xattr_sz
!= fscki
->calc_xsz
) {
2284 ubifs_err("inode %lu has xattr size %u, but "
2285 "calculated size is %lld",
2286 (unsigned long)fscki
->inum
, fscki
->xattr_sz
,
2290 if (fscki
->xattr_cnt
!= fscki
->calc_xcnt
) {
2291 ubifs_err("inode %lu has %u xattrs, but "
2292 "calculated count is %lld",
2293 (unsigned long)fscki
->inum
,
2294 fscki
->xattr_cnt
, fscki
->calc_xcnt
);
2297 if (fscki
->xattr_nms
!= fscki
->calc_xnms
) {
2298 ubifs_err("inode %lu has xattr names' size %u, but "
2299 "calculated names' size is %lld",
2300 (unsigned long)fscki
->inum
, fscki
->xattr_nms
,
2309 /* Read the bad inode and dump it */
2310 ino_key_init(c
, &key
, fscki
->inum
);
2311 err
= ubifs_lookup_level0(c
, &key
, &znode
, &n
);
2313 ubifs_err("inode %lu not found in index",
2314 (unsigned long)fscki
->inum
);
2316 } else if (err
< 0) {
2317 ubifs_err("error %d while looking up inode %lu",
2318 err
, (unsigned long)fscki
->inum
);
2322 zbr
= &znode
->zbranch
[n
];
2323 ino
= kmalloc(zbr
->len
, GFP_NOFS
);
2327 err
= ubifs_tnc_read_node(c
, zbr
, ino
);
2329 ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2330 zbr
->lnum
, zbr
->offs
, err
);
2335 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2336 (unsigned long)fscki
->inum
, zbr
->lnum
, zbr
->offs
);
2337 dbg_dump_node(c
, ino
);
2343 * dbg_check_filesystem - check the file-system.
2344 * @c: UBIFS file-system description object
2346 * This function checks the file system, namely:
2347 * o makes sure that all leaf nodes exist and their CRCs are correct;
2348 * o makes sure inode nlink, size, xattr size/count are correct (for all
2351 * The function reads whole indexing tree and all nodes, so it is pretty
2352 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2353 * not, and a negative error code in case of failure.
2355 int dbg_check_filesystem(struct ubifs_info
*c
)
2358 struct fsck_data fsckd
;
2360 if (!dbg_is_chk_fs(c
))
2363 fsckd
.inodes
= RB_ROOT
;
2364 err
= dbg_walk_index(c
, check_leaf
, NULL
, &fsckd
);
2368 err
= check_inodes(c
, &fsckd
);
2372 free_inodes(&fsckd
);
2376 ubifs_err("file-system check failed with error %d", err
);
2378 free_inodes(&fsckd
);
2383 * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2384 * @c: UBIFS file-system description object
2385 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2387 * This function returns zero if the list of data nodes is sorted correctly,
2388 * and %-EINVAL if not.
2390 int dbg_check_data_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2392 struct list_head
*cur
;
2393 struct ubifs_scan_node
*sa
, *sb
;
2395 if (!dbg_is_chk_gen(c
))
2398 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2400 uint32_t blka
, blkb
;
2403 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2404 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2406 if (sa
->type
!= UBIFS_DATA_NODE
) {
2407 ubifs_err("bad node type %d", sa
->type
);
2408 dbg_dump_node(c
, sa
->node
);
2411 if (sb
->type
!= UBIFS_DATA_NODE
) {
2412 ubifs_err("bad node type %d", sb
->type
);
2413 dbg_dump_node(c
, sb
->node
);
2417 inuma
= key_inum(c
, &sa
->key
);
2418 inumb
= key_inum(c
, &sb
->key
);
2422 if (inuma
> inumb
) {
2423 ubifs_err("larger inum %lu goes before inum %lu",
2424 (unsigned long)inuma
, (unsigned long)inumb
);
2428 blka
= key_block(c
, &sa
->key
);
2429 blkb
= key_block(c
, &sb
->key
);
2432 ubifs_err("larger block %u goes before %u", blka
, blkb
);
2436 ubifs_err("two data nodes for the same block");
2444 dbg_dump_node(c
, sa
->node
);
2445 dbg_dump_node(c
, sb
->node
);
2450 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2451 * @c: UBIFS file-system description object
2452 * @head: the list of nodes ('struct ubifs_scan_node' objects)
2454 * This function returns zero if the list of non-data nodes is sorted correctly,
2455 * and %-EINVAL if not.
2457 int dbg_check_nondata_nodes_order(struct ubifs_info
*c
, struct list_head
*head
)
2459 struct list_head
*cur
;
2460 struct ubifs_scan_node
*sa
, *sb
;
2462 if (!dbg_is_chk_gen(c
))
2465 for (cur
= head
->next
; cur
->next
!= head
; cur
= cur
->next
) {
2467 uint32_t hasha
, hashb
;
2470 sa
= container_of(cur
, struct ubifs_scan_node
, list
);
2471 sb
= container_of(cur
->next
, struct ubifs_scan_node
, list
);
2473 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2474 sa
->type
!= UBIFS_XENT_NODE
) {
2475 ubifs_err("bad node type %d", sa
->type
);
2476 dbg_dump_node(c
, sa
->node
);
2479 if (sa
->type
!= UBIFS_INO_NODE
&& sa
->type
!= UBIFS_DENT_NODE
&&
2480 sa
->type
!= UBIFS_XENT_NODE
) {
2481 ubifs_err("bad node type %d", sb
->type
);
2482 dbg_dump_node(c
, sb
->node
);
2486 if (sa
->type
!= UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2487 ubifs_err("non-inode node goes before inode node");
2491 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
!= UBIFS_INO_NODE
)
2494 if (sa
->type
== UBIFS_INO_NODE
&& sb
->type
== UBIFS_INO_NODE
) {
2495 /* Inode nodes are sorted in descending size order */
2496 if (sa
->len
< sb
->len
) {
2497 ubifs_err("smaller inode node goes first");
2504 * This is either a dentry or xentry, which should be sorted in
2505 * ascending (parent ino, hash) order.
2507 inuma
= key_inum(c
, &sa
->key
);
2508 inumb
= key_inum(c
, &sb
->key
);
2512 if (inuma
> inumb
) {
2513 ubifs_err("larger inum %lu goes before inum %lu",
2514 (unsigned long)inuma
, (unsigned long)inumb
);
2518 hasha
= key_block(c
, &sa
->key
);
2519 hashb
= key_block(c
, &sb
->key
);
2521 if (hasha
> hashb
) {
2522 ubifs_err("larger hash %u goes before %u",
2531 ubifs_msg("dumping first node");
2532 dbg_dump_node(c
, sa
->node
);
2533 ubifs_msg("dumping second node");
2534 dbg_dump_node(c
, sb
->node
);
2539 static inline int chance(unsigned int n
, unsigned int out_of
)
2541 return !!((random32() % out_of
) + 1 <= n
);
2545 static int power_cut_emulated(struct ubifs_info
*c
, int lnum
, int write
)
2547 struct ubifs_debug_info
*d
= c
->dbg
;
2549 ubifs_assert(dbg_is_tst_rcvry(c
));
2552 /* First call - decide delay to the power cut */
2554 unsigned long delay
;
2558 /* Fail withing 1 minute */
2559 delay
= random32() % 60000;
2560 d
->pc_timeout
= jiffies
;
2561 d
->pc_timeout
+= msecs_to_jiffies(delay
);
2562 ubifs_warn("failing after %lums", delay
);
2565 delay
= random32() % 10000;
2566 /* Fail within 10000 operations */
2567 d
->pc_cnt_max
= delay
;
2568 ubifs_warn("failing after %lu calls", delay
);
2575 /* Determine if failure delay has expired */
2576 if (d
->pc_delay
== 1 && time_before(jiffies
, d
->pc_timeout
))
2578 if (d
->pc_delay
== 2 && d
->pc_cnt
++ < d
->pc_cnt_max
)
2581 if (lnum
== UBIFS_SB_LNUM
) {
2582 if (write
&& chance(1, 2))
2586 ubifs_warn("failing in super block LEB %d", lnum
);
2587 } else if (lnum
== UBIFS_MST_LNUM
|| lnum
== UBIFS_MST_LNUM
+ 1) {
2590 ubifs_warn("failing in master LEB %d", lnum
);
2591 } else if (lnum
>= UBIFS_LOG_LNUM
&& lnum
<= c
->log_last
) {
2592 if (write
&& chance(99, 100))
2594 if (chance(399, 400))
2596 ubifs_warn("failing in log LEB %d", lnum
);
2597 } else if (lnum
>= c
->lpt_first
&& lnum
<= c
->lpt_last
) {
2598 if (write
&& chance(7, 8))
2602 ubifs_warn("failing in LPT LEB %d", lnum
);
2603 } else if (lnum
>= c
->orph_first
&& lnum
<= c
->orph_last
) {
2604 if (write
&& chance(1, 2))
2608 ubifs_warn("failing in orphan LEB %d", lnum
);
2609 } else if (lnum
== c
->ihead_lnum
) {
2610 if (chance(99, 100))
2612 ubifs_warn("failing in index head LEB %d", lnum
);
2613 } else if (c
->jheads
&& lnum
== c
->jheads
[GCHD
].wbuf
.lnum
) {
2616 ubifs_warn("failing in GC head LEB %d", lnum
);
2617 } else if (write
&& !RB_EMPTY_ROOT(&c
->buds
) &&
2618 !ubifs_search_bud(c
, lnum
)) {
2621 ubifs_warn("failing in non-bud LEB %d", lnum
);
2622 } else if (c
->cmt_state
== COMMIT_RUNNING_BACKGROUND
||
2623 c
->cmt_state
== COMMIT_RUNNING_REQUIRED
) {
2624 if (chance(999, 1000))
2626 ubifs_warn("failing in bud LEB %d commit running", lnum
);
2628 if (chance(9999, 10000))
2630 ubifs_warn("failing in bud LEB %d commit not running", lnum
);
2634 ubifs_warn("========== Power cut emulated ==========");
2639 static void cut_data(const void *buf
, unsigned int len
)
2641 unsigned int from
, to
, i
, ffs
= chance(1, 2);
2642 unsigned char *p
= (void *)buf
;
2644 from
= random32() % (len
+ 1);
2646 to
= random32() % (len
- from
+ 1);
2651 ubifs_warn("filled bytes %u-%u with %s", from
, to
- 1,
2652 ffs
? "0xFFs" : "random data");
2655 for (i
= from
; i
< to
; i
++)
2658 for (i
= from
; i
< to
; i
++)
2659 p
[i
] = random32() % 0x100;
2662 int dbg_leb_write(struct ubifs_info
*c
, int lnum
, const void *buf
,
2663 int offs
, int len
, int dtype
)
2667 if (c
->dbg
->pc_happened
)
2670 failing
= power_cut_emulated(c
, lnum
, 1);
2673 err
= ubi_leb_write(c
->ubi
, lnum
, buf
, offs
, len
, dtype
);
2681 int dbg_leb_change(struct ubifs_info
*c
, int lnum
, const void *buf
,
2686 if (c
->dbg
->pc_happened
)
2688 if (power_cut_emulated(c
, lnum
, 1))
2690 err
= ubi_leb_change(c
->ubi
, lnum
, buf
, len
, dtype
);
2693 if (power_cut_emulated(c
, lnum
, 1))
2698 int dbg_leb_unmap(struct ubifs_info
*c
, int lnum
)
2702 if (c
->dbg
->pc_happened
)
2704 if (power_cut_emulated(c
, lnum
, 0))
2706 err
= ubi_leb_unmap(c
->ubi
, lnum
);
2709 if (power_cut_emulated(c
, lnum
, 0))
2714 int dbg_leb_map(struct ubifs_info
*c
, int lnum
, int dtype
)
2718 if (c
->dbg
->pc_happened
)
2720 if (power_cut_emulated(c
, lnum
, 0))
2722 err
= ubi_leb_map(c
->ubi
, lnum
, dtype
);
2725 if (power_cut_emulated(c
, lnum
, 0))
2731 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2732 * contain the stuff specific to particular file-system mounts.
2734 static struct dentry
*dfs_rootdir
;
2736 static int dfs_file_open(struct inode
*inode
, struct file
*file
)
2738 file
->private_data
= inode
->i_private
;
2739 return nonseekable_open(inode
, file
);
2743 * provide_user_output - provide output to the user reading a debugfs file.
2744 * @val: boolean value for the answer
2745 * @u: the buffer to store the answer at
2746 * @count: size of the buffer
2747 * @ppos: position in the @u output buffer
2749 * This is a simple helper function which stores @val boolean value in the user
2750 * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2751 * bytes written to @u in case of success and a negative error code in case of
2754 static int provide_user_output(int val
, char __user
*u
, size_t count
,
2766 return simple_read_from_buffer(u
, count
, ppos
, buf
, 2);
2769 static ssize_t
dfs_file_read(struct file
*file
, char __user
*u
, size_t count
,
2772 struct dentry
*dent
= file
->f_path
.dentry
;
2773 struct ubifs_info
*c
= file
->private_data
;
2774 struct ubifs_debug_info
*d
= c
->dbg
;
2777 if (dent
== d
->dfs_chk_gen
)
2779 else if (dent
== d
->dfs_chk_index
)
2781 else if (dent
== d
->dfs_chk_orph
)
2783 else if (dent
== d
->dfs_chk_lprops
)
2784 val
= d
->chk_lprops
;
2785 else if (dent
== d
->dfs_chk_fs
)
2787 else if (dent
== d
->dfs_tst_rcvry
)
2792 return provide_user_output(val
, u
, count
, ppos
);
2796 * interpret_user_input - interpret user debugfs file input.
2797 * @u: user-provided buffer with the input
2798 * @count: buffer size
2800 * This is a helper function which interpret user input to a boolean UBIFS
2801 * debugfs file. Returns %0 or %1 in case of success and a negative error code
2802 * in case of failure.
2804 static int interpret_user_input(const char __user
*u
, size_t count
)
2809 buf_size
= min_t(size_t, count
, (sizeof(buf
) - 1));
2810 if (copy_from_user(buf
, u
, buf_size
))
2815 else if (buf
[0] == '0')
2821 static ssize_t
dfs_file_write(struct file
*file
, const char __user
*u
,
2822 size_t count
, loff_t
*ppos
)
2824 struct ubifs_info
*c
= file
->private_data
;
2825 struct ubifs_debug_info
*d
= c
->dbg
;
2826 struct dentry
*dent
= file
->f_path
.dentry
;
2830 * TODO: this is racy - the file-system might have already been
2831 * unmounted and we'd oops in this case. The plan is to fix it with
2832 * help of 'iterate_supers_type()' which we should have in v3.0: when
2833 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2834 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2835 * superblocks and fine the one with the same UUID, and take the
2838 * The other way to go suggested by Al Viro is to create a separate
2839 * 'ubifs-debug' file-system instead.
2841 if (file
->f_path
.dentry
== d
->dfs_dump_lprops
) {
2845 if (file
->f_path
.dentry
== d
->dfs_dump_budg
) {
2846 dbg_dump_budg(c
, &c
->bi
);
2849 if (file
->f_path
.dentry
== d
->dfs_dump_tnc
) {
2850 mutex_lock(&c
->tnc_mutex
);
2852 mutex_unlock(&c
->tnc_mutex
);
2856 val
= interpret_user_input(u
, count
);
2860 if (dent
== d
->dfs_chk_gen
)
2862 else if (dent
== d
->dfs_chk_index
)
2864 else if (dent
== d
->dfs_chk_orph
)
2866 else if (dent
== d
->dfs_chk_lprops
)
2867 d
->chk_lprops
= val
;
2868 else if (dent
== d
->dfs_chk_fs
)
2870 else if (dent
== d
->dfs_tst_rcvry
)
2878 static const struct file_operations dfs_fops
= {
2879 .open
= dfs_file_open
,
2880 .read
= dfs_file_read
,
2881 .write
= dfs_file_write
,
2882 .owner
= THIS_MODULE
,
2883 .llseek
= no_llseek
,
2887 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2888 * @c: UBIFS file-system description object
2890 * This function creates all debugfs files for this instance of UBIFS. Returns
2891 * zero in case of success and a negative error code in case of failure.
2893 * Note, the only reason we have not merged this function with the
2894 * 'ubifs_debugging_init()' function is because it is better to initialize
2895 * debugfs interfaces at the very end of the mount process, and remove them at
2896 * the very beginning of the mount process.
2898 int dbg_debugfs_init_fs(struct ubifs_info
*c
)
2902 struct dentry
*dent
;
2903 struct ubifs_debug_info
*d
= c
->dbg
;
2905 n
= snprintf(d
->dfs_dir_name
, UBIFS_DFS_DIR_LEN
+ 1, UBIFS_DFS_DIR_NAME
,
2906 c
->vi
.ubi_num
, c
->vi
.vol_id
);
2907 if (n
== UBIFS_DFS_DIR_LEN
) {
2908 /* The array size is too small */
2909 fname
= UBIFS_DFS_DIR_NAME
;
2910 dent
= ERR_PTR(-EINVAL
);
2914 fname
= d
->dfs_dir_name
;
2915 dent
= debugfs_create_dir(fname
, dfs_rootdir
);
2916 if (IS_ERR_OR_NULL(dent
))
2920 fname
= "dump_lprops";
2921 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2922 if (IS_ERR_OR_NULL(dent
))
2924 d
->dfs_dump_lprops
= dent
;
2926 fname
= "dump_budg";
2927 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2928 if (IS_ERR_OR_NULL(dent
))
2930 d
->dfs_dump_budg
= dent
;
2933 dent
= debugfs_create_file(fname
, S_IWUSR
, d
->dfs_dir
, c
, &dfs_fops
);
2934 if (IS_ERR_OR_NULL(dent
))
2936 d
->dfs_dump_tnc
= dent
;
2938 fname
= "chk_general";
2939 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2941 if (IS_ERR_OR_NULL(dent
))
2943 d
->dfs_chk_gen
= dent
;
2945 fname
= "chk_index";
2946 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2948 if (IS_ERR_OR_NULL(dent
))
2950 d
->dfs_chk_index
= dent
;
2952 fname
= "chk_orphans";
2953 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2955 if (IS_ERR_OR_NULL(dent
))
2957 d
->dfs_chk_orph
= dent
;
2959 fname
= "chk_lprops";
2960 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2962 if (IS_ERR_OR_NULL(dent
))
2964 d
->dfs_chk_lprops
= dent
;
2967 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2969 if (IS_ERR_OR_NULL(dent
))
2971 d
->dfs_chk_fs
= dent
;
2973 fname
= "tst_recovery";
2974 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, d
->dfs_dir
, c
,
2976 if (IS_ERR_OR_NULL(dent
))
2978 d
->dfs_tst_rcvry
= dent
;
2983 debugfs_remove_recursive(d
->dfs_dir
);
2985 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
2986 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
2992 * dbg_debugfs_exit_fs - remove all debugfs files.
2993 * @c: UBIFS file-system description object
2995 void dbg_debugfs_exit_fs(struct ubifs_info
*c
)
2997 debugfs_remove_recursive(c
->dbg
->dfs_dir
);
3000 struct ubifs_global_debug_info ubifs_dbg
;
3002 static struct dentry
*dfs_chk_gen
;
3003 static struct dentry
*dfs_chk_index
;
3004 static struct dentry
*dfs_chk_orph
;
3005 static struct dentry
*dfs_chk_lprops
;
3006 static struct dentry
*dfs_chk_fs
;
3007 static struct dentry
*dfs_tst_rcvry
;
3009 static ssize_t
dfs_global_file_read(struct file
*file
, char __user
*u
,
3010 size_t count
, loff_t
*ppos
)
3012 struct dentry
*dent
= file
->f_path
.dentry
;
3015 if (dent
== dfs_chk_gen
)
3016 val
= ubifs_dbg
.chk_gen
;
3017 else if (dent
== dfs_chk_index
)
3018 val
= ubifs_dbg
.chk_index
;
3019 else if (dent
== dfs_chk_orph
)
3020 val
= ubifs_dbg
.chk_orph
;
3021 else if (dent
== dfs_chk_lprops
)
3022 val
= ubifs_dbg
.chk_lprops
;
3023 else if (dent
== dfs_chk_fs
)
3024 val
= ubifs_dbg
.chk_fs
;
3025 else if (dent
== dfs_tst_rcvry
)
3026 val
= ubifs_dbg
.tst_rcvry
;
3030 return provide_user_output(val
, u
, count
, ppos
);
3033 static ssize_t
dfs_global_file_write(struct file
*file
, const char __user
*u
,
3034 size_t count
, loff_t
*ppos
)
3036 struct dentry
*dent
= file
->f_path
.dentry
;
3039 val
= interpret_user_input(u
, count
);
3043 if (dent
== dfs_chk_gen
)
3044 ubifs_dbg
.chk_gen
= val
;
3045 else if (dent
== dfs_chk_index
)
3046 ubifs_dbg
.chk_index
= val
;
3047 else if (dent
== dfs_chk_orph
)
3048 ubifs_dbg
.chk_orph
= val
;
3049 else if (dent
== dfs_chk_lprops
)
3050 ubifs_dbg
.chk_lprops
= val
;
3051 else if (dent
== dfs_chk_fs
)
3052 ubifs_dbg
.chk_fs
= val
;
3053 else if (dent
== dfs_tst_rcvry
)
3054 ubifs_dbg
.tst_rcvry
= val
;
3061 static const struct file_operations dfs_global_fops
= {
3062 .read
= dfs_global_file_read
,
3063 .write
= dfs_global_file_write
,
3064 .owner
= THIS_MODULE
,
3065 .llseek
= no_llseek
,
3069 * dbg_debugfs_init - initialize debugfs file-system.
3071 * UBIFS uses debugfs file-system to expose various debugging knobs to
3072 * user-space. This function creates "ubifs" directory in the debugfs
3073 * file-system. Returns zero in case of success and a negative error code in
3076 int dbg_debugfs_init(void)
3080 struct dentry
*dent
;
3083 dent
= debugfs_create_dir(fname
, NULL
);
3084 if (IS_ERR_OR_NULL(dent
))
3088 fname
= "chk_general";
3089 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3091 if (IS_ERR_OR_NULL(dent
))
3095 fname
= "chk_index";
3096 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3098 if (IS_ERR_OR_NULL(dent
))
3100 dfs_chk_index
= dent
;
3102 fname
= "chk_orphans";
3103 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3105 if (IS_ERR_OR_NULL(dent
))
3107 dfs_chk_orph
= dent
;
3109 fname
= "chk_lprops";
3110 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3112 if (IS_ERR_OR_NULL(dent
))
3114 dfs_chk_lprops
= dent
;
3117 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3119 if (IS_ERR_OR_NULL(dent
))
3123 fname
= "tst_recovery";
3124 dent
= debugfs_create_file(fname
, S_IRUSR
| S_IWUSR
, dfs_rootdir
, NULL
,
3126 if (IS_ERR_OR_NULL(dent
))
3128 dfs_tst_rcvry
= dent
;
3133 debugfs_remove_recursive(dfs_rootdir
);
3135 err
= dent
? PTR_ERR(dent
) : -ENODEV
;
3136 ubifs_err("cannot create \"%s\" debugfs file or directory, error %d\n",
3142 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
3144 void dbg_debugfs_exit(void)
3146 debugfs_remove_recursive(dfs_rootdir
);
3150 * ubifs_debugging_init - initialize UBIFS debugging.
3151 * @c: UBIFS file-system description object
3153 * This function initializes debugging-related data for the file system.
3154 * Returns zero in case of success and a negative error code in case of
3157 int ubifs_debugging_init(struct ubifs_info
*c
)
3159 c
->dbg
= kzalloc(sizeof(struct ubifs_debug_info
), GFP_KERNEL
);
3167 * ubifs_debugging_exit - free debugging data.
3168 * @c: UBIFS file-system description object
3170 void ubifs_debugging_exit(struct ubifs_info
*c
)
3175 #endif /* CONFIG_UBIFS_FS_DEBUG */