mtd: OneNAND: OMAP2/3: add support for command line partitioning
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / swapfile.c
blob67ddaaf98c744d9e7febe38b0cbdd9cabb55c5b1
1 /*
2 * linux/mm/swapfile.c
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
8 #include <linux/mm.h>
9 #include <linux/hugetlb.h>
10 #include <linux/mman.h>
11 #include <linux/slab.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/swap.h>
14 #include <linux/vmalloc.h>
15 #include <linux/pagemap.h>
16 #include <linux/namei.h>
17 #include <linux/shm.h>
18 #include <linux/blkdev.h>
19 #include <linux/random.h>
20 #include <linux/writeback.h>
21 #include <linux/proc_fs.h>
22 #include <linux/seq_file.h>
23 #include <linux/init.h>
24 #include <linux/module.h>
25 #include <linux/ksm.h>
26 #include <linux/rmap.h>
27 #include <linux/security.h>
28 #include <linux/backing-dev.h>
29 #include <linux/mutex.h>
30 #include <linux/capability.h>
31 #include <linux/syscalls.h>
32 #include <linux/memcontrol.h>
33 #include <linux/poll.h>
35 #include <asm/pgtable.h>
36 #include <asm/tlbflush.h>
37 #include <linux/swapops.h>
38 #include <linux/page_cgroup.h>
40 static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
41 unsigned char);
42 static void free_swap_count_continuations(struct swap_info_struct *);
43 static sector_t map_swap_entry(swp_entry_t, struct block_device**);
45 static DEFINE_SPINLOCK(swap_lock);
46 static unsigned int nr_swapfiles;
47 long nr_swap_pages;
48 long total_swap_pages;
49 static int least_priority;
51 static const char Bad_file[] = "Bad swap file entry ";
52 static const char Unused_file[] = "Unused swap file entry ";
53 static const char Bad_offset[] = "Bad swap offset entry ";
54 static const char Unused_offset[] = "Unused swap offset entry ";
56 static struct swap_list_t swap_list = {-1, -1};
58 static struct swap_info_struct *swap_info[MAX_SWAPFILES];
60 static DEFINE_MUTEX(swapon_mutex);
62 static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
63 /* Activity counter to indicate that a swapon or swapoff has occurred */
64 static atomic_t proc_poll_event = ATOMIC_INIT(0);
66 static inline unsigned char swap_count(unsigned char ent)
68 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
71 /* returns 1 if swap entry is freed */
72 static int
73 __try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
75 swp_entry_t entry = swp_entry(si->type, offset);
76 struct page *page;
77 int ret = 0;
79 page = find_get_page(&swapper_space, entry.val);
80 if (!page)
81 return 0;
83 * This function is called from scan_swap_map() and it's called
84 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
85 * We have to use trylock for avoiding deadlock. This is a special
86 * case and you should use try_to_free_swap() with explicit lock_page()
87 * in usual operations.
89 if (trylock_page(page)) {
90 ret = try_to_free_swap(page);
91 unlock_page(page);
93 page_cache_release(page);
94 return ret;
98 * We need this because the bdev->unplug_fn can sleep and we cannot
99 * hold swap_lock while calling the unplug_fn. And swap_lock
100 * cannot be turned into a mutex.
102 static DECLARE_RWSEM(swap_unplug_sem);
104 void swap_unplug_io_fn(struct backing_dev_info *unused_bdi, struct page *page)
106 swp_entry_t entry;
108 down_read(&swap_unplug_sem);
109 entry.val = page_private(page);
110 if (PageSwapCache(page)) {
111 struct block_device *bdev = swap_info[swp_type(entry)]->bdev;
112 struct backing_dev_info *bdi;
115 * If the page is removed from swapcache from under us (with a
116 * racy try_to_unuse/swapoff) we need an additional reference
117 * count to avoid reading garbage from page_private(page) above.
118 * If the WARN_ON triggers during a swapoff it maybe the race
119 * condition and it's harmless. However if it triggers without
120 * swapoff it signals a problem.
122 WARN_ON(page_count(page) <= 1);
124 bdi = bdev->bd_inode->i_mapping->backing_dev_info;
125 blk_run_backing_dev(bdi, page);
127 up_read(&swap_unplug_sem);
131 * swapon tell device that all the old swap contents can be discarded,
132 * to allow the swap device to optimize its wear-levelling.
134 static int discard_swap(struct swap_info_struct *si)
136 struct swap_extent *se;
137 sector_t start_block;
138 sector_t nr_blocks;
139 int err = 0;
141 /* Do not discard the swap header page! */
142 se = &si->first_swap_extent;
143 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
144 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
145 if (nr_blocks) {
146 err = blkdev_issue_discard(si->bdev, start_block,
147 nr_blocks, GFP_KERNEL, 0);
148 if (err)
149 return err;
150 cond_resched();
153 list_for_each_entry(se, &si->first_swap_extent.list, list) {
154 start_block = se->start_block << (PAGE_SHIFT - 9);
155 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
157 err = blkdev_issue_discard(si->bdev, start_block,
158 nr_blocks, GFP_KERNEL, 0);
159 if (err)
160 break;
162 cond_resched();
164 return err; /* That will often be -EOPNOTSUPP */
168 * swap allocation tell device that a cluster of swap can now be discarded,
169 * to allow the swap device to optimize its wear-levelling.
171 static void discard_swap_cluster(struct swap_info_struct *si,
172 pgoff_t start_page, pgoff_t nr_pages)
174 struct swap_extent *se = si->curr_swap_extent;
175 int found_extent = 0;
177 while (nr_pages) {
178 struct list_head *lh;
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
184 sector_t nr_blocks = se->nr_pages - offset;
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
191 if (!found_extent++)
192 si->curr_swap_extent = se;
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
197 nr_blocks, GFP_NOIO, 0))
198 break;
201 lh = se->list.next;
202 se = list_entry(lh, struct swap_extent, list);
206 static int wait_for_discard(void *word)
208 schedule();
209 return 0;
212 #define SWAPFILE_CLUSTER 256
213 #define LATENCY_LIMIT 256
215 static inline unsigned long scan_swap_map(struct swap_info_struct *si,
216 unsigned char usage)
218 unsigned long offset;
219 unsigned long scan_base;
220 unsigned long last_in_cluster = 0;
221 int latency_ration = LATENCY_LIMIT;
222 int found_free_cluster = 0;
225 * We try to cluster swap pages by allocating them sequentially
226 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
227 * way, however, we resort to first-free allocation, starting
228 * a new cluster. This prevents us from scattering swap pages
229 * all over the entire swap partition, so that we reduce
230 * overall disk seek times between swap pages. -- sct
231 * But we do now try to find an empty cluster. -Andrea
232 * And we let swap pages go all over an SSD partition. Hugh
235 si->flags += SWP_SCANNING;
236 scan_base = offset = si->cluster_next;
238 if (unlikely(!si->cluster_nr--)) {
239 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
240 si->cluster_nr = SWAPFILE_CLUSTER - 1;
241 goto checks;
243 if (si->flags & SWP_DISCARDABLE) {
245 * Start range check on racing allocations, in case
246 * they overlap the cluster we eventually decide on
247 * (we scan without swap_lock to allow preemption).
248 * It's hardly conceivable that cluster_nr could be
249 * wrapped during our scan, but don't depend on it.
251 if (si->lowest_alloc)
252 goto checks;
253 si->lowest_alloc = si->max;
254 si->highest_alloc = 0;
256 spin_unlock(&swap_lock);
259 * If seek is expensive, start searching for new cluster from
260 * start of partition, to minimize the span of allocated swap.
261 * But if seek is cheap, search from our current position, so
262 * that swap is allocated from all over the partition: if the
263 * Flash Translation Layer only remaps within limited zones,
264 * we don't want to wear out the first zone too quickly.
266 if (!(si->flags & SWP_SOLIDSTATE))
267 scan_base = offset = si->lowest_bit;
268 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
270 /* Locate the first empty (unaligned) cluster */
271 for (; last_in_cluster <= si->highest_bit; offset++) {
272 if (si->swap_map[offset])
273 last_in_cluster = offset + SWAPFILE_CLUSTER;
274 else if (offset == last_in_cluster) {
275 spin_lock(&swap_lock);
276 offset -= SWAPFILE_CLUSTER - 1;
277 si->cluster_next = offset;
278 si->cluster_nr = SWAPFILE_CLUSTER - 1;
279 found_free_cluster = 1;
280 goto checks;
282 if (unlikely(--latency_ration < 0)) {
283 cond_resched();
284 latency_ration = LATENCY_LIMIT;
288 offset = si->lowest_bit;
289 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
291 /* Locate the first empty (unaligned) cluster */
292 for (; last_in_cluster < scan_base; offset++) {
293 if (si->swap_map[offset])
294 last_in_cluster = offset + SWAPFILE_CLUSTER;
295 else if (offset == last_in_cluster) {
296 spin_lock(&swap_lock);
297 offset -= SWAPFILE_CLUSTER - 1;
298 si->cluster_next = offset;
299 si->cluster_nr = SWAPFILE_CLUSTER - 1;
300 found_free_cluster = 1;
301 goto checks;
303 if (unlikely(--latency_ration < 0)) {
304 cond_resched();
305 latency_ration = LATENCY_LIMIT;
309 offset = scan_base;
310 spin_lock(&swap_lock);
311 si->cluster_nr = SWAPFILE_CLUSTER - 1;
312 si->lowest_alloc = 0;
315 checks:
316 if (!(si->flags & SWP_WRITEOK))
317 goto no_page;
318 if (!si->highest_bit)
319 goto no_page;
320 if (offset > si->highest_bit)
321 scan_base = offset = si->lowest_bit;
323 /* reuse swap entry of cache-only swap if not busy. */
324 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
325 int swap_was_freed;
326 spin_unlock(&swap_lock);
327 swap_was_freed = __try_to_reclaim_swap(si, offset);
328 spin_lock(&swap_lock);
329 /* entry was freed successfully, try to use this again */
330 if (swap_was_freed)
331 goto checks;
332 goto scan; /* check next one */
335 if (si->swap_map[offset])
336 goto scan;
338 if (offset == si->lowest_bit)
339 si->lowest_bit++;
340 if (offset == si->highest_bit)
341 si->highest_bit--;
342 si->inuse_pages++;
343 if (si->inuse_pages == si->pages) {
344 si->lowest_bit = si->max;
345 si->highest_bit = 0;
347 si->swap_map[offset] = usage;
348 si->cluster_next = offset + 1;
349 si->flags -= SWP_SCANNING;
351 if (si->lowest_alloc) {
353 * Only set when SWP_DISCARDABLE, and there's a scan
354 * for a free cluster in progress or just completed.
356 if (found_free_cluster) {
358 * To optimize wear-levelling, discard the
359 * old data of the cluster, taking care not to
360 * discard any of its pages that have already
361 * been allocated by racing tasks (offset has
362 * already stepped over any at the beginning).
364 if (offset < si->highest_alloc &&
365 si->lowest_alloc <= last_in_cluster)
366 last_in_cluster = si->lowest_alloc - 1;
367 si->flags |= SWP_DISCARDING;
368 spin_unlock(&swap_lock);
370 if (offset < last_in_cluster)
371 discard_swap_cluster(si, offset,
372 last_in_cluster - offset + 1);
374 spin_lock(&swap_lock);
375 si->lowest_alloc = 0;
376 si->flags &= ~SWP_DISCARDING;
378 smp_mb(); /* wake_up_bit advises this */
379 wake_up_bit(&si->flags, ilog2(SWP_DISCARDING));
381 } else if (si->flags & SWP_DISCARDING) {
383 * Delay using pages allocated by racing tasks
384 * until the whole discard has been issued. We
385 * could defer that delay until swap_writepage,
386 * but it's easier to keep this self-contained.
388 spin_unlock(&swap_lock);
389 wait_on_bit(&si->flags, ilog2(SWP_DISCARDING),
390 wait_for_discard, TASK_UNINTERRUPTIBLE);
391 spin_lock(&swap_lock);
392 } else {
394 * Note pages allocated by racing tasks while
395 * scan for a free cluster is in progress, so
396 * that its final discard can exclude them.
398 if (offset < si->lowest_alloc)
399 si->lowest_alloc = offset;
400 if (offset > si->highest_alloc)
401 si->highest_alloc = offset;
404 return offset;
406 scan:
407 spin_unlock(&swap_lock);
408 while (++offset <= si->highest_bit) {
409 if (!si->swap_map[offset]) {
410 spin_lock(&swap_lock);
411 goto checks;
413 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
414 spin_lock(&swap_lock);
415 goto checks;
417 if (unlikely(--latency_ration < 0)) {
418 cond_resched();
419 latency_ration = LATENCY_LIMIT;
422 offset = si->lowest_bit;
423 while (++offset < scan_base) {
424 if (!si->swap_map[offset]) {
425 spin_lock(&swap_lock);
426 goto checks;
428 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
429 spin_lock(&swap_lock);
430 goto checks;
432 if (unlikely(--latency_ration < 0)) {
433 cond_resched();
434 latency_ration = LATENCY_LIMIT;
437 spin_lock(&swap_lock);
439 no_page:
440 si->flags -= SWP_SCANNING;
441 return 0;
444 swp_entry_t get_swap_page(void)
446 struct swap_info_struct *si;
447 pgoff_t offset;
448 int type, next;
449 int wrapped = 0;
451 spin_lock(&swap_lock);
452 if (nr_swap_pages <= 0)
453 goto noswap;
454 nr_swap_pages--;
456 for (type = swap_list.next; type >= 0 && wrapped < 2; type = next) {
457 si = swap_info[type];
458 next = si->next;
459 if (next < 0 ||
460 (!wrapped && si->prio != swap_info[next]->prio)) {
461 next = swap_list.head;
462 wrapped++;
465 if (!si->highest_bit)
466 continue;
467 if (!(si->flags & SWP_WRITEOK))
468 continue;
470 swap_list.next = next;
471 /* This is called for allocating swap entry for cache */
472 offset = scan_swap_map(si, SWAP_HAS_CACHE);
473 if (offset) {
474 spin_unlock(&swap_lock);
475 return swp_entry(type, offset);
477 next = swap_list.next;
480 nr_swap_pages++;
481 noswap:
482 spin_unlock(&swap_lock);
483 return (swp_entry_t) {0};
486 /* The only caller of this function is now susupend routine */
487 swp_entry_t get_swap_page_of_type(int type)
489 struct swap_info_struct *si;
490 pgoff_t offset;
492 spin_lock(&swap_lock);
493 si = swap_info[type];
494 if (si && (si->flags & SWP_WRITEOK)) {
495 nr_swap_pages--;
496 /* This is called for allocating swap entry, not cache */
497 offset = scan_swap_map(si, 1);
498 if (offset) {
499 spin_unlock(&swap_lock);
500 return swp_entry(type, offset);
502 nr_swap_pages++;
504 spin_unlock(&swap_lock);
505 return (swp_entry_t) {0};
508 static struct swap_info_struct *swap_info_get(swp_entry_t entry)
510 struct swap_info_struct *p;
511 unsigned long offset, type;
513 if (!entry.val)
514 goto out;
515 type = swp_type(entry);
516 if (type >= nr_swapfiles)
517 goto bad_nofile;
518 p = swap_info[type];
519 if (!(p->flags & SWP_USED))
520 goto bad_device;
521 offset = swp_offset(entry);
522 if (offset >= p->max)
523 goto bad_offset;
524 if (!p->swap_map[offset])
525 goto bad_free;
526 spin_lock(&swap_lock);
527 return p;
529 bad_free:
530 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_offset, entry.val);
531 goto out;
532 bad_offset:
533 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_offset, entry.val);
534 goto out;
535 bad_device:
536 printk(KERN_ERR "swap_free: %s%08lx\n", Unused_file, entry.val);
537 goto out;
538 bad_nofile:
539 printk(KERN_ERR "swap_free: %s%08lx\n", Bad_file, entry.val);
540 out:
541 return NULL;
544 static unsigned char swap_entry_free(struct swap_info_struct *p,
545 swp_entry_t entry, unsigned char usage)
547 unsigned long offset = swp_offset(entry);
548 unsigned char count;
549 unsigned char has_cache;
551 count = p->swap_map[offset];
552 has_cache = count & SWAP_HAS_CACHE;
553 count &= ~SWAP_HAS_CACHE;
555 if (usage == SWAP_HAS_CACHE) {
556 VM_BUG_ON(!has_cache);
557 has_cache = 0;
558 } else if (count == SWAP_MAP_SHMEM) {
560 * Or we could insist on shmem.c using a special
561 * swap_shmem_free() and free_shmem_swap_and_cache()...
563 count = 0;
564 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
565 if (count == COUNT_CONTINUED) {
566 if (swap_count_continued(p, offset, count))
567 count = SWAP_MAP_MAX | COUNT_CONTINUED;
568 else
569 count = SWAP_MAP_MAX;
570 } else
571 count--;
574 if (!count)
575 mem_cgroup_uncharge_swap(entry);
577 usage = count | has_cache;
578 p->swap_map[offset] = usage;
580 /* free if no reference */
581 if (!usage) {
582 struct gendisk *disk = p->bdev->bd_disk;
583 if (offset < p->lowest_bit)
584 p->lowest_bit = offset;
585 if (offset > p->highest_bit)
586 p->highest_bit = offset;
587 if (swap_list.next >= 0 &&
588 p->prio > swap_info[swap_list.next]->prio)
589 swap_list.next = p->type;
590 nr_swap_pages++;
591 p->inuse_pages--;
592 if ((p->flags & SWP_BLKDEV) &&
593 disk->fops->swap_slot_free_notify)
594 disk->fops->swap_slot_free_notify(p->bdev, offset);
597 return usage;
601 * Caller has made sure that the swapdevice corresponding to entry
602 * is still around or has not been recycled.
604 void swap_free(swp_entry_t entry)
606 struct swap_info_struct *p;
608 p = swap_info_get(entry);
609 if (p) {
610 swap_entry_free(p, entry, 1);
611 spin_unlock(&swap_lock);
616 * Called after dropping swapcache to decrease refcnt to swap entries.
618 void swapcache_free(swp_entry_t entry, struct page *page)
620 struct swap_info_struct *p;
621 unsigned char count;
623 p = swap_info_get(entry);
624 if (p) {
625 count = swap_entry_free(p, entry, SWAP_HAS_CACHE);
626 if (page)
627 mem_cgroup_uncharge_swapcache(page, entry, count != 0);
628 spin_unlock(&swap_lock);
633 * How many references to page are currently swapped out?
634 * This does not give an exact answer when swap count is continued,
635 * but does include the high COUNT_CONTINUED flag to allow for that.
637 static inline int page_swapcount(struct page *page)
639 int count = 0;
640 struct swap_info_struct *p;
641 swp_entry_t entry;
643 entry.val = page_private(page);
644 p = swap_info_get(entry);
645 if (p) {
646 count = swap_count(p->swap_map[swp_offset(entry)]);
647 spin_unlock(&swap_lock);
649 return count;
653 * We can write to an anon page without COW if there are no other references
654 * to it. And as a side-effect, free up its swap: because the old content
655 * on disk will never be read, and seeking back there to write new content
656 * later would only waste time away from clustering.
658 int reuse_swap_page(struct page *page)
660 int count;
662 VM_BUG_ON(!PageLocked(page));
663 if (unlikely(PageKsm(page)))
664 return 0;
665 count = page_mapcount(page);
666 if (count <= 1 && PageSwapCache(page)) {
667 count += page_swapcount(page);
668 if (count == 1 && !PageWriteback(page)) {
669 delete_from_swap_cache(page);
670 SetPageDirty(page);
673 return count <= 1;
677 * If swap is getting full, or if there are no more mappings of this page,
678 * then try_to_free_swap is called to free its swap space.
680 int try_to_free_swap(struct page *page)
682 VM_BUG_ON(!PageLocked(page));
684 if (!PageSwapCache(page))
685 return 0;
686 if (PageWriteback(page))
687 return 0;
688 if (page_swapcount(page))
689 return 0;
692 * Once hibernation has begun to create its image of memory,
693 * there's a danger that one of the calls to try_to_free_swap()
694 * - most probably a call from __try_to_reclaim_swap() while
695 * hibernation is allocating its own swap pages for the image,
696 * but conceivably even a call from memory reclaim - will free
697 * the swap from a page which has already been recorded in the
698 * image as a clean swapcache page, and then reuse its swap for
699 * another page of the image. On waking from hibernation, the
700 * original page might be freed under memory pressure, then
701 * later read back in from swap, now with the wrong data.
703 * Hibernation clears bits from gfp_allowed_mask to prevent
704 * memory reclaim from writing to disk, so check that here.
706 if (!(gfp_allowed_mask & __GFP_IO))
707 return 0;
709 delete_from_swap_cache(page);
710 SetPageDirty(page);
711 return 1;
715 * Free the swap entry like above, but also try to
716 * free the page cache entry if it is the last user.
718 int free_swap_and_cache(swp_entry_t entry)
720 struct swap_info_struct *p;
721 struct page *page = NULL;
723 if (non_swap_entry(entry))
724 return 1;
726 p = swap_info_get(entry);
727 if (p) {
728 if (swap_entry_free(p, entry, 1) == SWAP_HAS_CACHE) {
729 page = find_get_page(&swapper_space, entry.val);
730 if (page && !trylock_page(page)) {
731 page_cache_release(page);
732 page = NULL;
735 spin_unlock(&swap_lock);
737 if (page) {
739 * Not mapped elsewhere, or swap space full? Free it!
740 * Also recheck PageSwapCache now page is locked (above).
742 if (PageSwapCache(page) && !PageWriteback(page) &&
743 (!page_mapped(page) || vm_swap_full())) {
744 delete_from_swap_cache(page);
745 SetPageDirty(page);
747 unlock_page(page);
748 page_cache_release(page);
750 return p != NULL;
753 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
755 * mem_cgroup_count_swap_user - count the user of a swap entry
756 * @ent: the swap entry to be checked
757 * @pagep: the pointer for the swap cache page of the entry to be stored
759 * Returns the number of the user of the swap entry. The number is valid only
760 * for swaps of anonymous pages.
761 * If the entry is found on swap cache, the page is stored to pagep with
762 * refcount of it being incremented.
764 int mem_cgroup_count_swap_user(swp_entry_t ent, struct page **pagep)
766 struct page *page;
767 struct swap_info_struct *p;
768 int count = 0;
770 page = find_get_page(&swapper_space, ent.val);
771 if (page)
772 count += page_mapcount(page);
773 p = swap_info_get(ent);
774 if (p) {
775 count += swap_count(p->swap_map[swp_offset(ent)]);
776 spin_unlock(&swap_lock);
779 *pagep = page;
780 return count;
782 #endif
784 #ifdef CONFIG_HIBERNATION
786 * Find the swap type that corresponds to given device (if any).
788 * @offset - number of the PAGE_SIZE-sized block of the device, starting
789 * from 0, in which the swap header is expected to be located.
791 * This is needed for the suspend to disk (aka swsusp).
793 int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
795 struct block_device *bdev = NULL;
796 int type;
798 if (device)
799 bdev = bdget(device);
801 spin_lock(&swap_lock);
802 for (type = 0; type < nr_swapfiles; type++) {
803 struct swap_info_struct *sis = swap_info[type];
805 if (!(sis->flags & SWP_WRITEOK))
806 continue;
808 if (!bdev) {
809 if (bdev_p)
810 *bdev_p = bdgrab(sis->bdev);
812 spin_unlock(&swap_lock);
813 return type;
815 if (bdev == sis->bdev) {
816 struct swap_extent *se = &sis->first_swap_extent;
818 if (se->start_block == offset) {
819 if (bdev_p)
820 *bdev_p = bdgrab(sis->bdev);
822 spin_unlock(&swap_lock);
823 bdput(bdev);
824 return type;
828 spin_unlock(&swap_lock);
829 if (bdev)
830 bdput(bdev);
832 return -ENODEV;
836 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
837 * corresponding to given index in swap_info (swap type).
839 sector_t swapdev_block(int type, pgoff_t offset)
841 struct block_device *bdev;
843 if ((unsigned int)type >= nr_swapfiles)
844 return 0;
845 if (!(swap_info[type]->flags & SWP_WRITEOK))
846 return 0;
847 return map_swap_entry(swp_entry(type, offset), &bdev);
851 * Return either the total number of swap pages of given type, or the number
852 * of free pages of that type (depending on @free)
854 * This is needed for software suspend
856 unsigned int count_swap_pages(int type, int free)
858 unsigned int n = 0;
860 spin_lock(&swap_lock);
861 if ((unsigned int)type < nr_swapfiles) {
862 struct swap_info_struct *sis = swap_info[type];
864 if (sis->flags & SWP_WRITEOK) {
865 n = sis->pages;
866 if (free)
867 n -= sis->inuse_pages;
870 spin_unlock(&swap_lock);
871 return n;
873 #endif /* CONFIG_HIBERNATION */
876 * No need to decide whether this PTE shares the swap entry with others,
877 * just let do_wp_page work it out if a write is requested later - to
878 * force COW, vm_page_prot omits write permission from any private vma.
880 static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
881 unsigned long addr, swp_entry_t entry, struct page *page)
883 struct mem_cgroup *ptr = NULL;
884 spinlock_t *ptl;
885 pte_t *pte;
886 int ret = 1;
888 if (mem_cgroup_try_charge_swapin(vma->vm_mm, page, GFP_KERNEL, &ptr)) {
889 ret = -ENOMEM;
890 goto out_nolock;
893 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
894 if (unlikely(!pte_same(*pte, swp_entry_to_pte(entry)))) {
895 if (ret > 0)
896 mem_cgroup_cancel_charge_swapin(ptr);
897 ret = 0;
898 goto out;
901 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
902 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
903 get_page(page);
904 set_pte_at(vma->vm_mm, addr, pte,
905 pte_mkold(mk_pte(page, vma->vm_page_prot)));
906 page_add_anon_rmap(page, vma, addr);
907 mem_cgroup_commit_charge_swapin(page, ptr);
908 swap_free(entry);
910 * Move the page to the active list so it is not
911 * immediately swapped out again after swapon.
913 activate_page(page);
914 out:
915 pte_unmap_unlock(pte, ptl);
916 out_nolock:
917 return ret;
920 static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
921 unsigned long addr, unsigned long end,
922 swp_entry_t entry, struct page *page)
924 pte_t swp_pte = swp_entry_to_pte(entry);
925 pte_t *pte;
926 int ret = 0;
929 * We don't actually need pte lock while scanning for swp_pte: since
930 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
931 * page table while we're scanning; though it could get zapped, and on
932 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
933 * of unmatched parts which look like swp_pte, so unuse_pte must
934 * recheck under pte lock. Scanning without pte lock lets it be
935 * preemptible whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
937 pte = pte_offset_map(pmd, addr);
938 do {
940 * swapoff spends a _lot_ of time in this loop!
941 * Test inline before going to call unuse_pte.
943 if (unlikely(pte_same(*pte, swp_pte))) {
944 pte_unmap(pte);
945 ret = unuse_pte(vma, pmd, addr, entry, page);
946 if (ret)
947 goto out;
948 pte = pte_offset_map(pmd, addr);
950 } while (pte++, addr += PAGE_SIZE, addr != end);
951 pte_unmap(pte - 1);
952 out:
953 return ret;
956 static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
957 unsigned long addr, unsigned long end,
958 swp_entry_t entry, struct page *page)
960 pmd_t *pmd;
961 unsigned long next;
962 int ret;
964 pmd = pmd_offset(pud, addr);
965 do {
966 next = pmd_addr_end(addr, end);
967 if (pmd_none_or_clear_bad(pmd))
968 continue;
969 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
970 if (ret)
971 return ret;
972 } while (pmd++, addr = next, addr != end);
973 return 0;
976 static inline int unuse_pud_range(struct vm_area_struct *vma, pgd_t *pgd,
977 unsigned long addr, unsigned long end,
978 swp_entry_t entry, struct page *page)
980 pud_t *pud;
981 unsigned long next;
982 int ret;
984 pud = pud_offset(pgd, addr);
985 do {
986 next = pud_addr_end(addr, end);
987 if (pud_none_or_clear_bad(pud))
988 continue;
989 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
990 if (ret)
991 return ret;
992 } while (pud++, addr = next, addr != end);
993 return 0;
996 static int unuse_vma(struct vm_area_struct *vma,
997 swp_entry_t entry, struct page *page)
999 pgd_t *pgd;
1000 unsigned long addr, end, next;
1001 int ret;
1003 if (page_anon_vma(page)) {
1004 addr = page_address_in_vma(page, vma);
1005 if (addr == -EFAULT)
1006 return 0;
1007 else
1008 end = addr + PAGE_SIZE;
1009 } else {
1010 addr = vma->vm_start;
1011 end = vma->vm_end;
1014 pgd = pgd_offset(vma->vm_mm, addr);
1015 do {
1016 next = pgd_addr_end(addr, end);
1017 if (pgd_none_or_clear_bad(pgd))
1018 continue;
1019 ret = unuse_pud_range(vma, pgd, addr, next, entry, page);
1020 if (ret)
1021 return ret;
1022 } while (pgd++, addr = next, addr != end);
1023 return 0;
1026 static int unuse_mm(struct mm_struct *mm,
1027 swp_entry_t entry, struct page *page)
1029 struct vm_area_struct *vma;
1030 int ret = 0;
1032 if (!down_read_trylock(&mm->mmap_sem)) {
1034 * Activate page so shrink_inactive_list is unlikely to unmap
1035 * its ptes while lock is dropped, so swapoff can make progress.
1037 activate_page(page);
1038 unlock_page(page);
1039 down_read(&mm->mmap_sem);
1040 lock_page(page);
1042 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1043 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1044 break;
1046 up_read(&mm->mmap_sem);
1047 return (ret < 0)? ret: 0;
1051 * Scan swap_map from current position to next entry still in use.
1052 * Recycle to start on reaching the end, returning 0 when empty.
1054 static unsigned int find_next_to_unuse(struct swap_info_struct *si,
1055 unsigned int prev)
1057 unsigned int max = si->max;
1058 unsigned int i = prev;
1059 unsigned char count;
1062 * No need for swap_lock here: we're just looking
1063 * for whether an entry is in use, not modifying it; false
1064 * hits are okay, and sys_swapoff() has already prevented new
1065 * allocations from this area (while holding swap_lock).
1067 for (;;) {
1068 if (++i >= max) {
1069 if (!prev) {
1070 i = 0;
1071 break;
1074 * No entries in use at top of swap_map,
1075 * loop back to start and recheck there.
1077 max = prev + 1;
1078 prev = 0;
1079 i = 1;
1081 count = si->swap_map[i];
1082 if (count && swap_count(count) != SWAP_MAP_BAD)
1083 break;
1085 return i;
1089 * We completely avoid races by reading each swap page in advance,
1090 * and then search for the process using it. All the necessary
1091 * page table adjustments can then be made atomically.
1093 static int try_to_unuse(unsigned int type)
1095 struct swap_info_struct *si = swap_info[type];
1096 struct mm_struct *start_mm;
1097 unsigned char *swap_map;
1098 unsigned char swcount;
1099 struct page *page;
1100 swp_entry_t entry;
1101 unsigned int i = 0;
1102 int retval = 0;
1105 * When searching mms for an entry, a good strategy is to
1106 * start at the first mm we freed the previous entry from
1107 * (though actually we don't notice whether we or coincidence
1108 * freed the entry). Initialize this start_mm with a hold.
1110 * A simpler strategy would be to start at the last mm we
1111 * freed the previous entry from; but that would take less
1112 * advantage of mmlist ordering, which clusters forked mms
1113 * together, child after parent. If we race with dup_mmap(), we
1114 * prefer to resolve parent before child, lest we miss entries
1115 * duplicated after we scanned child: using last mm would invert
1116 * that.
1118 start_mm = &init_mm;
1119 atomic_inc(&init_mm.mm_users);
1122 * Keep on scanning until all entries have gone. Usually,
1123 * one pass through swap_map is enough, but not necessarily:
1124 * there are races when an instance of an entry might be missed.
1126 while ((i = find_next_to_unuse(si, i)) != 0) {
1127 if (signal_pending(current)) {
1128 retval = -EINTR;
1129 break;
1133 * Get a page for the entry, using the existing swap
1134 * cache page if there is one. Otherwise, get a clean
1135 * page and read the swap into it.
1137 swap_map = &si->swap_map[i];
1138 entry = swp_entry(type, i);
1139 page = read_swap_cache_async(entry,
1140 GFP_HIGHUSER_MOVABLE, NULL, 0);
1141 if (!page) {
1143 * Either swap_duplicate() failed because entry
1144 * has been freed independently, and will not be
1145 * reused since sys_swapoff() already disabled
1146 * allocation from here, or alloc_page() failed.
1148 if (!*swap_map)
1149 continue;
1150 retval = -ENOMEM;
1151 break;
1155 * Don't hold on to start_mm if it looks like exiting.
1157 if (atomic_read(&start_mm->mm_users) == 1) {
1158 mmput(start_mm);
1159 start_mm = &init_mm;
1160 atomic_inc(&init_mm.mm_users);
1164 * Wait for and lock page. When do_swap_page races with
1165 * try_to_unuse, do_swap_page can handle the fault much
1166 * faster than try_to_unuse can locate the entry. This
1167 * apparently redundant "wait_on_page_locked" lets try_to_unuse
1168 * defer to do_swap_page in such a case - in some tests,
1169 * do_swap_page and try_to_unuse repeatedly compete.
1171 wait_on_page_locked(page);
1172 wait_on_page_writeback(page);
1173 lock_page(page);
1174 wait_on_page_writeback(page);
1177 * Remove all references to entry.
1179 swcount = *swap_map;
1180 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
1181 retval = shmem_unuse(entry, page);
1182 /* page has already been unlocked and released */
1183 if (retval < 0)
1184 break;
1185 continue;
1187 if (swap_count(swcount) && start_mm != &init_mm)
1188 retval = unuse_mm(start_mm, entry, page);
1190 if (swap_count(*swap_map)) {
1191 int set_start_mm = (*swap_map >= swcount);
1192 struct list_head *p = &start_mm->mmlist;
1193 struct mm_struct *new_start_mm = start_mm;
1194 struct mm_struct *prev_mm = start_mm;
1195 struct mm_struct *mm;
1197 atomic_inc(&new_start_mm->mm_users);
1198 atomic_inc(&prev_mm->mm_users);
1199 spin_lock(&mmlist_lock);
1200 while (swap_count(*swap_map) && !retval &&
1201 (p = p->next) != &start_mm->mmlist) {
1202 mm = list_entry(p, struct mm_struct, mmlist);
1203 if (!atomic_inc_not_zero(&mm->mm_users))
1204 continue;
1205 spin_unlock(&mmlist_lock);
1206 mmput(prev_mm);
1207 prev_mm = mm;
1209 cond_resched();
1211 swcount = *swap_map;
1212 if (!swap_count(swcount)) /* any usage ? */
1214 else if (mm == &init_mm)
1215 set_start_mm = 1;
1216 else
1217 retval = unuse_mm(mm, entry, page);
1219 if (set_start_mm && *swap_map < swcount) {
1220 mmput(new_start_mm);
1221 atomic_inc(&mm->mm_users);
1222 new_start_mm = mm;
1223 set_start_mm = 0;
1225 spin_lock(&mmlist_lock);
1227 spin_unlock(&mmlist_lock);
1228 mmput(prev_mm);
1229 mmput(start_mm);
1230 start_mm = new_start_mm;
1232 if (retval) {
1233 unlock_page(page);
1234 page_cache_release(page);
1235 break;
1239 * If a reference remains (rare), we would like to leave
1240 * the page in the swap cache; but try_to_unmap could
1241 * then re-duplicate the entry once we drop page lock,
1242 * so we might loop indefinitely; also, that page could
1243 * not be swapped out to other storage meanwhile. So:
1244 * delete from cache even if there's another reference,
1245 * after ensuring that the data has been saved to disk -
1246 * since if the reference remains (rarer), it will be
1247 * read from disk into another page. Splitting into two
1248 * pages would be incorrect if swap supported "shared
1249 * private" pages, but they are handled by tmpfs files.
1251 * Given how unuse_vma() targets one particular offset
1252 * in an anon_vma, once the anon_vma has been determined,
1253 * this splitting happens to be just what is needed to
1254 * handle where KSM pages have been swapped out: re-reading
1255 * is unnecessarily slow, but we can fix that later on.
1257 if (swap_count(*swap_map) &&
1258 PageDirty(page) && PageSwapCache(page)) {
1259 struct writeback_control wbc = {
1260 .sync_mode = WB_SYNC_NONE,
1263 swap_writepage(page, &wbc);
1264 lock_page(page);
1265 wait_on_page_writeback(page);
1269 * It is conceivable that a racing task removed this page from
1270 * swap cache just before we acquired the page lock at the top,
1271 * or while we dropped it in unuse_mm(). The page might even
1272 * be back in swap cache on another swap area: that we must not
1273 * delete, since it may not have been written out to swap yet.
1275 if (PageSwapCache(page) &&
1276 likely(page_private(page) == entry.val))
1277 delete_from_swap_cache(page);
1280 * So we could skip searching mms once swap count went
1281 * to 1, we did not mark any present ptes as dirty: must
1282 * mark page dirty so shrink_page_list will preserve it.
1284 SetPageDirty(page);
1285 unlock_page(page);
1286 page_cache_release(page);
1289 * Make sure that we aren't completely killing
1290 * interactive performance.
1292 cond_resched();
1295 mmput(start_mm);
1296 return retval;
1300 * After a successful try_to_unuse, if no swap is now in use, we know
1301 * we can empty the mmlist. swap_lock must be held on entry and exit.
1302 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1303 * added to the mmlist just after page_duplicate - before would be racy.
1305 static void drain_mmlist(void)
1307 struct list_head *p, *next;
1308 unsigned int type;
1310 for (type = 0; type < nr_swapfiles; type++)
1311 if (swap_info[type]->inuse_pages)
1312 return;
1313 spin_lock(&mmlist_lock);
1314 list_for_each_safe(p, next, &init_mm.mmlist)
1315 list_del_init(p);
1316 spin_unlock(&mmlist_lock);
1320 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
1321 * corresponds to page offset for the specified swap entry.
1322 * Note that the type of this function is sector_t, but it returns page offset
1323 * into the bdev, not sector offset.
1325 static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1327 struct swap_info_struct *sis;
1328 struct swap_extent *start_se;
1329 struct swap_extent *se;
1330 pgoff_t offset;
1332 sis = swap_info[swp_type(entry)];
1333 *bdev = sis->bdev;
1335 offset = swp_offset(entry);
1336 start_se = sis->curr_swap_extent;
1337 se = start_se;
1339 for ( ; ; ) {
1340 struct list_head *lh;
1342 if (se->start_page <= offset &&
1343 offset < (se->start_page + se->nr_pages)) {
1344 return se->start_block + (offset - se->start_page);
1346 lh = se->list.next;
1347 se = list_entry(lh, struct swap_extent, list);
1348 sis->curr_swap_extent = se;
1349 BUG_ON(se == start_se); /* It *must* be present */
1354 * Returns the page offset into bdev for the specified page's swap entry.
1356 sector_t map_swap_page(struct page *page, struct block_device **bdev)
1358 swp_entry_t entry;
1359 entry.val = page_private(page);
1360 return map_swap_entry(entry, bdev);
1364 * Free all of a swapdev's extent information
1366 static void destroy_swap_extents(struct swap_info_struct *sis)
1368 while (!list_empty(&sis->first_swap_extent.list)) {
1369 struct swap_extent *se;
1371 se = list_entry(sis->first_swap_extent.list.next,
1372 struct swap_extent, list);
1373 list_del(&se->list);
1374 kfree(se);
1379 * Add a block range (and the corresponding page range) into this swapdev's
1380 * extent list. The extent list is kept sorted in page order.
1382 * This function rather assumes that it is called in ascending page order.
1384 static int
1385 add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
1386 unsigned long nr_pages, sector_t start_block)
1388 struct swap_extent *se;
1389 struct swap_extent *new_se;
1390 struct list_head *lh;
1392 if (start_page == 0) {
1393 se = &sis->first_swap_extent;
1394 sis->curr_swap_extent = se;
1395 se->start_page = 0;
1396 se->nr_pages = nr_pages;
1397 se->start_block = start_block;
1398 return 1;
1399 } else {
1400 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1401 se = list_entry(lh, struct swap_extent, list);
1402 BUG_ON(se->start_page + se->nr_pages != start_page);
1403 if (se->start_block + se->nr_pages == start_block) {
1404 /* Merge it */
1405 se->nr_pages += nr_pages;
1406 return 0;
1411 * No merge. Insert a new extent, preserving ordering.
1413 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
1414 if (new_se == NULL)
1415 return -ENOMEM;
1416 new_se->start_page = start_page;
1417 new_se->nr_pages = nr_pages;
1418 new_se->start_block = start_block;
1420 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
1421 return 1;
1425 * A `swap extent' is a simple thing which maps a contiguous range of pages
1426 * onto a contiguous range of disk blocks. An ordered list of swap extents
1427 * is built at swapon time and is then used at swap_writepage/swap_readpage
1428 * time for locating where on disk a page belongs.
1430 * If the swapfile is an S_ISBLK block device, a single extent is installed.
1431 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
1432 * swap files identically.
1434 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
1435 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
1436 * swapfiles are handled *identically* after swapon time.
1438 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
1439 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
1440 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
1441 * requirements, they are simply tossed out - we will never use those blocks
1442 * for swapping.
1444 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1445 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
1446 * which will scribble on the fs.
1448 * The amount of disk space which a single swap extent represents varies.
1449 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
1450 * extents in the list. To avoid much list walking, we cache the previous
1451 * search location in `curr_swap_extent', and start new searches from there.
1452 * This is extremely effective. The average number of iterations in
1453 * map_swap_page() has been measured at about 0.3 per page. - akpm.
1455 static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1457 struct inode *inode;
1458 unsigned blocks_per_page;
1459 unsigned long page_no;
1460 unsigned blkbits;
1461 sector_t probe_block;
1462 sector_t last_block;
1463 sector_t lowest_block = -1;
1464 sector_t highest_block = 0;
1465 int nr_extents = 0;
1466 int ret;
1468 inode = sis->swap_file->f_mapping->host;
1469 if (S_ISBLK(inode->i_mode)) {
1470 ret = add_swap_extent(sis, 0, sis->max, 0);
1471 *span = sis->pages;
1472 goto out;
1475 blkbits = inode->i_blkbits;
1476 blocks_per_page = PAGE_SIZE >> blkbits;
1479 * Map all the blocks into the extent list. This code doesn't try
1480 * to be very smart.
1482 probe_block = 0;
1483 page_no = 0;
1484 last_block = i_size_read(inode) >> blkbits;
1485 while ((probe_block + blocks_per_page) <= last_block &&
1486 page_no < sis->max) {
1487 unsigned block_in_page;
1488 sector_t first_block;
1490 first_block = bmap(inode, probe_block);
1491 if (first_block == 0)
1492 goto bad_bmap;
1495 * It must be PAGE_SIZE aligned on-disk
1497 if (first_block & (blocks_per_page - 1)) {
1498 probe_block++;
1499 goto reprobe;
1502 for (block_in_page = 1; block_in_page < blocks_per_page;
1503 block_in_page++) {
1504 sector_t block;
1506 block = bmap(inode, probe_block + block_in_page);
1507 if (block == 0)
1508 goto bad_bmap;
1509 if (block != first_block + block_in_page) {
1510 /* Discontiguity */
1511 probe_block++;
1512 goto reprobe;
1516 first_block >>= (PAGE_SHIFT - blkbits);
1517 if (page_no) { /* exclude the header page */
1518 if (first_block < lowest_block)
1519 lowest_block = first_block;
1520 if (first_block > highest_block)
1521 highest_block = first_block;
1525 * We found a PAGE_SIZE-length, PAGE_SIZE-aligned run of blocks
1527 ret = add_swap_extent(sis, page_no, 1, first_block);
1528 if (ret < 0)
1529 goto out;
1530 nr_extents += ret;
1531 page_no++;
1532 probe_block += blocks_per_page;
1533 reprobe:
1534 continue;
1536 ret = nr_extents;
1537 *span = 1 + highest_block - lowest_block;
1538 if (page_no == 0)
1539 page_no = 1; /* force Empty message */
1540 sis->max = page_no;
1541 sis->pages = page_no - 1;
1542 sis->highest_bit = page_no - 1;
1543 out:
1544 return ret;
1545 bad_bmap:
1546 printk(KERN_ERR "swapon: swapfile has holes\n");
1547 ret = -EINVAL;
1548 goto out;
1551 SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1553 struct swap_info_struct *p = NULL;
1554 unsigned char *swap_map;
1555 struct file *swap_file, *victim;
1556 struct address_space *mapping;
1557 struct inode *inode;
1558 char *pathname;
1559 int i, type, prev;
1560 int err;
1562 if (!capable(CAP_SYS_ADMIN))
1563 return -EPERM;
1565 pathname = getname(specialfile);
1566 err = PTR_ERR(pathname);
1567 if (IS_ERR(pathname))
1568 goto out;
1570 victim = filp_open(pathname, O_RDWR|O_LARGEFILE, 0);
1571 putname(pathname);
1572 err = PTR_ERR(victim);
1573 if (IS_ERR(victim))
1574 goto out;
1576 mapping = victim->f_mapping;
1577 prev = -1;
1578 spin_lock(&swap_lock);
1579 for (type = swap_list.head; type >= 0; type = swap_info[type]->next) {
1580 p = swap_info[type];
1581 if (p->flags & SWP_WRITEOK) {
1582 if (p->swap_file->f_mapping == mapping)
1583 break;
1585 prev = type;
1587 if (type < 0) {
1588 err = -EINVAL;
1589 spin_unlock(&swap_lock);
1590 goto out_dput;
1592 if (!security_vm_enough_memory(p->pages))
1593 vm_unacct_memory(p->pages);
1594 else {
1595 err = -ENOMEM;
1596 spin_unlock(&swap_lock);
1597 goto out_dput;
1599 if (prev < 0)
1600 swap_list.head = p->next;
1601 else
1602 swap_info[prev]->next = p->next;
1603 if (type == swap_list.next) {
1604 /* just pick something that's safe... */
1605 swap_list.next = swap_list.head;
1607 if (p->prio < 0) {
1608 for (i = p->next; i >= 0; i = swap_info[i]->next)
1609 swap_info[i]->prio = p->prio--;
1610 least_priority++;
1612 nr_swap_pages -= p->pages;
1613 total_swap_pages -= p->pages;
1614 p->flags &= ~SWP_WRITEOK;
1615 spin_unlock(&swap_lock);
1617 current->flags |= PF_OOM_ORIGIN;
1618 err = try_to_unuse(type);
1619 current->flags &= ~PF_OOM_ORIGIN;
1621 if (err) {
1622 /* re-insert swap space back into swap_list */
1623 spin_lock(&swap_lock);
1624 if (p->prio < 0)
1625 p->prio = --least_priority;
1626 prev = -1;
1627 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
1628 if (p->prio >= swap_info[i]->prio)
1629 break;
1630 prev = i;
1632 p->next = i;
1633 if (prev < 0)
1634 swap_list.head = swap_list.next = type;
1635 else
1636 swap_info[prev]->next = type;
1637 nr_swap_pages += p->pages;
1638 total_swap_pages += p->pages;
1639 p->flags |= SWP_WRITEOK;
1640 spin_unlock(&swap_lock);
1641 goto out_dput;
1644 /* wait for any unplug function to finish */
1645 down_write(&swap_unplug_sem);
1646 up_write(&swap_unplug_sem);
1648 destroy_swap_extents(p);
1649 if (p->flags & SWP_CONTINUED)
1650 free_swap_count_continuations(p);
1652 mutex_lock(&swapon_mutex);
1653 spin_lock(&swap_lock);
1654 drain_mmlist();
1656 /* wait for anyone still in scan_swap_map */
1657 p->highest_bit = 0; /* cuts scans short */
1658 while (p->flags >= SWP_SCANNING) {
1659 spin_unlock(&swap_lock);
1660 schedule_timeout_uninterruptible(1);
1661 spin_lock(&swap_lock);
1664 swap_file = p->swap_file;
1665 p->swap_file = NULL;
1666 p->max = 0;
1667 swap_map = p->swap_map;
1668 p->swap_map = NULL;
1669 p->flags = 0;
1670 spin_unlock(&swap_lock);
1671 mutex_unlock(&swapon_mutex);
1672 vfree(swap_map);
1673 /* Destroy swap account informatin */
1674 swap_cgroup_swapoff(type);
1676 inode = mapping->host;
1677 if (S_ISBLK(inode->i_mode)) {
1678 struct block_device *bdev = I_BDEV(inode);
1679 set_blocksize(bdev, p->old_block_size);
1680 bd_release(bdev);
1681 } else {
1682 mutex_lock(&inode->i_mutex);
1683 inode->i_flags &= ~S_SWAPFILE;
1684 mutex_unlock(&inode->i_mutex);
1686 filp_close(swap_file, NULL);
1687 err = 0;
1688 atomic_inc(&proc_poll_event);
1689 wake_up_interruptible(&proc_poll_wait);
1691 out_dput:
1692 filp_close(victim, NULL);
1693 out:
1694 return err;
1697 #ifdef CONFIG_PROC_FS
1698 struct proc_swaps {
1699 struct seq_file seq;
1700 int event;
1703 static unsigned swaps_poll(struct file *file, poll_table *wait)
1705 struct proc_swaps *s = file->private_data;
1707 poll_wait(file, &proc_poll_wait, wait);
1709 if (s->event != atomic_read(&proc_poll_event)) {
1710 s->event = atomic_read(&proc_poll_event);
1711 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
1714 return POLLIN | POLLRDNORM;
1717 /* iterator */
1718 static void *swap_start(struct seq_file *swap, loff_t *pos)
1720 struct swap_info_struct *si;
1721 int type;
1722 loff_t l = *pos;
1724 mutex_lock(&swapon_mutex);
1726 if (!l)
1727 return SEQ_START_TOKEN;
1729 for (type = 0; type < nr_swapfiles; type++) {
1730 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1731 si = swap_info[type];
1732 if (!(si->flags & SWP_USED) || !si->swap_map)
1733 continue;
1734 if (!--l)
1735 return si;
1738 return NULL;
1741 static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
1743 struct swap_info_struct *si = v;
1744 int type;
1746 if (v == SEQ_START_TOKEN)
1747 type = 0;
1748 else
1749 type = si->type + 1;
1751 for (; type < nr_swapfiles; type++) {
1752 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
1753 si = swap_info[type];
1754 if (!(si->flags & SWP_USED) || !si->swap_map)
1755 continue;
1756 ++*pos;
1757 return si;
1760 return NULL;
1763 static void swap_stop(struct seq_file *swap, void *v)
1765 mutex_unlock(&swapon_mutex);
1768 static int swap_show(struct seq_file *swap, void *v)
1770 struct swap_info_struct *si = v;
1771 struct file *file;
1772 int len;
1774 if (si == SEQ_START_TOKEN) {
1775 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
1776 return 0;
1779 file = si->swap_file;
1780 len = seq_path(swap, &file->f_path, " \t\n\\");
1781 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
1782 len < 40 ? 40 - len : 1, " ",
1783 S_ISBLK(file->f_path.dentry->d_inode->i_mode) ?
1784 "partition" : "file\t",
1785 si->pages << (PAGE_SHIFT - 10),
1786 si->inuse_pages << (PAGE_SHIFT - 10),
1787 si->prio);
1788 return 0;
1791 static const struct seq_operations swaps_op = {
1792 .start = swap_start,
1793 .next = swap_next,
1794 .stop = swap_stop,
1795 .show = swap_show
1798 static int swaps_open(struct inode *inode, struct file *file)
1800 struct proc_swaps *s;
1801 int ret;
1803 s = kmalloc(sizeof(struct proc_swaps), GFP_KERNEL);
1804 if (!s)
1805 return -ENOMEM;
1807 file->private_data = s;
1809 ret = seq_open(file, &swaps_op);
1810 if (ret) {
1811 kfree(s);
1812 return ret;
1815 s->seq.private = s;
1816 s->event = atomic_read(&proc_poll_event);
1817 return ret;
1820 static const struct file_operations proc_swaps_operations = {
1821 .open = swaps_open,
1822 .read = seq_read,
1823 .llseek = seq_lseek,
1824 .release = seq_release,
1825 .poll = swaps_poll,
1828 static int __init procswaps_init(void)
1830 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1831 return 0;
1833 __initcall(procswaps_init);
1834 #endif /* CONFIG_PROC_FS */
1836 #ifdef MAX_SWAPFILES_CHECK
1837 static int __init max_swapfiles_check(void)
1839 MAX_SWAPFILES_CHECK();
1840 return 0;
1842 late_initcall(max_swapfiles_check);
1843 #endif
1846 * Written 01/25/92 by Simmule Turner, heavily changed by Linus.
1848 * The swapon system call
1850 SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
1852 struct swap_info_struct *p;
1853 char *name = NULL;
1854 struct block_device *bdev = NULL;
1855 struct file *swap_file = NULL;
1856 struct address_space *mapping;
1857 unsigned int type;
1858 int i, prev;
1859 int error;
1860 union swap_header *swap_header;
1861 unsigned int nr_good_pages;
1862 int nr_extents = 0;
1863 sector_t span;
1864 unsigned long maxpages;
1865 unsigned long swapfilepages;
1866 unsigned char *swap_map = NULL;
1867 struct page *page = NULL;
1868 struct inode *inode = NULL;
1869 int did_down = 0;
1871 if (!capable(CAP_SYS_ADMIN))
1872 return -EPERM;
1874 p = kzalloc(sizeof(*p), GFP_KERNEL);
1875 if (!p)
1876 return -ENOMEM;
1878 spin_lock(&swap_lock);
1879 for (type = 0; type < nr_swapfiles; type++) {
1880 if (!(swap_info[type]->flags & SWP_USED))
1881 break;
1883 error = -EPERM;
1884 if (type >= MAX_SWAPFILES) {
1885 spin_unlock(&swap_lock);
1886 kfree(p);
1887 goto out;
1889 if (type >= nr_swapfiles) {
1890 p->type = type;
1891 swap_info[type] = p;
1893 * Write swap_info[type] before nr_swapfiles, in case a
1894 * racing procfs swap_start() or swap_next() is reading them.
1895 * (We never shrink nr_swapfiles, we never free this entry.)
1897 smp_wmb();
1898 nr_swapfiles++;
1899 } else {
1900 kfree(p);
1901 p = swap_info[type];
1903 * Do not memset this entry: a racing procfs swap_next()
1904 * would be relying on p->type to remain valid.
1907 INIT_LIST_HEAD(&p->first_swap_extent.list);
1908 p->flags = SWP_USED;
1909 p->next = -1;
1910 spin_unlock(&swap_lock);
1912 name = getname(specialfile);
1913 error = PTR_ERR(name);
1914 if (IS_ERR(name)) {
1915 name = NULL;
1916 goto bad_swap_2;
1918 swap_file = filp_open(name, O_RDWR|O_LARGEFILE, 0);
1919 error = PTR_ERR(swap_file);
1920 if (IS_ERR(swap_file)) {
1921 swap_file = NULL;
1922 goto bad_swap_2;
1925 p->swap_file = swap_file;
1926 mapping = swap_file->f_mapping;
1927 inode = mapping->host;
1929 error = -EBUSY;
1930 for (i = 0; i < nr_swapfiles; i++) {
1931 struct swap_info_struct *q = swap_info[i];
1933 if (i == type || !q->swap_file)
1934 continue;
1935 if (mapping == q->swap_file->f_mapping)
1936 goto bad_swap;
1939 error = -EINVAL;
1940 if (S_ISBLK(inode->i_mode)) {
1941 bdev = I_BDEV(inode);
1942 error = bd_claim(bdev, sys_swapon);
1943 if (error < 0) {
1944 bdev = NULL;
1945 error = -EINVAL;
1946 goto bad_swap;
1948 p->old_block_size = block_size(bdev);
1949 error = set_blocksize(bdev, PAGE_SIZE);
1950 if (error < 0)
1951 goto bad_swap;
1952 p->bdev = bdev;
1953 p->flags |= SWP_BLKDEV;
1954 } else if (S_ISREG(inode->i_mode)) {
1955 p->bdev = inode->i_sb->s_bdev;
1956 mutex_lock(&inode->i_mutex);
1957 did_down = 1;
1958 if (IS_SWAPFILE(inode)) {
1959 error = -EBUSY;
1960 goto bad_swap;
1962 } else {
1963 goto bad_swap;
1966 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
1969 * Read the swap header.
1971 if (!mapping->a_ops->readpage) {
1972 error = -EINVAL;
1973 goto bad_swap;
1975 page = read_mapping_page(mapping, 0, swap_file);
1976 if (IS_ERR(page)) {
1977 error = PTR_ERR(page);
1978 goto bad_swap;
1980 swap_header = kmap(page);
1982 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
1983 printk(KERN_ERR "Unable to find swap-space signature\n");
1984 error = -EINVAL;
1985 goto bad_swap;
1988 /* swap partition endianess hack... */
1989 if (swab32(swap_header->info.version) == 1) {
1990 swab32s(&swap_header->info.version);
1991 swab32s(&swap_header->info.last_page);
1992 swab32s(&swap_header->info.nr_badpages);
1993 for (i = 0; i < swap_header->info.nr_badpages; i++)
1994 swab32s(&swap_header->info.badpages[i]);
1996 /* Check the swap header's sub-version */
1997 if (swap_header->info.version != 1) {
1998 printk(KERN_WARNING
1999 "Unable to handle swap header version %d\n",
2000 swap_header->info.version);
2001 error = -EINVAL;
2002 goto bad_swap;
2005 p->lowest_bit = 1;
2006 p->cluster_next = 1;
2007 p->cluster_nr = 0;
2010 * Find out how many pages are allowed for a single swap
2011 * device. There are two limiting factors: 1) the number of
2012 * bits for the swap offset in the swp_entry_t type and
2013 * 2) the number of bits in the a swap pte as defined by
2014 * the different architectures. In order to find the
2015 * largest possible bit mask a swap entry with swap type 0
2016 * and swap offset ~0UL is created, encoded to a swap pte,
2017 * decoded to a swp_entry_t again and finally the swap
2018 * offset is extracted. This will mask all the bits from
2019 * the initial ~0UL mask that can't be encoded in either
2020 * the swp_entry_t or the architecture definition of a
2021 * swap pte.
2023 maxpages = swp_offset(pte_to_swp_entry(
2024 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2025 if (maxpages > swap_header->info.last_page) {
2026 maxpages = swap_header->info.last_page + 1;
2027 /* p->max is an unsigned int: don't overflow it */
2028 if ((unsigned int)maxpages == 0)
2029 maxpages = UINT_MAX;
2031 p->highest_bit = maxpages - 1;
2033 error = -EINVAL;
2034 if (!maxpages)
2035 goto bad_swap;
2036 if (swapfilepages && maxpages > swapfilepages) {
2037 printk(KERN_WARNING
2038 "Swap area shorter than signature indicates\n");
2039 goto bad_swap;
2041 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
2042 goto bad_swap;
2043 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2044 goto bad_swap;
2046 /* OK, set up the swap map and apply the bad block list */
2047 swap_map = vmalloc(maxpages);
2048 if (!swap_map) {
2049 error = -ENOMEM;
2050 goto bad_swap;
2053 memset(swap_map, 0, maxpages);
2054 nr_good_pages = maxpages - 1; /* omit header page */
2056 for (i = 0; i < swap_header->info.nr_badpages; i++) {
2057 unsigned int page_nr = swap_header->info.badpages[i];
2058 if (page_nr == 0 || page_nr > swap_header->info.last_page) {
2059 error = -EINVAL;
2060 goto bad_swap;
2062 if (page_nr < maxpages) {
2063 swap_map[page_nr] = SWAP_MAP_BAD;
2064 nr_good_pages--;
2068 error = swap_cgroup_swapon(type, maxpages);
2069 if (error)
2070 goto bad_swap;
2072 if (nr_good_pages) {
2073 swap_map[0] = SWAP_MAP_BAD;
2074 p->max = maxpages;
2075 p->pages = nr_good_pages;
2076 nr_extents = setup_swap_extents(p, &span);
2077 if (nr_extents < 0) {
2078 error = nr_extents;
2079 goto bad_swap;
2081 nr_good_pages = p->pages;
2083 if (!nr_good_pages) {
2084 printk(KERN_WARNING "Empty swap-file\n");
2085 error = -EINVAL;
2086 goto bad_swap;
2089 if (p->bdev) {
2090 if (blk_queue_nonrot(bdev_get_queue(p->bdev))) {
2091 p->flags |= SWP_SOLIDSTATE;
2092 p->cluster_next = 1 + (random32() % p->highest_bit);
2094 if (discard_swap(p) == 0 && (swap_flags & SWAP_FLAG_DISCARD))
2095 p->flags |= SWP_DISCARDABLE;
2098 mutex_lock(&swapon_mutex);
2099 spin_lock(&swap_lock);
2100 if (swap_flags & SWAP_FLAG_PREFER)
2101 p->prio =
2102 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2103 else
2104 p->prio = --least_priority;
2105 p->swap_map = swap_map;
2106 p->flags |= SWP_WRITEOK;
2107 nr_swap_pages += nr_good_pages;
2108 total_swap_pages += nr_good_pages;
2110 printk(KERN_INFO "Adding %uk swap on %s. "
2111 "Priority:%d extents:%d across:%lluk %s%s\n",
2112 nr_good_pages<<(PAGE_SHIFT-10), name, p->prio,
2113 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
2114 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
2115 (p->flags & SWP_DISCARDABLE) ? "D" : "");
2117 /* insert swap space into swap_list: */
2118 prev = -1;
2119 for (i = swap_list.head; i >= 0; i = swap_info[i]->next) {
2120 if (p->prio >= swap_info[i]->prio)
2121 break;
2122 prev = i;
2124 p->next = i;
2125 if (prev < 0)
2126 swap_list.head = swap_list.next = type;
2127 else
2128 swap_info[prev]->next = type;
2129 spin_unlock(&swap_lock);
2130 mutex_unlock(&swapon_mutex);
2131 atomic_inc(&proc_poll_event);
2132 wake_up_interruptible(&proc_poll_wait);
2134 error = 0;
2135 goto out;
2136 bad_swap:
2137 if (bdev) {
2138 set_blocksize(bdev, p->old_block_size);
2139 bd_release(bdev);
2141 destroy_swap_extents(p);
2142 swap_cgroup_swapoff(type);
2143 bad_swap_2:
2144 spin_lock(&swap_lock);
2145 p->swap_file = NULL;
2146 p->flags = 0;
2147 spin_unlock(&swap_lock);
2148 vfree(swap_map);
2149 if (swap_file)
2150 filp_close(swap_file, NULL);
2151 out:
2152 if (page && !IS_ERR(page)) {
2153 kunmap(page);
2154 page_cache_release(page);
2156 if (name)
2157 putname(name);
2158 if (did_down) {
2159 if (!error)
2160 inode->i_flags |= S_SWAPFILE;
2161 mutex_unlock(&inode->i_mutex);
2163 return error;
2166 void si_swapinfo(struct sysinfo *val)
2168 unsigned int type;
2169 unsigned long nr_to_be_unused = 0;
2171 spin_lock(&swap_lock);
2172 for (type = 0; type < nr_swapfiles; type++) {
2173 struct swap_info_struct *si = swap_info[type];
2175 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
2176 nr_to_be_unused += si->inuse_pages;
2178 val->freeswap = nr_swap_pages + nr_to_be_unused;
2179 val->totalswap = total_swap_pages + nr_to_be_unused;
2180 spin_unlock(&swap_lock);
2184 * Verify that a swap entry is valid and increment its swap map count.
2186 * Returns error code in following case.
2187 * - success -> 0
2188 * - swp_entry is invalid -> EINVAL
2189 * - swp_entry is migration entry -> EINVAL
2190 * - swap-cache reference is requested but there is already one. -> EEXIST
2191 * - swap-cache reference is requested but the entry is not used. -> ENOENT
2192 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
2194 static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
2196 struct swap_info_struct *p;
2197 unsigned long offset, type;
2198 unsigned char count;
2199 unsigned char has_cache;
2200 int err = -EINVAL;
2202 if (non_swap_entry(entry))
2203 goto out;
2205 type = swp_type(entry);
2206 if (type >= nr_swapfiles)
2207 goto bad_file;
2208 p = swap_info[type];
2209 offset = swp_offset(entry);
2211 spin_lock(&swap_lock);
2212 if (unlikely(offset >= p->max))
2213 goto unlock_out;
2215 count = p->swap_map[offset];
2216 has_cache = count & SWAP_HAS_CACHE;
2217 count &= ~SWAP_HAS_CACHE;
2218 err = 0;
2220 if (usage == SWAP_HAS_CACHE) {
2222 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
2223 if (!has_cache && count)
2224 has_cache = SWAP_HAS_CACHE;
2225 else if (has_cache) /* someone else added cache */
2226 err = -EEXIST;
2227 else /* no users remaining */
2228 err = -ENOENT;
2230 } else if (count || has_cache) {
2232 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
2233 count += usage;
2234 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
2235 err = -EINVAL;
2236 else if (swap_count_continued(p, offset, count))
2237 count = COUNT_CONTINUED;
2238 else
2239 err = -ENOMEM;
2240 } else
2241 err = -ENOENT; /* unused swap entry */
2243 p->swap_map[offset] = count | has_cache;
2245 unlock_out:
2246 spin_unlock(&swap_lock);
2247 out:
2248 return err;
2250 bad_file:
2251 printk(KERN_ERR "swap_dup: %s%08lx\n", Bad_file, entry.val);
2252 goto out;
2256 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
2257 * (in which case its reference count is never incremented).
2259 void swap_shmem_alloc(swp_entry_t entry)
2261 __swap_duplicate(entry, SWAP_MAP_SHMEM);
2265 * Increase reference count of swap entry by 1.
2266 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
2267 * but could not be atomically allocated. Returns 0, just as if it succeeded,
2268 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
2269 * might occur if a page table entry has got corrupted.
2271 int swap_duplicate(swp_entry_t entry)
2273 int err = 0;
2275 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
2276 err = add_swap_count_continuation(entry, GFP_ATOMIC);
2277 return err;
2281 * @entry: swap entry for which we allocate swap cache.
2283 * Called when allocating swap cache for existing swap entry,
2284 * This can return error codes. Returns 0 at success.
2285 * -EBUSY means there is a swap cache.
2286 * Note: return code is different from swap_duplicate().
2288 int swapcache_prepare(swp_entry_t entry)
2290 return __swap_duplicate(entry, SWAP_HAS_CACHE);
2294 * swap_lock prevents swap_map being freed. Don't grab an extra
2295 * reference on the swaphandle, it doesn't matter if it becomes unused.
2297 int valid_swaphandles(swp_entry_t entry, unsigned long *offset)
2299 struct swap_info_struct *si;
2300 int our_page_cluster = page_cluster;
2301 pgoff_t target, toff;
2302 pgoff_t base, end;
2303 int nr_pages = 0;
2305 if (!our_page_cluster) /* no readahead */
2306 return 0;
2308 si = swap_info[swp_type(entry)];
2309 target = swp_offset(entry);
2310 base = (target >> our_page_cluster) << our_page_cluster;
2311 end = base + (1 << our_page_cluster);
2312 if (!base) /* first page is swap header */
2313 base++;
2315 spin_lock(&swap_lock);
2316 if (end > si->max) /* don't go beyond end of map */
2317 end = si->max;
2319 /* Count contiguous allocated slots above our target */
2320 for (toff = target; ++toff < end; nr_pages++) {
2321 /* Don't read in free or bad pages */
2322 if (!si->swap_map[toff])
2323 break;
2324 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2325 break;
2327 /* Count contiguous allocated slots below our target */
2328 for (toff = target; --toff >= base; nr_pages++) {
2329 /* Don't read in free or bad pages */
2330 if (!si->swap_map[toff])
2331 break;
2332 if (swap_count(si->swap_map[toff]) == SWAP_MAP_BAD)
2333 break;
2335 spin_unlock(&swap_lock);
2338 * Indicate starting offset, and return number of pages to get:
2339 * if only 1, say 0, since there's then no readahead to be done.
2341 *offset = ++toff;
2342 return nr_pages? ++nr_pages: 0;
2346 * add_swap_count_continuation - called when a swap count is duplicated
2347 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
2348 * page of the original vmalloc'ed swap_map, to hold the continuation count
2349 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
2350 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
2352 * These continuation pages are seldom referenced: the common paths all work
2353 * on the original swap_map, only referring to a continuation page when the
2354 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
2356 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
2357 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
2358 * can be called after dropping locks.
2360 int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
2362 struct swap_info_struct *si;
2363 struct page *head;
2364 struct page *page;
2365 struct page *list_page;
2366 pgoff_t offset;
2367 unsigned char count;
2370 * When debugging, it's easier to use __GFP_ZERO here; but it's better
2371 * for latency not to zero a page while GFP_ATOMIC and holding locks.
2373 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
2375 si = swap_info_get(entry);
2376 if (!si) {
2378 * An acceptable race has occurred since the failing
2379 * __swap_duplicate(): the swap entry has been freed,
2380 * perhaps even the whole swap_map cleared for swapoff.
2382 goto outer;
2385 offset = swp_offset(entry);
2386 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
2388 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
2390 * The higher the swap count, the more likely it is that tasks
2391 * will race to add swap count continuation: we need to avoid
2392 * over-provisioning.
2394 goto out;
2397 if (!page) {
2398 spin_unlock(&swap_lock);
2399 return -ENOMEM;
2403 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2404 * no architecture is using highmem pages for kernel pagetables: so it
2405 * will not corrupt the GFP_ATOMIC caller's atomic pagetable kmaps.
2407 head = vmalloc_to_page(si->swap_map + offset);
2408 offset &= ~PAGE_MASK;
2411 * Page allocation does not initialize the page's lru field,
2412 * but it does always reset its private field.
2414 if (!page_private(head)) {
2415 BUG_ON(count & COUNT_CONTINUED);
2416 INIT_LIST_HEAD(&head->lru);
2417 set_page_private(head, SWP_CONTINUED);
2418 si->flags |= SWP_CONTINUED;
2421 list_for_each_entry(list_page, &head->lru, lru) {
2422 unsigned char *map;
2425 * If the previous map said no continuation, but we've found
2426 * a continuation page, free our allocation and use this one.
2428 if (!(count & COUNT_CONTINUED))
2429 goto out;
2431 map = kmap_atomic(list_page, KM_USER0) + offset;
2432 count = *map;
2433 kunmap_atomic(map, KM_USER0);
2436 * If this continuation count now has some space in it,
2437 * free our allocation and use this one.
2439 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2440 goto out;
2443 list_add_tail(&page->lru, &head->lru);
2444 page = NULL; /* now it's attached, don't free it */
2445 out:
2446 spin_unlock(&swap_lock);
2447 outer:
2448 if (page)
2449 __free_page(page);
2450 return 0;
2454 * swap_count_continued - when the original swap_map count is incremented
2455 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
2456 * into, carry if so, or else fail until a new continuation page is allocated;
2457 * when the original swap_map count is decremented from 0 with continuation,
2458 * borrow from the continuation and report whether it still holds more.
2459 * Called while __swap_duplicate() or swap_entry_free() holds swap_lock.
2461 static bool swap_count_continued(struct swap_info_struct *si,
2462 pgoff_t offset, unsigned char count)
2464 struct page *head;
2465 struct page *page;
2466 unsigned char *map;
2468 head = vmalloc_to_page(si->swap_map + offset);
2469 if (page_private(head) != SWP_CONTINUED) {
2470 BUG_ON(count & COUNT_CONTINUED);
2471 return false; /* need to add count continuation */
2474 offset &= ~PAGE_MASK;
2475 page = list_entry(head->lru.next, struct page, lru);
2476 map = kmap_atomic(page, KM_USER0) + offset;
2478 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
2479 goto init_map; /* jump over SWAP_CONT_MAX checks */
2481 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
2483 * Think of how you add 1 to 999
2485 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
2486 kunmap_atomic(map, KM_USER0);
2487 page = list_entry(page->lru.next, struct page, lru);
2488 BUG_ON(page == head);
2489 map = kmap_atomic(page, KM_USER0) + offset;
2491 if (*map == SWAP_CONT_MAX) {
2492 kunmap_atomic(map, KM_USER0);
2493 page = list_entry(page->lru.next, struct page, lru);
2494 if (page == head)
2495 return false; /* add count continuation */
2496 map = kmap_atomic(page, KM_USER0) + offset;
2497 init_map: *map = 0; /* we didn't zero the page */
2499 *map += 1;
2500 kunmap_atomic(map, KM_USER0);
2501 page = list_entry(page->lru.prev, struct page, lru);
2502 while (page != head) {
2503 map = kmap_atomic(page, KM_USER0) + offset;
2504 *map = COUNT_CONTINUED;
2505 kunmap_atomic(map, KM_USER0);
2506 page = list_entry(page->lru.prev, struct page, lru);
2508 return true; /* incremented */
2510 } else { /* decrementing */
2512 * Think of how you subtract 1 from 1000
2514 BUG_ON(count != COUNT_CONTINUED);
2515 while (*map == COUNT_CONTINUED) {
2516 kunmap_atomic(map, KM_USER0);
2517 page = list_entry(page->lru.next, struct page, lru);
2518 BUG_ON(page == head);
2519 map = kmap_atomic(page, KM_USER0) + offset;
2521 BUG_ON(*map == 0);
2522 *map -= 1;
2523 if (*map == 0)
2524 count = 0;
2525 kunmap_atomic(map, KM_USER0);
2526 page = list_entry(page->lru.prev, struct page, lru);
2527 while (page != head) {
2528 map = kmap_atomic(page, KM_USER0) + offset;
2529 *map = SWAP_CONT_MAX | count;
2530 count = COUNT_CONTINUED;
2531 kunmap_atomic(map, KM_USER0);
2532 page = list_entry(page->lru.prev, struct page, lru);
2534 return count == COUNT_CONTINUED;
2539 * free_swap_count_continuations - swapoff free all the continuation pages
2540 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
2542 static void free_swap_count_continuations(struct swap_info_struct *si)
2544 pgoff_t offset;
2546 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
2547 struct page *head;
2548 head = vmalloc_to_page(si->swap_map + offset);
2549 if (page_private(head)) {
2550 struct list_head *this, *next;
2551 list_for_each_safe(this, next, &head->lru) {
2552 struct page *page;
2553 page = list_entry(this, struct page, lru);
2554 list_del(this);
2555 __free_page(page);