4 * Copyright (C) 2002, Linus Torvalds.
5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Contains functions related to writing back dirty pages at the
10 * 10Apr2002 Andrew Morton
14 #include <linux/kernel.h>
15 #include <linux/module.h>
16 #include <linux/spinlock.h>
19 #include <linux/swap.h>
20 #include <linux/slab.h>
21 #include <linux/pagemap.h>
22 #include <linux/writeback.h>
23 #include <linux/init.h>
24 #include <linux/backing-dev.h>
25 #include <linux/task_io_accounting_ops.h>
26 #include <linux/blkdev.h>
27 #include <linux/mpage.h>
28 #include <linux/rmap.h>
29 #include <linux/percpu.h>
30 #include <linux/notifier.h>
31 #include <linux/smp.h>
32 #include <linux/sysctl.h>
33 #include <linux/cpu.h>
34 #include <linux/syscalls.h>
35 #include <linux/buffer_head.h>
36 #include <linux/pagevec.h>
37 #include <trace/events/writeback.h>
40 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
41 * will look to see if it needs to force writeback or throttling.
43 static long ratelimit_pages
= 32;
46 * When balance_dirty_pages decides that the caller needs to perform some
47 * non-background writeback, this is how many pages it will attempt to write.
48 * It should be somewhat larger than dirtied pages to ensure that reasonably
49 * large amounts of I/O are submitted.
51 static inline long sync_writeback_pages(unsigned long dirtied
)
53 if (dirtied
< ratelimit_pages
)
54 dirtied
= ratelimit_pages
;
56 return dirtied
+ dirtied
/ 2;
59 /* The following parameters are exported via /proc/sys/vm */
62 * Start background writeback (via writeback threads) at this percentage
64 int dirty_background_ratio
= 10;
67 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
68 * dirty_background_ratio * the amount of dirtyable memory
70 unsigned long dirty_background_bytes
;
73 * free highmem will not be subtracted from the total free memory
74 * for calculating free ratios if vm_highmem_is_dirtyable is true
76 int vm_highmem_is_dirtyable
;
79 * The generator of dirty data starts writeback at this percentage
81 int vm_dirty_ratio
= 20;
84 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
85 * vm_dirty_ratio * the amount of dirtyable memory
87 unsigned long vm_dirty_bytes
;
90 * The interval between `kupdate'-style writebacks
92 unsigned int dirty_writeback_interval
= 5 * 100; /* centiseconds */
95 * The longest time for which data is allowed to remain dirty
97 unsigned int dirty_expire_interval
= 30 * 100; /* centiseconds */
100 * Flag that makes the machine dump writes/reads and block dirtyings.
105 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
106 * a full sync is triggered after this time elapses without any disk activity.
110 EXPORT_SYMBOL(laptop_mode
);
112 /* End of sysctl-exported parameters */
116 * Scale the writeback cache size proportional to the relative writeout speeds.
118 * We do this by keeping a floating proportion between BDIs, based on page
119 * writeback completions [end_page_writeback()]. Those devices that write out
120 * pages fastest will get the larger share, while the slower will get a smaller
123 * We use page writeout completions because we are interested in getting rid of
124 * dirty pages. Having them written out is the primary goal.
126 * We introduce a concept of time, a period over which we measure these events,
127 * because demand can/will vary over time. The length of this period itself is
128 * measured in page writeback completions.
131 static struct prop_descriptor vm_completions
;
132 static struct prop_descriptor vm_dirties
;
135 * couple the period to the dirty_ratio:
137 * period/2 ~ roundup_pow_of_two(dirty limit)
139 static int calc_period_shift(void)
141 unsigned long dirty_total
;
144 dirty_total
= vm_dirty_bytes
/ PAGE_SIZE
;
146 dirty_total
= (vm_dirty_ratio
* determine_dirtyable_memory()) /
148 return 2 + ilog2(dirty_total
- 1);
152 * update the period when the dirty threshold changes.
154 static void update_completion_period(void)
156 int shift
= calc_period_shift();
157 prop_change_shift(&vm_completions
, shift
);
158 prop_change_shift(&vm_dirties
, shift
);
161 int dirty_background_ratio_handler(struct ctl_table
*table
, int write
,
162 void __user
*buffer
, size_t *lenp
,
167 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
168 if (ret
== 0 && write
)
169 dirty_background_bytes
= 0;
173 int dirty_background_bytes_handler(struct ctl_table
*table
, int write
,
174 void __user
*buffer
, size_t *lenp
,
179 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
180 if (ret
== 0 && write
)
181 dirty_background_ratio
= 0;
185 int dirty_ratio_handler(struct ctl_table
*table
, int write
,
186 void __user
*buffer
, size_t *lenp
,
189 int old_ratio
= vm_dirty_ratio
;
192 ret
= proc_dointvec_minmax(table
, write
, buffer
, lenp
, ppos
);
193 if (ret
== 0 && write
&& vm_dirty_ratio
!= old_ratio
) {
194 update_completion_period();
201 int dirty_bytes_handler(struct ctl_table
*table
, int write
,
202 void __user
*buffer
, size_t *lenp
,
205 unsigned long old_bytes
= vm_dirty_bytes
;
208 ret
= proc_doulongvec_minmax(table
, write
, buffer
, lenp
, ppos
);
209 if (ret
== 0 && write
&& vm_dirty_bytes
!= old_bytes
) {
210 update_completion_period();
217 * Increment the BDI's writeout completion count and the global writeout
218 * completion count. Called from test_clear_page_writeback().
220 static inline void __bdi_writeout_inc(struct backing_dev_info
*bdi
)
222 __prop_inc_percpu_max(&vm_completions
, &bdi
->completions
,
226 void bdi_writeout_inc(struct backing_dev_info
*bdi
)
230 local_irq_save(flags
);
231 __bdi_writeout_inc(bdi
);
232 local_irq_restore(flags
);
234 EXPORT_SYMBOL_GPL(bdi_writeout_inc
);
236 void task_dirty_inc(struct task_struct
*tsk
)
238 prop_inc_single(&vm_dirties
, &tsk
->dirties
);
242 * Obtain an accurate fraction of the BDI's portion.
244 static void bdi_writeout_fraction(struct backing_dev_info
*bdi
,
245 long *numerator
, long *denominator
)
247 if (bdi_cap_writeback_dirty(bdi
)) {
248 prop_fraction_percpu(&vm_completions
, &bdi
->completions
,
249 numerator
, denominator
);
256 static inline void task_dirties_fraction(struct task_struct
*tsk
,
257 long *numerator
, long *denominator
)
259 prop_fraction_single(&vm_dirties
, &tsk
->dirties
,
260 numerator
, denominator
);
264 * task_dirty_limit - scale down dirty throttling threshold for one task
266 * task specific dirty limit:
268 * dirty -= (dirty/8) * p_{t}
270 * To protect light/slow dirtying tasks from heavier/fast ones, we start
271 * throttling individual tasks before reaching the bdi dirty limit.
272 * Relatively low thresholds will be allocated to heavy dirtiers. So when
273 * dirty pages grow large, heavy dirtiers will be throttled first, which will
274 * effectively curb the growth of dirty pages. Light dirtiers with high enough
275 * dirty threshold may never get throttled.
277 static unsigned long task_dirty_limit(struct task_struct
*tsk
,
278 unsigned long bdi_dirty
)
280 long numerator
, denominator
;
281 unsigned long dirty
= bdi_dirty
;
282 u64 inv
= dirty
>> 3;
284 task_dirties_fraction(tsk
, &numerator
, &denominator
);
286 do_div(inv
, denominator
);
290 return max(dirty
, bdi_dirty
/2);
296 static unsigned int bdi_min_ratio
;
298 int bdi_set_min_ratio(struct backing_dev_info
*bdi
, unsigned int min_ratio
)
302 spin_lock_bh(&bdi_lock
);
303 if (min_ratio
> bdi
->max_ratio
) {
306 min_ratio
-= bdi
->min_ratio
;
307 if (bdi_min_ratio
+ min_ratio
< 100) {
308 bdi_min_ratio
+= min_ratio
;
309 bdi
->min_ratio
+= min_ratio
;
314 spin_unlock_bh(&bdi_lock
);
319 int bdi_set_max_ratio(struct backing_dev_info
*bdi
, unsigned max_ratio
)
326 spin_lock_bh(&bdi_lock
);
327 if (bdi
->min_ratio
> max_ratio
) {
330 bdi
->max_ratio
= max_ratio
;
331 bdi
->max_prop_frac
= (PROP_FRAC_BASE
* max_ratio
) / 100;
333 spin_unlock_bh(&bdi_lock
);
337 EXPORT_SYMBOL(bdi_set_max_ratio
);
340 * Work out the current dirty-memory clamping and background writeout
343 * The main aim here is to lower them aggressively if there is a lot of mapped
344 * memory around. To avoid stressing page reclaim with lots of unreclaimable
345 * pages. It is better to clamp down on writers than to start swapping, and
346 * performing lots of scanning.
348 * We only allow 1/2 of the currently-unmapped memory to be dirtied.
350 * We don't permit the clamping level to fall below 5% - that is getting rather
353 * We make sure that the background writeout level is below the adjusted
357 static unsigned long highmem_dirtyable_memory(unsigned long total
)
359 #ifdef CONFIG_HIGHMEM
363 for_each_node_state(node
, N_HIGH_MEMORY
) {
365 &NODE_DATA(node
)->node_zones
[ZONE_HIGHMEM
];
367 x
+= zone_page_state(z
, NR_FREE_PAGES
) +
368 zone_reclaimable_pages(z
);
371 * Make sure that the number of highmem pages is never larger
372 * than the number of the total dirtyable memory. This can only
373 * occur in very strange VM situations but we want to make sure
374 * that this does not occur.
376 return min(x
, total
);
383 * determine_dirtyable_memory - amount of memory that may be used
385 * Returns the numebr of pages that can currently be freed and used
386 * by the kernel for direct mappings.
388 unsigned long determine_dirtyable_memory(void)
392 x
= global_page_state(NR_FREE_PAGES
) + global_reclaimable_pages();
394 if (!vm_highmem_is_dirtyable
)
395 x
-= highmem_dirtyable_memory(x
);
397 return x
+ 1; /* Ensure that we never return 0 */
401 * global_dirty_limits - background-writeback and dirty-throttling thresholds
403 * Calculate the dirty thresholds based on sysctl parameters
404 * - vm.dirty_background_ratio or vm.dirty_background_bytes
405 * - vm.dirty_ratio or vm.dirty_bytes
406 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
409 void global_dirty_limits(unsigned long *pbackground
, unsigned long *pdirty
)
411 unsigned long background
;
413 unsigned long available_memory
= determine_dirtyable_memory();
414 struct task_struct
*tsk
;
417 dirty
= DIV_ROUND_UP(vm_dirty_bytes
, PAGE_SIZE
);
419 dirty
= (vm_dirty_ratio
* available_memory
) / 100;
421 if (dirty_background_bytes
)
422 background
= DIV_ROUND_UP(dirty_background_bytes
, PAGE_SIZE
);
424 background
= (dirty_background_ratio
* available_memory
) / 100;
426 if (background
>= dirty
)
427 background
= dirty
/ 2;
429 if (tsk
->flags
& PF_LESS_THROTTLE
|| rt_task(tsk
)) {
430 background
+= background
/ 4;
433 *pbackground
= background
;
438 * bdi_dirty_limit - @bdi's share of dirty throttling threshold
440 * Allocate high/low dirty limits to fast/slow devices, in order to prevent
441 * - starving fast devices
442 * - piling up dirty pages (that will take long time to sync) on slow devices
444 * The bdi's share of dirty limit will be adapting to its throughput and
445 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
447 unsigned long bdi_dirty_limit(struct backing_dev_info
*bdi
, unsigned long dirty
)
450 long numerator
, denominator
;
453 * Calculate this BDI's share of the dirty ratio.
455 bdi_writeout_fraction(bdi
, &numerator
, &denominator
);
457 bdi_dirty
= (dirty
* (100 - bdi_min_ratio
)) / 100;
458 bdi_dirty
*= numerator
;
459 do_div(bdi_dirty
, denominator
);
461 bdi_dirty
+= (dirty
* bdi
->min_ratio
) / 100;
462 if (bdi_dirty
> (dirty
* bdi
->max_ratio
) / 100)
463 bdi_dirty
= dirty
* bdi
->max_ratio
/ 100;
469 * balance_dirty_pages() must be called by processes which are generating dirty
470 * data. It looks at the number of dirty pages in the machine and will force
471 * the caller to perform writeback if the system is over `vm_dirty_ratio'.
472 * If we're over `background_thresh' then the writeback threads are woken to
473 * perform some writeout.
475 static void balance_dirty_pages(struct address_space
*mapping
,
476 unsigned long write_chunk
)
478 long nr_reclaimable
, bdi_nr_reclaimable
;
479 long nr_writeback
, bdi_nr_writeback
;
480 unsigned long background_thresh
;
481 unsigned long dirty_thresh
;
482 unsigned long bdi_thresh
;
483 unsigned long pages_written
= 0;
484 unsigned long pause
= 1;
485 bool dirty_exceeded
= false;
486 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
489 struct writeback_control wbc
= {
490 .sync_mode
= WB_SYNC_NONE
,
491 .older_than_this
= NULL
,
492 .nr_to_write
= write_chunk
,
496 nr_reclaimable
= global_page_state(NR_FILE_DIRTY
) +
497 global_page_state(NR_UNSTABLE_NFS
);
498 nr_writeback
= global_page_state(NR_WRITEBACK
);
500 global_dirty_limits(&background_thresh
, &dirty_thresh
);
503 * Throttle it only when the background writeback cannot
504 * catch-up. This avoids (excessively) small writeouts
505 * when the bdi limits are ramping up.
507 if (nr_reclaimable
+ nr_writeback
<=
508 (background_thresh
+ dirty_thresh
) / 2)
511 bdi_thresh
= bdi_dirty_limit(bdi
, dirty_thresh
);
512 bdi_thresh
= task_dirty_limit(current
, bdi_thresh
);
515 * In order to avoid the stacked BDI deadlock we need
516 * to ensure we accurately count the 'dirty' pages when
517 * the threshold is low.
519 * Otherwise it would be possible to get thresh+n pages
520 * reported dirty, even though there are thresh-m pages
521 * actually dirty; with m+n sitting in the percpu
524 if (bdi_thresh
< 2*bdi_stat_error(bdi
)) {
525 bdi_nr_reclaimable
= bdi_stat_sum(bdi
, BDI_RECLAIMABLE
);
526 bdi_nr_writeback
= bdi_stat_sum(bdi
, BDI_WRITEBACK
);
528 bdi_nr_reclaimable
= bdi_stat(bdi
, BDI_RECLAIMABLE
);
529 bdi_nr_writeback
= bdi_stat(bdi
, BDI_WRITEBACK
);
533 * The bdi thresh is somehow "soft" limit derived from the
534 * global "hard" limit. The former helps to prevent heavy IO
535 * bdi or process from holding back light ones; The latter is
536 * the last resort safeguard.
539 (bdi_nr_reclaimable
+ bdi_nr_writeback
> bdi_thresh
)
540 || (nr_reclaimable
+ nr_writeback
> dirty_thresh
);
545 if (!bdi
->dirty_exceeded
)
546 bdi
->dirty_exceeded
= 1;
548 /* Note: nr_reclaimable denotes nr_dirty + nr_unstable.
549 * Unstable writes are a feature of certain networked
550 * filesystems (i.e. NFS) in which data may have been
551 * written to the server's write cache, but has not yet
552 * been flushed to permanent storage.
553 * Only move pages to writeback if this bdi is over its
554 * threshold otherwise wait until the disk writes catch
557 trace_wbc_balance_dirty_start(&wbc
, bdi
);
558 if (bdi_nr_reclaimable
> bdi_thresh
) {
559 writeback_inodes_wb(&bdi
->wb
, &wbc
);
560 pages_written
+= write_chunk
- wbc
.nr_to_write
;
561 trace_wbc_balance_dirty_written(&wbc
, bdi
);
562 if (pages_written
>= write_chunk
)
563 break; /* We've done our duty */
565 trace_wbc_balance_dirty_wait(&wbc
, bdi
);
566 __set_current_state(TASK_UNINTERRUPTIBLE
);
567 io_schedule_timeout(pause
);
570 * Increase the delay for each loop, up to our previous
571 * default of taking a 100ms nap.
578 if (!dirty_exceeded
&& bdi
->dirty_exceeded
)
579 bdi
->dirty_exceeded
= 0;
581 if (writeback_in_progress(bdi
))
585 * In laptop mode, we wait until hitting the higher threshold before
586 * starting background writeout, and then write out all the way down
587 * to the lower threshold. So slow writers cause minimal disk activity.
589 * In normal mode, we start background writeout at the lower
590 * background_thresh, to keep the amount of dirty memory low.
592 if ((laptop_mode
&& pages_written
) ||
593 (!laptop_mode
&& (nr_reclaimable
> background_thresh
)))
594 bdi_start_background_writeback(bdi
);
597 void set_page_dirty_balance(struct page
*page
, int page_mkwrite
)
599 if (set_page_dirty(page
) || page_mkwrite
) {
600 struct address_space
*mapping
= page_mapping(page
);
603 balance_dirty_pages_ratelimited(mapping
);
607 static DEFINE_PER_CPU(unsigned long, bdp_ratelimits
) = 0;
610 * balance_dirty_pages_ratelimited_nr - balance dirty memory state
611 * @mapping: address_space which was dirtied
612 * @nr_pages_dirtied: number of pages which the caller has just dirtied
614 * Processes which are dirtying memory should call in here once for each page
615 * which was newly dirtied. The function will periodically check the system's
616 * dirty state and will initiate writeback if needed.
618 * On really big machines, get_writeback_state is expensive, so try to avoid
619 * calling it too often (ratelimiting). But once we're over the dirty memory
620 * limit we decrease the ratelimiting by a lot, to prevent individual processes
621 * from overshooting the limit by (ratelimit_pages) each.
623 void balance_dirty_pages_ratelimited_nr(struct address_space
*mapping
,
624 unsigned long nr_pages_dirtied
)
626 unsigned long ratelimit
;
629 ratelimit
= ratelimit_pages
;
630 if (mapping
->backing_dev_info
->dirty_exceeded
)
634 * Check the rate limiting. Also, we do not want to throttle real-time
635 * tasks in balance_dirty_pages(). Period.
638 p
= &__get_cpu_var(bdp_ratelimits
);
639 *p
+= nr_pages_dirtied
;
640 if (unlikely(*p
>= ratelimit
)) {
641 ratelimit
= sync_writeback_pages(*p
);
644 balance_dirty_pages(mapping
, ratelimit
);
649 EXPORT_SYMBOL(balance_dirty_pages_ratelimited_nr
);
651 void throttle_vm_writeout(gfp_t gfp_mask
)
653 unsigned long background_thresh
;
654 unsigned long dirty_thresh
;
657 global_dirty_limits(&background_thresh
, &dirty_thresh
);
660 * Boost the allowable dirty threshold a bit for page
661 * allocators so they don't get DoS'ed by heavy writers
663 dirty_thresh
+= dirty_thresh
/ 10; /* wheeee... */
665 if (global_page_state(NR_UNSTABLE_NFS
) +
666 global_page_state(NR_WRITEBACK
) <= dirty_thresh
)
668 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
671 * The caller might hold locks which can prevent IO completion
672 * or progress in the filesystem. So we cannot just sit here
673 * waiting for IO to complete.
675 if ((gfp_mask
& (__GFP_FS
|__GFP_IO
)) != (__GFP_FS
|__GFP_IO
))
681 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
683 int dirty_writeback_centisecs_handler(ctl_table
*table
, int write
,
684 void __user
*buffer
, size_t *length
, loff_t
*ppos
)
686 proc_dointvec(table
, write
, buffer
, length
, ppos
);
687 bdi_arm_supers_timer();
692 void laptop_mode_timer_fn(unsigned long data
)
694 struct request_queue
*q
= (struct request_queue
*)data
;
695 int nr_pages
= global_page_state(NR_FILE_DIRTY
) +
696 global_page_state(NR_UNSTABLE_NFS
);
699 * We want to write everything out, not just down to the dirty
702 if (bdi_has_dirty_io(&q
->backing_dev_info
))
703 bdi_start_writeback(&q
->backing_dev_info
, nr_pages
);
707 * We've spun up the disk and we're in laptop mode: schedule writeback
708 * of all dirty data a few seconds from now. If the flush is already scheduled
709 * then push it back - the user is still using the disk.
711 void laptop_io_completion(struct backing_dev_info
*info
)
713 mod_timer(&info
->laptop_mode_wb_timer
, jiffies
+ laptop_mode
);
717 * We're in laptop mode and we've just synced. The sync's writes will have
718 * caused another writeback to be scheduled by laptop_io_completion.
719 * Nothing needs to be written back anymore, so we unschedule the writeback.
721 void laptop_sync_completion(void)
723 struct backing_dev_info
*bdi
;
727 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
)
728 del_timer(&bdi
->laptop_mode_wb_timer
);
735 * If ratelimit_pages is too high then we can get into dirty-data overload
736 * if a large number of processes all perform writes at the same time.
737 * If it is too low then SMP machines will call the (expensive)
738 * get_writeback_state too often.
740 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
741 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
742 * thresholds before writeback cuts in.
744 * But the limit should not be set too high. Because it also controls the
745 * amount of memory which the balance_dirty_pages() caller has to write back.
746 * If this is too large then the caller will block on the IO queue all the
747 * time. So limit it to four megabytes - the balance_dirty_pages() caller
748 * will write six megabyte chunks, max.
751 void writeback_set_ratelimit(void)
753 ratelimit_pages
= vm_total_pages
/ (num_online_cpus() * 32);
754 if (ratelimit_pages
< 16)
755 ratelimit_pages
= 16;
756 if (ratelimit_pages
* PAGE_CACHE_SIZE
> 4096 * 1024)
757 ratelimit_pages
= (4096 * 1024) / PAGE_CACHE_SIZE
;
761 ratelimit_handler(struct notifier_block
*self
, unsigned long u
, void *v
)
763 writeback_set_ratelimit();
767 static struct notifier_block __cpuinitdata ratelimit_nb
= {
768 .notifier_call
= ratelimit_handler
,
773 * Called early on to tune the page writeback dirty limits.
775 * We used to scale dirty pages according to how total memory
776 * related to pages that could be allocated for buffers (by
777 * comparing nr_free_buffer_pages() to vm_total_pages.
779 * However, that was when we used "dirty_ratio" to scale with
780 * all memory, and we don't do that any more. "dirty_ratio"
781 * is now applied to total non-HIGHPAGE memory (by subtracting
782 * totalhigh_pages from vm_total_pages), and as such we can't
783 * get into the old insane situation any more where we had
784 * large amounts of dirty pages compared to a small amount of
785 * non-HIGHMEM memory.
787 * But we might still want to scale the dirty_ratio by how
788 * much memory the box has..
790 void __init
page_writeback_init(void)
794 writeback_set_ratelimit();
795 register_cpu_notifier(&ratelimit_nb
);
797 shift
= calc_period_shift();
798 prop_descriptor_init(&vm_completions
, shift
);
799 prop_descriptor_init(&vm_dirties
, shift
);
803 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
804 * @mapping: address space structure to write
805 * @start: starting page index
806 * @end: ending page index (inclusive)
808 * This function scans the page range from @start to @end (inclusive) and tags
809 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
810 * that write_cache_pages (or whoever calls this function) will then use
811 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
812 * used to avoid livelocking of writeback by a process steadily creating new
813 * dirty pages in the file (thus it is important for this function to be quick
814 * so that it can tag pages faster than a dirtying process can create them).
817 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
819 void tag_pages_for_writeback(struct address_space
*mapping
,
820 pgoff_t start
, pgoff_t end
)
822 #define WRITEBACK_TAG_BATCH 4096
823 unsigned long tagged
;
826 spin_lock_irq(&mapping
->tree_lock
);
827 tagged
= radix_tree_range_tag_if_tagged(&mapping
->page_tree
,
828 &start
, end
, WRITEBACK_TAG_BATCH
,
829 PAGECACHE_TAG_DIRTY
, PAGECACHE_TAG_TOWRITE
);
830 spin_unlock_irq(&mapping
->tree_lock
);
831 WARN_ON_ONCE(tagged
> WRITEBACK_TAG_BATCH
);
833 /* We check 'start' to handle wrapping when end == ~0UL */
834 } while (tagged
>= WRITEBACK_TAG_BATCH
&& start
);
836 EXPORT_SYMBOL(tag_pages_for_writeback
);
839 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
840 * @mapping: address space structure to write
841 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
842 * @writepage: function called for each page
843 * @data: data passed to writepage function
845 * If a page is already under I/O, write_cache_pages() skips it, even
846 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
847 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
848 * and msync() need to guarantee that all the data which was dirty at the time
849 * the call was made get new I/O started against them. If wbc->sync_mode is
850 * WB_SYNC_ALL then we were called for data integrity and we must wait for
851 * existing IO to complete.
853 * To avoid livelocks (when other process dirties new pages), we first tag
854 * pages which should be written back with TOWRITE tag and only then start
855 * writing them. For data-integrity sync we have to be careful so that we do
856 * not miss some pages (e.g., because some other process has cleared TOWRITE
857 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
858 * by the process clearing the DIRTY tag (and submitting the page for IO).
860 int write_cache_pages(struct address_space
*mapping
,
861 struct writeback_control
*wbc
, writepage_t writepage
,
868 pgoff_t
uninitialized_var(writeback_index
);
870 pgoff_t end
; /* Inclusive */
876 pagevec_init(&pvec
, 0);
877 if (wbc
->range_cyclic
) {
878 writeback_index
= mapping
->writeback_index
; /* prev offset */
879 index
= writeback_index
;
886 index
= wbc
->range_start
>> PAGE_CACHE_SHIFT
;
887 end
= wbc
->range_end
>> PAGE_CACHE_SHIFT
;
888 if (wbc
->range_start
== 0 && wbc
->range_end
== LLONG_MAX
)
890 cycled
= 1; /* ignore range_cyclic tests */
892 if (wbc
->sync_mode
== WB_SYNC_ALL
)
893 tag
= PAGECACHE_TAG_TOWRITE
;
895 tag
= PAGECACHE_TAG_DIRTY
;
897 if (wbc
->sync_mode
== WB_SYNC_ALL
)
898 tag_pages_for_writeback(mapping
, index
, end
);
900 while (!done
&& (index
<= end
)) {
903 nr_pages
= pagevec_lookup_tag(&pvec
, mapping
, &index
, tag
,
904 min(end
- index
, (pgoff_t
)PAGEVEC_SIZE
-1) + 1);
908 for (i
= 0; i
< nr_pages
; i
++) {
909 struct page
*page
= pvec
.pages
[i
];
912 * At this point, the page may be truncated or
913 * invalidated (changing page->mapping to NULL), or
914 * even swizzled back from swapper_space to tmpfs file
915 * mapping. However, page->index will not change
916 * because we have a reference on the page.
918 if (page
->index
> end
) {
920 * can't be range_cyclic (1st pass) because
921 * end == -1 in that case.
927 done_index
= page
->index
+ 1;
932 * Page truncated or invalidated. We can freely skip it
933 * then, even for data integrity operations: the page
934 * has disappeared concurrently, so there could be no
935 * real expectation of this data interity operation
936 * even if there is now a new, dirty page at the same
939 if (unlikely(page
->mapping
!= mapping
)) {
945 if (!PageDirty(page
)) {
946 /* someone wrote it for us */
947 goto continue_unlock
;
950 if (PageWriteback(page
)) {
951 if (wbc
->sync_mode
!= WB_SYNC_NONE
)
952 wait_on_page_writeback(page
);
954 goto continue_unlock
;
957 BUG_ON(PageWriteback(page
));
958 if (!clear_page_dirty_for_io(page
))
959 goto continue_unlock
;
961 trace_wbc_writepage(wbc
, mapping
->backing_dev_info
);
962 ret
= (*writepage
)(page
, wbc
, data
);
964 if (ret
== AOP_WRITEPAGE_ACTIVATE
) {
969 * done_index is set past this page,
970 * so media errors will not choke
971 * background writeout for the entire
972 * file. This has consequences for
973 * range_cyclic semantics (ie. it may
974 * not be suitable for data integrity
983 * We stop writing back only if we are not doing
984 * integrity sync. In case of integrity sync we have to
985 * keep going until we have written all the pages
986 * we tagged for writeback prior to entering this loop.
988 if (--wbc
->nr_to_write
<= 0 &&
989 wbc
->sync_mode
== WB_SYNC_NONE
) {
994 pagevec_release(&pvec
);
997 if (!cycled
&& !done
) {
1000 * We hit the last page and there is more work to be done: wrap
1001 * back to the start of the file
1005 end
= writeback_index
- 1;
1008 if (wbc
->range_cyclic
|| (range_whole
&& wbc
->nr_to_write
> 0))
1009 mapping
->writeback_index
= done_index
;
1013 EXPORT_SYMBOL(write_cache_pages
);
1016 * Function used by generic_writepages to call the real writepage
1017 * function and set the mapping flags on error
1019 static int __writepage(struct page
*page
, struct writeback_control
*wbc
,
1022 struct address_space
*mapping
= data
;
1023 int ret
= mapping
->a_ops
->writepage(page
, wbc
);
1024 mapping_set_error(mapping
, ret
);
1029 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
1030 * @mapping: address space structure to write
1031 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
1033 * This is a library function, which implements the writepages()
1034 * address_space_operation.
1036 int generic_writepages(struct address_space
*mapping
,
1037 struct writeback_control
*wbc
)
1039 /* deal with chardevs and other special file */
1040 if (!mapping
->a_ops
->writepage
)
1043 return write_cache_pages(mapping
, wbc
, __writepage
, mapping
);
1046 EXPORT_SYMBOL(generic_writepages
);
1048 int do_writepages(struct address_space
*mapping
, struct writeback_control
*wbc
)
1052 if (wbc
->nr_to_write
<= 0)
1054 if (mapping
->a_ops
->writepages
)
1055 ret
= mapping
->a_ops
->writepages(mapping
, wbc
);
1057 ret
= generic_writepages(mapping
, wbc
);
1062 * write_one_page - write out a single page and optionally wait on I/O
1063 * @page: the page to write
1064 * @wait: if true, wait on writeout
1066 * The page must be locked by the caller and will be unlocked upon return.
1068 * write_one_page() returns a negative error code if I/O failed.
1070 int write_one_page(struct page
*page
, int wait
)
1072 struct address_space
*mapping
= page
->mapping
;
1074 struct writeback_control wbc
= {
1075 .sync_mode
= WB_SYNC_ALL
,
1079 BUG_ON(!PageLocked(page
));
1082 wait_on_page_writeback(page
);
1084 if (clear_page_dirty_for_io(page
)) {
1085 page_cache_get(page
);
1086 ret
= mapping
->a_ops
->writepage(page
, &wbc
);
1087 if (ret
== 0 && wait
) {
1088 wait_on_page_writeback(page
);
1089 if (PageError(page
))
1092 page_cache_release(page
);
1098 EXPORT_SYMBOL(write_one_page
);
1101 * For address_spaces which do not use buffers nor write back.
1103 int __set_page_dirty_no_writeback(struct page
*page
)
1105 if (!PageDirty(page
))
1111 * Helper function for set_page_dirty family.
1112 * NOTE: This relies on being atomic wrt interrupts.
1114 void account_page_dirtied(struct page
*page
, struct address_space
*mapping
)
1116 if (mapping_cap_account_dirty(mapping
)) {
1117 __inc_zone_page_state(page
, NR_FILE_DIRTY
);
1118 __inc_zone_page_state(page
, NR_DIRTIED
);
1119 __inc_bdi_stat(mapping
->backing_dev_info
, BDI_RECLAIMABLE
);
1120 task_dirty_inc(current
);
1121 task_io_account_write(PAGE_CACHE_SIZE
);
1124 EXPORT_SYMBOL(account_page_dirtied
);
1127 * Helper function for set_page_writeback family.
1128 * NOTE: Unlike account_page_dirtied this does not rely on being atomic
1131 void account_page_writeback(struct page
*page
)
1133 inc_zone_page_state(page
, NR_WRITEBACK
);
1134 inc_zone_page_state(page
, NR_WRITTEN
);
1136 EXPORT_SYMBOL(account_page_writeback
);
1139 * For address_spaces which do not use buffers. Just tag the page as dirty in
1142 * This is also used when a single buffer is being dirtied: we want to set the
1143 * page dirty in that case, but not all the buffers. This is a "bottom-up"
1144 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
1146 * Most callers have locked the page, which pins the address_space in memory.
1147 * But zap_pte_range() does not lock the page, however in that case the
1148 * mapping is pinned by the vma's ->vm_file reference.
1150 * We take care to handle the case where the page was truncated from the
1151 * mapping by re-checking page_mapping() inside tree_lock.
1153 int __set_page_dirty_nobuffers(struct page
*page
)
1155 if (!TestSetPageDirty(page
)) {
1156 struct address_space
*mapping
= page_mapping(page
);
1157 struct address_space
*mapping2
;
1162 spin_lock_irq(&mapping
->tree_lock
);
1163 mapping2
= page_mapping(page
);
1164 if (mapping2
) { /* Race with truncate? */
1165 BUG_ON(mapping2
!= mapping
);
1166 WARN_ON_ONCE(!PagePrivate(page
) && !PageUptodate(page
));
1167 account_page_dirtied(page
, mapping
);
1168 radix_tree_tag_set(&mapping
->page_tree
,
1169 page_index(page
), PAGECACHE_TAG_DIRTY
);
1171 spin_unlock_irq(&mapping
->tree_lock
);
1172 if (mapping
->host
) {
1173 /* !PageAnon && !swapper_space */
1174 __mark_inode_dirty(mapping
->host
, I_DIRTY_PAGES
);
1180 EXPORT_SYMBOL(__set_page_dirty_nobuffers
);
1183 * When a writepage implementation decides that it doesn't want to write this
1184 * page for some reason, it should redirty the locked page via
1185 * redirty_page_for_writepage() and it should then unlock the page and return 0
1187 int redirty_page_for_writepage(struct writeback_control
*wbc
, struct page
*page
)
1189 wbc
->pages_skipped
++;
1190 return __set_page_dirty_nobuffers(page
);
1192 EXPORT_SYMBOL(redirty_page_for_writepage
);
1197 * For pages with a mapping this should be done under the page lock
1198 * for the benefit of asynchronous memory errors who prefer a consistent
1199 * dirty state. This rule can be broken in some special cases,
1200 * but should be better not to.
1202 * If the mapping doesn't provide a set_page_dirty a_op, then
1203 * just fall through and assume that it wants buffer_heads.
1205 int set_page_dirty(struct page
*page
)
1207 struct address_space
*mapping
= page_mapping(page
);
1209 if (likely(mapping
)) {
1210 int (*spd
)(struct page
*) = mapping
->a_ops
->set_page_dirty
;
1213 spd
= __set_page_dirty_buffers
;
1215 return (*spd
)(page
);
1217 if (!PageDirty(page
)) {
1218 if (!TestSetPageDirty(page
))
1223 EXPORT_SYMBOL(set_page_dirty
);
1226 * set_page_dirty() is racy if the caller has no reference against
1227 * page->mapping->host, and if the page is unlocked. This is because another
1228 * CPU could truncate the page off the mapping and then free the mapping.
1230 * Usually, the page _is_ locked, or the caller is a user-space process which
1231 * holds a reference on the inode by having an open file.
1233 * In other cases, the page should be locked before running set_page_dirty().
1235 int set_page_dirty_lock(struct page
*page
)
1239 lock_page_nosync(page
);
1240 ret
= set_page_dirty(page
);
1244 EXPORT_SYMBOL(set_page_dirty_lock
);
1247 * Clear a page's dirty flag, while caring for dirty memory accounting.
1248 * Returns true if the page was previously dirty.
1250 * This is for preparing to put the page under writeout. We leave the page
1251 * tagged as dirty in the radix tree so that a concurrent write-for-sync
1252 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
1253 * implementation will run either set_page_writeback() or set_page_dirty(),
1254 * at which stage we bring the page's dirty flag and radix-tree dirty tag
1257 * This incoherency between the page's dirty flag and radix-tree tag is
1258 * unfortunate, but it only exists while the page is locked.
1260 int clear_page_dirty_for_io(struct page
*page
)
1262 struct address_space
*mapping
= page_mapping(page
);
1264 BUG_ON(!PageLocked(page
));
1266 ClearPageReclaim(page
);
1267 if (mapping
&& mapping_cap_account_dirty(mapping
)) {
1269 * Yes, Virginia, this is indeed insane.
1271 * We use this sequence to make sure that
1272 * (a) we account for dirty stats properly
1273 * (b) we tell the low-level filesystem to
1274 * mark the whole page dirty if it was
1275 * dirty in a pagetable. Only to then
1276 * (c) clean the page again and return 1 to
1277 * cause the writeback.
1279 * This way we avoid all nasty races with the
1280 * dirty bit in multiple places and clearing
1281 * them concurrently from different threads.
1283 * Note! Normally the "set_page_dirty(page)"
1284 * has no effect on the actual dirty bit - since
1285 * that will already usually be set. But we
1286 * need the side effects, and it can help us
1289 * We basically use the page "master dirty bit"
1290 * as a serialization point for all the different
1291 * threads doing their things.
1293 if (page_mkclean(page
))
1294 set_page_dirty(page
);
1296 * We carefully synchronise fault handlers against
1297 * installing a dirty pte and marking the page dirty
1298 * at this point. We do this by having them hold the
1299 * page lock at some point after installing their
1300 * pte, but before marking the page dirty.
1301 * Pages are always locked coming in here, so we get
1302 * the desired exclusion. See mm/memory.c:do_wp_page()
1303 * for more comments.
1305 if (TestClearPageDirty(page
)) {
1306 dec_zone_page_state(page
, NR_FILE_DIRTY
);
1307 dec_bdi_stat(mapping
->backing_dev_info
,
1313 return TestClearPageDirty(page
);
1315 EXPORT_SYMBOL(clear_page_dirty_for_io
);
1317 int test_clear_page_writeback(struct page
*page
)
1319 struct address_space
*mapping
= page_mapping(page
);
1323 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1324 unsigned long flags
;
1326 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1327 ret
= TestClearPageWriteback(page
);
1329 radix_tree_tag_clear(&mapping
->page_tree
,
1331 PAGECACHE_TAG_WRITEBACK
);
1332 if (bdi_cap_account_writeback(bdi
)) {
1333 __dec_bdi_stat(bdi
, BDI_WRITEBACK
);
1334 __bdi_writeout_inc(bdi
);
1337 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1339 ret
= TestClearPageWriteback(page
);
1342 dec_zone_page_state(page
, NR_WRITEBACK
);
1346 int test_set_page_writeback(struct page
*page
)
1348 struct address_space
*mapping
= page_mapping(page
);
1352 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
1353 unsigned long flags
;
1355 spin_lock_irqsave(&mapping
->tree_lock
, flags
);
1356 ret
= TestSetPageWriteback(page
);
1358 radix_tree_tag_set(&mapping
->page_tree
,
1360 PAGECACHE_TAG_WRITEBACK
);
1361 if (bdi_cap_account_writeback(bdi
))
1362 __inc_bdi_stat(bdi
, BDI_WRITEBACK
);
1364 if (!PageDirty(page
))
1365 radix_tree_tag_clear(&mapping
->page_tree
,
1367 PAGECACHE_TAG_DIRTY
);
1368 radix_tree_tag_clear(&mapping
->page_tree
,
1370 PAGECACHE_TAG_TOWRITE
);
1371 spin_unlock_irqrestore(&mapping
->tree_lock
, flags
);
1373 ret
= TestSetPageWriteback(page
);
1376 account_page_writeback(page
);
1380 EXPORT_SYMBOL(test_set_page_writeback
);
1383 * Return true if any of the pages in the mapping are marked with the
1386 int mapping_tagged(struct address_space
*mapping
, int tag
)
1390 ret
= radix_tree_tagged(&mapping
->page_tree
, tag
);
1394 EXPORT_SYMBOL(mapping_tagged
);