1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
13 * This program is free software; you can redistribute it and/or modify
14 * it under the terms of the GNU General Public License as published by
15 * the Free Software Foundation; either version 2 of the License, or
16 * (at your option) any later version.
18 * This program is distributed in the hope that it will be useful,
19 * but WITHOUT ANY WARRANTY; without even the implied warranty of
20 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 * GNU General Public License for more details.
24 #include <linux/res_counter.h>
25 #include <linux/memcontrol.h>
26 #include <linux/cgroup.h>
28 #include <linux/hugetlb.h>
29 #include <linux/pagemap.h>
30 #include <linux/smp.h>
31 #include <linux/page-flags.h>
32 #include <linux/backing-dev.h>
33 #include <linux/bit_spinlock.h>
34 #include <linux/rcupdate.h>
35 #include <linux/limits.h>
36 #include <linux/mutex.h>
37 #include <linux/rbtree.h>
38 #include <linux/slab.h>
39 #include <linux/swap.h>
40 #include <linux/swapops.h>
41 #include <linux/spinlock.h>
42 #include <linux/eventfd.h>
43 #include <linux/sort.h>
45 #include <linux/seq_file.h>
46 #include <linux/vmalloc.h>
47 #include <linux/mm_inline.h>
48 #include <linux/page_cgroup.h>
49 #include <linux/cpu.h>
50 #include <linux/oom.h>
53 #include <asm/uaccess.h>
55 #include <trace/events/vmscan.h>
57 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
58 #define MEM_CGROUP_RECLAIM_RETRIES 5
59 struct mem_cgroup
*root_mem_cgroup __read_mostly
;
61 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
62 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
63 int do_swap_account __read_mostly
;
65 /* for remember boot option*/
66 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP_ENABLED
67 static int really_do_swap_account __initdata
= 1;
69 static int really_do_swap_account __initdata
= 0;
73 #define do_swap_account (0)
77 * Per memcg event counter is incremented at every pagein/pageout. This counter
78 * is used for trigger some periodic events. This is straightforward and better
79 * than using jiffies etc. to handle periodic memcg event.
81 * These values will be used as !((event) & ((1 <<(thresh)) - 1))
83 #define THRESHOLDS_EVENTS_THRESH (7) /* once in 128 */
84 #define SOFTLIMIT_EVENTS_THRESH (10) /* once in 1024 */
87 * Statistics for memory cgroup.
89 enum mem_cgroup_stat_index
{
91 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
93 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
94 MEM_CGROUP_STAT_RSS
, /* # of pages charged as anon rss */
95 MEM_CGROUP_STAT_FILE_MAPPED
, /* # of pages charged as file rss */
96 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
97 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
98 MEM_CGROUP_STAT_SWAPOUT
, /* # of pages, swapped out */
99 MEM_CGROUP_STAT_DATA
, /* end of data requires synchronization */
100 /* incremented at every pagein/pageout */
101 MEM_CGROUP_EVENTS
= MEM_CGROUP_STAT_DATA
,
102 MEM_CGROUP_ON_MOVE
, /* someone is moving account between groups */
104 MEM_CGROUP_STAT_NSTATS
,
107 struct mem_cgroup_stat_cpu
{
108 s64 count
[MEM_CGROUP_STAT_NSTATS
];
112 * per-zone information in memory controller.
114 struct mem_cgroup_per_zone
{
116 * spin_lock to protect the per cgroup LRU
118 struct list_head lists
[NR_LRU_LISTS
];
119 unsigned long count
[NR_LRU_LISTS
];
121 struct zone_reclaim_stat reclaim_stat
;
122 struct rb_node tree_node
; /* RB tree node */
123 unsigned long long usage_in_excess
;/* Set to the value by which */
124 /* the soft limit is exceeded*/
126 struct mem_cgroup
*mem
; /* Back pointer, we cannot */
127 /* use container_of */
129 /* Macro for accessing counter */
130 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
132 struct mem_cgroup_per_node
{
133 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
136 struct mem_cgroup_lru_info
{
137 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
141 * Cgroups above their limits are maintained in a RB-Tree, independent of
142 * their hierarchy representation
145 struct mem_cgroup_tree_per_zone
{
146 struct rb_root rb_root
;
150 struct mem_cgroup_tree_per_node
{
151 struct mem_cgroup_tree_per_zone rb_tree_per_zone
[MAX_NR_ZONES
];
154 struct mem_cgroup_tree
{
155 struct mem_cgroup_tree_per_node
*rb_tree_per_node
[MAX_NUMNODES
];
158 static struct mem_cgroup_tree soft_limit_tree __read_mostly
;
160 struct mem_cgroup_threshold
{
161 struct eventfd_ctx
*eventfd
;
166 struct mem_cgroup_threshold_ary
{
167 /* An array index points to threshold just below usage. */
168 int current_threshold
;
169 /* Size of entries[] */
171 /* Array of thresholds */
172 struct mem_cgroup_threshold entries
[0];
175 struct mem_cgroup_thresholds
{
176 /* Primary thresholds array */
177 struct mem_cgroup_threshold_ary
*primary
;
179 * Spare threshold array.
180 * This is needed to make mem_cgroup_unregister_event() "never fail".
181 * It must be able to store at least primary->size - 1 entries.
183 struct mem_cgroup_threshold_ary
*spare
;
187 struct mem_cgroup_eventfd_list
{
188 struct list_head list
;
189 struct eventfd_ctx
*eventfd
;
192 static void mem_cgroup_threshold(struct mem_cgroup
*mem
);
193 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
);
196 * The memory controller data structure. The memory controller controls both
197 * page cache and RSS per cgroup. We would eventually like to provide
198 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
199 * to help the administrator determine what knobs to tune.
201 * TODO: Add a water mark for the memory controller. Reclaim will begin when
202 * we hit the water mark. May be even add a low water mark, such that
203 * no reclaim occurs from a cgroup at it's low water mark, this is
204 * a feature that will be implemented much later in the future.
207 struct cgroup_subsys_state css
;
209 * the counter to account for memory usage
211 struct res_counter res
;
213 * the counter to account for mem+swap usage.
215 struct res_counter memsw
;
217 * Per cgroup active and inactive list, similar to the
218 * per zone LRU lists.
220 struct mem_cgroup_lru_info info
;
223 protect against reclaim related member.
225 spinlock_t reclaim_param_lock
;
228 * While reclaiming in a hierarchy, we cache the last child we
231 int last_scanned_child
;
233 * Should the accounting and control be hierarchical, per subtree?
239 unsigned int swappiness
;
240 /* OOM-Killer disable */
241 int oom_kill_disable
;
243 /* set when res.limit == memsw.limit */
244 bool memsw_is_minimum
;
246 /* protect arrays of thresholds */
247 struct mutex thresholds_lock
;
249 /* thresholds for memory usage. RCU-protected */
250 struct mem_cgroup_thresholds thresholds
;
252 /* thresholds for mem+swap usage. RCU-protected */
253 struct mem_cgroup_thresholds memsw_thresholds
;
255 /* For oom notifier event fd */
256 struct list_head oom_notify
;
259 * Should we move charges of a task when a task is moved into this
260 * mem_cgroup ? And what type of charges should we move ?
262 unsigned long move_charge_at_immigrate
;
266 struct mem_cgroup_stat_cpu
*stat
;
268 * used when a cpu is offlined or other synchronizations
269 * See mem_cgroup_read_stat().
271 struct mem_cgroup_stat_cpu nocpu_base
;
272 spinlock_t pcp_counter_lock
;
275 /* Stuffs for move charges at task migration. */
277 * Types of charges to be moved. "move_charge_at_immitgrate" is treated as a
278 * left-shifted bitmap of these types.
281 MOVE_CHARGE_TYPE_ANON
, /* private anonymous page and swap of it */
282 MOVE_CHARGE_TYPE_FILE
, /* file page(including tmpfs) and swap of it */
286 /* "mc" and its members are protected by cgroup_mutex */
287 static struct move_charge_struct
{
288 spinlock_t lock
; /* for from, to */
289 struct mem_cgroup
*from
;
290 struct mem_cgroup
*to
;
291 unsigned long precharge
;
292 unsigned long moved_charge
;
293 unsigned long moved_swap
;
294 struct task_struct
*moving_task
; /* a task moving charges */
295 struct mm_struct
*mm
;
296 wait_queue_head_t waitq
; /* a waitq for other context */
298 .lock
= __SPIN_LOCK_UNLOCKED(mc
.lock
),
299 .waitq
= __WAIT_QUEUE_HEAD_INITIALIZER(mc
.waitq
),
302 static bool move_anon(void)
304 return test_bit(MOVE_CHARGE_TYPE_ANON
,
305 &mc
.to
->move_charge_at_immigrate
);
308 static bool move_file(void)
310 return test_bit(MOVE_CHARGE_TYPE_FILE
,
311 &mc
.to
->move_charge_at_immigrate
);
315 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
316 * limit reclaim to prevent infinite loops, if they ever occur.
318 #define MEM_CGROUP_MAX_RECLAIM_LOOPS (100)
319 #define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS (2)
322 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
323 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
324 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
325 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
326 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
327 MEM_CGROUP_CHARGE_TYPE_DROP
, /* a page was unused swap cache */
331 /* only for here (for easy reading.) */
332 #define PCGF_CACHE (1UL << PCG_CACHE)
333 #define PCGF_USED (1UL << PCG_USED)
334 #define PCGF_LOCK (1UL << PCG_LOCK)
335 /* Not used, but added here for completeness */
336 #define PCGF_ACCT (1UL << PCG_ACCT)
338 /* for encoding cft->private value on file */
341 #define _OOM_TYPE (2)
342 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
343 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
344 #define MEMFILE_ATTR(val) ((val) & 0xffff)
345 /* Used for OOM nofiier */
346 #define OOM_CONTROL (0)
349 * Reclaim flags for mem_cgroup_hierarchical_reclaim
351 #define MEM_CGROUP_RECLAIM_NOSWAP_BIT 0x0
352 #define MEM_CGROUP_RECLAIM_NOSWAP (1 << MEM_CGROUP_RECLAIM_NOSWAP_BIT)
353 #define MEM_CGROUP_RECLAIM_SHRINK_BIT 0x1
354 #define MEM_CGROUP_RECLAIM_SHRINK (1 << MEM_CGROUP_RECLAIM_SHRINK_BIT)
355 #define MEM_CGROUP_RECLAIM_SOFT_BIT 0x2
356 #define MEM_CGROUP_RECLAIM_SOFT (1 << MEM_CGROUP_RECLAIM_SOFT_BIT)
358 static void mem_cgroup_get(struct mem_cgroup
*mem
);
359 static void mem_cgroup_put(struct mem_cgroup
*mem
);
360 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
);
361 static void drain_all_stock_async(void);
363 static struct mem_cgroup_per_zone
*
364 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
366 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
369 struct cgroup_subsys_state
*mem_cgroup_css(struct mem_cgroup
*mem
)
374 static struct mem_cgroup_per_zone
*
375 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
377 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
378 int nid
= page_cgroup_nid(pc
);
379 int zid
= page_cgroup_zid(pc
);
384 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
387 static struct mem_cgroup_tree_per_zone
*
388 soft_limit_tree_node_zone(int nid
, int zid
)
390 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
393 static struct mem_cgroup_tree_per_zone
*
394 soft_limit_tree_from_page(struct page
*page
)
396 int nid
= page_to_nid(page
);
397 int zid
= page_zonenum(page
);
399 return &soft_limit_tree
.rb_tree_per_node
[nid
]->rb_tree_per_zone
[zid
];
403 __mem_cgroup_insert_exceeded(struct mem_cgroup
*mem
,
404 struct mem_cgroup_per_zone
*mz
,
405 struct mem_cgroup_tree_per_zone
*mctz
,
406 unsigned long long new_usage_in_excess
)
408 struct rb_node
**p
= &mctz
->rb_root
.rb_node
;
409 struct rb_node
*parent
= NULL
;
410 struct mem_cgroup_per_zone
*mz_node
;
415 mz
->usage_in_excess
= new_usage_in_excess
;
416 if (!mz
->usage_in_excess
)
420 mz_node
= rb_entry(parent
, struct mem_cgroup_per_zone
,
422 if (mz
->usage_in_excess
< mz_node
->usage_in_excess
)
425 * We can't avoid mem cgroups that are over their soft
426 * limit by the same amount
428 else if (mz
->usage_in_excess
>= mz_node
->usage_in_excess
)
431 rb_link_node(&mz
->tree_node
, parent
, p
);
432 rb_insert_color(&mz
->tree_node
, &mctz
->rb_root
);
437 __mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
438 struct mem_cgroup_per_zone
*mz
,
439 struct mem_cgroup_tree_per_zone
*mctz
)
443 rb_erase(&mz
->tree_node
, &mctz
->rb_root
);
448 mem_cgroup_remove_exceeded(struct mem_cgroup
*mem
,
449 struct mem_cgroup_per_zone
*mz
,
450 struct mem_cgroup_tree_per_zone
*mctz
)
452 spin_lock(&mctz
->lock
);
453 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
454 spin_unlock(&mctz
->lock
);
458 static void mem_cgroup_update_tree(struct mem_cgroup
*mem
, struct page
*page
)
460 unsigned long long excess
;
461 struct mem_cgroup_per_zone
*mz
;
462 struct mem_cgroup_tree_per_zone
*mctz
;
463 int nid
= page_to_nid(page
);
464 int zid
= page_zonenum(page
);
465 mctz
= soft_limit_tree_from_page(page
);
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
471 for (; mem
; mem
= parent_mem_cgroup(mem
)) {
472 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
473 excess
= res_counter_soft_limit_excess(&mem
->res
);
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
478 if (excess
|| mz
->on_tree
) {
479 spin_lock(&mctz
->lock
);
480 /* if on-tree, remove it */
482 __mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
484 * Insert again. mz->usage_in_excess will be updated.
485 * If excess is 0, no tree ops.
487 __mem_cgroup_insert_exceeded(mem
, mz
, mctz
, excess
);
488 spin_unlock(&mctz
->lock
);
493 static void mem_cgroup_remove_from_trees(struct mem_cgroup
*mem
)
496 struct mem_cgroup_per_zone
*mz
;
497 struct mem_cgroup_tree_per_zone
*mctz
;
499 for_each_node_state(node
, N_POSSIBLE
) {
500 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
501 mz
= mem_cgroup_zoneinfo(mem
, node
, zone
);
502 mctz
= soft_limit_tree_node_zone(node
, zone
);
503 mem_cgroup_remove_exceeded(mem
, mz
, mctz
);
508 static inline unsigned long mem_cgroup_get_excess(struct mem_cgroup
*mem
)
510 return res_counter_soft_limit_excess(&mem
->res
) >> PAGE_SHIFT
;
513 static struct mem_cgroup_per_zone
*
514 __mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
516 struct rb_node
*rightmost
= NULL
;
517 struct mem_cgroup_per_zone
*mz
;
521 rightmost
= rb_last(&mctz
->rb_root
);
523 goto done
; /* Nothing to reclaim from */
525 mz
= rb_entry(rightmost
, struct mem_cgroup_per_zone
, tree_node
);
527 * Remove the node now but someone else can add it back,
528 * we will to add it back at the end of reclaim to its correct
529 * position in the tree.
531 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
532 if (!res_counter_soft_limit_excess(&mz
->mem
->res
) ||
533 !css_tryget(&mz
->mem
->css
))
539 static struct mem_cgroup_per_zone
*
540 mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone
*mctz
)
542 struct mem_cgroup_per_zone
*mz
;
544 spin_lock(&mctz
->lock
);
545 mz
= __mem_cgroup_largest_soft_limit_node(mctz
);
546 spin_unlock(&mctz
->lock
);
551 * Implementation Note: reading percpu statistics for memcg.
553 * Both of vmstat[] and percpu_counter has threshold and do periodic
554 * synchronization to implement "quick" read. There are trade-off between
555 * reading cost and precision of value. Then, we may have a chance to implement
556 * a periodic synchronizion of counter in memcg's counter.
558 * But this _read() function is used for user interface now. The user accounts
559 * memory usage by memory cgroup and he _always_ requires exact value because
560 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
561 * have to visit all online cpus and make sum. So, for now, unnecessary
562 * synchronization is not implemented. (just implemented for cpu hotplug)
564 * If there are kernel internal actions which can make use of some not-exact
565 * value, and reading all cpu value can be performance bottleneck in some
566 * common workload, threashold and synchonization as vmstat[] should be
569 static s64
mem_cgroup_read_stat(struct mem_cgroup
*mem
,
570 enum mem_cgroup_stat_index idx
)
576 for_each_online_cpu(cpu
)
577 val
+= per_cpu(mem
->stat
->count
[idx
], cpu
);
578 #ifdef CONFIG_HOTPLUG_CPU
579 spin_lock(&mem
->pcp_counter_lock
);
580 val
+= mem
->nocpu_base
.count
[idx
];
581 spin_unlock(&mem
->pcp_counter_lock
);
587 static s64
mem_cgroup_local_usage(struct mem_cgroup
*mem
)
591 ret
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
592 ret
+= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
596 static void mem_cgroup_swap_statistics(struct mem_cgroup
*mem
,
599 int val
= (charge
) ? 1 : -1;
600 this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_SWAPOUT
], val
);
603 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
604 struct page_cgroup
*pc
,
607 int val
= (charge
) ? 1 : -1;
611 if (PageCgroupCache(pc
))
612 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_CACHE
], val
);
614 __this_cpu_add(mem
->stat
->count
[MEM_CGROUP_STAT_RSS
], val
);
617 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGIN_COUNT
]);
619 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_STAT_PGPGOUT_COUNT
]);
620 __this_cpu_inc(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
625 static unsigned long mem_cgroup_get_local_zonestat(struct mem_cgroup
*mem
,
629 struct mem_cgroup_per_zone
*mz
;
632 for_each_online_node(nid
)
633 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
634 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
635 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
640 static bool __memcg_event_check(struct mem_cgroup
*mem
, int event_mask_shift
)
644 val
= this_cpu_read(mem
->stat
->count
[MEM_CGROUP_EVENTS
]);
646 return !(val
& ((1 << event_mask_shift
) - 1));
650 * Check events in order.
653 static void memcg_check_events(struct mem_cgroup
*mem
, struct page
*page
)
655 /* threshold event is triggered in finer grain than soft limit */
656 if (unlikely(__memcg_event_check(mem
, THRESHOLDS_EVENTS_THRESH
))) {
657 mem_cgroup_threshold(mem
);
658 if (unlikely(__memcg_event_check(mem
, SOFTLIMIT_EVENTS_THRESH
)))
659 mem_cgroup_update_tree(mem
, page
);
663 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
665 return container_of(cgroup_subsys_state(cont
,
666 mem_cgroup_subsys_id
), struct mem_cgroup
,
670 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
673 * mm_update_next_owner() may clear mm->owner to NULL
674 * if it races with swapoff, page migration, etc.
675 * So this can be called with p == NULL.
680 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
681 struct mem_cgroup
, css
);
684 static struct mem_cgroup
*try_get_mem_cgroup_from_mm(struct mm_struct
*mm
)
686 struct mem_cgroup
*mem
= NULL
;
691 * Because we have no locks, mm->owner's may be being moved to other
692 * cgroup. We use css_tryget() here even if this looks
693 * pessimistic (rather than adding locks here).
697 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
700 } while (!css_tryget(&mem
->css
));
705 /* The caller has to guarantee "mem" exists before calling this */
706 static struct mem_cgroup
*mem_cgroup_start_loop(struct mem_cgroup
*mem
)
708 struct cgroup_subsys_state
*css
;
711 if (!mem
) /* ROOT cgroup has the smallest ID */
712 return root_mem_cgroup
; /*css_put/get against root is ignored*/
713 if (!mem
->use_hierarchy
) {
714 if (css_tryget(&mem
->css
))
720 * searching a memory cgroup which has the smallest ID under given
721 * ROOT cgroup. (ID >= 1)
723 css
= css_get_next(&mem_cgroup_subsys
, 1, &mem
->css
, &found
);
724 if (css
&& css_tryget(css
))
725 mem
= container_of(css
, struct mem_cgroup
, css
);
732 static struct mem_cgroup
*mem_cgroup_get_next(struct mem_cgroup
*iter
,
733 struct mem_cgroup
*root
,
736 int nextid
= css_id(&iter
->css
) + 1;
739 struct cgroup_subsys_state
*css
;
741 hierarchy_used
= iter
->use_hierarchy
;
744 /* If no ROOT, walk all, ignore hierarchy */
745 if (!cond
|| (root
&& !hierarchy_used
))
749 root
= root_mem_cgroup
;
755 css
= css_get_next(&mem_cgroup_subsys
, nextid
,
757 if (css
&& css_tryget(css
))
758 iter
= container_of(css
, struct mem_cgroup
, css
);
760 /* If css is NULL, no more cgroups will be found */
762 } while (css
&& !iter
);
767 * for_eacn_mem_cgroup_tree() for visiting all cgroup under tree. Please
768 * be careful that "break" loop is not allowed. We have reference count.
769 * Instead of that modify "cond" to be false and "continue" to exit the loop.
771 #define for_each_mem_cgroup_tree_cond(iter, root, cond) \
772 for (iter = mem_cgroup_start_loop(root);\
774 iter = mem_cgroup_get_next(iter, root, cond))
776 #define for_each_mem_cgroup_tree(iter, root) \
777 for_each_mem_cgroup_tree_cond(iter, root, true)
779 #define for_each_mem_cgroup_all(iter) \
780 for_each_mem_cgroup_tree_cond(iter, NULL, true)
783 static inline bool mem_cgroup_is_root(struct mem_cgroup
*mem
)
785 return (mem
== root_mem_cgroup
);
789 * Following LRU functions are allowed to be used without PCG_LOCK.
790 * Operations are called by routine of global LRU independently from memcg.
791 * What we have to take care of here is validness of pc->mem_cgroup.
793 * Changes to pc->mem_cgroup happens when
796 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
797 * It is added to LRU before charge.
798 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
799 * When moving account, the page is not on LRU. It's isolated.
802 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
804 struct page_cgroup
*pc
;
805 struct mem_cgroup_per_zone
*mz
;
807 if (mem_cgroup_disabled())
809 pc
= lookup_page_cgroup(page
);
810 /* can happen while we handle swapcache. */
811 if (!TestClearPageCgroupAcctLRU(pc
))
813 VM_BUG_ON(!pc
->mem_cgroup
);
815 * We don't check PCG_USED bit. It's cleared when the "page" is finally
816 * removed from global LRU.
818 mz
= page_cgroup_zoneinfo(pc
);
819 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
820 if (mem_cgroup_is_root(pc
->mem_cgroup
))
822 VM_BUG_ON(list_empty(&pc
->lru
));
823 list_del_init(&pc
->lru
);
827 void mem_cgroup_del_lru(struct page
*page
)
829 mem_cgroup_del_lru_list(page
, page_lru(page
));
832 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
834 struct mem_cgroup_per_zone
*mz
;
835 struct page_cgroup
*pc
;
837 if (mem_cgroup_disabled())
840 pc
= lookup_page_cgroup(page
);
842 * Used bit is set without atomic ops but after smp_wmb().
843 * For making pc->mem_cgroup visible, insert smp_rmb() here.
846 /* unused or root page is not rotated. */
847 if (!PageCgroupUsed(pc
) || mem_cgroup_is_root(pc
->mem_cgroup
))
849 mz
= page_cgroup_zoneinfo(pc
);
850 list_move(&pc
->lru
, &mz
->lists
[lru
]);
853 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
855 struct page_cgroup
*pc
;
856 struct mem_cgroup_per_zone
*mz
;
858 if (mem_cgroup_disabled())
860 pc
= lookup_page_cgroup(page
);
861 VM_BUG_ON(PageCgroupAcctLRU(pc
));
863 * Used bit is set without atomic ops but after smp_wmb().
864 * For making pc->mem_cgroup visible, insert smp_rmb() here.
867 if (!PageCgroupUsed(pc
))
870 mz
= page_cgroup_zoneinfo(pc
);
871 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
872 SetPageCgroupAcctLRU(pc
);
873 if (mem_cgroup_is_root(pc
->mem_cgroup
))
875 list_add(&pc
->lru
, &mz
->lists
[lru
]);
879 * At handling SwapCache, pc->mem_cgroup may be changed while it's linked to
880 * lru because the page may.be reused after it's fully uncharged (because of
881 * SwapCache behavior).To handle that, unlink page_cgroup from LRU when charge
882 * it again. This function is only used to charge SwapCache. It's done under
883 * lock_page and expected that zone->lru_lock is never held.
885 static void mem_cgroup_lru_del_before_commit_swapcache(struct page
*page
)
888 struct zone
*zone
= page_zone(page
);
889 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
891 spin_lock_irqsave(&zone
->lru_lock
, flags
);
893 * Forget old LRU when this page_cgroup is *not* used. This Used bit
894 * is guarded by lock_page() because the page is SwapCache.
896 if (!PageCgroupUsed(pc
))
897 mem_cgroup_del_lru_list(page
, page_lru(page
));
898 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
901 static void mem_cgroup_lru_add_after_commit_swapcache(struct page
*page
)
904 struct zone
*zone
= page_zone(page
);
905 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
907 spin_lock_irqsave(&zone
->lru_lock
, flags
);
908 /* link when the page is linked to LRU but page_cgroup isn't */
909 if (PageLRU(page
) && !PageCgroupAcctLRU(pc
))
910 mem_cgroup_add_lru_list(page
, page_lru(page
));
911 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
915 void mem_cgroup_move_lists(struct page
*page
,
916 enum lru_list from
, enum lru_list to
)
918 if (mem_cgroup_disabled())
920 mem_cgroup_del_lru_list(page
, from
);
921 mem_cgroup_add_lru_list(page
, to
);
924 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
927 struct mem_cgroup
*curr
= NULL
;
928 struct task_struct
*p
;
930 p
= find_lock_task_mm(task
);
933 curr
= try_get_mem_cgroup_from_mm(p
->mm
);
938 * We should check use_hierarchy of "mem" not "curr". Because checking
939 * use_hierarchy of "curr" here make this function true if hierarchy is
940 * enabled in "curr" and "curr" is a child of "mem" in *cgroup*
941 * hierarchy(even if use_hierarchy is disabled in "mem").
943 if (mem
->use_hierarchy
)
944 ret
= css_is_ancestor(&curr
->css
, &mem
->css
);
951 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
953 unsigned long active
;
954 unsigned long inactive
;
956 unsigned long inactive_ratio
;
958 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_ANON
);
959 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_ANON
);
961 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
963 inactive_ratio
= int_sqrt(10 * gb
);
968 present_pages
[0] = inactive
;
969 present_pages
[1] = active
;
972 return inactive_ratio
;
975 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
977 unsigned long active
;
978 unsigned long inactive
;
979 unsigned long present_pages
[2];
980 unsigned long inactive_ratio
;
982 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
984 inactive
= present_pages
[0];
985 active
= present_pages
[1];
987 if (inactive
* inactive_ratio
< active
)
993 int mem_cgroup_inactive_file_is_low(struct mem_cgroup
*memcg
)
995 unsigned long active
;
996 unsigned long inactive
;
998 inactive
= mem_cgroup_get_local_zonestat(memcg
, LRU_INACTIVE_FILE
);
999 active
= mem_cgroup_get_local_zonestat(memcg
, LRU_ACTIVE_FILE
);
1001 return (active
> inactive
);
1004 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
1008 int nid
= zone_to_nid(zone
);
1009 int zid
= zone_idx(zone
);
1010 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1012 return MEM_CGROUP_ZSTAT(mz
, lru
);
1015 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
1018 int nid
= zone_to_nid(zone
);
1019 int zid
= zone_idx(zone
);
1020 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
1022 return &mz
->reclaim_stat
;
1025 struct zone_reclaim_stat
*
1026 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
1028 struct page_cgroup
*pc
;
1029 struct mem_cgroup_per_zone
*mz
;
1031 if (mem_cgroup_disabled())
1034 pc
= lookup_page_cgroup(page
);
1036 * Used bit is set without atomic ops but after smp_wmb().
1037 * For making pc->mem_cgroup visible, insert smp_rmb() here.
1040 if (!PageCgroupUsed(pc
))
1043 mz
= page_cgroup_zoneinfo(pc
);
1047 return &mz
->reclaim_stat
;
1050 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
1051 struct list_head
*dst
,
1052 unsigned long *scanned
, int order
,
1053 int mode
, struct zone
*z
,
1054 struct mem_cgroup
*mem_cont
,
1055 int active
, int file
)
1057 unsigned long nr_taken
= 0;
1061 struct list_head
*src
;
1062 struct page_cgroup
*pc
, *tmp
;
1063 int nid
= zone_to_nid(z
);
1064 int zid
= zone_idx(z
);
1065 struct mem_cgroup_per_zone
*mz
;
1066 int lru
= LRU_FILE
* file
+ active
;
1070 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1071 src
= &mz
->lists
[lru
];
1074 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
1075 if (scan
>= nr_to_scan
)
1079 if (unlikely(!PageCgroupUsed(pc
)))
1081 if (unlikely(!PageLRU(page
)))
1085 ret
= __isolate_lru_page(page
, mode
, file
);
1088 list_move(&page
->lru
, dst
);
1089 mem_cgroup_del_lru(page
);
1093 /* we don't affect global LRU but rotate in our LRU */
1094 mem_cgroup_rotate_lru_list(page
, page_lru(page
));
1103 trace_mm_vmscan_memcg_isolate(0, nr_to_scan
, scan
, nr_taken
,
1109 #define mem_cgroup_from_res_counter(counter, member) \
1110 container_of(counter, struct mem_cgroup, member)
1112 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
1114 if (do_swap_account
) {
1115 if (res_counter_check_under_limit(&mem
->res
) &&
1116 res_counter_check_under_limit(&mem
->memsw
))
1119 if (res_counter_check_under_limit(&mem
->res
))
1124 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
1126 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
1127 unsigned int swappiness
;
1130 if (cgrp
->parent
== NULL
)
1131 return vm_swappiness
;
1133 spin_lock(&memcg
->reclaim_param_lock
);
1134 swappiness
= memcg
->swappiness
;
1135 spin_unlock(&memcg
->reclaim_param_lock
);
1140 static void mem_cgroup_start_move(struct mem_cgroup
*mem
)
1145 spin_lock(&mem
->pcp_counter_lock
);
1146 for_each_online_cpu(cpu
)
1147 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) += 1;
1148 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] += 1;
1149 spin_unlock(&mem
->pcp_counter_lock
);
1155 static void mem_cgroup_end_move(struct mem_cgroup
*mem
)
1162 spin_lock(&mem
->pcp_counter_lock
);
1163 for_each_online_cpu(cpu
)
1164 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) -= 1;
1165 mem
->nocpu_base
.count
[MEM_CGROUP_ON_MOVE
] -= 1;
1166 spin_unlock(&mem
->pcp_counter_lock
);
1170 * 2 routines for checking "mem" is under move_account() or not.
1172 * mem_cgroup_stealed() - checking a cgroup is mc.from or not. This is used
1173 * for avoiding race in accounting. If true,
1174 * pc->mem_cgroup may be overwritten.
1176 * mem_cgroup_under_move() - checking a cgroup is mc.from or mc.to or
1177 * under hierarchy of moving cgroups. This is for
1178 * waiting at hith-memory prressure caused by "move".
1181 static bool mem_cgroup_stealed(struct mem_cgroup
*mem
)
1183 VM_BUG_ON(!rcu_read_lock_held());
1184 return this_cpu_read(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
]) > 0;
1187 static bool mem_cgroup_under_move(struct mem_cgroup
*mem
)
1189 struct mem_cgroup
*from
;
1190 struct mem_cgroup
*to
;
1193 * Unlike task_move routines, we access mc.to, mc.from not under
1194 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1196 spin_lock(&mc
.lock
);
1201 if (from
== mem
|| to
== mem
1202 || (mem
->use_hierarchy
&& css_is_ancestor(&from
->css
, &mem
->css
))
1203 || (mem
->use_hierarchy
&& css_is_ancestor(&to
->css
, &mem
->css
)))
1206 spin_unlock(&mc
.lock
);
1210 static bool mem_cgroup_wait_acct_move(struct mem_cgroup
*mem
)
1212 if (mc
.moving_task
&& current
!= mc
.moving_task
) {
1213 if (mem_cgroup_under_move(mem
)) {
1215 prepare_to_wait(&mc
.waitq
, &wait
, TASK_INTERRUPTIBLE
);
1216 /* moving charge context might have finished. */
1219 finish_wait(&mc
.waitq
, &wait
);
1227 * mem_cgroup_print_oom_info: Called from OOM with tasklist_lock held in read mode.
1228 * @memcg: The memory cgroup that went over limit
1229 * @p: Task that is going to be killed
1231 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1234 void mem_cgroup_print_oom_info(struct mem_cgroup
*memcg
, struct task_struct
*p
)
1236 struct cgroup
*task_cgrp
;
1237 struct cgroup
*mem_cgrp
;
1239 * Need a buffer in BSS, can't rely on allocations. The code relies
1240 * on the assumption that OOM is serialized for memory controller.
1241 * If this assumption is broken, revisit this code.
1243 static char memcg_name
[PATH_MAX
];
1252 mem_cgrp
= memcg
->css
.cgroup
;
1253 task_cgrp
= task_cgroup(p
, mem_cgroup_subsys_id
);
1255 ret
= cgroup_path(task_cgrp
, memcg_name
, PATH_MAX
);
1258 * Unfortunately, we are unable to convert to a useful name
1259 * But we'll still print out the usage information
1266 printk(KERN_INFO
"Task in %s killed", memcg_name
);
1269 ret
= cgroup_path(mem_cgrp
, memcg_name
, PATH_MAX
);
1277 * Continues from above, so we don't need an KERN_ level
1279 printk(KERN_CONT
" as a result of limit of %s\n", memcg_name
);
1282 printk(KERN_INFO
"memory: usage %llukB, limit %llukB, failcnt %llu\n",
1283 res_counter_read_u64(&memcg
->res
, RES_USAGE
) >> 10,
1284 res_counter_read_u64(&memcg
->res
, RES_LIMIT
) >> 10,
1285 res_counter_read_u64(&memcg
->res
, RES_FAILCNT
));
1286 printk(KERN_INFO
"memory+swap: usage %llukB, limit %llukB, "
1288 res_counter_read_u64(&memcg
->memsw
, RES_USAGE
) >> 10,
1289 res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
) >> 10,
1290 res_counter_read_u64(&memcg
->memsw
, RES_FAILCNT
));
1294 * This function returns the number of memcg under hierarchy tree. Returns
1295 * 1(self count) if no children.
1297 static int mem_cgroup_count_children(struct mem_cgroup
*mem
)
1300 struct mem_cgroup
*iter
;
1302 for_each_mem_cgroup_tree(iter
, mem
)
1308 * Return the memory (and swap, if configured) limit for a memcg.
1310 u64
mem_cgroup_get_limit(struct mem_cgroup
*memcg
)
1315 limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
) +
1317 memsw
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1319 * If memsw is finite and limits the amount of swap space available
1320 * to this memcg, return that limit.
1322 return min(limit
, memsw
);
1326 * Visit the first child (need not be the first child as per the ordering
1327 * of the cgroup list, since we track last_scanned_child) of @mem and use
1328 * that to reclaim free pages from.
1330 static struct mem_cgroup
*
1331 mem_cgroup_select_victim(struct mem_cgroup
*root_mem
)
1333 struct mem_cgroup
*ret
= NULL
;
1334 struct cgroup_subsys_state
*css
;
1337 if (!root_mem
->use_hierarchy
) {
1338 css_get(&root_mem
->css
);
1344 nextid
= root_mem
->last_scanned_child
+ 1;
1345 css
= css_get_next(&mem_cgroup_subsys
, nextid
, &root_mem
->css
,
1347 if (css
&& css_tryget(css
))
1348 ret
= container_of(css
, struct mem_cgroup
, css
);
1351 /* Updates scanning parameter */
1352 spin_lock(&root_mem
->reclaim_param_lock
);
1354 /* this means start scan from ID:1 */
1355 root_mem
->last_scanned_child
= 0;
1357 root_mem
->last_scanned_child
= found
;
1358 spin_unlock(&root_mem
->reclaim_param_lock
);
1365 * Scan the hierarchy if needed to reclaim memory. We remember the last child
1366 * we reclaimed from, so that we don't end up penalizing one child extensively
1367 * based on its position in the children list.
1369 * root_mem is the original ancestor that we've been reclaim from.
1371 * We give up and return to the caller when we visit root_mem twice.
1372 * (other groups can be removed while we're walking....)
1374 * If shrink==true, for avoiding to free too much, this returns immedieately.
1376 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
1379 unsigned long reclaim_options
)
1381 struct mem_cgroup
*victim
;
1384 bool noswap
= reclaim_options
& MEM_CGROUP_RECLAIM_NOSWAP
;
1385 bool shrink
= reclaim_options
& MEM_CGROUP_RECLAIM_SHRINK
;
1386 bool check_soft
= reclaim_options
& MEM_CGROUP_RECLAIM_SOFT
;
1387 unsigned long excess
= mem_cgroup_get_excess(root_mem
);
1389 /* If memsw_is_minimum==1, swap-out is of-no-use. */
1390 if (root_mem
->memsw_is_minimum
)
1394 victim
= mem_cgroup_select_victim(root_mem
);
1395 if (victim
== root_mem
) {
1398 drain_all_stock_async();
1401 * If we have not been able to reclaim
1402 * anything, it might because there are
1403 * no reclaimable pages under this hierarchy
1405 if (!check_soft
|| !total
) {
1406 css_put(&victim
->css
);
1410 * We want to do more targetted reclaim.
1411 * excess >> 2 is not to excessive so as to
1412 * reclaim too much, nor too less that we keep
1413 * coming back to reclaim from this cgroup
1415 if (total
>= (excess
>> 2) ||
1416 (loop
> MEM_CGROUP_MAX_RECLAIM_LOOPS
)) {
1417 css_put(&victim
->css
);
1422 if (!mem_cgroup_local_usage(victim
)) {
1423 /* this cgroup's local usage == 0 */
1424 css_put(&victim
->css
);
1427 /* we use swappiness of local cgroup */
1429 ret
= mem_cgroup_shrink_node_zone(victim
, gfp_mask
,
1430 noswap
, get_swappiness(victim
), zone
);
1432 ret
= try_to_free_mem_cgroup_pages(victim
, gfp_mask
,
1433 noswap
, get_swappiness(victim
));
1434 css_put(&victim
->css
);
1436 * At shrinking usage, we can't check we should stop here or
1437 * reclaim more. It's depends on callers. last_scanned_child
1438 * will work enough for keeping fairness under tree.
1444 if (res_counter_check_under_soft_limit(&root_mem
->res
))
1446 } else if (mem_cgroup_check_under_limit(root_mem
))
1453 * Check OOM-Killer is already running under our hierarchy.
1454 * If someone is running, return false.
1456 static bool mem_cgroup_oom_lock(struct mem_cgroup
*mem
)
1458 int x
, lock_count
= 0;
1459 struct mem_cgroup
*iter
;
1461 for_each_mem_cgroup_tree(iter
, mem
) {
1462 x
= atomic_inc_return(&iter
->oom_lock
);
1463 lock_count
= max(x
, lock_count
);
1466 if (lock_count
== 1)
1471 static int mem_cgroup_oom_unlock(struct mem_cgroup
*mem
)
1473 struct mem_cgroup
*iter
;
1476 * When a new child is created while the hierarchy is under oom,
1477 * mem_cgroup_oom_lock() may not be called. We have to use
1478 * atomic_add_unless() here.
1480 for_each_mem_cgroup_tree(iter
, mem
)
1481 atomic_add_unless(&iter
->oom_lock
, -1, 0);
1486 static DEFINE_MUTEX(memcg_oom_mutex
);
1487 static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq
);
1489 struct oom_wait_info
{
1490 struct mem_cgroup
*mem
;
1494 static int memcg_oom_wake_function(wait_queue_t
*wait
,
1495 unsigned mode
, int sync
, void *arg
)
1497 struct mem_cgroup
*wake_mem
= (struct mem_cgroup
*)arg
;
1498 struct oom_wait_info
*oom_wait_info
;
1500 oom_wait_info
= container_of(wait
, struct oom_wait_info
, wait
);
1502 if (oom_wait_info
->mem
== wake_mem
)
1504 /* if no hierarchy, no match */
1505 if (!oom_wait_info
->mem
->use_hierarchy
|| !wake_mem
->use_hierarchy
)
1508 * Both of oom_wait_info->mem and wake_mem are stable under us.
1509 * Then we can use css_is_ancestor without taking care of RCU.
1511 if (!css_is_ancestor(&oom_wait_info
->mem
->css
, &wake_mem
->css
) &&
1512 !css_is_ancestor(&wake_mem
->css
, &oom_wait_info
->mem
->css
))
1516 return autoremove_wake_function(wait
, mode
, sync
, arg
);
1519 static void memcg_wakeup_oom(struct mem_cgroup
*mem
)
1521 /* for filtering, pass "mem" as argument. */
1522 __wake_up(&memcg_oom_waitq
, TASK_NORMAL
, 0, mem
);
1525 static void memcg_oom_recover(struct mem_cgroup
*mem
)
1527 if (mem
&& atomic_read(&mem
->oom_lock
))
1528 memcg_wakeup_oom(mem
);
1532 * try to call OOM killer. returns false if we should exit memory-reclaim loop.
1534 bool mem_cgroup_handle_oom(struct mem_cgroup
*mem
, gfp_t mask
)
1536 struct oom_wait_info owait
;
1537 bool locked
, need_to_kill
;
1540 owait
.wait
.flags
= 0;
1541 owait
.wait
.func
= memcg_oom_wake_function
;
1542 owait
.wait
.private = current
;
1543 INIT_LIST_HEAD(&owait
.wait
.task_list
);
1544 need_to_kill
= true;
1545 /* At first, try to OOM lock hierarchy under mem.*/
1546 mutex_lock(&memcg_oom_mutex
);
1547 locked
= mem_cgroup_oom_lock(mem
);
1549 * Even if signal_pending(), we can't quit charge() loop without
1550 * accounting. So, UNINTERRUPTIBLE is appropriate. But SIGKILL
1551 * under OOM is always welcomed, use TASK_KILLABLE here.
1553 prepare_to_wait(&memcg_oom_waitq
, &owait
.wait
, TASK_KILLABLE
);
1554 if (!locked
|| mem
->oom_kill_disable
)
1555 need_to_kill
= false;
1557 mem_cgroup_oom_notify(mem
);
1558 mutex_unlock(&memcg_oom_mutex
);
1561 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1562 mem_cgroup_out_of_memory(mem
, mask
);
1565 finish_wait(&memcg_oom_waitq
, &owait
.wait
);
1567 mutex_lock(&memcg_oom_mutex
);
1568 mem_cgroup_oom_unlock(mem
);
1569 memcg_wakeup_oom(mem
);
1570 mutex_unlock(&memcg_oom_mutex
);
1572 if (test_thread_flag(TIF_MEMDIE
) || fatal_signal_pending(current
))
1574 /* Give chance to dying process */
1575 schedule_timeout(1);
1580 * Currently used to update mapped file statistics, but the routine can be
1581 * generalized to update other statistics as well.
1583 * Notes: Race condition
1585 * We usually use page_cgroup_lock() for accessing page_cgroup member but
1586 * it tends to be costly. But considering some conditions, we doesn't need
1587 * to do so _always_.
1589 * Considering "charge", lock_page_cgroup() is not required because all
1590 * file-stat operations happen after a page is attached to radix-tree. There
1591 * are no race with "charge".
1593 * Considering "uncharge", we know that memcg doesn't clear pc->mem_cgroup
1594 * at "uncharge" intentionally. So, we always see valid pc->mem_cgroup even
1595 * if there are race with "uncharge". Statistics itself is properly handled
1598 * Considering "move", this is an only case we see a race. To make the race
1599 * small, we check MEM_CGROUP_ON_MOVE percpu value and detect there are
1600 * possibility of race condition. If there is, we take a lock.
1603 static void mem_cgroup_update_file_stat(struct page
*page
, int idx
, int val
)
1605 struct mem_cgroup
*mem
;
1606 struct page_cgroup
*pc
= lookup_page_cgroup(page
);
1607 bool need_unlock
= false;
1613 mem
= pc
->mem_cgroup
;
1614 if (unlikely(!mem
|| !PageCgroupUsed(pc
)))
1616 /* pc->mem_cgroup is unstable ? */
1617 if (unlikely(mem_cgroup_stealed(mem
))) {
1618 /* take a lock against to access pc->mem_cgroup */
1619 lock_page_cgroup(pc
);
1621 mem
= pc
->mem_cgroup
;
1622 if (!mem
|| !PageCgroupUsed(pc
))
1626 this_cpu_add(mem
->stat
->count
[idx
], val
);
1629 case MEM_CGROUP_STAT_FILE_MAPPED
:
1631 SetPageCgroupFileMapped(pc
);
1632 else if (!page_mapped(page
))
1633 ClearPageCgroupFileMapped(pc
);
1640 if (unlikely(need_unlock
))
1641 unlock_page_cgroup(pc
);
1646 void mem_cgroup_update_file_mapped(struct page
*page
, int val
)
1648 mem_cgroup_update_file_stat(page
, MEM_CGROUP_STAT_FILE_MAPPED
, val
);
1652 * size of first charge trial. "32" comes from vmscan.c's magic value.
1653 * TODO: maybe necessary to use big numbers in big irons.
1655 #define CHARGE_SIZE (32 * PAGE_SIZE)
1656 struct memcg_stock_pcp
{
1657 struct mem_cgroup
*cached
; /* this never be root cgroup */
1659 struct work_struct work
;
1661 static DEFINE_PER_CPU(struct memcg_stock_pcp
, memcg_stock
);
1662 static atomic_t memcg_drain_count
;
1665 * Try to consume stocked charge on this cpu. If success, PAGE_SIZE is consumed
1666 * from local stock and true is returned. If the stock is 0 or charges from a
1667 * cgroup which is not current target, returns false. This stock will be
1670 static bool consume_stock(struct mem_cgroup
*mem
)
1672 struct memcg_stock_pcp
*stock
;
1675 stock
= &get_cpu_var(memcg_stock
);
1676 if (mem
== stock
->cached
&& stock
->charge
)
1677 stock
->charge
-= PAGE_SIZE
;
1678 else /* need to call res_counter_charge */
1680 put_cpu_var(memcg_stock
);
1685 * Returns stocks cached in percpu to res_counter and reset cached information.
1687 static void drain_stock(struct memcg_stock_pcp
*stock
)
1689 struct mem_cgroup
*old
= stock
->cached
;
1691 if (stock
->charge
) {
1692 res_counter_uncharge(&old
->res
, stock
->charge
);
1693 if (do_swap_account
)
1694 res_counter_uncharge(&old
->memsw
, stock
->charge
);
1696 stock
->cached
= NULL
;
1701 * This must be called under preempt disabled or must be called by
1702 * a thread which is pinned to local cpu.
1704 static void drain_local_stock(struct work_struct
*dummy
)
1706 struct memcg_stock_pcp
*stock
= &__get_cpu_var(memcg_stock
);
1711 * Cache charges(val) which is from res_counter, to local per_cpu area.
1712 * This will be consumed by consume_stock() function, later.
1714 static void refill_stock(struct mem_cgroup
*mem
, int val
)
1716 struct memcg_stock_pcp
*stock
= &get_cpu_var(memcg_stock
);
1718 if (stock
->cached
!= mem
) { /* reset if necessary */
1720 stock
->cached
= mem
;
1722 stock
->charge
+= val
;
1723 put_cpu_var(memcg_stock
);
1727 * Tries to drain stocked charges in other cpus. This function is asynchronous
1728 * and just put a work per cpu for draining localy on each cpu. Caller can
1729 * expects some charges will be back to res_counter later but cannot wait for
1732 static void drain_all_stock_async(void)
1735 /* This function is for scheduling "drain" in asynchronous way.
1736 * The result of "drain" is not directly handled by callers. Then,
1737 * if someone is calling drain, we don't have to call drain more.
1738 * Anyway, WORK_STRUCT_PENDING check in queue_work_on() will catch if
1739 * there is a race. We just do loose check here.
1741 if (atomic_read(&memcg_drain_count
))
1743 /* Notify other cpus that system-wide "drain" is running */
1744 atomic_inc(&memcg_drain_count
);
1746 for_each_online_cpu(cpu
) {
1747 struct memcg_stock_pcp
*stock
= &per_cpu(memcg_stock
, cpu
);
1748 schedule_work_on(cpu
, &stock
->work
);
1751 atomic_dec(&memcg_drain_count
);
1752 /* We don't wait for flush_work */
1755 /* This is a synchronous drain interface. */
1756 static void drain_all_stock_sync(void)
1758 /* called when force_empty is called */
1759 atomic_inc(&memcg_drain_count
);
1760 schedule_on_each_cpu(drain_local_stock
);
1761 atomic_dec(&memcg_drain_count
);
1765 * This function drains percpu counter value from DEAD cpu and
1766 * move it to local cpu. Note that this function can be preempted.
1768 static void mem_cgroup_drain_pcp_counter(struct mem_cgroup
*mem
, int cpu
)
1772 spin_lock(&mem
->pcp_counter_lock
);
1773 for (i
= 0; i
< MEM_CGROUP_STAT_DATA
; i
++) {
1774 s64 x
= per_cpu(mem
->stat
->count
[i
], cpu
);
1776 per_cpu(mem
->stat
->count
[i
], cpu
) = 0;
1777 mem
->nocpu_base
.count
[i
] += x
;
1779 /* need to clear ON_MOVE value, works as a kind of lock. */
1780 per_cpu(mem
->stat
->count
[MEM_CGROUP_ON_MOVE
], cpu
) = 0;
1781 spin_unlock(&mem
->pcp_counter_lock
);
1784 static void synchronize_mem_cgroup_on_move(struct mem_cgroup
*mem
, int cpu
)
1786 int idx
= MEM_CGROUP_ON_MOVE
;
1788 spin_lock(&mem
->pcp_counter_lock
);
1789 per_cpu(mem
->stat
->count
[idx
], cpu
) = mem
->nocpu_base
.count
[idx
];
1790 spin_unlock(&mem
->pcp_counter_lock
);
1793 static int __cpuinit
memcg_cpu_hotplug_callback(struct notifier_block
*nb
,
1794 unsigned long action
,
1797 int cpu
= (unsigned long)hcpu
;
1798 struct memcg_stock_pcp
*stock
;
1799 struct mem_cgroup
*iter
;
1801 if ((action
== CPU_ONLINE
)) {
1802 for_each_mem_cgroup_all(iter
)
1803 synchronize_mem_cgroup_on_move(iter
, cpu
);
1807 if ((action
!= CPU_DEAD
) || action
!= CPU_DEAD_FROZEN
)
1810 for_each_mem_cgroup_all(iter
)
1811 mem_cgroup_drain_pcp_counter(iter
, cpu
);
1813 stock
= &per_cpu(memcg_stock
, cpu
);
1819 /* See __mem_cgroup_try_charge() for details */
1821 CHARGE_OK
, /* success */
1822 CHARGE_RETRY
, /* need to retry but retry is not bad */
1823 CHARGE_NOMEM
, /* we can't do more. return -ENOMEM */
1824 CHARGE_WOULDBLOCK
, /* GFP_WAIT wasn't set and no enough res. */
1825 CHARGE_OOM_DIE
, /* the current is killed because of OOM */
1828 static int __mem_cgroup_do_charge(struct mem_cgroup
*mem
, gfp_t gfp_mask
,
1829 int csize
, bool oom_check
)
1831 struct mem_cgroup
*mem_over_limit
;
1832 struct res_counter
*fail_res
;
1833 unsigned long flags
= 0;
1836 ret
= res_counter_charge(&mem
->res
, csize
, &fail_res
);
1839 if (!do_swap_account
)
1841 ret
= res_counter_charge(&mem
->memsw
, csize
, &fail_res
);
1845 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, memsw
);
1846 flags
|= MEM_CGROUP_RECLAIM_NOSWAP
;
1848 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
, res
);
1850 if (csize
> PAGE_SIZE
) /* change csize and retry */
1851 return CHARGE_RETRY
;
1853 if (!(gfp_mask
& __GFP_WAIT
))
1854 return CHARGE_WOULDBLOCK
;
1856 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, NULL
,
1859 * try_to_free_mem_cgroup_pages() might not give us a full
1860 * picture of reclaim. Some pages are reclaimed and might be
1861 * moved to swap cache or just unmapped from the cgroup.
1862 * Check the limit again to see if the reclaim reduced the
1863 * current usage of the cgroup before giving up
1865 if (ret
|| mem_cgroup_check_under_limit(mem_over_limit
))
1866 return CHARGE_RETRY
;
1869 * At task move, charge accounts can be doubly counted. So, it's
1870 * better to wait until the end of task_move if something is going on.
1872 if (mem_cgroup_wait_acct_move(mem_over_limit
))
1873 return CHARGE_RETRY
;
1875 /* If we don't need to call oom-killer at el, return immediately */
1877 return CHARGE_NOMEM
;
1879 if (!mem_cgroup_handle_oom(mem_over_limit
, gfp_mask
))
1880 return CHARGE_OOM_DIE
;
1882 return CHARGE_RETRY
;
1886 * Unlike exported interface, "oom" parameter is added. if oom==true,
1887 * oom-killer can be invoked.
1889 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
1890 gfp_t gfp_mask
, struct mem_cgroup
**memcg
, bool oom
)
1892 int nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1893 struct mem_cgroup
*mem
= NULL
;
1895 int csize
= CHARGE_SIZE
;
1898 * Unlike gloval-vm's OOM-kill, we're not in memory shortage
1899 * in system level. So, allow to go ahead dying process in addition to
1902 if (unlikely(test_thread_flag(TIF_MEMDIE
)
1903 || fatal_signal_pending(current
)))
1907 * We always charge the cgroup the mm_struct belongs to.
1908 * The mm_struct's mem_cgroup changes on task migration if the
1909 * thread group leader migrates. It's possible that mm is not
1910 * set, if so charge the init_mm (happens for pagecache usage).
1915 if (*memcg
) { /* css should be a valid one */
1917 VM_BUG_ON(css_is_removed(&mem
->css
));
1918 if (mem_cgroup_is_root(mem
))
1920 if (consume_stock(mem
))
1924 struct task_struct
*p
;
1927 p
= rcu_dereference(mm
->owner
);
1929 * Because we don't have task_lock(), "p" can exit.
1930 * In that case, "mem" can point to root or p can be NULL with
1931 * race with swapoff. Then, we have small risk of mis-accouning.
1932 * But such kind of mis-account by race always happens because
1933 * we don't have cgroup_mutex(). It's overkill and we allo that
1935 * (*) swapoff at el will charge against mm-struct not against
1936 * task-struct. So, mm->owner can be NULL.
1938 mem
= mem_cgroup_from_task(p
);
1939 if (!mem
|| mem_cgroup_is_root(mem
)) {
1943 if (consume_stock(mem
)) {
1945 * It seems dagerous to access memcg without css_get().
1946 * But considering how consume_stok works, it's not
1947 * necessary. If consume_stock success, some charges
1948 * from this memcg are cached on this cpu. So, we
1949 * don't need to call css_get()/css_tryget() before
1950 * calling consume_stock().
1955 /* after here, we may be blocked. we need to get refcnt */
1956 if (!css_tryget(&mem
->css
)) {
1966 /* If killed, bypass charge */
1967 if (fatal_signal_pending(current
)) {
1973 if (oom
&& !nr_oom_retries
) {
1975 nr_oom_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1978 ret
= __mem_cgroup_do_charge(mem
, gfp_mask
, csize
, oom_check
);
1983 case CHARGE_RETRY
: /* not in OOM situation but retry */
1988 case CHARGE_WOULDBLOCK
: /* !__GFP_WAIT */
1991 case CHARGE_NOMEM
: /* OOM routine works */
1996 /* If oom, we never return -ENOMEM */
1999 case CHARGE_OOM_DIE
: /* Killed by OOM Killer */
2003 } while (ret
!= CHARGE_OK
);
2005 if (csize
> PAGE_SIZE
)
2006 refill_stock(mem
, csize
- PAGE_SIZE
);
2020 * Somemtimes we have to undo a charge we got by try_charge().
2021 * This function is for that and do uncharge, put css's refcnt.
2022 * gotten by try_charge().
2024 static void __mem_cgroup_cancel_charge(struct mem_cgroup
*mem
,
2025 unsigned long count
)
2027 if (!mem_cgroup_is_root(mem
)) {
2028 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
2029 if (do_swap_account
)
2030 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
* count
);
2034 static void mem_cgroup_cancel_charge(struct mem_cgroup
*mem
)
2036 __mem_cgroup_cancel_charge(mem
, 1);
2040 * A helper function to get mem_cgroup from ID. must be called under
2041 * rcu_read_lock(). The caller must check css_is_removed() or some if
2042 * it's concern. (dropping refcnt from swap can be called against removed
2045 static struct mem_cgroup
*mem_cgroup_lookup(unsigned short id
)
2047 struct cgroup_subsys_state
*css
;
2049 /* ID 0 is unused ID */
2052 css
= css_lookup(&mem_cgroup_subsys
, id
);
2055 return container_of(css
, struct mem_cgroup
, css
);
2058 struct mem_cgroup
*try_get_mem_cgroup_from_page(struct page
*page
)
2060 struct mem_cgroup
*mem
= NULL
;
2061 struct page_cgroup
*pc
;
2065 VM_BUG_ON(!PageLocked(page
));
2067 pc
= lookup_page_cgroup(page
);
2068 lock_page_cgroup(pc
);
2069 if (PageCgroupUsed(pc
)) {
2070 mem
= pc
->mem_cgroup
;
2071 if (mem
&& !css_tryget(&mem
->css
))
2073 } else if (PageSwapCache(page
)) {
2074 ent
.val
= page_private(page
);
2075 id
= lookup_swap_cgroup(ent
);
2077 mem
= mem_cgroup_lookup(id
);
2078 if (mem
&& !css_tryget(&mem
->css
))
2082 unlock_page_cgroup(pc
);
2087 * commit a charge got by __mem_cgroup_try_charge() and makes page_cgroup to be
2088 * USED state. If already USED, uncharge and return.
2091 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
2092 struct page_cgroup
*pc
,
2093 enum charge_type ctype
)
2095 /* try_charge() can return NULL to *memcg, taking care of it. */
2099 lock_page_cgroup(pc
);
2100 if (unlikely(PageCgroupUsed(pc
))) {
2101 unlock_page_cgroup(pc
);
2102 mem_cgroup_cancel_charge(mem
);
2106 pc
->mem_cgroup
= mem
;
2108 * We access a page_cgroup asynchronously without lock_page_cgroup().
2109 * Especially when a page_cgroup is taken from a page, pc->mem_cgroup
2110 * is accessed after testing USED bit. To make pc->mem_cgroup visible
2111 * before USED bit, we need memory barrier here.
2112 * See mem_cgroup_add_lru_list(), etc.
2116 case MEM_CGROUP_CHARGE_TYPE_CACHE
:
2117 case MEM_CGROUP_CHARGE_TYPE_SHMEM
:
2118 SetPageCgroupCache(pc
);
2119 SetPageCgroupUsed(pc
);
2121 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2122 ClearPageCgroupCache(pc
);
2123 SetPageCgroupUsed(pc
);
2129 mem_cgroup_charge_statistics(mem
, pc
, true);
2131 unlock_page_cgroup(pc
);
2133 * "charge_statistics" updated event counter. Then, check it.
2134 * Insert ancestor (and ancestor's ancestors), to softlimit RB-tree.
2135 * if they exceeds softlimit.
2137 memcg_check_events(mem
, pc
->page
);
2141 * __mem_cgroup_move_account - move account of the page
2142 * @pc: page_cgroup of the page.
2143 * @from: mem_cgroup which the page is moved from.
2144 * @to: mem_cgroup which the page is moved to. @from != @to.
2145 * @uncharge: whether we should call uncharge and css_put against @from.
2147 * The caller must confirm following.
2148 * - page is not on LRU (isolate_page() is useful.)
2149 * - the pc is locked, used, and ->mem_cgroup points to @from.
2151 * This function doesn't do "charge" nor css_get to new cgroup. It should be
2152 * done by a caller(__mem_cgroup_try_charge would be usefull). If @uncharge is
2153 * true, this function does "uncharge" from old cgroup, but it doesn't if
2154 * @uncharge is false, so a caller should do "uncharge".
2157 static void __mem_cgroup_move_account(struct page_cgroup
*pc
,
2158 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2160 VM_BUG_ON(from
== to
);
2161 VM_BUG_ON(PageLRU(pc
->page
));
2162 VM_BUG_ON(!page_is_cgroup_locked(pc
));
2163 VM_BUG_ON(!PageCgroupUsed(pc
));
2164 VM_BUG_ON(pc
->mem_cgroup
!= from
);
2166 if (PageCgroupFileMapped(pc
)) {
2167 /* Update mapped_file data for mem_cgroup */
2169 __this_cpu_dec(from
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2170 __this_cpu_inc(to
->stat
->count
[MEM_CGROUP_STAT_FILE_MAPPED
]);
2173 mem_cgroup_charge_statistics(from
, pc
, false);
2175 /* This is not "cancel", but cancel_charge does all we need. */
2176 mem_cgroup_cancel_charge(from
);
2178 /* caller should have done css_get */
2179 pc
->mem_cgroup
= to
;
2180 mem_cgroup_charge_statistics(to
, pc
, true);
2182 * We charges against "to" which may not have any tasks. Then, "to"
2183 * can be under rmdir(). But in current implementation, caller of
2184 * this function is just force_empty() and move charge, so it's
2185 * garanteed that "to" is never removed. So, we don't check rmdir
2191 * check whether the @pc is valid for moving account and call
2192 * __mem_cgroup_move_account()
2194 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
2195 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool uncharge
)
2198 lock_page_cgroup(pc
);
2199 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== from
) {
2200 __mem_cgroup_move_account(pc
, from
, to
, uncharge
);
2203 unlock_page_cgroup(pc
);
2207 memcg_check_events(to
, pc
->page
);
2208 memcg_check_events(from
, pc
->page
);
2213 * move charges to its parent.
2216 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
2217 struct mem_cgroup
*child
,
2220 struct page
*page
= pc
->page
;
2221 struct cgroup
*cg
= child
->css
.cgroup
;
2222 struct cgroup
*pcg
= cg
->parent
;
2223 struct mem_cgroup
*parent
;
2231 if (!get_page_unless_zero(page
))
2233 if (isolate_lru_page(page
))
2236 parent
= mem_cgroup_from_cont(pcg
);
2237 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
2241 ret
= mem_cgroup_move_account(pc
, child
, parent
, true);
2243 mem_cgroup_cancel_charge(parent
);
2245 putback_lru_page(page
);
2253 * Charge the memory controller for page usage.
2255 * 0 if the charge was successful
2256 * < 0 if the cgroup is over its limit
2258 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
2259 gfp_t gfp_mask
, enum charge_type ctype
)
2261 struct mem_cgroup
*mem
= NULL
;
2262 struct page_cgroup
*pc
;
2265 pc
= lookup_page_cgroup(page
);
2266 /* can happen at boot */
2271 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
2275 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2279 int mem_cgroup_newpage_charge(struct page
*page
,
2280 struct mm_struct
*mm
, gfp_t gfp_mask
)
2282 if (mem_cgroup_disabled())
2284 if (PageCompound(page
))
2287 * If already mapped, we don't have to account.
2288 * If page cache, page->mapping has address_space.
2289 * But page->mapping may have out-of-use anon_vma pointer,
2290 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
2293 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
2297 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2298 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2302 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2303 enum charge_type ctype
);
2305 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
2310 if (mem_cgroup_disabled())
2312 if (PageCompound(page
))
2315 * Corner case handling. This is called from add_to_page_cache()
2316 * in usual. But some FS (shmem) precharges this page before calling it
2317 * and call add_to_page_cache() with GFP_NOWAIT.
2319 * For GFP_NOWAIT case, the page may be pre-charged before calling
2320 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
2321 * charge twice. (It works but has to pay a bit larger cost.)
2322 * And when the page is SwapCache, it should take swap information
2323 * into account. This is under lock_page() now.
2325 if (!(gfp_mask
& __GFP_WAIT
)) {
2326 struct page_cgroup
*pc
;
2328 pc
= lookup_page_cgroup(page
);
2331 lock_page_cgroup(pc
);
2332 if (PageCgroupUsed(pc
)) {
2333 unlock_page_cgroup(pc
);
2336 unlock_page_cgroup(pc
);
2342 if (page_is_file_cache(page
))
2343 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2344 MEM_CGROUP_CHARGE_TYPE_CACHE
);
2347 if (PageSwapCache(page
)) {
2348 struct mem_cgroup
*mem
= NULL
;
2350 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2352 __mem_cgroup_commit_charge_swapin(page
, mem
,
2353 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2355 ret
= mem_cgroup_charge_common(page
, mm
, gfp_mask
,
2356 MEM_CGROUP_CHARGE_TYPE_SHMEM
);
2362 * While swap-in, try_charge -> commit or cancel, the page is locked.
2363 * And when try_charge() successfully returns, one refcnt to memcg without
2364 * struct page_cgroup is acquired. This refcnt will be consumed by
2365 * "commit()" or removed by "cancel()"
2367 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
2369 gfp_t mask
, struct mem_cgroup
**ptr
)
2371 struct mem_cgroup
*mem
;
2374 if (mem_cgroup_disabled())
2377 if (!do_swap_account
)
2380 * A racing thread's fault, or swapoff, may have already updated
2381 * the pte, and even removed page from swap cache: in those cases
2382 * do_swap_page()'s pte_same() test will fail; but there's also a
2383 * KSM case which does need to charge the page.
2385 if (!PageSwapCache(page
))
2387 mem
= try_get_mem_cgroup_from_page(page
);
2391 ret
= __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
2397 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
2401 __mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
,
2402 enum charge_type ctype
)
2404 struct page_cgroup
*pc
;
2406 if (mem_cgroup_disabled())
2410 cgroup_exclude_rmdir(&ptr
->css
);
2411 pc
= lookup_page_cgroup(page
);
2412 mem_cgroup_lru_del_before_commit_swapcache(page
);
2413 __mem_cgroup_commit_charge(ptr
, pc
, ctype
);
2414 mem_cgroup_lru_add_after_commit_swapcache(page
);
2416 * Now swap is on-memory. This means this page may be
2417 * counted both as mem and swap....double count.
2418 * Fix it by uncharging from memsw. Basically, this SwapCache is stable
2419 * under lock_page(). But in do_swap_page()::memory.c, reuse_swap_page()
2420 * may call delete_from_swap_cache() before reach here.
2422 if (do_swap_account
&& PageSwapCache(page
)) {
2423 swp_entry_t ent
= {.val
= page_private(page
)};
2425 struct mem_cgroup
*memcg
;
2427 id
= swap_cgroup_record(ent
, 0);
2429 memcg
= mem_cgroup_lookup(id
);
2432 * This recorded memcg can be obsolete one. So, avoid
2433 * calling css_tryget
2435 if (!mem_cgroup_is_root(memcg
))
2436 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2437 mem_cgroup_swap_statistics(memcg
, false);
2438 mem_cgroup_put(memcg
);
2443 * At swapin, we may charge account against cgroup which has no tasks.
2444 * So, rmdir()->pre_destroy() can be called while we do this charge.
2445 * In that case, we need to call pre_destroy() again. check it here.
2447 cgroup_release_and_wakeup_rmdir(&ptr
->css
);
2450 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
2452 __mem_cgroup_commit_charge_swapin(page
, ptr
,
2453 MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2456 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
2458 if (mem_cgroup_disabled())
2462 mem_cgroup_cancel_charge(mem
);
2466 __do_uncharge(struct mem_cgroup
*mem
, const enum charge_type ctype
)
2468 struct memcg_batch_info
*batch
= NULL
;
2469 bool uncharge_memsw
= true;
2470 /* If swapout, usage of swap doesn't decrease */
2471 if (!do_swap_account
|| ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
2472 uncharge_memsw
= false;
2474 batch
= ¤t
->memcg_batch
;
2476 * In usual, we do css_get() when we remember memcg pointer.
2477 * But in this case, we keep res->usage until end of a series of
2478 * uncharges. Then, it's ok to ignore memcg's refcnt.
2483 * do_batch > 0 when unmapping pages or inode invalidate/truncate.
2484 * In those cases, all pages freed continously can be expected to be in
2485 * the same cgroup and we have chance to coalesce uncharges.
2486 * But we do uncharge one by one if this is killed by OOM(TIF_MEMDIE)
2487 * because we want to do uncharge as soon as possible.
2490 if (!batch
->do_batch
|| test_thread_flag(TIF_MEMDIE
))
2491 goto direct_uncharge
;
2494 * In typical case, batch->memcg == mem. This means we can
2495 * merge a series of uncharges to an uncharge of res_counter.
2496 * If not, we uncharge res_counter ony by one.
2498 if (batch
->memcg
!= mem
)
2499 goto direct_uncharge
;
2500 /* remember freed charge and uncharge it later */
2501 batch
->bytes
+= PAGE_SIZE
;
2503 batch
->memsw_bytes
+= PAGE_SIZE
;
2506 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
2508 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
2509 if (unlikely(batch
->memcg
!= mem
))
2510 memcg_oom_recover(mem
);
2515 * uncharge if !page_mapped(page)
2517 static struct mem_cgroup
*
2518 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
2520 struct page_cgroup
*pc
;
2521 struct mem_cgroup
*mem
= NULL
;
2523 if (mem_cgroup_disabled())
2526 if (PageSwapCache(page
))
2530 * Check if our page_cgroup is valid
2532 pc
= lookup_page_cgroup(page
);
2533 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
2536 lock_page_cgroup(pc
);
2538 mem
= pc
->mem_cgroup
;
2540 if (!PageCgroupUsed(pc
))
2544 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
2545 case MEM_CGROUP_CHARGE_TYPE_DROP
:
2546 /* See mem_cgroup_prepare_migration() */
2547 if (page_mapped(page
) || PageCgroupMigration(pc
))
2550 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
2551 if (!PageAnon(page
)) { /* Shared memory */
2552 if (page
->mapping
&& !page_is_file_cache(page
))
2554 } else if (page_mapped(page
)) /* Anon */
2561 mem_cgroup_charge_statistics(mem
, pc
, false);
2563 ClearPageCgroupUsed(pc
);
2565 * pc->mem_cgroup is not cleared here. It will be accessed when it's
2566 * freed from LRU. This is safe because uncharged page is expected not
2567 * to be reused (freed soon). Exception is SwapCache, it's handled by
2568 * special functions.
2571 unlock_page_cgroup(pc
);
2573 * even after unlock, we have mem->res.usage here and this memcg
2574 * will never be freed.
2576 memcg_check_events(mem
, page
);
2577 if (do_swap_account
&& ctype
== MEM_CGROUP_CHARGE_TYPE_SWAPOUT
) {
2578 mem_cgroup_swap_statistics(mem
, true);
2579 mem_cgroup_get(mem
);
2581 if (!mem_cgroup_is_root(mem
))
2582 __do_uncharge(mem
, ctype
);
2587 unlock_page_cgroup(pc
);
2591 void mem_cgroup_uncharge_page(struct page
*page
)
2594 if (page_mapped(page
))
2596 if (page
->mapping
&& !PageAnon(page
))
2598 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
2601 void mem_cgroup_uncharge_cache_page(struct page
*page
)
2603 VM_BUG_ON(page_mapped(page
));
2604 VM_BUG_ON(page
->mapping
);
2605 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
2609 * Batch_start/batch_end is called in unmap_page_range/invlidate/trucate.
2610 * In that cases, pages are freed continuously and we can expect pages
2611 * are in the same memcg. All these calls itself limits the number of
2612 * pages freed at once, then uncharge_start/end() is called properly.
2613 * This may be called prural(2) times in a context,
2616 void mem_cgroup_uncharge_start(void)
2618 current
->memcg_batch
.do_batch
++;
2619 /* We can do nest. */
2620 if (current
->memcg_batch
.do_batch
== 1) {
2621 current
->memcg_batch
.memcg
= NULL
;
2622 current
->memcg_batch
.bytes
= 0;
2623 current
->memcg_batch
.memsw_bytes
= 0;
2627 void mem_cgroup_uncharge_end(void)
2629 struct memcg_batch_info
*batch
= ¤t
->memcg_batch
;
2631 if (!batch
->do_batch
)
2635 if (batch
->do_batch
) /* If stacked, do nothing. */
2641 * This "batch->memcg" is valid without any css_get/put etc...
2642 * bacause we hide charges behind us.
2645 res_counter_uncharge(&batch
->memcg
->res
, batch
->bytes
);
2646 if (batch
->memsw_bytes
)
2647 res_counter_uncharge(&batch
->memcg
->memsw
, batch
->memsw_bytes
);
2648 memcg_oom_recover(batch
->memcg
);
2649 /* forget this pointer (for sanity check) */
2650 batch
->memcg
= NULL
;
2655 * called after __delete_from_swap_cache() and drop "page" account.
2656 * memcg information is recorded to swap_cgroup of "ent"
2659 mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
, bool swapout
)
2661 struct mem_cgroup
*memcg
;
2662 int ctype
= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
;
2664 if (!swapout
) /* this was a swap cache but the swap is unused ! */
2665 ctype
= MEM_CGROUP_CHARGE_TYPE_DROP
;
2667 memcg
= __mem_cgroup_uncharge_common(page
, ctype
);
2670 * record memcg information, if swapout && memcg != NULL,
2671 * mem_cgroup_get() was called in uncharge().
2673 if (do_swap_account
&& swapout
&& memcg
)
2674 swap_cgroup_record(ent
, css_id(&memcg
->css
));
2678 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2680 * called from swap_entry_free(). remove record in swap_cgroup and
2681 * uncharge "memsw" account.
2683 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
2685 struct mem_cgroup
*memcg
;
2688 if (!do_swap_account
)
2691 id
= swap_cgroup_record(ent
, 0);
2693 memcg
= mem_cgroup_lookup(id
);
2696 * We uncharge this because swap is freed.
2697 * This memcg can be obsolete one. We avoid calling css_tryget
2699 if (!mem_cgroup_is_root(memcg
))
2700 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
2701 mem_cgroup_swap_statistics(memcg
, false);
2702 mem_cgroup_put(memcg
);
2708 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2709 * @entry: swap entry to be moved
2710 * @from: mem_cgroup which the entry is moved from
2711 * @to: mem_cgroup which the entry is moved to
2712 * @need_fixup: whether we should fixup res_counters and refcounts.
2714 * It succeeds only when the swap_cgroup's record for this entry is the same
2715 * as the mem_cgroup's id of @from.
2717 * Returns 0 on success, -EINVAL on failure.
2719 * The caller must have charged to @to, IOW, called res_counter_charge() about
2720 * both res and memsw, and called css_get().
2722 static int mem_cgroup_move_swap_account(swp_entry_t entry
,
2723 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2725 unsigned short old_id
, new_id
;
2727 old_id
= css_id(&from
->css
);
2728 new_id
= css_id(&to
->css
);
2730 if (swap_cgroup_cmpxchg(entry
, old_id
, new_id
) == old_id
) {
2731 mem_cgroup_swap_statistics(from
, false);
2732 mem_cgroup_swap_statistics(to
, true);
2734 * This function is only called from task migration context now.
2735 * It postpones res_counter and refcount handling till the end
2736 * of task migration(mem_cgroup_clear_mc()) for performance
2737 * improvement. But we cannot postpone mem_cgroup_get(to)
2738 * because if the process that has been moved to @to does
2739 * swap-in, the refcount of @to might be decreased to 0.
2743 if (!mem_cgroup_is_root(from
))
2744 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
2745 mem_cgroup_put(from
);
2747 * we charged both to->res and to->memsw, so we should
2750 if (!mem_cgroup_is_root(to
))
2751 res_counter_uncharge(&to
->res
, PAGE_SIZE
);
2758 static inline int mem_cgroup_move_swap_account(swp_entry_t entry
,
2759 struct mem_cgroup
*from
, struct mem_cgroup
*to
, bool need_fixup
)
2766 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
2769 int mem_cgroup_prepare_migration(struct page
*page
,
2770 struct page
*newpage
, struct mem_cgroup
**ptr
)
2772 struct page_cgroup
*pc
;
2773 struct mem_cgroup
*mem
= NULL
;
2774 enum charge_type ctype
;
2777 if (mem_cgroup_disabled())
2780 pc
= lookup_page_cgroup(page
);
2781 lock_page_cgroup(pc
);
2782 if (PageCgroupUsed(pc
)) {
2783 mem
= pc
->mem_cgroup
;
2786 * At migrating an anonymous page, its mapcount goes down
2787 * to 0 and uncharge() will be called. But, even if it's fully
2788 * unmapped, migration may fail and this page has to be
2789 * charged again. We set MIGRATION flag here and delay uncharge
2790 * until end_migration() is called
2792 * Corner Case Thinking
2794 * When the old page was mapped as Anon and it's unmap-and-freed
2795 * while migration was ongoing.
2796 * If unmap finds the old page, uncharge() of it will be delayed
2797 * until end_migration(). If unmap finds a new page, it's
2798 * uncharged when it make mapcount to be 1->0. If unmap code
2799 * finds swap_migration_entry, the new page will not be mapped
2800 * and end_migration() will find it(mapcount==0).
2803 * When the old page was mapped but migraion fails, the kernel
2804 * remaps it. A charge for it is kept by MIGRATION flag even
2805 * if mapcount goes down to 0. We can do remap successfully
2806 * without charging it again.
2809 * The "old" page is under lock_page() until the end of
2810 * migration, so, the old page itself will not be swapped-out.
2811 * If the new page is swapped out before end_migraton, our
2812 * hook to usual swap-out path will catch the event.
2815 SetPageCgroupMigration(pc
);
2817 unlock_page_cgroup(pc
);
2819 * If the page is not charged at this point,
2826 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, ptr
, false);
2827 css_put(&mem
->css
);/* drop extra refcnt */
2828 if (ret
|| *ptr
== NULL
) {
2829 if (PageAnon(page
)) {
2830 lock_page_cgroup(pc
);
2831 ClearPageCgroupMigration(pc
);
2832 unlock_page_cgroup(pc
);
2834 * The old page may be fully unmapped while we kept it.
2836 mem_cgroup_uncharge_page(page
);
2841 * We charge new page before it's used/mapped. So, even if unlock_page()
2842 * is called before end_migration, we can catch all events on this new
2843 * page. In the case new page is migrated but not remapped, new page's
2844 * mapcount will be finally 0 and we call uncharge in end_migration().
2846 pc
= lookup_page_cgroup(newpage
);
2848 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
2849 else if (page_is_file_cache(page
))
2850 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
2852 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
2853 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
2857 /* remove redundant charge if migration failed*/
2858 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
2859 struct page
*oldpage
, struct page
*newpage
)
2861 struct page
*used
, *unused
;
2862 struct page_cgroup
*pc
;
2866 /* blocks rmdir() */
2867 cgroup_exclude_rmdir(&mem
->css
);
2868 /* at migration success, oldpage->mapping is NULL. */
2869 if (oldpage
->mapping
) {
2877 * We disallowed uncharge of pages under migration because mapcount
2878 * of the page goes down to zero, temporarly.
2879 * Clear the flag and check the page should be charged.
2881 pc
= lookup_page_cgroup(oldpage
);
2882 lock_page_cgroup(pc
);
2883 ClearPageCgroupMigration(pc
);
2884 unlock_page_cgroup(pc
);
2886 __mem_cgroup_uncharge_common(unused
, MEM_CGROUP_CHARGE_TYPE_FORCE
);
2889 * If a page is a file cache, radix-tree replacement is very atomic
2890 * and we can skip this check. When it was an Anon page, its mapcount
2891 * goes down to 0. But because we added MIGRATION flage, it's not
2892 * uncharged yet. There are several case but page->mapcount check
2893 * and USED bit check in mem_cgroup_uncharge_page() will do enough
2894 * check. (see prepare_charge() also)
2897 mem_cgroup_uncharge_page(used
);
2899 * At migration, we may charge account against cgroup which has no
2901 * So, rmdir()->pre_destroy() can be called while we do this charge.
2902 * In that case, we need to call pre_destroy() again. check it here.
2904 cgroup_release_and_wakeup_rmdir(&mem
->css
);
2908 * A call to try to shrink memory usage on charge failure at shmem's swapin.
2909 * Calling hierarchical_reclaim is not enough because we should update
2910 * last_oom_jiffies to prevent pagefault_out_of_memory from invoking global OOM.
2911 * Moreover considering hierarchy, we should reclaim from the mem_over_limit,
2912 * not from the memcg which this page would be charged to.
2913 * try_charge_swapin does all of these works properly.
2915 int mem_cgroup_shmem_charge_fallback(struct page
*page
,
2916 struct mm_struct
*mm
,
2919 struct mem_cgroup
*mem
= NULL
;
2922 if (mem_cgroup_disabled())
2925 ret
= mem_cgroup_try_charge_swapin(mm
, page
, gfp_mask
, &mem
);
2927 mem_cgroup_cancel_charge_swapin(mem
); /* it does !mem check */
2932 static DEFINE_MUTEX(set_limit_mutex
);
2934 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
2935 unsigned long long val
)
2938 u64 memswlimit
, memlimit
;
2940 int children
= mem_cgroup_count_children(memcg
);
2941 u64 curusage
, oldusage
;
2945 * For keeping hierarchical_reclaim simple, how long we should retry
2946 * is depends on callers. We set our retry-count to be function
2947 * of # of children which we should visit in this loop.
2949 retry_count
= MEM_CGROUP_RECLAIM_RETRIES
* children
;
2951 oldusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2954 while (retry_count
) {
2955 if (signal_pending(current
)) {
2960 * Rather than hide all in some function, I do this in
2961 * open coded manner. You see what this really does.
2962 * We have to guarantee mem->res.limit < mem->memsw.limit.
2964 mutex_lock(&set_limit_mutex
);
2965 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
2966 if (memswlimit
< val
) {
2968 mutex_unlock(&set_limit_mutex
);
2972 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
2976 ret
= res_counter_set_limit(&memcg
->res
, val
);
2978 if (memswlimit
== val
)
2979 memcg
->memsw_is_minimum
= true;
2981 memcg
->memsw_is_minimum
= false;
2983 mutex_unlock(&set_limit_mutex
);
2988 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
2989 MEM_CGROUP_RECLAIM_SHRINK
);
2990 curusage
= res_counter_read_u64(&memcg
->res
, RES_USAGE
);
2991 /* Usage is reduced ? */
2992 if (curusage
>= oldusage
)
2995 oldusage
= curusage
;
2997 if (!ret
&& enlarge
)
2998 memcg_oom_recover(memcg
);
3003 static int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
3004 unsigned long long val
)
3007 u64 memlimit
, memswlimit
, oldusage
, curusage
;
3008 int children
= mem_cgroup_count_children(memcg
);
3012 /* see mem_cgroup_resize_res_limit */
3013 retry_count
= children
* MEM_CGROUP_RECLAIM_RETRIES
;
3014 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3015 while (retry_count
) {
3016 if (signal_pending(current
)) {
3021 * Rather than hide all in some function, I do this in
3022 * open coded manner. You see what this really does.
3023 * We have to guarantee mem->res.limit < mem->memsw.limit.
3025 mutex_lock(&set_limit_mutex
);
3026 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3027 if (memlimit
> val
) {
3029 mutex_unlock(&set_limit_mutex
);
3032 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3033 if (memswlimit
< val
)
3035 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
3037 if (memlimit
== val
)
3038 memcg
->memsw_is_minimum
= true;
3040 memcg
->memsw_is_minimum
= false;
3042 mutex_unlock(&set_limit_mutex
);
3047 mem_cgroup_hierarchical_reclaim(memcg
, NULL
, GFP_KERNEL
,
3048 MEM_CGROUP_RECLAIM_NOSWAP
|
3049 MEM_CGROUP_RECLAIM_SHRINK
);
3050 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
3051 /* Usage is reduced ? */
3052 if (curusage
>= oldusage
)
3055 oldusage
= curusage
;
3057 if (!ret
&& enlarge
)
3058 memcg_oom_recover(memcg
);
3062 unsigned long mem_cgroup_soft_limit_reclaim(struct zone
*zone
, int order
,
3065 unsigned long nr_reclaimed
= 0;
3066 struct mem_cgroup_per_zone
*mz
, *next_mz
= NULL
;
3067 unsigned long reclaimed
;
3069 struct mem_cgroup_tree_per_zone
*mctz
;
3070 unsigned long long excess
;
3075 mctz
= soft_limit_tree_node_zone(zone_to_nid(zone
), zone_idx(zone
));
3077 * This loop can run a while, specially if mem_cgroup's continuously
3078 * keep exceeding their soft limit and putting the system under
3085 mz
= mem_cgroup_largest_soft_limit_node(mctz
);
3089 reclaimed
= mem_cgroup_hierarchical_reclaim(mz
->mem
, zone
,
3091 MEM_CGROUP_RECLAIM_SOFT
);
3092 nr_reclaimed
+= reclaimed
;
3093 spin_lock(&mctz
->lock
);
3096 * If we failed to reclaim anything from this memory cgroup
3097 * it is time to move on to the next cgroup
3103 * Loop until we find yet another one.
3105 * By the time we get the soft_limit lock
3106 * again, someone might have aded the
3107 * group back on the RB tree. Iterate to
3108 * make sure we get a different mem.
3109 * mem_cgroup_largest_soft_limit_node returns
3110 * NULL if no other cgroup is present on
3114 __mem_cgroup_largest_soft_limit_node(mctz
);
3115 if (next_mz
== mz
) {
3116 css_put(&next_mz
->mem
->css
);
3118 } else /* next_mz == NULL or other memcg */
3122 __mem_cgroup_remove_exceeded(mz
->mem
, mz
, mctz
);
3123 excess
= res_counter_soft_limit_excess(&mz
->mem
->res
);
3125 * One school of thought says that we should not add
3126 * back the node to the tree if reclaim returns 0.
3127 * But our reclaim could return 0, simply because due
3128 * to priority we are exposing a smaller subset of
3129 * memory to reclaim from. Consider this as a longer
3132 /* If excess == 0, no tree ops */
3133 __mem_cgroup_insert_exceeded(mz
->mem
, mz
, mctz
, excess
);
3134 spin_unlock(&mctz
->lock
);
3135 css_put(&mz
->mem
->css
);
3138 * Could not reclaim anything and there are no more
3139 * mem cgroups to try or we seem to be looping without
3140 * reclaiming anything.
3142 if (!nr_reclaimed
&&
3144 loop
> MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS
))
3146 } while (!nr_reclaimed
);
3148 css_put(&next_mz
->mem
->css
);
3149 return nr_reclaimed
;
3153 * This routine traverse page_cgroup in given list and drop them all.
3154 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
3156 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
3157 int node
, int zid
, enum lru_list lru
)
3160 struct mem_cgroup_per_zone
*mz
;
3161 struct page_cgroup
*pc
, *busy
;
3162 unsigned long flags
, loop
;
3163 struct list_head
*list
;
3166 zone
= &NODE_DATA(node
)->node_zones
[zid
];
3167 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
3168 list
= &mz
->lists
[lru
];
3170 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
3171 /* give some margin against EBUSY etc...*/
3176 spin_lock_irqsave(&zone
->lru_lock
, flags
);
3177 if (list_empty(list
)) {
3178 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3181 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
3183 list_move(&pc
->lru
, list
);
3185 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3188 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
3190 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
3194 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
3195 /* found lock contention or "pc" is obsolete. */
3202 if (!ret
&& !list_empty(list
))
3208 * make mem_cgroup's charge to be 0 if there is no task.
3209 * This enables deleting this mem_cgroup.
3211 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
3214 int node
, zid
, shrink
;
3215 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
3216 struct cgroup
*cgrp
= mem
->css
.cgroup
;
3221 /* should free all ? */
3227 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
3230 if (signal_pending(current
))
3232 /* This is for making all *used* pages to be on LRU. */
3233 lru_add_drain_all();
3234 drain_all_stock_sync();
3236 mem_cgroup_start_move(mem
);
3237 for_each_node_state(node
, N_HIGH_MEMORY
) {
3238 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
3241 ret
= mem_cgroup_force_empty_list(mem
,
3250 mem_cgroup_end_move(mem
);
3251 memcg_oom_recover(mem
);
3252 /* it seems parent cgroup doesn't have enough mem */
3256 /* "ret" should also be checked to ensure all lists are empty. */
3257 } while (mem
->res
.usage
> 0 || ret
);
3263 /* returns EBUSY if there is a task or if we come here twice. */
3264 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
3268 /* we call try-to-free pages for make this cgroup empty */
3269 lru_add_drain_all();
3270 /* try to free all pages in this cgroup */
3272 while (nr_retries
&& mem
->res
.usage
> 0) {
3275 if (signal_pending(current
)) {
3279 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
3280 false, get_swappiness(mem
));
3283 /* maybe some writeback is necessary */
3284 congestion_wait(BLK_RW_ASYNC
, HZ
/10);
3289 /* try move_account...there may be some *locked* pages. */
3293 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
3295 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
3299 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
3301 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
3304 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
3308 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3309 struct cgroup
*parent
= cont
->parent
;
3310 struct mem_cgroup
*parent_mem
= NULL
;
3313 parent_mem
= mem_cgroup_from_cont(parent
);
3317 * If parent's use_hierarchy is set, we can't make any modifications
3318 * in the child subtrees. If it is unset, then the change can
3319 * occur, provided the current cgroup has no children.
3321 * For the root cgroup, parent_mem is NULL, we allow value to be
3322 * set if there are no children.
3324 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
3325 (val
== 1 || val
== 0)) {
3326 if (list_empty(&cont
->children
))
3327 mem
->use_hierarchy
= val
;
3338 static u64
mem_cgroup_get_recursive_idx_stat(struct mem_cgroup
*mem
,
3339 enum mem_cgroup_stat_index idx
)
3341 struct mem_cgroup
*iter
;
3344 /* each per cpu's value can be minus.Then, use s64 */
3345 for_each_mem_cgroup_tree(iter
, mem
)
3346 val
+= mem_cgroup_read_stat(iter
, idx
);
3348 if (val
< 0) /* race ? */
3353 static inline u64
mem_cgroup_usage(struct mem_cgroup
*mem
, bool swap
)
3357 if (!mem_cgroup_is_root(mem
)) {
3359 return res_counter_read_u64(&mem
->res
, RES_USAGE
);
3361 return res_counter_read_u64(&mem
->memsw
, RES_USAGE
);
3364 val
= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3365 val
+= mem_cgroup_get_recursive_idx_stat(mem
, MEM_CGROUP_STAT_RSS
);
3368 val
+= mem_cgroup_get_recursive_idx_stat(mem
,
3369 MEM_CGROUP_STAT_SWAPOUT
);
3371 return val
<< PAGE_SHIFT
;
3374 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
3376 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
3380 type
= MEMFILE_TYPE(cft
->private);
3381 name
= MEMFILE_ATTR(cft
->private);
3384 if (name
== RES_USAGE
)
3385 val
= mem_cgroup_usage(mem
, false);
3387 val
= res_counter_read_u64(&mem
->res
, name
);
3390 if (name
== RES_USAGE
)
3391 val
= mem_cgroup_usage(mem
, true);
3393 val
= res_counter_read_u64(&mem
->memsw
, name
);
3402 * The user of this function is...
3405 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
3408 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
3410 unsigned long long val
;
3413 type
= MEMFILE_TYPE(cft
->private);
3414 name
= MEMFILE_ATTR(cft
->private);
3417 if (mem_cgroup_is_root(memcg
)) { /* Can't set limit on root */
3421 /* This function does all necessary parse...reuse it */
3422 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3426 ret
= mem_cgroup_resize_limit(memcg
, val
);
3428 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
3430 case RES_SOFT_LIMIT
:
3431 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
3435 * For memsw, soft limits are hard to implement in terms
3436 * of semantics, for now, we support soft limits for
3437 * control without swap
3440 ret
= res_counter_set_soft_limit(&memcg
->res
, val
);
3445 ret
= -EINVAL
; /* should be BUG() ? */
3451 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
3452 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
3454 struct cgroup
*cgroup
;
3455 unsigned long long min_limit
, min_memsw_limit
, tmp
;
3457 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3458 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3459 cgroup
= memcg
->css
.cgroup
;
3460 if (!memcg
->use_hierarchy
)
3463 while (cgroup
->parent
) {
3464 cgroup
= cgroup
->parent
;
3465 memcg
= mem_cgroup_from_cont(cgroup
);
3466 if (!memcg
->use_hierarchy
)
3468 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
3469 min_limit
= min(min_limit
, tmp
);
3470 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
3471 min_memsw_limit
= min(min_memsw_limit
, tmp
);
3474 *mem_limit
= min_limit
;
3475 *memsw_limit
= min_memsw_limit
;
3479 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
3481 struct mem_cgroup
*mem
;
3484 mem
= mem_cgroup_from_cont(cont
);
3485 type
= MEMFILE_TYPE(event
);
3486 name
= MEMFILE_ATTR(event
);
3490 res_counter_reset_max(&mem
->res
);
3492 res_counter_reset_max(&mem
->memsw
);
3496 res_counter_reset_failcnt(&mem
->res
);
3498 res_counter_reset_failcnt(&mem
->memsw
);
3505 static u64
mem_cgroup_move_charge_read(struct cgroup
*cgrp
,
3508 return mem_cgroup_from_cont(cgrp
)->move_charge_at_immigrate
;
3512 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3513 struct cftype
*cft
, u64 val
)
3515 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3517 if (val
>= (1 << NR_MOVE_TYPE
))
3520 * We check this value several times in both in can_attach() and
3521 * attach(), so we need cgroup lock to prevent this value from being
3525 mem
->move_charge_at_immigrate
= val
;
3531 static int mem_cgroup_move_charge_write(struct cgroup
*cgrp
,
3532 struct cftype
*cft
, u64 val
)
3539 /* For read statistics */
3555 struct mcs_total_stat
{
3556 s64 stat
[NR_MCS_STAT
];
3562 } memcg_stat_strings
[NR_MCS_STAT
] = {
3563 {"cache", "total_cache"},
3564 {"rss", "total_rss"},
3565 {"mapped_file", "total_mapped_file"},
3566 {"pgpgin", "total_pgpgin"},
3567 {"pgpgout", "total_pgpgout"},
3568 {"swap", "total_swap"},
3569 {"inactive_anon", "total_inactive_anon"},
3570 {"active_anon", "total_active_anon"},
3571 {"inactive_file", "total_inactive_file"},
3572 {"active_file", "total_active_file"},
3573 {"unevictable", "total_unevictable"}
3578 mem_cgroup_get_local_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3583 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_CACHE
);
3584 s
->stat
[MCS_CACHE
] += val
* PAGE_SIZE
;
3585 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_RSS
);
3586 s
->stat
[MCS_RSS
] += val
* PAGE_SIZE
;
3587 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_FILE_MAPPED
);
3588 s
->stat
[MCS_FILE_MAPPED
] += val
* PAGE_SIZE
;
3589 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGIN_COUNT
);
3590 s
->stat
[MCS_PGPGIN
] += val
;
3591 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_PGPGOUT_COUNT
);
3592 s
->stat
[MCS_PGPGOUT
] += val
;
3593 if (do_swap_account
) {
3594 val
= mem_cgroup_read_stat(mem
, MEM_CGROUP_STAT_SWAPOUT
);
3595 s
->stat
[MCS_SWAP
] += val
* PAGE_SIZE
;
3599 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_ANON
);
3600 s
->stat
[MCS_INACTIVE_ANON
] += val
* PAGE_SIZE
;
3601 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_ANON
);
3602 s
->stat
[MCS_ACTIVE_ANON
] += val
* PAGE_SIZE
;
3603 val
= mem_cgroup_get_local_zonestat(mem
, LRU_INACTIVE_FILE
);
3604 s
->stat
[MCS_INACTIVE_FILE
] += val
* PAGE_SIZE
;
3605 val
= mem_cgroup_get_local_zonestat(mem
, LRU_ACTIVE_FILE
);
3606 s
->stat
[MCS_ACTIVE_FILE
] += val
* PAGE_SIZE
;
3607 val
= mem_cgroup_get_local_zonestat(mem
, LRU_UNEVICTABLE
);
3608 s
->stat
[MCS_UNEVICTABLE
] += val
* PAGE_SIZE
;
3612 mem_cgroup_get_total_stat(struct mem_cgroup
*mem
, struct mcs_total_stat
*s
)
3614 struct mem_cgroup
*iter
;
3616 for_each_mem_cgroup_tree(iter
, mem
)
3617 mem_cgroup_get_local_stat(iter
, s
);
3620 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
3621 struct cgroup_map_cb
*cb
)
3623 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
3624 struct mcs_total_stat mystat
;
3627 memset(&mystat
, 0, sizeof(mystat
));
3628 mem_cgroup_get_local_stat(mem_cont
, &mystat
);
3630 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3631 if (i
== MCS_SWAP
&& !do_swap_account
)
3633 cb
->fill(cb
, memcg_stat_strings
[i
].local_name
, mystat
.stat
[i
]);
3636 /* Hierarchical information */
3638 unsigned long long limit
, memsw_limit
;
3639 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
3640 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
3641 if (do_swap_account
)
3642 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
3645 memset(&mystat
, 0, sizeof(mystat
));
3646 mem_cgroup_get_total_stat(mem_cont
, &mystat
);
3647 for (i
= 0; i
< NR_MCS_STAT
; i
++) {
3648 if (i
== MCS_SWAP
&& !do_swap_account
)
3650 cb
->fill(cb
, memcg_stat_strings
[i
].total_name
, mystat
.stat
[i
]);
3653 #ifdef CONFIG_DEBUG_VM
3654 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
3658 struct mem_cgroup_per_zone
*mz
;
3659 unsigned long recent_rotated
[2] = {0, 0};
3660 unsigned long recent_scanned
[2] = {0, 0};
3662 for_each_online_node(nid
)
3663 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
3664 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
3666 recent_rotated
[0] +=
3667 mz
->reclaim_stat
.recent_rotated
[0];
3668 recent_rotated
[1] +=
3669 mz
->reclaim_stat
.recent_rotated
[1];
3670 recent_scanned
[0] +=
3671 mz
->reclaim_stat
.recent_scanned
[0];
3672 recent_scanned
[1] +=
3673 mz
->reclaim_stat
.recent_scanned
[1];
3675 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
3676 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
3677 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
3678 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
3685 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
3687 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3689 return get_swappiness(memcg
);
3692 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
3695 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3696 struct mem_cgroup
*parent
;
3701 if (cgrp
->parent
== NULL
)
3704 parent
= mem_cgroup_from_cont(cgrp
->parent
);
3708 /* If under hierarchy, only empty-root can set this value */
3709 if ((parent
->use_hierarchy
) ||
3710 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
3715 spin_lock(&memcg
->reclaim_param_lock
);
3716 memcg
->swappiness
= val
;
3717 spin_unlock(&memcg
->reclaim_param_lock
);
3724 static void __mem_cgroup_threshold(struct mem_cgroup
*memcg
, bool swap
)
3726 struct mem_cgroup_threshold_ary
*t
;
3732 t
= rcu_dereference(memcg
->thresholds
.primary
);
3734 t
= rcu_dereference(memcg
->memsw_thresholds
.primary
);
3739 usage
= mem_cgroup_usage(memcg
, swap
);
3742 * current_threshold points to threshold just below usage.
3743 * If it's not true, a threshold was crossed after last
3744 * call of __mem_cgroup_threshold().
3746 i
= t
->current_threshold
;
3749 * Iterate backward over array of thresholds starting from
3750 * current_threshold and check if a threshold is crossed.
3751 * If none of thresholds below usage is crossed, we read
3752 * only one element of the array here.
3754 for (; i
>= 0 && unlikely(t
->entries
[i
].threshold
> usage
); i
--)
3755 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3757 /* i = current_threshold + 1 */
3761 * Iterate forward over array of thresholds starting from
3762 * current_threshold+1 and check if a threshold is crossed.
3763 * If none of thresholds above usage is crossed, we read
3764 * only one element of the array here.
3766 for (; i
< t
->size
&& unlikely(t
->entries
[i
].threshold
<= usage
); i
++)
3767 eventfd_signal(t
->entries
[i
].eventfd
, 1);
3769 /* Update current_threshold */
3770 t
->current_threshold
= i
- 1;
3775 static void mem_cgroup_threshold(struct mem_cgroup
*memcg
)
3778 __mem_cgroup_threshold(memcg
, false);
3779 if (do_swap_account
)
3780 __mem_cgroup_threshold(memcg
, true);
3782 memcg
= parent_mem_cgroup(memcg
);
3786 static int compare_thresholds(const void *a
, const void *b
)
3788 const struct mem_cgroup_threshold
*_a
= a
;
3789 const struct mem_cgroup_threshold
*_b
= b
;
3791 return _a
->threshold
- _b
->threshold
;
3794 static int mem_cgroup_oom_notify_cb(struct mem_cgroup
*mem
)
3796 struct mem_cgroup_eventfd_list
*ev
;
3798 list_for_each_entry(ev
, &mem
->oom_notify
, list
)
3799 eventfd_signal(ev
->eventfd
, 1);
3803 static void mem_cgroup_oom_notify(struct mem_cgroup
*mem
)
3805 struct mem_cgroup
*iter
;
3807 for_each_mem_cgroup_tree(iter
, mem
)
3808 mem_cgroup_oom_notify_cb(iter
);
3811 static int mem_cgroup_usage_register_event(struct cgroup
*cgrp
,
3812 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3814 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3815 struct mem_cgroup_thresholds
*thresholds
;
3816 struct mem_cgroup_threshold_ary
*new;
3817 int type
= MEMFILE_TYPE(cft
->private);
3818 u64 threshold
, usage
;
3821 ret
= res_counter_memparse_write_strategy(args
, &threshold
);
3825 mutex_lock(&memcg
->thresholds_lock
);
3828 thresholds
= &memcg
->thresholds
;
3829 else if (type
== _MEMSWAP
)
3830 thresholds
= &memcg
->memsw_thresholds
;
3834 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3836 /* Check if a threshold crossed before adding a new one */
3837 if (thresholds
->primary
)
3838 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3840 size
= thresholds
->primary
? thresholds
->primary
->size
+ 1 : 1;
3842 /* Allocate memory for new array of thresholds */
3843 new = kmalloc(sizeof(*new) + size
* sizeof(struct mem_cgroup_threshold
),
3851 /* Copy thresholds (if any) to new array */
3852 if (thresholds
->primary
) {
3853 memcpy(new->entries
, thresholds
->primary
->entries
, (size
- 1) *
3854 sizeof(struct mem_cgroup_threshold
));
3857 /* Add new threshold */
3858 new->entries
[size
- 1].eventfd
= eventfd
;
3859 new->entries
[size
- 1].threshold
= threshold
;
3861 /* Sort thresholds. Registering of new threshold isn't time-critical */
3862 sort(new->entries
, size
, sizeof(struct mem_cgroup_threshold
),
3863 compare_thresholds
, NULL
);
3865 /* Find current threshold */
3866 new->current_threshold
= -1;
3867 for (i
= 0; i
< size
; i
++) {
3868 if (new->entries
[i
].threshold
< usage
) {
3870 * new->current_threshold will not be used until
3871 * rcu_assign_pointer(), so it's safe to increment
3874 ++new->current_threshold
;
3878 /* Free old spare buffer and save old primary buffer as spare */
3879 kfree(thresholds
->spare
);
3880 thresholds
->spare
= thresholds
->primary
;
3882 rcu_assign_pointer(thresholds
->primary
, new);
3884 /* To be sure that nobody uses thresholds */
3888 mutex_unlock(&memcg
->thresholds_lock
);
3893 static void mem_cgroup_usage_unregister_event(struct cgroup
*cgrp
,
3894 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3896 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3897 struct mem_cgroup_thresholds
*thresholds
;
3898 struct mem_cgroup_threshold_ary
*new;
3899 int type
= MEMFILE_TYPE(cft
->private);
3903 mutex_lock(&memcg
->thresholds_lock
);
3905 thresholds
= &memcg
->thresholds
;
3906 else if (type
== _MEMSWAP
)
3907 thresholds
= &memcg
->memsw_thresholds
;
3912 * Something went wrong if we trying to unregister a threshold
3913 * if we don't have thresholds
3915 BUG_ON(!thresholds
);
3917 usage
= mem_cgroup_usage(memcg
, type
== _MEMSWAP
);
3919 /* Check if a threshold crossed before removing */
3920 __mem_cgroup_threshold(memcg
, type
== _MEMSWAP
);
3922 /* Calculate new number of threshold */
3924 for (i
= 0; i
< thresholds
->primary
->size
; i
++) {
3925 if (thresholds
->primary
->entries
[i
].eventfd
!= eventfd
)
3929 new = thresholds
->spare
;
3931 /* Set thresholds array to NULL if we don't have thresholds */
3940 /* Copy thresholds and find current threshold */
3941 new->current_threshold
= -1;
3942 for (i
= 0, j
= 0; i
< thresholds
->primary
->size
; i
++) {
3943 if (thresholds
->primary
->entries
[i
].eventfd
== eventfd
)
3946 new->entries
[j
] = thresholds
->primary
->entries
[i
];
3947 if (new->entries
[j
].threshold
< usage
) {
3949 * new->current_threshold will not be used
3950 * until rcu_assign_pointer(), so it's safe to increment
3953 ++new->current_threshold
;
3959 /* Swap primary and spare array */
3960 thresholds
->spare
= thresholds
->primary
;
3961 rcu_assign_pointer(thresholds
->primary
, new);
3963 /* To be sure that nobody uses thresholds */
3966 mutex_unlock(&memcg
->thresholds_lock
);
3969 static int mem_cgroup_oom_register_event(struct cgroup
*cgrp
,
3970 struct cftype
*cft
, struct eventfd_ctx
*eventfd
, const char *args
)
3972 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
3973 struct mem_cgroup_eventfd_list
*event
;
3974 int type
= MEMFILE_TYPE(cft
->private);
3976 BUG_ON(type
!= _OOM_TYPE
);
3977 event
= kmalloc(sizeof(*event
), GFP_KERNEL
);
3981 mutex_lock(&memcg_oom_mutex
);
3983 event
->eventfd
= eventfd
;
3984 list_add(&event
->list
, &memcg
->oom_notify
);
3986 /* already in OOM ? */
3987 if (atomic_read(&memcg
->oom_lock
))
3988 eventfd_signal(eventfd
, 1);
3989 mutex_unlock(&memcg_oom_mutex
);
3994 static void mem_cgroup_oom_unregister_event(struct cgroup
*cgrp
,
3995 struct cftype
*cft
, struct eventfd_ctx
*eventfd
)
3997 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
3998 struct mem_cgroup_eventfd_list
*ev
, *tmp
;
3999 int type
= MEMFILE_TYPE(cft
->private);
4001 BUG_ON(type
!= _OOM_TYPE
);
4003 mutex_lock(&memcg_oom_mutex
);
4005 list_for_each_entry_safe(ev
, tmp
, &mem
->oom_notify
, list
) {
4006 if (ev
->eventfd
== eventfd
) {
4007 list_del(&ev
->list
);
4012 mutex_unlock(&memcg_oom_mutex
);
4015 static int mem_cgroup_oom_control_read(struct cgroup
*cgrp
,
4016 struct cftype
*cft
, struct cgroup_map_cb
*cb
)
4018 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4020 cb
->fill(cb
, "oom_kill_disable", mem
->oom_kill_disable
);
4022 if (atomic_read(&mem
->oom_lock
))
4023 cb
->fill(cb
, "under_oom", 1);
4025 cb
->fill(cb
, "under_oom", 0);
4029 static int mem_cgroup_oom_control_write(struct cgroup
*cgrp
,
4030 struct cftype
*cft
, u64 val
)
4032 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgrp
);
4033 struct mem_cgroup
*parent
;
4035 /* cannot set to root cgroup and only 0 and 1 are allowed */
4036 if (!cgrp
->parent
|| !((val
== 0) || (val
== 1)))
4039 parent
= mem_cgroup_from_cont(cgrp
->parent
);
4042 /* oom-kill-disable is a flag for subhierarchy. */
4043 if ((parent
->use_hierarchy
) ||
4044 (mem
->use_hierarchy
&& !list_empty(&cgrp
->children
))) {
4048 mem
->oom_kill_disable
= val
;
4050 memcg_oom_recover(mem
);
4055 static struct cftype mem_cgroup_files
[] = {
4057 .name
= "usage_in_bytes",
4058 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
4059 .read_u64
= mem_cgroup_read
,
4060 .register_event
= mem_cgroup_usage_register_event
,
4061 .unregister_event
= mem_cgroup_usage_unregister_event
,
4064 .name
= "max_usage_in_bytes",
4065 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
4066 .trigger
= mem_cgroup_reset
,
4067 .read_u64
= mem_cgroup_read
,
4070 .name
= "limit_in_bytes",
4071 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
4072 .write_string
= mem_cgroup_write
,
4073 .read_u64
= mem_cgroup_read
,
4076 .name
= "soft_limit_in_bytes",
4077 .private = MEMFILE_PRIVATE(_MEM
, RES_SOFT_LIMIT
),
4078 .write_string
= mem_cgroup_write
,
4079 .read_u64
= mem_cgroup_read
,
4083 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
4084 .trigger
= mem_cgroup_reset
,
4085 .read_u64
= mem_cgroup_read
,
4089 .read_map
= mem_control_stat_show
,
4092 .name
= "force_empty",
4093 .trigger
= mem_cgroup_force_empty_write
,
4096 .name
= "use_hierarchy",
4097 .write_u64
= mem_cgroup_hierarchy_write
,
4098 .read_u64
= mem_cgroup_hierarchy_read
,
4101 .name
= "swappiness",
4102 .read_u64
= mem_cgroup_swappiness_read
,
4103 .write_u64
= mem_cgroup_swappiness_write
,
4106 .name
= "move_charge_at_immigrate",
4107 .read_u64
= mem_cgroup_move_charge_read
,
4108 .write_u64
= mem_cgroup_move_charge_write
,
4111 .name
= "oom_control",
4112 .read_map
= mem_cgroup_oom_control_read
,
4113 .write_u64
= mem_cgroup_oom_control_write
,
4114 .register_event
= mem_cgroup_oom_register_event
,
4115 .unregister_event
= mem_cgroup_oom_unregister_event
,
4116 .private = MEMFILE_PRIVATE(_OOM_TYPE
, OOM_CONTROL
),
4120 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4121 static struct cftype memsw_cgroup_files
[] = {
4123 .name
= "memsw.usage_in_bytes",
4124 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
4125 .read_u64
= mem_cgroup_read
,
4126 .register_event
= mem_cgroup_usage_register_event
,
4127 .unregister_event
= mem_cgroup_usage_unregister_event
,
4130 .name
= "memsw.max_usage_in_bytes",
4131 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
4132 .trigger
= mem_cgroup_reset
,
4133 .read_u64
= mem_cgroup_read
,
4136 .name
= "memsw.limit_in_bytes",
4137 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
4138 .write_string
= mem_cgroup_write
,
4139 .read_u64
= mem_cgroup_read
,
4142 .name
= "memsw.failcnt",
4143 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
4144 .trigger
= mem_cgroup_reset
,
4145 .read_u64
= mem_cgroup_read
,
4149 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4151 if (!do_swap_account
)
4153 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
4154 ARRAY_SIZE(memsw_cgroup_files
));
4157 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
4163 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4165 struct mem_cgroup_per_node
*pn
;
4166 struct mem_cgroup_per_zone
*mz
;
4168 int zone
, tmp
= node
;
4170 * This routine is called against possible nodes.
4171 * But it's BUG to call kmalloc() against offline node.
4173 * TODO: this routine can waste much memory for nodes which will
4174 * never be onlined. It's better to use memory hotplug callback
4177 if (!node_state(node
, N_NORMAL_MEMORY
))
4179 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
4183 mem
->info
.nodeinfo
[node
] = pn
;
4184 memset(pn
, 0, sizeof(*pn
));
4186 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4187 mz
= &pn
->zoneinfo
[zone
];
4189 INIT_LIST_HEAD(&mz
->lists
[l
]);
4190 mz
->usage_in_excess
= 0;
4191 mz
->on_tree
= false;
4197 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
4199 kfree(mem
->info
.nodeinfo
[node
]);
4202 static struct mem_cgroup
*mem_cgroup_alloc(void)
4204 struct mem_cgroup
*mem
;
4205 int size
= sizeof(struct mem_cgroup
);
4207 /* Can be very big if MAX_NUMNODES is very big */
4208 if (size
< PAGE_SIZE
)
4209 mem
= kmalloc(size
, GFP_KERNEL
);
4211 mem
= vmalloc(size
);
4216 memset(mem
, 0, size
);
4217 mem
->stat
= alloc_percpu(struct mem_cgroup_stat_cpu
);
4220 spin_lock_init(&mem
->pcp_counter_lock
);
4224 if (size
< PAGE_SIZE
)
4232 * At destroying mem_cgroup, references from swap_cgroup can remain.
4233 * (scanning all at force_empty is too costly...)
4235 * Instead of clearing all references at force_empty, we remember
4236 * the number of reference from swap_cgroup and free mem_cgroup when
4237 * it goes down to 0.
4239 * Removal of cgroup itself succeeds regardless of refs from swap.
4242 static void __mem_cgroup_free(struct mem_cgroup
*mem
)
4246 mem_cgroup_remove_from_trees(mem
);
4247 free_css_id(&mem_cgroup_subsys
, &mem
->css
);
4249 for_each_node_state(node
, N_POSSIBLE
)
4250 free_mem_cgroup_per_zone_info(mem
, node
);
4252 free_percpu(mem
->stat
);
4253 if (sizeof(struct mem_cgroup
) < PAGE_SIZE
)
4259 static void mem_cgroup_get(struct mem_cgroup
*mem
)
4261 atomic_inc(&mem
->refcnt
);
4264 static void __mem_cgroup_put(struct mem_cgroup
*mem
, int count
)
4266 if (atomic_sub_and_test(count
, &mem
->refcnt
)) {
4267 struct mem_cgroup
*parent
= parent_mem_cgroup(mem
);
4268 __mem_cgroup_free(mem
);
4270 mem_cgroup_put(parent
);
4274 static void mem_cgroup_put(struct mem_cgroup
*mem
)
4276 __mem_cgroup_put(mem
, 1);
4280 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4282 static struct mem_cgroup
*parent_mem_cgroup(struct mem_cgroup
*mem
)
4284 if (!mem
->res
.parent
)
4286 return mem_cgroup_from_res_counter(mem
->res
.parent
, res
);
4289 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4290 static void __init
enable_swap_cgroup(void)
4292 if (!mem_cgroup_disabled() && really_do_swap_account
)
4293 do_swap_account
= 1;
4296 static void __init
enable_swap_cgroup(void)
4301 static int mem_cgroup_soft_limit_tree_init(void)
4303 struct mem_cgroup_tree_per_node
*rtpn
;
4304 struct mem_cgroup_tree_per_zone
*rtpz
;
4305 int tmp
, node
, zone
;
4307 for_each_node_state(node
, N_POSSIBLE
) {
4309 if (!node_state(node
, N_NORMAL_MEMORY
))
4311 rtpn
= kzalloc_node(sizeof(*rtpn
), GFP_KERNEL
, tmp
);
4315 soft_limit_tree
.rb_tree_per_node
[node
] = rtpn
;
4317 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
4318 rtpz
= &rtpn
->rb_tree_per_zone
[zone
];
4319 rtpz
->rb_root
= RB_ROOT
;
4320 spin_lock_init(&rtpz
->lock
);
4326 static struct cgroup_subsys_state
* __ref
4327 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
4329 struct mem_cgroup
*mem
, *parent
;
4330 long error
= -ENOMEM
;
4333 mem
= mem_cgroup_alloc();
4335 return ERR_PTR(error
);
4337 for_each_node_state(node
, N_POSSIBLE
)
4338 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
4342 if (cont
->parent
== NULL
) {
4344 enable_swap_cgroup();
4346 root_mem_cgroup
= mem
;
4347 if (mem_cgroup_soft_limit_tree_init())
4349 for_each_possible_cpu(cpu
) {
4350 struct memcg_stock_pcp
*stock
=
4351 &per_cpu(memcg_stock
, cpu
);
4352 INIT_WORK(&stock
->work
, drain_local_stock
);
4354 hotcpu_notifier(memcg_cpu_hotplug_callback
, 0);
4356 parent
= mem_cgroup_from_cont(cont
->parent
);
4357 mem
->use_hierarchy
= parent
->use_hierarchy
;
4358 mem
->oom_kill_disable
= parent
->oom_kill_disable
;
4361 if (parent
&& parent
->use_hierarchy
) {
4362 res_counter_init(&mem
->res
, &parent
->res
);
4363 res_counter_init(&mem
->memsw
, &parent
->memsw
);
4365 * We increment refcnt of the parent to ensure that we can
4366 * safely access it on res_counter_charge/uncharge.
4367 * This refcnt will be decremented when freeing this
4368 * mem_cgroup(see mem_cgroup_put).
4370 mem_cgroup_get(parent
);
4372 res_counter_init(&mem
->res
, NULL
);
4373 res_counter_init(&mem
->memsw
, NULL
);
4375 mem
->last_scanned_child
= 0;
4376 spin_lock_init(&mem
->reclaim_param_lock
);
4377 INIT_LIST_HEAD(&mem
->oom_notify
);
4380 mem
->swappiness
= get_swappiness(parent
);
4381 atomic_set(&mem
->refcnt
, 1);
4382 mem
->move_charge_at_immigrate
= 0;
4383 mutex_init(&mem
->thresholds_lock
);
4386 __mem_cgroup_free(mem
);
4387 root_mem_cgroup
= NULL
;
4388 return ERR_PTR(error
);
4391 static int mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
4392 struct cgroup
*cont
)
4394 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4396 return mem_cgroup_force_empty(mem
, false);
4399 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
4400 struct cgroup
*cont
)
4402 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
4404 mem_cgroup_put(mem
);
4407 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
4408 struct cgroup
*cont
)
4412 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
4413 ARRAY_SIZE(mem_cgroup_files
));
4416 ret
= register_memsw_files(cont
, ss
);
4421 /* Handlers for move charge at task migration. */
4422 #define PRECHARGE_COUNT_AT_ONCE 256
4423 static int mem_cgroup_do_precharge(unsigned long count
)
4426 int batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4427 struct mem_cgroup
*mem
= mc
.to
;
4429 if (mem_cgroup_is_root(mem
)) {
4430 mc
.precharge
+= count
;
4431 /* we don't need css_get for root */
4434 /* try to charge at once */
4436 struct res_counter
*dummy
;
4438 * "mem" cannot be under rmdir() because we've already checked
4439 * by cgroup_lock_live_cgroup() that it is not removed and we
4440 * are still under the same cgroup_mutex. So we can postpone
4443 if (res_counter_charge(&mem
->res
, PAGE_SIZE
* count
, &dummy
))
4445 if (do_swap_account
&& res_counter_charge(&mem
->memsw
,
4446 PAGE_SIZE
* count
, &dummy
)) {
4447 res_counter_uncharge(&mem
->res
, PAGE_SIZE
* count
);
4450 mc
.precharge
+= count
;
4454 /* fall back to one by one charge */
4456 if (signal_pending(current
)) {
4460 if (!batch_count
--) {
4461 batch_count
= PRECHARGE_COUNT_AT_ONCE
;
4464 ret
= __mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
, false);
4466 /* mem_cgroup_clear_mc() will do uncharge later */
4474 * is_target_pte_for_mc - check a pte whether it is valid for move charge
4475 * @vma: the vma the pte to be checked belongs
4476 * @addr: the address corresponding to the pte to be checked
4477 * @ptent: the pte to be checked
4478 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4481 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4482 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4483 * move charge. if @target is not NULL, the page is stored in target->page
4484 * with extra refcnt got(Callers should handle it).
4485 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4486 * target for charge migration. if @target is not NULL, the entry is stored
4489 * Called with pte lock held.
4496 enum mc_target_type
{
4497 MC_TARGET_NONE
, /* not used */
4502 static struct page
*mc_handle_present_pte(struct vm_area_struct
*vma
,
4503 unsigned long addr
, pte_t ptent
)
4505 struct page
*page
= vm_normal_page(vma
, addr
, ptent
);
4507 if (!page
|| !page_mapped(page
))
4509 if (PageAnon(page
)) {
4510 /* we don't move shared anon */
4511 if (!move_anon() || page_mapcount(page
) > 2)
4513 } else if (!move_file())
4514 /* we ignore mapcount for file pages */
4516 if (!get_page_unless_zero(page
))
4522 static struct page
*mc_handle_swap_pte(struct vm_area_struct
*vma
,
4523 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4526 struct page
*page
= NULL
;
4527 swp_entry_t ent
= pte_to_swp_entry(ptent
);
4529 if (!move_anon() || non_swap_entry(ent
))
4531 usage_count
= mem_cgroup_count_swap_user(ent
, &page
);
4532 if (usage_count
> 1) { /* we don't move shared anon */
4537 if (do_swap_account
)
4538 entry
->val
= ent
.val
;
4543 static struct page
*mc_handle_file_pte(struct vm_area_struct
*vma
,
4544 unsigned long addr
, pte_t ptent
, swp_entry_t
*entry
)
4546 struct page
*page
= NULL
;
4547 struct inode
*inode
;
4548 struct address_space
*mapping
;
4551 if (!vma
->vm_file
) /* anonymous vma */
4556 inode
= vma
->vm_file
->f_path
.dentry
->d_inode
;
4557 mapping
= vma
->vm_file
->f_mapping
;
4558 if (pte_none(ptent
))
4559 pgoff
= linear_page_index(vma
, addr
);
4560 else /* pte_file(ptent) is true */
4561 pgoff
= pte_to_pgoff(ptent
);
4563 /* page is moved even if it's not RSS of this task(page-faulted). */
4564 if (!mapping_cap_swap_backed(mapping
)) { /* normal file */
4565 page
= find_get_page(mapping
, pgoff
);
4566 } else { /* shmem/tmpfs file. we should take account of swap too. */
4568 mem_cgroup_get_shmem_target(inode
, pgoff
, &page
, &ent
);
4569 if (do_swap_account
)
4570 entry
->val
= ent
.val
;
4576 static int is_target_pte_for_mc(struct vm_area_struct
*vma
,
4577 unsigned long addr
, pte_t ptent
, union mc_target
*target
)
4579 struct page
*page
= NULL
;
4580 struct page_cgroup
*pc
;
4582 swp_entry_t ent
= { .val
= 0 };
4584 if (pte_present(ptent
))
4585 page
= mc_handle_present_pte(vma
, addr
, ptent
);
4586 else if (is_swap_pte(ptent
))
4587 page
= mc_handle_swap_pte(vma
, addr
, ptent
, &ent
);
4588 else if (pte_none(ptent
) || pte_file(ptent
))
4589 page
= mc_handle_file_pte(vma
, addr
, ptent
, &ent
);
4591 if (!page
&& !ent
.val
)
4594 pc
= lookup_page_cgroup(page
);
4596 * Do only loose check w/o page_cgroup lock.
4597 * mem_cgroup_move_account() checks the pc is valid or not under
4600 if (PageCgroupUsed(pc
) && pc
->mem_cgroup
== mc
.from
) {
4601 ret
= MC_TARGET_PAGE
;
4603 target
->page
= page
;
4605 if (!ret
|| !target
)
4608 /* There is a swap entry and a page doesn't exist or isn't charged */
4609 if (ent
.val
&& !ret
&&
4610 css_id(&mc
.from
->css
) == lookup_swap_cgroup(ent
)) {
4611 ret
= MC_TARGET_SWAP
;
4618 static int mem_cgroup_count_precharge_pte_range(pmd_t
*pmd
,
4619 unsigned long addr
, unsigned long end
,
4620 struct mm_walk
*walk
)
4622 struct vm_area_struct
*vma
= walk
->private;
4626 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4627 for (; addr
!= end
; pte
++, addr
+= PAGE_SIZE
)
4628 if (is_target_pte_for_mc(vma
, addr
, *pte
, NULL
))
4629 mc
.precharge
++; /* increment precharge temporarily */
4630 pte_unmap_unlock(pte
- 1, ptl
);
4636 static unsigned long mem_cgroup_count_precharge(struct mm_struct
*mm
)
4638 unsigned long precharge
;
4639 struct vm_area_struct
*vma
;
4641 /* We've already held the mmap_sem */
4642 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4643 struct mm_walk mem_cgroup_count_precharge_walk
= {
4644 .pmd_entry
= mem_cgroup_count_precharge_pte_range
,
4648 if (is_vm_hugetlb_page(vma
))
4650 walk_page_range(vma
->vm_start
, vma
->vm_end
,
4651 &mem_cgroup_count_precharge_walk
);
4654 precharge
= mc
.precharge
;
4660 static int mem_cgroup_precharge_mc(struct mm_struct
*mm
)
4662 return mem_cgroup_do_precharge(mem_cgroup_count_precharge(mm
));
4665 static void mem_cgroup_clear_mc(void)
4667 struct mem_cgroup
*from
= mc
.from
;
4668 struct mem_cgroup
*to
= mc
.to
;
4670 /* we must uncharge all the leftover precharges from mc.to */
4672 __mem_cgroup_cancel_charge(mc
.to
, mc
.precharge
);
4676 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4677 * we must uncharge here.
4679 if (mc
.moved_charge
) {
4680 __mem_cgroup_cancel_charge(mc
.from
, mc
.moved_charge
);
4681 mc
.moved_charge
= 0;
4683 /* we must fixup refcnts and charges */
4684 if (mc
.moved_swap
) {
4685 /* uncharge swap account from the old cgroup */
4686 if (!mem_cgroup_is_root(mc
.from
))
4687 res_counter_uncharge(&mc
.from
->memsw
,
4688 PAGE_SIZE
* mc
.moved_swap
);
4689 __mem_cgroup_put(mc
.from
, mc
.moved_swap
);
4691 if (!mem_cgroup_is_root(mc
.to
)) {
4693 * we charged both to->res and to->memsw, so we should
4696 res_counter_uncharge(&mc
.to
->res
,
4697 PAGE_SIZE
* mc
.moved_swap
);
4699 /* we've already done mem_cgroup_get(mc.to) */
4704 up_read(&mc
.mm
->mmap_sem
);
4707 spin_lock(&mc
.lock
);
4710 spin_unlock(&mc
.lock
);
4711 mc
.moving_task
= NULL
;
4713 mem_cgroup_end_move(from
);
4714 memcg_oom_recover(from
);
4715 memcg_oom_recover(to
);
4716 wake_up_all(&mc
.waitq
);
4719 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4720 struct cgroup
*cgroup
,
4721 struct task_struct
*p
,
4725 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cgroup
);
4727 if (mem
->move_charge_at_immigrate
) {
4728 struct mm_struct
*mm
;
4729 struct mem_cgroup
*from
= mem_cgroup_from_task(p
);
4731 VM_BUG_ON(from
== mem
);
4733 mm
= get_task_mm(p
);
4736 /* We move charges only when we move a owner of the mm */
4737 if (mm
->owner
== p
) {
4739 * We do all the move charge works under one mmap_sem to
4740 * avoid deadlock with down_write(&mmap_sem)
4741 * -> try_charge() -> if (mc.moving_task) -> sleep.
4743 down_read(&mm
->mmap_sem
);
4747 VM_BUG_ON(mc
.precharge
);
4748 VM_BUG_ON(mc
.moved_charge
);
4749 VM_BUG_ON(mc
.moved_swap
);
4750 VM_BUG_ON(mc
.moving_task
);
4753 mem_cgroup_start_move(from
);
4754 spin_lock(&mc
.lock
);
4758 mc
.moved_charge
= 0;
4760 spin_unlock(&mc
.lock
);
4761 mc
.moving_task
= current
;
4764 ret
= mem_cgroup_precharge_mc(mm
);
4766 mem_cgroup_clear_mc();
4767 /* We call up_read() and mmput() in clear_mc(). */
4774 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4775 struct cgroup
*cgroup
,
4776 struct task_struct
*p
,
4779 mem_cgroup_clear_mc();
4782 static int mem_cgroup_move_charge_pte_range(pmd_t
*pmd
,
4783 unsigned long addr
, unsigned long end
,
4784 struct mm_walk
*walk
)
4787 struct vm_area_struct
*vma
= walk
->private;
4792 pte
= pte_offset_map_lock(vma
->vm_mm
, pmd
, addr
, &ptl
);
4793 for (; addr
!= end
; addr
+= PAGE_SIZE
) {
4794 pte_t ptent
= *(pte
++);
4795 union mc_target target
;
4798 struct page_cgroup
*pc
;
4804 type
= is_target_pte_for_mc(vma
, addr
, ptent
, &target
);
4806 case MC_TARGET_PAGE
:
4808 if (isolate_lru_page(page
))
4810 pc
= lookup_page_cgroup(page
);
4811 if (!mem_cgroup_move_account(pc
,
4812 mc
.from
, mc
.to
, false)) {
4814 /* we uncharge from mc.from later. */
4817 putback_lru_page(page
);
4818 put
: /* is_target_pte_for_mc() gets the page */
4821 case MC_TARGET_SWAP
:
4823 if (!mem_cgroup_move_swap_account(ent
,
4824 mc
.from
, mc
.to
, false)) {
4826 /* we fixup refcnts and charges later. */
4834 pte_unmap_unlock(pte
- 1, ptl
);
4839 * We have consumed all precharges we got in can_attach().
4840 * We try charge one by one, but don't do any additional
4841 * charges to mc.to if we have failed in charge once in attach()
4844 ret
= mem_cgroup_do_precharge(1);
4852 static void mem_cgroup_move_charge(struct mm_struct
*mm
)
4854 struct vm_area_struct
*vma
;
4856 lru_add_drain_all();
4857 /* We've already held the mmap_sem */
4858 for (vma
= mm
->mmap
; vma
; vma
= vma
->vm_next
) {
4860 struct mm_walk mem_cgroup_move_charge_walk
= {
4861 .pmd_entry
= mem_cgroup_move_charge_pte_range
,
4865 if (is_vm_hugetlb_page(vma
))
4867 ret
= walk_page_range(vma
->vm_start
, vma
->vm_end
,
4868 &mem_cgroup_move_charge_walk
);
4871 * means we have consumed all precharges and failed in
4872 * doing additional charge. Just abandon here.
4878 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4879 struct cgroup
*cont
,
4880 struct cgroup
*old_cont
,
4881 struct task_struct
*p
,
4885 /* no need to move charge */
4888 mem_cgroup_move_charge(mc
.mm
);
4889 mem_cgroup_clear_mc();
4891 #else /* !CONFIG_MMU */
4892 static int mem_cgroup_can_attach(struct cgroup_subsys
*ss
,
4893 struct cgroup
*cgroup
,
4894 struct task_struct
*p
,
4899 static void mem_cgroup_cancel_attach(struct cgroup_subsys
*ss
,
4900 struct cgroup
*cgroup
,
4901 struct task_struct
*p
,
4905 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
4906 struct cgroup
*cont
,
4907 struct cgroup
*old_cont
,
4908 struct task_struct
*p
,
4914 struct cgroup_subsys mem_cgroup_subsys
= {
4916 .subsys_id
= mem_cgroup_subsys_id
,
4917 .create
= mem_cgroup_create
,
4918 .pre_destroy
= mem_cgroup_pre_destroy
,
4919 .destroy
= mem_cgroup_destroy
,
4920 .populate
= mem_cgroup_populate
,
4921 .can_attach
= mem_cgroup_can_attach
,
4922 .cancel_attach
= mem_cgroup_cancel_attach
,
4923 .attach
= mem_cgroup_move_task
,
4928 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
4929 static int __init
enable_swap_account(char *s
)
4931 /* consider enabled if no parameter or 1 is given */
4932 if (!s
|| !strcmp(s
, "1"))
4933 really_do_swap_account
= 1;
4934 else if (!strcmp(s
, "0"))
4935 really_do_swap_account
= 0;
4938 __setup("swapaccount", enable_swap_account
);
4940 static int __init
disable_swap_account(char *s
)
4942 enable_swap_account("0");
4945 __setup("noswapaccount", disable_swap_account
);