mm: revert page_lock_anon_vma() lock annotation
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / rmap.c
blobc6044761617eb5f741a75fbdebefa89cf8d89c55
1 /*
2 * mm/rmap.c - physical to virtual reverse mappings
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins 2003, 2004
21 * Lock ordering in mm:
23 * inode->i_mutex (while writing or truncating, not reading or faulting)
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_mutex
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
39 * within inode_wb_list_lock in __sync_single_inode)
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
43 * anon_vma->lock (memory_failure, collect_procs_anon)
44 * pte map lock
47 #include <linux/mm.h>
48 #include <linux/pagemap.h>
49 #include <linux/swap.h>
50 #include <linux/swapops.h>
51 #include <linux/slab.h>
52 #include <linux/init.h>
53 #include <linux/ksm.h>
54 #include <linux/rmap.h>
55 #include <linux/rcupdate.h>
56 #include <linux/module.h>
57 #include <linux/memcontrol.h>
58 #include <linux/mmu_notifier.h>
59 #include <linux/migrate.h>
60 #include <linux/hugetlb.h>
62 #include <asm/tlbflush.h>
64 #include "internal.h"
66 static struct kmem_cache *anon_vma_cachep;
67 static struct kmem_cache *anon_vma_chain_cachep;
69 static inline struct anon_vma *anon_vma_alloc(void)
71 struct anon_vma *anon_vma;
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
80 anon_vma->root = anon_vma;
83 return anon_vma;
86 static inline void anon_vma_free(struct anon_vma *anon_vma)
88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
89 kmem_cache_free(anon_vma_cachep, anon_vma);
92 static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
94 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
97 static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
99 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
110 * The common case will be that we already have one, but if
111 * not we either need to find an adjacent mapping that we
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
127 * This must be called with the mmap_sem held for reading.
129 int anon_vma_prepare(struct vm_area_struct *vma)
131 struct anon_vma *anon_vma = vma->anon_vma;
132 struct anon_vma_chain *avc;
134 might_sleep();
135 if (unlikely(!anon_vma)) {
136 struct mm_struct *mm = vma->vm_mm;
137 struct anon_vma *allocated;
139 avc = anon_vma_chain_alloc();
140 if (!avc)
141 goto out_enomem;
143 anon_vma = find_mergeable_anon_vma(vma);
144 allocated = NULL;
145 if (!anon_vma) {
146 anon_vma = anon_vma_alloc();
147 if (unlikely(!anon_vma))
148 goto out_enomem_free_avc;
149 allocated = anon_vma;
152 anon_vma_lock(anon_vma);
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm->page_table_lock);
155 if (likely(!vma->anon_vma)) {
156 vma->anon_vma = anon_vma;
157 avc->anon_vma = anon_vma;
158 avc->vma = vma;
159 list_add(&avc->same_vma, &vma->anon_vma_chain);
160 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
161 allocated = NULL;
162 avc = NULL;
164 spin_unlock(&mm->page_table_lock);
165 anon_vma_unlock(anon_vma);
167 if (unlikely(allocated))
168 put_anon_vma(allocated);
169 if (unlikely(avc))
170 anon_vma_chain_free(avc);
172 return 0;
174 out_enomem_free_avc:
175 anon_vma_chain_free(avc);
176 out_enomem:
177 return -ENOMEM;
180 static void anon_vma_chain_link(struct vm_area_struct *vma,
181 struct anon_vma_chain *avc,
182 struct anon_vma *anon_vma)
184 avc->vma = vma;
185 avc->anon_vma = anon_vma;
186 list_add(&avc->same_vma, &vma->anon_vma_chain);
188 anon_vma_lock(anon_vma);
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
193 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
194 anon_vma_unlock(anon_vma);
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
201 int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
203 struct anon_vma_chain *avc, *pavc;
205 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
206 avc = anon_vma_chain_alloc();
207 if (!avc)
208 goto enomem_failure;
209 anon_vma_chain_link(dst, avc, pavc->anon_vma);
211 return 0;
213 enomem_failure:
214 unlink_anon_vmas(dst);
215 return -ENOMEM;
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
223 int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
225 struct anon_vma_chain *avc;
226 struct anon_vma *anon_vma;
228 /* Don't bother if the parent process has no anon_vma here. */
229 if (!pvma->anon_vma)
230 return 0;
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
236 if (anon_vma_clone(vma, pvma))
237 return -ENOMEM;
239 /* Then add our own anon_vma. */
240 anon_vma = anon_vma_alloc();
241 if (!anon_vma)
242 goto out_error;
243 avc = anon_vma_chain_alloc();
244 if (!avc)
245 goto out_error_free_anon_vma;
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
251 anon_vma->root = pvma->anon_vma->root;
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
257 get_anon_vma(anon_vma->root);
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma->anon_vma = anon_vma;
260 anon_vma_chain_link(vma, avc, anon_vma);
262 return 0;
264 out_error_free_anon_vma:
265 put_anon_vma(anon_vma);
266 out_error:
267 unlink_anon_vmas(vma);
268 return -ENOMEM;
271 static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
273 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
274 int empty;
276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
277 if (!anon_vma)
278 return;
280 anon_vma_lock(anon_vma);
281 list_del(&anon_vma_chain->same_anon_vma);
283 /* We must garbage collect the anon_vma if it's empty */
284 empty = list_empty(&anon_vma->head);
285 anon_vma_unlock(anon_vma);
287 if (empty)
288 put_anon_vma(anon_vma);
291 void unlink_anon_vmas(struct vm_area_struct *vma)
293 struct anon_vma_chain *avc, *next;
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
299 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 anon_vma_unlink(avc);
301 list_del(&avc->same_vma);
302 anon_vma_chain_free(avc);
306 static void anon_vma_ctor(void *data)
308 struct anon_vma *anon_vma = data;
310 spin_lock_init(&anon_vma->lock);
311 atomic_set(&anon_vma->refcount, 0);
312 INIT_LIST_HEAD(&anon_vma->head);
315 void __init anon_vma_init(void)
317 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
318 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
319 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
323 * Getting a lock on a stable anon_vma from a page off the LRU is
324 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
326 struct anon_vma *page_lock_anon_vma(struct page *page)
328 struct anon_vma *anon_vma, *root_anon_vma;
329 unsigned long anon_mapping;
331 rcu_read_lock();
332 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
333 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
334 goto out;
335 if (!page_mapped(page))
336 goto out;
338 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
339 root_anon_vma = ACCESS_ONCE(anon_vma->root);
340 spin_lock(&root_anon_vma->lock);
343 * If this page is still mapped, then its anon_vma cannot have been
344 * freed. But if it has been unmapped, we have no security against
345 * the anon_vma structure being freed and reused (for another anon_vma:
346 * SLAB_DESTROY_BY_RCU guarantees that - so the spin_lock above cannot
347 * corrupt): with anon_vma_prepare() or anon_vma_fork() redirecting
348 * anon_vma->root before page_unlock_anon_vma() is called to unlock.
350 if (page_mapped(page))
351 return anon_vma;
353 spin_unlock(&root_anon_vma->lock);
354 out:
355 rcu_read_unlock();
356 return NULL;
359 void page_unlock_anon_vma(struct anon_vma *anon_vma)
361 anon_vma_unlock(anon_vma);
362 rcu_read_unlock();
366 * At what user virtual address is page expected in @vma?
367 * Returns virtual address or -EFAULT if page's index/offset is not
368 * within the range mapped the @vma.
370 inline unsigned long
371 vma_address(struct page *page, struct vm_area_struct *vma)
373 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
374 unsigned long address;
376 if (unlikely(is_vm_hugetlb_page(vma)))
377 pgoff = page->index << huge_page_order(page_hstate(page));
378 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
379 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
380 /* page should be within @vma mapping range */
381 return -EFAULT;
383 return address;
387 * At what user virtual address is page expected in vma?
388 * Caller should check the page is actually part of the vma.
390 unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
392 if (PageAnon(page)) {
393 struct anon_vma *page__anon_vma = page_anon_vma(page);
395 * Note: swapoff's unuse_vma() is more efficient with this
396 * check, and needs it to match anon_vma when KSM is active.
398 if (!vma->anon_vma || !page__anon_vma ||
399 vma->anon_vma->root != page__anon_vma->root)
400 return -EFAULT;
401 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
402 if (!vma->vm_file ||
403 vma->vm_file->f_mapping != page->mapping)
404 return -EFAULT;
405 } else
406 return -EFAULT;
407 return vma_address(page, vma);
411 * Check that @page is mapped at @address into @mm.
413 * If @sync is false, page_check_address may perform a racy check to avoid
414 * the page table lock when the pte is not present (helpful when reclaiming
415 * highly shared pages).
417 * On success returns with pte mapped and locked.
419 pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
420 unsigned long address, spinlock_t **ptlp, int sync)
422 pgd_t *pgd;
423 pud_t *pud;
424 pmd_t *pmd;
425 pte_t *pte;
426 spinlock_t *ptl;
428 if (unlikely(PageHuge(page))) {
429 pte = huge_pte_offset(mm, address);
430 ptl = &mm->page_table_lock;
431 goto check;
434 pgd = pgd_offset(mm, address);
435 if (!pgd_present(*pgd))
436 return NULL;
438 pud = pud_offset(pgd, address);
439 if (!pud_present(*pud))
440 return NULL;
442 pmd = pmd_offset(pud, address);
443 if (!pmd_present(*pmd))
444 return NULL;
445 if (pmd_trans_huge(*pmd))
446 return NULL;
448 pte = pte_offset_map(pmd, address);
449 /* Make a quick check before getting the lock */
450 if (!sync && !pte_present(*pte)) {
451 pte_unmap(pte);
452 return NULL;
455 ptl = pte_lockptr(mm, pmd);
456 check:
457 spin_lock(ptl);
458 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
459 *ptlp = ptl;
460 return pte;
462 pte_unmap_unlock(pte, ptl);
463 return NULL;
467 * page_mapped_in_vma - check whether a page is really mapped in a VMA
468 * @page: the page to test
469 * @vma: the VMA to test
471 * Returns 1 if the page is mapped into the page tables of the VMA, 0
472 * if the page is not mapped into the page tables of this VMA. Only
473 * valid for normal file or anonymous VMAs.
475 int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
477 unsigned long address;
478 pte_t *pte;
479 spinlock_t *ptl;
481 address = vma_address(page, vma);
482 if (address == -EFAULT) /* out of vma range */
483 return 0;
484 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
485 if (!pte) /* the page is not in this mm */
486 return 0;
487 pte_unmap_unlock(pte, ptl);
489 return 1;
493 * Subfunctions of page_referenced: page_referenced_one called
494 * repeatedly from either page_referenced_anon or page_referenced_file.
496 int page_referenced_one(struct page *page, struct vm_area_struct *vma,
497 unsigned long address, unsigned int *mapcount,
498 unsigned long *vm_flags)
500 struct mm_struct *mm = vma->vm_mm;
501 int referenced = 0;
503 if (unlikely(PageTransHuge(page))) {
504 pmd_t *pmd;
506 spin_lock(&mm->page_table_lock);
508 * rmap might return false positives; we must filter
509 * these out using page_check_address_pmd().
511 pmd = page_check_address_pmd(page, mm, address,
512 PAGE_CHECK_ADDRESS_PMD_FLAG);
513 if (!pmd) {
514 spin_unlock(&mm->page_table_lock);
515 goto out;
518 if (vma->vm_flags & VM_LOCKED) {
519 spin_unlock(&mm->page_table_lock);
520 *mapcount = 0; /* break early from loop */
521 *vm_flags |= VM_LOCKED;
522 goto out;
525 /* go ahead even if the pmd is pmd_trans_splitting() */
526 if (pmdp_clear_flush_young_notify(vma, address, pmd))
527 referenced++;
528 spin_unlock(&mm->page_table_lock);
529 } else {
530 pte_t *pte;
531 spinlock_t *ptl;
534 * rmap might return false positives; we must filter
535 * these out using page_check_address().
537 pte = page_check_address(page, mm, address, &ptl, 0);
538 if (!pte)
539 goto out;
541 if (vma->vm_flags & VM_LOCKED) {
542 pte_unmap_unlock(pte, ptl);
543 *mapcount = 0; /* break early from loop */
544 *vm_flags |= VM_LOCKED;
545 goto out;
548 if (ptep_clear_flush_young_notify(vma, address, pte)) {
550 * Don't treat a reference through a sequentially read
551 * mapping as such. If the page has been used in
552 * another mapping, we will catch it; if this other
553 * mapping is already gone, the unmap path will have
554 * set PG_referenced or activated the page.
556 if (likely(!VM_SequentialReadHint(vma)))
557 referenced++;
559 pte_unmap_unlock(pte, ptl);
562 /* Pretend the page is referenced if the task has the
563 swap token and is in the middle of a page fault. */
564 if (mm != current->mm && has_swap_token(mm) &&
565 rwsem_is_locked(&mm->mmap_sem))
566 referenced++;
568 (*mapcount)--;
570 if (referenced)
571 *vm_flags |= vma->vm_flags;
572 out:
573 return referenced;
576 static int page_referenced_anon(struct page *page,
577 struct mem_cgroup *mem_cont,
578 unsigned long *vm_flags)
580 unsigned int mapcount;
581 struct anon_vma *anon_vma;
582 struct anon_vma_chain *avc;
583 int referenced = 0;
585 anon_vma = page_lock_anon_vma(page);
586 if (!anon_vma)
587 return referenced;
589 mapcount = page_mapcount(page);
590 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
591 struct vm_area_struct *vma = avc->vma;
592 unsigned long address = vma_address(page, vma);
593 if (address == -EFAULT)
594 continue;
596 * If we are reclaiming on behalf of a cgroup, skip
597 * counting on behalf of references from different
598 * cgroups
600 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
601 continue;
602 referenced += page_referenced_one(page, vma, address,
603 &mapcount, vm_flags);
604 if (!mapcount)
605 break;
608 page_unlock_anon_vma(anon_vma);
609 return referenced;
613 * page_referenced_file - referenced check for object-based rmap
614 * @page: the page we're checking references on.
615 * @mem_cont: target memory controller
616 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
618 * For an object-based mapped page, find all the places it is mapped and
619 * check/clear the referenced flag. This is done by following the page->mapping
620 * pointer, then walking the chain of vmas it holds. It returns the number
621 * of references it found.
623 * This function is only called from page_referenced for object-based pages.
625 static int page_referenced_file(struct page *page,
626 struct mem_cgroup *mem_cont,
627 unsigned long *vm_flags)
629 unsigned int mapcount;
630 struct address_space *mapping = page->mapping;
631 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
632 struct vm_area_struct *vma;
633 struct prio_tree_iter iter;
634 int referenced = 0;
637 * The caller's checks on page->mapping and !PageAnon have made
638 * sure that this is a file page: the check for page->mapping
639 * excludes the case just before it gets set on an anon page.
641 BUG_ON(PageAnon(page));
644 * The page lock not only makes sure that page->mapping cannot
645 * suddenly be NULLified by truncation, it makes sure that the
646 * structure at mapping cannot be freed and reused yet,
647 * so we can safely take mapping->i_mmap_mutex.
649 BUG_ON(!PageLocked(page));
651 mutex_lock(&mapping->i_mmap_mutex);
654 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
655 * is more likely to be accurate if we note it after spinning.
657 mapcount = page_mapcount(page);
659 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
660 unsigned long address = vma_address(page, vma);
661 if (address == -EFAULT)
662 continue;
664 * If we are reclaiming on behalf of a cgroup, skip
665 * counting on behalf of references from different
666 * cgroups
668 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
669 continue;
670 referenced += page_referenced_one(page, vma, address,
671 &mapcount, vm_flags);
672 if (!mapcount)
673 break;
676 mutex_unlock(&mapping->i_mmap_mutex);
677 return referenced;
681 * page_referenced - test if the page was referenced
682 * @page: the page to test
683 * @is_locked: caller holds lock on the page
684 * @mem_cont: target memory controller
685 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
687 * Quick test_and_clear_referenced for all mappings to a page,
688 * returns the number of ptes which referenced the page.
690 int page_referenced(struct page *page,
691 int is_locked,
692 struct mem_cgroup *mem_cont,
693 unsigned long *vm_flags)
695 int referenced = 0;
696 int we_locked = 0;
698 *vm_flags = 0;
699 if (page_mapped(page) && page_rmapping(page)) {
700 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
701 we_locked = trylock_page(page);
702 if (!we_locked) {
703 referenced++;
704 goto out;
707 if (unlikely(PageKsm(page)))
708 referenced += page_referenced_ksm(page, mem_cont,
709 vm_flags);
710 else if (PageAnon(page))
711 referenced += page_referenced_anon(page, mem_cont,
712 vm_flags);
713 else if (page->mapping)
714 referenced += page_referenced_file(page, mem_cont,
715 vm_flags);
716 if (we_locked)
717 unlock_page(page);
719 out:
720 if (page_test_and_clear_young(page_to_pfn(page)))
721 referenced++;
723 return referenced;
726 static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
727 unsigned long address)
729 struct mm_struct *mm = vma->vm_mm;
730 pte_t *pte;
731 spinlock_t *ptl;
732 int ret = 0;
734 pte = page_check_address(page, mm, address, &ptl, 1);
735 if (!pte)
736 goto out;
738 if (pte_dirty(*pte) || pte_write(*pte)) {
739 pte_t entry;
741 flush_cache_page(vma, address, pte_pfn(*pte));
742 entry = ptep_clear_flush_notify(vma, address, pte);
743 entry = pte_wrprotect(entry);
744 entry = pte_mkclean(entry);
745 set_pte_at(mm, address, pte, entry);
746 ret = 1;
749 pte_unmap_unlock(pte, ptl);
750 out:
751 return ret;
754 static int page_mkclean_file(struct address_space *mapping, struct page *page)
756 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
757 struct vm_area_struct *vma;
758 struct prio_tree_iter iter;
759 int ret = 0;
761 BUG_ON(PageAnon(page));
763 mutex_lock(&mapping->i_mmap_mutex);
764 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
765 if (vma->vm_flags & VM_SHARED) {
766 unsigned long address = vma_address(page, vma);
767 if (address == -EFAULT)
768 continue;
769 ret += page_mkclean_one(page, vma, address);
772 mutex_unlock(&mapping->i_mmap_mutex);
773 return ret;
776 int page_mkclean(struct page *page)
778 int ret = 0;
780 BUG_ON(!PageLocked(page));
782 if (page_mapped(page)) {
783 struct address_space *mapping = page_mapping(page);
784 if (mapping) {
785 ret = page_mkclean_file(mapping, page);
786 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
787 ret = 1;
791 return ret;
793 EXPORT_SYMBOL_GPL(page_mkclean);
796 * page_move_anon_rmap - move a page to our anon_vma
797 * @page: the page to move to our anon_vma
798 * @vma: the vma the page belongs to
799 * @address: the user virtual address mapped
801 * When a page belongs exclusively to one process after a COW event,
802 * that page can be moved into the anon_vma that belongs to just that
803 * process, so the rmap code will not search the parent or sibling
804 * processes.
806 void page_move_anon_rmap(struct page *page,
807 struct vm_area_struct *vma, unsigned long address)
809 struct anon_vma *anon_vma = vma->anon_vma;
811 VM_BUG_ON(!PageLocked(page));
812 VM_BUG_ON(!anon_vma);
813 VM_BUG_ON(page->index != linear_page_index(vma, address));
815 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
816 page->mapping = (struct address_space *) anon_vma;
820 * __page_set_anon_rmap - set up new anonymous rmap
821 * @page: Page to add to rmap
822 * @vma: VM area to add page to.
823 * @address: User virtual address of the mapping
824 * @exclusive: the page is exclusively owned by the current process
826 static void __page_set_anon_rmap(struct page *page,
827 struct vm_area_struct *vma, unsigned long address, int exclusive)
829 struct anon_vma *anon_vma = vma->anon_vma;
831 BUG_ON(!anon_vma);
833 if (PageAnon(page))
834 return;
837 * If the page isn't exclusively mapped into this vma,
838 * we must use the _oldest_ possible anon_vma for the
839 * page mapping!
841 if (!exclusive)
842 anon_vma = anon_vma->root;
844 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
845 page->mapping = (struct address_space *) anon_vma;
846 page->index = linear_page_index(vma, address);
850 * __page_check_anon_rmap - sanity check anonymous rmap addition
851 * @page: the page to add the mapping to
852 * @vma: the vm area in which the mapping is added
853 * @address: the user virtual address mapped
855 static void __page_check_anon_rmap(struct page *page,
856 struct vm_area_struct *vma, unsigned long address)
858 #ifdef CONFIG_DEBUG_VM
860 * The page's anon-rmap details (mapping and index) are guaranteed to
861 * be set up correctly at this point.
863 * We have exclusion against page_add_anon_rmap because the caller
864 * always holds the page locked, except if called from page_dup_rmap,
865 * in which case the page is already known to be setup.
867 * We have exclusion against page_add_new_anon_rmap because those pages
868 * are initially only visible via the pagetables, and the pte is locked
869 * over the call to page_add_new_anon_rmap.
871 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
872 BUG_ON(page->index != linear_page_index(vma, address));
873 #endif
877 * page_add_anon_rmap - add pte mapping to an anonymous page
878 * @page: the page to add the mapping to
879 * @vma: the vm area in which the mapping is added
880 * @address: the user virtual address mapped
882 * The caller needs to hold the pte lock, and the page must be locked in
883 * the anon_vma case: to serialize mapping,index checking after setting,
884 * and to ensure that PageAnon is not being upgraded racily to PageKsm
885 * (but PageKsm is never downgraded to PageAnon).
887 void page_add_anon_rmap(struct page *page,
888 struct vm_area_struct *vma, unsigned long address)
890 do_page_add_anon_rmap(page, vma, address, 0);
894 * Special version of the above for do_swap_page, which often runs
895 * into pages that are exclusively owned by the current process.
896 * Everybody else should continue to use page_add_anon_rmap above.
898 void do_page_add_anon_rmap(struct page *page,
899 struct vm_area_struct *vma, unsigned long address, int exclusive)
901 int first = atomic_inc_and_test(&page->_mapcount);
902 if (first) {
903 if (!PageTransHuge(page))
904 __inc_zone_page_state(page, NR_ANON_PAGES);
905 else
906 __inc_zone_page_state(page,
907 NR_ANON_TRANSPARENT_HUGEPAGES);
909 if (unlikely(PageKsm(page)))
910 return;
912 VM_BUG_ON(!PageLocked(page));
913 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
914 if (first)
915 __page_set_anon_rmap(page, vma, address, exclusive);
916 else
917 __page_check_anon_rmap(page, vma, address);
921 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
922 * @page: the page to add the mapping to
923 * @vma: the vm area in which the mapping is added
924 * @address: the user virtual address mapped
926 * Same as page_add_anon_rmap but must only be called on *new* pages.
927 * This means the inc-and-test can be bypassed.
928 * Page does not have to be locked.
930 void page_add_new_anon_rmap(struct page *page,
931 struct vm_area_struct *vma, unsigned long address)
933 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
934 SetPageSwapBacked(page);
935 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
936 if (!PageTransHuge(page))
937 __inc_zone_page_state(page, NR_ANON_PAGES);
938 else
939 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
940 __page_set_anon_rmap(page, vma, address, 1);
941 if (page_evictable(page, vma))
942 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
943 else
944 add_page_to_unevictable_list(page);
948 * page_add_file_rmap - add pte mapping to a file page
949 * @page: the page to add the mapping to
951 * The caller needs to hold the pte lock.
953 void page_add_file_rmap(struct page *page)
955 if (atomic_inc_and_test(&page->_mapcount)) {
956 __inc_zone_page_state(page, NR_FILE_MAPPED);
957 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
962 * page_remove_rmap - take down pte mapping from a page
963 * @page: page to remove mapping from
965 * The caller needs to hold the pte lock.
967 void page_remove_rmap(struct page *page)
969 /* page still mapped by someone else? */
970 if (!atomic_add_negative(-1, &page->_mapcount))
971 return;
974 * Now that the last pte has gone, s390 must transfer dirty
975 * flag from storage key to struct page. We can usually skip
976 * this if the page is anon, so about to be freed; but perhaps
977 * not if it's in swapcache - there might be another pte slot
978 * containing the swap entry, but page not yet written to swap.
980 if ((!PageAnon(page) || PageSwapCache(page)) &&
981 page_test_and_clear_dirty(page_to_pfn(page), 1))
982 set_page_dirty(page);
984 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
985 * and not charged by memcg for now.
987 if (unlikely(PageHuge(page)))
988 return;
989 if (PageAnon(page)) {
990 mem_cgroup_uncharge_page(page);
991 if (!PageTransHuge(page))
992 __dec_zone_page_state(page, NR_ANON_PAGES);
993 else
994 __dec_zone_page_state(page,
995 NR_ANON_TRANSPARENT_HUGEPAGES);
996 } else {
997 __dec_zone_page_state(page, NR_FILE_MAPPED);
998 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
1001 * It would be tidy to reset the PageAnon mapping here,
1002 * but that might overwrite a racing page_add_anon_rmap
1003 * which increments mapcount after us but sets mapping
1004 * before us: so leave the reset to free_hot_cold_page,
1005 * and remember that it's only reliable while mapped.
1006 * Leaving it set also helps swapoff to reinstate ptes
1007 * faster for those pages still in swapcache.
1012 * Subfunctions of try_to_unmap: try_to_unmap_one called
1013 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1015 int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1016 unsigned long address, enum ttu_flags flags)
1018 struct mm_struct *mm = vma->vm_mm;
1019 pte_t *pte;
1020 pte_t pteval;
1021 spinlock_t *ptl;
1022 int ret = SWAP_AGAIN;
1024 pte = page_check_address(page, mm, address, &ptl, 0);
1025 if (!pte)
1026 goto out;
1029 * If the page is mlock()d, we cannot swap it out.
1030 * If it's recently referenced (perhaps page_referenced
1031 * skipped over this mm) then we should reactivate it.
1033 if (!(flags & TTU_IGNORE_MLOCK)) {
1034 if (vma->vm_flags & VM_LOCKED)
1035 goto out_mlock;
1037 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1038 goto out_unmap;
1040 if (!(flags & TTU_IGNORE_ACCESS)) {
1041 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1042 ret = SWAP_FAIL;
1043 goto out_unmap;
1047 /* Nuke the page table entry. */
1048 flush_cache_page(vma, address, page_to_pfn(page));
1049 pteval = ptep_clear_flush_notify(vma, address, pte);
1051 /* Move the dirty bit to the physical page now the pte is gone. */
1052 if (pte_dirty(pteval))
1053 set_page_dirty(page);
1055 /* Update high watermark before we lower rss */
1056 update_hiwater_rss(mm);
1058 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1059 if (PageAnon(page))
1060 dec_mm_counter(mm, MM_ANONPAGES);
1061 else
1062 dec_mm_counter(mm, MM_FILEPAGES);
1063 set_pte_at(mm, address, pte,
1064 swp_entry_to_pte(make_hwpoison_entry(page)));
1065 } else if (PageAnon(page)) {
1066 swp_entry_t entry = { .val = page_private(page) };
1068 if (PageSwapCache(page)) {
1070 * Store the swap location in the pte.
1071 * See handle_pte_fault() ...
1073 if (swap_duplicate(entry) < 0) {
1074 set_pte_at(mm, address, pte, pteval);
1075 ret = SWAP_FAIL;
1076 goto out_unmap;
1078 if (list_empty(&mm->mmlist)) {
1079 spin_lock(&mmlist_lock);
1080 if (list_empty(&mm->mmlist))
1081 list_add(&mm->mmlist, &init_mm.mmlist);
1082 spin_unlock(&mmlist_lock);
1084 dec_mm_counter(mm, MM_ANONPAGES);
1085 inc_mm_counter(mm, MM_SWAPENTS);
1086 } else if (PAGE_MIGRATION) {
1088 * Store the pfn of the page in a special migration
1089 * pte. do_swap_page() will wait until the migration
1090 * pte is removed and then restart fault handling.
1092 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
1093 entry = make_migration_entry(page, pte_write(pteval));
1095 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1096 BUG_ON(pte_file(*pte));
1097 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
1098 /* Establish migration entry for a file page */
1099 swp_entry_t entry;
1100 entry = make_migration_entry(page, pte_write(pteval));
1101 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1102 } else
1103 dec_mm_counter(mm, MM_FILEPAGES);
1105 page_remove_rmap(page);
1106 page_cache_release(page);
1108 out_unmap:
1109 pte_unmap_unlock(pte, ptl);
1110 out:
1111 return ret;
1113 out_mlock:
1114 pte_unmap_unlock(pte, ptl);
1118 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1119 * unstable result and race. Plus, We can't wait here because
1120 * we now hold anon_vma->lock or mapping->i_mmap_mutex.
1121 * if trylock failed, the page remain in evictable lru and later
1122 * vmscan could retry to move the page to unevictable lru if the
1123 * page is actually mlocked.
1125 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1126 if (vma->vm_flags & VM_LOCKED) {
1127 mlock_vma_page(page);
1128 ret = SWAP_MLOCK;
1130 up_read(&vma->vm_mm->mmap_sem);
1132 return ret;
1136 * objrmap doesn't work for nonlinear VMAs because the assumption that
1137 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1138 * Consequently, given a particular page and its ->index, we cannot locate the
1139 * ptes which are mapping that page without an exhaustive linear search.
1141 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1142 * maps the file to which the target page belongs. The ->vm_private_data field
1143 * holds the current cursor into that scan. Successive searches will circulate
1144 * around the vma's virtual address space.
1146 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1147 * more scanning pressure is placed against them as well. Eventually pages
1148 * will become fully unmapped and are eligible for eviction.
1150 * For very sparsely populated VMAs this is a little inefficient - chances are
1151 * there there won't be many ptes located within the scan cluster. In this case
1152 * maybe we could scan further - to the end of the pte page, perhaps.
1154 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1155 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1156 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1157 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1159 #define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1160 #define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1162 static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1163 struct vm_area_struct *vma, struct page *check_page)
1165 struct mm_struct *mm = vma->vm_mm;
1166 pgd_t *pgd;
1167 pud_t *pud;
1168 pmd_t *pmd;
1169 pte_t *pte;
1170 pte_t pteval;
1171 spinlock_t *ptl;
1172 struct page *page;
1173 unsigned long address;
1174 unsigned long end;
1175 int ret = SWAP_AGAIN;
1176 int locked_vma = 0;
1178 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1179 end = address + CLUSTER_SIZE;
1180 if (address < vma->vm_start)
1181 address = vma->vm_start;
1182 if (end > vma->vm_end)
1183 end = vma->vm_end;
1185 pgd = pgd_offset(mm, address);
1186 if (!pgd_present(*pgd))
1187 return ret;
1189 pud = pud_offset(pgd, address);
1190 if (!pud_present(*pud))
1191 return ret;
1193 pmd = pmd_offset(pud, address);
1194 if (!pmd_present(*pmd))
1195 return ret;
1198 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
1199 * keep the sem while scanning the cluster for mlocking pages.
1201 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1202 locked_vma = (vma->vm_flags & VM_LOCKED);
1203 if (!locked_vma)
1204 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1207 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1209 /* Update high watermark before we lower rss */
1210 update_hiwater_rss(mm);
1212 for (; address < end; pte++, address += PAGE_SIZE) {
1213 if (!pte_present(*pte))
1214 continue;
1215 page = vm_normal_page(vma, address, *pte);
1216 BUG_ON(!page || PageAnon(page));
1218 if (locked_vma) {
1219 mlock_vma_page(page); /* no-op if already mlocked */
1220 if (page == check_page)
1221 ret = SWAP_MLOCK;
1222 continue; /* don't unmap */
1225 if (ptep_clear_flush_young_notify(vma, address, pte))
1226 continue;
1228 /* Nuke the page table entry. */
1229 flush_cache_page(vma, address, pte_pfn(*pte));
1230 pteval = ptep_clear_flush_notify(vma, address, pte);
1232 /* If nonlinear, store the file page offset in the pte. */
1233 if (page->index != linear_page_index(vma, address))
1234 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1236 /* Move the dirty bit to the physical page now the pte is gone. */
1237 if (pte_dirty(pteval))
1238 set_page_dirty(page);
1240 page_remove_rmap(page);
1241 page_cache_release(page);
1242 dec_mm_counter(mm, MM_FILEPAGES);
1243 (*mapcount)--;
1245 pte_unmap_unlock(pte - 1, ptl);
1246 if (locked_vma)
1247 up_read(&vma->vm_mm->mmap_sem);
1248 return ret;
1251 bool is_vma_temporary_stack(struct vm_area_struct *vma)
1253 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1255 if (!maybe_stack)
1256 return false;
1258 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1259 VM_STACK_INCOMPLETE_SETUP)
1260 return true;
1262 return false;
1266 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1267 * rmap method
1268 * @page: the page to unmap/unlock
1269 * @flags: action and flags
1271 * Find all the mappings of a page using the mapping pointer and the vma chains
1272 * contained in the anon_vma struct it points to.
1274 * This function is only called from try_to_unmap/try_to_munlock for
1275 * anonymous pages.
1276 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1277 * where the page was found will be held for write. So, we won't recheck
1278 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1279 * 'LOCKED.
1281 static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1283 struct anon_vma *anon_vma;
1284 struct anon_vma_chain *avc;
1285 int ret = SWAP_AGAIN;
1287 anon_vma = page_lock_anon_vma(page);
1288 if (!anon_vma)
1289 return ret;
1291 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1292 struct vm_area_struct *vma = avc->vma;
1293 unsigned long address;
1296 * During exec, a temporary VMA is setup and later moved.
1297 * The VMA is moved under the anon_vma lock but not the
1298 * page tables leading to a race where migration cannot
1299 * find the migration ptes. Rather than increasing the
1300 * locking requirements of exec(), migration skips
1301 * temporary VMAs until after exec() completes.
1303 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1304 is_vma_temporary_stack(vma))
1305 continue;
1307 address = vma_address(page, vma);
1308 if (address == -EFAULT)
1309 continue;
1310 ret = try_to_unmap_one(page, vma, address, flags);
1311 if (ret != SWAP_AGAIN || !page_mapped(page))
1312 break;
1315 page_unlock_anon_vma(anon_vma);
1316 return ret;
1320 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1321 * @page: the page to unmap/unlock
1322 * @flags: action and flags
1324 * Find all the mappings of a page using the mapping pointer and the vma chains
1325 * contained in the address_space struct it points to.
1327 * This function is only called from try_to_unmap/try_to_munlock for
1328 * object-based pages.
1329 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1330 * where the page was found will be held for write. So, we won't recheck
1331 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1332 * 'LOCKED.
1334 static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1336 struct address_space *mapping = page->mapping;
1337 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1338 struct vm_area_struct *vma;
1339 struct prio_tree_iter iter;
1340 int ret = SWAP_AGAIN;
1341 unsigned long cursor;
1342 unsigned long max_nl_cursor = 0;
1343 unsigned long max_nl_size = 0;
1344 unsigned int mapcount;
1346 mutex_lock(&mapping->i_mmap_mutex);
1347 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1348 unsigned long address = vma_address(page, vma);
1349 if (address == -EFAULT)
1350 continue;
1351 ret = try_to_unmap_one(page, vma, address, flags);
1352 if (ret != SWAP_AGAIN || !page_mapped(page))
1353 goto out;
1356 if (list_empty(&mapping->i_mmap_nonlinear))
1357 goto out;
1360 * We don't bother to try to find the munlocked page in nonlinears.
1361 * It's costly. Instead, later, page reclaim logic may call
1362 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1364 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1365 goto out;
1367 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1368 shared.vm_set.list) {
1369 cursor = (unsigned long) vma->vm_private_data;
1370 if (cursor > max_nl_cursor)
1371 max_nl_cursor = cursor;
1372 cursor = vma->vm_end - vma->vm_start;
1373 if (cursor > max_nl_size)
1374 max_nl_size = cursor;
1377 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1378 ret = SWAP_FAIL;
1379 goto out;
1383 * We don't try to search for this page in the nonlinear vmas,
1384 * and page_referenced wouldn't have found it anyway. Instead
1385 * just walk the nonlinear vmas trying to age and unmap some.
1386 * The mapcount of the page we came in with is irrelevant,
1387 * but even so use it as a guide to how hard we should try?
1389 mapcount = page_mapcount(page);
1390 if (!mapcount)
1391 goto out;
1392 cond_resched();
1394 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1395 if (max_nl_cursor == 0)
1396 max_nl_cursor = CLUSTER_SIZE;
1398 do {
1399 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1400 shared.vm_set.list) {
1401 cursor = (unsigned long) vma->vm_private_data;
1402 while ( cursor < max_nl_cursor &&
1403 cursor < vma->vm_end - vma->vm_start) {
1404 if (try_to_unmap_cluster(cursor, &mapcount,
1405 vma, page) == SWAP_MLOCK)
1406 ret = SWAP_MLOCK;
1407 cursor += CLUSTER_SIZE;
1408 vma->vm_private_data = (void *) cursor;
1409 if ((int)mapcount <= 0)
1410 goto out;
1412 vma->vm_private_data = (void *) max_nl_cursor;
1414 cond_resched();
1415 max_nl_cursor += CLUSTER_SIZE;
1416 } while (max_nl_cursor <= max_nl_size);
1419 * Don't loop forever (perhaps all the remaining pages are
1420 * in locked vmas). Reset cursor on all unreserved nonlinear
1421 * vmas, now forgetting on which ones it had fallen behind.
1423 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1424 vma->vm_private_data = NULL;
1425 out:
1426 mutex_unlock(&mapping->i_mmap_mutex);
1427 return ret;
1431 * try_to_unmap - try to remove all page table mappings to a page
1432 * @page: the page to get unmapped
1433 * @flags: action and flags
1435 * Tries to remove all the page table entries which are mapping this
1436 * page, used in the pageout path. Caller must hold the page lock.
1437 * Return values are:
1439 * SWAP_SUCCESS - we succeeded in removing all mappings
1440 * SWAP_AGAIN - we missed a mapping, try again later
1441 * SWAP_FAIL - the page is unswappable
1442 * SWAP_MLOCK - page is mlocked.
1444 int try_to_unmap(struct page *page, enum ttu_flags flags)
1446 int ret;
1448 BUG_ON(!PageLocked(page));
1449 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1451 if (unlikely(PageKsm(page)))
1452 ret = try_to_unmap_ksm(page, flags);
1453 else if (PageAnon(page))
1454 ret = try_to_unmap_anon(page, flags);
1455 else
1456 ret = try_to_unmap_file(page, flags);
1457 if (ret != SWAP_MLOCK && !page_mapped(page))
1458 ret = SWAP_SUCCESS;
1459 return ret;
1463 * try_to_munlock - try to munlock a page
1464 * @page: the page to be munlocked
1466 * Called from munlock code. Checks all of the VMAs mapping the page
1467 * to make sure nobody else has this page mlocked. The page will be
1468 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1470 * Return values are:
1472 * SWAP_AGAIN - no vma is holding page mlocked, or,
1473 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
1474 * SWAP_FAIL - page cannot be located at present
1475 * SWAP_MLOCK - page is now mlocked.
1477 int try_to_munlock(struct page *page)
1479 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1481 if (unlikely(PageKsm(page)))
1482 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1483 else if (PageAnon(page))
1484 return try_to_unmap_anon(page, TTU_MUNLOCK);
1485 else
1486 return try_to_unmap_file(page, TTU_MUNLOCK);
1489 void __put_anon_vma(struct anon_vma *anon_vma)
1491 struct anon_vma *root = anon_vma->root;
1493 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1494 anon_vma_free(root);
1496 anon_vma_free(anon_vma);
1499 #ifdef CONFIG_MIGRATION
1501 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1502 * Called by migrate.c to remove migration ptes, but might be used more later.
1504 static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1505 struct vm_area_struct *, unsigned long, void *), void *arg)
1507 struct anon_vma *anon_vma;
1508 struct anon_vma_chain *avc;
1509 int ret = SWAP_AGAIN;
1512 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1513 * because that depends on page_mapped(); but not all its usages
1514 * are holding mmap_sem. Users without mmap_sem are required to
1515 * take a reference count to prevent the anon_vma disappearing
1517 anon_vma = page_anon_vma(page);
1518 if (!anon_vma)
1519 return ret;
1520 anon_vma_lock(anon_vma);
1521 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1522 struct vm_area_struct *vma = avc->vma;
1523 unsigned long address = vma_address(page, vma);
1524 if (address == -EFAULT)
1525 continue;
1526 ret = rmap_one(page, vma, address, arg);
1527 if (ret != SWAP_AGAIN)
1528 break;
1530 anon_vma_unlock(anon_vma);
1531 return ret;
1534 static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1535 struct vm_area_struct *, unsigned long, void *), void *arg)
1537 struct address_space *mapping = page->mapping;
1538 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1539 struct vm_area_struct *vma;
1540 struct prio_tree_iter iter;
1541 int ret = SWAP_AGAIN;
1543 if (!mapping)
1544 return ret;
1545 mutex_lock(&mapping->i_mmap_mutex);
1546 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1547 unsigned long address = vma_address(page, vma);
1548 if (address == -EFAULT)
1549 continue;
1550 ret = rmap_one(page, vma, address, arg);
1551 if (ret != SWAP_AGAIN)
1552 break;
1555 * No nonlinear handling: being always shared, nonlinear vmas
1556 * never contain migration ptes. Decide what to do about this
1557 * limitation to linear when we need rmap_walk() on nonlinear.
1559 mutex_unlock(&mapping->i_mmap_mutex);
1560 return ret;
1563 int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1564 struct vm_area_struct *, unsigned long, void *), void *arg)
1566 VM_BUG_ON(!PageLocked(page));
1568 if (unlikely(PageKsm(page)))
1569 return rmap_walk_ksm(page, rmap_one, arg);
1570 else if (PageAnon(page))
1571 return rmap_walk_anon(page, rmap_one, arg);
1572 else
1573 return rmap_walk_file(page, rmap_one, arg);
1575 #endif /* CONFIG_MIGRATION */
1577 #ifdef CONFIG_HUGETLB_PAGE
1579 * The following three functions are for anonymous (private mapped) hugepages.
1580 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1581 * and no lru code, because we handle hugepages differently from common pages.
1583 static void __hugepage_set_anon_rmap(struct page *page,
1584 struct vm_area_struct *vma, unsigned long address, int exclusive)
1586 struct anon_vma *anon_vma = vma->anon_vma;
1588 BUG_ON(!anon_vma);
1590 if (PageAnon(page))
1591 return;
1592 if (!exclusive)
1593 anon_vma = anon_vma->root;
1595 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1596 page->mapping = (struct address_space *) anon_vma;
1597 page->index = linear_page_index(vma, address);
1600 void hugepage_add_anon_rmap(struct page *page,
1601 struct vm_area_struct *vma, unsigned long address)
1603 struct anon_vma *anon_vma = vma->anon_vma;
1604 int first;
1606 BUG_ON(!PageLocked(page));
1607 BUG_ON(!anon_vma);
1608 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1609 first = atomic_inc_and_test(&page->_mapcount);
1610 if (first)
1611 __hugepage_set_anon_rmap(page, vma, address, 0);
1614 void hugepage_add_new_anon_rmap(struct page *page,
1615 struct vm_area_struct *vma, unsigned long address)
1617 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1618 atomic_set(&page->_mapcount, 0);
1619 __hugepage_set_anon_rmap(page, vma, address, 1);
1621 #endif /* CONFIG_HUGETLB_PAGE */