powerpc/cpumask: Convert NUMA code to new cpumask API
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / arch / powerpc / mm / numa.c
blobd68491b31e3814abf461246719b7fa404c62225d
1 /*
2 * pSeries NUMA support
4 * Copyright (C) 2002 Anton Blanchard <anton@au.ibm.com>, IBM
6 * This program is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU General Public License
8 * as published by the Free Software Foundation; either version
9 * 2 of the License, or (at your option) any later version.
11 #include <linux/threads.h>
12 #include <linux/bootmem.h>
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/mmzone.h>
16 #include <linux/module.h>
17 #include <linux/nodemask.h>
18 #include <linux/cpu.h>
19 #include <linux/notifier.h>
20 #include <linux/lmb.h>
21 #include <linux/of.h>
22 #include <linux/pfn.h>
23 #include <asm/sparsemem.h>
24 #include <asm/prom.h>
25 #include <asm/system.h>
26 #include <asm/smp.h>
28 static int numa_enabled = 1;
30 static char *cmdline __initdata;
32 static int numa_debug;
33 #define dbg(args...) if (numa_debug) { printk(KERN_INFO args); }
35 int numa_cpu_lookup_table[NR_CPUS];
36 cpumask_var_t node_to_cpumask_map[MAX_NUMNODES];
37 struct pglist_data *node_data[MAX_NUMNODES];
39 EXPORT_SYMBOL(numa_cpu_lookup_table);
40 EXPORT_SYMBOL(node_to_cpumask_map);
41 EXPORT_SYMBOL(node_data);
43 static int min_common_depth;
44 static int n_mem_addr_cells, n_mem_size_cells;
47 * Allocate node_to_cpumask_map based on number of available nodes
48 * Requires node_possible_map to be valid.
50 * Note: node_to_cpumask() is not valid until after this is done.
52 static void __init setup_node_to_cpumask_map(void)
54 unsigned int node, num = 0;
56 /* setup nr_node_ids if not done yet */
57 if (nr_node_ids == MAX_NUMNODES) {
58 for_each_node_mask(node, node_possible_map)
59 num = node;
60 nr_node_ids = num + 1;
63 /* allocate the map */
64 for (node = 0; node < nr_node_ids; node++)
65 alloc_bootmem_cpumask_var(&node_to_cpumask_map[node]);
67 /* cpumask_of_node() will now work */
68 dbg("Node to cpumask map for %d nodes\n", nr_node_ids);
71 static int __cpuinit fake_numa_create_new_node(unsigned long end_pfn,
72 unsigned int *nid)
74 unsigned long long mem;
75 char *p = cmdline;
76 static unsigned int fake_nid;
77 static unsigned long long curr_boundary;
80 * Modify node id, iff we started creating NUMA nodes
81 * We want to continue from where we left of the last time
83 if (fake_nid)
84 *nid = fake_nid;
86 * In case there are no more arguments to parse, the
87 * node_id should be the same as the last fake node id
88 * (we've handled this above).
90 if (!p)
91 return 0;
93 mem = memparse(p, &p);
94 if (!mem)
95 return 0;
97 if (mem < curr_boundary)
98 return 0;
100 curr_boundary = mem;
102 if ((end_pfn << PAGE_SHIFT) > mem) {
104 * Skip commas and spaces
106 while (*p == ',' || *p == ' ' || *p == '\t')
107 p++;
109 cmdline = p;
110 fake_nid++;
111 *nid = fake_nid;
112 dbg("created new fake_node with id %d\n", fake_nid);
113 return 1;
115 return 0;
119 * get_active_region_work_fn - A helper function for get_node_active_region
120 * Returns datax set to the start_pfn and end_pfn if they contain
121 * the initial value of datax->start_pfn between them
122 * @start_pfn: start page(inclusive) of region to check
123 * @end_pfn: end page(exclusive) of region to check
124 * @datax: comes in with ->start_pfn set to value to search for and
125 * goes out with active range if it contains it
126 * Returns 1 if search value is in range else 0
128 static int __init get_active_region_work_fn(unsigned long start_pfn,
129 unsigned long end_pfn, void *datax)
131 struct node_active_region *data;
132 data = (struct node_active_region *)datax;
134 if (start_pfn <= data->start_pfn && end_pfn > data->start_pfn) {
135 data->start_pfn = start_pfn;
136 data->end_pfn = end_pfn;
137 return 1;
139 return 0;
144 * get_node_active_region - Return active region containing start_pfn
145 * Active range returned is empty if none found.
146 * @start_pfn: The page to return the region for.
147 * @node_ar: Returned set to the active region containing start_pfn
149 static void __init get_node_active_region(unsigned long start_pfn,
150 struct node_active_region *node_ar)
152 int nid = early_pfn_to_nid(start_pfn);
154 node_ar->nid = nid;
155 node_ar->start_pfn = start_pfn;
156 node_ar->end_pfn = start_pfn;
157 work_with_active_regions(nid, get_active_region_work_fn, node_ar);
160 static void __cpuinit map_cpu_to_node(int cpu, int node)
162 numa_cpu_lookup_table[cpu] = node;
164 dbg("adding cpu %d to node %d\n", cpu, node);
166 if (!(cpumask_test_cpu(cpu, node_to_cpumask_map[node])))
167 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
170 #ifdef CONFIG_HOTPLUG_CPU
171 static void unmap_cpu_from_node(unsigned long cpu)
173 int node = numa_cpu_lookup_table[cpu];
175 dbg("removing cpu %lu from node %d\n", cpu, node);
177 if (cpumask_test_cpu(cpu, node_to_cpumask_map[node])) {
178 cpumask_set_cpu(cpu, node_to_cpumask_map[node]);
179 } else {
180 printk(KERN_ERR "WARNING: cpu %lu not found in node %d\n",
181 cpu, node);
184 #endif /* CONFIG_HOTPLUG_CPU */
186 /* must hold reference to node during call */
187 static const int *of_get_associativity(struct device_node *dev)
189 return of_get_property(dev, "ibm,associativity", NULL);
193 * Returns the property linux,drconf-usable-memory if
194 * it exists (the property exists only in kexec/kdump kernels,
195 * added by kexec-tools)
197 static const u32 *of_get_usable_memory(struct device_node *memory)
199 const u32 *prop;
200 u32 len;
201 prop = of_get_property(memory, "linux,drconf-usable-memory", &len);
202 if (!prop || len < sizeof(unsigned int))
203 return 0;
204 return prop;
207 /* Returns nid in the range [0..MAX_NUMNODES-1], or -1 if no useful numa
208 * info is found.
210 static int of_node_to_nid_single(struct device_node *device)
212 int nid = -1;
213 const unsigned int *tmp;
215 if (min_common_depth == -1)
216 goto out;
218 tmp = of_get_associativity(device);
219 if (!tmp)
220 goto out;
222 if (tmp[0] >= min_common_depth)
223 nid = tmp[min_common_depth];
225 /* POWER4 LPAR uses 0xffff as invalid node */
226 if (nid == 0xffff || nid >= MAX_NUMNODES)
227 nid = -1;
228 out:
229 return nid;
232 /* Walk the device tree upwards, looking for an associativity id */
233 int of_node_to_nid(struct device_node *device)
235 struct device_node *tmp;
236 int nid = -1;
238 of_node_get(device);
239 while (device) {
240 nid = of_node_to_nid_single(device);
241 if (nid != -1)
242 break;
244 tmp = device;
245 device = of_get_parent(tmp);
246 of_node_put(tmp);
248 of_node_put(device);
250 return nid;
252 EXPORT_SYMBOL_GPL(of_node_to_nid);
255 * In theory, the "ibm,associativity" property may contain multiple
256 * associativity lists because a resource may be multiply connected
257 * into the machine. This resource then has different associativity
258 * characteristics relative to its multiple connections. We ignore
259 * this for now. We also assume that all cpu and memory sets have
260 * their distances represented at a common level. This won't be
261 * true for hierarchical NUMA.
263 * In any case the ibm,associativity-reference-points should give
264 * the correct depth for a normal NUMA system.
266 * - Dave Hansen <haveblue@us.ibm.com>
268 static int __init find_min_common_depth(void)
270 int depth;
271 const unsigned int *ref_points;
272 struct device_node *rtas_root;
273 unsigned int len;
275 rtas_root = of_find_node_by_path("/rtas");
277 if (!rtas_root)
278 return -1;
281 * this property is 2 32-bit integers, each representing a level of
282 * depth in the associativity nodes. The first is for an SMP
283 * configuration (should be all 0's) and the second is for a normal
284 * NUMA configuration.
286 ref_points = of_get_property(rtas_root,
287 "ibm,associativity-reference-points", &len);
289 if ((len >= 2 * sizeof(unsigned int)) && ref_points) {
290 depth = ref_points[1];
291 } else {
292 dbg("NUMA: ibm,associativity-reference-points not found.\n");
293 depth = -1;
295 of_node_put(rtas_root);
297 return depth;
300 static void __init get_n_mem_cells(int *n_addr_cells, int *n_size_cells)
302 struct device_node *memory = NULL;
304 memory = of_find_node_by_type(memory, "memory");
305 if (!memory)
306 panic("numa.c: No memory nodes found!");
308 *n_addr_cells = of_n_addr_cells(memory);
309 *n_size_cells = of_n_size_cells(memory);
310 of_node_put(memory);
313 static unsigned long __devinit read_n_cells(int n, const unsigned int **buf)
315 unsigned long result = 0;
317 while (n--) {
318 result = (result << 32) | **buf;
319 (*buf)++;
321 return result;
324 struct of_drconf_cell {
325 u64 base_addr;
326 u32 drc_index;
327 u32 reserved;
328 u32 aa_index;
329 u32 flags;
332 #define DRCONF_MEM_ASSIGNED 0x00000008
333 #define DRCONF_MEM_AI_INVALID 0x00000040
334 #define DRCONF_MEM_RESERVED 0x00000080
337 * Read the next lmb list entry from the ibm,dynamic-memory property
338 * and return the information in the provided of_drconf_cell structure.
340 static void read_drconf_cell(struct of_drconf_cell *drmem, const u32 **cellp)
342 const u32 *cp;
344 drmem->base_addr = read_n_cells(n_mem_addr_cells, cellp);
346 cp = *cellp;
347 drmem->drc_index = cp[0];
348 drmem->reserved = cp[1];
349 drmem->aa_index = cp[2];
350 drmem->flags = cp[3];
352 *cellp = cp + 4;
356 * Retreive and validate the ibm,dynamic-memory property of the device tree.
358 * The layout of the ibm,dynamic-memory property is a number N of lmb
359 * list entries followed by N lmb list entries. Each lmb list entry
360 * contains information as layed out in the of_drconf_cell struct above.
362 static int of_get_drconf_memory(struct device_node *memory, const u32 **dm)
364 const u32 *prop;
365 u32 len, entries;
367 prop = of_get_property(memory, "ibm,dynamic-memory", &len);
368 if (!prop || len < sizeof(unsigned int))
369 return 0;
371 entries = *prop++;
373 /* Now that we know the number of entries, revalidate the size
374 * of the property read in to ensure we have everything
376 if (len < (entries * (n_mem_addr_cells + 4) + 1) * sizeof(unsigned int))
377 return 0;
379 *dm = prop;
380 return entries;
384 * Retreive and validate the ibm,lmb-size property for drconf memory
385 * from the device tree.
387 static u64 of_get_lmb_size(struct device_node *memory)
389 const u32 *prop;
390 u32 len;
392 prop = of_get_property(memory, "ibm,lmb-size", &len);
393 if (!prop || len < sizeof(unsigned int))
394 return 0;
396 return read_n_cells(n_mem_size_cells, &prop);
399 struct assoc_arrays {
400 u32 n_arrays;
401 u32 array_sz;
402 const u32 *arrays;
406 * Retreive and validate the list of associativity arrays for drconf
407 * memory from the ibm,associativity-lookup-arrays property of the
408 * device tree..
410 * The layout of the ibm,associativity-lookup-arrays property is a number N
411 * indicating the number of associativity arrays, followed by a number M
412 * indicating the size of each associativity array, followed by a list
413 * of N associativity arrays.
415 static int of_get_assoc_arrays(struct device_node *memory,
416 struct assoc_arrays *aa)
418 const u32 *prop;
419 u32 len;
421 prop = of_get_property(memory, "ibm,associativity-lookup-arrays", &len);
422 if (!prop || len < 2 * sizeof(unsigned int))
423 return -1;
425 aa->n_arrays = *prop++;
426 aa->array_sz = *prop++;
428 /* Now that we know the number of arrrays and size of each array,
429 * revalidate the size of the property read in.
431 if (len < (aa->n_arrays * aa->array_sz + 2) * sizeof(unsigned int))
432 return -1;
434 aa->arrays = prop;
435 return 0;
439 * This is like of_node_to_nid_single() for memory represented in the
440 * ibm,dynamic-reconfiguration-memory node.
442 static int of_drconf_to_nid_single(struct of_drconf_cell *drmem,
443 struct assoc_arrays *aa)
445 int default_nid = 0;
446 int nid = default_nid;
447 int index;
449 if (min_common_depth > 0 && min_common_depth <= aa->array_sz &&
450 !(drmem->flags & DRCONF_MEM_AI_INVALID) &&
451 drmem->aa_index < aa->n_arrays) {
452 index = drmem->aa_index * aa->array_sz + min_common_depth - 1;
453 nid = aa->arrays[index];
455 if (nid == 0xffff || nid >= MAX_NUMNODES)
456 nid = default_nid;
459 return nid;
463 * Figure out to which domain a cpu belongs and stick it there.
464 * Return the id of the domain used.
466 static int __cpuinit numa_setup_cpu(unsigned long lcpu)
468 int nid = 0;
469 struct device_node *cpu = of_get_cpu_node(lcpu, NULL);
471 if (!cpu) {
472 WARN_ON(1);
473 goto out;
476 nid = of_node_to_nid_single(cpu);
478 if (nid < 0 || !node_online(nid))
479 nid = first_online_node;
480 out:
481 map_cpu_to_node(lcpu, nid);
483 of_node_put(cpu);
485 return nid;
488 static int __cpuinit cpu_numa_callback(struct notifier_block *nfb,
489 unsigned long action,
490 void *hcpu)
492 unsigned long lcpu = (unsigned long)hcpu;
493 int ret = NOTIFY_DONE;
495 switch (action) {
496 case CPU_UP_PREPARE:
497 case CPU_UP_PREPARE_FROZEN:
498 numa_setup_cpu(lcpu);
499 ret = NOTIFY_OK;
500 break;
501 #ifdef CONFIG_HOTPLUG_CPU
502 case CPU_DEAD:
503 case CPU_DEAD_FROZEN:
504 case CPU_UP_CANCELED:
505 case CPU_UP_CANCELED_FROZEN:
506 unmap_cpu_from_node(lcpu);
507 break;
508 ret = NOTIFY_OK;
509 #endif
511 return ret;
515 * Check and possibly modify a memory region to enforce the memory limit.
517 * Returns the size the region should have to enforce the memory limit.
518 * This will either be the original value of size, a truncated value,
519 * or zero. If the returned value of size is 0 the region should be
520 * discarded as it lies wholy above the memory limit.
522 static unsigned long __init numa_enforce_memory_limit(unsigned long start,
523 unsigned long size)
526 * We use lmb_end_of_DRAM() in here instead of memory_limit because
527 * we've already adjusted it for the limit and it takes care of
528 * having memory holes below the limit. Also, in the case of
529 * iommu_is_off, memory_limit is not set but is implicitly enforced.
532 if (start + size <= lmb_end_of_DRAM())
533 return size;
535 if (start >= lmb_end_of_DRAM())
536 return 0;
538 return lmb_end_of_DRAM() - start;
542 * Reads the counter for a given entry in
543 * linux,drconf-usable-memory property
545 static inline int __init read_usm_ranges(const u32 **usm)
548 * For each lmb in ibm,dynamic-memory a corresponding
549 * entry in linux,drconf-usable-memory property contains
550 * a counter followed by that many (base, size) duple.
551 * read the counter from linux,drconf-usable-memory
553 return read_n_cells(n_mem_size_cells, usm);
557 * Extract NUMA information from the ibm,dynamic-reconfiguration-memory
558 * node. This assumes n_mem_{addr,size}_cells have been set.
560 static void __init parse_drconf_memory(struct device_node *memory)
562 const u32 *dm, *usm;
563 unsigned int n, rc, ranges, is_kexec_kdump = 0;
564 unsigned long lmb_size, base, size, sz;
565 int nid;
566 struct assoc_arrays aa;
568 n = of_get_drconf_memory(memory, &dm);
569 if (!n)
570 return;
572 lmb_size = of_get_lmb_size(memory);
573 if (!lmb_size)
574 return;
576 rc = of_get_assoc_arrays(memory, &aa);
577 if (rc)
578 return;
580 /* check if this is a kexec/kdump kernel */
581 usm = of_get_usable_memory(memory);
582 if (usm != NULL)
583 is_kexec_kdump = 1;
585 for (; n != 0; --n) {
586 struct of_drconf_cell drmem;
588 read_drconf_cell(&drmem, &dm);
590 /* skip this block if the reserved bit is set in flags (0x80)
591 or if the block is not assigned to this partition (0x8) */
592 if ((drmem.flags & DRCONF_MEM_RESERVED)
593 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
594 continue;
596 base = drmem.base_addr;
597 size = lmb_size;
598 ranges = 1;
600 if (is_kexec_kdump) {
601 ranges = read_usm_ranges(&usm);
602 if (!ranges) /* there are no (base, size) duple */
603 continue;
605 do {
606 if (is_kexec_kdump) {
607 base = read_n_cells(n_mem_addr_cells, &usm);
608 size = read_n_cells(n_mem_size_cells, &usm);
610 nid = of_drconf_to_nid_single(&drmem, &aa);
611 fake_numa_create_new_node(
612 ((base + size) >> PAGE_SHIFT),
613 &nid);
614 node_set_online(nid);
615 sz = numa_enforce_memory_limit(base, size);
616 if (sz)
617 add_active_range(nid, base >> PAGE_SHIFT,
618 (base >> PAGE_SHIFT)
619 + (sz >> PAGE_SHIFT));
620 } while (--ranges);
624 static int __init parse_numa_properties(void)
626 struct device_node *cpu = NULL;
627 struct device_node *memory = NULL;
628 int default_nid = 0;
629 unsigned long i;
631 if (numa_enabled == 0) {
632 printk(KERN_WARNING "NUMA disabled by user\n");
633 return -1;
636 min_common_depth = find_min_common_depth();
638 if (min_common_depth < 0)
639 return min_common_depth;
641 dbg("NUMA associativity depth for CPU/Memory: %d\n", min_common_depth);
644 * Even though we connect cpus to numa domains later in SMP
645 * init, we need to know the node ids now. This is because
646 * each node to be onlined must have NODE_DATA etc backing it.
648 for_each_present_cpu(i) {
649 int nid;
651 cpu = of_get_cpu_node(i, NULL);
652 BUG_ON(!cpu);
653 nid = of_node_to_nid_single(cpu);
654 of_node_put(cpu);
657 * Don't fall back to default_nid yet -- we will plug
658 * cpus into nodes once the memory scan has discovered
659 * the topology.
661 if (nid < 0)
662 continue;
663 node_set_online(nid);
666 get_n_mem_cells(&n_mem_addr_cells, &n_mem_size_cells);
667 memory = NULL;
668 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
669 unsigned long start;
670 unsigned long size;
671 int nid;
672 int ranges;
673 const unsigned int *memcell_buf;
674 unsigned int len;
676 memcell_buf = of_get_property(memory,
677 "linux,usable-memory", &len);
678 if (!memcell_buf || len <= 0)
679 memcell_buf = of_get_property(memory, "reg", &len);
680 if (!memcell_buf || len <= 0)
681 continue;
683 /* ranges in cell */
684 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
685 new_range:
686 /* these are order-sensitive, and modify the buffer pointer */
687 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
688 size = read_n_cells(n_mem_size_cells, &memcell_buf);
691 * Assumption: either all memory nodes or none will
692 * have associativity properties. If none, then
693 * everything goes to default_nid.
695 nid = of_node_to_nid_single(memory);
696 if (nid < 0)
697 nid = default_nid;
699 fake_numa_create_new_node(((start + size) >> PAGE_SHIFT), &nid);
700 node_set_online(nid);
702 if (!(size = numa_enforce_memory_limit(start, size))) {
703 if (--ranges)
704 goto new_range;
705 else
706 continue;
709 add_active_range(nid, start >> PAGE_SHIFT,
710 (start >> PAGE_SHIFT) + (size >> PAGE_SHIFT));
712 if (--ranges)
713 goto new_range;
717 * Now do the same thing for each LMB listed in the ibm,dynamic-memory
718 * property in the ibm,dynamic-reconfiguration-memory node.
720 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
721 if (memory)
722 parse_drconf_memory(memory);
724 return 0;
727 static void __init setup_nonnuma(void)
729 unsigned long top_of_ram = lmb_end_of_DRAM();
730 unsigned long total_ram = lmb_phys_mem_size();
731 unsigned long start_pfn, end_pfn;
732 unsigned int i, nid = 0;
734 printk(KERN_DEBUG "Top of RAM: 0x%lx, Total RAM: 0x%lx\n",
735 top_of_ram, total_ram);
736 printk(KERN_DEBUG "Memory hole size: %ldMB\n",
737 (top_of_ram - total_ram) >> 20);
739 for (i = 0; i < lmb.memory.cnt; ++i) {
740 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
741 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
743 fake_numa_create_new_node(end_pfn, &nid);
744 add_active_range(nid, start_pfn, end_pfn);
745 node_set_online(nid);
749 void __init dump_numa_cpu_topology(void)
751 unsigned int node;
752 unsigned int cpu, count;
754 if (min_common_depth == -1 || !numa_enabled)
755 return;
757 for_each_online_node(node) {
758 printk(KERN_DEBUG "Node %d CPUs:", node);
760 count = 0;
762 * If we used a CPU iterator here we would miss printing
763 * the holes in the cpumap.
765 for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
766 if (cpumask_test_cpu(cpu,
767 node_to_cpumask_map[node])) {
768 if (count == 0)
769 printk(" %u", cpu);
770 ++count;
771 } else {
772 if (count > 1)
773 printk("-%u", cpu - 1);
774 count = 0;
778 if (count > 1)
779 printk("-%u", nr_cpu_ids - 1);
780 printk("\n");
784 static void __init dump_numa_memory_topology(void)
786 unsigned int node;
787 unsigned int count;
789 if (min_common_depth == -1 || !numa_enabled)
790 return;
792 for_each_online_node(node) {
793 unsigned long i;
795 printk(KERN_DEBUG "Node %d Memory:", node);
797 count = 0;
799 for (i = 0; i < lmb_end_of_DRAM();
800 i += (1 << SECTION_SIZE_BITS)) {
801 if (early_pfn_to_nid(i >> PAGE_SHIFT) == node) {
802 if (count == 0)
803 printk(" 0x%lx", i);
804 ++count;
805 } else {
806 if (count > 0)
807 printk("-0x%lx", i);
808 count = 0;
812 if (count > 0)
813 printk("-0x%lx", i);
814 printk("\n");
819 * Allocate some memory, satisfying the lmb or bootmem allocator where
820 * required. nid is the preferred node and end is the physical address of
821 * the highest address in the node.
823 * Returns the virtual address of the memory.
825 static void __init *careful_zallocation(int nid, unsigned long size,
826 unsigned long align,
827 unsigned long end_pfn)
829 void *ret;
830 int new_nid;
831 unsigned long ret_paddr;
833 ret_paddr = __lmb_alloc_base(size, align, end_pfn << PAGE_SHIFT);
835 /* retry over all memory */
836 if (!ret_paddr)
837 ret_paddr = __lmb_alloc_base(size, align, lmb_end_of_DRAM());
839 if (!ret_paddr)
840 panic("numa.c: cannot allocate %lu bytes for node %d",
841 size, nid);
843 ret = __va(ret_paddr);
846 * We initialize the nodes in numeric order: 0, 1, 2...
847 * and hand over control from the LMB allocator to the
848 * bootmem allocator. If this function is called for
849 * node 5, then we know that all nodes <5 are using the
850 * bootmem allocator instead of the LMB allocator.
852 * So, check the nid from which this allocation came
853 * and double check to see if we need to use bootmem
854 * instead of the LMB. We don't free the LMB memory
855 * since it would be useless.
857 new_nid = early_pfn_to_nid(ret_paddr >> PAGE_SHIFT);
858 if (new_nid < nid) {
859 ret = __alloc_bootmem_node(NODE_DATA(new_nid),
860 size, align, 0);
862 dbg("alloc_bootmem %p %lx\n", ret, size);
865 memset(ret, 0, size);
866 return ret;
869 static struct notifier_block __cpuinitdata ppc64_numa_nb = {
870 .notifier_call = cpu_numa_callback,
871 .priority = 1 /* Must run before sched domains notifier. */
874 static void mark_reserved_regions_for_nid(int nid)
876 struct pglist_data *node = NODE_DATA(nid);
877 int i;
879 for (i = 0; i < lmb.reserved.cnt; i++) {
880 unsigned long physbase = lmb.reserved.region[i].base;
881 unsigned long size = lmb.reserved.region[i].size;
882 unsigned long start_pfn = physbase >> PAGE_SHIFT;
883 unsigned long end_pfn = PFN_UP(physbase + size);
884 struct node_active_region node_ar;
885 unsigned long node_end_pfn = node->node_start_pfn +
886 node->node_spanned_pages;
889 * Check to make sure that this lmb.reserved area is
890 * within the bounds of the node that we care about.
891 * Checking the nid of the start and end points is not
892 * sufficient because the reserved area could span the
893 * entire node.
895 if (end_pfn <= node->node_start_pfn ||
896 start_pfn >= node_end_pfn)
897 continue;
899 get_node_active_region(start_pfn, &node_ar);
900 while (start_pfn < end_pfn &&
901 node_ar.start_pfn < node_ar.end_pfn) {
902 unsigned long reserve_size = size;
904 * if reserved region extends past active region
905 * then trim size to active region
907 if (end_pfn > node_ar.end_pfn)
908 reserve_size = (node_ar.end_pfn << PAGE_SHIFT)
909 - physbase;
911 * Only worry about *this* node, others may not
912 * yet have valid NODE_DATA().
914 if (node_ar.nid == nid) {
915 dbg("reserve_bootmem %lx %lx nid=%d\n",
916 physbase, reserve_size, node_ar.nid);
917 reserve_bootmem_node(NODE_DATA(node_ar.nid),
918 physbase, reserve_size,
919 BOOTMEM_DEFAULT);
922 * if reserved region is contained in the active region
923 * then done.
925 if (end_pfn <= node_ar.end_pfn)
926 break;
929 * reserved region extends past the active region
930 * get next active region that contains this
931 * reserved region
933 start_pfn = node_ar.end_pfn;
934 physbase = start_pfn << PAGE_SHIFT;
935 size = size - reserve_size;
936 get_node_active_region(start_pfn, &node_ar);
942 void __init do_init_bootmem(void)
944 int nid;
946 min_low_pfn = 0;
947 max_low_pfn = lmb_end_of_DRAM() >> PAGE_SHIFT;
948 max_pfn = max_low_pfn;
950 if (parse_numa_properties())
951 setup_nonnuma();
952 else
953 dump_numa_memory_topology();
955 for_each_online_node(nid) {
956 unsigned long start_pfn, end_pfn;
957 void *bootmem_vaddr;
958 unsigned long bootmap_pages;
960 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
963 * Allocate the node structure node local if possible
965 * Be careful moving this around, as it relies on all
966 * previous nodes' bootmem to be initialized and have
967 * all reserved areas marked.
969 NODE_DATA(nid) = careful_zallocation(nid,
970 sizeof(struct pglist_data),
971 SMP_CACHE_BYTES, end_pfn);
973 dbg("node %d\n", nid);
974 dbg("NODE_DATA() = %p\n", NODE_DATA(nid));
976 NODE_DATA(nid)->bdata = &bootmem_node_data[nid];
977 NODE_DATA(nid)->node_start_pfn = start_pfn;
978 NODE_DATA(nid)->node_spanned_pages = end_pfn - start_pfn;
980 if (NODE_DATA(nid)->node_spanned_pages == 0)
981 continue;
983 dbg("start_paddr = %lx\n", start_pfn << PAGE_SHIFT);
984 dbg("end_paddr = %lx\n", end_pfn << PAGE_SHIFT);
986 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
987 bootmem_vaddr = careful_zallocation(nid,
988 bootmap_pages << PAGE_SHIFT,
989 PAGE_SIZE, end_pfn);
991 dbg("bootmap_vaddr = %p\n", bootmem_vaddr);
993 init_bootmem_node(NODE_DATA(nid),
994 __pa(bootmem_vaddr) >> PAGE_SHIFT,
995 start_pfn, end_pfn);
997 free_bootmem_with_active_regions(nid, end_pfn);
999 * Be very careful about moving this around. Future
1000 * calls to careful_zallocation() depend on this getting
1001 * done correctly.
1003 mark_reserved_regions_for_nid(nid);
1004 sparse_memory_present_with_active_regions(nid);
1007 init_bootmem_done = 1;
1010 * Now bootmem is initialised we can create the node to cpumask
1011 * lookup tables and setup the cpu callback to populate them.
1013 setup_node_to_cpumask_map();
1015 register_cpu_notifier(&ppc64_numa_nb);
1016 cpu_numa_callback(&ppc64_numa_nb, CPU_UP_PREPARE,
1017 (void *)(unsigned long)boot_cpuid);
1020 void __init paging_init(void)
1022 unsigned long max_zone_pfns[MAX_NR_ZONES];
1023 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
1024 max_zone_pfns[ZONE_DMA] = lmb_end_of_DRAM() >> PAGE_SHIFT;
1025 free_area_init_nodes(max_zone_pfns);
1028 static int __init early_numa(char *p)
1030 if (!p)
1031 return 0;
1033 if (strstr(p, "off"))
1034 numa_enabled = 0;
1036 if (strstr(p, "debug"))
1037 numa_debug = 1;
1039 p = strstr(p, "fake=");
1040 if (p)
1041 cmdline = p + strlen("fake=");
1043 return 0;
1045 early_param("numa", early_numa);
1047 #ifdef CONFIG_MEMORY_HOTPLUG
1049 * Find the node associated with a hot added memory section for
1050 * memory represented in the device tree by the property
1051 * ibm,dynamic-reconfiguration-memory/ibm,dynamic-memory.
1053 static int hot_add_drconf_scn_to_nid(struct device_node *memory,
1054 unsigned long scn_addr)
1056 const u32 *dm;
1057 unsigned int drconf_cell_cnt, rc;
1058 unsigned long lmb_size;
1059 struct assoc_arrays aa;
1060 int nid = -1;
1062 drconf_cell_cnt = of_get_drconf_memory(memory, &dm);
1063 if (!drconf_cell_cnt)
1064 return -1;
1066 lmb_size = of_get_lmb_size(memory);
1067 if (!lmb_size)
1068 return -1;
1070 rc = of_get_assoc_arrays(memory, &aa);
1071 if (rc)
1072 return -1;
1074 for (; drconf_cell_cnt != 0; --drconf_cell_cnt) {
1075 struct of_drconf_cell drmem;
1077 read_drconf_cell(&drmem, &dm);
1079 /* skip this block if it is reserved or not assigned to
1080 * this partition */
1081 if ((drmem.flags & DRCONF_MEM_RESERVED)
1082 || !(drmem.flags & DRCONF_MEM_ASSIGNED))
1083 continue;
1085 if ((scn_addr < drmem.base_addr)
1086 || (scn_addr >= (drmem.base_addr + lmb_size)))
1087 continue;
1089 nid = of_drconf_to_nid_single(&drmem, &aa);
1090 break;
1093 return nid;
1097 * Find the node associated with a hot added memory section for memory
1098 * represented in the device tree as a node (i.e. memory@XXXX) for
1099 * each lmb.
1101 int hot_add_node_scn_to_nid(unsigned long scn_addr)
1103 struct device_node *memory = NULL;
1104 int nid = -1;
1106 while ((memory = of_find_node_by_type(memory, "memory")) != NULL) {
1107 unsigned long start, size;
1108 int ranges;
1109 const unsigned int *memcell_buf;
1110 unsigned int len;
1112 memcell_buf = of_get_property(memory, "reg", &len);
1113 if (!memcell_buf || len <= 0)
1114 continue;
1116 /* ranges in cell */
1117 ranges = (len >> 2) / (n_mem_addr_cells + n_mem_size_cells);
1119 while (ranges--) {
1120 start = read_n_cells(n_mem_addr_cells, &memcell_buf);
1121 size = read_n_cells(n_mem_size_cells, &memcell_buf);
1123 if ((scn_addr < start) || (scn_addr >= (start + size)))
1124 continue;
1126 nid = of_node_to_nid_single(memory);
1127 break;
1130 of_node_put(memory);
1131 if (nid >= 0)
1132 break;
1135 return nid;
1139 * Find the node associated with a hot added memory section. Section
1140 * corresponds to a SPARSEMEM section, not an LMB. It is assumed that
1141 * sections are fully contained within a single LMB.
1143 int hot_add_scn_to_nid(unsigned long scn_addr)
1145 struct device_node *memory = NULL;
1146 int nid, found = 0;
1148 if (!numa_enabled || (min_common_depth < 0))
1149 return first_online_node;
1151 memory = of_find_node_by_path("/ibm,dynamic-reconfiguration-memory");
1152 if (memory) {
1153 nid = hot_add_drconf_scn_to_nid(memory, scn_addr);
1154 of_node_put(memory);
1155 } else {
1156 nid = hot_add_node_scn_to_nid(scn_addr);
1159 if (nid < 0 || !node_online(nid))
1160 nid = first_online_node;
1162 if (NODE_DATA(nid)->node_spanned_pages)
1163 return nid;
1165 for_each_online_node(nid) {
1166 if (NODE_DATA(nid)->node_spanned_pages) {
1167 found = 1;
1168 break;
1172 BUG_ON(!found);
1173 return nid;
1176 #endif /* CONFIG_MEMORY_HOTPLUG */