ath9k: Merge struct ath_tx_ratectrl with ath_rate_node
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / net / wireless / ath9k / rc.c
blob21116c51758c8aa1f0709ca09fe3d0aeef9baab9
1 /*
2 * Copyright (c) 2004 Video54 Technologies, Inc.
3 * Copyright (c) 2004-2008 Atheros Communications, Inc.
5 * Permission to use, copy, modify, and/or distribute this software for any
6 * purpose with or without fee is hereby granted, provided that the above
7 * copyright notice and this permission notice appear in all copies.
9 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
10 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
11 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
12 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
13 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
14 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
15 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
19 * Atheros rate control algorithm
22 #include "core.h"
23 /* FIXME: remove this include! */
24 #include "../net/mac80211/rate.h"
26 static u32 tx_triglevel_max;
28 static struct ath_rate_table ar5416_11na_ratetable = {
29 42,
31 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
32 5400, 0x0b, 0x00, 12,
33 0, 2, 1, 0, 0, 0, 0, 0 },
34 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
35 7800, 0x0f, 0x00, 18,
36 0, 3, 1, 1, 1, 1, 1, 0 },
37 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
38 10000, 0x0a, 0x00, 24,
39 2, 4, 2, 2, 2, 2, 2, 0 },
40 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
41 13900, 0x0e, 0x00, 36,
42 2, 6, 2, 3, 3, 3, 3, 0 },
43 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
44 17300, 0x09, 0x00, 48,
45 4, 10, 3, 4, 4, 4, 4, 0 },
46 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
47 23000, 0x0d, 0x00, 72,
48 4, 14, 3, 5, 5, 5, 5, 0 },
49 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
50 27400, 0x08, 0x00, 96,
51 4, 20, 3, 6, 6, 6, 6, 0 },
52 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
53 29300, 0x0c, 0x00, 108,
54 4, 23, 3, 7, 7, 7, 7, 0 },
55 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
56 6400, 0x80, 0x00, 0,
57 0, 2, 3, 8, 24, 8, 24, 3216 },
58 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
59 12700, 0x81, 0x00, 1,
60 2, 4, 3, 9, 25, 9, 25, 6434 },
61 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
62 18800, 0x82, 0x00, 2,
63 2, 6, 3, 10, 26, 10, 26, 9650 },
64 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
65 25000, 0x83, 0x00, 3,
66 4, 10, 3, 11, 27, 11, 27, 12868 },
67 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
68 36700, 0x84, 0x00, 4,
69 4, 14, 3, 12, 28, 12, 28, 19304 },
70 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
71 48100, 0x85, 0x00, 5,
72 4, 20, 3, 13, 29, 13, 29, 25740 },
73 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
74 53500, 0x86, 0x00, 6,
75 4, 23, 3, 14, 30, 14, 30, 28956 },
76 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
77 59000, 0x87, 0x00, 7,
78 4, 25, 3, 15, 31, 15, 32, 32180 },
79 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
80 12700, 0x88, 0x00,
81 8, 0, 2, 3, 16, 33, 16, 33, 6430 },
82 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
83 24800, 0x89, 0x00, 9,
84 2, 4, 3, 17, 34, 17, 34, 12860 },
85 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
86 36600, 0x8a, 0x00, 10,
87 2, 6, 3, 18, 35, 18, 35, 19300 },
88 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
89 48100, 0x8b, 0x00, 11,
90 4, 10, 3, 19, 36, 19, 36, 25736 },
91 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
92 69500, 0x8c, 0x00, 12,
93 4, 14, 3, 20, 37, 20, 37, 38600 },
94 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
95 89500, 0x8d, 0x00, 13,
96 4, 20, 3, 21, 38, 21, 38, 51472 },
97 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
98 98900, 0x8e, 0x00, 14,
99 4, 23, 3, 22, 39, 22, 39, 57890 },
100 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
101 108300, 0x8f, 0x00, 15,
102 4, 25, 3, 23, 40, 23, 41, 64320 },
103 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
104 13200, 0x80, 0x00, 0,
105 0, 2, 3, 8, 24, 24, 24, 6684 },
106 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
107 25900, 0x81, 0x00, 1,
108 2, 4, 3, 9, 25, 25, 25, 13368 },
109 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
110 38600, 0x82, 0x00, 2,
111 2, 6, 3, 10, 26, 26, 26, 20052 },
112 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
113 49800, 0x83, 0x00, 3,
114 4, 10, 3, 11, 27, 27, 27, 26738 },
115 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
116 72200, 0x84, 0x00, 4,
117 4, 14, 3, 12, 28, 28, 28, 40104 },
118 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
119 92900, 0x85, 0x00, 5,
120 4, 20, 3, 13, 29, 29, 29, 53476 },
121 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
122 102700, 0x86, 0x00, 6,
123 4, 23, 3, 14, 30, 30, 30, 60156 },
124 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
125 112000, 0x87, 0x00, 7,
126 4, 25, 3, 15, 31, 32, 32, 66840 },
127 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
128 122000, 0x87, 0x00, 7,
129 4, 25, 3, 15, 31, 32, 32, 74200 },
130 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
131 25800, 0x88, 0x00, 8,
132 0, 2, 3, 16, 33, 33, 33, 13360 },
133 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
134 49800, 0x89, 0x00, 9,
135 2, 4, 3, 17, 34, 34, 34, 26720 },
136 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
137 71900, 0x8a, 0x00, 10,
138 2, 6, 3, 18, 35, 35, 35, 40080 },
139 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
140 92500, 0x8b, 0x00, 11,
141 4, 10, 3, 19, 36, 36, 36, 53440 },
142 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
143 130300, 0x8c, 0x00, 12,
144 4, 14, 3, 20, 37, 37, 37, 80160 },
145 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
146 162800, 0x8d, 0x00, 13,
147 4, 20, 3, 21, 38, 38, 38, 106880 },
148 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
149 178200, 0x8e, 0x00, 14,
150 4, 23, 3, 22, 39, 39, 39, 120240 },
151 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
152 192100, 0x8f, 0x00, 15,
153 4, 25, 3, 23, 40, 41, 41, 133600 },
154 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
155 207000, 0x8f, 0x00, 15,
156 4, 25, 3, 23, 40, 41, 41, 148400 },
158 50, /* probe interval */
159 50, /* rssi reduce interval */
160 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
163 /* TRUE_ALL - valid for 20/40/Legacy,
164 * TRUE - Legacy only,
165 * TRUE_20 - HT 20 only,
166 * TRUE_40 - HT 40 only */
168 /* 4ms frame limit not used for NG mode. The values filled
169 * for HT are the 64K max aggregate limit */
171 static struct ath_rate_table ar5416_11ng_ratetable = {
174 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 1000, /* 1 Mb */
175 900, 0x1b, 0x00, 2,
176 0, 0, 1, 0, 0, 0, 0, 0 },
177 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 2000, /* 2 Mb */
178 1900, 0x1a, 0x04, 4,
179 1, 1, 1, 1, 1, 1, 1, 0 },
180 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
181 4900, 0x19, 0x04, 11,
182 2, 2, 2, 2, 2, 2, 2, 0 },
183 { TRUE_ALL, TRUE_ALL, WLAN_PHY_CCK, 11000, /* 11 Mb */
184 8100, 0x18, 0x04, 22,
185 3, 3, 2, 3, 3, 3, 3, 0 },
186 { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
187 5400, 0x0b, 0x00, 12,
188 4, 2, 1, 4, 4, 4, 4, 0 },
189 { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
190 7800, 0x0f, 0x00, 18,
191 4, 3, 1, 5, 5, 5, 5, 0 },
192 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
193 10100, 0x0a, 0x00, 24,
194 6, 4, 1, 6, 6, 6, 6, 0 },
195 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
196 14100, 0x0e, 0x00, 36,
197 6, 6, 2, 7, 7, 7, 7, 0 },
198 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
199 17700, 0x09, 0x00, 48,
200 8, 10, 3, 8, 8, 8, 8, 0 },
201 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
202 23700, 0x0d, 0x00, 72,
203 8, 14, 3, 9, 9, 9, 9, 0 },
204 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
205 27400, 0x08, 0x00, 96,
206 8, 20, 3, 10, 10, 10, 10, 0 },
207 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
208 30900, 0x0c, 0x00, 108,
209 8, 23, 3, 11, 11, 11, 11, 0 },
210 { FALSE, FALSE, WLAN_PHY_HT_20_SS, 6500, /* 6.5 Mb */
211 6400, 0x80, 0x00, 0,
212 4, 2, 3, 12, 28, 12, 28, 3216 },
213 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 13000, /* 13 Mb */
214 12700, 0x81, 0x00, 1,
215 6, 4, 3, 13, 29, 13, 29, 6434 },
216 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 19500, /* 19.5 Mb */
217 18800, 0x82, 0x00, 2,
218 6, 6, 3, 14, 30, 14, 30, 9650 },
219 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 26000, /* 26 Mb */
220 25000, 0x83, 0x00, 3,
221 8, 10, 3, 15, 31, 15, 31, 12868 },
222 { TRUE_20, TRUE_20, WLAN_PHY_HT_20_SS, 39000, /* 39 Mb */
223 36700, 0x84, 0x00, 4,
224 8, 14, 3, 16, 32, 16, 32, 19304 },
225 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 52000, /* 52 Mb */
226 48100, 0x85, 0x00, 5,
227 8, 20, 3, 17, 33, 17, 33, 25740 },
228 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 58500, /* 58.5 Mb */
229 53500, 0x86, 0x00, 6,
230 8, 23, 3, 18, 34, 18, 34, 28956 },
231 { FALSE, TRUE_20, WLAN_PHY_HT_20_SS, 65000, /* 65 Mb */
232 59000, 0x87, 0x00, 7,
233 8, 25, 3, 19, 35, 19, 36, 32180 },
234 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 13000, /* 13 Mb */
235 12700, 0x88, 0x00, 8,
236 4, 2, 3, 20, 37, 20, 37, 6430 },
237 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 26000, /* 26 Mb */
238 24800, 0x89, 0x00, 9,
239 6, 4, 3, 21, 38, 21, 38, 12860 },
240 { FALSE, FALSE, WLAN_PHY_HT_20_DS, 39000, /* 39 Mb */
241 36600, 0x8a, 0x00, 10,
242 6, 6, 3, 22, 39, 22, 39, 19300 },
243 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 52000, /* 52 Mb */
244 48100, 0x8b, 0x00, 11,
245 8, 10, 3, 23, 40, 23, 40, 25736 },
246 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 78000, /* 78 Mb */
247 69500, 0x8c, 0x00, 12,
248 8, 14, 3, 24, 41, 24, 41, 38600 },
249 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 104000, /* 104 Mb */
250 89500, 0x8d, 0x00, 13,
251 8, 20, 3, 25, 42, 25, 42, 51472 },
252 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 117000, /* 117 Mb */
253 98900, 0x8e, 0x00, 14,
254 8, 23, 3, 26, 43, 26, 44, 57890 },
255 { TRUE_20, FALSE, WLAN_PHY_HT_20_DS, 130000, /* 130 Mb */
256 108300, 0x8f, 0x00, 15,
257 8, 25, 3, 27, 44, 27, 45, 64320 },
258 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 13500, /* 13.5 Mb */
259 13200, 0x80, 0x00, 0,
260 8, 2, 3, 12, 28, 28, 28, 6684 },
261 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 27500, /* 27.0 Mb */
262 25900, 0x81, 0x00, 1,
263 8, 4, 3, 13, 29, 29, 29, 13368 },
264 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 40500, /* 40.5 Mb */
265 38600, 0x82, 0x00, 2,
266 8, 6, 3, 14, 30, 30, 30, 20052 },
267 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 54000, /* 54 Mb */
268 49800, 0x83, 0x00, 3,
269 8, 10, 3, 15, 31, 31, 31, 26738 },
270 { TRUE_40, TRUE_40, WLAN_PHY_HT_40_SS, 81500, /* 81 Mb */
271 72200, 0x84, 0x00, 4,
272 8, 14, 3, 16, 32, 32, 32, 40104 },
273 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 108000, /* 108 Mb */
274 92900, 0x85, 0x00, 5,
275 8, 20, 3, 17, 33, 33, 33, 53476 },
276 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 121500, /* 121.5 Mb */
277 102700, 0x86, 0x00, 6,
278 8, 23, 3, 18, 34, 34, 34, 60156 },
279 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS, 135000, /* 135 Mb */
280 112000, 0x87, 0x00, 7,
281 8, 23, 3, 19, 35, 36, 36, 66840 },
282 { FALSE, TRUE_40, WLAN_PHY_HT_40_SS_HGI, 150000, /* 150 Mb */
283 122000, 0x87, 0x00, 7,
284 8, 25, 3, 19, 35, 36, 36, 74200 },
285 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 27000, /* 27 Mb */
286 25800, 0x88, 0x00, 8,
287 8, 2, 3, 20, 37, 37, 37, 13360 },
288 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 54000, /* 54 Mb */
289 49800, 0x89, 0x00, 9,
290 8, 4, 3, 21, 38, 38, 38, 26720 },
291 { FALSE, FALSE, WLAN_PHY_HT_40_DS, 81000, /* 81 Mb */
292 71900, 0x8a, 0x00, 10,
293 8, 6, 3, 22, 39, 39, 39, 40080 },
294 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 108000, /* 108 Mb */
295 92500, 0x8b, 0x00, 11,
296 8, 10, 3, 23, 40, 40, 40, 53440 },
297 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 162000, /* 162 Mb */
298 130300, 0x8c, 0x00, 12,
299 8, 14, 3, 24, 41, 41, 41, 80160 },
300 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 216000, /* 216 Mb */
301 162800, 0x8d, 0x00, 13,
302 8, 20, 3, 25, 42, 42, 42, 106880 },
303 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 243000, /* 243 Mb */
304 178200, 0x8e, 0x00, 14,
305 8, 23, 3, 26, 43, 43, 43, 120240 },
306 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS, 270000, /* 270 Mb */
307 192100, 0x8f, 0x00, 15,
308 8, 23, 3, 27, 44, 45, 45, 133600 },
309 { TRUE_40, FALSE, WLAN_PHY_HT_40_DS_HGI, 300000, /* 300 Mb */
310 207000, 0x8f, 0x00, 15,
311 8, 25, 3, 27, 44, 45, 45, 148400 },
313 50, /* probe interval */
314 50, /* rssi reduce interval */
315 WLAN_RC_HT_FLAG, /* Phy rates allowed initially */
318 static struct ath_rate_table ar5416_11a_ratetable = {
321 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
322 5400, 0x0b, 0x00, (0x80|12),
323 0, 2, 1, 0, 0 },
324 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
325 7800, 0x0f, 0x00, 18,
326 0, 3, 1, 1, 0 },
327 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
328 10000, 0x0a, 0x00, (0x80|24),
329 2, 4, 2, 2, 0 },
330 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
331 13900, 0x0e, 0x00, 36,
332 2, 6, 2, 3, 0 },
333 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
334 17300, 0x09, 0x00, (0x80|48),
335 4, 10, 3, 4, 0 },
336 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
337 23000, 0x0d, 0x00, 72,
338 4, 14, 3, 5, 0 },
339 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
340 27400, 0x08, 0x00, 96,
341 4, 19, 3, 6, 0 },
342 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
343 29300, 0x0c, 0x00, 108,
344 4, 23, 3, 7, 0 },
346 50, /* probe interval */
347 50, /* rssi reduce interval */
348 0, /* Phy rates allowed initially */
351 static struct ath_rate_table ar5416_11a_ratetable_Half = {
354 { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 6 Mb */
355 2700, 0x0b, 0x00, (0x80|6),
356 0, 2, 1, 0, 0},
357 { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 9 Mb */
358 3900, 0x0f, 0x00, 9,
359 0, 3, 1, 1, 0 },
360 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 12 Mb */
361 5000, 0x0a, 0x00, (0x80|12),
362 2, 4, 2, 2, 0 },
363 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 18 Mb */
364 6950, 0x0e, 0x00, 18,
365 2, 6, 2, 3, 0 },
366 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 24 Mb */
367 8650, 0x09, 0x00, (0x80|24),
368 4, 10, 3, 4, 0 },
369 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 36 Mb */
370 11500, 0x0d, 0x00, 36,
371 4, 14, 3, 5, 0 },
372 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 48 Mb */
373 13700, 0x08, 0x00, 48,
374 4, 19, 3, 6, 0 },
375 { TRUE, TRUE, WLAN_PHY_OFDM, 27000, /* 54 Mb */
376 14650, 0x0c, 0x00, 54,
377 4, 23, 3, 7, 0 },
379 50, /* probe interval */
380 50, /* rssi reduce interval */
381 0, /* Phy rates allowed initially */
384 static struct ath_rate_table ar5416_11a_ratetable_Quarter = {
387 { TRUE, TRUE, WLAN_PHY_OFDM, 1500, /* 6 Mb */
388 1350, 0x0b, 0x00, (0x80|3),
389 0, 2, 1, 0, 0 },
390 { TRUE, TRUE, WLAN_PHY_OFDM, 2250, /* 9 Mb */
391 1950, 0x0f, 0x00, 4,
392 0, 3, 1, 1, 0 },
393 { TRUE, TRUE, WLAN_PHY_OFDM, 3000, /* 12 Mb */
394 2500, 0x0a, 0x00, (0x80|6),
395 2, 4, 2, 2, 0 },
396 { TRUE, TRUE, WLAN_PHY_OFDM, 4500, /* 18 Mb */
397 3475, 0x0e, 0x00, 9,
398 2, 6, 2, 3, 0 },
399 { TRUE, TRUE, WLAN_PHY_OFDM, 6000, /* 25 Mb */
400 4325, 0x09, 0x00, (0x80|12),
401 4, 10, 3, 4, 0 },
402 { TRUE, TRUE, WLAN_PHY_OFDM, 9000, /* 36 Mb */
403 5750, 0x0d, 0x00, 18,
404 4, 14, 3, 5, 0 },
405 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 48 Mb */
406 6850, 0x08, 0x00, 24,
407 4, 19, 3, 6, 0 },
408 { TRUE, TRUE, WLAN_PHY_OFDM, 13500, /* 54 Mb */
409 7325, 0x0c, 0x00, 27,
410 4, 23, 3, 7, 0 },
412 50, /* probe interval */
413 50, /* rssi reduce interval */
414 0, /* Phy rates allowed initially */
417 static struct ath_rate_table ar5416_11g_ratetable = {
420 { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
421 900, 0x1b, 0x00, 2,
422 0, 0, 1, 0, 0 },
423 { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
424 1900, 0x1a, 0x04, 4,
425 1, 1, 1, 1, 0 },
426 { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
427 4900, 0x19, 0x04, 11,
428 2, 2, 2, 2, 0 },
429 { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
430 8100, 0x18, 0x04, 22,
431 3, 3, 2, 3, 0 },
432 { FALSE, FALSE, WLAN_PHY_OFDM, 6000, /* 6 Mb */
433 5400, 0x0b, 0x00, 12,
434 4, 2, 1, 4, 0 },
435 { FALSE, FALSE, WLAN_PHY_OFDM, 9000, /* 9 Mb */
436 7800, 0x0f, 0x00, 18,
437 4, 3, 1, 5, 0 },
438 { TRUE, TRUE, WLAN_PHY_OFDM, 12000, /* 12 Mb */
439 10000, 0x0a, 0x00, 24,
440 6, 4, 1, 6, 0 },
441 { TRUE, TRUE, WLAN_PHY_OFDM, 18000, /* 18 Mb */
442 13900, 0x0e, 0x00, 36,
443 6, 6, 2, 7, 0 },
444 { TRUE, TRUE, WLAN_PHY_OFDM, 24000, /* 24 Mb */
445 17300, 0x09, 0x00, 48,
446 8, 10, 3, 8, 0 },
447 { TRUE, TRUE, WLAN_PHY_OFDM, 36000, /* 36 Mb */
448 23000, 0x0d, 0x00, 72,
449 8, 14, 3, 9, 0 },
450 { TRUE, TRUE, WLAN_PHY_OFDM, 48000, /* 48 Mb */
451 27400, 0x08, 0x00, 96,
452 8, 19, 3, 10, 0 },
453 { TRUE, TRUE, WLAN_PHY_OFDM, 54000, /* 54 Mb */
454 29300, 0x0c, 0x00, 108,
455 8, 23, 3, 11, 0 },
457 50, /* probe interval */
458 50, /* rssi reduce interval */
459 0, /* Phy rates allowed initially */
462 static struct ath_rate_table ar5416_11b_ratetable = {
465 { TRUE, TRUE, WLAN_PHY_CCK, 1000, /* 1 Mb */
466 900, 0x1b, 0x00, (0x80|2),
467 0, 0, 1, 0, 0 },
468 { TRUE, TRUE, WLAN_PHY_CCK, 2000, /* 2 Mb */
469 1800, 0x1a, 0x04, (0x80|4),
470 1, 1, 1, 1, 0 },
471 { TRUE, TRUE, WLAN_PHY_CCK, 5500, /* 5.5 Mb */
472 4300, 0x19, 0x04, (0x80|11),
473 1, 2, 2, 2, 0 },
474 { TRUE, TRUE, WLAN_PHY_CCK, 11000, /* 11 Mb */
475 7100, 0x18, 0x04, (0x80|22),
476 1, 4, 100, 3, 0 },
478 100, /* probe interval */
479 100, /* rssi reduce interval */
480 0, /* Phy rates allowed initially */
483 static void ar5416_attach_ratetables(struct ath_rate_softc *sc)
486 * Attach rate tables.
488 sc->hw_rate_table[ATH9K_MODE_11B] = &ar5416_11b_ratetable;
489 sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
490 sc->hw_rate_table[ATH9K_MODE_11G] = &ar5416_11g_ratetable;
492 sc->hw_rate_table[ATH9K_MODE_11NA_HT20] = &ar5416_11na_ratetable;
493 sc->hw_rate_table[ATH9K_MODE_11NG_HT20] = &ar5416_11ng_ratetable;
494 sc->hw_rate_table[ATH9K_MODE_11NA_HT40PLUS] =
495 &ar5416_11na_ratetable;
496 sc->hw_rate_table[ATH9K_MODE_11NA_HT40MINUS] =
497 &ar5416_11na_ratetable;
498 sc->hw_rate_table[ATH9K_MODE_11NG_HT40PLUS] =
499 &ar5416_11ng_ratetable;
500 sc->hw_rate_table[ATH9K_MODE_11NG_HT40MINUS] =
501 &ar5416_11ng_ratetable;
504 static void ar5416_setquarter_ratetable(struct ath_rate_softc *sc)
506 sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Quarter;
507 return;
510 static void ar5416_sethalf_ratetable(struct ath_rate_softc *sc)
512 sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable_Half;
513 return;
516 static void ar5416_setfull_ratetable(struct ath_rate_softc *sc)
518 sc->hw_rate_table[ATH9K_MODE_11A] = &ar5416_11a_ratetable;
519 return;
523 * Return the median of three numbers
525 static inline int8_t median(int8_t a, int8_t b, int8_t c)
527 if (a >= b) {
528 if (b >= c)
529 return b;
530 else if (a > c)
531 return c;
532 else
533 return a;
534 } else {
535 if (a >= c)
536 return a;
537 else if (b >= c)
538 return c;
539 else
540 return b;
544 static void ath_rc_sort_validrates(const struct ath_rate_table *rate_table,
545 struct ath_rate_node *ath_rc_priv)
547 u8 i, j, idx, idx_next;
549 for (i = ath_rc_priv->max_valid_rate - 1; i > 0; i--) {
550 for (j = 0; j <= i-1; j++) {
551 idx = ath_rc_priv->valid_rate_index[j];
552 idx_next = ath_rc_priv->valid_rate_index[j+1];
554 if (rate_table->info[idx].ratekbps >
555 rate_table->info[idx_next].ratekbps) {
556 ath_rc_priv->valid_rate_index[j] = idx_next;
557 ath_rc_priv->valid_rate_index[j+1] = idx;
563 /* Access functions for valid_txrate_mask */
565 static void ath_rc_init_valid_txmask(struct ath_rate_node *ath_rc_priv)
567 u8 i;
569 for (i = 0; i < ath_rc_priv->rate_table_size; i++)
570 ath_rc_priv->valid_rate_index[i] = FALSE;
573 static inline void ath_rc_set_valid_txmask(struct ath_rate_node *ath_rc_priv,
574 u8 index, int valid_tx_rate)
576 ASSERT(index <= ath_rc_priv->rate_table_size);
577 ath_rc_priv->valid_rate_index[index] = valid_tx_rate ? TRUE : FALSE;
580 static inline int ath_rc_isvalid_txmask(struct ath_rate_node *ath_rc_priv,
581 u8 index)
583 ASSERT(index <= ath_rc_priv->rate_table_size);
584 return ath_rc_priv->valid_rate_index[index];
587 /* Iterators for valid_txrate_mask */
588 static inline int
589 ath_rc_get_nextvalid_txrate(const struct ath_rate_table *rate_table,
590 struct ath_rate_node *ath_rc_priv,
591 u8 cur_valid_txrate,
592 u8 *next_idx)
594 u8 i;
596 for (i = 0; i < ath_rc_priv->max_valid_rate - 1; i++) {
597 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
598 *next_idx = ath_rc_priv->valid_rate_index[i+1];
599 return TRUE;
603 /* No more valid rates */
604 *next_idx = 0;
605 return FALSE;
608 /* Return true only for single stream */
610 static int ath_rc_valid_phyrate(u32 phy, u32 capflag, int ignore_cw)
612 if (WLAN_RC_PHY_HT(phy) & !(capflag & WLAN_RC_HT_FLAG))
613 return FALSE;
614 if (WLAN_RC_PHY_DS(phy) && !(capflag & WLAN_RC_DS_FLAG))
615 return FALSE;
616 if (WLAN_RC_PHY_SGI(phy) && !(capflag & WLAN_RC_SGI_FLAG))
617 return FALSE;
618 if (!ignore_cw && WLAN_RC_PHY_HT(phy))
619 if (WLAN_RC_PHY_40(phy) && !(capflag & WLAN_RC_40_FLAG))
620 return FALSE;
621 if (!WLAN_RC_PHY_40(phy) && (capflag & WLAN_RC_40_FLAG))
622 return FALSE;
623 return TRUE;
626 static inline int
627 ath_rc_get_nextlowervalid_txrate(const struct ath_rate_table *rate_table,
628 struct ath_rate_node *ath_rc_priv,
629 u8 cur_valid_txrate, u8 *next_idx)
631 int8_t i;
633 for (i = 1; i < ath_rc_priv->max_valid_rate ; i++) {
634 if (ath_rc_priv->valid_rate_index[i] == cur_valid_txrate) {
635 *next_idx = ath_rc_priv->valid_rate_index[i-1];
636 return TRUE;
639 return FALSE;
643 * Initialize the Valid Rate Index from valid entries in Rate Table
645 static u8
646 ath_rc_sib_init_validrates(struct ath_rate_node *ath_rc_priv,
647 const struct ath_rate_table *rate_table,
648 u32 capflag)
650 u8 i, hi = 0;
651 u32 valid;
653 for (i = 0; i < rate_table->rate_cnt; i++) {
654 valid = (ath_rc_priv->single_stream ?
655 rate_table->info[i].valid_single_stream :
656 rate_table->info[i].valid);
657 if (valid == TRUE) {
658 u32 phy = rate_table->info[i].phy;
659 u8 valid_rate_count = 0;
661 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
662 continue;
664 valid_rate_count = ath_rc_priv->valid_phy_ratecnt[phy];
666 ath_rc_priv->valid_phy_rateidx[phy][valid_rate_count] = i;
667 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
668 ath_rc_set_valid_txmask(ath_rc_priv, i, TRUE);
669 hi = A_MAX(hi, i);
672 return hi;
676 * Initialize the Valid Rate Index from Rate Set
678 static u8
679 ath_rc_sib_setvalid_rates(struct ath_rate_node *ath_rc_priv,
680 const struct ath_rate_table *rate_table,
681 struct ath_rateset *rateset,
682 u32 capflag)
684 /* XXX: Clean me up and make identation friendly */
685 u8 i, j, hi = 0;
687 /* Use intersection of working rates and valid rates */
688 for (i = 0; i < rateset->rs_nrates; i++) {
689 for (j = 0; j < rate_table->rate_cnt; j++) {
690 u32 phy = rate_table->info[j].phy;
691 u32 valid = (ath_rc_priv->single_stream ?
692 rate_table->info[j].valid_single_stream :
693 rate_table->info[j].valid);
695 /* We allow a rate only if its valid and the
696 * capflag matches one of the validity
697 * (TRUE/TRUE_20/TRUE_40) flags */
699 /* XXX: catch the negative of this branch
700 * first and then continue */
701 if (((rateset->rs_rates[i] & 0x7F) ==
702 (rate_table->info[j].dot11rate & 0x7F)) &&
703 ((valid & WLAN_RC_CAP_MODE(capflag)) ==
704 WLAN_RC_CAP_MODE(capflag)) &&
705 !WLAN_RC_PHY_HT(phy)) {
707 u8 valid_rate_count = 0;
709 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
710 continue;
712 valid_rate_count =
713 ath_rc_priv->valid_phy_ratecnt[phy];
715 ath_rc_priv->valid_phy_rateidx[phy]
716 [valid_rate_count] = j;
717 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
718 ath_rc_set_valid_txmask(ath_rc_priv, j, TRUE);
719 hi = A_MAX(hi, j);
723 return hi;
726 static u8
727 ath_rc_sib_setvalid_htrates(struct ath_rate_node *ath_rc_priv,
728 const struct ath_rate_table *rate_table,
729 u8 *mcs_set, u32 capflag)
731 u8 i, j, hi = 0;
733 /* Use intersection of working rates and valid rates */
734 for (i = 0; i < ((struct ath_rateset *)mcs_set)->rs_nrates; i++) {
735 for (j = 0; j < rate_table->rate_cnt; j++) {
736 u32 phy = rate_table->info[j].phy;
737 u32 valid = (ath_rc_priv->single_stream ?
738 rate_table->info[j].valid_single_stream :
739 rate_table->info[j].valid);
741 if (((((struct ath_rateset *)
742 mcs_set)->rs_rates[i] & 0x7F) !=
743 (rate_table->info[j].dot11rate & 0x7F)) ||
744 !WLAN_RC_PHY_HT(phy) ||
745 !WLAN_RC_PHY_HT_VALID(valid, capflag))
746 continue;
748 if (!ath_rc_valid_phyrate(phy, capflag, FALSE))
749 continue;
751 ath_rc_priv->valid_phy_rateidx[phy]
752 [ath_rc_priv->valid_phy_ratecnt[phy]] = j;
753 ath_rc_priv->valid_phy_ratecnt[phy] += 1;
754 ath_rc_set_valid_txmask(ath_rc_priv, j, TRUE);
755 hi = A_MAX(hi, j);
758 return hi;
762 * Attach to a device instance. Setup the public definition
763 * of how much per-node space we need and setup the private
764 * phy tables that have rate control parameters.
766 struct ath_rate_softc *ath_rate_attach(struct ath_hal *ah)
768 struct ath_rate_softc *asc;
770 /* we are only in user context so we can sleep for memory */
771 asc = kzalloc(sizeof(struct ath_rate_softc), GFP_KERNEL);
772 if (asc == NULL)
773 return NULL;
775 ar5416_attach_ratetables(asc);
777 /* Save Maximum TX Trigger Level (used for 11n) */
778 tx_triglevel_max = ah->ah_caps.tx_triglevel_max;
779 /* return alias for ath_rate_softc * */
780 return asc;
783 static struct ath_rate_node *ath_rate_node_alloc(struct ath_vap *avp,
784 struct ath_rate_softc *rsc,
785 gfp_t gfp)
787 struct ath_rate_node *anode;
789 anode = kzalloc(sizeof(struct ath_rate_node), gfp);
790 if (anode == NULL)
791 return NULL;
793 anode->avp = avp;
794 anode->asc = rsc;
795 avp->rc_node = anode;
797 return anode;
800 static void ath_rate_node_free(struct ath_rate_node *anode)
802 if (anode != NULL)
803 kfree(anode);
806 void ath_rate_detach(struct ath_rate_softc *asc)
808 if (asc != NULL)
809 kfree(asc);
812 u8 ath_rate_findrateix(struct ath_softc *sc,
813 u8 dot11rate)
815 const struct ath_rate_table *ratetable;
816 struct ath_rate_softc *rsc = sc->sc_rc;
817 int i;
819 ratetable = rsc->hw_rate_table[sc->sc_curmode];
821 if (WARN_ON(!ratetable))
822 return 0;
824 for (i = 0; i < ratetable->rate_cnt; i++) {
825 if ((ratetable->info[i].dot11rate & 0x7f) == (dot11rate & 0x7f))
826 return i;
829 return 0;
833 * Update rate-control state on a device state change. When
834 * operating as a station this includes associate/reassociate
835 * with an AP. Otherwise this gets called, for example, when
836 * the we transition to run state when operating as an AP.
838 void ath_rate_newstate(struct ath_softc *sc, struct ath_vap *avp)
840 struct ath_rate_softc *asc = sc->sc_rc;
842 /* For half and quarter rate channles use different
843 * rate tables
845 if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_HALF)
846 ar5416_sethalf_ratetable(asc);
847 else if (sc->sc_ah->ah_curchan->channelFlags & CHANNEL_QUARTER)
848 ar5416_setquarter_ratetable(asc);
849 else /* full rate */
850 ar5416_setfull_ratetable(asc);
852 if (avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) {
853 asc->fixedrix =
854 sc->sc_rixmap[avp->av_config.av_fixed_rateset & 0xff];
855 /* NB: check the fixed rate exists */
856 if (asc->fixedrix == 0xff)
857 asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
858 } else {
859 asc->fixedrix = IEEE80211_FIXED_RATE_NONE;
863 static u8 ath_rc_ratefind_ht(struct ath_softc *sc,
864 struct ath_rate_node *ath_rc_priv,
865 const struct ath_rate_table *rate_table,
866 int probe_allowed, int *is_probing,
867 int is_retry)
869 u32 dt, best_thruput, this_thruput, now_msec;
870 u8 rate, next_rate, best_rate, maxindex, minindex;
871 int8_t rssi_last, rssi_reduce = 0, index = 0;
873 *is_probing = FALSE;
875 rssi_last = median(ath_rc_priv->rssi_last,
876 ath_rc_priv->rssi_last_prev,
877 ath_rc_priv->rssi_last_prev2);
880 * Age (reduce) last ack rssi based on how old it is.
881 * The bizarre numbers are so the delta is 160msec,
882 * meaning we divide by 16.
883 * 0msec <= dt <= 25msec: don't derate
884 * 25msec <= dt <= 185msec: derate linearly from 0 to 10dB
885 * 185msec <= dt: derate by 10dB
888 now_msec = jiffies_to_msecs(jiffies);
889 dt = now_msec - ath_rc_priv->rssi_time;
891 if (dt >= 185)
892 rssi_reduce = 10;
893 else if (dt >= 25)
894 rssi_reduce = (u8)((dt - 25) >> 4);
896 /* Now reduce rssi_last by rssi_reduce */
897 if (rssi_last < rssi_reduce)
898 rssi_last = 0;
899 else
900 rssi_last -= rssi_reduce;
903 * Now look up the rate in the rssi table and return it.
904 * If no rates match then we return 0 (lowest rate)
907 best_thruput = 0;
908 maxindex = ath_rc_priv->max_valid_rate-1;
910 minindex = 0;
911 best_rate = minindex;
914 * Try the higher rate first. It will reduce memory moving time
915 * if we have very good channel characteristics.
917 for (index = maxindex; index >= minindex ; index--) {
918 u8 per_thres;
920 rate = ath_rc_priv->valid_rate_index[index];
921 if (rate > ath_rc_priv->rate_max_phy)
922 continue;
925 * For TCP the average collision rate is around 11%,
926 * so we ignore PERs less than this. This is to
927 * prevent the rate we are currently using (whose
928 * PER might be in the 10-15 range because of TCP
929 * collisions) looking worse than the next lower
930 * rate whose PER has decayed close to 0. If we
931 * used to next lower rate, its PER would grow to
932 * 10-15 and we would be worse off then staying
933 * at the current rate.
935 per_thres = ath_rc_priv->state[rate].per;
936 if (per_thres < 12)
937 per_thres = 12;
939 this_thruput = rate_table->info[rate].user_ratekbps *
940 (100 - per_thres);
942 if (best_thruput <= this_thruput) {
943 best_thruput = this_thruput;
944 best_rate = rate;
948 rate = best_rate;
950 /* if we are retrying for more than half the number
951 * of max retries, use the min rate for the next retry
953 if (is_retry)
954 rate = ath_rc_priv->valid_rate_index[minindex];
956 ath_rc_priv->rssi_last_lookup = rssi_last;
959 * Must check the actual rate (ratekbps) to account for
960 * non-monoticity of 11g's rate table
963 if (rate >= ath_rc_priv->rate_max_phy && probe_allowed) {
964 rate = ath_rc_priv->rate_max_phy;
966 /* Probe the next allowed phy state */
967 /* FIXME:XXXX Check to make sure ratMax is checked properly */
968 if (ath_rc_get_nextvalid_txrate(rate_table,
969 ath_rc_priv, rate, &next_rate) &&
970 (now_msec - ath_rc_priv->probe_time >
971 rate_table->probe_interval) &&
972 (ath_rc_priv->hw_maxretry_pktcnt >= 1)) {
973 rate = next_rate;
974 ath_rc_priv->probe_rate = rate;
975 ath_rc_priv->probe_time = now_msec;
976 ath_rc_priv->hw_maxretry_pktcnt = 0;
977 *is_probing = TRUE;
982 * Make sure rate is not higher than the allowed maximum.
983 * We should also enforce the min, but I suspect the min is
984 * normally 1 rather than 0 because of the rate 9 vs 6 issue
985 * in the old code.
987 if (rate > (ath_rc_priv->rate_table_size - 1))
988 rate = ath_rc_priv->rate_table_size - 1;
990 ASSERT((rate_table->info[rate].valid && !ath_rc_priv->single_stream) ||
991 (rate_table->info[rate].valid_single_stream &&
992 ath_rc_priv->single_stream));
994 return rate;
997 static void ath_rc_rate_set_series(const struct ath_rate_table *rate_table ,
998 struct ath_rc_series *series,
999 u8 tries,
1000 u8 rix,
1001 int rtsctsenable)
1003 series->tries = tries;
1004 series->flags = (rtsctsenable ? ATH_RC_RTSCTS_FLAG : 0) |
1005 (WLAN_RC_PHY_DS(rate_table->info[rix].phy) ?
1006 ATH_RC_DS_FLAG : 0) |
1007 (WLAN_RC_PHY_40(rate_table->info[rix].phy) ?
1008 ATH_RC_CW40_FLAG : 0) |
1009 (WLAN_RC_PHY_SGI(rate_table->info[rix].phy) ?
1010 ATH_RC_SGI_FLAG : 0);
1012 series->rix = rate_table->info[rix].base_index;
1013 series->max_4ms_framelen = rate_table->info[rix].max_4ms_framelen;
1016 static u8 ath_rc_rate_getidx(struct ath_softc *sc,
1017 struct ath_rate_node *ath_rc_priv,
1018 const struct ath_rate_table *rate_table,
1019 u8 rix, u16 stepdown,
1020 u16 min_rate)
1022 u32 j;
1023 u8 nextindex;
1025 if (min_rate) {
1026 for (j = RATE_TABLE_SIZE; j > 0; j--) {
1027 if (ath_rc_get_nextlowervalid_txrate(rate_table,
1028 ath_rc_priv, rix, &nextindex))
1029 rix = nextindex;
1030 else
1031 break;
1033 } else {
1034 for (j = stepdown; j > 0; j--) {
1035 if (ath_rc_get_nextlowervalid_txrate(rate_table,
1036 ath_rc_priv, rix, &nextindex))
1037 rix = nextindex;
1038 else
1039 break;
1042 return rix;
1045 static void ath_rc_ratefind(struct ath_softc *sc,
1046 struct ath_rate_node *ath_rc_priv,
1047 int num_tries, int num_rates, unsigned int rcflag,
1048 struct ath_rc_series series[], int *is_probe,
1049 int is_retry)
1051 u8 try_per_rate = 0, i = 0, rix, nrix;
1052 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1053 struct ath_rate_table *rate_table;
1055 rate_table =
1056 (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
1057 rix = ath_rc_ratefind_ht(sc, ath_rc_priv, rate_table,
1058 (rcflag & ATH_RC_PROBE_ALLOWED) ? 1 : 0,
1059 is_probe, is_retry);
1060 nrix = rix;
1062 if ((rcflag & ATH_RC_PROBE_ALLOWED) && (*is_probe)) {
1063 /* set one try for probe rates. For the
1064 * probes don't enable rts */
1065 ath_rc_rate_set_series(rate_table,
1066 &series[i++], 1, nrix, FALSE);
1068 try_per_rate = (num_tries/num_rates);
1069 /* Get the next tried/allowed rate. No RTS for the next series
1070 * after the probe rate
1072 nrix = ath_rc_rate_getidx(sc,
1073 ath_rc_priv, rate_table, nrix, 1, FALSE);
1074 ath_rc_rate_set_series(rate_table,
1075 &series[i++], try_per_rate, nrix, 0);
1076 } else {
1077 try_per_rate = (num_tries/num_rates);
1078 /* Set the choosen rate. No RTS for first series entry. */
1079 ath_rc_rate_set_series(rate_table,
1080 &series[i++], try_per_rate, nrix, FALSE);
1083 /* Fill in the other rates for multirate retry */
1084 for ( ; i < num_rates; i++) {
1085 u8 try_num;
1086 u8 min_rate;
1088 try_num = ((i + 1) == num_rates) ?
1089 num_tries - (try_per_rate * i) : try_per_rate ;
1090 min_rate = (((i + 1) == num_rates) &&
1091 (rcflag & ATH_RC_MINRATE_LASTRATE)) ? 1 : 0;
1093 nrix = ath_rc_rate_getidx(sc, ath_rc_priv,
1094 rate_table, nrix, 1, min_rate);
1095 /* All other rates in the series have RTS enabled */
1096 ath_rc_rate_set_series(rate_table,
1097 &series[i], try_num, nrix, TRUE);
1101 * NB:Change rate series to enable aggregation when operating
1102 * at lower MCS rates. When first rate in series is MCS2
1103 * in HT40 @ 2.4GHz, series should look like:
1105 * {MCS2, MCS1, MCS0, MCS0}.
1107 * When first rate in series is MCS3 in HT20 @ 2.4GHz, series should
1108 * look like:
1110 * {MCS3, MCS2, MCS1, MCS1}
1112 * So, set fourth rate in series to be same as third one for
1113 * above conditions.
1115 if ((sc->sc_curmode == ATH9K_MODE_11NG_HT20) ||
1116 (sc->sc_curmode == ATH9K_MODE_11NG_HT40PLUS) ||
1117 (sc->sc_curmode == ATH9K_MODE_11NG_HT40MINUS)) {
1118 u8 dot11rate = rate_table->info[rix].dot11rate;
1119 u8 phy = rate_table->info[rix].phy;
1120 if (i == 4 &&
1121 ((dot11rate == 2 && phy == WLAN_RC_PHY_HT_40_SS) ||
1122 (dot11rate == 3 && phy == WLAN_RC_PHY_HT_20_SS))) {
1123 series[3].rix = series[2].rix;
1124 series[3].flags = series[2].flags;
1125 series[3].max_4ms_framelen = series[2].max_4ms_framelen;
1131 * Return the Tx rate series.
1133 static void ath_rate_findrate(struct ath_softc *sc,
1134 struct ath_rate_node *ath_rc_priv,
1135 int num_tries,
1136 int num_rates,
1137 unsigned int rcflag,
1138 struct ath_rc_series series[],
1139 int *is_probe,
1140 int is_retry)
1142 struct ath_vap *avp = ath_rc_priv->avp;
1144 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1146 if (!num_rates || !num_tries)
1147 return;
1149 if (avp->av_config.av_fixed_rateset == IEEE80211_FIXED_RATE_NONE) {
1150 ath_rc_ratefind(sc, ath_rc_priv, num_tries, num_rates,
1151 rcflag, series, is_probe, is_retry);
1152 } else {
1153 /* Fixed rate */
1154 int idx;
1155 u8 flags;
1156 u32 rix;
1157 struct ath_rate_softc *asc = ath_rc_priv->asc;
1158 struct ath_rate_table *rate_table;
1160 rate_table = (struct ath_rate_table *)
1161 asc->hw_rate_table[sc->sc_curmode];
1163 for (idx = 0; idx < 4; idx++) {
1164 unsigned int mcs;
1165 u8 series_rix = 0;
1167 series[idx].tries = IEEE80211_RATE_IDX_ENTRY(
1168 avp->av_config.av_fixed_retryset, idx);
1170 mcs = IEEE80211_RATE_IDX_ENTRY(
1171 avp->av_config.av_fixed_rateset, idx);
1173 if (idx == 3 && (mcs & 0xf0) == 0x70)
1174 mcs = (mcs & ~0xf0)|0x80;
1176 if (!(mcs & 0x80))
1177 flags = 0;
1178 else
1179 flags = ((ath_rc_priv->ht_cap &
1180 WLAN_RC_DS_FLAG) ?
1181 ATH_RC_DS_FLAG : 0) |
1182 ((ath_rc_priv->ht_cap &
1183 WLAN_RC_40_FLAG) ?
1184 ATH_RC_CW40_FLAG : 0) |
1185 ((ath_rc_priv->ht_cap &
1186 WLAN_RC_SGI_FLAG) ?
1187 ((ath_rc_priv->ht_cap &
1188 WLAN_RC_40_FLAG) ?
1189 ATH_RC_SGI_FLAG : 0) : 0);
1191 series[idx].rix = sc->sc_rixmap[mcs];
1192 series_rix = series[idx].rix;
1194 /* XXX: Give me some cleanup love */
1195 if ((flags & ATH_RC_CW40_FLAG) &&
1196 (flags & ATH_RC_SGI_FLAG))
1197 rix = rate_table->info[series_rix].ht_index;
1198 else if (flags & ATH_RC_SGI_FLAG)
1199 rix = rate_table->info[series_rix].sgi_index;
1200 else if (flags & ATH_RC_CW40_FLAG)
1201 rix = rate_table->info[series_rix].cw40index;
1202 else
1203 rix = rate_table->info[series_rix].base_index;
1204 series[idx].max_4ms_framelen =
1205 rate_table->info[rix].max_4ms_framelen;
1206 series[idx].flags = flags;
1211 static void ath_rc_update_ht(struct ath_softc *sc,
1212 struct ath_rate_node *ath_rc_priv,
1213 struct ath_tx_info_priv *info_priv,
1214 int tx_rate, int xretries, int retries)
1216 u32 now_msec = jiffies_to_msecs(jiffies);
1217 int state_change = FALSE, rate, count;
1218 u8 last_per;
1219 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1220 struct ath_rate_table *rate_table =
1221 (struct ath_rate_table *)asc->hw_rate_table[sc->sc_curmode];
1223 static u32 nretry_to_per_lookup[10] = {
1224 100 * 0 / 1,
1225 100 * 1 / 4,
1226 100 * 1 / 2,
1227 100 * 3 / 4,
1228 100 * 4 / 5,
1229 100 * 5 / 6,
1230 100 * 6 / 7,
1231 100 * 7 / 8,
1232 100 * 8 / 9,
1233 100 * 9 / 10
1236 if (!ath_rc_priv)
1237 return;
1239 ASSERT(tx_rate >= 0);
1240 if (tx_rate < 0)
1241 return;
1243 /* To compensate for some imbalance between ctrl and ext. channel */
1245 if (WLAN_RC_PHY_40(rate_table->info[tx_rate].phy))
1246 info_priv->tx.ts_rssi =
1247 info_priv->tx.ts_rssi < 3 ? 0 :
1248 info_priv->tx.ts_rssi - 3;
1250 last_per = ath_rc_priv->state[tx_rate].per;
1252 if (xretries) {
1253 /* Update the PER. */
1254 if (xretries == 1) {
1255 ath_rc_priv->state[tx_rate].per += 30;
1256 if (ath_rc_priv->state[tx_rate].per > 100)
1257 ath_rc_priv->state[tx_rate].per = 100;
1258 } else {
1259 /* xretries == 2 */
1260 count = ARRAY_SIZE(nretry_to_per_lookup);
1261 if (retries >= count)
1262 retries = count - 1;
1263 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
1264 ath_rc_priv->state[tx_rate].per =
1265 (u8)(ath_rc_priv->state[tx_rate].per -
1266 (ath_rc_priv->state[tx_rate].per >> 3) +
1267 ((100) >> 3));
1270 /* xretries == 1 or 2 */
1272 if (ath_rc_priv->probe_rate == tx_rate)
1273 ath_rc_priv->probe_rate = 0;
1275 } else { /* xretries == 0 */
1276 /* Update the PER. */
1277 /* Make sure it doesn't index out of array's bounds. */
1278 count = ARRAY_SIZE(nretry_to_per_lookup);
1279 if (retries >= count)
1280 retries = count - 1;
1281 if (info_priv->n_bad_frames) {
1282 /* new_PER = 7/8*old_PER + 1/8*(currentPER)
1283 * Assuming that n_frames is not 0. The current PER
1284 * from the retries is 100 * retries / (retries+1),
1285 * since the first retries attempts failed, and the
1286 * next one worked. For the one that worked,
1287 * n_bad_frames subframes out of n_frames wored,
1288 * so the PER for that part is
1289 * 100 * n_bad_frames / n_frames, and it contributes
1290 * 100 * n_bad_frames / (n_frames * (retries+1)) to
1291 * the above PER. The expression below is a
1292 * simplified version of the sum of these two terms.
1294 if (info_priv->n_frames > 0)
1295 ath_rc_priv->state[tx_rate].per
1296 = (u8)
1297 (ath_rc_priv->state[tx_rate].per -
1298 (ath_rc_priv->state[tx_rate].per >> 3) +
1299 ((100*(retries*info_priv->n_frames +
1300 info_priv->n_bad_frames) /
1301 (info_priv->n_frames *
1302 (retries+1))) >> 3));
1303 } else {
1304 /* new_PER = 7/8*old_PER + 1/8*(currentPER) */
1306 ath_rc_priv->state[tx_rate].per = (u8)
1307 (ath_rc_priv->state[tx_rate].per -
1308 (ath_rc_priv->state[tx_rate].per >> 3) +
1309 (nretry_to_per_lookup[retries] >> 3));
1312 ath_rc_priv->rssi_last_prev2 = ath_rc_priv->rssi_last_prev;
1313 ath_rc_priv->rssi_last_prev = ath_rc_priv->rssi_last;
1314 ath_rc_priv->rssi_last = info_priv->tx.ts_rssi;
1315 ath_rc_priv->rssi_time = now_msec;
1318 * If we got at most one retry then increase the max rate if
1319 * this was a probe. Otherwise, ignore the probe.
1322 if (ath_rc_priv->probe_rate && ath_rc_priv->probe_rate == tx_rate) {
1323 if (retries > 0 || 2 * info_priv->n_bad_frames >
1324 info_priv->n_frames) {
1326 * Since we probed with just a single attempt,
1327 * any retries means the probe failed. Also,
1328 * if the attempt worked, but more than half
1329 * the subframes were bad then also consider
1330 * the probe a failure.
1332 ath_rc_priv->probe_rate = 0;
1333 } else {
1334 u8 probe_rate = 0;
1336 ath_rc_priv->rate_max_phy = ath_rc_priv->probe_rate;
1337 probe_rate = ath_rc_priv->probe_rate;
1339 if (ath_rc_priv->state[probe_rate].per > 30)
1340 ath_rc_priv->state[probe_rate].per = 20;
1342 ath_rc_priv->probe_rate = 0;
1345 * Since this probe succeeded, we allow the next
1346 * probe twice as soon. This allows the maxRate
1347 * to move up faster if the probes are
1348 * succesful.
1350 ath_rc_priv->probe_time = now_msec -
1351 rate_table->probe_interval / 2;
1355 if (retries > 0) {
1357 * Don't update anything. We don't know if
1358 * this was because of collisions or poor signal.
1360 * Later: if rssi_ack is close to
1361 * ath_rc_priv->state[txRate].rssi_thres and we see lots
1362 * of retries, then we could increase
1363 * ath_rc_priv->state[txRate].rssi_thres.
1365 ath_rc_priv->hw_maxretry_pktcnt = 0;
1366 } else {
1368 * It worked with no retries. First ignore bogus (small)
1369 * rssi_ack values.
1371 if (tx_rate == ath_rc_priv->rate_max_phy &&
1372 ath_rc_priv->hw_maxretry_pktcnt < 255) {
1373 ath_rc_priv->hw_maxretry_pktcnt++;
1376 if (info_priv->tx.ts_rssi >=
1377 rate_table->info[tx_rate].rssi_ack_validmin) {
1378 /* Average the rssi */
1379 if (tx_rate != ath_rc_priv->rssi_sum_rate) {
1380 ath_rc_priv->rssi_sum_rate = tx_rate;
1381 ath_rc_priv->rssi_sum =
1382 ath_rc_priv->rssi_sum_cnt = 0;
1385 ath_rc_priv->rssi_sum += info_priv->tx.ts_rssi;
1386 ath_rc_priv->rssi_sum_cnt++;
1388 if (ath_rc_priv->rssi_sum_cnt > 4) {
1389 int32_t rssi_ackAvg =
1390 (ath_rc_priv->rssi_sum + 2) / 4;
1391 int8_t rssi_thres =
1392 ath_rc_priv->state[tx_rate].
1393 rssi_thres;
1394 int8_t rssi_ack_vmin =
1395 rate_table->info[tx_rate].
1396 rssi_ack_validmin;
1398 ath_rc_priv->rssi_sum =
1399 ath_rc_priv->rssi_sum_cnt = 0;
1401 /* Now reduce the current
1402 * rssi threshold. */
1403 if ((rssi_ackAvg < rssi_thres + 2) &&
1404 (rssi_thres > rssi_ack_vmin)) {
1405 ath_rc_priv->state[tx_rate].
1406 rssi_thres--;
1409 state_change = TRUE;
1415 /* For all cases */
1418 * If this rate looks bad (high PER) then stop using it for
1419 * a while (except if we are probing).
1421 if (ath_rc_priv->state[tx_rate].per >= 55 && tx_rate > 0 &&
1422 rate_table->info[tx_rate].ratekbps <=
1423 rate_table->info[ath_rc_priv->rate_max_phy].ratekbps) {
1424 ath_rc_get_nextlowervalid_txrate(rate_table, ath_rc_priv,
1425 (u8) tx_rate, &ath_rc_priv->rate_max_phy);
1427 /* Don't probe for a little while. */
1428 ath_rc_priv->probe_time = now_msec;
1431 if (state_change) {
1433 * Make sure the rates above this have higher rssi thresholds.
1434 * (Note: Monotonicity is kept within the OFDM rates and
1435 * within the CCK rates. However, no adjustment is
1436 * made to keep the rssi thresholds monotonically
1437 * increasing between the CCK and OFDM rates.)
1439 for (rate = tx_rate; rate <
1440 ath_rc_priv->rate_table_size - 1; rate++) {
1441 if (rate_table->info[rate+1].phy !=
1442 rate_table->info[tx_rate].phy)
1443 break;
1445 if (ath_rc_priv->state[rate].rssi_thres +
1446 rate_table->info[rate].rssi_ack_deltamin >
1447 ath_rc_priv->state[rate+1].rssi_thres) {
1448 ath_rc_priv->state[rate+1].rssi_thres =
1449 ath_rc_priv->state[rate].
1450 rssi_thres +
1451 rate_table->info[rate].
1452 rssi_ack_deltamin;
1456 /* Make sure the rates below this have lower rssi thresholds. */
1457 for (rate = tx_rate - 1; rate >= 0; rate--) {
1458 if (rate_table->info[rate].phy !=
1459 rate_table->info[tx_rate].phy)
1460 break;
1462 if (ath_rc_priv->state[rate].rssi_thres +
1463 rate_table->info[rate].rssi_ack_deltamin >
1464 ath_rc_priv->state[rate+1].rssi_thres) {
1465 if (ath_rc_priv->state[rate+1].rssi_thres <
1466 rate_table->info[rate].
1467 rssi_ack_deltamin)
1468 ath_rc_priv->state[rate].rssi_thres = 0;
1469 else {
1470 ath_rc_priv->state[rate].rssi_thres =
1471 ath_rc_priv->state[rate+1].
1472 rssi_thres -
1473 rate_table->info[rate].
1474 rssi_ack_deltamin;
1477 if (ath_rc_priv->state[rate].rssi_thres <
1478 rate_table->info[rate].
1479 rssi_ack_validmin) {
1480 ath_rc_priv->state[rate].rssi_thres =
1481 rate_table->info[rate].
1482 rssi_ack_validmin;
1488 /* Make sure the rates below this have lower PER */
1489 /* Monotonicity is kept only for rates below the current rate. */
1490 if (ath_rc_priv->state[tx_rate].per < last_per) {
1491 for (rate = tx_rate - 1; rate >= 0; rate--) {
1492 if (rate_table->info[rate].phy !=
1493 rate_table->info[tx_rate].phy)
1494 break;
1496 if (ath_rc_priv->state[rate].per >
1497 ath_rc_priv->state[rate+1].per) {
1498 ath_rc_priv->state[rate].per =
1499 ath_rc_priv->state[rate+1].per;
1504 /* Maintain monotonicity for rates above the current rate */
1505 for (rate = tx_rate; rate < ath_rc_priv->rate_table_size - 1; rate++) {
1506 if (ath_rc_priv->state[rate+1].per < ath_rc_priv->state[rate].per)
1507 ath_rc_priv->state[rate+1].per =
1508 ath_rc_priv->state[rate].per;
1511 /* Every so often, we reduce the thresholds and
1512 * PER (different for CCK and OFDM). */
1513 if (now_msec - ath_rc_priv->rssi_down_time >=
1514 rate_table->rssi_reduce_interval) {
1516 for (rate = 0; rate < ath_rc_priv->rate_table_size; rate++) {
1517 if (ath_rc_priv->state[rate].rssi_thres >
1518 rate_table->info[rate].rssi_ack_validmin)
1519 ath_rc_priv->state[rate].rssi_thres -= 1;
1521 ath_rc_priv->rssi_down_time = now_msec;
1524 /* Every so often, we reduce the thresholds
1525 * and PER (different for CCK and OFDM). */
1526 if (now_msec - ath_rc_priv->per_down_time >=
1527 rate_table->rssi_reduce_interval) {
1528 for (rate = 0; rate < ath_rc_priv->rate_table_size; rate++) {
1529 ath_rc_priv->state[rate].per =
1530 7 * ath_rc_priv->state[rate].per / 8;
1533 ath_rc_priv->per_down_time = now_msec;
1538 * This routine is called in rate control callback tx_status() to give
1539 * the status of previous frames.
1541 static void ath_rc_update(struct ath_softc *sc,
1542 struct ath_rate_node *ath_rc_priv,
1543 struct ath_tx_info_priv *info_priv, int final_ts_idx,
1544 int xretries, int long_retry)
1546 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1547 struct ath_rate_table *rate_table;
1548 struct ath_rc_series rcs[4];
1549 u8 flags;
1550 u32 series = 0, rix;
1552 memcpy(rcs, info_priv->rcs, 4 * sizeof(rcs[0]));
1553 rate_table = (struct ath_rate_table *)
1554 asc->hw_rate_table[sc->sc_curmode];
1555 ASSERT(rcs[0].tries != 0);
1558 * If the first rate is not the final index, there
1559 * are intermediate rate failures to be processed.
1561 if (final_ts_idx != 0) {
1562 /* Process intermediate rates that failed.*/
1563 for (series = 0; series < final_ts_idx ; series++) {
1564 if (rcs[series].tries != 0) {
1565 flags = rcs[series].flags;
1566 /* If HT40 and we have switched mode from
1567 * 40 to 20 => don't update */
1568 if ((flags & ATH_RC_CW40_FLAG) &&
1569 (ath_rc_priv->rc_phy_mode !=
1570 (flags & ATH_RC_CW40_FLAG)))
1571 return;
1572 if ((flags & ATH_RC_CW40_FLAG) &&
1573 (flags & ATH_RC_SGI_FLAG))
1574 rix = rate_table->info[
1575 rcs[series].rix].ht_index;
1576 else if (flags & ATH_RC_SGI_FLAG)
1577 rix = rate_table->info[
1578 rcs[series].rix].sgi_index;
1579 else if (flags & ATH_RC_CW40_FLAG)
1580 rix = rate_table->info[
1581 rcs[series].rix].cw40index;
1582 else
1583 rix = rate_table->info[
1584 rcs[series].rix].base_index;
1585 ath_rc_update_ht(sc, ath_rc_priv,
1586 info_priv, rix,
1587 xretries ? 1 : 2,
1588 rcs[series].tries);
1591 } else {
1593 * Handle the special case of MIMO PS burst, where the second
1594 * aggregate is sent out with only one rate and one try.
1595 * Treating it as an excessive retry penalizes the rate
1596 * inordinately.
1598 if (rcs[0].tries == 1 && xretries == 1)
1599 xretries = 2;
1602 flags = rcs[series].flags;
1603 /* If HT40 and we have switched mode from 40 to 20 => don't update */
1604 if ((flags & ATH_RC_CW40_FLAG) &&
1605 (ath_rc_priv->rc_phy_mode != (flags & ATH_RC_CW40_FLAG)))
1606 return;
1608 if ((flags & ATH_RC_CW40_FLAG) && (flags & ATH_RC_SGI_FLAG))
1609 rix = rate_table->info[rcs[series].rix].ht_index;
1610 else if (flags & ATH_RC_SGI_FLAG)
1611 rix = rate_table->info[rcs[series].rix].sgi_index;
1612 else if (flags & ATH_RC_CW40_FLAG)
1613 rix = rate_table->info[rcs[series].rix].cw40index;
1614 else
1615 rix = rate_table->info[rcs[series].rix].base_index;
1617 ath_rc_update_ht(sc, ath_rc_priv, info_priv, rix,
1618 xretries, long_retry);
1622 * Process a tx descriptor for a completed transmit (success or failure).
1624 static void ath_rate_tx_complete(struct ath_softc *sc,
1625 struct ath_node *an,
1626 struct ath_rate_node *rc_priv,
1627 struct ath_tx_info_priv *info_priv)
1629 int final_ts_idx = info_priv->tx.ts_rateindex;
1630 int tx_status = 0, is_underrun = 0;
1631 struct ath_vap *avp;
1633 avp = rc_priv->avp;
1634 if ((avp->av_config.av_fixed_rateset != IEEE80211_FIXED_RATE_NONE) ||
1635 (info_priv->tx.ts_status & ATH9K_TXERR_FILT))
1636 return;
1638 if (info_priv->tx.ts_rssi > 0) {
1639 ATH_RSSI_LPF(an->an_chainmask_sel.tx_avgrssi,
1640 info_priv->tx.ts_rssi);
1644 * If underrun error is seen assume it as an excessive retry only
1645 * if prefetch trigger level have reached the max (0x3f for 5416)
1646 * Adjust the long retry as if the frame was tried ATH_11N_TXMAXTRY
1647 * times. This affects how ratectrl updates PER for the failed rate.
1649 if (info_priv->tx.ts_flags &
1650 (ATH9K_TX_DATA_UNDERRUN | ATH9K_TX_DELIM_UNDERRUN) &&
1651 ((sc->sc_ah->ah_txTrigLevel) >= tx_triglevel_max)) {
1652 tx_status = 1;
1653 is_underrun = 1;
1656 if ((info_priv->tx.ts_status & ATH9K_TXERR_XRETRY) ||
1657 (info_priv->tx.ts_status & ATH9K_TXERR_FIFO))
1658 tx_status = 1;
1660 ath_rc_update(sc, rc_priv, info_priv, final_ts_idx, tx_status,
1661 (is_underrun) ? ATH_11N_TXMAXTRY :
1662 info_priv->tx.ts_longretry);
1666 * Update the SIB's rate control information
1668 * This should be called when the supported rates change
1669 * (e.g. SME operation, wireless mode change)
1671 * It will determine which rates are valid for use.
1673 static void ath_rc_sib_update(struct ath_softc *sc,
1674 struct ath_rate_node *ath_rc_priv,
1675 u32 capflag, int keep_state,
1676 struct ath_rateset *negotiated_rates,
1677 struct ath_rateset *negotiated_htrates)
1679 struct ath_rate_table *rate_table = NULL;
1680 struct ath_rate_softc *asc = (struct ath_rate_softc *)sc->sc_rc;
1681 struct ath_rateset *rateset = negotiated_rates;
1682 u8 *ht_mcs = (u8 *)negotiated_htrates;
1683 u8 i, j, k, hi = 0, hthi = 0;
1685 rate_table = (struct ath_rate_table *)
1686 asc->hw_rate_table[sc->sc_curmode];
1688 /* Initial rate table size. Will change depending
1689 * on the working rate set */
1690 ath_rc_priv->rate_table_size = MAX_TX_RATE_TBL;
1692 /* Initialize thresholds according to the global rate table */
1693 for (i = 0 ; (i < ath_rc_priv->rate_table_size) && (!keep_state); i++) {
1694 ath_rc_priv->state[i].rssi_thres =
1695 rate_table->info[i].rssi_ack_validmin;
1696 ath_rc_priv->state[i].per = 0;
1699 /* Determine the valid rates */
1700 ath_rc_init_valid_txmask(ath_rc_priv);
1702 for (i = 0; i < WLAN_RC_PHY_MAX; i++) {
1703 for (j = 0; j < MAX_TX_RATE_PHY; j++)
1704 ath_rc_priv->valid_phy_rateidx[i][j] = 0;
1705 ath_rc_priv->valid_phy_ratecnt[i] = 0;
1707 ath_rc_priv->rc_phy_mode = (capflag & WLAN_RC_40_FLAG);
1709 /* Set stream capability */
1710 ath_rc_priv->single_stream = (capflag & WLAN_RC_DS_FLAG) ? 0 : 1;
1712 if (!rateset->rs_nrates) {
1713 /* No working rate, just initialize valid rates */
1714 hi = ath_rc_sib_init_validrates(ath_rc_priv, rate_table,
1715 capflag);
1716 } else {
1717 /* Use intersection of working rates and valid rates */
1718 hi = ath_rc_sib_setvalid_rates(ath_rc_priv, rate_table,
1719 rateset, capflag);
1720 if (capflag & WLAN_RC_HT_FLAG) {
1721 hthi = ath_rc_sib_setvalid_htrates(ath_rc_priv,
1722 rate_table,
1723 ht_mcs,
1724 capflag);
1726 hi = A_MAX(hi, hthi);
1729 ath_rc_priv->rate_table_size = hi + 1;
1730 ath_rc_priv->rate_max_phy = 0;
1731 ASSERT(ath_rc_priv->rate_table_size <= MAX_TX_RATE_TBL);
1733 for (i = 0, k = 0; i < WLAN_RC_PHY_MAX; i++) {
1734 for (j = 0; j < ath_rc_priv->valid_phy_ratecnt[i]; j++) {
1735 ath_rc_priv->valid_rate_index[k++] =
1736 ath_rc_priv->valid_phy_rateidx[i][j];
1739 if (!ath_rc_valid_phyrate(i, rate_table->initial_ratemax, TRUE)
1740 || !ath_rc_priv->valid_phy_ratecnt[i])
1741 continue;
1743 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_phy_rateidx[i][j-1];
1745 ASSERT(ath_rc_priv->rate_table_size <= MAX_TX_RATE_TBL);
1746 ASSERT(k <= MAX_TX_RATE_TBL);
1748 ath_rc_priv->max_valid_rate = k;
1750 * Some third party vendors don't send the supported rate series in
1751 * order. So sorting to make sure its in order, otherwise our RateFind
1752 * Algo will select wrong rates
1754 ath_rc_sort_validrates(rate_table, ath_rc_priv);
1755 ath_rc_priv->rate_max_phy = ath_rc_priv->valid_rate_index[k-4];
1759 * Update rate-control state on station associate/reassociate.
1761 static int ath_rate_newassoc(struct ath_softc *sc,
1762 struct ath_rate_node *ath_rc_priv,
1763 unsigned int capflag,
1764 struct ath_rateset *negotiated_rates,
1765 struct ath_rateset *negotiated_htrates)
1769 ath_rc_priv->ht_cap =
1770 ((capflag & ATH_RC_DS_FLAG) ? WLAN_RC_DS_FLAG : 0) |
1771 ((capflag & ATH_RC_SGI_FLAG) ? WLAN_RC_SGI_FLAG : 0) |
1772 ((capflag & ATH_RC_HT_FLAG) ? WLAN_RC_HT_FLAG : 0) |
1773 ((capflag & ATH_RC_CW40_FLAG) ? WLAN_RC_40_FLAG : 0);
1775 ath_rc_sib_update(sc, ath_rc_priv, ath_rc_priv->ht_cap, 0,
1776 negotiated_rates, negotiated_htrates);
1778 return 0;
1782 * This routine is called to initialize the rate control parameters
1783 * in the SIB. It is called initially during system initialization
1784 * or when a station is associated with the AP.
1786 static void ath_rc_sib_init(struct ath_rate_node *ath_rc_priv)
1788 ath_rc_priv->rssi_down_time = jiffies_to_msecs(jiffies);
1792 static void ath_setup_rates(struct ath_softc *sc,
1793 struct ieee80211_supported_band *sband,
1794 struct ieee80211_sta *sta,
1795 struct ath_rate_node *rc_priv)
1798 int i, j = 0;
1800 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1802 for (i = 0; i < sband->n_bitrates; i++) {
1803 if (sta->supp_rates[sband->band] & BIT(i)) {
1804 rc_priv->neg_rates.rs_rates[j]
1805 = (sband->bitrates[i].bitrate * 2) / 10;
1806 j++;
1809 rc_priv->neg_rates.rs_nrates = j;
1812 void ath_rc_node_update(struct ieee80211_hw *hw, struct ath_rate_node *rc_priv)
1814 struct ath_softc *sc = hw->priv;
1815 u32 capflag = 0;
1817 if (hw->conf.ht.enabled) {
1818 capflag |= ATH_RC_HT_FLAG | ATH_RC_DS_FLAG;
1819 if (sc->sc_ht_info.tx_chan_width == ATH9K_HT_MACMODE_2040)
1820 capflag |= ATH_RC_CW40_FLAG;
1823 ath_rate_newassoc(sc, rc_priv, capflag,
1824 &rc_priv->neg_rates,
1825 &rc_priv->neg_ht_rates);
1829 /* Rate Control callbacks */
1830 static void ath_tx_status(void *priv, struct ieee80211_supported_band *sband,
1831 struct ieee80211_sta *sta, void *priv_sta,
1832 struct sk_buff *skb)
1834 struct ath_softc *sc = priv;
1835 struct ath_tx_info_priv *tx_info_priv;
1836 struct ath_node *an;
1837 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1838 struct ieee80211_hdr *hdr;
1839 __le16 fc;
1841 hdr = (struct ieee80211_hdr *)skb->data;
1842 fc = hdr->frame_control;
1843 /* XXX: UGLY HACK!! */
1844 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
1846 an = (struct ath_node *)sta->drv_priv;
1848 if (tx_info_priv == NULL)
1849 return;
1851 if (an && priv_sta && ieee80211_is_data(fc))
1852 ath_rate_tx_complete(sc, an, priv_sta, tx_info_priv);
1854 kfree(tx_info_priv);
1855 tx_info->control.vif = NULL;
1858 static void ath_get_rate(void *priv, struct ieee80211_sta *sta, void *priv_sta,
1859 struct ieee80211_tx_rate_control *txrc)
1861 struct ieee80211_supported_band *sband = txrc->sband;
1862 struct sk_buff *skb = txrc->skb;
1863 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1864 struct ath_softc *sc = priv;
1865 struct ieee80211_hw *hw = sc->hw;
1866 struct ath_tx_info_priv *tx_info_priv;
1867 struct ath_rate_node *ath_rc_priv = priv_sta;
1868 struct ath_node *an;
1869 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1870 int is_probe = FALSE;
1871 s8 lowest_idx;
1872 __le16 fc = hdr->frame_control;
1873 u8 *qc, tid;
1875 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1877 /* allocate driver private area of tx_info, XXX: UGLY HACK! */
1878 tx_info->control.vif = kzalloc(sizeof(*tx_info_priv), GFP_ATOMIC);
1879 tx_info_priv = (struct ath_tx_info_priv *)tx_info->control.vif;
1880 ASSERT(tx_info_priv != NULL);
1882 lowest_idx = rate_lowest_index(sband, sta);
1883 tx_info_priv->min_rate = (sband->bitrates[lowest_idx].bitrate * 2) / 10;
1884 /* lowest rate for management and multicast/broadcast frames */
1885 if (!ieee80211_is_data(fc) ||
1886 is_multicast_ether_addr(hdr->addr1) || !sta) {
1887 tx_info->control.rates[0].idx = lowest_idx;
1888 return;
1891 /* Find tx rate for unicast frames */
1892 ath_rate_findrate(sc, ath_rc_priv,
1893 ATH_11N_TXMAXTRY, 4,
1894 ATH_RC_PROBE_ALLOWED,
1895 tx_info_priv->rcs,
1896 &is_probe,
1897 false);
1898 #if 0
1899 if (is_probe)
1900 sel->probe_idx = ath_rc_priv->tx_ratectrl.probe_rate;
1901 #endif
1903 /* Ratecontrol sometimes returns invalid rate index */
1904 if (tx_info_priv->rcs[0].rix != 0xff)
1905 ath_rc_priv->prev_data_rix = tx_info_priv->rcs[0].rix;
1906 else
1907 tx_info_priv->rcs[0].rix = ath_rc_priv->prev_data_rix;
1909 tx_info->control.rates[0].idx = tx_info_priv->rcs[0].rix;
1911 /* Check if aggregation has to be enabled for this tid */
1913 if (hw->conf.ht.enabled) {
1914 if (ieee80211_is_data_qos(fc)) {
1915 qc = ieee80211_get_qos_ctl(hdr);
1916 tid = qc[0] & 0xf;
1917 an = (struct ath_node *)sta->drv_priv;
1919 if(ath_tx_aggr_check(sc, an, tid))
1920 ieee80211_start_tx_ba_session(hw, hdr->addr1, tid);
1925 static void ath_rate_init(void *priv, struct ieee80211_supported_band *sband,
1926 struct ieee80211_sta *sta, void *priv_sta)
1928 struct ath_softc *sc = priv;
1929 struct ath_rate_node *ath_rc_priv = priv_sta;
1930 int i, j = 0;
1932 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1934 ath_setup_rates(sc, sband, sta, ath_rc_priv);
1935 if (sta->ht_cap.ht_supported) {
1936 for (i = 0; i < 77; i++) {
1937 if (sta->ht_cap.mcs.rx_mask[i/8] & (1<<(i%8)))
1938 ath_rc_priv->neg_ht_rates.rs_rates[j++] = i;
1939 if (j == ATH_RATE_MAX)
1940 break;
1942 ath_rc_priv->neg_ht_rates.rs_nrates = j;
1944 ath_rc_node_update(sc->hw, priv_sta);
1947 static void *ath_rate_alloc(struct ieee80211_hw *hw, struct dentry *debugfsdir)
1949 struct ath_softc *sc = hw->priv;
1951 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1952 return hw->priv;
1955 static void ath_rate_free(void *priv)
1957 return;
1960 static void *ath_rate_alloc_sta(void *priv, struct ieee80211_sta *sta, gfp_t gfp)
1962 struct ieee80211_vif *vif;
1963 struct ath_softc *sc = priv;
1964 struct ath_vap *avp;
1965 struct ath_rate_node *rate_priv;
1967 DPRINTF(sc, ATH_DBG_RATE, "%s\n", __func__);
1969 vif = sc->sc_vaps[0];
1970 ASSERT(vif);
1972 avp = (void *)vif->drv_priv;
1974 rate_priv = ath_rate_node_alloc(avp, sc->sc_rc, gfp);
1975 if (!rate_priv) {
1976 DPRINTF(sc, ATH_DBG_FATAL,
1977 "%s: Unable to allocate private rc structure\n",
1978 __func__);
1979 return NULL;
1981 ath_rc_sib_init(rate_priv);
1983 return rate_priv;
1986 static void ath_rate_free_sta(void *priv, struct ieee80211_sta *sta,
1987 void *priv_sta)
1989 struct ath_rate_node *rate_priv = priv_sta;
1990 struct ath_softc *sc = priv;
1992 DPRINTF(sc, ATH_DBG_RATE, "%s", __func__);
1993 ath_rate_node_free(rate_priv);
1996 static struct rate_control_ops ath_rate_ops = {
1997 .module = NULL,
1998 .name = "ath9k_rate_control",
1999 .tx_status = ath_tx_status,
2000 .get_rate = ath_get_rate,
2001 .rate_init = ath_rate_init,
2002 .alloc = ath_rate_alloc,
2003 .free = ath_rate_free,
2004 .alloc_sta = ath_rate_alloc_sta,
2005 .free_sta = ath_rate_free_sta,
2008 int ath_rate_control_register(void)
2010 return ieee80211_rate_control_register(&ath_rate_ops);
2013 void ath_rate_control_unregister(void)
2015 ieee80211_rate_control_unregister(&ath_rate_ops);